
3. The Motion of Rigid Bodies

Figure 22: Wolfgang Pauli and Niels Bohr stare in wonder at a spinning top.

Having now mastered the technique of Lagrangians, this section will be one big

application of the methods. The systems we will consider are the spinning motions of

extended objects. As we shall see, these can often be counterintuitive. Certainly Pauli

and Bohr found themselves amazed!

We shall consider extended objects that don’t have any internal

Figure 23:

degrees of freedom. These are called “rigid bodies”, defined to be

a collection of N points constrained so that the distance between

the points is fixed. i.e.

|ri � rj| = constant (3.1)

for all i, j = 1, . . . , N . A simple example is a dumbbell (two masses

connected by a light rod), or the pyramid drawn in the figure. In both cases, the

distances between the masses is fixed.
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Often we will work with continuous, rather than discrete, bodies simply by replacingP
i mi !

R
dr ⇢(r) where ⇢(r) is the density of the object. A rigid body has six degrees

of freedom

3 Translation + 3 Rotation

The most general motion of a free rigid body is a translation plus a rotation about

some point P . In this section we shall develop the techniques required to describe this

motion.

3.1 Kinematics

Consider a body fixed at a point P . The most general allowed motion is a rotation

about P . To describe this, we specify positions in a fixed space frame {ẽa} by embedding

a moving body frame {ea} in the body so that {ea} moves with the body.
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Figure 24: The fixed space frame and the moving body frame.

Both axes are orthogonal, so we have

ẽa · ẽb = �ab , ea(t) · eb(t) = �ab (3.2)

We will soon see that there is a natural choice of the basis {ea} in the body.

Claim: For all t, there exists a unique orthogonal matrix R(t) with components Rab(t)

such that ea(t) = Rab(t)ẽb

Proof: ea · eb = �ab ) RacRbdẽc · ẽd = �ab ) RacRbc = �ab or, in other words,

(RTR)ab = �ab which is the statement that R is orthogonal. The uniqueness of R

follows by construction: Rab = ea · ẽb. ⇤.
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So as the rigid body rotates it is described by a time dependent orthogonal 3 ⇥ 3

matrix R(t). This matrix also has the property that its determinant is 1. (The other

possibility is that its determinant is �1 which corresponds to a rotation and a reflection

ea ! �ea). Conversely, every one-parameter family R(t) describes a possible motion

of the body. We have

C = Configuration Space = Space of 3⇥ 3 Special Orthogonal Matrices ⌘ SO(3)

A 3⇥ 3 matrix has 9 components but the condition of orthogonality RTR = 1 imposes

6 relations, so the configuration space C is 3 dimensional and we need 3 generalised

coordinates to parameterise C. We shall describe a useful choice of coordinates, known

as Euler angles, in section 3.5.

3.1.1 Angular Velocity

Any point r in the body can be expanded in either the space frame or the body frame:

r(t) = r̃a(t) ẽa in the space frame

= ra ea(t) in the body frame (3.3)

where r̃b(t) = raRab(t). Taking the time derivative, we have

dr

dt
=

dr̃a
dt

ẽa in the space frame

= ra
dea(t)

dt
in the body frame

= ra
dRab

dt
ẽb (3.4)

Alternatively, we can ask how the body frame basis itself changes with time,

dea
dt

=
dRab

dt
ẽb =

dRab

dt
R�1

bc ec ⌘ !acec (3.5)

where, in the last equality, we have defined !ac = Ṙab(R�1)bc = ṘabRcb using the fact

that RTR = 1.

Claim: !ac = �!ca i.e. ! is antisymmetric.

Proof: RabRcb = �ac ) ṘabRcb +RabṘcb = 0 ) !ac + !ca = 0 ⇤
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Since !ac is antisymmetric, we can use it to define an object with a single index

(which we will also call !) using the formula

!a =
1
2✏abc!bc (3.6)

so that !3 = !12 and so on. We treat these !a as the components of a vector in the

body frame, so ! = !aea. Then finally we have our result for the change of the body

frame basis with time

dea
dt

= �✏abc!bec = ! ⇥ ea (3.7)

where, in the second equality, we have used the fact that our body frame axis has

a “right-handed” orientation, meaning ea ⇥ eb = ✏abcec. The vector ! is called the

instantaneous angular velocity and its components !a are measured with respect to the

body frame.

Since the above discussion was a little formal, let’s draw a picture

~
r

n̂
~

φd

θ

P

Figure 25:

to uncover the physical meaning of !. Consider a displacement of a

given point r in the body by rotating an infinitesimal amount d� about

an axis n̂. From the figure, we see that |dr| = |r| d� sin ✓. Moreover,

this displacement is perpendicular to r since the distance to P is fixed

by the definition of a rigid body. So we have

dr = d�⇥ r (3.8)

with d� = n̂d�. “Dividing” this equation by dt, we have the result

ṙ = ! ⇥ r (3.9)

where ! = d�/dt is the instantaneous angular velocity. In general, both the axis of

rotation n̂ and the rate of rotation d�/dt will change over time.

Aside: One could define a slightly di↵erent type of angular velocity by looking at

how the space frame coordinates r̃a(t) change with time, rather than the body frame

axes ea. Since we have r̃b(t) = raRab(t), performing the same steps as above, we have

˙̃rb = raṘab = r̃a(R
�1Ṙ)ab (3.10)

which tempts us to define a di↵erent type of angular velocity, sometimes referred to as

“convective angular velocity” by ⌦ab = R�1
ac Ṙcb which has the R�1 and Ṙ in a di↵erent

order. Throughout our discussion of rigid body motion, we will only deal with the

original ! = ṘR�1.
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3.1.2 Path Ordered Exponentials

In the remainder of this chapter, we will devote much e↵ort to determine the angular

velocity vector !(t) of various objects as they spin and turn. But how do we go from

this to the rotation R(t)? As described above, we first turn the vector ! = waea into a

3 ⇥ 3 antisymmetric matrix !ab = ✏abc!c. Then, from this, we get the rotation matrix

R by solving the di↵erential equation

! =
dR

dt
R�1 (3.11)

If ! and R were scalar functions of time, then we could simply integrate this equation

to get the solution

R(t) = exp

✓Z t

0

!(t0) dt0
◆

(3.12)

which satisfies the initial condition R(0) = 1. But things are more complicated because

both ! and R are matrices. Let’s first describe how we take the exponential of a matrix.

This is defined by the Taylor expansion. For any matrix M , we have

exp(M) ⌘ 1 +M + 1
2M

2 + . . . (3.13)

As our first guess for the solution to the matrix equation (3.11), we could try the scalar

solution (3.12) and look at what goes wrong. If we take the time derivative of the

various terms in the Taylor expansion of this putative solution, then problems first

arise when we hit the 1
2M

2 type term. The time derivative of this reads

1

2

d

dt

✓Z t

0

!(t0) dt0
◆2

=
1

2
!(t)

✓Z t

0

!(t0) dt0
◆
+

1

2

✓Z t

0

!(t0) dt0
◆
!(t) (3.14)

We would like to show that Ṙ = !R. The first term on the right-hand side looks

good since it appears in the Taylor expansion of !R. But the second term isn’t right.

The problem is that we cannot commute !(t) past !(t0) when t0 6= t. For this reason,

equation (3.12) is not the solution to (3.11) when ! and R are matrices. But it does

give us a hint about how we should proceed. Since the problem is in the ordering of

the matrices, the correct solution to (3.11) takes a similar form as (3.12), but with a

di↵erent ordering. It is the path ordered exponential,

R(t) = P exp

✓Z t

0

!(t0) dt0
◆

(3.15)
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where the P in front means that when we Taylor expand the exponential, all matrices

are ordered so that later times appear on the left. In other words

R(t) = 1 +

Z t

0

!(t0) dt0 +

Z t00

0

Z t

t0
!(t00)!(t0) dt0dt00 + . . . (3.16)

The double integral is taken over the range 0 < t0 < t00 < t. If we now di↵erentiate

this double integral with respect to t, we get just the one term !(t)
⇣R t

0 !(t
0) dt0

⌘
,

instead of the two that appear in (3.14). It can be checked that the higher terms in the

Taylor expansion also have the correct property if they are ordered so that matrices

evaluated at later times appear to the left in the integrals. This type of path ordered

integral comes up frequently in theories involving non-commuting matrices, including

the standard model of particle physics.

As an aside, the rotation matrix R is a member of the Lie group SO(3), the space of

3⇥ 3 orthogonal matrices with unit determinant. The antisymmetric angular velocity

matrix !, corresponding to an instantaneous, infinitesimal rotation, lives in the Lie

algebra so(3).

3.2 The Inertia Tensor

Let’s look at the kinetic energy for a rotating body. We can write

T = 1
2

X

i

miṙ
2
i

= 1
2

X

i

mi (! ⇥ ri) · (! ⇥ ri)

= 1
2

X

i

mi

�
(! · !)(ri · ri)� (ri · !)2

�
(3.17)

Or, in other words, we can write the kinetic energy of a rotating body as

T = 1
2!aIab!b (3.18)

where Iab, a, b = 1, 2, 3 are the components of the inertia tensor measured in the body

frame, defined by

Iab =
X

i

mi ((ri · ri)�ab � (ri)a(ri)b) (3.19)

Note that Iab = Iba so the inertia tensor is symmetric. Moreover, the components

are independent of time since they are measured with respect to the body frame. For
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continuous bodies, we have the analogous expression

I =

Z
d3r ⇢(r)

0

BB@

y2 + z2 �xy �xz

�xy x2 + z2 �yz

�xz �yz x2 + y2

1

CCA (3.20)

Since Iab is a symmetric real matrix, we can diagonalise it. This means that there

exists an orthogonal matrix O such that OIOT = I 0 where I 0 is diagonal. Equivalently,

we can rotate the body frame axis {ea} to coincide with the eigenvectors of I (which

are {Oea}) so that, in this frame, the inertia tensor is diagonal. These preferred body

axes, in which I is diagonal, are called the principal axes. In this basis,

I =

0

BB@

I1

I2

I3

1

CCA (3.21)

The eigenvalues Ia are called the principal moments of inertia. The kinematical prop-

erties of a rigid body are fully determined by its mass, principal axes, and moments of

inertia. Often the principal axes are obvious by symmetry.

Claim: The Ia are real and positive.

Proof: If c is an arbitrary vector, then

Iabc
acb =

X

i

mi(r
2
i c

2
� (ri · c)

2) � 0 (3.22)

with equality only if all the ri lie on a line. If c is the ath eigenvector of I then this

result becomes Iabcacb = Ia|c|2 which tells us Ia � 0. ⇤

Example: The Rod

Consider the inertia tensor of a uniform rod of length l and mass M about its centre.

The density of the rod is ⇢ = M/l. By symmetry, we have I = diag(I1, I1, 0) where

I1 =

Z l/2

�l/2

⇢ x2 dx =
1

12
Ml2 (3.23)
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Example: The Disc

Now consider a uniform disc of radius r and mass M .

e =x1

e3 =z

e =y2

Figure 26:

We take the z axis to be perpendicular to the disc and mea-

sure I about its centre of mass. Again we know that I =

diag(I1, I2, I3). The density of the disc is ⇢ = M/⇡r2, so we

have

I1 =

Z
⇢y2d2x , I2 =

Z
⇢x2d2x

so I1 = I2 by symmetry, while

I3 =

Z
⇢(x2 + y2)d2x

Therefore

I3 = I1 + I2 = 2⇡⇢

Z r

0

r0 3 dr0 = 1
2Mr2 (3.24)

So the moments of inertia are I1 = I2 =
1
4Mr2 and I3 =

1
2Mr2.

3.2.1 Parallel Axis Theorem

The inertia tensor depends on what point P in the body is held fixed. In general, if we

know I about a point P it is messy to compute it about some other point P 0. But it

is very simple if P happens to coincide with the centre of mass of the object.

Claim: If P 0 is displaced by c from the centre of mass, then

(Ic)ab = (Ic.of.m)ab +M(c2�ab � cacb) (3.25)

Proof:

(Ic)ab =
X

i

mi

�
(ri � c)2�ab � (ri � c)a(ri � c)b

 
(3.26)

=
X

i

mi

�
r2i �ab � (ri)a(ri)b + [�2ri · c�ab + (ri)acb + (ri)bca] + (c2�ab � cacb)

 

But the terms in square brackets that are linear in ri vanish if ri is measured from the

centre of mass since
P

i miri = 0. ⇤

The term M(c2�ab � cacb) is the inertia tensor we would find if the whole body was

concentrated at the centre of mass.
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Example: The Rod Again

The inertia tensor of the rod about one of its ends is I1 =
1
12Ml2 +M(l/2)2 = 1

3Ml2.

Example: The Disc Again

Consider measuring the inertia tensor of the disc about a point displaced by c = (c, 0, 0)

from the centre. We have

c

Figure 27:

Ic = M

0
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3.2.2 Angular Momentum

The angular momentum L about a point P can also be described neatly in terms of

the inertia tensor. We have

L =
X

i

miri ⇥ ṙi

=
X

i

miri ⇥ (! ⇥ ri)

=
X

i

mi(r
2
i! � (! · ri)ri)

= I! (3.27)

In the body frame, we can write L = Laea to get

La = Iab!b (3.28)

where ! = !aea. Note that in general, ! is not equal to L: the spin of the body and

its angular momentum point in di↵erent directions. This fact will lead to many of the

peculiar properties of spinning objects.

3.3 Euler’s Equations

So far we have been discussing the rotation of a body fixed at a point P . In this section

we will be interested in the rotation of a free body suspended in space - for example, a

satellite or the planets. Thankfully, this problem is identical to that of an object fixed

at a point. Let’s show why this is the case and then go on to analyse the motion.
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Figure 28:

The most general motion of a body is an overall translation superposed with a ro-

tation. We could take this rotation to be about any point in the body (or, indeed, a

point outside the body). But it is useful to consider the rotation to be about the center

of mass. We can write the position of a particle in the body as

ri(t) = R(t) +�ri(t) (3.29)

where �ri is the position measured from the centre of mass. Then examining the

kinetic energy (which, for a free body, is all there is)

T = 1
2

X

i

miṙ
2
i

=
X

i

mi

h
1
2Ṙ

2 + Ṙ · (! ⇥�ri) +
1
2(! ⇥�ri)

2
i

= 1
2MṘ2 + 1

2!aIab!b (3.30)

where we’ve used the fact that
P

i mi�ri = 0. So we find that the dynamics separates

into the motion of the centre of mass R, together with rotation about the centre of

mass. This is the reason that the analysis of the last section is valid for a free object.

3.3.1 Euler’s Equations

From now on, we shall neglect the center of mass and concentrate on the rotation of

the rigid body. Since the body is free, its angular momentum must be conserved. This

gives us the vector equation

dL

dt
= 0 (3.31)
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Let’s expand this in the body frame. we have

0 =
dL

dt
=

dLa

dt
ea + La

dea
dt

=
dLa

dt
ea + La ! ⇥ ea (3.32)

This simplifies if we choose the body axes {ea} to coincide with the the principal axes.

Using La = Iab!b, we can then write L1 = I1!1 and so on. The equations of motion

(3.32) are now three non-linear coupled first order di↵erential equations,

I1!̇1 + !2!3(I3 � I2) = 0

I2!̇2 + !3!1(I1 � I3) = 0 (3.33)

I3!̇3 + !1!2(I2 � I1) = 0

These are Euler’s Equations.

We can extend this analysis to include a torque ⌧ . The equation of motion becomes

L̇ = ⌧ and we can again expand in the body frame along the principal axes to derive

Euler’s equations (3.33), now with the components of the torque on the RHS.

3.4 Free Tops

“To those who study the progress of exact science, the common spinning-top

is a symbol of the labours and the perplexities of men.”
James Clerk Maxwell, no less

In this section, we’ll analyse the motion of free rotating bod-

e
1

e
2

e
3

Figure 29:

ies (known as free tops) using Euler’s equation.

We start with a trivial example: the sphere. For this object,

I1 = I2 = I3 which means that the angular velocity ! is parallel

to the angular momentum L. Indeed, Euler’s equations tell us

that !a is a constant in this case and the sphere continues to spin

around the same axis you start it on. To find a more interesting

case, we need to look at the next simplest object.

3.4.1 The Symmetric Top

The symmetric top is an object with I1 = I2 6= I3. A typical example is drawn in figure

29. Euler’s equations become

I1!̇1 = !2!3(I1 � I3)

I2!̇2 = �!1!3(I1 � I3) (3.34)

I3!̇3 = 0
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Figure 30: The precession of the spin: the direction of precession depends on whether the

object is short and fat (I3 > I1) or tall and skinny (I3 < I1)

So, in this case, we see that !3, which is the spin about the symmetric axis, is a

constant of motion. In contrast, the spins about the other two axes are time dependent

and satisfy

!̇1 = ⌦!2 , !̇2 = �⌦!1 (3.35)

where

⌦ = !3(I1 � I3)/I1 (3.36)

is a constant. These equations are solved by

(!1,!2) = !0(sin⌦t, cos⌦t) (3.37)

for any constant !0. This means that, in the body frame, the direc- e
3 L

ω

Figure 31:

tion of the spin is not constant: it precesses about the e3 axis with

frequency ⌦. The direction of the spin depends on the sign on ⌦ or,

in other words, whether I1 > I3 or I1 < I3. This is drawn in figure

30.

What does this look like in an inertial frame? The angular momen-

tum L is a fixed vector. But !3, and hence L3, are also fixed which

ensures that the angle between e3 and L doesn’t change in time. In-

stead, e3 precesses around L, while the body simultaneously spins

such that ! remains between e3 and L. (If this is hard to visualise,

then try searching YouTube for ”free symmetric tops” or something

similar and you will find videos like this.) The fact that ! precesses around the body

frame axis e3 is sometimes referred to as a wobble.
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3.4.2 Example: The Earth’s Wobble

The spin of the earth causes it to bulge at the equator so it is no longer a sphere but can

be treated as a symmetric top. It is an oblate ellipsoid, with I3 > I1, and is spherical

to roughly 1 part in 300, meaning

I1 � I3
I1

⇡ �
1

300
(3.38)

Of course, we know the magnitude of the spin !3: it is !3 = (1 day)�1. This information

is enough to calculate the frequency of the earth’s wobble; from (3.36), it should be

⌦earth =
1

300
day�1 (3.39)

This calculation was first performed by Euler in 1749 who pre-
e3

ω

z

Equator

North Pole

Figure 32:

dicted that the Earth completes a wobble every 300 days. De-

spite many searches, this e↵ect wasn’t detected until 1891 when

Chandler re-analysed the data and saw a wobble with a period

of 427 days. It is now known as the Chandler wobble. It is

very small! The angular velocity ! intercepts the surface of

the earth approximately 10 metres from the North pole and

precesses around it. More recent measurements place the fre-

quency at 435 days, with the discrepancy between the predicted

300 days and observed 435 days due to the fact that the Earth

is not a rigid body, but is flexible because of tidal e↵ects. Less

well understood is why these same tidal e↵ects haven’t caused

the wobble to dampen and disappear completely. There are various theories about

what keeps the wobble alive, from earthquakes to fluctuating pressure at the bottom

of the ocean.

3.4.3 The Asymmetric Top: Stability

The most general body has no symmetries and I1 6= I2 6= I3 6= I1. The rotational

motion is more complicated but there is a simple result that we will describe here.

Consider the case where the spin is completely about one of the principal axes, say e1.

i.e.

!1 = ⌦ , !2 = !3 = 0 (3.40)

This solves Euler’s equations (3.33). The question we want to ask is: what happens if

the spin varies slightly from this direction? To answer this, consider small perturbations

about the spin

!1 = ⌦+ ⌘1 , !2 = ⌘2 , !3 = ⌘3 (3.41)
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where ⌘a, a = 1, 2, 3 are all taken to be small. Substituting this into Euler’s equations

and ignoring terms of order ⌘2 and higher, we have

I1⌘̇1 = 0

I2⌘̇2 = ⌦⌘3(I3 � I1) (3.42)

I3⌘̇3 = ⌦⌘2(I1 � I2) (3.43)

We substitute the third equation into the second to find an equation for just one of the

perturbations, say ⌘2,

I2⌘̈2 =
⌦2

I3
(I3 � I1)(I1 � I2)⌘2 ⌘ A⌘2 (3.44)

The fate of the small perturbation depends on the sign of the quantity A. We have two

possibilities

• A < 0: In this case, the disturbance will oscillate around the constant motion.

• A > 0: In this case, the disturbance will grow exponentially.

Examining the definition of A, we find that the motion is unstable if

I2 < I1 < I3 or I3 < I1 < I2 (3.45)

with all other motions stable. In other words, a body will rotate stably about the axis

with the largest or the smallest moment of inertia, but not about the intermediate axis.

Pick up a tennis racket and try it for yourself!

3.4.4 The Asymmetric Top: Poinsot Construction

The analytic solution for the general motion of an asymmetric top is rather complicated,

involving Jacobian elliptic functions. But there’s a nice geometrical way of viewing the

motion due to Poinsot.

We start by working in the body frame. There are two constants of motion: the

kinetic energy T and the magnitude of the angular momentum L2. In terms of the

angular velocity, they are

2T = I1!
2
1 + I2!

2
2 + I3!

2
3 (3.46)

L2 = I21!
2
1 + I22!

2
2 + I23!

2
3 (3.47)

– 58 –



Each of these equations defines an ellipsoid in ! space. The motion of the vector ! is

constrained to lie on the intersection of these two ellipsoids. The first of these ellipsoids,

defined by

I1
2T

!2
1 +

I2
2T

!2
2 +

I3
2T

!2
3 = 1 (3.48)

is known as the inertia ellipsoid (or, sometimes, the inertia quadric). If we fix the

kinetic energy, we can think of this abstract ellipsoid as embedded within the object,

rotating with it.

The inertia ellipsoid is drawn in figure

ω

ω

ω

1

3

2

Figure 33:

33, where we’ve chosen I1 > I2 > I3 so that

the major axis is !3 and the minor axis is !1.

The lines drawn on the figure are the inter-

section of the inertia ellipsoid with the other

ellipsoid, defined by (3.47), for various val-

ues of L2. Since this has the same major and

minor axes as the inertia ellipsoid (because

I21 > I22 > I23 ), the intersection lines are small

circles around the !1 and !3 axes, but two

lines passing through the !2 axis. For fixed T and L2, the vector ! moves along one

of the intersection lines. This provides a pictorial demonstration of the fact we learnt

in the previous subsection: an object will spin in a stable manner around the principal

axes with the smallest and largest moments of inertia, but not around the intermediate

axis. The path that ! traces on the inertia ellipsoid is known as the polhode curve. We

see from the figure that the polhode curves are always closed, and motion in the body

frame is periodic.

So much for the body frame. What does all this look like in the space frame? The

vector L is a constant of motion. Since the kinetic energy 2T = L · ! is also constant,

we learn that ! must lie in a fixed plane perpendicular to L. This is known as the

invariable plane. The inertia ellipsoid touches the invariable plane at the point defined

by the angular velocity vector !. Moreover, the invariable plane is always tangent to

the inertial ellipsoid at the point !. To see this, note that the angular momentum can

be written as

L = r!T (3.49)

where the gradient operator is in ! space, i.e. r! = (@/@!1, @/@!2, @/@!3). But

recall that the inertia ellipsoid is defined as a level surface of T , so equation (3.49) tells
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Figure 34: The inertia ellipsoid rolling around on the invariable plane, with the polhode

and herpolhode curves drawn for a fixed time period.

us that the angular momentum L is always perpendicular to the ellipsoid. This, in

turn, ensures that the invariable plane is always tangent to the ellipsoid. In summary,

the angular velocity traces out two curves: one on the inertia ellipsoid, known as the

polhode curve, and another on the invariable plane, known as the herpolhode curve.

The body moves as if it is embedded within the inertia ellipsoid, which rolls around the

invariable plane without slipping, with the center of the ellipsoid a constant distance

from the plane. The motion is shown in figure 34. Unlike the polhode curve, the

herpolhode curve does not necessarily close.

An Example: The Asteroid Toutatis

Astronomical objects are usually symmetric, but there’s an important exception wan-

dering around our solar system, depicted in figure1 35. This is the asteroid Toutatis. In

September 2004 it passed the earth at a distance of about four times that to the moon.

This is (hopefully!) the closest any asteroid will come for the next 60 years. The orbit

of Toutatis is thought to be chaotic, which could potentially be bad news for Earth

a few centuries from now. As you can see from the picture, its tumbling motion is

complicated. It is aperiodic. The pictures show the asteroid at intervals of a day. The

angular momentum vector L remains fixed and vertical throughout the motion. The

angular velocity ! traces out the herpolhode curve in the horizontal plane, perpendic-

ular to L. The angular momentum vector ! also traces out a curve over the asteroid’s

1
This picture was created by Scott Hudson of Washington State University and was taken from

http://www.solarviews.com/eng/toutatis.htm where you can find many interesting facts about the

asteroid.
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Figure 35: By Toutatis! The three principal axes are shown in red, green and blue (without

arrows). The angular momentum L is the vertical, purple arrow. The angular velocity ! is

the circled, yellow arrow.

surface: this is the polhode curve. It has a period of 5.4 days which you can observe

by noting that ! has roughly the same orientation relative to the principal axes every

five to six days.

However, there are further e↵ects at play in a real object like Toutatis which is not

spinning around a principal axis. Various stresses and strains lead to dissipation. This

means that the angular velocity ! does not quite follow the polhode curve in Figure

33. Instead it begins close to the major axis !3 and slowly spirals towards the minor

axis !1. This is why we see so few wobbling asteroids.
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3.5 Euler’s Angles

So far we’ve managed to make quite a lot of progress working just with the angular

velocity !a and we haven’t needed to introduce an explicit parametrization of the

configuration space C. But to make further progress we’re going to need to do this.

We will use a choice due to Euler which often leads to simple solutions.

~
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1

~
e

3

~
e

2

e
3

e
1

e
2

Figure 36: The rotation from space frame {ẽa} to body frame {ea}.

A general rotation of a set of axis is shown in Figure 36. We’d like to construct a

way of parameterizing such a rotation. The way to do this was first described by Euler:

Euler’s Theorem:

An arbitrary rotation may be expressed as the product of 3 successive rotations about

3 (in general) di↵erent axes.

Proof: Let {ẽa} be space frame axes. Let {ea} be body frame axes. We want to find

the rotation R so that ea = Rabẽb. We can accomplish this in three steps

{ẽa}
R3(�)
�! {e0a}

R1(✓)
�! {e00a}

R3( )
�! {ea} (3.50)

Let’s look at these step in turn.

Step 1: Rotate by � about the ẽ3 axis. So e0a = R3(�)abẽb with

R3(�) =

0

BB@

cos� sin� 0

� sin� cos� 0

0 0 1

1

CCA (3.51)

This is shown in Figure 37.
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Figure 37: Step 1: Rotate around the space-frame axis ẽ3.

Step 2: Rotate by ✓ about the new axis e01. This axis e01 is sometimes called the

“line of nodes”. We write e00a = R1(✓)abe0b with

R1(✓) =

0

BB@

1 0 0

0 cos ✓ sin ✓

0 � sin ✓ cos ✓

1

CCA (3.52)

This is shown in Figure 38
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Figure 38: Step 2: Rotate around the new axis axis e01.

Step 3: Rotate by  about the new new axis e003 so ea = R3( )abe00b with

R3( ) =

0

BB@

cos sin 0

� sin cos 0

0 0 1

1

CCA (3.53)

This is shown in Figure 39.
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Figure 39: Step 3: Rotate around the latest axis e003.

So putting it all together, we have

Rab(�, ✓, ) = [R3( )R1(✓)R3(�)]ab (3.54)

⇤
The angles �, ✓, are the Euler angles. If we write out the matrix R(�, ✓, ) longhand,

it reads

R =

0

BB@

cos cos�� cos ✓ sin� sin sin� cos + cos ✓ sin cos� sin ✓ sin 

� cos� sin � cos ✓ cos sin� � sin sin�+ cos ✓ cos cos� sin ✓ cos 

sin ✓ sin� � sin ✓ cos� cos ✓

1

CCA

Note: Recall that we may expand a vector r either in the body frame r = raea, or in

the space frame r = r̃aẽa. The above rotations can be equally well expressed in terms

of the coordinates ra rather than the basis {ea}: we have r̃b = raRab. Be aware that

some books choose to describe the Euler angles in terms of the coordinates ra which

they write in vector form. In some conventions this can lead to an apparent reversal in

the ordering of the three rotation matrices.

3.5.1 Leonhard Euler (1707-1783)

As is clear from the section headings, the main man for this chapter is Euler, by far the

most prolific mathematician of all time. As well as developing the dynamics of rotations,

he made huge contributions to the fields of number theory, geometry, topology, analysis

and fluid dynamics. For example, the lovely equation ei✓ = cos ✓ + i sin ✓ is due to

Euler. In 1744 he was the first to correctly present a limited example of the calculus of

variations (which we saw in section 2.1) although he generously gives credit to a rather

botched attempt by his friend Maupertuis in the same year. Euler also invented much

of the modern notation of mathematics: f(x) for a function; e for exponential; ⇡ for,

well, ⇡ and so on.
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Euler was born in Basel, Switzerland and held positions in St Petersburg, Berlin and,

after falling out with Frederick the Great, St Petersburg again. He was pretty much

absorbed with mathematics day and night. Upon losing the sight in his right eye in

his twenties he responded with: “Now I will have less distraction”. Even when he went

completely blind later in life, it didn’t slow him down much as he went on to produce

over half of his total work. The St Petersburg Academy of Science continued to publish

his work for a full 50 years after his death.

3.5.2 Angular Velocity

There’s a simple expression for the instantaneous angular velocity ! in terms of Euler

angles. To derive this, we could simply plug (3.54) into the definition of angular velocity

(3.5). But this is tedious, and a little bit of thought about what this means physically

will get us there quicker. Consider the motion of a rigid body in an infinitesimal time

dt during which

( , ✓,�) ! ( + d , ✓ + d✓,�+ d�) (3.55)

From the definition of the Euler angles, the angular velocity must be of the form

! = �̇ ẽ3 + ✓̇ e01 +  ̇ e3 (3.56)

But we can express the first two vectors in terms of the body frame. They are

ẽ3 = sin ✓ sin e1 + sin ✓ cos e2 + cos ✓ e3

e01 = cos e1 � sin e2 (3.57)

from which we can express ! in terms of the Euler angles in the body frame axis

! = [�̇ sin ✓ sin + ✓̇ cos ]e1 + [�̇ sin ✓ cos � ✓̇ sin ]e2 + [ ̇ + �̇ cos ✓]e3 (3.58)

By playing a similar game, we can also express ! in the space frame axis.

3.5.3 The Free Symmetric Top Revisited

In section 3.4 we studied the free symmetric top working in the body frame and found

a constant spin !3 while, as shown in equation (3.37), !1 and !2 precess as

(!1,!2) = !0(sin⌦t, cos⌦t) with ⌦ = !3
(I1 � I3)

I1
(3.59)

But what does this look like in the space frame? Now that we have parametrised

motion in the space frame in terms of Euler angles, we can answer this question. This

is simplest if we choose the angular momentum L to lie along the ẽ3 space-axis. Then

because both L and its body-frame component L3 = I3!3 are conserved, so too is the

angle between them. But this angle is precisely ✓. We learn that ✓̇ = 0.
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Figure 40: Euler angles for the free symmetric top when L coincides with ẽ3

Next, we use the equations (3.58) to solve for �(t) and  (t). The solution is given by

 ̇ = ⌦. (This relation also follows by starting at the figure and thinking about how the

object spins as it precesses around L.) But we know from (3.58) that the expression

for !3 (which, remember, is the component of ! in the body frame) in terms of Euler

angles is !3 =  ̇ + �̇ cos ✓ so, substituting for ⌦ =  ̇, we find the precession frequency

�̇ =
I3!3

I1 cos ✓
(3.60)

Staring at the figure, the relationship  ̇ = ⌦ may be not be immediately clear.

An Example: The Wobbling Plate

The physicist Richard Feynman tells the following story:

“I was in the cafeteria and some guy, fooling around, throws a plate in the

air. As the plate went up in the air I saw it wobble, and I noticed the red

medallion of Cornell on the plate going around. It was pretty obvious to me

that the medallion went around faster than the wobbling.

I had nothing to do, so I start figuring out the motion of the rotating plate.

I discover that when the angle is very slight, the medallion rotates twice as

fast as the wobble rate – two to one. It came out of a complicated equation!

I went on to work out equations for wobbles. Then I thought about how the

electron orbits start to move in relativity. Then there’s the Dirac equation
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in electrodynamics. And then quantum electrodynamics. And before I knew

it....the whole business that I got the Nobel prize for came from that piddling

around with the wobbling plate.”

Feynman was right about quantum electrodynamics. But what
.
φ

.

ψθ

Figure 41:

about the plate? We can look at this easily using what we’ve learnt.

The spin of the plate is !3, while the precession, or wobble, rate is �̇

which is given in (3.60). To calculate this, we need the moments of

inertia for a plate. But we figured this out for the disc in Section 3.2

where we found that I3 = 2I1. We can use this to see that  ̇ = �!3

for this example and so, for slight angles ✓, have

�̇ ⇡ �2 ̇ (3.61)

Or, in other words, the wobble rate is twice as fast as the spin of the plate. It’s the

opposite to how Feynman remembers!

There is another elegant and simple method you can use to see that Feynman was

wrong: you can pick up a plate and throw it. It’s hard to see that the wobble to spin

ratio is exactly two. But it’s easy to see that it wobbles faster than it spins.

3.6 The Heavy Symmetric Top

The “heavy” in the title of this section means that the top is acted upon by gravity.

We’ll deal only with a symmetric top, pinned at a point P which is a distance l from

the centre of mass. This system is drawn in the figure. The principal axes are e1, e2
and e3 and we have I1 = I2. From what we have learnt so far, it is easy to write down

the Lagrangian:

L = 1
2I1(!

2
1 + !2

2) +
1
2I3!

2
3 �Mgl cos ✓

= 1
2I1(✓̇

2 + sin2 ✓�̇2) + 1
2I3( ̇ + cos ✓ �̇)2 �Mgl cos ✓ (3.62)

A quick examination of this equation tells us that both  and � are ignorable coordi-

nates. This gives us the constants of motion p and p�, where

p = I3( ̇ + cos ✓ �̇) = I3!3 (3.63)

This is the angular momentum about the symmetry axis e3 of the top. The angular

velocity !3 about this axis is simply called the spin of the top and, as for the free

symmetric top, it is a constant. The other constant of motion is

p� = I1 sin
2 ✓ �̇+ I3 cos ✓ ( ̇ + �̇ cos ✓) (3.64)

– 67 –



e2

e1

e3

.
φ

e3
.

ψ

l

θ

Mg

P

~

~

~

Figure 42: The heavy top with its Euler angles

As well as these two conjugate momenta, the total energy E is also conserved

E = T + V = 1
2I1(✓̇

2 + �̇2 sin2 ✓) + 1
2I3!

2
3 +Mgl cos ✓ (3.65)

To simplify these equations, let’s define the two constants

a =
I3!3

I1
and b =

p�
I1

(3.66)

Then we can write

�̇ =
b� a cos ✓

sin2 ✓
(3.67)

and

 ̇ =
I1a

I3
�

(b� a cos ✓) cos ✓

sin2 ✓
(3.68)

So if we can solve ✓ = ✓(t) somehow, then we can always integrate these two equations

to get �(t) and  (t). But first we have to figure out what ✓ is doing. To do this, let’s

define the “reduced energy” E 0 = E �
1
2I3!

2
3. Then, since E and !3 are constant, so is

E 0. We have

E 0 = 1
2I1✓̇

2 + Ve↵(✓) (3.69)

where the e↵ective potential is

Ve↵(✓) =
I1(b� a cos ✓)2

2 sin2 ✓
+Mgl cos ✓ (3.70)
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So we’ve succeeded in getting an equation (3.69) purely in terms of ✓. To simplify the

analysis, let’s define the new coordinate

u = cos ✓ (3.71)

Clearly �1  u  1. We’ll also define two further constants to help put the equations

in the most concise form

↵ =
2E 0

I1
and � =

2Mgl

I1
(3.72)

With all these redefinitions, the equations of motion (3.67), (3.68) and (3.69) can be

written as

u̇2 = (1� u2)(↵� �u)� (b� au)2 ⌘ f(u) (3.73)

�̇ =
b� au

1� u2
(3.74)

 ̇ =
I1a

I3
�

u(b� au)

1� u2
(3.75)

We could take the square root of equation (3.73) and integrate to reduce the problem

to quadrature. The resulting integral is known as an “elliptic integral”. But, rather

than doing this, there’s a better way to understand the physics qualitatively.

Note that the function f(u) defined in (3.73) is a cubic polynomial that behaves as

f(u) !

(
+1 as u ! 1

�1 as u ! �1
(3.76)

and f(±1) = �(b⌥ a)2  0. So if we plot the function f(u), it looks like figure 43
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Figure 44: The three di↵erent types of motion depend on the direction of precession at the

extremal points.

The physical range is u̇2 = f(u) > 0 and �1  u  1 so we find that, like in the

spherical pendulum and central force problem, the system is confined to lie between

the two roots of f(u).

There are three possibilities for the motion depending on the sign of �̇ at the two

roots u = u1 and u = u2 as determined by (3.74). These are

• �̇ > 0 at both u = u1 and u = u2

• �̇ > 0 at u = u1, but �̇ < 0 at u = u2

• �̇ > 0 at u = u1 and �̇ = 0 at u = u2

The di↵erent paths of the top corresponding to these three possibilities are shown in

figure 44. Motion in � is called precession while motion in ✓ is known as nutation.

3.6.1 Letting the Top Go

The last of these three motions is not as unlikely as it may first appear. Suppose

we spin the top and let it go at some angle ✓. What happens? We have the initial

conditions

✓̇t=0 = 0 ) f(ut=0) = 0

) ut=0 = u2

and �̇t=0 = 0 ) b� aut=0 = 0

) ut=0 =
b

a
(3.77)
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Remember also that the quantity

p� = I1�̇ sin
2 ✓ + I3!3 cos ✓ = I3!3 cos ✓t=0 (3.78)

is a constant of motion. We now have enough information to figure out the qualitative

motion of the top. Firstly, it starts to fall under the influence of gravity, so ✓ increases.

But as the top falls, �̇ must turn and increase in order to keep p� constant. Moreover,

we also see that the direction of the precession �̇ must be in the same direction as the

spin !3 itself. What we get is motion of the third kind.

3.6.2 Uniform Precession

Can we make the top precess with bobbing up and down? i.e. with ✓̇ = 0 and �̇

constant. For this to happen, we would need the function f(u) to have a single root u0

lying in the physical range �1  u0  +1. This root must satisfy,

f(u0) = (1� u2
0)(↵� �u0)� (b� au0)

2 = 0 (3.79)

and f 0(u0) = �2u0(↵� �u0)� �(1� u2
0) + 2a(b� au0) = 0

Combining these, we find 1
2� = a�̇ � �̇2u0. Substitut-

u0

f(u)

u

−1 +1

Figure 45:

ing the definitions I1a = I3!3 and � = 2Mgl/I1 into this

expression, we find

Mgl = �̇(I3!3 � I1�̇ cos ✓0) (3.80)

The interpretation of this equation is as follows: for a fixed

value of !3 (the spin of the top) and ✓0 (the angle at which

you let it go), we need to give exactly the right push �̇ to

make the top spin without bobbing. In fact, since equation (3.80) is quadratic in �̇,

there are two frequencies with which the top can precess without bobbing.

Of course, these “slow” and “fast” precessions only 3
ω

.
φ

slow fast

Figure 46:

exist if equation (3.80) has any solutions at all. Since it is

quadratic, this is not guaranteed, but requires

!3 >
2

I3

p
MglI1 cos ✓0 (3.81)

So we see that, for a given ✓0, the top has to be spinning fast

enough in order to have uniform solutions. What happens

if it’s not spinning fast enough? Well, the top falls over!
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Figure 47: The function f(u) for the stable and unstable sleeping top.

3.6.3 The Sleeping Top

Suppose we start the top spinning in an upright position, with

✓ = ✓̇ = 0 (3.82)

When it spins upright, it is called a sleeping top. The question we want to answer is:

will it stay there? Or will it fall over? From (3.73), we see that the function f(u) must

have a root at ✓ = 0, or u = +1: f(1) = 0. From the definitions (3.66) and (3.72), we

can check that a = b and ↵ = � in this situation and f(u) actually has a double zero

at u = +1,

f(u) = (1� u)2(↵(1 + u)� a2) (3.83)

The second root of f(u) is at u2 = a2/↵� 1. There are two possibilities

1: u2 > 1 or !2
3 > 4I1Mgl/I23 . In this case, the graph of f(u) is drawn in first in

figure 47. This motion is stable: if we perturb the initial conditions slightly, we will

perturb the function f(u) slightly, but the physical condition that we must restrict to

the regime f(u) > 0 means that the motion will continue to be trapped near u = 1

2: u2 < 1 or !2
3 < 4I1Mgl/I23 . In this case, the function f(u) looks like the second

figure of 47. Now the top is unstable; slight changes in the initial condition allow a

large excursion.

In practice, the top spins upright until it is slowed by friction to I3!3 = 2
p
I1Mgl,

at which point it starts to fall and precess.

3.6.4 The Precession of the Equinox

The Euler angles for the earth are drawn in figure 48. The earth spins at an angle of

✓ = 23.5o to the plane of its orbit around the sun (known as the plane of the elliptic).
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Figure 48: The precession of the earth.

The spin of the earth is  ̇ = (day)�1. This causes the earth to bulge at the equator

so it is no longer a sphere, but rather a symmetric top. In turn, this allows the moon

and sun to exert a torque on the earth which produces a precession �̇. Physically this

means that the direction in which the north pole points traces a circle in the sky and

what we currently call the “pole star” will no longer be in several thousand years time.

It turns out that this precession is “retrograde” i.e. opposite to the direction of the

spin.

One can calculate the precession �̇ of the earth due to the moon and sun using the

techniques described in the chapter. But the calculation is rather long and we won’t go

over it in this course. (See the book by Hand and Finch if you’re interested). Instead,

we will use a di↵erent technique to calculate the precession of the earth: astrology.2

To compute the precession of the earth, the first fact we need to know is that Jesus

was born in the age of Pisces. This doesn’t mean that Jesus looked up Pisces in his

daily horoscope (while scholars are divided over the exact date of his birth, he seems to

exhibit many traits of a typical Capricorn) but rather refers to the patch of the sky in

which the sun appears during the first day of spring. Known in astronomical terms as

the “vernal equinox”, this day of the year is defined by the property that the sun sits

directly above the equator at midday. As the earth precesses, this event takes place

at a slightly di↵erent point in its orbit each year, with a slightly di↵erent backdrop of

stars as a result. The astrological age is defined to be the background constellation in

which the sun rises during vernal equinox.

2
I learnt about this fact from John Baez’ website where you can find lots of well written explanations

of curiosities in mathematical physics: http://math.ucr.edu/home/baez/README.html.
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It is easy to remember that Jesus was born in the age of Pisces since the fish was

used as an early symbol for Christianity. The next fact that we need to know is

that we’re currently entering the age of Aquarius (which anyone who has seen the

musical Hair will know). So we managed to travel backwards one house of the zodiac

in 2,000 years. We’ve got to make it around 12 in total, giving us a precession time of

2, 000 ⇥ 12 = 24, 000 years. The actual value of the precession is 25, 700 years. Our

calculation is pretty close considering the method!

The earth also undergoes other motion. The value of ✓ varies from 22.1o to 24.5o

over a period of 41, 000 years, mostly due to the e↵ects of the other planets. These also

a↵ect the eccentricity of the orbit over a period of 105,000 years.

3.7 The Motion of Deformable Bodies

Take a lively cat. (Not one that’s half dead like Schrödinger’s). Hold it upside down and

drop it. The cat will twist its body and land sprightly on its feet. Yet it doesn’t do this

by pushing against anything and its angular momentum is zero throughout. If the cat

were rigid, such motion would be impossible since a change in orientation for a rigid

body necessarily requires non-vanishing angular momentum. But the cat isn’t rigid

(indeed, it can be checked that dead cats are unable to perform this feat) and bodies

that can deform are able to reorient themselves without violating the conservation of

angular momentum. In this section we’ll describe some of the beautiful mathematics

that lies behind this. I should warn you that this material is somewhat more advanced

than the motion of rigid bodies. The theory described below was first developed in the

late 1980s in order to understand how micro-organisms swim3.

3.7.1 Kinematics

We first need to describe the configuration space C of a deformable body. We factor

out translations by insisting that all bodies have the same center of mass. Then the

configuration space C is the space of all shapes with some orientation.

Rotations act naturally on the space C (they simply rotate each shape). This allows

us to define the smaller shape space C̃ so that any two configurations in C which are

related by a rotation are identified in C̃. In other words, any two objects that have the

same shape, but di↵erent orientation, are described by di↵erent points in C, but the

same point in C̃. Mathematically, we say C̃ ⇠= C/SO(3).

3
See A. Shapere and F. Wilczek, “Geometry of Self-Propulsion at Low Reynolds Number”, J. Fluid

Mech. 198 557 (1989) . This is the same Frank Wilczek who won the 2004 Nobel prize for his work

on quark interactions.
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Figure 49: Three possible shapes of a deformable object.

We can describe this in more detail for a body consisting ofN point masses, each with

position ri. Unlike in section 3.1, we do not require that the distances between particles

are fixed, i.e. |ri � rj| 6= constant. (However, there may still be some restrictions on

the ri). The configuration space C is the space of all possible configurations ri. For

each di↵erent shape in C, we pick a representative r̃i with some, fixed orientation. It

doesn’t matter what representative we choose — just as long as we pick one. These

variables r̃i are coordinates on the space shape C̃. For each ri 2 C, we can always find

a rotation matrix R 2 SO(3) such that

ri = R r̃i (3.84)

As in section 3.1, we can always do this to continuous bodies. In this case, the con-

figuration space C and the shape space C̃ may be infinite dimensional. Examples of

di↵erent shapes for a continuously deformable body are shown in figure 49.

We want to understand how an object rotates as it changes shape keeping its angular

momentum fixed (for example, keeping L = 0 throughout). The first thing to note is

that we can’t really talk about the rotation between objects of di↵erent shapes. (How

would you say that the the third object in figure 49 is rotated with respect to the first

or the second?). Instead, we should think of an object moving through a sequence

of shapes before returning to its initial shape. We can then ask if there’s been a net

rotation. As the object moves through its sequence of shapes, the motion is described

by a time dependent r̃i(t), while the corresponding change through the configuration

space is

ri(t) = R(t) r̃(t) (3.85)

where the 3 ⇥ 3 rotation matrix R(t) describes the necessary rotation to go from our

fixed orientation of the shape r̃ to the true orientation. As in section 3.1.1, we can define

the 3 ⇥ 3 anti-symmetric matrix that describes the instantaneous angular velocity of
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the object. In fact, it will for once prove more useful to work with the “convective

angular velocity” defined around equation (3.10)

⌦ = R�1 dR

dt
(3.86)

This angular velocity is non-zero due to the changing shape of the object, rather than

the rigid rotation that we saw before. Let’s do a quick change of notation and write

coordinates on the shape space C̃ as xA, with A = 1, . . . , 3N instead of in vector

notation r̃i, with i = 1, . . . , N . Then, since ⌦ is linear in time derivatives, we can write

⌦ = ⌦A(x) ẋ
A (3.87)

The component ⌦A(x) is the 3⇥3 angular velocity matrix induced if the shape changes

from xA to xA + �xA. It is independent of time: all the time dependence sits in

the ẋA factor which tells us how the shape is changing. The upshot is that for each

shape x 2 C̃, we have a 3 ⇥ 3 anti-symmetric matrix ⌦A associated to each of the

A = 1, . . . , 3N directions in which the shape can change.

However, there is an ambiguity in defining the angular velocity ⌦. This comes about

because of our arbitrary choice of reference orientation when we picked a representative

r̃i 2 C̃ for each shape. We could quite easily have picked a di↵erent orientation,

r̃i ! S(xA) r̃i (3.88)

where S(xA) is a rotation that, as the notation suggests, can vary for each shape xA. If

we pick this new set of representative orientations, then the rotation matrix R defined

in (3.85) changes: R(t) ! R(t)S�1(xA). Equation (3.86) then tells us that the angular

velocity also change as

⌦A ! S ⌦A S�1 + S
@S�1

@xA
(3.89)

This ambiguity is related to the fact that we can’t define the meaning of rotation

between two di↵erent shapes. Nonetheless, we will see shortly that when we come to

compute the net rotation of the same shape, this ambiguity will disappear, as it must.

Objects such as ⌦A which su↵er an ambiguity of form (3.89) are extremely important

in modern physics and geometry. They are known as non-abelian gauge potentials to

physicists, or as connections to mathematicians.
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3.7.2 Dynamics

So far we’ve learnt how to describe the angular velocity ⌦ of a deformable object. The

next step is to see how to calculate ⌦. We’ll now show that, up to the ambiguity

described in (3.89), the angular velocity ⌦ is specified by the requirement that the

angular momentum L of the object is zero.

L =
X

i

mi ri ⇥ ṙi

=
X

i

mi

h
(Rr̃i)⇥ (R ˙̃ri) + (Rr̃i)⇥ (Ṙr̃i)

i
= 0 (3.90)

In components this reads

La = ✏abc
X

i

mi

h
RbdRce(r̃i)d( ˙̃ri)e +RbdṘce(r̃i)d(r̃i)e

i
= 0 (3.91)

The vanishing L = 0 is enough information to determine the following result:

Claim: The 3⇥ 3 angular velocity matrix ⌦ab = R�1
ac Ṙcb is given by

⌦ab = ✏abc Ĩ
�1
cd L̃d (3.92)

where Ĩ is the instantaneous inertia tensor of the shape described by r̃i,

Ĩab =
X

i

mi((r̃i · r̃i)�ab � (r̃i)a(r̃i)b) (3.93)

and L̃a is the apparent angular momentum

L̃a = ✏abc
X

i

mi (r̃i)b( ˙̃ri)c (3.94)

Proof: We start by multiplying La by ✏afg. We need to use the fact that if we

multiply two ✏-symbols, we have ✏abc✏afg = (�bf�cg � �bg�cf ). Then

✏afgLa =
X

i

mi

⇥
RfdRge(r̃i)d( ˙̃ri)e �RgdRfe(r̃i)d( ˙̃ri)e

�RgdṘfe(r̃i)d(r̃i)e +RfdṘge(r̃i)d(r̃i)e
i
= 0 (3.95)

Now multiply by RfbRgc. Since R is orthogonal, we known that RfbRfd = �bd which,

after contracting a bunch of indices, gives us

RfbRgc✏afgLa =
X

i

mi

⇥
(r̃i)b( ˙̃ri)c � (r̃i)c( ˙̃ri)b � ⌦bd(r̃i)c(r̃i)d + ⌦cd(r̃i)b(r̃i)d

⇤
= 0
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This is almost in the form that we want, but the indices aren’t quite contracted in the

right manner to reproduce (3.92). One can try to play around to get the indices working

right, but at this stage it’s just as easy to expand out the components explicitly. For

example, we can look at

L̃1 =
X

i

mi

⇥
(r̃i)2( ˙̃ri)3 � ((r̃i)3( ˙̃ri)2

⇤

=
X

i

mi [⌦21(r̃i)3(r̃i)1 + ⌦23(r̃i)3(r̃i)3 � ⌦31(r̃i)2(r̃i)1 � ⌦32(r̃i)2(r̃i)2]

= Ĩ11⌦23 + Ĩ12⌦31 + Ĩ13⌦12 =
1
2 ✏abcĨ1a⌦bc (3.96)

where the first equality is the definition of L̃1, while the second equality uses our result

above, and the third equality uses the definition of Ĩ given in (3.93). There are two

similar equations, which are summarised in the formula

L̃a =
1
2 ✏bcdĨab⌦cd (3.97)

Multiplying both sides by Ĩ�1 gives us precisely the claimed result (3.92). This con-

cludes the proof. ⇤.

To summarise: a system with no angular momentum that can twist and turn and

change its shape has an angular velocity (3.92) where r̃i(t) is the path it chooses to take

through the space of shapes. This is a nice formula. But what do we do with it? We

want to compute the net rotation R as the body moves through a sequence of shapes

and returns to its starting point at a time T later. This is given by solving (3.86) for

R. The way to do this was described in section 3.1.2. We use path ordered exponentials

R = P̃ exp

✓Z T

0

⌦(t) dt

◆
= P̃ exp

✓I
⌦A dxA

◆
(3.98)

The path ordering symbol P̃ puts all matrices evaluated at later times to the right.

(This di↵ers from the ordering in section 3.1.2 where we put later matrices to the left.

The di↵erence arises because we’re working with the angular velocity ⌦ = R�1Ṙ instead

of the angular velocity ! = ṘR�1). In the second equality above, we’ve written the

exponent as an integral around a closed path in shape space. Here time has dropped

out. This tells us an important fact: it doesn’t matter how quickly we perform the

change of shapes — the net rotation of the object will be the same.

In particle physics language, the integral in (3.98) is called a “Wilson loop”. We can

see how the rotation fares under the ambiguity (3.87). After some algebra, you can

find that the net rotation R of an object with shape xA is changed by

R ! S(xA)RS(xA)�1 (3.99)
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This is as it should be: the S�1 takes the shape back to our initial choice of standard

orientation; the matrix R is the rotation due to the change in shape; finally S puts us

back to the new, standard orientation. So we see that even though the definition of the

angular velocity is plagued with ambiguity, when we come to ask physically meaningful

questions — such as how much has a shape rotated — the ambiguity disappears.

However, if we ask nonsensical questions — such as the rotation between two di↵erent

shapes — then the ambiguity looms large. In this manner, the theory contains a rather

astonishing new ingredient: it lets us know what are the sensible questions to ask!

Quantities for which the ambiguity (3.87) vanishes are called gauge invariant.

In general, it’s quite hard to explicitly compute the integral (3.98). One case where

it is possible is for infinitesimal changes of shape. Suppose we start with a particular

shape x0
A, and move infinitesimally in a loop in shape space:

xA(t) = x0
A + ↵A(t) (3.100)

Then we can Taylor expand our angular velocity components,

⌦A(x(t)) = ⌦A(x
0) +

@⌦A

@xB

����
x0

↵B (3.101)

Expanding out the rotation matrix (3.98) and taking care with the ordering, one can

show that

R = 1 +
1

2
FAB

I
↵A↵̇B dt+O(↵3)

= 1 +
1

2

Z
FAB dAAB +O(↵3) (3.102)

where FAB is anti-symmetric in the shape space indices A and B, and is a 3⇥ 3 matrix

(the a, b = 1, 2, 3 indices have been suppressed) given by

FAB =
@⌦A

@xB
�
@⌦B

@xA
+ [⌦A,⌦B] (3.103)

It is known as the field strength to physicists (or the curvature to mathematicians). It is

evaluated on the initial shape x0
A. The second equality in (3.102) gives the infinitesimal

rotation as the integral of the field strength over the area traversed in shape space. This

field strength contains all the information one needs to know about the infinitesimal

rotations of objects induced by changing their shape.

One of the nicest things about the formalism described above is that it mirrors very

closely the mathematics needed to describe the fundamental laws of nature, such as

the strong and weak nuclear forces and gravity. They are all described by “non-abelian

gauge theories”, with an object known as the gauge potential (analogous to ⌦A) and

an associated field strength.
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