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1. Show that the effect of three rotations by Euler angles results in the relationship

e, = R.€, between the body frame axes {e,} and the space frame axes {€} where the
orthogonal matrix R is

cos 1 cos ¢ — cos f sin ¢ sin ¥ sin ¢ cos ¥ + cos @ sin 1) cos ¢ sin  sin ¢
R=| —cos¢siny —cosfcospsing  —sinysing + cosfcosypcos¢  sinfcosy
sin # sin ¢ —sin 6 cos ¢ cos 6

Use this to confirm that the angular velocity w can be expressed in terms of Euler
angles as

w = [psinfsin1) + 6 cosple; + [sin b cosp — sinley + [1h + ¢ cos Oes (1)
in the body frame {e,}. Or, alternatively, as
w = [1)sin 0sin ¢ + 6 cos ¢|é; + [~ sin 0 cos ¢ + 0sin ¢|&; + [¢ + 1) cos H]és (2)

in the space frame {é&,}.

2. The physicist Richard Feynman tells the following story:

“I was in the cafeteria and some guy, fooling around, throws a plate in the
air. As the plate went up in the air I saw it wobble, and I noticed the red
medallion of Cornell on the plate going around. It was pretty obvious to me
that the medallion went around faster than the wobbling.

I had nothing to do, so I start figuring out the motion of the rotating plate.
I discover that when the angle is very slight, the medallion rotates twice as
fast as the wobble rate — two to one. It came out of a complicated equation!

I went on to work out equations for wobbles. Then I thought about how the
electron orbits start to move in relativity. Then there’s the Dirac equation
in electrodynamics. And then quantum electrodynamics. And before I knew
it....the whole business that I got the Nobel prize for came from that piddling
around with the wobbling plate.”

Feynman was right about quantum electrodynamics. But what about the plate?



Figure 1: The Euler angles for the heavy symmetric top

3. Consider a heavy symmetric top of mass M, pinned at point P which is a distance
[ from the centre of mass. The principal moments of inertia about P are Iy, I; and I3
and the Euler angles are shown in the figure. The top is spun with initial conditions
(b = 0 and # = 6y. Show that # obeys the equation of motion,

s OVer(0)
nj=-2 (3)

where

I2w? (cos 0 — cos b)?
2]1 Sin2 0

Ve (0) = + Mgl cos 6 (4)

Suppose that the top is spinning very fast so that

Igbdg > 4/ Mgl]l (5)

Show that 6 is close to the minimum of Veg(#). Use this fact to deduce that the top
nutates with frequency

wsls
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I

(6)
and draw the subsequent motion.

4. Throw a book in the air. If the principal moments of inertia are Iy > I, > I3,
convince yourself that the book can rotate in a stable manner about the principal axes
e; and es, but not about e,.



Use Euler’s equations to show that the energy E and the total angular momentum
L2 are conserved. Suppose that the initial conditions are such that

L?=2LE (7)

with the initial angular velocity w perpendicular to the intermediate principal axes es.
Show that w will ultimately end up parallel to e; and derive the characteristic time
taken to reach this steady state.

5. A rigid lamina (i.e. a two dimensional object) has principal moments of inertia
about the centre of mass given by,

L= -1  L=W-+1) , L=2 (8)

Write down Euler’s equations for the lamina moving freely in space. Show that the
component of the angular velocity in the plane of the lamina (i.e. \/w? + w?) is constant
in time.

Choose the initial angular velocity to be w = uNe; + Nes. Define tana = wq/wy,
which is the angle the component of w in the plane of the lamina makes with e;. Show
that it satisfies

&+ N?cosasina =0 (9)
and deduce that at time ¢,

w = [uNsech Ntle; + [uNtanh Nt]ey + [Nsech Nt|es (10)

6. The Lagrangian for the heavy symmetric top is
L=3I <62 + (% sin 8) + %]3@ + ¢ cosf)? — Mgl cos b (11)

Obtain the momenta py, ps and p, and the Hamiltonian H (6, ¢, ¢, pg, ps, py). Derive
Hamilton’s equations.

7. A system with two degrees of freedom x and y has the Lagrangian,
L = xy + yi® + iy (12)

Derive Lagrange’s equations. Obtain the Hamiltonian H(z,y, p.,p,). Derive Hamil-
ton’s equations and show that they are equivalent to Lagrange’s equations.



