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Abstract

We introduce and analyze expected uncertain utility theory (EUU). A prior and an

interval utility characterize an EUU decision maker. The decision maker uses her subjec-

tive prior to transform each uncertain prospect f into an interval-valued prospect f which

assigns an interval [x, y] of prizes to each state. The decision maker ranks prospects ac-

cording to their expected interval utilities E(u(f)) where u is the index that specifies the

utility of each interval [x, y]. We define risk and ambiguity aversion for EUU, use the EUU

model address the Allais Paradox, the Ellsberg Paradox, the Home Bias and relate these

behaviors to the individuals attitude towards risk and ambiguity.

† This research was supported by grants from the National Science Foundation.



1. Introduction

We introduce and analyze expected uncertain utility theory (EUU), a model of decision

making under uncertainty. The choice objects are Savage acts that associate a monetary

prize to every state of nature. The goal is to provide a theory that can address three

well-documented deviations from expected utility theory:

(i) Source preference. (Heath and Tversky (1991)). This evidence shows that decision

makers prefer uncertain prospects if they depend on familiar rather than unfamiliar

events.

(ii) Ellsberg-style evidence. (Camerer and Weber (1992)). This evidence shows decision

makers may lack probabilistic sophistication;

(iii) Allais-stye evidence. (Starmer (2000). This evidence shows systematic violations of

the independence axiom.

EUU decision makers are characterized by a sigma-algebra E , a probability measure μ
and a interval utility u(x, y) that associates a real number with every interval of monetary

prizes [x, y]. The sigma-algebra, like the probability and the interval utility , is subjective,

that is, a parameter of the decision maker’s preference. Therefore, a generic act f in the

domain of preferences need note be E-measurable.
The decision maker evaluates each act f according to its expected interval utility

U(f). To compute U(f), we find E-measurable acts f1, f2 so that f1 ≤ f is the largest

E-measurable lower bound and f ≤ f2 is the smallest E-measurable upper bound. Then,
U(f) =

R
Ω
u(f1(ω), f2(ω))dμ. If f is E-measurable then f1 = f = f2 and the U(f) reduces

to subjective expected utility.

Consider an agent who must confront two sources of uncertainty, one is the outcome

of a basketball tournament and the other is the outcome of a tennis tournament. The DM

has prior beliefs about the outcomes each tournament and, therefore, acts that depend

on the outcome of a single tournament give rise to well-defined lotteries over prizes [l,m].

Moreover, the DM ranks those acts according to their implied lotteries. That is, the DM

has a (continuous and monotone1) lottery preference that describes his behavior for single

source acts. However, the decision maker prefers basketball bets over tennis bets, that is,

1 In the sense of first order stochastic dominance.
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if given the choice between two bets with identical odds of winning, the decision maker

prefers the one that depends on the outcome of the basketball tournament. Behavior of

this type is referred to as a source-preference. Evidence for non-indifference among sources

can be found in Heath and Tversky (1991) and Abdellaoui, et al. 2009. In addition, the

finance literature has coined the phrase “home bias” to describe the preference of investors

for domestic assets. See, for example, French and Poterba (1991) for evidence of the

home bias. The home bias is puzzling because investors forgo the benefits of international

diversification in favor of holding familiar assets.

We use the term risky environment to describe a collection of single source acts.

We show that for every EUU decision maker there are many risky environments and the

corresponding lottery preferences vary with the environment. Hence, our model can ac-

commodate agents who exhibit a source preference and forgo the benefits of diversification

in favor of holding only assets that depend on a preferred source.

The lottery preferences of EUU decision makers form a class of non-expected utility

preferences we term generalized quadratic utility (GQT). GQT utility includes as a special

case rank dependent utility with parameter restrictions that are commonly employed in

empirical studies of lottery preferences (Starmer (2000)). Thus, EUU decision makers

exhibit lottery preferences that match Allais-style experimental evidence.

When acts depend on multiple sources, the decision maker may fail probabilistic so-

phistication. A collection of events is ambiguous if they are not part of a single risky

environment. When EUU decision makers must choose among bets on an ambiguous

collection of events, they will violate probabilistic sophistication and exhibit preference re-

versals as documented in Ellsberg style experiments. We show that EUU can accommodate

all Ellsberg-style urn experiments.

1.1 Related Literature

Our model is most closely related to the work of Jaffray (1989) who introduces a dis-

crete model of expected uncertain utility. He takes the set of all discrete totally monotone

capacities over prizes as a primitive and applies the von Neumann-Morgenstern axioms

to preferences over such capacities to obtain a linear representation. He applies the Moe-

bius transform to each such capacity and hence identifies it with a probability distribution
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over sets of prizes. Thus, he interprets linear preferences over capacities as expected util-

ity preferences over lotteries over sets. Finally, he argues that sets that have the same

best and worst elements should be indifferent and arrives at an expected uncertain utility

representation.

Just as von Neumann and Morgenstern define risky lotteries as the object of choice,

Jaffray defines capacities as the objects of choice for a decision maker confronting ambi-

guity. In contrast, we provide a Savage-style representation theorem for EUU theory. We

take acts that map states into prizes as the domain of preferences and derive a the decision

maker’s subjective probability and interval utility from her preferences.

We defer a discussion of the relation between EUU theory, Choquet expected utility

theory (Schmeidler (1989) and α-MEU theory (Ghirardato, et al. (2004)) to the final

section of the paper.

2. Expected Uncertain Utility

The interval M = [l,m] is the set of monetary prizes. Let Ω be the state space with

the cardinality of the continuum. The decision maker has preferences over acts, that is,

functions f from Ω to M . Let F be the set of all acts. Given any σ−algebra E ⊂ 2Ω and
countably additive μ : E → [0, 1], we call (E , μ) a prior if it is a complete (i.e., A ⊂ E ∈ E
and μ(E) = 0 implies A ∈ E) and nonatomic (i.e., μ(A) > 0 implies 0 < μ(B) < μ(A) for

some B ⊂ A) probability measure.

Let I = {(x, y) | l ≤ x ≤ y ≤ m} be the set of all pairs of prizes. We interpret the
pair (x, y) as a single (subjective) consequence. The pair (x, y) describes a situation that

the decision maker interprets as getting at least x and at most y. Given a prior (E , μ),
a function f : Ω → I is a subjective interval act if it is measurable with respect to E . A
subjective interval act is tight if μ({ω ∈ Ω | f1(ω) = f2(ω)}) = 1. Let FE denote the set

of all subjective interval acts. For f ∈ FE , let fi denote the i’t coordinate of f. That is,
f(ω) = (f1(ω), f2(ω)) for all ω ∈ Ω. Lemma 1 below reveals that given any prior (E , μ),
each act can be identified with a unique (up to a set of measure 0) subjective interval act.

Lemma 1: Let (E , μ) be any prior. Then, for any f ∈ F , there exists an f ∈ FE such
that

μ({ω ∈ Ω | f1(ω) ≤ f(ω) ≤ f2(ω)}) = 1 (22)
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and if g ∈ FE also satisfies (22), then

μ({ω ∈ Ω |g1 ≤ f1(ω) ≤ f2(ω) ≤ g2(ω)}) = 1 (23)

It is clear than any f with the property above is unique up to a set of measure 0. We

call the f corresponding to any f its envelope. Note that f ∈ FE if and only if f1 = f = f2

almost (E , μ)-surely. That is, an act is E−measurable if and only if its envelope is tight.

Lemma 2 below is a converse of Lemma 1.

Lemma 2: Let (E , μ) be a prior. Then, for any f ∈ FE , there exists f ∈ F such that f

is f ’s envelope.

Henceforth, we write f,g and h to denote the envelopes of f, g and h respectively. An

interval utility is a continuous function u : I → IR such that u(x, y) > u(x0, y0) whenever

x > x0 and y > y0. Let U be the set of all interval utility indicies. A preference º is

a expected uncertain utility (EUU) if there exists a prior (E , μ) and u ∈ U such that the

function W defined below represents º:

W (f) =

Z
u(f)dμ (33)

Thus, a prior (E , μ) and an interval utility u characterize an EUU decision maker.

Therefore, we identify (E , μ, u) with corresponding the EUU preference º. We say that

the interval utility u is symmetric if there exists α ∈ [0, 1] such that u(x, y) = αu(x, x) +

(1− α)u(y, y) for all (x, y) ∈ I. We say that u is strongly symmetric if this α is 1/2.

To illustrate the main ideas we use the following example through out the paper: let

Ω = [0, 1) × [0, 1) be the unit square. Let λ2 be the two-dimensional Lebesque measure

on the two-dimensional Borel sets B2 of Ω and let E be the sigma-algebra that contains

all events of the form [a, b] × [0, 1] with 0 ≤ a ≤ b ≤ 1 and all zero measure sets. In this

example, E contains all full-height rectangles as illustrated in Figure 1 below.
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Figure 1

Consider the act f illustrated in Figure 2 below with prizes x < y < z. The act yields

prize x on the yellow shaded region, y on the light grey shaded region and z on the dark

grey region.

x

y

z

2E1E

Figure 2

We write xAy for an act that yields x on A and y on Ac. The envelope f for the act f

depicted in Figure 2 is f1 = x, f2 = yE1z and hence

U(f) = μ(E1)u(x, y) + μ(E2)u(x, z)

Theorem 1 below shows that º is an EUU if and only if it satisfies the following 6

axioms. Note that the axioms are analogous to their counterparts in Savage’s theorem.

We identify x ∈ M with the constant act that yields x in every state. Hence, the binary

relation º on F induces a binary relation on M .
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Axiom 1: The binary relation º is complete and transitive.

Axiom 2: If f(s) > g(s) for all s ∈ Ω, then f Â g.

We interpret prizes as quantities of money and Axiom 2 is a natural consequence of

that interpretation. For any f, g ∈ F and A ⊂ Ω, let fAg denote the act h such that
h(s) = f(s) for all s ∈ A and h(s) = g(s) for all s ∈ Ac. Hence, xAy denotes the act that

yields x if A occurs and y otherwise.

Our goal is to identify a collection an ideal environment in which each decision-maker

satisfies the expected utility axioms and use the decision makers preferences in this en-

vironment to calibrate his attitude towards uncertainty. Consider two acts that imply

different subacts on the event E but have a common subact on Ec. If the event E is ideal,

the ranking of acts does not depend on the common subact on Ec. Similarly, if two acts

differ on Ec but have a common subact on E then the ranking of acts does not depend on

the common subact.

Definition: An event E is it ideal if fEh º gEh and hEf º hEf implies fEh0 º gEh0

and h0Ef º h0Ef .

An event is ideal if Savage’s sure thing principle holds with respect to E and Ec.

Our definition of ideal events is related to Zhang (2002), Epstein and Zhang (2001) and

Sarin and Wakker (1992) notions of unambiguous events. Sarin and Wakker assume an

exogenous collection of unambiguous events and require Savage’s sure thing principle to

hold for those events. Thus Sarin and Wakker’s unambiguous events yield an environment

in which the decision maker is an expected utility maximizer. Epstein and Zhang define

unambiguous events to be those events for which a weakened version of the sure thing

principle applies. Hence, their unambiguous events yield a single environment in which

the decision maker may be an expected utility maximizer or may have some nonexpected

utility functional over subjective lotteries. Our permits multiple collections of unambiguous

events. The collection of ideal events yields an environment in which the stronger Sarin

and Wakker’s stronger requirement is satisfied. Our remaining axioms ensure the existence

distinct environments; across these environments, the decision-maker reveals a rich variety

of risk attitudes.
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An event A is null if fAh ∼ gAh for all f, g, h ∈ F . If A is not null, we call it non-null.
Let E be the set of all ideal events and E,E0, Ei etc. denote elements of E . Let E+ ⊂ E
denote the set of ideal events that are not null.

An event is diffuse if it and its complement intersect every non-null ideal event. Diffuse

events represent outcomes in situations of complete ignorance. The decision maker cannot

find any (non-null) ideal event contained in it or its complement and hence cannot bound

the probability of such events. Let D be the set of all diffuse events and let D,D0,Di etc.

denote elements of D.

Definition: An event D is diffuse if E ∩D 6= ∅ 6= E ∩Dc for every E ∈ E+.

In the example above, any subset D ∈ B2 of the unit square is diffuse if and only if

λ2(D ∩ (A1 × [0, 1))) 6= 0 6= λ2(Dc ∩ (A1 × [0, 1)))

whenever μ(A1 × [0, 1)) > 0; that is, whenever A1 has strictly positive (one-dimensional)

Lebesque measure.

Our maintained hypothesis (formalized in Axiom 3(ii)) is that the decision maker can-

not discriminate among diffuse events. That is, the decision maker is indifferent between

betting on D1 and D2 when both events are diffuse. This indifference reflects the decision

maker’s complete ignorance over diffuse outcomes. Axiom 3(i) below is Savage’s compar-

ative probability axiom (P4) applied to ideal events. Axiom 3(ii) says that diffuse events

are interchangeable.

Axiom 3: If x > y and x0 > y0, then (i) xEy º xE0y implies x0Ey0 º x0E0y0 and (ii)

xDy ∼ xD0y.

Let Fo denote the set of simple acts, that is, acts such that f(Ω) is finite. The simple

act f ∈ Fo is ideal if f−1(x) ∈ E for all x. Let Fo
E denote the set of ideal simple acts. A

simple act f is diffuse if f−1(x) ∈ D ∪ ∅. An act is constant if f−1(x) ∈ Ω ∪ ∅. Let Fd be

the collection of constant or diffuse simple acts. Note that constant acts are in Fd and in

Fo
E .

The standard state independence assumption requires that the ranking of constant

acts be the same conditional on any non-null event. Axiom 4 below requires the same
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for ideal events. In that sense, Axiom 4 below weakens the standard state independence

assumption. However, Axiom 4 requires state independence to hold not just for constant

acts but for all diffuse acts that is, acts that are measurable with respect to the collection

of diffuse events. This strengthening of state-independence follows from our hypothesis

that diffuse events are interchangeable. To see this, consider the diffuse act xDy. The

event D ∩ E is a diffuse subset of E as is the event Dc ∩ E. Therefore, conditional on

any ideal event E, the act xDy yields x on a diffuse subset of E and y on its (diffuse)

complement in E. Therefore, xDy is analogous to a constant act; it yields identical diffuse

bets conditional on any ideal event. If utility is state independent, the ranking of diffuse

acts must therefore be preserved when conditioning on a non-null ideal event.

Axiom 4: If E is nonnull, then f Â g implies fEh Â gEh for all f, g ∈ Fd.

Axiom 5 is Savage’s divisibility axiom for ideal. It serves the same role here as in

Savage. Its statement below is a little simpler than Savage’s original statement because in

our setting, there is a best and a worst prize.

Axiom 5: If f, g ∈ Fo
E and f Â g, then there exists a partition E1, . . . , En of Ω such

that lEif Â mEig for all i.

Axiom 6 below is a strengthening of Savage’s dominance condition adapted to our

setting. We use it to extend the representation from simple acts to all acts, to establish

continuity of u and to guarantee countable additivity of the prior (E , μ). Notice that for
ideal acts f ∈ Fo

E Axiom 6(i) implies Arrow’s (1970) monotone continuity axiom, the

standard axiom used to establish countable additivity of the probability measure in SEU.

Axiom 6: (i) If fn ∈ Fo
E converges pointwise to f , then g º fn º h for all n implies

g º f º h. (ii) If fn ∈ F converges uniformly to f , then g º fn º h for all n implies

g º f º h.

Theorem 1: The binary relation º satisfies Axioms 1− 6 if and only if there is a prior
(E , μ) and an interval utility u such that º= (E , μ, u). Moreover, the prior is unique and
the interval utility is unique up to positive an affine transformation.

Proof: See Appendix.
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Next, we provide a brief description of the proof of Theorem 1. If we restrict attention

to ideal events, Axioms 1-6 yield a standard expected utility theory with a countably

additive probability measure ν and a continuous utility index v :M → IR.

A partition act is a simple act f with the following property. There is a partition of Ω

into the ideal events (E1, . . . , Ek) and a collection of diffuse or constant acts (f1, . . . , fk)

such that f coincides with fk on Ek. A key step in the proof of Theorem 1 is to show that

for any simple act f̂ ∈ Fo we can find an equivalent partition act f . Equivalent acts differ

only on null events. As part of this argument, we show that Ω can be partitioned into any

finite number of diffuse sets. This step uses a Theorem by Birkhoff (1967) which in turn

uses the continuum hypothesis.2

A binary partition act is a partition act where each fk is either a constant act or takes

the form xDy for some x, y and some diffuse setD. A simple monotonicity argument shows

that any partition act is indifferent to a binary partition act. To see this, let D1,D2,D3

be a partition of Ω into three diffuse events and consider the act xD1yD2z with x < y < z.

By monotonicity

xD1yD2z º xD1 ∪D2z

and

xD1z º xD1yD2z

and by Axiom 3,

xD1 ∪D2z ∼ xD1z

and therefore xD1 ∪D2z ∼ xD1yD2z ∼ xD1z.

The diffuse act f = xDy has the constant envelope f = (x, y). The utility u(x, y) of

(x, y) is the utility of this act, that is,

u(x, y) := U(xDy)

2 Birkhoff (1967), Theorem 13 (pg. 266) shows that no nontrival (i.e., not identically equal to 0)
countably additive measure such that every singleton has measure 0 can be defined on the algebra of all
subsets of the continuum.
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More generally, consider a binary partition act f with partition (E1, . . . , Ek) that yields

xiDyi on Ei. The utility if this act is

W (f) =
kX
i=1

μ(Ei)u(xi, yi)

The extension to all acts uses Axiom 6 and follows familiar arguments.

3. Environment and Revealed Lottery Preferences

In this section we define risky environments and characterize the lottery preferences

of EUU decision makers. The lottery preferences are shown to be environment dependent

and therefore EUU decision makers exhibit a source preference, that is, prefer lotteries

derived from one source over the same lotteries derived from another source.

A collection C of subsets of Ω is a λ-system if (i) ∅,Ω ∈ C; (ii) A ∈ C implies Ac ∈ C;
and (iii) A,B ∈ C and A ∩ B = ∅ implies A ∪ B ∈ C. The collection C is continuous if
An ∈ C and An ⊂ An+1 for all n implies

S
nAn ∈ C. For any such C, let FC denote the set

of all C-measurable acts from Ω to M . That is, f ∈ FC if and only if f−1(X) ∈ C for any
Borel set X ⊂ M . We call such an FC an environment. Henceforth, when we write FC it
is understood that C is a continuous λ-system and therefore FC is an environment.

Let L denote the set of all cumulative distribution functions, F , such that F (m) = 1
and F (x) = 0 for all x < l. Given any prior (A, π), λ-system C ⊂ A, and act f ∈ FC, the
cumulative distribution Gf ∈ L is defined as

Gf (x) = π(f−1[l, x])

A preference relation ºl on L is monotone if G Âl G
0 whenever G stochastically dominates

G0. This preference is continuous if the weakly-better-than sets and the weakly-worse-than

sets are closed in the topology of weak convergence. We call a monotone and continuous

preference ºl on L a lottery preference.
We say that the EUU º is probabilistically sophisticated on FC if there exists a lottery

preference ºl and a prior (A, π) such that C ⊂ A and

f º g if and only if Gf ºl G
g (4)
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for all f, g ∈ FC.
Suppose the EUU º is probabilistically sophisticated on some FC. Hence, there exists

some prior (A, π) and ºl such that equation (4) is satisfied. We call (A, π) a possible
prior and ºl a possible lottery preference (for º on FC). If, in addition, for all A ∈ C,
r ∈ [0, 1], there exists B ∈ C, B ⊂ A such that π(B) = rπ(A), then we say that FC is a
risky environment. It is easy to check that if FC is a risky environment, then there is a
unique possible lottery preference of º on FC. Moreover, any two possible priors (A, π)
and (B, π0) on Fc for º will agree on C ⊂ A ∩ B. Since we are only interested in the
probabilities of events in C, we simply say that º reveals the prior (A, π) and the lottery
preference ºl on FC.

Next, we provide two examples of risky environments and describe the lottery prefer-

ences revealed in those environments.

Example 1 (Expected Utility): Ideal acts, that is, acts that are E-measurable, are an
example of an environment. The sigma-algebra E is a continuous λ-system and therefore

FE is an environment. The EUU is probabilistically sophisticated on FE and therefore FE
is a risky environment. The lottery preference of the EUU (E , μ, u) is expected utility with
utility index v(x) = u(x, x).

Example 2 (Quadratic Utility): Let f, f 0 be two E-measurable acts such that
(i) f and f 0 are uniformly distributed, i.e., Gf (x) = Gf 0(x) = x/(m− l) for x ∈ [l,m]
(ii) f and f 0 are independent, i.e, μ({f ≤ x, f 0 ≤ x}) = Gf (x) ·Gf 0(x).

Fix a diffuse set D, let h = fDf 0, and let A be the smallest sigma-algebra that contains

the sets h−1(B) for all Borel subsets of [0, 1]. The sigma-algebra A is a continuous λ-

system and the collection of acts FA is a risky environment. Any act h0 ∈ FA has the

form h0 = gDg0 for some g, g0 such that g, g0 are independent and identically distributed

ideal acts. The acts f1 = min{g, g0} and f2 = max{g, g0} are an envelope for h = gDg0.

The joint distribution of f1 and f2 is

H2(x, y|Gg) :=

½
Gg(x)2 − (Gg(y)−Gg(x))2 if x ≥ y
Gg(x) otherwise

and therefore U(h0) =
R
u(x, y)dH2(x, y|Gg). Thus, the lottery preference in this envi-

ronment satisfies F Âl G if and only if
R
u(x, y)dH2(x, y|F ) ≥

R
u(x, y)dH2(x, y|G). This
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utility function is known as quadratic utility (Machina (1989)). Let φ(x, y) be a symmetric

extension of u(x, y) to all pairs (x, y) ∈M ×M . That is,

φ(x, y) =

½
u(x, y) if x ≥ y
u(y, x) if y < x

Then, Z
u(x, y)dH2(x, y |F ) =

Z Z
φ(x, y)dF (x)dF (y) (2)

The right hand side of the above equation is the quadratic utility function as analyzed in

Chew, Epstein and Segal (1991).

Examples 1 and 2 describe specific risky environments and the corresponding lottery

preference of EUU decision makers. Theorem 2 below characterizes the lottery preferences

of EUU decision makers in all risky environments. Let

Z =
n
a = (a1, a2, . . .) ∈ [0, 1]∞ |

X
an = 1

o
For F ∈ L, let

Hn(x, y |F ) =
½
(F (y))n − (F (y)− F (x))n if y ≥ x
(F (y))n otherwise

Note that Hn(x, y |F ) is the joint distribution of the 1-st and n-th order statistics of n
independent draws of an F -distributed random variable.

Definition: A function V : L → IR is a generalized quadratic utility (GQU) if there

exists a ∈ Z and an interval utility u such that

V (F ) =
∞X
n=1

an

Z
u(x, y)dHn(x, y |F ) (1)

We write (a, u) for a lottery preference represented by a GQU with parameters a, u.

The interval utility u is strongly symmetric if u(x, y) = (u(x, x) + u(y, y))/2. We say the

EUU (E , μ, u) is regular if it is not strongly symmetric.
Theorem 2, below, shows that for any EUU (E, μ, u) there is an environment where

the EUU reveals the GQU (a, u). Moreover, unless the u is strongly symmetric, all lottery
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preferences are generalized quadratic. Strongly symmetric utility functions allow additional

risky environments for which the lottery preference does not have a GQU form.

Theorem 2: (i) For any prior (E , μ) and a ∈ Z, there exists a risky environment FA
such that for all u ∈ U , the EUU (E , μ, u) reveals (a, u) on FA. (ii) If the regular EUU

(E , μ, u) reveals ºl in some risky environment then ºl is a GQU (a, u) for some a ∈ Z.

The risky environments defined in Examples 1 and 2 above depend on the EUU’s prior

but are independent of the interval utility. As we demonstrate in Proposition 1 below, this

property is general.

Proposition 1: (i) If FA is a risky environment for the regular EUU (E , μ, u) then it

is a risky environment for any EUU (E , μ, u0) and both reveal the same prior on FA. (ii)

If the regular EUU (E , μ, u) reveals the lottery preference ºl in some environment and

(E 0, μ0) is any prior, then (E 0, μ0, u) reveals the same lottery preference ºl in some risky

environment.

Proposition 1 (i) shows that the prior rather than the interval utility defines an envi-

ronment because almost all EUU preferences with a given prior have the same collection of

environments. The only qualification is that a strongly symmetric interval utility yields a

larger class of environments. Part (ii) of Proposition 1 is a immediate corollary of Theorem

2.

The notion of a risky environment enables us to formalize the two ways in which the

EUU model achieves separation between the individual’s perception of uncertainty and

risk, as described by her prior, and attitude towards this uncertainty and risk, as described

by u. First, as Proposition 1 shows, what constitutes a risky environment depends only

on the prior and not on the interval utility. Second, every prior perceives every risky

environment. That is, just as in the Savage model, a nonatomic prior forces the decision-

maker to confront every risky (and uncertain) situation; two different priors may disagree

on which events have probability .6 (or, in our more general model, which collection of

acts constitute a risky environment), but both confront the entire range of probabilities

and risky environments.
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4. Measures of Uncertainty and Uncertainty Aversion

An EUU’s lottery preference depends on the environment. It is risk averse in a given

environment if it dislikes mean preserving spreads in that environment. It is strongly

uncertainty averse if it dislikes mean preserving spreads in all environments.

Definition: An EUU º is risk averse in the risky environment FA if for all f, g ∈ FA,
f º g whenever Gg is a mean preserving spread of Gf .

Definition: An EUU º is strongly uncertainty averse if it is risk averse in every risky

environment.

We say that u is maximally pessimistic if u(x, y) = u(x, x) for all x, y. For any u, let

ρu(x) = u(x, x) for all x. Hence, u is maximally pessimistic, u(x, y) = ρu(x) for all x, y.

To simplify notation, we let (E , μ, ρ) denote a maximally pessimistic EUU. The following
proposition shows that for EUU preferences, our notion of strong uncertainty aversion is

equivalent to risk aversion in the ideal environment plus maximal pessimism. Furthermore,

this notion has a characterization similar to Schmeidler’s notion of uncertainty aversion.

Proposition 2: Let (E , μ, u) be an EUU. Then, the following conditions are equivalent

(ii) The EUU (E , μ, u) is strongly uncertainty averse;

(ii) ρu is concave and [f ∈ F , α ∈ [0, 1] and g = f implies αf + (1− α)g º f ];

(iii) ρu is concave and u is maximally pessimistic.

Definition: Let FA,FB be risky environments for the prior (E , μ). The EUU (E , μ, u)
prefers FA to FB if f ∈ FA, g ∈ FB, Gf = Gg implies f º g. The risky environment FB
is more uncertain than FA if every strongly uncertainty averse (E , μ, u) prefers FA to FB.

Theorem 2 shows that we can associate to each risky environment FA a parameter

a ∈ Z such that the EUU’s lottery preference is represented by the GQT (a, u) in this

environment. We refer to this a ∈ Z as the parameter of the environment FA. For a ∈ Z,

let γa(t) :=
P∞

n=1 ant
n

Proposition 3: Let (E , μ) be a prior and FA,FB be two risky environments with pa-
rameters a, b ∈ Z. Then, FB more uncertain than FA if and only γa(t) ≥ γb(t) for all

t ∈ [0, 1].

14



Proposition 3 provides a measure of uncertainty for environments. The ideal envi-

ronment has parameter a = (1, 0, . . .) while the quadratic environment has parameter

b = (0, 1, 0, . . .). Since t ≥ t2 for all t ∈ [0, 1], Proposition 3 shows that the quadratic envi-

ronment is more uncertain than the ideal environment. More generally, let an ∈ Z be such

that an = 1 (and hence ak = 0 for all k 6= n). Then, the environment with parameter an+1

is more uncertain than the environment with parameter an. Of course, not all environ-

ments can be ranked. For example, the environment with parameter a0 = (1/4, 0,
3/4, 0 . . .)

and the environment with parameter b = (0, 1, 0, . . .) cannot be ranked.

Consider a sequence of environments with parameters an, n = 1, 2, . . .. Hence, as n

goes to infinity these environments become more and more uncertain. For any lottery F

let CEn(F ) be the certainty equivalent of F for the GQU (an, u). Let x(F ) and y(F ) be

the maximum and the minimum respectively of the support of F . It is straightforward to

verify that

limCEn(F ) = ρ−1u (u(x(F ), y(F ))

Thus, as n goes to infinity, the agent ranks lotteries according to their support.

5. Allais Paradox

A typical Allais-style reversal occurs if a decision maker prefers the certain prize y over

the lottery F but reverses this ranking if both prospects are mixed with an undesirable

outcome x. We say that an interval utility is prone to Allais style reversals if we can find

risky environments where such reversals occur. Recall that y(F ) is the minimal element

in the support of F .

Definition: The interval utility u is prone to Allais-reversals if there exist a ∈ Z, F ∈ L,

x ≤ y(F ), z ∈ M and α ∈ (0, 1) such that V (F ) < V (z) and V (αF + (1 − α)x) >

V (αz + (1− α)x) for V = (a, u).

Definition: The interval utility u displays risk loving under extreme uncertainty if there

exists a ∈ Z and F ∈ L such that V (F ) > V (z(F )) for all b ∈ Z with γa ≤ γb and

V = (b, u).
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Proposition 4: The following conditions are equivalent

(i) u is not maximally pessimistic;

(ii) u is prone to Allais-reversals;

(iii) u displays risk loving under extreme uncertainty.

Proposition 4 shows that to capture Allais-style reversals we must choose interval

utility indices that are not maximally pessimistic. We know from Proposition 2 above

that such u’s cannot be risk averse in every environment. Proposition 4 shows that, more

specifically, risk aversion will be violated in very uncertain environments.

An interval utility u is symmetric separable if it satisfies

u(x, y) = αv(x) + (1− α)v(y) (3)

We write (E , μ, (α, v)) for an EUU with a symmetric separable interval utility. To illustrate
Proposition 4, consider the example

u(x, y) = 3/4 · x+ 1/4 · y

Consider a lottery F that yields x > 0 with probability p and 0 with probability 1− p. In

environment an the utility of this lottery is

V (F ) = x ·
µ
3

4
pn +

1

4
(1− (1− p)n

¶
If x = 300 and p = .8 and n ≥ 3 then the decision maker prefers a certain prize of 200
over the lottery F but reverses this ranking when both prospects are combined with a

1/2 chance of 0. More generally, this decision maker is prone to Allais-style reversals if

the environment is more uncertain than an for n ≥ 3. To see the relation to risk loving
behavior, note that for n ≥ 3 and p sufficiently small, the decision maker prefers F to

its expected value. Hence, the decision maker is risk loving for gambles that offer a small

chance of winning in uncertain environments.

Next, consider the “source preference” of this decision maker. If p = 1/2 and therefore

F offer an equal chance of winning (the prize x) and losing (the prize 0), then the decision

maker prefers less uncertain environments. If Vn(F ) is the utility of F in environment an
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then Vn(F ) is decreasing in n. However, if p is small (for example p = .1) and hence the

lottery F offers a small chance of winning, then the ranking of environments is reversed.

In that case Vn(F ) is increasing in n and the decision maker prefers more uncertain envi-

ronments. A similar reversal of the source preference as a function of the odds of winning

has been documented in experimental settings (see Curley and Yates (1989) and Camerer

and Weber (1992) for a survey.)

Next, we characterize the lottery preferences of EUUs with symmetric separable in-

terval utilities. We show below that those lottery preferences correspond to a subclass of

rank dependent expected utility (RDEU) (Quiggin (1982)). RDEU is characterized by a

utility index v and a continuous bijection ν : [0, 1] → [0, 1] called the probability trans-

formation function (PTF). For any cdf F ∈ L we write ν ◦ F for the cdf G such that

G(x) = 1−ν(1−F (x)). The preference ºl is a rank-dependent expected utility preference

(RDEU) if there exists a PTF ν and a continuous, strictly increasing function v :M → IR

such that R defined by

R(G) =

Z
v(x)dν ◦G (4)

represents ºl. We write R = (ν, v) to describe a particular RDEU utility function.

Define the function γ∗a(t) = 1−
P∞

n=1 an(1− t)n and note that γ∗a(t) = 1− γa(1− t).

Proposition 5: The interval utility (α, v) reveals ºl in a risky environment with pa-

rameter a if and only if ºl is the RDEU (ν, v) for ν = αγa + (1− α)γ∗a.

In his survey of evidence on lottery preferences, Starmer (2000) notes that PTF’s with

an inverted S-shape, that is, concave on [0, t∗] and convex on [t∗, 1] for some t∗ ∈ (0, 1),

provide a good fit of experimental data. PTFs of the form

αγa + (1− α)γ∗a

are inverted S-shaped whenever the environment is sufficiently uncertain and 0 < α < 1.

For example, the PTF

3

4
γan +

1

4
γ∗an
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is S-shaped for all n ≥ 3. More generally, for any α ∈ (0, 1), there exists a ∈ Z such that if

the environment is more uncertain than an environment with parameter a then the PTF

is inverted S-shaped.

6. The Ellsberg Paradox

In this section, we analyze “urn experiments,” that is, situations where the relevant

uncertainty is described by a finite number of events corresponding to the possible draws

from an urn. To describe urn experiments in our setting, let N be a finite set of events,

let N be the set of subsets of N and let T : Ω → N be an onto function. Hence, AM =

{T−1(L) |L ∈ N} is the sigma-algebra of events corresponding to the urn experiment.

Some events have intuitive probabilities because the experimenter gives objective in-

formation such as the total number of balls of a particular type. For example, the urn may

contain three different kinds of balls, red, blue and yellow and the experimenter may tell

the subject the total number of blue or yellow balls. Then, if the total number of balls is n

and there are m blue or yellow balls, then the probability of the event L = {B,Y } is m/n.

Let M be the set of events with intuitive probabilities and let ι : M → [0, 1] be

the function that assigns intuitive probabilities to events inM. We require that ι satisfy

the following conditions: there are probability measures p, q on N such that (i) p(L) =

q(L) = ι(L) for all L ∈M and (ii) p(L) 6= q(L) for L 6∈M. The first property requires

that the intuitive probabilities are consistent, that is, there is a way to assign probabilities

to the states that matches all intuitive probabilities. The second property says that M

contains all events that have intuitive probabilities. Any event L 6∈ M can be assigned

multiple probabilities consistent with the intuitive probabilities inM. Note that (i) and

(ii) imply thatM is a λ-system of subsets of N since disjoint unions of events with intuitive

probabilities must have intuitive probabilities themselves. The triple (N,M, ι) is called an

urn experiment.

Next, we illustrate our definition of urn experiments in the context of well-known

examples.

Ellsberg One-urn Experiment: The urn contains 90 balls; 30 are red and the remain-

ing 60 balls are either black or yellow. The exact number or black balls is not known.
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Hence, N = {R,B, Y }, M = {{R}, {B,Y }}. The intuitive probability of drawing an
R is ι({R}) = 1/3 and that of drawing a B or a Y is ι({B, Y }) = 2/3. The intuitive

probabilities satisfy properties (i) and (ii) for p({R}) = p({B}) = p({Y }) = 1/3 and

q({R}) = 1/3; q({B}) = 0, q({Y }) = 2/3.

Ellsberg Two-Urn Experiment: Next, consider the Ellsberg two-urn experiment. Each

urn contains 100 balls. In urn 1, there are 50 Red balls and 50 white balls. Each ball

in urn 2 is either black or yellow, but the exact number of black balls is not known.

One ball is drawn from each urn. Let N = {(R,B), (R,Y ), (W,B), (W,Y )} and M =

{{(R,B), (R,Y )}, {(W,B), (W,Y )}} with ι({(R,B), (R, Y )}) = ι{(W,B), (W,Y )}} = 1/2.

The intuitive probabilities satisfy properties (i) and (ii) for p({(R,B)}) = p({(W,B)}) =
0; p({(R,Y )}) = p({(W,Y )}) = 1/2 and q({(R,B)}) = q({(W,B)}) = 1/2; q({(R, Y )}) =
q({(W,Y )}) = 0.

Zhang’s Four-Color Urn: The urn has 100 balls; each ball is either brown, green or

red, white. The only objective information is that B+R=B+G=50. That is, the to-

tal number balls that are blue or red and the total number balls that are blue or green

is both 50. From, this fact we can deduce that G + W = R + W = 50 and hence

to collection of events to which probabilities can readily be assigned is the λ-system

M = {∅, {R,G}, {G,B}, {G,W}, {B,W},N} of N = {B,G,R,W}. For each two ele-
ments subset of M we have ι(L) = 1/2. The intuitive probabilities satisfy properties (i)

and (ii) for p({R}) = p({G}) = 1/2, p({B}) = p({W}) = 0 and q({R}) = q({G}) =
0, p({B}) = p({W}) = 1/2.

Fix any prior (E , μ). We say that the collection of sets Co is unambiguous if there
exists a risky environment FA such Co ⊂ A. Otherwise, we say that Co is ambiguous. If Co
is unambiguous but Co ∪ {A} is not, then we say that A is ambiguous with respect to Co.

We say that (E , μ) rationalizes the urn experiment (N,M, ι) if there exists an onto

function T : Ω→ N such that AM = {A ⊂ Ω|A = T−1(L), L ∈M} is unambiguous with
a possible prior (A, π) satisfying π(T−1(L)) = ι(L) and each A ∈ AN\AM is ambiguous

with respect to AM.

Proposition 6: Every (E , μ) rationalizes every urn experiment (N,M, ι).
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Proposition 6 shows that EUU theory can accommodate Ellsberg-style evidence. In

Ellsberg-style experiments some events are ambiguous, that is, they do not belong to a

common risky environment. Notice that ambiguity is not a property of an event but

of a collection of events. The event A is ambiguous relative to the event C if there is no

risky environment that contains both. At the same time, the event A may be unambiguous

relative to the event B because both are contained in a single risky environment. Consider,

for example, the Ellsberg two-urn experiment described above with n colors in each urn.

The second urn specifies that there are 100 balls and n potential colors while the first

urn provides the exact number of balls for each color. Given the symmetry of the second

urn, it is plausible that the decision maker views each color to be equally likely and,

more generally, ranks bets that depend only on urn 2 according to the number of winning

colors. In other words, if we consider acts that depend only on urn 2, the decision maker

is probabilistically sophisticated. Thus, the events “red is drawn from urn 2” and “black

is drawn from urn 2” are unambiguous. At the same time, the events “black is drawn

from urn 1” and “red is drawn from urn 2” are ambiguous because they do not belong

to a common risky environment and therefore cannot be assigned probabilities by the

decision maker. Note that this notion of ambiguity adopts the terminology of Chew and

Sagi (2008).

Recently, Machina (2009) has posed the following question regarding the ability of

Choquet expected utility theory (and related models) to accommodate variations of the

Ellsberg paradox that appear plausible and even natural. In this subsection, we will show

that within EUU theory the behavior described by Machina is synonymous with the failure

of separability of u. We say that a EUU preference u is separable if there exist functions

v1 and v2 such that u(x, y) = v1(x) + v2(y).

Next, we describe Machina’s urn experiment: Let N = {1, 2, 3, 4}. To be concrete,
suppose a ball will be drawn from an urn that is known to have 20 balls. It is also known

that 10 of these balls are marked 1 or 2 and the other 10 balls are marked 3 or 4. Thus,

the λ-system of events with intuitive probabilities isM = {∅, {1, 2}, {3, 4}, N}.
We identify each f ∈ F = {g : N →M} with (f(1), f(2), f(3), f(4)) ∈M4. Machina

(2008) observes that if ºo is any Choquet expected utility preference such that

(x1, x2, x3, x4) ∼o (x2, x1, x3, x4) ∼o (x2, x1, x4, x3) ∼o (x4, x3, x2, x1) (99)
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for all x1, x2, x3, x4 ∈ M , then we must have (x1, x2, x3, x4) ∼o (x1, x3, x2, x4). He notes

that this indifference may not be a desirable restriction for a flexible model. Machina

arguments means that a decision maker may not be indifferent between a fifty-fifty bet

over the interval (0, 200) and (50, 100) versus a fifty-fifty bet over the consequences (0, 100)

and (50, 200); that is, he may prefer “packaging” 200 with 50 and 100 with 0 rather than

the other way around.

Call it an M-reversal if a EUU preference is not indifferent between (x1, x2, x3, x4)

and (x1, x3, x2, x4) for some xi ∈M , i = 1, 2, 3, 4, despite satisfying equation (99). Then,

Machina argues that imposing no M-reversals is a possibly unwarranted restriction on a

model of uncertainty. Below, we show that an EUU decision maker has no M-reversals if

and only if her interval utility is not separable.

A function β : M2 → IR is symmetric if β(x, y) = β(y, x) for all x, y ∈ M . Let ºo

be a binary relation on F . The preference ºo is a Machina preference if there exists a

continuous, increasing function and symmetric function β such that the function V defined

by

V (x1, x2, x3, x4) = β(x1, x2) + β(x3, x4)

for f ∈ F represents ºo.

Proposition 7: Let β be a Machina preference and (E , μ) be any prior. Then, there

exists a unique u ∈ U such that (E , μ, u) explains β. This u is separable if and only if β

has no M-reversals.

7. EUU, Choquet and α-MEU

In this section, we relate EUU to Choquet expected utility (Scheidler (1989)) and

to expected utility theory (Ghirardato, Maccheroni and Marinacci (2004)). Specifically,

we ask the following question. Suppose we observe the behavior of a decision maker

in a setting with finitely many states and this decision maker has a Choquet expected

utility representation or a α−MEU representation. Under what conditions is this behavior

consistent with EUU? This motivates the following definition.
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Definition: Let N be any nonempty, finite set, F = {f : N → M} and ºo a binary

relation on F . We say that the EUU º explains ºo if there exists T : Ω → N such that

f ºo g if and only if f ◦ T º g ◦ T for all f, g ∈ F .

Let N be a finite and nonempty set. A function λ : N → [0, 1] is a probability ifP
n∈N λ(n) = 1. The function c : N → [0, 1] is a capacity if (i) c(L) = 1, (ii) c(∅) = 0; (iii)

c(K) ≤ c(L) whenever K ⊂ L ∈ Ω. The capacity c is totally monotone if there exists a

probability e : N → [0, 1] such that

c(L) =
X
K⊂L

e(K) (5)

for all L ∈ N .

A binary relation ºo= (c, v) on F is a Choquet Expected Utility (CEU) if c is a

capacity, ρ : M → IR is continuous and strictly increasing and the function V : F → IR

defined by

V (f) =

Z
ρ(f)dc

represents ºo, where the integral above denotes the Choquet integral.

Proposition 8: Let c be a totally monotone capacity, (E , μ) be any prior and (c, ρ) be

any CEU. Then, the maximally pessimistic EUU (E , μ, ρ) explains (c, ρ).

Let ∆o be the set of all probabilities on some finite nonempty N . Let ∆L = {λ ∈

∆ |
P

n∈L λ(n) = 1}. The set of probabilities ∆ is a simple mixture if there exist a

probability e : N → [0, 1] such that

∆ =
X
L∈M

e(L)∆L

For F = {f : N →M} and α ∈ [0, 1], the binary relation º is an α-minmax expected

utility (α-MMEU) if there exists a compact set of probabilities ∆ and a continuous ρ :

M → IR such that the function V defined by

V (f) = αmin
λ∈∆

X
n∈N

v(f(n))λ(n) + (1− α)max
λ∈∆

X
n∈N

v(f(n))λ(n)
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Proposition 9: Let ∆ be any simple mixture, (E , μ) be any prior and (∆, α, ρ) be any
α-MMEU. Then, the symmetric separable EUU (E , μ, (α, v)) explains (∆, α, ρ).

Propositions 8 and 9 show the extent to which EUU decision capture the behavior

corresponding to CEU and α-MEU. As we show in Proposition 7, both CEU and α-MEU

allow no M-reversals while EUU with a non-separable utility index does.

8. Appendix A: Preliminary Results

For the prior (E , μ) let

μ∗(A) = inf
{Ei}

X
i

μ(Ei)

where the {Ei} ranges over all sequences such that Ei ∈ E and A ⊂
S
iEi. Since E is a

σ−field, this definition is equivalent to

μ∗(A) = min
A⊂E∈E

μ(E)

That is, there exists E ∈ E such that A ⊂ E and μ(E) = μ∗(A). Call such an E a sheath of

A. Clearly, the symmetric difference between any two sheaths of a given set A has measure

0.

Lemma A1: For any set A ⊂ Ω, there exists a partition E1, E2, E3 ∈ E of Ω such that
(i) E1 ⊂ A ⊂ E1 ∪E2 and (ii) μ∗(E2 ∩A) = μ∗(E2 ∩Ac) = μ(E2). (iii) If Ê1, Ê2, Ê3 also

satisfy (i) and (ii), then μ([Ei ∩ Êc
i ] ∪ [Êi ∩Ec

i ]) = 0 for all i = 1, 2, 3

Proof: Choose sheaths Ê E for A and Ac respectively. Then, let E1 = Ec, E2 = E ∩ Ê
and E3 = Ω\(E1 ∪ E2). Clearly, E1 ⊂ A. Note that Êc ⊂ Ac ⊂ E. Then, x /∈ E1 ∪ E2
implies x ∈ Ec

1 ∩Ec
2 = E ∩ [E ∩ Êc]c = E ∩ Êc = Êc and hence x /∈ A. Thus, A ⊂ E1∪E2.

Finally, note that μ∗(A) = μ(E1 ∪ E2) = μ(E1) + μ(E2) ≥ μ∗(E1) + μ∗(E2 ∩ A).

Since μ∗ is subadditive, we have μ∗(E1) + μ∗(E2 ∩ A) ≥ μ∗(E1 ∪ [E2 ∩ A]) = μ∗(A).

Thus, μ∗(E2) = μ(E2) = μ∗(E2 ∩A). A symmetric argument yields μ(E2) = μ∗(E2 ∩Ac)

establishing (i) and (ii).

To prove the uniqueness claim, note that the argument above showed that if Ê is a

sheath for A and E is a sheath for Ac, then E1 = Ec, E2 = E ∩ Ê and E3 = Ω\(E1 ∪E2)
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have the desired properties. It is easy to see that the converse is true as well: if E1, E2, E3

have the desired properties, then E1 ∪ E2 is a sheath for A and E2 ∪ E3 is a sheath for
Ac∗. This establishes the uniqueness assertion.

For any E ∈ E , let [E] denote the equivalence class of sets in E that differ from E by

a set of measure 0. Then, define [E] ∧ [E0] = [E∗] for E∗ ∈ [E ∩ E0], [E] ∨ [E0] = [E∗]

for E∗ ∈ [E ∪ E0] and ¬E = [E∗] for E∗ ∈ [Ec]. Let S(A) = [E∗] for some sheath E∗ of

A ⊂ Ω. By Lemma A2, S(A) is well-defined for all A ⊂ Ω. Let [E] = {[E] |E ∈ E}. It is
easy to verify that [E ] is a Boolean σ−algebra partially ordered by the binary relation ≤,
where [E] ≤ [E0] if and only if [E] ∧ [E0] = [E]. When there is no risk of confusion, we

omit the brackets and write E ∨E0,¬E etc.

We say that {E1, . . . En} ∈ [E ] is a partition if (i) [Ei] ∧ [Ej] 6= [∅] if and only if i = j

and (ii) Ω = E1 ∨ E2, . . . ,∨En. A partition act f̄ is defined as a one-to-one map from

some partition P of ([E ]) to the set of nonempty finite subsets ofM . We let Pf̄ denote the

partition that is the domain of f̄ . The partition act f̄ is equivalent to the act f if for all

E ∈ Pf̄

(i) f̄(E) =
\

Ê∈[E]

f(Ê)

(ii) f̄(E) ⊂ f(E0) for all E,E0 such that μ(E) > 0 and E0 ⊂ E

(∗)

Lemma A2: For every simple act f ∈ Fo, there exists a unique partition act f̄ that is

equivalent to f .

Proof: Define

[E0f ] = {S(f−1(Z)) ∈ [E ] |Z ⊂M}

and let [Ef ] be the smallest sub σ−algebra of [E ] that contains [E0f ]. Note that [E0f ] and
therefore [Ef ] are both finite. Let

Pf = {[E] ∈ [Ef ]\[∅] |E0 ∈ [Ef ] implies E0 ∧E ∈ {[E], [∅]}

Hence, Pf is the set of minimal elements in [Ef ]\[∅]. We claim that Pf is a partition.
Clearly, Pf is nonempty and condition (i) is satisfied by construction. So, we need only
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show that
W
Ê∈Pf Ê = Ω. Let T = {E ∈ [Ef ] | [∅] < E ≤

V
Ê∈Pf ¬Ê}. If T is nonempty,

then it must contain a minimal element E and therefore, E ∈ Pf . Hence, [∅] < E ≤V
Ê∈Pf ¬Ê ≤ ¬E and therefore E = [∅], a contradiction. This proves that T is empty and

therefore
V
Ê∈Pf ¬Ê = [∅] which implies

W
Ê∈Pf Ê = Ω as desired.

Define f̄(E) =
T
Ê∈[E] f(Ê) for all E ∈ Pf . Choose E0 ⊂ E such that μ(E0) > 0. Let

Z = f(E0) and let E∗ = S−1(Z) ∈ [E0f ]. Note that f(E0) ∩ f̄(E) 6= ∅. Since E∗ ∈ [E0f ] and

[E] ∈ Pf , we conclude [E] ≤ E∗ and therefore f̄(E) ⊂ f(E∗) = f(E0) proving (∗).

Next, we will show that f̄ is a partition act with the domain Pf̄ = Pf . If x /∈ f̄(Ê),

then μ(f−1(x) ∩ Ê) = 0. Since μ(E) > 0 for E ∈ Pf it follows that f̄(E) cannot be

empty for E ∈ Pf . We have established above that Pf is a partition. So to prove that

f̄ is a partition act with Pf̄ = Pf , we need only show that f̄ is one-to-one. Assume that

f̄(E) = f̄(Ê) = Z, for E, Ê ∈ Pf . Then, for all E0 ∈ [E0f ], E ⊂ E0 if and only if Ê ⊂ E0.

Therefore, the same holds for all E0 ∈ [Ef ]. Since E, Ê ∈ [Ef ], we have E = Ê as desired.

Finally, let ḡ be some other partition act that is equivalent to f . Choose E1 ∈ Pf̄ and

E2 ∈ Pḡ such that E1 ∧E2 6= 0. Then, (∗) implies

f̄(E1) =
\

Ê⊂E1∧E2

f(Ê) = ḡ(E2)

Then, the one-to-oneness of f̄ ensures that E1 ∧ E2 6= 0 6= E01 ∧ E2 implies E1 = E01 for

all E1, E
0
1 ∈ Pf̄ and E2 ∈ Pḡ. Hence, Pf̄ = Pḡ and since both f̄ , ḡ are equivalent to f , we

have f̄ = ḡ as desired.

Henceforth we write f̄ to denote the partition act that is equivalent to f .

Lemma 1, below, was stated in the text in section 2.

Lemma 1: Let (E , μ) be any prior. Then, for any f ∈ F , there exists an f ∈ FE such

that

μ({ω ∈ Ω | f1(ω) ≤ f(ω) ≤ f2(ω)}) = 1 (22)

and if g ∈ FE also satisfies (22), then

μ({ω ∈ Ω |g1 ≤ f1(ω) ≤ f2(ω) ≤ g2(ω)}) = 1 (23)
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Proof: We first proof the result for simple acts. Let f̄ be the unique partition act equiv-

alent to f ∈ F0. Choose a partition P of Ω such that {[E]|E ∈ P} = Pf̄ and let Eω be

the unique element of P that contains ω. Define

f1(ω) := min f̄([Eω])}

f2(ω) := max f̄([Eω])

From the construction of interval acts it follows that μ({ω : f1(ω) ≤ f(ω) ≤ f2(ω)}) = 1

and f ∈ FE . By the definition of interval acts f̄([Eω]) = ∩Ê∈[Eω]f(Ê) and f(E) ⊃ f̄([Eω])

for any E ⊂ Eω with μ(E) > 0. Therefore any g ∈ FE such that

μ({ω ∈ Ω |g1(ω) ≤ f(ω) ≤ g2(ω)}) = 1

must satisfy μ({ω ∈ Ω |g1(ω) ≤ min f̄([Eω])}) = 1 and μ({ω ∈ Ω |g2(ω) ≥ max f̄([Eω])})

which in turn implies (23).

Next, consider a general act f . Let w = m−l and zni = l+wi2−n for all i = 0, 1, . . . , 2n.

For any x, y ∈M , let i(n, x) = max{i | zni ≤ x} and j(n, y) = min{j | znj ≥ y}. The function

i is increasing in both arguments while j is decreasing in the first argument and increasing

in the second argument. Let gn(ω) = i(n, f(ω)) and hn(ω) = j(i, f(ω)). Since gn and hn

are simple functions the first part of the proof implies that there are interval acts gn and

hn corresponding to gn and hn. Note that hn(ω) is a decreasing sequence and therefore

has a limit f(ω). Similarly, gn(ω) is an increasing sequence and therefore has a limit g∞.

Since hni (ω)−gni (ω) ≤ w2−n for i = 1, 2 it follows that limg∞ = f. We claim that h is an

interval act for f . To see this, first note that for all n

μ({ω ∈ Ω |gn1 (ω) ≤ f(ω) ≤ hn2 (ω)}) = 1

since hn ≥ f ≥ gn. Therefore,

μ({ω ∈ Ω | f1(ω) ≤ f(ω) ≤ f2(ω)}) = 1
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Next, observe that if g satisfies

μ({ω ∈ Ω |g1(ω) ≤ f(ω) ≤ g2(ω)}) = 1

then for all n

μ({ω ∈ Ω |g1(ω) ≤ gn1 (ω),hn2 (ω) ≥ g2(ω)}) = 1

and therefore

μ({ω ∈ Ω |g1(ω) ≤ f1(ω) ≤ f2(ω) ≤ g2(ω)}) = 1

This completes the proof of Lemma 1.

A set D is diffuse if μ∗(D) = μ∗(Dc) = 1.

Lemma A3: Assume the continuum hypothesis holds. If (E , μ) is a nonatomic proba-
bility then (i) there exists a diffuse set D ⊂ Ω. (ii) For any natural number n, there exists
a partition (D1, . . . ,Dn) of Ω with Di ∈ D for i = 1, . . . , n.

Proof: Birkhoff (1967) page 266, Theorem 13 proves the following: no nontrival (i.e., not

identically equal to 0) measure such that every singleton has measure 0 can be defined on

the algebra of all subsets of the continuum.

For each A ⊂ Ω, let E1 ⊂ A be such that μ(E1) = μ(A) and let E3 ⊂ Ac be such that

μ(E3) = μ(Ac). Define N(A) = (E1 ∪E3)c. Call N(A)∩A the completely nonmeasurable
part of A. Let α = sup{μ(N(A)) |A ⊂ Ω}. We note that this α is attained. To see this, let
Ai be a sequence such that limμ(N(Ai)) = α. Define Bi as follows: B1 = A1∩N(A1) and
Bi+1 = Ai ∩N(Ai+1)∩ (

S
j≤iN(Ai)

c). Note that N(B1 ∪ . . .∪Bi) = N(A1)∪ . . .∪N(Ai)

and
S∞
i=1Bi is completely nonmeasurable in

S∞
i=1N(Ai). Since limμ(N(Ai)) = α, we

have μ(
S∞
i=1N(Ai) ≥ α showing that α is attained.

If α < 1, then we would find A such that μ(N(A)) = α and use Birkhoff result to

find B ⊂ N(A)c with μ(N(B)) > 0 to get C = B ∪ (A ∩N(A)) with μ(N(C)) > μ(N(A))

contradicting the maximality of α. Hence, α = 1. Then, choose D such that μ(N(D)) = 1

and note that D is a diffuse set. This proves part (i).

Next, we will show any diffuse set can be partitioned into two diffuse sets. Then,

a simple inductive argument yields part (ii). Let D be any diffuse set and define Σ1 =
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{E ∩D |E ∈ E}, μ1(E ∩D) = μ(E). Note that since D is diffuse, μ(E ∩D) = μ(E0 ∩D)

implies that E,E0 differ by a set of measure 0. Hence, (D,Σ1, μ1) is a probability space

and μ1({s}) = 0 for s ∈ D. Since infE⊃D μ(D) = 1, D cannot be countable. Then, by

the Continuum Hypothesis, the cardinality of D must be the continuum. Repeated the

argument in part (i) above yields a diffuse subset of D1 of D. Then, for any E such that

μ(E) > 0, we have μ1(E∩D) > 0 and therefore E∩D1 6= ∅. A symmetric argument yields

E ∩ [D\D1] 6= ∅. Hence, D1,D\D1 are diffuse in Ω.

Lemma A3 is used to establish Lemma 2 (stated in the text). For completeness, we

restate Lemma 2 below.

Lemma 2: Let (E , μ) be a prior. Then, for any f ∈ FE , there exists f ∈ F such that f

is f ’s envelope.

Proof: Since (E , μ) is a prior, there exists a diffuse set D. Let f = f1Df2. We claim that

f is an interval act for f . First, note that f1(ω) ≤ f(ω) ≤ f2(ω) for all ω. Second, note

that since D is diffuse it follows that μ∗(D ∩ E) = μ(E) and μ∗(Dc ∩ E) = μ(E) for all

E ∈ E . It follows that for any g ∈ FE with μ({g1(ω) ≥ f(ω) ≥ g2(ω)}) = 1 we must have

inf g1(E) ≥ sup f1(E) for all E ∈ E with μ(E) > 0. It is straightforward to show that this

implies μ(g1(ω) ≥ f1(ω) = 1. An analogous argument shows that μ(f2(ω) ≥ g2(ω)) = 1.

9. Appendix B: Proof of Theorem 1

In this section we prove Theorem 1. The proof is divided into a series of Lemmas. It

is understood that Axioms 1-6 hold throughout.

Lemma B1: (i) f(s) ≥ g(s) for all s ∈ Ω implies f º g. (ii) f Â g implies f Â z Â g

for some z ∈ M . (iii) fn, gn ∈ F , fn converges uniformly to f , gn converges uniformly to

g, g Â f implies gn Â fn for some n. (iv) fn, gn ∈ Fo
E , fn converges pointwise to f , gn

pointwise to g, g Â f implies gn Â fn for some n.

Proof: To prove (i), let fn =
1
n l + (

n−1
n )f and gn =

1
n l + (

n−1
n )g. Then, fn converges to

f uniformly and gn converges to g uniformly. By Axiom 2, fn Â gn. Then, by Axiom 6,

f º gn and applying Axiom 6 again yields f º g as desired.
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To prove (ii), assume f Â g and let y = inf{z ∈ M | z º f} and let x = sup{z ∈
M | g º z}. By (i) above, x and y are well-defined. Axiom 6 ensures that y ∼ f and z ∼ g

and therefore y Â x. Then, for z = x+y
2 , we have f Â z Â g.

To prove (iii), let g Â f and apply (ii) three times to get z, y, x such that g Â z Â
y Â x Â f . Axiom 6 ensures that gn Â y and y º fn for all n large enough. Therefore,

gn Â fn for all such n. Analogous argument proves (iv).

Lemma B2: The collection E is a σ−field.

Proof: First, we note that E is a field. That E ∈ E implies Ec ∈ e is obvious as is the fact

that ∅ ∈ E. Hence, to show that E is a field, we need to establish that E,E ∈ E implies
E ∩E ∈ E .

Suppose fE∩E0h º gE∩E0h. We must show that fE∩E0h0 º gE∩E0h0. Note that
fE∩E0h = (fEh)E0h. Since E0 ∈ E we have (fEh)E0h0 º (gEh)E0h0. Next, observe that
(fEh)E0h0 = (fE0h0)E(hE0h0). Since E ∈ E we have fE ∩ E0h0 = (fE0h0)E(h0E0h0) º
(gE0h0)E(h0E0h0) = gE ∩ E0h0 as required. A symmetric argument yields h0E ∩ E0f º
h0E ∩E0g if hE ∩E0f º hE ∩E0g and therefore E is a field.

To prove that the field E is a σ−field, it is enough to show that if Ei ∈ E and
Ei ⊂ Ei+1, then

S
Ei ∈ E . Let Ei ⊂ Ei+1 for all i. Note that f̂Eiĝ converges pointwise

to f̂
S
Eiĝ for all f̂ , ĝ ∈ F . Hence, if g

S
Eih

0 Â f
S
Eih

0 or h0
S
Eig Â h0

S
Eif for some

f, g, h, h0 ∈ Fo
E , by (iv) above, we have gEnh

0 Â fEnh
0 or h0Eng Â h0Enf for some n,

proving that Ei ∈ E for all n implies
S
iEi ∈ E .

Lemma B3: There exists a finitely additive, convex-ranged probability measure μ on E
and a function v : Ω→ IR such that the function V : Fo

E → IR define by

V (f) =
X
x∈M

v(x)μ(f−1(x))

represents the restriction of º to Fo
E .

Proof: Note that Axiom 1 implies Savages P1, Axiom 2 implies P2. By definition P3

is satisfied for acts in Fo
E , Axiom 3 yields P4, Axiom 4 yields P5, and finally, Axiom 5

yields P6. Then applying the proof of Savage’s Theorem to all acts in Fo
E yields the desired
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conclusion. This is true despite the fact that Savage’s theorem assumes that the underlying

σ−field is the set of all subsets of Ω; the arguments work for any σ−field. σ−field. Hence,

the result follows from Savage’s theorem restricted to simple acts (i.e., Fo). .

Lemma B4: The probability measure μ on E is countably additive and complete.

Proof: To show that μ is countably additive, we need to prove that given any sequence Ei

such that Ei+1 ⊂ Ei for all i and E∗ :=
T
iEi = ∅, limμ(Ei) = 0. Suppose limμ(Ei) > 0.

Then, by Axiom 5, there exists E such that limμ(Ei) > μ(E) > 0. Hence, μ(Ei) > μ(E)

for all i; that is mEil Â mEl for all i. But mEil ∈ Fo
E and converges pointwise to mE∗l.

Hence, mE∗l º mEl Â l. Therefore, μ(E∗) > 0 as desired.

To see that μ is complete, let fEg ∼ g for all f, g. Since E ∈ E it follows that for

A ⊂ E, (fAg)Eg ∼ g for all f, g and therefore fAg ∼ g for all f, g. This implies that

A ∈ E and therefore μ is complete.

Lemma B5: The function v is strictly increasing and continuous.

Proof: That v is strictly increasing follows from y Â x whenever y > x. To prove

continuity, let ErE be any event such that μ(Er) = r. Suppose r0 = lim v(xn) < v(x) for

some sequence xn in X. Then, choose r ∈ (r0, v(x) and note that x Â hErl º xn for n

large. Therefore, x Â hErl º limxn = x, a contradiction. Hence, r0 ≥ v(x). A symmetric

argument proves r0 = v(x) and yields the continuity of v.

Lemma B6: For any y, x and diffuse act D, there exists a unique z ∈ X such that

yDx ∼ z.

Proof: Let z = sup{w ∈ X | yDx º w}. Since, yDx º l by Axiom 2, z is well-defined.

Then, we can construct two sequences yn ≥ z and z ≥ xn such that both sequences

converge to z and yn º yDx, yDx º xn. Hence, by Axiom 6, z º yDx º z as desired.

Lemma B7: Let D1, . . . ,Dn ∈ D be a partition of Ω and yi+1 ≥ yi for i = 1, . . . , n− 1

and define f : Ω → X as follows: f(s) = yi whenever s ∈ Di. Then, f ∼ ynDy1 for all

D ∈ D.

30



Proof: By monotonicity, yn[D2 ∪ . . . ∪ Dn]y1 º fynDny1. By Axiom 5, yn[D2 ∪ . . . ∪
Dn]y1 ∼ ynDny1 ∼ ynDy1.

Lemma B8: (i) For any partition act g, there exists some simple act f such that g = f̄ .

(ii) For any partition act ḡ and E ∈ Pḡ, there exist h ∈ Fo and f ∈ Fd such that hEf = f

and h̄ = ḡ.

Proof: Let f̄ be the partition act and n be the maximum of the cardinality of f̄(E) for E ∈
Pf̄ . Define an onto function tE : {D1, . . .Dn}→ f̄(E) for each E ∈ Pf̄ . Let D1, . . . ,DnD
be a partition of D. Choose a partition P ⊂ E of Ω such that {[E] k, E ∈ P} = Pf̄ . Define
the act f as follows: for all s ∈ E ∩Dn f(s) = tE(Dn). Then, f̄ is equivalent to f . This

proves (i).

Let ḡ(E) = {y1, . . . , yn} and D1, . . . ,Dn be a diffuse partition, the existence of which

is guaranteed in Lemma A3 (ii). By part (ii), we can choose h0 ∈ Fo so that h̄0 = ḡ. Define

f(s) = yi if and only if s ∈ Di. Let h = fEh0. Hence, h̄ = ḡ as well. Note that h, f have

the desired properties.

For any partition act f̄ and E ∈ Pf̄ , we define

x(E, f̄) := min f̄(E)

y(E, f̄) := max f̄(E)

Let Exy(f̄) = {E ∈ Pf̄ |x = x(E, f̄), y = y(E, f̄)} and define

Exy(f̄) =
_

E∈Exy(f̄)

E

We define

P(f̄) = {Exy(f̄) x, y ∈M}

Note that P(f̄) is a partition that is coarser than Pf̄ ; that is, for E ∈ Pf̄ there exists a
unique Ê ∈ P(f̄) such that E = E ∧ Ê. Finally, we define the partition act f∗ on P(f̄) as

f∗(Exy) = {x} ∪ {y}

We call f∗ the binary partition act of f .
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Lemma B9: (i) f̄ = ḡ, then f ∼ g. (ii) If f∗ = ḡ, then f ∼ g.

Proof: For all f, g such that f̄ = ḡ and E ∈ Pf̄ , let T (E) = 0 if there exists E0 ∈ [E]
such that f(s) = g(s) for all s ∈ E0 and T (E) = 1 otherwise. We will prove the result

by induction on the cardinality of the set of E ∈ Pf̄ such that T (E) = 1.If this set is

empty, then f, g differ on a set E ∈ E such that μ(E) = 0. Hence, gEcm º f º gEcl

by Lemma B1(i). Similarly, we have fEcm º f º fEcl. Since E is null, we have

fEm = gEm ∼ gEl = fEl and therefore f ∼ g. Next, assume the assertion holds

whenever the cardinality of E ∈ Pf̄ such that T (E) = 1 is k and consider E ∈ Pf̄ for
some f, g for which this cardinality is k + 1. Choose E0 ∈ [E] such that T (E) = 1 and

let n be the cardinality of f̄(E). Since T (E) = 1, n > 1. Hence, f̄(E) = {y1, . . . , yn} for
yi < yi+1. Choose a partition D1, . . .Dn ∈ D and let h be the act yields yi on Di for all

i. Let D∗i = [Di ∩ Ec] ∪ [f−1(yi) ∩ E] for all i. It is easy to verify that D∗i is diffuse for
all i. Consider the act h0 that yields yi on each D∗i . By Lemma B9(i) and Axiom 4(ii),

h0 ∼ h. That is, fEh ∼ h. A similar argument yields fEh ∼ h, therefore fEh ∼ gEh and

finally, fEg ∼ g. But notice that for f and fEg, the cardinality of the set of [E0] ∈ Pf̄
such that T (E0) = 1 is k and hence by the inductive hypothesis f ∼ fEg and therefore

f ∼ g proving part (i).

The proof is by induction on the cardinality of the set

{E ∈ Pf̄ | f̄(E) 6= ḡ(Ê) for Ê such that E ≤ Ê}

When that cardinality is 0, the one-to-oneness of partition functions ensures that f̄ = ḡ =

f∗ and then part (i) yields f ∼ g. Suppose the cardinality of that set is k+1 and pick any

element E of that set. Let Ê be the element of Pḡ such that E ∩ Ê = E. Choose f 0 ∈ Fd

and h ∈ Fo such hEf 0 = f 0 and h̄ = f̄ . Similarly, choose g0 ∈ Fd and h∗ ∈ Fo such

h∗Êg
0 = g0 and h̄∗ = ḡ. Since f̄(E) 6= ḡ(Ê), we know that both the cardinality of f̄(E)

and that of ḡ(Ê) must be greater than 1. Hence, by Lemma B7, h ∼ h∗. Set f
0 = h∗Ef .

It follows from Axiom 3 that f 0 ∼ hEf = f . Note that Pf 0 = Pf and the cardinality
of the set {E ∈ Pf̄ 0 | f̄ 0(E) 6= ḡ(Ê) for Ê such that E ≤ Ê} is one smaller than that of
{E ∈ Pf̄ | f̄(E) 6= ḡ(Ê) for Ê such that E ≤ Ê}. Hence, by the inductive hypothesis,
f 0 ∼ g yielding f ∼ g.
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Definition: Let u : I → IR be defined as u(x, y) = v(z) for z such that yDx ∼ z.

Lemma B10: The function u is increasing and continuous.

Proof: Suppose yDx ∼ z and ŷDx̂ ∼ ẑ. If ŷ > y and x̂ > x, then Axiom 2 implies ẑ Â z

and applying Axiom 2 again yields ẑ > z as desired. If ŷ ≥ y and x̂ ≥ x, then by Lemma

B1(i), ẑ º z. Then, applying Axiom 2 again yields ẑ ≥ z.

To prove continuity, assume yiDxi ∼ zi for i = 1, . . . and lim(xi, yi) = (x, y). Since

zis are in a compact set in proving continuity, we can assume this sequence converges to

some z. Suppose yDx Â z and note that since yiDxi converges uniformly to yiDxi and

the act zi converges uniformly to z, we have by Lemma B1(iii), yiDxi ∼ zi for some i, a

contradiction. A symmetric argument yield yiDxi ∼ zi and establishes continuity.

Define

W (f) =

Z
u(f)dμ

Lemma B11: (i) For all f ∈ Fo,

U(f) =
X

[E]∈Pf∗
μ([E])u(x([E], f∗), y([E], f∗))

(ii) If u(x([E], f∗), y([E], f∗)) = u(z, z) for [E] ∈ Pf∗ , then U(zEf) = U(f) for E ∈ [E].

Proof: For part (i) let f be a simple act and let [E] ∈ Pf∗ and E ∈ [E]. Then,

μ({ω ∈ Ω | f(ω) = (x([E], f∗), y([E], f∗)} = μ(E) = μ([E])

and therefore part (i) follows.

If Pf∗ = P(zEf)∗ , part (ii) follows immediately from part (i). If not, then there

exists E0 ∈ Pf∗ such that f∗(E0) = {z}. Then, part (i) together with the fact that

μ(E ∪E0) = μ(E) + μ(E0) yield the desired conclusion.

Let d(f) be the cardinality of the set {E ∈ Pf∗ | f∗(E) is not a singleton}. Hence, if
d(f) = 0, then f ∈ Fo

E .

Lemma B12: The function U represents the restriction of º to Fo.
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Proof: Let Fn = {f ∈ Fo | d(f) ≤ n}. The proof is by induction on Fn. Note that for

f ∈ F0 X
x∈M

v(x)μ(f−1(x)) = U(f)

Hence, by Lemma B3, the restriction of U to F0 represents º. Suppose U represents

the restriction of º to Fn and choose f, g ∈ Fn+1. Define hf as follows: if f ∈ Fn,

then hf = f . Otherwise, choose E ∈ Pf∗ such that the cardinality of f∗(E) is not
1. Hence, y(E, f∗) > x(E, f∗). Lemma B6 ensures that there exists a unique z such

that u(z, z) = u(x(E, f∗), y(E, f∗)). By construction, y(E, f∗)Dx(E, f∗) ∼ z. Hence, by

Axiom 3, zEf ∼ f . By Lemma B9(ii), U(zEf) = U(f). Hence, set hf = zEf . Construct

an hg in the same fashion. Then, f º g if and only if hf º hg. By the inductive hypothesis,

hf º hg if and only if U(hf ) ≥ U(hg). Since U(hf ) = U(f) and U(hg) = U(g), the desired

result follows.

Lemma B13 shows that U as defined above represents the preference for all acts.

Lemma B13 completes the proof of Theorem 2.

Lemma B13: The function U represents º.

Proof: Note that for all f , there exists xf such that U(xf ) = u(xf , xf ) = U(f). This

follows from that fact that u is increasing in both arguments and continuous which implies

u(m,m) ≥ U(f) ≥ u(l, l) and by the intermediate value theorem u(xf , xf ) = U(f) for

some xf ∈ [l,m]. The monotonicity of u ensures that this xf is unique. Next, we show
that f ∼ xf .

Without loss of generality, assume l = 0 (if not let l∗ = 0 and m∗ = m− l and identify
each f with f∗ = f − l and apply all previous results to acts F∗ = {f − l | f ∈ F}.) Define
for any x ≥ 0 and � > 0, z∗(x, �) = min{n� |n = 0, 1, . . . such that n� ≥ x}. Similarly, let
z∗(x, �) = max{n� |n = 0, 1, . . . such that n� ≤ x}. Clearly,

0 ≤ z∗(x, �)− x ≤ z∗(x, �)− z∗(x, �) < � (4)

and the first two inequalities above are equalities if and only if x is a multiple of �.

Set fn(ω) = z∗(f(ω),m2−n) and fn(ω) = z∗(f(ω),m2
−n) for all n = 0, 1, . . .. Equa-

tion (4) above ensures that fn ≥ f ≥ fn and fn, fn converge uniformly to f . Note also
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that fn, fn ∈ Fo with fn ↓ f . This implies that (for a measure 1 subset) fn ↓ f and
therefore

R
u(fn)dμ→

R
u(f)dμ.

Since fn ≥ f , we have U(fn) ≥ U(f) = U(xf ) for all n. Since U represents the

restriction of º to Fo, we conclude that fn º x for all n. Then, Axiom 6 implies f º x. A

symmetric argument with fn replacing f
n yields xf º f and therefore xf ∼ f as desired.

To conclude the proof of the Lemma, suppose f º g, then U(xf ) = U(f) and U(xg) =

U(g) and xf ∼ f º g ∼ xg. Since U represents the restriction of º to Fo, we conclude

that U(xf ) ≥ U(xg) and hence U(f) ≥ U(g). Similarly, if U(f) ≥ U(g) we conclude

f ∼ xf º xg ∼ g and therefore f º g.

Uniqueness follows from standard arguments and is therefore omitted.

10. Appendix C: Proof of Theorem 2 and Proposition 1

Recall that for any prior (E , μ) and A ⊂ Ω,

μ∗(A) = max
E⊂A,E∈E

μ(E)

Hence, μ∗ is the inner extension of μ to 2
Ω.

Lemma C1: Suppose C ⊂ A is a continuous λ-system, (A, π) is a prior and there exists
a ∈ Z such that μ∗(A) = γa(π(A)) for all A ∈ C. Then, for any interval utility u, FC is a
risky environment for (E , μ, u), (A, π) is the revealed prior and the GQU (a, u) represents
the lottery preference.

Proof: It follows from Theorem 1 that

U(f) =

Z
Ω

u(f1(ω), f2(ω))dμ(ω) =

Z
I

u(x, y)dHf (x, y)

where Hf is the two dimensional distribution of f, the envelope of f . Note that

H(x, y) = μ∗({f(ω) ≤ y})− μ∗({f(ω) ∈ (x, y]})

Let Gf be the cdf of f for the prior (A, π). Since μ∗(A) = γa(π(A)) for all A ∈ A it follows
that

H(x, y) = γa(G
f (y))− γa(G

f (y)−Gf (x))
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This demonstrates that (i) for any two acts f, g ∈ FA, Gf = Gg implies f ∼ g; (ii)

the lottery preference is the GQU (a, u). It is straightforward to show that the GQU is

continuous and increasing in the sense of first order stochastic dominance. Hence, Fc is a
risky environment with a revealed prior (A, π).

Lemma C2: Suppose FC is a risky environment with a possible prior (A, π) for some
EUU (E , μ, u) such that u is not strongly symmetric. Then, there exists a ∈ Z such that

μ∗(A) = γa(π(A)) for all A ∈ C.

Proof: Let FC be a risky environment, (A, π) be the prior and ºl be the lottery preference

that º reveals on FC. Fix a partition Pk = {A1, . . . , Ak} of Ω such that Ai ∈ A and

π(Ai) = 1/k for all i. Let Z = {z1, . . . , zk} ⊂M be a k-element set and let f be the simple

act that yields zi on Ai for i = 1, . . . , k. Finally, let f̄ be the partition act corresponding to

f . Recall that f̄ is a one to one map from Pk to the non-empty subsets of Z. To simplify

the notation below, we define f̄−1 : 2Z → Pk∪∅ as the inverse of f̄ extended to all subsets
of prizes. If a set of prizes X is not attained by any element of Pf , then f̄−1(X) = ∅. Let
|X| denote the cardinality of the set X.

Step 1: μ(f̄−1(X)) = μ(f̄−1(X 0)) if |X ∩ Z| = |X 0 ∩ Z|.
Take any y, x ∈ M such that u(x, y) 6= [u(y, y) + u(x, x)]/2. Since u is not strongly

symmetric such a x, y exit. Then, without loss of generality, (if necessary, by taking an

positive affine transformation of u) assume u(y, y) = 1, u(x, x) = 0 and u(x, y) = u∗ 6=
1/2. To prove step 1, let αi = μ(f̄−1(zi)), αj = μ(f̄−1(zj)), βi :=

P
X:zi /∈X μ(f̄−1(X))

and βj =
P

X:zj /∈X μ(f̄−1(X)), for some i, j. Let g = yf−1(zi)x, g
0 = yf−1(zj)x, h =

xf−1(zi)y, g
0 = xf−1(zj)y. Since g, g

0, h, h0 ∈ Fc, g, g0 yield the same lotteries and h, h0

yield the same lotteries, we have U(g) = U(g0) and u(h) = U(h0) and hence,

αi + (1− αi − βi)u
∗ = αj + (1− αj − βj)u

∗

βi + (1− αi − βi)u
∗ = βj + (1− αi − βi)u

∗

Some simple manipulations reveal that since u∗ 6= 1−u∗ the two equations above can only
be satisfied if αi = αj and βi = βj .

Next, assume Step 1 is true for all sets of prizes with cardinality less than l. Let

X,X 0 ⊂ Z be two sets of cardinality l + 1 and let α =
P

Y⊂X μ(f̄−1(Y )) and α0 =
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P
Y 0⊂X0 μ(f̄−1(Y 0)), β =

P
Y⊂Z\X μ(f̄−1(Y )) and β0 =

P
Y 0⊂Z\X0 μ(f̄−1(Y 0)). Let A =S

z∈X f−1(z), A0 =
S
z∈X0 f−1(z), g = yAx, g0 = yA0x, h = xAiy, g

0 = xA0iy and arguing

as above, we note that g and g0 yield the same lotteries and h and h0 yield the same

lotteries. Therefore, U(g) = U(g0) and U(h) = U(h0) and the two equations above again

yield

α =
X
Y⊂X

μ(f̄−1(Y )) =
X
Y⊂X0

μ(f̄−1(Y )) = α0

The inductive hypothesis ensures that μ(f̄−1(Y )) = μ(f̄−1(Y 0)) whenever |Y | = |Y 0|,
Y ⊂ X and Y 0 ⊂ X 0. This together with the equation above ensures that μ(f̄−1(X)) =

μ(f̄−1(X 0)) and completes the proof of Step 1.

Using step 1, we can define a(t, k) =
¡
k
t

¢
μ(f̄−1(X)) for |X| = t. Note that

kX
t=1

a(t, k) = 1

Define γk : {1/k, 2/k, . . . , 1}→ [0, 1] as

γk(t/k) :=
tX

j=1

µ
t

j

¶µ
k

j

¶−1
a(j, k)

Step 2: μ∗(f
−1(X)) = γk(|X|/k) for all X ⊂ Z.

To prove Step 2, note that μ∗(f
−1(X)) =

P
X0⊂X μ(f̄−1(X 0)) by the definition of a

partition act. Therefore,

μ∗(f
−1(X)) =

|X|X
j=1

X
{X0⊂X:|X0|=j}

µ
k

j

¶−1
a(j, k)

=

|X|X
j=1

µ
|X|
j

¶µ
k

j

¶−1
a(j, k)

= γk(|X|/k)

This proves step 2.

Step 3: For every m, there is N <∞ such that for all k ≥ N ,

a(m,m) ≥
kX

i=N

a(i, k)/2
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First, assume that k is a multiple of m that is, k = mr for some r. Consider Pk and

let Z = {z1, . . . , zk} and f be defined as above. Define g as follows:

g(Ajr+l) = f(Ajr+1)

for all j = 0, 1, . . . ,m−1 and l = 1, . . . , r. Hence, on each block of r consecutive events At,

as t ranges between two multiples of r, say t = jr+ 1, . . . , (j + 1)r, g yields f(Ajr+1), the

outcome of f on the first of these events. For j = 0, . . . ,m, let Aj = Ajr+1 ∪ . . . ∪A(j+1)r

be the union of each such sequence of events. Let

Ψ+ = {X ⊂ Z |∀j = 0, . . . ,m ∃ l = 1, . . . , r s.t. f(Ajr+l) ∈ X}

Ψ− = {X ⊂ Z |X /∈ Ψ+}

Ψ−i = {X ⊂ Z |X ∈ Ψ−i and |X| = i}

Note that

a(m,m) = μ(ḡ−1(z1, zr+1, z2r+1, . . . , zk))

=
X

X∈Ψ+
μ(f̄−1(X))

By definition,
Sm
i=1Ψ

−
i = Ψ

− and Ψ−i ∩Ψ−j = ∅ whenever i 6= j. Hence, for all N ,

X
X∈Ψ−

μ(f̄−1(X)) =
kX
i=1

X
X∈Ψ−

i

μ(f̄−1(X))

≤
NX
i=1

a(i, k) +
kX

i=N+1

X
X∈Ψ−i

μ(f̄−1(X))

=
NX
i=1

a(i, k) +
kX

i=N+1

|Ψ−i |¡
k
i

¢ a(i, k)

Some manipulation reveals that
|Ψ−i |
(ki)
≤ m

¡
m−1
m

¢i
. Hence,

X
X∈Ψ+

μ(f̄−1(X)) ≤
NX
i=1

a(i, k) +
kX

i=N+1

m

µ
m− 1
m

¶i
a(i, k)
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and since X
{X∈Ψ−}

μ(f̄−1(X)) +
X

{X∈Ψ+}
μ(f̄−1(X)) = 1 =

kX
i=1

a(i, k)

we have X
{X∈Ψ+}

μ(f̄−1(X)) ≥
kX

i=N+1

Ã
1−m

µ
m− 1
m

¶i!
a(i, k)

Choose N so that m
¡
m−1
m

¢N
< 1/2. Then,

a(m,m) =
X

{X∈Ψ+}
μ(f̄−1(X)) >

kX
i=N

a(i, k)/2

as desired.

Step 4: For every � > 0 there is N <∞ such that
Prk

j=N a(t, rk) ≤ � for all rk ≥ N .

Since ºl is a continuous preference on FA it follows that for every � > 0 there is k such

that μ∗(f
−1(X)) > 1− �/2 for |X| = k−1 and therefore 1−γk((k−1)/k) = a(k, k) < �/2.

Now the result follows from Step 3.

Let b(j), j = 1, 2, . . . be the pointwise limit of a convergent subsequence of μ(j, kr), j =

1, 2 . . . , kr as r →∞. From step 4 it follows that
P∞

j=1 b(j) = 1. Let γ(t) =
P∞

j=1 b(j)t
j .

Step 5: γk(j/k) = γ(j/k).

Step 2 implies that γk(j/k) = γrk(j/k) for all r = 1, 2, . . ..

γrk(t/k) :=
rtX
j=1

µ
rt

j

¶µ
rk

j

¶−1
a(j, rk)

Fix � and choose N so that
Prk

j=N a(t, rk) ≤ � for all rk ≥ N . Then,

NX
j=1

µ
rt

j

¶µ
rk

j

¶−1
a(j, rk) + � ≥ γrk(t/k) ≥

NX
j=1

µ
rt

j

¶µ
rk

j

¶−1
a(j, rk)

for all r. Note that

lim
r→∞

µ
rt

j

¶µ
rk

j

¶−1
= (t/k)j
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for j fixed and therefore

NX
j=1

µ
t

k

¶j
b(j) + � ≥ γk(t/k) ≥

NX
j=1

µ
t

k

¶j
a(j, rk)

Since
P∞

j=N b(j) ≤ � it follows that

∞X
j=1

µ
t

k

¶j
b(j) + � ≥ γk(t/k) ≥

∞X
j=1

µ
t

k

¶j
b(j)− �

Since � was arbitrary this proves Step 4.

Step 5 proves the Lemma for all A ∈ A with π(A) rational. Since ºl is continuous it

is straightforward to extend the argument to all A ∈ A.

Lemma C3: For every a ∈ Z there exists a prior (A, π) such that μ∗(A) = γa(A).

Proof: First, we construct a risky environment corresponding to an, i.e., γa(t) = tn. Let

fj , j = 1, . . . , n be a collection of acts such that

(i) fj ∈ FE for all j;

(ii) fj is uniformly distributed for all j; That is, if λ is Lebesgue measure and B is the

Borel σ-algebra on [l,m] then μ(f−1j (B)) = λ(B)/(m− l) for B ∈ B.

(iii) fi and fj are independent for all i, j ∈ {1, . . . , n}; That is, μ(f−1j (B) ∩ f−1i (B0)) =

λ(B)λ(B0) for all B,B0 ∈ B and all i, j.

Let D = {D1, . . . ,Dn} be a partition of Ω into n diffuse sets and let

f = f1D1f2D2 . . . fnDn

Define A be the collection of sets {f−1(B) |B ∈ B} and let π : A → [0, 1] be such that

π(f−1(B)) = λ(B) for all B ∈ B. Note that (A, π) is a prior.

Next, we show that μ∗(A) = π(A)n for A ∈ A. Let B ∈ B and note that μ∗(A∩D) =

μ(A) if D is diffuse. Therefore,

μ∗(Ac) = μ∗

⎛⎝ k[
j=1

¡
f−1j (Bc) ∩Dj

¢⎞⎠ = μ

⎛⎝ k[
j=1

¡
f−1j (Bc)

¢⎞⎠
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Since the fj ’s are independent

μ

⎛⎝ k[
j=1

¡
f−1j (Bc)

¢⎞⎠ = 1− λ(B)n

Since μ∗(A) = 1− μ∗(Ac) this implies that μ∗(A) = π(B)n as desired.

Next, consider arbitrary a ∈ Z. Let {E1, E2, . . .} be a partition of Ω such that

μ(En) = an. Let f1, f2 . . . be a countable set of independent acts such that each fi is

uniformly distributed on every Ej . That is, if λ is Lebesgue measure and B is the Borel σ-

algebra on [l,m] then μ(f−1j (B)∩Ej)/μ(Ej) = λ(B)/(m− l) for B ∈ B. Let {D1,D2, . . .}

be a partition of Ω into countably many diffuse sets. Let f be such that f = fk on Di∩Ej

for k = min{i, j}. Hence, on En the act f yields f1, . . . , fn on n disjoint diffuse sets.

Define A be the collection of sets {f−1(B) |B ∈ B} and let π : A → [0, 1] be such that

π(f−1(B)) = λ(B) for all B ∈ B. Note that (A, π) is a prior. The argument above applied

to each En shows that μ∗(A) = γa(π(A)).

Proof of Theorem 2: Lemma C1 and Lemma C3 prove part (i) of the Theorem. Lemma

C1 and C2 prove part (ii).

Proof of Proposition 1: Lemma C1 proves part (i) of Proposition 1. Part (ii) is a

corollary of Theorem 2.

11. Appendix D: Proof of Propositions 2 -9

Proof of Proposition 2: First, we show that (i) implies (iii). Let u(x, y) > u(x, x) and

let F be the lottery that yields y with probability � and x with probability 1− �. Choose

� so that u(x, y) > (1− �)u(x, x) + �u(y, y). Consider an environment with parameter an.

Then,

V (F ) = (1− �)nu(x, x) + �nu(y, y) + (1− (1− �)n − �n)u(x, y)

As n → ∞ this converges to u(x, y) and hence the decision maker is not risk averse for

n sufficiently large. From a standard argument it follows that v(x) := u(x, x) must be

concave.
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Next, we show that (iii) implies (i). Assume that u(x, y) = v(x) for some concave v.

Then, the risk preference in the environment with parameter a ∈ Z is

V (G) =

Z m

l

v(x)d[1− γa(1−G(x))]

Since [1− γa(1−Gf (x))] is concave it we can apply Theorem 1 in Chew, Karni and Safra

(1987) to conclude V is risk averse.

Next, we show that (iii) if and only if (ii). Let f, g be such that f is an interval

act for both f and g. Let h = αf + (1 − α)g and note that f1 ≤ h1 ≤ h2 ≤ f2. It

follows that U(h) ≥ U(f). To prove the reverse direction, let D1,D2,D3 be a partition

of Ω into three diffuse sets. Let f = x(D1 ∪ D2)y and g = x(D1 ∪ D3)y with y > x.

Clearly f and g share the same interval act f1 = x, f2 = y. Let h = αf + (1 − α)g

and note that h1 = x,h2 = αx + (1 − α)y is an interval act for h. Therefore, we have

U(f) = U(g) = u(x, y) and U(h) = u(x, αx+(1−α)y). Uncertainty aversion requires that

U(h) ≥ U(f) and therefore u(x, αx+ (1− α)y) ≥ u(x, y). Since α was arbitrary and u is

continuous it follows that u(x, y) = u(x, x) as desired.

Proof of Proposition 3: Let F be the lottery that yields m with probability t and l

with probability 1− t. Then, for the GQU (a, u) with maximally pessimistic u,

V (F ) = γa(t)u(m,m) + (1− γa(t))u(l, l)

It follows that γa(t) ≥ γb(t) for all t if FB is more uncertain than FA.

For the converse, let (E , μ, u) with u(x, y) = v(x) be an EUU. Let f be an interval act

for f . Let H be the cumulative corresponding to f1. Note that

H(x) = μ({ω ∈ Ω : f1(ω) ≤ x})

= 1− μ∗({ω ∈ Ω : f(ω) > x})

If f ∈ FA and FA is a risky environment with PTF γ, then

U(f) =

Z m

l

v(x)dH1(x) =

Z m

l

v(x)d[1− γ(1−Gf (x))]
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Let (A, π), (B, ρ) be two issues with PTF γ and γ0 respectively. Let f ∈ FA, g ∈ FB and

Gf −Gg = G and assume γ0 ≤ γ. Then, [1−γ(1−G(x)) ≤ [1−γ0(1−G(x))] and therefore

U(f) =

Z m

l

v(x)d[1− γ(1−Gf (x))] ≥
Z m

l

v(x)d[1− γ0(1−Gf (x))] = U(g)

Proof of Proposition 4: First, we show that (i) implies (ii). Since u is continuous and

not maximally pessimistic, there exists x, y such that u(x, y) > u(x, x) and u(x, z) < u(x, y)

for z < y. Let w = ρ−1u (u(x, y). Let F be the lottery that yields x and y with equal

probabilities. If γa(3/4) is sufficiently close to zero, then the GQU (a, u) prefers the

sure prospect (w + y)/2 over F , but prefers the lottery G = 1/2F +
1/2x over the lottery

H = 1/2
w+y
2 + 1/2x. To see this, note that the certainty equivalent of F and of G both

converge to w as γa(3/4)→ 0. The certainty equivalent of H converges to ρ−1(u(w+y2 , x))

and therefore the assertion follows from the fact that u(x, y) is strictly decreasing in its

second argument at (x, y).

Next, we show that (ii) implies (i). Fix an environment a ∈ Z and assume u is

maximally pessimistic and let v(x) = u(x, y). Then,

V (F ) =

Z
v(x)d[1− (1− γa(F (x))]

Let F, x, z be such that V (z) > V (F ) and x ≤ y(F ). Thus, v(y) > V (F ) and therefore

γa(α)v(y) + (1− γa(α))v(x) > γa(α)V (F ) + (1− γa(α))v(x) (†)

for all α ∈ (0, 1). Let H be the cdf such that

H(z) = 1− γa(α) + γa(α)(1− γa(1− F (z))

for all z ∈ [x,m] and let G be the cdf such that

G(z) = 1− γa(1− αF (x))
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for all z ∈ [x,m]. Then,

γa(α)V (F ) + (1− γa(α))v(x) =

Z
vdH

and

V (αF + (1− α)x) =

Z
vdG

Below, we show that H first order stochastically dominates G. Together with inequality

(†) this proves the assertion. Note that

G(z) = 1− γa(1− α+ α(1− F (z))

≥ 1− γa(1− α)− γ(α(1− F (z))

≥ 1− γa(1− α)− γa(α)γa(1− F (z))

= H(z)

The first inequality follows because γa is superadditive for all a. To see the second inequal-

ity, note that

γa(αβ) =
∞X
n=1

(αβ)n ≤
Ã ∞X
n=1

αn

!Ã ∞X
n=1

βn

!
= γa(α)γa(β)

Next, we show that (i) implies (iii). Let u(x, y) > u(x, x), z = ρ−1u (u(x, y)) and

let α = y−z
2(y−x) . Let F be the lottery that yields x with probability α and y > x with

probability 1−α and assume . Then, for γa(1−α) sufficiently close to zero, Va(F ) is close

to u(x, y) and therefore the certainty equivalent of F is close to z. Since the expected value

of F is less than z this shows that the decision maker is risk loving in environments that

are sufficiently uncertain.

To show that (iii) implies (i) let u be maximally pessimistic. Let F be a simple

lottery, let x be the lowest prize in its support and let α be the probability of x. Then,

V (F ) ≥ γa(1 − α)u(m,m) + (1 − γa(1 − α))u(x, x). Hence, if γa(1 − α) is close to zero

then V (F ) is close to u(x, x) and therefore the DM prefers the expected value of F to F

under extreme uncertainty. By continuity, this argument can be extended to all lotteries

and hence the decision maker is not risk loving under extreme uncertainty.
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Proof of Proposition 5: Let (α, v) be the interval utility and consider an environment

with parameter an. Then,

V (F ) =

Z
(αv(x) + (1− α)v(y))dH(x, y|F )

=α

Z
v(x)d[1− (1− F (x))n] + (1− α)

Z
v(x)d[F (x)n]

=α

Z
v(x)d[γan ◦ F ] + (1− α)

Z
v(x)d[γ∗an ◦ F ]

=

Z
v(x)d[αγan ◦ F + (1− α)γ∗an ◦ F ]

and hence the proposition holds for all an. Since all a ∈ Z are convex combinations of an’s

the proposition follows.

Proof of Proposition 6: To simplify the notation, we assume that M = [0, 1], that

is, the prizes are between 0 and 1. As in the proof of Lemma C3, we construct a risky

environment corresponding to a2, i.e., γa(t) = t2. Let fj , j = 1, 2 be a collection of acts

such that

(i) fj ∈ FE for all j;

(ii) fj is uniformly distributed for all j; That is, if λ is Lebesgue measure and B is the

Borel σ-algebra on [0, 1] then μ(f−1j (B)) = λ(B) for B ∈ B.

(iii) f1 and f2 are independent; that is, μ(f
−1
1 (B)∩f−12 (B0)) = λ(B)λ(B0) for allB,B0 ∈ B.

Let D be a diffuse subset of Ω and define A be the collection of sets {f−1(B) |B ∈ B}

and let π : A → [0, 1] be such that π(f−1(B)) = λ(B) for all B ∈ B. As we show in the

proof of Lemma C3, (A, π) is a prior and FA is a risky environment.

Let p and q be two possible probabilities (as in the definition of an urn experiment).

Recall that ι(L) = p(L) = q(L) for all L ∈M and p(L) 6= q(L) for L 6∈M. Define the

acts g1 : Ω→ N, g2 : Ω→ N as follows.

g1(ω) = j if

j−1X
i=1

pi ≤ f1(ω) ≤
jX

i=1

pi

g2(ω) = j if ∈
j−1X
i=1

qi ≤ f2(ω) ≤
jX

i=1

qi
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Let T : Ω→ N be defined as follows:

T (ω) =

½
g1(ω) if ω ∈ D
g2(ω) if ω ∈ Dc

Clearly, T−1(L) ∈ FA for all L ∈M. Next, we show that there is no risky environment

that contains FA and T−1(L) for L 6∈ M,L ⊂ N . Recall that for A ∈ FA, the revealed

prior is π(A) =
p
μ∗(A). Let Ei = g−1i (L) and define B := T−1(L) = E1DE2. Consider

the act h = xBy

U(h) =μ∗(B)u(x, x) + μ∗(B
c)u(y, y) + (1− μ∗(B)− μ∗(B

c))u(x, y)

=p(L)q(L)u(x, x) + (1− q(L))(1− p(L))u(y, y)

+ (p(L)(1− q(L)) + q(L)(1− p(L)))u(x, y)

Then, by construction, μ∗(B) = p(L) · q(L). By Lemma C2, if B ∈ FA then p := π(B) =p
p(L) · q(L) and therefore h must correspond to a lottery F that yields x with probability

p and y with probability 1− p. The utility of such a lottery in environment FA is

V (F ) = p2u(x, x) + (1− p)2u(y, y) + 2p(1− p)u(x, y)

Since 2p(1− p) > p(L)(1− q(L)) + q(L)(1− p(L)) this implies that V (F ) > U(h) for all u

such that u(x, y) < u(y, y) and therefore B 6∈ FA. This completes the proof of Proposition

6.

Proof of Proposition 7: Let ρ be a Machina preference and define u(x, y) = 2ρ(x, y)

for all (x, y) ∈ I. Choose a diffuse set D and an ideal set E ∈ E for the probability (E , μ)

such that μ(E) = 1/2. Let A1 = D ∩ E, A2 = Dc ∩ E, A3 = D ∩ Ec and A4 = D∩Ec.

For S = {1, 2, 3, 4} and φ ∈ FS , let f(ω) = φ(s). Then, let y1 = max{φ(1), φ(2)},

y2 = max{φ(3), φ(4)}, x1 = min{φ(1), φ(2)} and x2 = min{φ(1), φ(2)} andZ
u(f)dμ = .5[u(x1, y1) + u(x2, y2)] = ρ(x1, y1) + ρ(x2, y2) = ρ(φ(1), φ(2)) + ρ(φ(3), φ(4))

as desired.
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That separability precludes M-reversals is obvious. To conclude the proof, we will

show that if there are no M-reversals, then the u that satisfies the above equation must be

separable. No M-reversals implies

u(x1, y1) + u(x2, y2) = u(x1, y2) + u(x2, y1) (55)

whenever (x1, y2), u(x2, y1) ∈ I. Define v2(y) = u(l, y) and v1(x) = u(x,m) − u(l,m).

Then, v1(x)+ v2(y) = u(x,m)−u(l,m)+u(l, y) and equation (55) ensures that u(x,m)−
u(l,m) = u(x, y) − u(l, y). Therefore, v1(x) + v2(y) = u(x, y) for all x, y, proving the

separability of u.

Proof of Proposition 8: Theorem 1 implies that for the maximally pessimistic EUU,

and any simple act h with prizes in the finite set Z ⊂ [l,m], U(h) =
P

x∈Z u(x)μ∗(h
−1(z0 ≥

z)). Therefore, to proof Proposition 7 it suffices to show that there is T : Ω→ N such that

μ∗(T
−1(M)) = ρ(M) for all M ⊂ N . Since ρ is totally monotone, there is a probability

e : N → [0, 1] such that ρ(M) =
P

M 0⊂M e(M). Partition Ω into 2n − 1 ideal events
{EM ,M ∈M} so that μ(EM) = e(M). For |M | = 1 let T (EM) = i such that {i} = M .

For |M | > 1 partition EM into |M | diffuse sets and assign each of those sets one elements
of M , so that T−1(EM) =M . Then,

μ∗(T
−1(M)) =

X
M 0⊂M

μ(EM 0) =
X

M 0⊂M
e(M) = ρ(M)

as desired. This proves Proposition 7.

Proof of Proposition 9: Let (E , μ, (α, v)) be the EUU. Partition Ω into 2n − 1 ideal
events {EM ,M ∈ M} so that μ(EM) = e(M). For |M | = 1 let T (EM) = i such that

{i} = M . For |M | > 1 partition EM into |M | diffuse sets and assign each of those sets
one elements of M , so that T−1(EM) =M . Let f : N → [l,m] and let h : Ω→ [l,m] such

that h(T−1(j)) = f(j). Then,

U(h) =
X
M∈M

e(M)

µ
αmin
j∈M

v(f(j)) + (1− α)max
j∈M

v(f(j)

¶
=V (f)

where V (f) is the α−MEU utility of act f .
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