
JOURNAL OF ECONOMIC THEORY 27, 245-252 (1982) 

Rational Cooperation in the Finitely Repeated Prisoners’ 
Dilemma 

DAVID M. KREPS 

Graduate School of Business, Stanford University, Stanford, California 94305 

PAUL MILGROM 

Graduate School of Management, Northwestern University, Evanston, Illinois 60201 

JOHN ROBERTS AND ROBERT WILSON 

Graduate School of Business, Stanford University, Stanford, California 94305 

Received July 8, 1981 

A common observation in experiments involving finite repetition of the prisoners’ 
dilemma is that players do not always play the single-period dominant strategies 
(“finking”), but instead achieve some measure of cooperation. Yet finking at each 
stage is the only Nash equilibrium in the finitely repeated game. We show here how 
incomplete information about one or both players’ options, motivation or behavior 
can explain the observed cooperation. Specifically, we provide a bound on the 
number of rounds at which Fink may be played, when one player may possibly be 
committed to a “Tit-for-Tat” strategy. Journal of Economic Literature 
Classification Numbers: 026, 213. 

The purpose of this note is to demonstrate how reputation effects due to 
informational asymmetries can generate cooperative behavior in finitely 
repeated versions of the classic prisoners’ dilemma. The methods employed 
are those developed in our work on the chain-store paradox (Kreps and 
Wilson [2], Milgrom and Roberts [4]). We refer the reader to those papers 
for motivation, formal definitions, and interpretation. 

The basic game that we consider consists of N repetitions of the following 
two person. bimatrix, stage game: 

COL 

ROW Fink Cooperate 

Fink 030 
Cooperate b, a 

a, b 
1, 1 
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We require a > 1, b < 0, and a + b < 2. ’ At each stage, each of the two 
players, ROW and COL, recalls his previous actions and is informed about 
those of his opponent. The players move simultaneously at each stage. 
Payoffs in the overall game are the (undiscounted) sums of the stage payoffs. 

This game has a unique Nash equilibrium path, which involves each 
player choosing to fink at every stage. The logic is similar to Selten’s 
backwards induction in the chain-store game (although the argument there 
shows the uniqueness of the perfect equilibrium). In the final stage (which we 
call stage l), finking strongly dominates cooperating, and so must ensue. 
Then, in the penultimate stage, finking does better than cooperating in terms 
of the current stage, while the choice at this stage cannot affect the outcome 
in stage 1. Thus finking will again be adopted by both players. And so on, 
for any finite N.’ This outcome is clearly and dramatically inefficient. 

This uniqueness result is disturbing in light of experiments with this game, 
of which there have been a very large number. (See Axelrod [ 1 ] and Smale 
[5] for references.) A common pattern in these experiments is that, at least 
for some time, both players cooperate and, in the process, end up with 
payoffs that are strictly greater than they would obtain under equilibrium 
play. The issue then is whether this puzzle can be resolved in the context of 
rational, self-interested behavior. The approach we adopt is to admit a 
“small amount” of the “right kind” of incomplete information. 

In fact, we are able to show that certain kinds of informational asym- 
metries must yield a significant measure of cooperation in equilibrium, and 
that other plausible asymmetries may produce cooperation as well. 
Throughout, the equilibrium concept is that of sequential equilibrium (Kreps 
and Wilson [ 31). Sequential equilibrium in a game of incomplete information 
requires that the action taken by any player at any point in the game tree 
must be part of an optimal strategy from that point forward, given his beliefs 
about the evolution of the game to this point (which must, to the extent 
possible, be consistent with Bayesian updating on the hypothesis that the 
equilibrium strategies have been used to date) and given that future play will 
be governed by the equilibrium strategies. The various models we use 
parallel those in [2,4]. Each involves some element of uncertainty in the 
mind of (at least) one player about the other, and they can all be viewed in 
terms of a lack of common knowledge (between ROW and COL) that both 

‘If a + b > 2, then the strategy of both cooperating at each stage is Pareto-dominated by 
alternating between tinkxooperate and cooperate-fink. Much of our analysis can be adapted 
to handle this case. 

2 Note the sharp contrast with the infinitely repeated case, where any average payoff vector 
in the intersection of the positive orthant and the convex hull of the four possible stage payoff 
vectors can be achieved through a perfect equilibrium. Note also that in the finitely repeated 
case, Nash equilibrium behavior off the equilibrium path may involve some cooperation. But 
finking is required everywhere in any perfect equilibrium. 
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are rational players playing precisely the game specified above. The 
possibilities for more detailed analysis of this model and its application in 
economic, political, and military contexts appear to be very rich. Various 
combinations of the authors hope to report on such work in the future. 

Model 1: ROW Might Play Tit-for-Tat 

The first approach we consider supposes that, when the game begins, one 
of the players (say COL) is not absolutely certain that the other (ROW) will 
play “rationally” according to the payoffs specified above. Specifically, COL 
assigns probability 1 - 6 to the possibility of a “rational” opponent, and he 
allows a (very small) chance, 6, that ROW has available only the Tit-for-Tat 
strategy.3 The Tit-for-Tat strategy requires the player using it to begin by 
cooperating and then to cooperate at stage n - 1 if and only if his opponent 
cooperated at the preceding stage, II. It is worth noting that this strikingly 
simple and quite natural strategy emerged as the winner in Axelrod’s 
prisoners’ dilemma tournament [ 11. 

To present a sequential equilibrium in full detail for this game is difficult. 
There is no question that such equilibria exist: See Kreps and Wilson 
[ 3, Prop. 11. But the “end play” of such equilibria are very complex. So we 
shall be content here to prove that in any sequential equilibrium, the number 
of stages where one player or the other finks is bounded above by a constant 
depending on 6 but independent of N. Further, if we restrict attention to 
sequential equilibria that are not Pareto-dominated by any other sequential 
equilibria, then there is cooperation in all but the last “few” stages. 

We prove these statements in a number of steps. The statement of each 
step except the last should be prefaced: In every sequential equilibrium... 

Step 1. . ..if it becomes common knowledge4 before some stage that 
ROW is rational, then both ROW and COL fink at this and every 
succeeding stage, and their payoffs from the remainder of the game are zero. 

The proof is by induction on the number of stages remaining. It is 
apparent if there is only one stage remaining. Suppose that it is true if there 

‘An alternative way to model this is to assume that ROW has available all the strategies 
above, but that with probability 6, ROW’s payoffs are not as above but rather make playing 
Tit-for-Tat strongly dominant. The results given below can be proved for this alternative 
model, although the simple “common knowledge” arguments that we use are no longer 
available, and slightly more complex arguments are required. An advantage of this alternative 
model is that it eases interpretation of the probability assessed by COL that ROW is the Tit- 
for-Tat player as ROW’s “reputation.” 

*It is common knowledge that ROW is rational if both players know this, both know that 
both know this, ad infinitum. More formally, an event E is common knowledge between two 
individuals at a state w E R if there is some A in the finest common coarsening (meet) of their 
information partitions with w E A c E. The crucial role of common knowledge will be 
illustrated shortly. 
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are n - 1 or fewer stages to go. Then with n stages remaining, the rational 
ROW must foresee that his present choice of action cannot influence the 
future course of the game, since it will remain common knowledge that he is 
rational when stage n - 1 arrives. Therefore he will maximize his immediate 
payoff, which means linking. Similarly, COL anticipates that no matter what 
he does at this stage, finking will occur at all later stages. In this round, 
finking is strictly better, so COL finks as well. Since both sides fink, their 
payoffs are each zero, and the induction is complete. 

Step 2. . ..if COL links at stage n + 1, then ROW finks at stage n with 
probability one. 

If ROW did cooperate in these circumstances, it would become common 
knowledge that he was rational. (The “Tit-for-Tat” ROW does not have this 
action available.) Thus cooperation nets zero in the continuation game. But 
linking can do no worse than zero in the continuation game and it is strictly 
dominant in the stage game. Thus finking does strictly better overall. This 
means that ROW must link with probability one. 

Step 3. . ..starting from any point in the game tree (i), where COL 
assesses probability q that ROW is the Tit-for-Tat player, (ii), where there 
are n stages to go, and (iii), where COL cooperated on the previous stage, 
the expected payoff to COL for the remainder of the game is at least qn + b. 

To show this, consider the strategy for COL of cooperating until the next 
time that ROW finks, and then finking ever after. Against the Tit-for-Tat 
player, this yields a payoff of n. Against the rational ROW, it yields no 
worse than b. Thus it yields an expected payoff that is at least 
qn + (1 -4) b > qn + b, and any equilibrium strategy must do at least as 
well. 

Step 4. .:.starting from any point in the game tree (i), where COL 
assesses probability q that ROW is the Tit-for-Tat player, (ii), where there 
are n stages to go, and (iii), where COLfinked on the previous stage, the 
expected payoff to COL for the remainder of the game is at least 
q(n- 1)+26. 

Because ROW is sure to fink (see step 2), COL knows that his assessment 
in the subsequent stage will again be q. So by cooperating at this stage, COL 
gets b immediately and at least q(n - 1) + b in the continuation game. His 
overall expected payoff can be no worse than the sum of these, or 
q(n-1)+2b. 

Step 5. . ..starting at a point in the game tree (i), where COL assesses 
probability q that ROW is the Tit-for-Tat player, and (ii), where there are n 
stages to go, the expected payoff to the rational ROW player is no less than 
q(n- 1)+3b-a. 
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Note first that COL will do no worse if the rational ROW plays Tit-for- 
Tat than if the rational ROW plays his equilibrium strategy. This is easily 
verified inductively, using steps (1) and (2). Thus the bounds obtained in 
steps (3) and (4) apply equally well if the rational ROW were to play Tit- 
for-Tat. And by playing Tit-for-Tat, the rational ROW nets within b - a of 
whatever COL gets, path by path. This gives us the bound on ROW’s payoff 
stated above. 

Step 6. . ..if COL assesses probability q that ROW is the Tit-for-Tat 
player, and if there are more than (2a - 4b + 2q)/q stages left to go, then 
ROW plays the Tit-for-Tat strategy with probability one. Thus along the 
equilibrium path, until the first stage less than (2~ - 46 + 26)/d, COL infers 
nothing from the observed behavior of ROW, and COL’s assessment that 
ROW is the Tit-for-Tat player remains at 6. 

In light of Step 2, all that is needed here is to show that ROW cooperates 
if COL has just cooperated in these circumstances. (The second part of the 
statement follows trivially from the first.) If ROW were to fink, it would 
become common knowledge that ROW is rational. Thus the total payoff 
from finking cannot exceed a-ROW gets at most a immediately (if COL 
cooperates) and then zero in the continuation game (by Step 1)). By 
cooperating, ROW will do no worse than b in this round (if COL finks) and, 
by Step 5, q(n - 2) + 3b -a in the continuation game, where n is the 
number of stages remaining. If n exceeds (2~ - 4b + 2q)/q, then cooperating 
is strictly better. 

Step 7. . ..the total number of stages where one side or the other finks is 
bounded above by 

2a - 4b + 26 

[ 

2 

6 
* 1+ 1 min{2-a-b, 1) * 

As seen in Step 6, ROW plays Tit-for-Tat until stage (2~ - 4b + 26)/d. If 
COL cooperates until ROW finks and then finks thereafter, his payoff must 
be at least N- (2a - 4b + 26)/d. If COL finks before this date, then in that 
stage he gets a. If he then returns m stages later to cooperating, he gets b in 
the stage where he cooperates and zero in between. Thus he gives up 
1 + m -a -b in this circumstance. A string of finks costs him 
1 + (1 - (a + b))/m per round in comparison to cooperating. Thus, each 
time COL finks it costs him at least min(2 - a - b, 1). If he finks k times 
prior to stage (2~ - 4b + 26)/d, his payoff cannot exceed 
N - k . min( 2 - a - b, 1). These two bounds on COL’s payoffs yield 
k < (20 - 4b + 26)/(6 - min (2 - a - b, 1 {). Each such act of finking by 
COL provokes a Tit-for-Tat response from ROW in the next round, so there 
are at most 2k rounds before stage (2~ - 4b + 26)/a when finking occurs. 
Thus the maximum number of rounds with finking is that given above. 
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Step 8. In any sequential equilibrium that is not Pareto-dominated by 
some other sequential equilibrium, there is no finking along the equilibrium 
path when more than 1 + (2a - 4b + 26)/a stages remain. 

For any equilibrium where there is finking before this date, a Pareto- 
superior equilibrium consists of not having that finking, and then continuing 
to play the game as if it had occurred. 

Note that these bounds are not tight: If 6 = 1 they yield n = 10 in Step 8 
for a = 1.5 and b = - 1, yet in this circumstance one should see finking only 
in the last period. The looseness of these bounds suggests the need for further 
work. 

The Tit-for-Tat theme can also be developed so as to further emphasize 
the role of lack of common knowledge. This development is in the spirit of 
Milgrom and Roberts 14, Appendix B]. 

Suppose that there are three states of the world. In state 1, ROW is the 
Tit-for-Tat player; in stages 2 and 3 he is rational. ROW learns whether he 
is Tit-for-Tat or not-his information partition (at the outset) is { 1 }, (2, 3 ). 
COL, on the other hand, is given the information partition { 1, 2}, (3): In 
state 3 he knows whether ROW is the Tit-for-Tat player; in state 2 he does 
not. Suppose that state 3 prevails with very high probability. Then with very 
high probability, Row is not Tit-for-Tat, and COL knows that ROW is not 
Tit-for-Tat. But ROW is not sure that COL knows this, and one can show 
that the qualitative results proved for model 1 hold here. ROW will play Tit- 
for-Tat until near the end of the game, hoping that COL will be “deceived.” 
And COL will pretend to be “deceived” even if he is not, as this improves 
his lot as well. 

Or consider a four state case. In state 1 ROW is the Tit-for-Tat player-in 
states 2, 3 and 4 he is not. ROW is endowed with the information partition 
{l}, (2,3}, 14); COL with (1,2), (3,4). State 4 prevails with probability 
close to one. Then with probability close to one, ROW is not Tit-for-Tat, 
COL knows that this is so, ROW knows that COL knows this, but COL is 
not sure that ROW knows that COL knows. Once more the qualitative 
results for the original model hold up-ROW tries to “deceive” COL, 
knowing full well that COL will not be deceived but will act as if he is, and 
COL will do this in the hope that ROW may be unaware that is COL is not 
being deceived. One could go on like this forever: The general structure is 
that ROW’s information partition should involve sets {l}, (2, 3},..., 
(2m, 2m + l),... and COL’s should involve { 1, 2}, {3,4} ,..., (2m + 1, 
2m + 2],... (with termination eventually). The point is simply that so long as 
it is not common knowledge that ROW is not Tit-for-Tat, cooperation until 
near the end of the game will be rational. 



PRISONERS’ DILEMMA 2.51 

Model 2: Two-Sided Uncertainty about the Stage Payoffs 

In Model 1, COL entertains a hypothesis about ROW’s behavior that 
cannot be generated if ROW is rational and has some stage game payoffs 
that he sums to arrive at his overall payoff. That is, COL’s hypothesis, in 
terms of ROW’s “true” utility function, necessarily involves payoffs for 
ROW that cut across stages. We might then wonder: Can long-run 
cooperation be attained if the only alternative hypotheses that are allowed 
(besides the hypothesis that the player is rational with the given stage 
payoffs) involve changes in the stage game payoffs? (This approach is used 
in [Z].) The answer is a qualified yes. 

Suppose that each player originally assesses a small probability that his 
opponent “enjoys” cooperation when it is met by cooperation. Given our 
zero-one normalization, we model this by assuming that COL assigns a 
small probability 6 > 0 that a < 1 for ROW, and ROW entertains a similar 
hypothesis about COL. We can then produce a sequential equilibrium 
wherein each side cooperates until the last few stages of the game, although 
again the end-game play is rather complex. In this equilibrium, if either side 
ever fails to cooperate, then the other side takes this as a sure sign that the 
defector has stage game payoffs with a > 1, and the noncooperative 
equilibrium ensues. As the details of this equilibrium are quite complex, we 
refrain from giving them here. Note, however, that if we move directly to a 
continuous-time formulation of this game, as in Kreps and Wilson 
[ 2. Sect. 4 ], then one equilibrium has cooperation throughout. 

There are two qualifications to be made. First, two-sided uncertainty is 
required. If ROW, say, is uncertain about COL’s stage payoffs, but it is 
common knowledge that a > 1 for ROW, then the only sequential 
equilibrium has finking throughout. (This is true for any “incomplete infor- 
mation” about one player’s stage payoffs.) The second qualification, and 
certainly the more important, is that this game admits sequential equilibria in 
which long-run cooperation does not ensue, unlike the game with a Tit-for- 
Tat possibility. This is true even if we make a “plausibility” restriction on 
beliefs off the equilibrium path in the spirit of Section 3 of Kreps and Wilson 
121. Cooperation here requires a “boot-strapping” operation: Even if each 
side is certain that the other has a < 1, cooperation ensues only if each side 
hypothesizes that the other side will cooperate. (This is a fancy way of 
saying: If both sides have payoffs with a < 1, then there are two Nash 
equilibria in the stage game.) One might justify the cooperative equilibrium 
on “efficiency” grounds, but one cannot guarantee that cooperation will 
prevail in every sequential equilibrium. 
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