
ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Neurocomputing 0 0 0 (2017) 1–15

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

FP-BNN: Binarized neural network on FPGA

Shuang Liang

a , Shouyi Yin

a , ∗, Leibo Liu

a , Wayne Luk

b , Shaojun Wei a

a Institute of Microelectronics, Tsinghua University, Beijing, China
b Department of Computing, Imperial College London, UK

a r t i c l e i n f o

Article history:

Received 10 December 2016

Revised 10 August 2017

Accepted 17 September 2017

Available online xxx

Communicated by Dr. Deng Cheng

Keywords:

Binarized neural network

Hardware accelerator

FPGA

a b s t r a c t

Deep neural networks (DNNs) have attracted significant attention for their excellent accuracy especially

in areas such as computer vision and artificial intelligence. To enhance their performance, technologies

for their hardware acceleration are being studied. FPGA technology is a promising choice for hardware ac-

celeration, given its low power consumption and high flexibility which makes it suitable particularly for

embedded systems. However, complex DNN models may need more computing and memory resources

than those available in many current FPGAs. This paper presents FP-BNN, a binarized neural network

(BNN) for FPGAs, which drastically cuts down the hardware consumption while maintaining acceptable

accuracy. We introduce a Resource-Aware Model Analysis (RAMA) method, and remove the bottleneck in-

volving multipliers by bit-level XNOR and shifting operations, and the bottleneck of parameter access by

data quantization and optimized on-chip storage. We evaluate the FP-BNN accelerator designs for MNIST

multi-layer perceptrons (MLP), Cifar-10 ConvNet, and AlexNet on a Stratix-V FPGA system. An inference

performance of Tera opartions per second with acceptable accuracy loss is obtained, which shows im-

provement in speed and energy efficiency over other computing platforms.

© 2017 Elsevier B.V. All rights reserved.

1

i

f

t

n

h

p

l

t

5

e

p

2

d

p

m

o

G

y

(

q

(

p

a

t

[

f

d

t

s

b

o

e

i

t

i

F

r

d

t

h

0

. Introduction

As the computational ability of processors rapidly grows, train-

ng and testing deep neural networks (NNs) become much more

easible, which substantially boost the design of various models

argeting applications such as computer vision [1–3] , speech recog-

ition [4,5] , and even artificial intelligence (AI) for games against

uman beings [6,7] . Higher accuracy typically demands more com-

lex models. Take ImageNet Large-Scale Vision Recognition Chal-

enge (ILSVRC) as example, Krizhevsky et al. [8] achieved 84.7%

op-5 accuracy in classification task in 2012 with a model including

 convolution (CONV) layers and 3 fully-connected (FC) layers; He

t al. [9] got a 95.1% result surpassing human-level classification

erformance (94.9% [3]) with a 22-layer model, and they won the

015 competition for achieving an accuracy of 96.4% with a model

epth of 152 [10] . Such model can take over 11.3 billion floating-

oint operations (GFLOPs) for the inference procedure, and even

ore for training.

These convolutional neural networks (CNNs) mostly consist

f intensive multiplication and accumulation (MAC) operations.

eneral-purpose processors execute these operations mostly se-
∗ Corresponding author.

E-mail addresses: s-liang11@mails.tsinghua.edu.cn (S. Liang),

insy@tsinghua.edu.cn (S. Yin), liulb@tsinghua.edu.cn (L. Liu), w.luk@imperial.ac.uk

W. Luk), wsj@tsinghua.edu.cn (S. Wei).

s

a

n

p

ttps://doi.org/10.1016/j.neucom.2017.09.046

925-2312/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
uentially, which leads to low efficiency. Graphics processing units

GPUs) can offer Giga to Tera FLOPs per second’s (FLOP/s) com-

uting speed due to their single-instruction-multiple-data (SIMD)

rchitecture and high clock frequency. Therefore, researchers tend

o use one or several GPUs to meet the model training demand

11] for quick development iterations. However, GPUs also suffer

rom a high energy cost – for a NVIDIA Tesla K40 GPU, the thermal

esign power (TDP) is 235 W [12] . Such power consumption can be

olerable for high-performance servers, but for embedded systems

uch as mobile devices, robots, etc., which are mostly powered by

atteries, low power consumption becomes essential.

Field Programmable Gate Arrays (FPGAs) usually consume one

rder-of-magnitude less power than GPUs, while offering consid-

rable speed-up over CPUs. Moreover, FPGAs offer more flexibil-

ty, since they are reconfigurable and support customizable data

ypes, which can be useful in reducing resource utilization. There

s much research on accelerating state-of-the-art NN models with

PGAs [13–15] . However, since most current FPGAs have limited

esources (several dozen M bits of on-chip memory, several hun-

red to thousand digital signal processors (DSPs)), designers have

o adopt techniques such as tiling to support many NN models,

ince most models have a large number of weights and MAC oper-

tions (Table 1). Furthermore, memory bandwidth can be a bottle-

eck during the data loading stage for some wide data-dependency

attern such as FC layers [15] .
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
mailto:s-liang11@mails.tsinghua.edu.cn
mailto:yinsy@tsinghua.edu.cn
mailto:liulb@tsinghua.edu.cn
mailto:w.luk@imperial.ac.uk
mailto:wsj@tsinghua.edu.cn
https://doi.org/10.1016/j.neucom.2017.09.046
https://doi.org/10.1016/j.neucom.2017.09.046

2 S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Table 1

Summary of weight and MAC number of popular CNNs [21] .

Model LeNet-5 AlexNet VGG-16 GoogLeNet v1 ResNet-50

Weights 60 K 61 M 138 M 7 M 25.5 M

MACs 341 K 724 M 15.5 G 1.43 G 3.9 G

t

a

A

w

w

s

X

t

i

n

A

t

t

t

A

“

i

w

t

w

l

[

v

w

x̂

A

n

y

w

T

A

2

t
To improve resource usage, there are several ways of compress-

ing models to smaller sizes, such as gaining sparsity of network

connections and narrowing data bit-width [15–17] . Binarization is

a promising method to compress the NN models, which can di-

rectly shrink the bit-width of inputs and weights from 32 bit

(single-precision floating-point) to a single bit. Recently, Cour-

bariaux et al. [18] introduced a method to train binarized neu-

ral networks (BNNs) over MNIST, Cifar-10 and SVHN [19] datasets,

with near state-of-the-art accuracy. Shortly after that, Rastegari

et al. [20] announced they successfully trained ImageNet models

with BNN-based XNOR-Net method with an accuracy of 12.4% be-

low the full precision AlexNet, and provides a 58 times speed-

up and 32 times model size compression. The emergence of bi-

narized models makes it feasible to implement a system on FP-

GAs with much higher performance than floating-point versions.

This motivates us to design a method to take a given BNN model

and generate the datapath logic and data management pattern on

FPGA based to an optimization metric, which forms an accelera-

tor system targeting Tera operations per second’s(TOP/s) through-

put speed.

In this paper, we introduce FP-BNN, a BNN acceleration system

design on FPGA, with related optimizations. The contributions of

this paper are as follows:

- An analytical resource aware model analysis (RAMA) to assess

the resource cost, to help on-chip system architecture design.

- A datapath design with multipliers replaced by XNOR, popcount

and shifting operations for BNNs, and a compression tree gen-

eration method for more efficient popcount.

- An optimized data managing pattern with parameter quantiza-

tion and on-chip storage strategy.

- A demonstration with popular small (MNIST MLP and Cifar-

10 ConvNet) and large (AlexNet) models implemented on FPGA

in binarized style, achieving a performance of TOP/s with high

power efficiency.

The rest of the paper is organized as follows. Section 2 reviews

the basic concepts of CNN and BNN and discuss on the related

works. Section 3 describes the RAMA method. Section 4 presents

the system design and the details of each processing element (PE).

Section 5 explains how we tile and schedule the large computing

task onto our system. Section 6 covers a data quantization to com-

press the model, and introduces the on-chip design of the memory

system. Evaluation will be discussed in Section 7 , and conclusion

will be given in Section 8 .

2. Background

In this section, we will first provide an overview of the basic

concepts of CNN, and then explain how a binarized NN works.

Based on these concepts, we take a brief overview of related ef-

forts and discuss them.

2.1. Basics of CNN

Fig. 1 shows a typical CNN model structure [22] . A CNN model

usually consists of CONV layer, FC layer and Pooling (POOL) layer,

forming a trainable network. CONV layer : The CONV layer realizes a

filter-like process, which uses a K × K weight kernel W to convolve
Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
he input feature-map (fmap) I in a sliding-window manner with

 stride of S . This can be expressed as:

(l)
n (i, j) = B

(l) (n) +

N (l)
in ∑

m =1

W

(l) (m, n) � I (l)
m

(i, j) , (1)

here � is defined as convolution, which equals to K

2 element-

ise multiplications with accumulation (K stands for the kernel

ize):

 � Y =

K ∑

i =1

K ∑

j=1

X (i, j) · Y (i, j) (2)

FC layer : The FC layer will operate a linear transformation on

he input 1-D vectors with a weight matrix. The pattern of the

nput-output network is fully-connected, which is how it got its

ame. This process can be shown as:

(l) (n) = B

(l) (n) +

N (l)
in ∑

m =1

I (l) (m) · W

(l) (m, n) (3)

POOL layer : The POOL layer realizes a “down-sampling” opera-

ion, which compresses the input images into smaller scales. We

ake the most common max-POOL as an example, which extracts

he maximum value from the K × K kernel window as the output:

(l) (i, j) = max [I (l)
K ×K (i, j)

] (4)

Activation Layer : Just like biological neurons, we say they are

firing” once the key value exceeds the threshold and are “silent”

f not. Various activation functions are implemented in neural net-

ork designs to imitate the neurological behaviour such as ReLU,

anh, sigmoid, etc., which also introduce non-linearity to the net-

orks.

Batch Normalization (BN) layer : Since the distribution of each

ayer’s input can fluctuate during training, Batch Normalization

23] is introduced to speed up training. For a d -dimensional input

ector x = (x (1) , x (2) , . . . , x (d)) , we can normalize each dimension

ith:

(k) =

x (k) − E[x (k)] √

V ar[x (k)]
(5)

fter that, for each activation x (k) , we should scale and shift the

ormalized value to achieve an identity transform:

(k) = γ (k) ̂ x (k) + β(k) (6)

here γ (k) and β (k) are to be learned during the training process.

he whole process is described in Algorithm 1 .

lgorithm 1 Batch Normalization [23] .

1: Require: A mini-batch of input values: B = { x i } , i = 1 ∼ m ; Ini-

tialized parameters: γ , β .

2: Ensure: Updated γ , β; Output y i = BN γ ,β (x i) , i = 1 ∼ m .

3: μB =

1
m

m ∑

i =1

x i ; //Get mini-batch’s mean

4: σ 2
B =

1
m

m ∑

i =1

(x i − μB)
2
; //Get mini-batch’s variance

5: ˆ x i =

x i −μB √

σB 2 + ε
; //Normalize

6: y i ≡ B N γ ,β (x i) = γ ˆ x i + β; //Scale and shift

.2. Training a CNN

A given CNN model with initialized parameters should be

rained on a certain dataset in order to approximate the ideal
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15 3

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Fig. 1. A typical CNN model structure.

Table 2

Comparison between activation function Tanh, sign and HTanh.

Operation Function plots Derivative plots

Tanh(x) = ex−e−x

ex+e−x
−4 −2 2 4

−1

−0.5

0.5

1

x

f(x)

−4 −2 2 4

0.2

0.4

0.6

0.8

1

x

f(x)

sign(x) =

⎧⎨
⎩

+1 x ≥ 0

−1 x < 0
−2 −1 1 2

−1

−0.5

0.5

1

x

f(x)

−4 −2 2 4

0.2

0.4

0.6

0.8

1

1.2

x

f(x)

HTanh(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 x > 1

x −1 ≤ x ≤ 1

−1 x < −1

−2 −1 1 2

−1

−0.5

0.5

1

x

f(x)

−2 −1 1 2

0.2

0.4

0.6

0.8

1

1.2

x

f(x)

m

m

s

(

(

c

a

m

i

m

2

t

i

a

x

T

t

r

[

p

t

t

e

A

h

e

s

p

e

r

T

s

t

E

b

x

2

b

C

l

f

p

l

[

p

i

i
odel for ground-truth results. The most commonly used training

ethod is Back-Propagation (BP) training, which consists of two

tages:

1) Forward propagation (Inference) , which leads the input data go-

ing through the network to get an output result;

2) Back propagation , which calculates the error between output

and ground-truth labels with a defined loss function C , and then

propagates the gradient of each layer’s output function back-

wards to update the weights in order to minimize the loss func-

tion for the next training iteration.

Detailed derivation can be found in [24] . Since the overall pro-

ess is compute-intensive, high-performance servers with acceler-

tors such as GPUs are often used in training. Then the pretrained

odels can be used in many real-time scenarios by going through

nference process only with minor changes, which can be imple-

ented on many embedded hardware platforms.

.3. How BNN works

The essential idea of BNN is to constrain both weights and ac-

ivations to +1 and −1 [18] . The binarization method can be done

n either stochastic or deterministic way, and the latter is often re-

lized by the Sign function:

 b = Sign (x) =

{
+1 x ≥ 0

−1 x < 0

(7)

he problem is that during the training process, the derivative of

he Sign function is almost zero everywhere (as shown in Table 2),

esulting in an incompatibility with the BP training process. Hinton

25] introduced a “straight-through estimator” to cope with this

roblem. Courbariaux et al. [18] used a similar estimator in a de-

erministic way, which can be seen as a hard tanh (HTanh) func-
Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
ion:

st(Sign (x)) = H Tanh (x) =

{ +1 x > 1

x −1 ≤ x ≤ 1

−1 x < −1

(8)

ssume the required gradient is d C
d u

, and a = Sign (u) , then we will

ave the estimator of the gradient:

st

(
d C

d u

)
=

d C

d a
· d Sign (u)

d u

=

{
d C
d a

−1 ≤ u ≤ 1

0 otherwise
(9)

Since BN layers have the effect of avoiding internal covariate

hift, which can accelerate the training process and reduce the im-

act of binarization, [18] introduces BN layers in their BNN mod-

ls. To deal with the large amount of multiplications in BN, they

eplace them with shift operations to get a Shift-Based BN (SBN).

his can largely reduce the computing resource cost with only a

mall loss of precision – which actually can be healed through

he training process. The SBN replacement can be described as

q. (10) where sal (x, y) means an arithmetic left shift to x by y

its:

 · y ≈ sal [x, round(lo g 2 | y |)] · sign (y) (10)

.4. Related work

To accelerate an NN model in embedded hardware, spade hus-

andry should be taken. There has been many effort s deploying

NN models in hardware. Farabet et al. [26] designed a 3 CONV

ayers +5 FC layers simple face detection system on FPGA with 10

rames (512 × 384) per second’s performance. Zhang et al. [14] pro-

osed a nested-loop model to describe CNN, and accelerates CONV

ayers only under the guidance of a roofline model. Qiu et al.

15] realized an even deeper VGG model on FPGA. Most of these

revious designs store weights and fmaps off-chip since their size

s too large for on-chip storage. As a result, the dataflow bandwidth

s limited and frequent off-chip memory access happens. So some
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

4 S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Table 3

Resource cost of MACs on Stratix V FPGA.

Operation LUT FF DSP

32-bit float add(+) 581 525 0

x -bit fixed add(+) x x + 1 0

32-bit float mult(×) 147 363 1

x -bit fixed mult(×) 0 1
⌈

x
18

⌉

Fig. 2. Weight storage strategy selection for small (MNIST & Cifar-10) and large

(AlexNet) models.

h

N

t

w

a

C

s

t

t

G

i

N

t

N

N

o

w

c

a

W

o

F

b

a

a

a

4

F

designs support dedicated memory cache for on-chip data reuse

[27–29] , but the increase of memory placement means fewer arith-

metic resources since chip area is limited.

Clearly a small model that supports high accuracy and high per-

formance is ideal. One method is to exploit the sparsity inside the

model by pruning off connections [16,30,31] . Another method is to

reduce bit-width of operations. Much previous work took a quan-

tized fixed-point strategy to the on-chip data [15,27,28,32,33] pre-

sented a detailed analysis pointing out that for small models such

as MNIST and Cifar-10, the weights can be quantized to 4 bits,

while for large models such as AlexNet, 8 bits would be necessary.

Recently, some effort s successfully reduced the bit-width of

weights to 2 bits such as ternarized weight NN (TWN) [34,35] , or

even 1-bit binarized weight NN (BWN) [20] . Moreover, activations

can be reduced to 2 bits [36–38] or even 1 bit (BNN) with little

loss for small datasets [18,20] . These results stimulate hardware

development. YodaNN [39] designed a UMC 65-nm ASIC targeting

BWN with 1.5 TOP/s. Alemdar et al. [37] implemented ternarized

NN (TNN) on FPGA with a speed of 600 GOP/s for MNIST MLP and

200 GOP/s for Cifar-10 ConvNet under 250 MHz clock, and on ST

28 nm ASIC with doubled throughput and around 300 mW power

consumption under 500 MHz clock. Zhao et al. [40] implemented

a BNN on FPGA with the help of high-level synthesis (HLS) tool,

and get a 200 GOP/s performance for Cifar-10 ConvNet. In addi-

tion, Umuroglu et al. [41] also proposed a BNN design targeting

small datasets MNIST and Cifar-10 and reached a performance of

TOP/s.

We should notice that since the bit-width of data has been re-

duced by 32 times in BNN, an execution speed of TOP/s is ex-

pected since many recent non-BNN designs have already reached a

performance of several hundred GOP/s. The key optimizations in-

clude: (1) single-bit based MAC operation, which can be replaced

by efficient XNOR and popcount operations and can be free from

conventional multiply and add operations; (2) small size for both

parameters and intermediate results, which would enable on-chip

caching; (3) broaden bandwidth for on-chip BRAMs, which would

reduce the bottleneck of data dependency with wide data-access

patterns such as those in FC layers. Our FP-BNN design is devel-

oped based on the above motivations. Furthermore, FP-BNN sup-

ports large models such as XNOR-Net version AlexNet.

3. Resource-Aware Model Analysis (RAMA)

To design an NN accelerator on chip, we should consider how

to tile the overall task onto limited resources, which can be classi-

fied into two classes: arithmetic units and memory units. To help

choosing the size of task tiles, we need to estimate the resource

cost beforehand. The RAMA method is introduced to address this

need.

In modern FPGA platforms, four kinds of resources are pro-

vided: look-up tables (LUTs), flip-flops (FFs), block RAMs (BRAMs)

and digital signal processing units (DSPs). LUTs and DSPs are the

key to form arithmetic and control logic, while BRAMs are usu-

ally used as on-chip storage for fast data access. From the arith-

metic perspective, MACs are the key operations which cost most

resources. DSPs have hard-wired multipliers and can be configured

to quickly deliver results under high clock frequency – and one can

choose LUTs to implement a customized multiplier. We compare

the resource cost of these two ways on a Stratix V FPGA synthe-

sized with Altera Quartus v13.1, and the result is shown in Table 3 .

With the resource cost of one single MAC operation in hand, we

need to further count the number of MACs in each layer, which can

be represented as N layer (MAC) . For CONV layers we have (FC layers

can be seen as K = R out = C out = 1):

N CONV/F C (MAC) = N in × N out × K

2 × R out × C out (11)
Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
For operations in BN layers, the number of operations (NOP)

as a linear relationship with the number of output channels N out .

otice that the shift-based transformation can change multiplica-

ions into cheap sum and shift operations. To get NOP after tiling,

e just need to replace the original dimensions with tiled ones,

nd then we can estimate the resource cost for a certain type

 res _ type (layer) by summing up the product of tiled NOP and re-

ource cost of one operation, which in tern help us determine the

iling factor.

Next, from the memory perspective, we should concentrate on

he size of parameters and the activation outputs of each layer.

iven that N layer (data) denotes the size of a certain kind of data

n one layer, then for the weights we have

 CONV (W) = N in × N out × K

2 (12)

For other parameters, such as biases, normalization parameters,

hey are given by the number of output channels, that is

 CONV (Other) = N out (13)

For activations, we have

 CONV (A) = N out × R

2
out (14)

The overall memory cost of each type of data is the product

f the bit-width and the amount of data. For weights, from Fig. 2

e can see that in an ideal binarized condition, small models

an completely be stored in on-chip BRAMs, while large models’

mount of weight can exceed the upper limit of available BRAMs.

e use a tiled weight storage strategy that takes only one portion

f weights required for the current tile from off-chip memories.

or activations (feature maps (fmaps)), since data adjacency will

e needed in both vertical and horizontal axis, BRAM will not be

 suitable choice since it can only be configured into fixed shapes,

nd the maximum width of one BRAM is often no more than 40

nd accordingly the minimum depth is 512.

. Hardware logic design

In this section, we present the hardware logic design of our

PGA accelerator system.
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15 5

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Fig. 3. A normal structure of a BNN model.

Table 4

RAMA-based topology analysis of MNIST MLP, Cifar-10 CONV-Net and AlexNet.

Macro Layer Structure a N in × R 2
in

K S K POOL
b N out × R 2 out N (W) N (Others) N (MAC) N (A)

MNIST MLP 1 F-B-A 784 − − − 2048 1.61 M 10240 1.61 M 2048

2 F-B-A 2048 − − − 2048 4.19 M 10240 4.19 M 2048

3 F-B-A 2048 − − − 2048 4.19 M 10240 4.19 M 2048

4 F-B 2048 − − − 10 2048 50 20.48 K 10

Total 10.01 M 30.77 K 10.01 M −
CIFAR10 ConvNet 1 C-B-A 3 × 32 2 3 1 − 128 × 32 2 3456 640 3.54 M 131.07 K

2 C-P-B-A 128 × 32 2 3 1 2 128 × 16 2 147.46 K 640 150.99 M 32.77 K

3 C-B-A 128 × 16 2 3 1 − 256 × 16 2 294.91 K 1280 75.50 M 65.54 K

4 C-P-B-A 256 × 16 2 3 1 2 256 × 8 2 589.82 K 1280 150.99 M 16.38 K

5 C-B-A 256 × 8 2 3 1 − 512 × 8 2 1.18 M 2560 75.50 M 32.77 K

6 C-P-B-A 512 × 8 2 3 1 2 512 × 4 2 2.36 M 2560 150.99 M 8192

7 F-B-A 8192 − − − 1024 8.39 M 5120 8.39 M 1024

8 F-B-A 1024 − − − 1024 1.05 M 5120 1.05 M 1024

9 F-B 1024 − − − 10 10.24 K 50 10.24 K 10

Total 14.02 M 19.25 K 61.69 M −
AlexNet ConvNet 1 C-P-B-A 3 × 224 2 11 4 3 96 × 27 2 34.85 K 480 105.42 M 69.98 K

2 C-P-B-A 96 × 27 2 5 1 3 256 × 13 2 614.40 K 1280 447.90 M 43.26 K

3 C-B-A 256 × 13 2 3 1 − 384 × 13 2 884.74 K 1920 149.52 M 64.90 K

4 C-B-A 384 × 13 2 3 1 − 384 × 13 2 1.33 M 1920 224.28 M 64.90 K

5 C-P-B-A 384 × 13 2 3 1 3 256 × 6 2 884.74 K 1280 149.52 M 9216

6 F-B-A 9216 − − − 4096 37.75 M 20480 37.75 M 4096

7 F-B-A 8192 − − − 4096 16 . 78 M 20480 16.78 M 4096

8 F-B 4096 − − − 10 0 0 4.10 M 50 0 0 4.10 M 10 0 0

Total 62.37 M 52.84 K 1.14 G −
a F = FC, C = CONV, P = POOL, B = BN, A = Activation (HTanh+BNeu).
b All pooling layers’ stride is 2.

4

d

e

n

a

F

H

e

e

l

s

k

K

c

C

s

c

o

A

p

e

b

i

i

w

o

s

4

4

b

fi

i

w

u

t

e

i

t

F

a

b

A

i

A

w
.1. Overall architecture

A normal structure of a BNN model is given in Fig. 3 . We can

ivide the model into several macro-layers with similar structures,

ach including a convolution or fully-connected (C/F) layer, a batch

ormalization (BN) layer and an activation layer which consists of

 Hard Tanh (HTanh) layer and a Binarized Neuron (BNeu) layer.

or some macro layers, pooling is introduced for down-sampling.

ere we choose MNIST MLP and Cifar-10 ConvNet as small dataset

xamples, and AlexNet for large dataset ImageNet. The topology of

ach model is described in Table 4 , and the key features of each

ayer are extracted based on RAMA, in which R in and R out are re-

pectively the input and output image size, K is the convolution

ernel (window) size, S is the stride of the moving window, and

 POOL is the pooling window size.

The overall system is shown in Fig. 4 . We have altogether N PE

hannels to process in parallel the data from the input cache.

ONV/FC (C/F) layer includes processing elements (PEs) that are

hared by the CONV and FC since they both mainly consist of MAC

omputations. Shift-Based Normalization (SBN) layer adopts shift

perations to replace multiplications as mentioned in Section 2.3 .

ctivation layer merges the HTanh and BNeu layers together to

roduce an output vector containing either 0 or 1. Parameters for

ach layer are fetched from on-chip BRAMs or registers to meet

andwidth requirements, and control signals select them for each

teration. The output for each iteration will be transferred to the

ntermediate result cache. For each next layer, the interconnection

ill be reconfigured by the controller according to the type (CONV

r FC) of the layer.

p

Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
Next, we take a look at the details of different types of PE de-

ign.

.2. C/F PE

.2.1. XNOR-based Binary MAC

Normally, it is necessary to utilize DSPs or customized LUT-

ased logic to complete a MAC operation for both floating-point or

xed-point input values. However, if input values become binary,

t will be much different.

Consider two input vectors A = { a i } and B = { b i } (i = 1 to N in)

hich consist of binarized values either +1 or −1, then the prod-

ct of the corresponding elements in two vectors will also be ei-

her +1 or −1. The sign of the product depends on the two input

lements’ signs - if they are identical, then the product will be pos-

tive, otherwise it will be negative. Then, we need to accumulate

hese binary values to get a final result. This process is depicted in

ig. 5 (a).

Hardware implementations usually take 2 bits to represent +1

nd −1. If we use only one bit, we should take 0 and 1 as the

asic values. This can be achieved through affine transformation .

Since we have

 〈 0 , 1 〉 =

A 〈 −1 , 1 〉 + A 〈 1 〉
2

(15)

n which A 〈 1 〉 represents the all-1 vector of the same length of

 〈 −1 , 1 〉 . To keep the truth table for the result as shown in Table 5 ,

e can infer that the operation should be transformed from multi-

lication to XNOR . In addition, if we assume r to be the dot product
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

6 S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Fig. 4. The overall system architecture design.

Fig. 5. Conversion from (a) 〈 −1 , 1 〉 -based MAC to (b) 〈 0, 1 〉 -based XNOR and pop-

count operations.

Table 5

Truth table of affine transformed inputs and result.

Original multiplication Affine transformed

a 〈 −1 , 1 〉 b 〈 −1 , 1 〉 a · b 〈 −1 , 1 〉 a 〈 0, 1 〉 b 〈 0, 1 〉 a · b 〈 0, 1 〉

1 1 1 1 1 1

1 −1 −1 1 0 0

−1 1 −1 0 1 0

−1 −1 1 0 0 1

o

r

i

R

l

r

T
s

Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
f vector A 〈 −1 , 1 〉 and B 〈 −1 , 1 〉 of length v ec _ len, then we will have

esult = A 〈 −1 , 1 〉 · B 〈 −1 , 1 〉 =

v ec _ len ∑

i =1

a i 〈 −1 , 1 〉 · b i 〈 −1 , 1 〉

=

v ec _ len ∑

i =1

[
(a i 〈 −1 , 1 〉 · b i 〈 −1 , 1 〉) − (−a i 〈 −1 , 1 〉 · b i 〈 −1 , 1 〉)

]
=

v ec _ len ∑

i =1

[
X NOR (a i 〈 0 , 1 〉 , b i 〈 0 , 1 〉) − XOR (a i 〈 0 , 1 〉 , b i 〈 0 , 1 〉)

]
= 2 popcount(R 〈 0 , 1 〉) − v ec _ len (16)

n which

 〈 0 , 1 〉 = { X NOR (a i 〈 0 , 1 〉 , b i 〈 0 , 1 〉) , i = 1 to v ec _ len } (17)

If one of the inputs is already 〈 0, 1 〉 based, for example, the first

ayer, then we get the result with:

esult = A 〈 0 , 1 〉 · B 〈 −1 , 1 〉 =

A 〈 −1 , 1 〉 + A 〈 1 〉
2

· B 〈 −1 , 1 〉

=

2 popcount(R 〈 0 , 1 〉) − v ec _ len

2

+

∑

b i 〈 −1 , 1 〉
2

= popcount(R 〈 0 , 1 〉) − v ec _ len +

∑

b i 〈 0 , 1 〉 (18)

his means we need to add the popcount of vector B 〈 0 , 1 〉 in-

tead of left-shifting 1-bit, as shown in Fig. 5 (b). The layer control
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15 7

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Fig. 6. The popcount compressor tree based on 6:3 compressors and one ternary adder.

s

p

4

b

p

m

b

n

t

i

a

N

l

l

p

m

t

b

c

t

E

d

w

f

w

c

g

t

p

a

i

t

f

b

s

L

4

w

e

m

t

t

Algorithm 2 Popcount compressor tree generation algorithm.

1: Require: Input vector: i of height N

2: Ensure: Updated: Column vector height h (i, j) , i stands for the

weight of 2 i and j for the compression stage; Heap of stage j:

H(j) = { h (k, j) } , k = 0 , 1 , . . . , log 2 (N) .

3: h (0 , 0) = N, i = 0 , j = 0 ;

4: while max (H(j)) > 3 do

5: H(j + 1) = zeros (1 , log 2 (N)) ;

6: for k = 1 to log 2 (N) do

7: if h (k, j) > 3 then

8: n compressor (k, j) = h (k, j) / 6 � ;
9: h (k, j + 1) = h (k, j + 1) + n compressor (k, j) ;

10: h (k + 1 , j + 1) = h (k + 1 , j + 1) + n compressor (k, j) ;

11: h (k + 2 , j + 1) = h (k + 2 , j + 1) + n compressor (k, j) ;

12: else

13: h (k, j + 1) = h (k, j + 1) + h (k, j) ;

14: end if

15: end for

16: j = j + 1 ;

17: end while

Table 6

Comparison between accumulation adder tree and popcount com-

pressor tree.

BW in (bits) BW out (bits) LUTs

Acc. Pop. Saved (%)

9 (3 2) 4 9 10 −11.1

16 5 21 19 9.52

64 7 98 79 19.39

256 9 398 291 26.88

1024 11 1596 1106 30.70

1152 (128 × 3 2) 11 1796 1228 31.63

1200 (48 × 5 2) 11 1864 1282 31.22

8192 14 12768 8362 34.51

e

fi

x

a

w

t

s

ignal selects the operation to the output of the popcount com-

ressor tree.

.2.2. Popcount Compressor (PC) tree

The popcount value, also known as Hamming Weight, can easily

e calculated in parallel hardware. However, for long vectors, this

rocess can be demanding both in time and in resource usage. The

ost common way is to use a binary full adder tree to sum up the

its in vectors, which will result in a delay of l og 2 (v ec _ l en) and

 − 1 adders of different bitwidth. Here we present a compressor

ree method inspired by [42] .

The popcount process can be seen as compressing N input bits

nto � log 2 N � + 1 result bits with weights. Since most modern FPGA

rchitectures have 6-input LUTs, a 6:3 compressor (can be seen as

 = 6) is therefore an efficient basic component, for it can calcu-

ate the popcount of a 6-bit input vector in a look-up table, which

eads to a 3-bit popcount output with only three 6-input LUTs in

arallel.

Given that tuple T = (p k ; q k + m −1 , . . . , q k +1 , q k) represents a p k :

 compressor, where the subscript j = k, k + 1 , k + 2 . . . stand for

he bit weight 2 j and p j , q j stand for the input and output bit num-

er of certain weight, respectively. In this way, a 6:3 compressor

an be represented as (6; 1, 1, 1).

As shown in Fig. 6 , the input vector is divided into 6-bit por-

ions, each connected to the input ports of a 6–3 compressor.

mpty input bits will be filled with dummy 0’s (shown as hollow

ots in Fig. 6). For the following stages, the bits with the same

eight (we call it column vector) will repeat the same process,

orming a compressor tree. The output bits will heap due to their

eights. Our target is to reduce the height of the heap to 3, which

an then be accepted as three input vectors of a ternary adder to

et the final sum. Thus, the column vectors with height of less

han 4 will stop being compressed for the next stage, and the com-

ression process will terminate when all column vectors’ heights

re less than 4. The overall process of generating a compressor tree

s described in Algorithm 2 .

With the help of Algorithm 2 , we obtain the compressor tree

opology for the hardware implementations of popcount functions

or different sizes of binary vectors. Table 6 gives the comparison

etween accumulation adder tree and compressor tree. As we can

ee, for long vectors, compressor tree saves around one third of

UT resources.

.2.3. PE reuse

With the XNOR array connected to a popcount compressor tree,

e can get the result for 0/1 input arrays. For all intermediate lay-

rs, the inputs (activations from the preceding layer) and weights

ust be binarized (either 0 or 1). However, this is not the case for

he first layer – we usually take a fixed point input image from

he input cache. Also for some large models like AlexNet some lay-
Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
rs’ weights are not binarized. To deal with this, if a vector x of n

xed-point inputs with m -bit precision:

 = (x m −1
n −1

x m −2
n −1

...x 0
n −1

, x m −1
n −2

x m −2
n −2

...x 0
n −2

, . . . , x m −1
0

x m −2
0

...x 0
0
) (19)

nd a vector w of n p -bit weights:

 = (w

p−1
n −1

w

p−2
n −1

...w

0
n −1

, w

p−1
n −2

w

p−2
n −2

...w

0
n −2

, . . . , w

p−1
0

w

p−2
0

...w

0
0
)

(20)

hen the output vector s could be calculated by

 = x · w =

p ∑

i =1

2

i −1
m ∑

j=1

2

j−1
n ∑

k =1

(x j−1

k −1
· w

i −1
k −1

) (21)
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

8 S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Fig. 7. The C/F layer PE module.

Fig. 8. The SBN layer PE module (MNIST and Cifar-10).

t

t

t

p

(

4

t

f

a

t

1

b

b

v

0

v

4

s

T

t

a

s

l

A

t

O

t

v

w

K

a

2

Implementing Eq. (21) requires reuse of PE. Hence, we intro-

duce an accumulator to the PE with a selectable left-shifter. While

the precedent lower bit vector is being processed, the next input

vector can be loaded behind, and be added with the shifted result

of the precedent vector. The start and the end of the accumulation

will be set by the controller signal. A detailed scheduling will be

introduced in Section 5 .

The overall structure of C/F PE is given in Fig. 7 . For AlexNet, the

binarization method is different from sign function [20] . It intro-

duces a binarized filter w bin for w with a scaling factor α in order

to approximate the MAC operation by x · w ≈ α(x · w bin) , where

α =

w

T w bin
n =

1
n ‖ w ‖ � 1 . So for AlexNet the accumulator is followed

by a multiplier to time the scaling factor α.

4.3. BN PE

As described in Algorithm 1 [23] , the batch normalization pro-

cess can be presented as:

y =

x − μ

σ
· γ + β, (22)

where μ stands for the running mean value, σ stands for the stan-

dard deviation. γ and β are the learnt values to implement affine

scale and shift for an identity transform. However, as mentioned

in Section 2.3 , floating-point multiplications are required for every

normalization process, which will lead to a considerable resource

cost. For this reason, [18] uses shifting to approximate the multiply

operation. For Eq. (22) , the shift-based approximation would be:

y = sal [(x − μ) , φ] · sign

∣∣∣γ
σ

∣∣∣ + β, (23)

where φ = round(log 2
∣∣ γ
σ

∣∣) is the left-shift value of both σ and γ .

As we have the pre-trained models in hand, we can calculate

the required parameters for BN like
γ
σ in advance, and store them

into the corresponding parameter cache. With the above, we get

the SBN PE as presented in Fig. 8 . We have also noticed that the

shifting-based approximation would cause severe accuracy drop for

AlexNet (from 42.9% to 31.9%), so we avoid using shift replace-

ment for AlexNet and keep the original batch normalization, using

a multiplier to replace the shift and sign operations.
Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
For all models, we train them with the last BN layer kept as

he original batch normalization in order to avoid accuracy loss,

hat is, with no shift-based operations. Floating-point multiplica-

ions are implemented independently with DSP blocks to accom-

lish the multiplication operations, and for ImageNet classification

AlexNet), the output process will be tiled.

.4. Activation PE

For the last part of a normal macro layer, we need to binarize

he result into either 0 or 1. In the training process, the HTanh

unction, as shown in Table 2 , constricts the values between −1

nd 1, while the final BNeu layer will push those values in between

o the two boundaries, which means −1 for all the negatives and

 for the others. Since we introduce in Section 4.1 that the (−1,1)

ased vectors can be affine transformed into (0,1) vectors, the case

ecomes much simpler: we just need to discern all the negative

alues from the SBN layer and set them to 1, with the others to

. This can be done directly by accessing the signal bit of these

alues.

.5. Pooling

For some macro-layers, pooling is applied to support sub-

ampling in order to reduce the output fmap size. As shown in

able 4 , pooling comes closely after CONV layer, and the pooling

ype for all of our models is max-pooling. If pooling comes after

ctivation, most of the output values will be + 1 which result in

ignificant information loss for training [20] . So a C-P-B-A macro-

ayer structure is taken. However, for the inference process, a C-B-

-P structure can get an identical result and the pooling is applied

o values of 0 and 1 only. This can be directly implemented with

R operations. We organize selective line buffers after the activa-

ion PEs, and when a pooling process is required, the activation

alues will stream into the line buffers. If the pooling size is K , we

ill enable OR operations to the horizontal targeted locations once

 rows of activations arrive, and then a similar process is repeated

long the vertical direction with other line buffers to complete a

D max-pooling.
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15 9

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Fig. 9. Task scheduling for C/F layer: (a)FC; (b)CONV.

5

m

t

c

t

F

P

a

f

w

F

j

f

t

b

w

s

l

s

s

t

p

c

Table 7

Tiling strategy for different models.

Model N PE PE size L in of layer

1 2 3 4 5 6 7 8 9

MNIST 1024 784 1024

Cifar-10 64 1152 405 1152 1024

AlexNet 1200 1089 1200 1152 1024

w

i

s

l

t

i

L

a

i

t

6

B

t

6

t

w

s

a

t

w

v

t

d

G

u

p

a

n

w

o

w

p

p

s

t

n

W

t

(

b

c

. Task tiling and scheduling (T&S)

This section introduces T&S, a method for tiling and scheduling

odels on chip. The T&S method is depicted in Fig. 9 . We assume

he width of one PE to be PE size , and the number of tiled input

hannels to be T N in . The number of tiled output channels equals to

he number of PE channels N PE .

For FC layers, one tiled input will be fed into all PE channels.

or better resource utilization we set T N in as close as possible to

 E size . It will take

⌈

N in
T N in

⌉

iterations to get the intermediate result

ccumulated for one output. This will be repeated by

⌈

N out
N PE

⌉

times

or all outputs get done.

For CONV layers, since most filter kernel size K is rather small,

e consider joining several filters together as one input for C/F PE.

or one PE, the input will be summed up to get one output, so the

oined filters should be at the same location of input fmaps as dif-

erent locations have no dependency to each other. The input vec-

or size will be L in = T N in × K

2 . Similar to the FC layers,

⌈

N in
T N in

⌉

will

e taken to get one output pixel, and the next tiled input location

ill be given in a sliding window style.

Considering the datapath shared among different layers, N PE

hould be a common divisor of N out of different layers, T N in for each

ayer should preferably be best a sub-multiple of N in , and PE size

hould be a big value and also close to L in to best explore the re-

ource utilization.

The first layer can become a bottleneck for the datapath since

he number of N in is small (usually 3). Let us study Eq. (21) , for in-

ut values which are not binarized, T N in can get multiplied if tiling

ould be achieved inside Eq. (21) . Notice that the inner most MAC
Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
ill be implemented through XNOR + Popcount, and the m -bit of

nput is actually calculated in different run and accumulated with

hifting. As the P E size is much larger than L in = N in × K

2 in the first

ayer, we can repeat the innermost MAC by 2 j times inside one PE

o complete the j iterations in one run. This process is illustrated

n Fig. 10 . If t -bit is tiled in one run, then we have

 in = N in · K

2 ·
t ∑

i =1

2

i −1 (24)

nd through this tiling, the utilization rate of PE for the first layer

s increased.

With RAMA and the information given in Tables 4 and 6 , our

iling strategy is shown in Table 7 .

. Memory system design

In this section, we introduce the memory system design for FP-

NN. This mainly consists of two parts: the first is parameter quan-

ization and storage, and the second is on-chip fmap caching.

.1. Quantization over other parameters

Since in BNN models, weights have already been binarized, so

o take a further step, we quantize non-weight parameters which

e call as other parameters . It would be essential for small models

ince we would like to store everything on-chip. These parameters

re in floating-point format, and their number mostly is equal to

he number of output channels of a layer. BRAMs would be too

asteful for their storage, since these parameters need to be pro-

ided in parallel and the width equals to N PE , which would make

he depth of their storage too shallow. So we place them in fast

istributed memories. Such memories are available in Altera FP-

As as memory logic array blocks (MLABs). Since we also need to

se MLABs to construct intermediate cache, quantization of other

arameters is adopted to make the best use of limited MLAB stor-

ge.

A fixed-point number can be represented as:

 =

BW −1 ∑

i =0

N i · 2

i − f l , (25)

here BW stands for the overall bitwidth (including the sign bit)

f the number and f l stands for the fractional part bitwidth. Here

e use Q = (BW, − f l) to capture the quantization strategy for a

articular type of parameters in a layer. To transform a floating-

oint number n float to a fixed-point number n fixed using a given Q
trategy, we make use of the round-to-nearest rounding mode [43]

o shift and cut:

 fixed = sal { round [sal (n float , f l)] , − f l } (26)

e use this method to quantize parameters for various models

o see how the accuracy fluctuates with the bitwidth variation

 Fig. 11). It is obvious that when the bitwidth of parameters drops

elow a particular threshold, the model accuracy drops signifi-

antly.
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

10 S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Fig. 10. Example of tiling for multiple bit case (2-bit input and 1-bit weight).

Fig. 11. The model accuracy variation as a function of bitwidth of BN’s mean μ ((a)MNIST; (c)Cifar-10) and affine bias β ((b)MNIST; (d)Cifar-10), respectively.

C

t

g

b

f

p

6

m

l

F

d

a

e

n

a

t

f

i

s

c

C

For the biases of C/F layers, we discover that even if their

bitwidth drops to 0, there is still no significant variance of the re-

sults. So, to save storage and computing resources, we ignore the

C/F layer bias addition. For the running means μ and the affine

biases β , the point varies between 2 to 8-bit for different layers.

For the shift parameter of BN layers, we can express each φ as

φmin + 	φ, and therefore we only need to store the variance us-

ing 	φ to reduce resource usage. So the bitwidth w of BW can be

calculated as:

w =

{� log 2 (φmax − φmin) � + 1 , φmax > φmin

0 φmax = φmin
(27)

We choose a dynamic fixed-point strategy [44] to optimize the

bitwidth for each layer. Table 8 shows all the value ranges and BW

strategies that we have chosen for each parameter, and Table 9

shows the comparisons between the quantized models and the

original models.

6.2. Memories for parameters

The memory storage structure for weights is given in Fig. 12 . In

order to reduce the memory access time, we keep the parallelism

of memories identical to the number of PE channels N PE , and the

width of each memory equals to P E size . Weights for each comput-

ing tile, which is represented in form, will be arranged serially.

An address generator will be controlled by the overall controller

in order to provide the exact weight. For MNIST MLP and Cifar-10
Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
onvNet, the weights can fit into an array of BRAMs. For AlexNet,

he weights will be tiled by each layer or inside a layer once they

et too large. The oldest weights for finished tiles will be covered

y weights for the next tile from off-chip memory in a ping-pong

ashion. For other parameters, a similar storage structure is pro-

osed based on MLABs.

.3. Intermediate cache

For the intermediate outputs, that is, the output fmaps of each

acro layer, we place a cache to hold them for the next macro

ayer to read. The design of intermediate cache is given in Fig. 13 .

or CONV layers, the cache structure facilitates the sliding window

ata fetching. For each input iteration, we separate the intermedi-

te cache into T N in groups, each containing K memory blocks, and

very two adjacent blocks storing consecutive rows. The input logic

eeds to offer corresponding addresses for the required K rows,

nd select rows to choose the horizontal required K -bits. So in to-

al we get T N in × K

2 windows to form an L in long tensor. The output

maps of each layer will be stored into the spared space from the

nput fmaps in a ping-pong way. For FC layers, we just need to en-

ure that the cache bitwidth can satisfy T N in . For MNIST MLP we

hoose 32 32 × 32 MLABs for intermediate cache, and for Cifar-10

onvNet and AlexNet, we take 384 32 × 32 MLABs.
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15 11

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Table 8

Quantization strategies for parameters other than C/F weights (MNIST & Cifar-10),

Model Layer FC/CONV Batch normalization

Bias Mean (μ) Stdv & affine weight (φ = log 2
∣∣ γ

σ

∣∣) Affine bias (β)

Min Max Q Min Max Q Min Max Q Min Max Q

MNIST 1 −24.3146 22.2333 (0,0) −139.1505 148.0735 (6,3) 1 10 (4,0) −3.0121 3.0051 (4, −1)

2 −29.2907 34.2132 (0,0) −156.4832 166.0365 (6,3) 0 10 (4,0) −3.1457 3.1249 (4, −1)

3 −26.6156 35.4796 (0,0) −135.1257 139.6590 (7,2) 2 11 (4,0) −2.6029 2.6408 (2,1)

4 −0.1449 0.0467 (0,0) −4 4.54 49 39.5620 (2,5)

Cifar-10 1 −0.9777 0.9976 (0,0) −0.9788 0.9983 (4, −3) 1 2 (1,0) −1 0.9998 (8, −6)

2 −0.9990 0.9998 (0,0) −42.0525 112.1753 (6,2) 6 7 (1,0) −0.7739 0.5044 (5, −4)

3 −0.9987 0.9998 (0,0) −97.7165 76.5325 (5,3) 6 6 (0,0) −0.9993 0.9991 (7, −6)

4 −1 0.9923 (0,0) −78.6930 190.5350 (6,3) 5 7 (2,0) −0.9661 0.6624 (6, −5)

5 −0.9968 0.9964 (0,0) −155.4622 172.6664 (7,2) 6 7 (1,0) −1 1 (5, −3)

6 −0.9862 1 (0,0) −29.3337 270.3043 (6,4) 5 8 (2,0) −0.9983 0.9684 (5, −4)

7 −1 1 (0,0) −798.1793 761.8890 (7,4) 4 8 (3,0) −1 1 (5, −3)

8 −1 1 (0,0) −131.6111 144.3177 (4,5) −6 7 (4,0) −1 1 (4, −2)

9 −0.2266 0.1051 (0,0) 108.3246 203.2282 (4,5)

Table 9

Model classification accuracy and size comparisons among original, binarized and quantized ones.

Model Accuracy Parameter Size

C/F Weights (M bit) Others (K bit)

MNIST Original (98.7 ± 0.2)% 305.63 961.56

BNN 98.32% 9.55 961.56

Ours 98.24% 9.55 82.02

Cifar-10 Original 89.06% 427.92 601.56

BNN 86.80% 13.37 601.56

Ours 86.31% 13.37 49.66

AlexNet Original 56.6%(top-1), 79.4%(top-5) 1903.31 1651.25

XNOR-Net & Ours 42.90%(top-1), 66.80%(top-5) 87.05 1651.25

Fig. 12. Memory storage management pattern for weight cache.

7

s

t

s

t

a

p

7

w

w

t

c

e

T
. System evaluation

We evaluate the performance of our accelerator system in this

ection. Environment setup and NN model preparation will be in-

roduced first. We target CNN models to train for a binarized ver-

ion, and apply quantization to the parameters to further compress

he model. Then we map the optimized BNN models onto FPGA,

nd provide performance analysis comparing FP-BNN with general

urpose processors and other FPGA designs.
g

Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
.1. System environment

We train the models on an IBM x3650 M4 server equipped

ith an NVIDIA Tesla K40 (28 nm feature size, 2880 CUDA cores

ith 12 GB GDDR5 external memory) and a K80 GPU (28 nm fea-

ure size, 4992 CUDA cores with 24 GB GDDR5 external memory)

ard, and use both cards to accelerate the training process. The

valuation system is built on Maxeler’s MPC-X20 0 0 platform [45] .

he system has 8 dataflow engines (DFEs), each comprising a sin-

le Altera Stratix-V 5SGSD8 FPGA (28 nm feature size) connected
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

12 S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Fig. 13. The structure of intermediate cache.

Table 10

FPGA Resource utilization of different models.

ALM DSP BRAM

MNIST 182301(69.5%) 20(1.02%) 2210(86.09%)

Cifar-10 219010(83.5%) 20(1.02%) 2210(86.09%)

AlexNet 230918(88.0%) 384(19.6%) 2210(86.09%)

Available 262400 1963 2567

7

N

i

e

w

t

o

C

a

a

7

m

o

F

w

t

o

a

s

f

t

e

c

R

n

m

d

b

i

n

o

t
to 48 GB of DDR3 RAM, and can communicate with other DFEs

through MaxRing interconnections. Besides, two Intel Xeon E5-

2640 6-core CPUs (32 nm feature size) are included in the server,

and can communicate with the DFEs through InfiniBand. Here we

take only one of the DFEs to implement the models. The Maxeler

system offers a convenient solution to support data communica-

tion between software algorithms and FPGA hardware.

7.2. Model preparation

We use Torch 7 framework [46] to train the NN models for

MNIST and Cifar-10 based on Hubara’s BNN framework [18] and

for AlexNet based on Rastegari’s XNOR-Net framework [20] . The

MNIST dataset is a permutation-invariant version consists of 60 K

examples of 28 × 28 gray level digit images for training and 10 K

examples for testing. The Cifar-10 dataset consists of 50 K exam-

ples of 32 × 32 RGB colour images in 10 classes for training and

10 K examples for testing, and global contrast normalization and

ZCA whitening are used in the same way as Goodfellow et al.

[47] and Lin et al. [48] did. The ImageNet dataset consists of 1.2 M

images from 1 K categories and 50 K images for testing, and a cen-

ter crop of 224 × 224 is extracted for forward propagation. Adam

[49] learning rule is adopted for training, with a mini-batch size of

10 0, 20 0 and 800. The binarization method used here is determin-

istic [50] considering the convenience for implementing hardware

for inference. Model accuracies are measured and presented in

Table 9 . As we can see, even the quantized versions for MNIST and

Cifar-10 keep high accuracies close to the state-of-the-art results.

XNOR-Net based AlexNet for our design suffers from a 13% accu-

racy drop, while supporting state-of-the-art performance among

the existing BNN solutions for ImageNet.

7.3. Hardware implementation

We use MaxCompiler to generate the executable bit-stream for

FPGA, which takes Altera Quartus II v13.1 to synthesize, place and

route the designs. The resource utilization of the final implementa-

tion is shown in Table 10 . The design can be driven with an achiev-

able 150 MHz clock. We notice that the utilization of DSP blocks is

not high, since only a small portion of arithmetic operations needs

floating-point multipliers.
Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
.4. Performance Analysis

We implement binarized models for the Xeon E5-2640 CPU, the

VIDIA Tesla K40 GPU and the Altera Stratix-V FPGA. Performance

s measured as shown in Table 11 . To feed CPU and GPU with

nough data, we take batch size to be identical to training for for-

ard propagation. As we can see, with about an order of magni-

ude slower clock frequency and much lower power consumption,

ur accelerator still gets an average speed-up of 314.07 times over

PU and 19.08 times over GPU for MNIST, 51.83 times over CPU

nd 5.07 times over GPU for Cifar-10, and 11.67 times over CPU

nd 2.72 times over GPU for ImageNet. Peak speed-ups can reach

05.19 times over CPU and 70.75 times over GPU. Although the

odel has been compressed for about 32 times, the low-precision

perations can exploit the potential of fine-grained parallelism in

PGA, which can offer higher performance than CPUs and GPUs. If

e take energy efficiency as the criterion, with similar feature size,

he FPGA implementation can offer an efficiency of two to three

rders of magnitude of CPU’s and GPU’s.

We take another comparison with some previous FPGA acceler-

tor designs for CNN and BNN models, as listed in Table 12 . We can

ee that our FP-BNN reaches a TOP/s speed which is significantly

aster than the previous CNN designs. For some designs (such as

hat in [15]), one major problem is that for memory-centric FC lay-

rs, the data and parameter loading time is much longer than the

omputing time as the number of input ports for data and weight

AMs is limited to 8, while in our design all the computing chan-

els can be fed with data and weights in parallel. FP-BNN is also

uch faster than the most recent BNN design [40] . Although our

esign involves a large FPGA, the power efficiency is also 10 times

etter. Another BNN design FINN [41] reaches a performance sim-

lar to ours. For the MNIST case, FINN has taken a smaller MLP

etwork in which the input dimension is larger than the number

f neurons in each layer, which results in a higher resource utiliza-

ion after task tiling. If we are prepared to reduce model accuracy
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15 13

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

Table 11

Performance analysis among Xeon E5-2640 CPU, NVIDIA Tesla K40 GPU and Maxeler MAX4 (Stratix V) FPGA systems.

CPU NVIDIA Tesla K40 GPU Maxeler MPC-X20 0 0 with Stratix V FPGA

Core clock (MHz) 2.5 K (Base) / 3 K (Boost) 745 (Base) / 810 & 875 (Boost) 150

DDR memory – 12 GB GDDR5 @3.0GHz 48 GB DDR3 @1.6 GHz

Power 95 W 235 W(Board) 26.2 W(Board)

Model Macro layer Ops Time (ms) Perf (GOP/s) Time (ms) Perf (GOP/s) Time (ms) Perf (GOP/s) Speedup to CPU Speedup to GPU

MNIST 1(FC) 3.21 M 17.54 18.32 1.08 298.63 1 . 97 × 10 −3 1633.89 89.19x 5.47x

2(FC) 8.39 M 44.28 18.95 2.57 326.61 6 . 87 × 10 −4 12219.40 644.91x 37.41x

3(FC) 8.39 M 43.98 19.08 2.57 326.61 6 . 87 × 10 −4 12219.40 640.51x 37.41x

4(FC) 40.96 K 0.77 5.33 0.26 15.76 5 . 33 × 10 −5 768.19 144.17x 48.75x

Total 20.04 M 106.57 18.80 6.47 309.48 3 . 39 × 10 −3 5904.40 314.07x 19.08x

Cifar-10 1(CONV) 7.08 M 19.70 71.85 4.38 323.20 4 . 10 × 10 −2 172.61 2.40x 0.53x

2(CONV) 301.99 M 355.74 169.78 31.0 1947.69 2 . 74 × 10 −2 11040.33 65.03x 5.67x

3(CONV) 151.00 M 140.85 214.40 14.7 2059.96 1 . 37 × 10 −2 11021.55 51.41x 5.35x

4(CONV) 301.99 M 283.23 213.25 27.8 2170.09 2 . 05 × 10 −2 14712.09 68.99x 6.78x

5(CONV) 151.00 M 146.28 206.44 16.2 1858.86 1 . 03 × 10 −2 14678.75 71.10x 7.90x

6(CONV) 301.99 M 297.53 203.00 30.7 1965.06 1 . 71 × 10 −2 17646.50 86.93x 8.98x

7(FC) 16.78 M 104.95 31.97 7.00 479.38 1 . 01 × 10 −3 16667.13 521.27x 34.77x

8(FC) 2.10 M 12.35 33.98 0.92 455.14 2 . 60 × 10 −4 8069.91 237.48x 17.73x

9(FC) 20.48 K 0.64 6.45 0.33 12.27 6 . 67 × 10 −5 307.35 47.62x 25.05x

Total 1.23 G 1361.28 181.29 133 1853.87 1 . 3 × 10 −1 9396.41 51.83x 5.07x

AlexNet 1(CONV) a 211.83 M 790.69 213.31 345.68 487.91 9 . 98 × 10 −1 211.19 0.99x 0.43x

2(CONV) 895.80 M 2125.08 337.23 186.57 3841.23 5 . 84 × 10 −2 15347.72 45.51x 4.00x

3(CONV) 299.04 M 1715.52 139.45 127.28 1879.54 2 . 03 × 10 −2 14711.75 105.50x 7.83x

4(CONV) 448.56 M 1460.71 245.67 165.95 2162.39 2 . 71 × 10 −2 16560.22 67.41x 7.66x

5(CONV) 299.04 M 1346.86 177.62 108.86 2197.61 1 . 81 × 10 −2 16545.97 93.15x 7.53x

6(FC) 75.50 M 1640.79 36.81 168.97 357.44 4 . 31 × 10 −3 17503.28 475.50x 48.97x

7(FC) 33.55 M 1229.86 21.83 123.40 217.54 2 . 18 × 10 −3 15391.94 705.19x 70.75x

8(FC) a 8 . 19 M 499.78 13.66 30.00 218.40 2 . 74 × 10 −2 298.47 21.85x 1.37x

Total 2.27 G 10789.29 168.35 1256.72 722.68 1.16 1963.96 11.67x 2.72x

a The weights of these layers are quantized to 8-bit.

Table 12

Performance comparison with former FPGA-based CNN accelerator designs.

FPGA’16 [51] FPGA’16 [15] FPL’16 [32] FPGA’17 [40] FPGA’17 [41] This work

Platform

Stratix-V

5SGSD8

Zynq

XC7Z045

Virtex-7

VX690T

Zynq

XC7Z020

Zynq

XC7Z045

Stratix-V

5SGSD8

Clock(MHz) 120 150 156 143 200 150

Precision (bit) 8–16 16 16 Input: 8

weight: 1

Input: 8 weight: 1 Input: 8 weight: 1 (8 for the first and last layer of

AlexNet) others: 2–8 (MNIST & Cifar-10), 32

(AlexNet)

Model size

(OPs)

30.9 G 30.76 G 1.45 G 1.24 G MNIST Cifar-10 MNIST Cifar-10 AlexNet

5.8 M 112.5 M 20.02 M 1.23 G 2.27G

Performance a

(GOP/s)

117.8 136.97 (O)

187.80 (C)

1.20 (F)

565.94 207.8 (O)

318.9 (C)

9085.67 2465.5 5905.40 (O)

12219.40 (P)

9396.41 (O)

17646.50 (P)

1963.96 (O)

17503.28 (P)

Power (W) 25.8 9.63 30.2 4.7 22.6 11.7 26.2

Efficiency

(GOP/s/W)

4.57 14.22 22.15 44.2 402.02 210.72 225.36 (O)

466.39 (P)

358.64 (O)

673.53 (P)

74.96 (O)

668.06 (P)

a O = Overall, P = Peak, C = CONV, F = FC.

f

t

m

a

t

7

c

t

D

c

o

o

c

p

B

c

c

N

C

t

l

o

or a smaller network, the overall performance should get closer

o the peak value (12 TOP/s). For the Cifar-10 case, our CONV-Net

odel can achieve a throughput of almost 4 times of FINN’s. We

lso support large datasets for our FP-BNN design, which proves

he compatibility of our design method with various CNN models.

.5. Discussion

There is considerable scope for improvement in FP-BNN espe-

ially for the first layers, since datapath utilization is low due to

he limited number of input channels. Moreover, the utilization of

SP blocks is low, and more DSP blocks can be involved if they

an effectively support low-bandwidth operations to enhance the
Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
verall throughput. Furthermore, we can exploit the heterogeneity

f logic elements in FPGAs, such as introducing different bit-width

hoices together with binarized data for better use of DSP multi-

liers.

This implementation shows that it is promising to implement

NN models especially for an embedded system, which can offer a

ompetitive speed and accuracy with low power consumption. Re-

ently, various designs [36,52] have shown that more complicated

N models can also be binarized with tolerable loss of accuracy.

onsidering the similarity of component layers and logic genera-

ion algorithms, it is feasible to implement these models layer-by-

ayer in a sequential way as long as there is sufficient amount of

n-chip memory for parameters.
rized neural network on FPGA, Neurocomputing (2017),

https://doi.org/10.1016/j.neucom.2017.09.046

14 S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

[

8. Conclusion

This paper presents FP-BNN – our design for binarized neural

networks targeting FPGA technology. Based on the RAMA analy-

sis method, we design a 64-channel accelerator architecture, which

can accommodate both CONV and FC type layers. An XNOR-based

method is introduced for binarized vector MAC operations, and

the summing up process is achieved with a popcount compres-

sor tree which can be automatically generated. For small mod-

els like MNIST MLP and Cifar-10 ConvNet, shift-based normaliza-

tion is introduced which largely reduces the cost of multipliers.

With proper dynamic quantization to the input and parameters,

the model keeps good performance with the weights binarized

and other parameters compressed by over 10 times. Optimized on-

chip data storage is managed with parameter quantization. Our

implementation on Maxeler MPC-X20 0 0 platform (with Stratix-V

5SGSD8 FPGA) shows a promising TOP/s speed with only 26.2 W

power at 150 MHz clock frequency. We expect expect enhanced

accuracy in future binarized models, which should greatly extend

their range of applications.

Acknowledgement

The support of Maxeler University Programme, Altera, In-

tel, UK EPSRC (EP/P010040/1, EP/L00058X/1, EP/L016796/1 and

EP/N031768/1), the European Union Horizon 2020 Research and In-

novation Programme under grant agreement number 671653, and

the HiPEAC NoE is gratefully acknowledged.

References

[1] Y. LeCun, C. Cortes, C. J. Burges, The MNIST database of handwritten digits,
1998, http://yann.lecun.com/exdb/mnist/ .

[2] A. Krizhevsky, V. Nair, G. Hinton, The CIFAR-10 dataset, 2014, https://www.cs.
toronto.edu/ ∼kriz/cifar.html .

[3] O. Russakovsky , J. Deng , H. Su , J. Krause , S. Satheesh , S. Ma , Z. Huang , A. Karpa-

thy , A. Khosla , M. Bernstein , et al. , Imagenet large scale visual recognition chal-
lenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252 .

[4] G. Hinton , L. Deng , D. Yu , G.E. Dahl , A.-r. Mohamed , N. Jaitly , A. Senior , V. Van-
houcke , P. Nguyen , T.N. Sainath , et al. , Deep neural networks for acoustic mod-

eling in speech recognition: the shared views of four research groups, IEEE
Signal Process. Mag. 29 (6) (2012) 82–97 .

[5] D. Amodei , R. Anubhai , E. Battenberg , C. Case , J. Casper , B. Catanzaro , J. Chen ,

M. Chrzanowski , A. Coates , G. Diamos , et al. , Deep speech 2: end-to-end
speech recognition in English and Mandarin, International Conference on Ma-

chine Learning (2016) 173–182 .
[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

M. Riedmiller, Playing atari with deep reinforcement learning, arXiv preprint
arXiv: 1312.5602 (2013).

[7] D. Silver , A. Huang , C.J. Maddison , A. Guez , L. Sifre , G. Van Den Driessche ,

J. Schrittwieser , I. Antonoglou , V. Panneershelvam , M. Lanctot , et al. , Master-
ing the game of go with deep neural networks and tree search, Nature 529

(7587) (2016) 4 84–4 89 .
[8] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep con-

volutional neural networks, in: Proceedings of the Advances in neural Infor-
mation Processing Systems, 2012, pp. 1097–1105 .

[9] K. He , X. Zhang , S. Ren , J. Sun , Delving deep into rectifiers: surpassing hu-

man-level performance on imagenet classification, in: Proceedings of the IEEE
International Conference on Computer Vision, 2015a, pp. 1026–1034 .

[10] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition,
in: Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 2016, pp. 770–778 .
[11] A. Coates , B. Huval , T. Wang , D. Wu , B. Catanzaro , N. Andrew , Deep learning

with COTS HPC systems, in: Proceedings of the thirtieth International Confer-

ence on Machine Learning, 2013, pp. 1337–1345 .
[12] NVIDIA, Tesla K40 GPU Active Accelerator, NVIDIA, 2013.

[13] C. Farabet , B. Martini , B. Corda , P. Akselrod , E. Culurciello , Y. LeCun , Neuflow:
a runtime reconfigurable dataflow processor for vision, in: Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), IEEE, 2011, pp. 109–116 .

[14] C. Zhang , P. Li , G. Sun , Y. Guan , B. Xiao , J. Cong , Optimizing FPGA-based ac-
celerator design for deep convolutional neural networks, in: Proceedings of

the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

ACM, 2015, pp. 161–170 .
[15] J. Qiu , J. Wang , S. Yao , K. Guo , B. Li , E. Zhou , J. Yu , T. Tang , N. Xu , S. Song ,

et al. , Going deeper with embedded FPGA platform for convolutional neural
network, in: Proceedings of the ACM/SIGDA International Symposium on Field-

-Programmable Gate Arrays, ACM, 2016, pp. 26–35 .
Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
[16] S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding, arXiv preprint

arXiv: 1510.00149 (2015).
[17] F.N. Iandola, M.W. Moskewicz, K. Ashraf, S. Han, W.J. Dally, K. Keutzer,

Squeezenet: alexnet-level accuracy with 50x fewer parameters and less than
1MB model size, arXiv preprint arXiv: 1602.07360 (2016).

[18] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neu-
ral networks: training deep neural networks with weights andactivations con-

strained to +1 or −1, arXiv preprint arXiv: 1602.02830 (2016).

[19] Y. Netzer , T. Wang , A. Coates , A. Bissacco , B. Wu , A.Y. Ng , Reading digits in
natural images with unsupervised feature learning, in: Proceedings of the NIPS

Workshop on Deep Learning and Unsupervised Feature Learning, 2011 .
[20] M. Rastegari , V. Ordonez , J. Redmon , A. Farhadi , Xnor-net: imagenet classifi-

cation using binary convolutional neural networks, European Conference on
Computer Vision, Springer International Publishing (2016) 525–542 .

[21] V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, Efficient processing of deep neural net-

works: a tutorial and survey, arXiv preprint arXiv: 1703.09039 (2017).
[22] W. Liu , Z. Wang , X. Liu , N. Zeng , Y. Liu , F.E. Alsaadi , A survey of deep neu-

ral network architectures and their applications, Neurocomputing 234 (2017)
11–26 .

[23] S. Ioffe , C. Szegedy , Batch normalization: accelerating deep network training by
reducing internal covariate shift, International Conference on Machine Learn-

ing (2015) 448–456 .

[24] A. Ng, J. Ngiam, C. Foo, Y. Mai, C. Suen, Backpropagation algorithm of ufldl
tutorial, http://ufldl.stanford.edu/wiki/index.php/Backpropagation _ Algorithm .

[25] G. Hinton, Neural Network for Machine Learning, Coursera, 2012.
[26] C. Farabet , C. Poulet , J.Y. Han , Y. LeCun , CNP: an FPGA-based processor for

convolutional networks, in: Proceedings of the nineteenth International Con-
ference on Field Programmable Logic and Applications (FPL), IEEE, 2009,

pp. 32–37 .

[27] T. Chen , Z. Du , N. Sun , J. Wang , C. Wu , Y. Chen , O. Temam , Diannao: a smal-
l-footprint high-throughput accelerator for ubiquitous machine-learning, in:

Proceedings of the ACM Sigplan Notices, vol. 49, ACM, 2014a, pp. 269–284 .
[28] Y. Chen , T. Luo , S. Liu , S. Zhang , L. He , J. Wang , L. Li , T. Chen , Z. Xu , N. Sun ,

et al. , Dadiannao: a machine-learning supercomputer, in: Proceedings of the
fourty seventh Annual IEEE/ACM International Symposium on Microarchitec-

ture, IEEE Computer Society, 2014b, pp. 609–622 .

[29] N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S.
Bhatia, N. Boden, A. Borchers, et al., In-datacenter performance analysis of a

tensor processing unit, arXiv preprint arXiv: 1704.04760 (2017).
[30] W. Wen , C. Wu , Y. Wang , Y. Chen , H. Li , Learning structured sparsity in deep

neural networks, in: Advances in Neural Information Processing Systems, 2016,
pp. 2074–2082 .

[31] T.-J. Yang, Y.-H. Chen, V. Sze, Designing energy-efficient convolutional neural

networks using energy-aware pruning, arXiv preprint arXiv: 1611.05128 (2016).
[32] H. Li , X. Fan , L. Jiao , W. Cao , X. Zhou , L. Wang , A high performance FPGA-based

accelerator for large-scale convolutional neural networks, in: Proceedings of
the Twenty Sixth International Conference on Field Programmable Logic and

Applications (FPL), IEEE, 2016, pp. 1–9 .
[33] P. Gysel, Ristretto: Hardware-oriented approximation of convolutional neural

networks, arXiv preprint arXiv: 1605.06402 (2016).
[34] F. Li, B. Zhang, B. Liu, Ternary weight networks, arXiv preprint arXiv: 1605.

04711 (2016).

[35] C. Zhu, S. Han, H. Mao, W.J. Dally, Trained ternary quantization, arXiv preprint
arXiv: 1612.01064 (2016).

[36] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, Y. Zou, Dorefa-net: training low
bitwidth convolutional neural networks with low bitwidth gradients, arXiv

preprint arXiv: 1606.06160 (2016).
[37] H. Alemdar, N. Caldwell, V. Leroy, A. Prost-Boucle, F. Pétrot, Ternary neural net-

works for resource-efficient ai applications, arXiv: 1609.00222 (2016).

[38] W. Meng, Z. Gu, M. Zhang, Z. Wu, Two-bit networks for deep learning
on resource-constrained embedded devices, arXiv preprint arXiv: 1701.00485

(2017).
[39] R. Andri , L. Cavigelli , D. Rossi , L. Benini , YodaNN: an architecture for ultra-low

power binary-weight cnn acceleration, IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. PP (2017) 1–14 .

[40] R. Zhao , W. Song , W. Zhang , T. Xing , J.-H. Lin , M. Srivastava , R. Gupta ,

Z. Zhang , Accelerating binarized convolutional neural networks with soft-
ware-programmable fpgas, in: Proceedings of the ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, ACM, 2017, pp. 15–24 .
[41] Y. Umuroglu , N.J. Fraser , G. Gambardella , M. Blott , P. Leong , M. Jahre , K. Vis-

sers , Finn: a framework for fast, scalable binarized neural network inference,
in: Proceedings of the ACM/SIGDA International Symposium on Field-Pro-

grammable Gate Arrays, ACM, 2017, pp. 65–74 .

[42] M. Kumm , P. Zipf , Pipelined compressor tree optimization using integer linear
programming, in: Proceedings of the twenty fourth International Conference

on Field Programmable Logic and Applications (FPL), IEEE, 2014, pp. 1–8 .
[43] S. Gupta , A. Agrawal , K. Gopalakrishnan , P. Narayanan , Deep learning with lim-

ited numerical precision, CoRR 392 (2015) . abs/1502.02551
44] D. Williamson , Dynamically scaled fixed point arithmetic, in: Proceedings of

the IEEE Pacific Rim Conference on Communications, Computers and Signal

Processing, 1991., IEEE, 1991, pp. 315–318 .
[45] Maxeler, MPC-X series, https://www.maxeler.com/products/mpc-xseries/ .

[46] R. Collobert , K. Kavukcuoglu , C. Farabet , Torch7: A matlab-like environment
for machine learning, in: Proceedings of the NIPS Workshop on BigLearn, in:

EPFL-CONF-192376, 2011 .
rized neural network on FPGA, Neurocomputing (2017),

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0002a
https://1312.5602
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0005a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0005a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0005a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0005a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0005a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0007
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0009
https://1512.03385
https://1602.07360
https://1602.02830
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012a
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012a
https://1703.09039
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012s
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012s
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0012s
http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0015
https://1704.04760
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0016
https://1611.05128
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0017
https://1605.06402
https://1605.04711
https://1612.01064
https://1606.06160
https://1609.00222
https://1701.00485
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0021
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0022
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0023
https://www.maxeler.com/products/mpc-xseries/
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0024
https://doi.org/10.1016/j.neucom.2017.09.046

S. Liang et al. / Neurocomputing 0 0 0 (2017) 1–15 15

ARTICLE IN PRESS

JID: NEUCOM [m5G; October 28, 2017;13:0]

[

[

[

[

[47] I.J. Goodfellow , D. Warde-Farley , M. Mirza , A.C. Courville , Y. Bengio , Maxout
networks., ICML (3) 28 (2013) 1319–1327 .

48] M. Lin, Q. Chen, S. Yan, Network in network, arXiv preprint arXiv: 1312.4400
(2013).

49] D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv: 1412.6980 (2014).

50] M. Courbariaux , Y. Bengio , J.-P. David , Binaryconnect: training deep neural net-
works with binary weights during propagations, in: Proceedings of the Ad-

vances in Neural Information Processing Systems, 2015, pp. 3123–3131 .

[51] N. Suda , V. Chandra , G. Dasika , A. Mohanty , Y. Ma , S. Vrudhula , J.-s. Seo , Y. Cao ,
Throughput-optimized opencl-based FPGA accelerator for large-scale convolu-

tional neural networks, in: Proceedings of the ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, ACM, 2016, pp. 16–25 .

52] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Quantized neural
networks: Training neural networks with low precision weights and activa-

tions, arXiv preprint arXiv: 1609.07061 (2016).

Shuang Liang received the B.S. degree from the Institute
of Microelectronics, Tsinghua University, Beijing, China, in

2011. He is working toward the Ph.D. degree at the In-
stitute of Microelectronics, Tsinghua University, Beijing,

China. He was a visiting scholar at the Department of
Computing, Imperial College London, UK in 2016. His re-

search interests include reconfigurable computing, hard-

ware acceleration of machine learning algorithms and dis-
tributed systems.

Shouyi Yin received the B.S., M.S. and Ph.D. degrees in

Electronic Engineering from Tsinghua University, China, in
20 0 0, 20 02 and 20 05, respectively. He has worked in Im-

perial College London as a research associate. Currently

he is with Institute of Microelectronics at Tsinghua Uni-
versity as an Associate Professor. His research interests

include SoC design, reconfigurable computing and mobile
computing. Prof. Yin has published more than 40 refer-

eed papers, and served as TPC member or reviewers for
the international key conferences and leading journals.
Please cite this article as: S. Liang et al., FP-BNN: Bina

https://doi.org/10.1016/j.neucom.2017.09.046
Leibo Liu received the B.S. degree in electronic engineer-

ing from Tsinghua University, Beijing, China, in 1999 and
the Ph.D. degree in Institute of Microelectronics, Tsinghua

University in 2004. He now serves as an Associate Profes-

sor in Institute of Microelectronics, Tsinghua University.
His research interests include Reconfigurable Computing,

Mobile Computing and VLSI DSP.

Wayne Luk received the M.A., M.Sc., and D.Phil. Degrees
in Engineering and ComputingScience from the University

of Oxford, Oxford, U.K. He is a Professor of Computer En-

gineering with Imperial College London, London, U.K. He
was a Visiting Professor with Stanford University, Stan-

ford, CA , USA . His current research interests include the-
ory and practice of customizing hardware and software

for specific application domains, such as multimedia, net-
working, and finance.

Shaojun Wei was born in Beijing, China in 1958. He re-
ceived Ph.D. degree from Faulte Polytechnique de Mons,

Belgium, in 1991. He became a professor in Institute of
Microelectronics of Tsinghua University in 1995. He is a

senior member of Chinese Institute of Electronics. His
main research interests include VLSI SoC design, EDA

methodology, and ASIC design.
rized neural network on FPGA, Neurocomputing (2017),

http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0025
https://1312.4400
https://1412.6980
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0027
http://refhub.elsevier.com/S0925-2312(17)31565-5/sbref0027
https://1609.07061
https://doi.org/10.1016/j.neucom.2017.09.046

	FP-BNN: Binarized neural network on FPGA
	1 Introduction
	2 Background
	2.1 Basics of CNN
	2.2 Training a CNN
	2.3 How BNN works
	2.4 Related work

	3 Resource-Aware Model Analysis (RAMA)
	4 Hardware logic design
	4.1 Overall architecture
	4.2 C/F PE
	4.2.1 XNOR-based Binary MAC
	4.2.2 Popcount Compressor (PC) tree
	4.2.3 PE reuse

	4.3 BN PE
	4.4 Activation PE
	4.5 Pooling

	5 Task tiling and scheduling (T&S)
	6 Memory system design
	6.1 Quantization over other parameters
	6.2 Memories for parameters
	6.3 Intermediate cache

	7 System evaluation
	7.1 System environment
	7.2 Model preparation
	7.3 Hardware implementation
	7.4 Performance Analysis
	7.5 Discussion

	8 Conclusion
	 Acknowledgement
	 References

