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Dr David Tong, November 2005

1. Verify the Jacobi identity for Poisson brackets:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (1)

2. A particle with mass m, position x and momentum p has angular momentum

L = x × p. Evaluate {xj, Lk}, {pj, Lk}, {Lj, Lk} and {Li,L
2}.

The Runge-Lenz vector is defined as

A = p × L − r̂

where r̂ = r/|r|. Prove that {La, Ab} = εabcAc. If the system is described by the

Hamiltonian H = (p2/2m) − 1/r prove using Poisson brackets that A is conserved.

3 A particle of charge e moves in a background magnetic field B. Show that

{mṙa, mṙb} = eεabcBc , {mṙa, rb} = −δab

A magnetic monopole is an particle which produces a radial magnetic field of the form

B = g
r̂

r2

where r̂ is the unit vector in the r direction. Consider a charged particle moving in

the background of the magnetic monopole. Define the generalised angular momentum

J = mr× ṙ−(eg/c)r̂. Prove that {H,J} = 0. Why does this mean that J is conserved?

4. Prove that the following transformations are canonical:

(a) P = 1
2
(p2 + q2) and Q = tan−1(q/p).

(b) P = q−1 and Q = pq2.

(c) P = 2
√

q
(

1 +
√

q cos p
)

sin p and Q = log
(

1 +
√

q cos p
)

5. Prove that the following transformation is canonical for any constant λ

q1 = Q1 cos λ + P2 sin λ , q2 = Q2 cos λ + P1 sin λ

p1 = −Q2 sin λ + P1 cos λ , p2 = −Q1 sin λ + P2 cos λ (2)
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If the original Hamiltonian is H(qi, pi) = 1
2
(q2

1 +q2
2 +p2

1 +p2
2), determine the new Hamil-

tonian H(Qi, Pi). Use this to solve for the dynamics under the constraint Q2 = P2 = 0.

6. A group of particles, all of the same mass m, have initial heights z and verti-

cal momenta p lying in the rectangle −a ≤ z ≤ a and −b ≤ p ≤ b. The particles fall

freely in the Earth’s gravitational field for a time t. Find the region in phase space in

which they lie at time t and show by direct calculation that its area is still 4ab.

7. A large, fixed number of non-interacting particles of mass m move in one-dimension

in a potential V (x) = 1
2
mω2x2. At time t the number density of particles in (x, p) phase

space is f(x, p, t). Initially ω takes the value ω1, and particles are injected so that the

number density is constant f = f1 for all particles whose energy is less than E1. No

particles of energy greater than E1 are injected. How many particles are present?

The frequency of oscillation is now changed to a different value ω2, so slowly that a

particles final energy does not depend appreciably on the phase of that particle in its

oscillation. Use the existence of an adiabatic invariant to show that the area of phase

space occupied by the particles remains unchanged.

8. Explain what is meant by an adiabatic invariant for a mechanical system with

one degree of freedom.

A light string passes through a small hole in the roof of an elevator compartment,

and a small weight is attached at the lower end. Initially the elevator is at rest and

the system behaves like a simple pendulum executing small oscillations. Discuss what

happens if:

(a) if the elevator begins to move upwards with the string attached at the hole

(b) the string is slowly withdrawn through the roof.

9. Consider a system with Hamiltonian

H(p, q) =
p2

2m
+ λ q2n (3)

where λ is a positive constant and n is a positive integer. Show that the action variable

I and energy E are related by

E = λ1/(n+1)

(

nπI

Jn

)2n/(n+1) (

1

2m

)n/(n+1)

(4)
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where Jn =
∫ 1

0
(1 − x)1/2x(1−2n)/2n dx.

Consider a particle moving in a potential V (q) = λq4. If λ varies slowly, show that

the particle’s total energy E is proportional to λ1/3. Conversely, if λ is fixed, show that

the period of the motion is proportional to (λE)−1/4.

10. A pulsar of mass m moves in a plane orbit around a luminous supergiant star

with mass M � m. You may regard the supergiant to be fixed at the origin of a plane

polar coordinate system (r, θ), and the neutron star to move under a central potential

V (r) = −GMm/r. Construct the Hamiltonian for the motion, and show that pθ and

E are constants, where E is the total energy.

The neutron star is in a non-circular orbit with E < 0. Give an expression for the

adiabatic invariant J(E, pθ, M) associated with the radial motion. The supergiant is

steadily losing mass in a radiatively driven wind. Show that over a long time E ∝ M 2.

Eventually, the supergiant goes supernova, throwing off its outer layers on a short

timescale and leaving behind a remnant black hole of mass 1
2
M . Explain why the

theory of adiabatic invariants cannot be used to calculate the new orbit.

Note: You may find the following integral helpful:

r2
∫

r1

{(

1 − r1

r

) (r2

r
− 1

)}
1

2

dr =
π

2
(r1 + r2) − π

√
r1r2 (5)

where 0 < r1 < r2.
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