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Recommended Books and Resources

This is a second course on classical mechanics. It assumes knowledge of the earlier

lecture notes on Dynamics and Relativity.

• L. Hand and J. Finch, Analytical Mechanics

This very readable book covers everything in the course at the right level. It is similar

to Goldstein’s book in its approach but with clearer explanations, albeit at the expense

of less content.

There are also three classic texts on the subject

• H. Goldstein, C. Poole and J. Safko, Classical Mechanics

In previous editions it was known simply as “Goldstein” and has been the canonical

choice for generations of students. Although somewhat verbose, it is considered the

standard reference on the subject. Goldstein died and the current, third, edition found

two extra authors.

• L. Landau an E. Lifshitz, Mechanics

This is a gorgeous, concise and elegant summary of the course in 150 content packed

pages. Landau is one of the most important physicists of the 20th century and this is

the first volume in a series of ten, considered by him to be the “theoretical minimum”

amount of knowledge required to embark on research in physics. In 30 years, only 43

people passed Landau’s exam!

A little known fact: Landau originally co-authored this book with one of his students,

Leonid Pyatigorsky. They subsequently had a falling out and the authorship was

changed. There are rumours that Pyatigorsky got his own back by denouncing Landau

to the Soviet authorities, resulting in his arrest.

• V. I. Arnold, Mathematical Methods of Classical Mechanics

Arnold presents a more modern mathematical approach to the topics of this course,

making connections with the differential geometry of manifolds and forms. It kicks off

with “The Universe is an Affine Space” and proceeds from there...
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1. Newton’s Laws of Motion

“So few went to hear him, and fewer understood him, that oftimes he did,

for want of hearers, read to the walls. He usually stayed about half an hour;

when he had no auditors he commonly returned in a quarter of that time.”

Appraisal of a Cambridge lecturer in classical mechanics, circa 1690

1.1 Introduction

The fundamental principles of classical mechanics were laid down by Galileo and New-

ton in the 16th and 17th centuries. In 1686, Newton wrote the Principia where he

gave us three laws of motion, one law of gravity and pretended he didn’t know cal-

culus. Probably the single greatest scientific achievement in history, you might think

this pretty much wraps it up for classical mechanics. And, in a sense, it does. Given

a collection of particles, acted upon by a collection of forces, you have to draw a nice

diagram, with the particles as points and the forces as arrows. The forces are then

added up and Newton’s famous “F = ma” is employed to figure out where the par-

ticle’s velocities are heading next. All you need is enough patience and a big enough

computer and you’re done.

From a modern perspective this is a little unsatisfactory on several levels: it’s messy

and inelegant; it’s hard to deal with problems that involve extended objects rather than

point particles; it obscures certain features of dynamics so that concepts such as chaos

theory took over 200 years to discover; and it’s not at all clear what the relationship is

between Newton’s classical laws and quantum physics.

The purpose of this course is to resolve these issues by presenting new perspectives

on Newton’s ideas. We shall describe the advances that took place during the 150

years after Newton when the laws of motion were reformulated using more powerful

techniques and ideas developed by some of the giants of mathematical physics: people

such as Euler, Lagrange, Hamilton and Jacobi. This will give us an immediate practical

advantage, allowing us to solve certain complicated problems with relative ease (the

strange motion of spinning tops is a good example). But, perhaps more importantly,

it will provide an elegant viewpoint from which we’ll see the profound basic principles

which underlie Newton’s familiar laws of motion. We shall prise open “F = ma” to

reveal the structures and symmetries that lie beneath.
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Moreover, the formalisms that we’ll develop here are the basis for all of fundamental

modern physics. Every theory of Nature, from electromagnetism and general relativity,

to the standard model of particle physics and more speculative pursuits such as string

theory, is best described in the language we shall develop in this course. The new

formalisms that we’ll see here also provide the bridge between the classical world and

the quantum world.

There are phenomena in Nature for which these formalisms are not particularly

useful. Systems which are dissipative, for example, are not so well suited to these

new techniques. But if you want to understand the dynamics of planets and stars and

galaxies as they orbit and spin, or you want to understand what’s happening at the

LHC where protons are collided at unprecedented energies, or you want to know how

electrons meld together in solids to form new states of matter, then the foundations

that we’ll lay in in this course are a must.

1.2 Newtonian Mechanics: A Single Particle

In the rest of this section, we’ll take a flying tour through the basic ideas of classical

mechanics handed down to us by Newton. More details can be found in the lectures

on Dynamics and Relativity.

We’ll start with a single particle.. A particle is defined to be an object of insignificant

size. e.g. an electron, a tennis ball or a planet. Obviously the validity of this statement

depends on the context: to first approximation, the earth can be treated as a particle

when computing its orbit around the sun. But if you want to understand its spin, it

must be treated as an extended object.

The motion of a particle of mass m at the position r is governed by Newton’s Second

Law F = ma or, more precisely,

F(r, ṙ) = ṗ (1.1)

where F is the force which, in general, can depend on both the position r as well as

the velocity ṙ (for example, friction forces depend on ṙ) and p = mṙ is the momentum.

Both F and p are 3-vectors which we denote by the bold font. Equation (1.1) reduces

to F = ma if ṁ = 0. But if m = m(t) (as it does, for example, in rocket science), then

the form with ṗ is correct. For the rest of these lectures, we will assume that mass is

constant, so ṁ = 0.

General theorems governing differential equations guarantee that, if we are given r

and ṙ at an initial time t = t0, then we can integrate equation (1.1) to determine r(t)

for all t, at least as long as F remains finite. This is the goal of classical dynamics.
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Newton’s second law (1.1) comes with an important caveat: it holds only in an

inertial frame. This is defined to be a frame in which a free particle with ṁ = 0 travels

in a straight line, so that

r = r0 + vt (1.2)

Newtons’s first law is the statement that inertial frames exist.

An inertial frame is not unique. In fact, there are an infinite number of inertial

frames. Let S be one such inertial frame. Then there are 10 linearly independent

transformations S → S ′ such that S ′ is also an inertial frame, which means that if (1.2)

holds in S, then it also holds in S ′. These transformations are

• 3 Rotations: r′ = Or where O is a 3× 3 orthogonal matrix.

• 3 Translations: r′ = r + c for a constant vector c.

• 3 Boosts: r′ = r + ut for a constant velocity u.

• 1 Time Translation: t′ = t+ c for a constant real number c

If motion is uniform in S, then it will also be uniform in S ′. These transformations

make up the Galilean Group under which Newton’s laws are invariant. They will

play a particularly important role in Section 2.3 where we will see that each of these

symmetries of space and time gives rise to an associated conservation law.

As a parenthetical remark, recall from special relativity that Einstein’s laws of motion

are invariant under Lorentz transformations which, together with translations, make

up the Poincaré group. We can recover the Galilean group from the Poincaré group by

pretending that the speed of light is infinite.

1.2.1 Angular Momentum

We define the angular momentum L of a particle and the torque τ acting upon it as

L = r× p and τ = r× F

Note that, unlike linear momentum p, both L and τ depend on where we take the

origin: we measure angular momentum with respect to a particular point.

If we take the cross-product of Newton’s second law (1.1) with r then, using the

fact that ṙ is parallel to p, we can write d
dt

(r × p) = r × ṗ. We then get a version of

Newton’s second law that holds for angular momentum:

τ = L̇ (1.3)
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1.2.2 Conservation Laws

Two trivial, but nonetheless important, conservation laws follow immediately from (1.1)

and (1.3). These are:

• If F = 0 then p is constant throughout the motion

• If τ = 0 then L is constant throughout the motion

Notice that τ = 0 does not necessarily require F = 0, but only r×F = 0. This means

that F must be parallel to r. This is the definition of a central force. An example is

given by the gravitational force that the Sun exerts on the Earth. These seemingly

trivial conservation laws will gain a level of profundity in Section 2.3 where we see how

they are related to the Galilean symmetries described above.

1.2.3 Energy

The concept of “force” is very 17th century. A large part of these lectures will be

devoted on finding different ways to formulate classical mechanics that largely do away

with the notion of force, instead focussing on the more modern concept of energy. (Here

modern means 19th century.)

A particle has kinetic energy T , defined as

T =
1

2
m ṙ · ṙ

We can compute how the kinetic energy changes with time. Invoking Newton’s law

(1.1), we have

dT

dt
= ṗ · ṙ = F · ṙ

Suppose that the particle travels from position r1 at time t1 to position r2 at time t2.

Then the change in kinetic energy is given by

T (t2)− T (t1) =

∫ t2

t1

dT

dt
dt =

∫ t2

t1

F · ṙ dt =

∫ r2

r1

F · dr (1.4)

The final expression, involving the integral of the force over the path, is called the work

done by the force. This simple calculation tells us that the work done is equal to the

change in kinetic energy.
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From now on we will mostly focus on a very special type of force known as a con-

servative force. Such a force depends only on position r, rather than velocity ṙ, and

has the additional property that the work done is independent of the path taken. In

particular, for a closed path, the work done vanishes. A result from Vector Calculus

tells us that ∮
F · dr = 0 ⇔ ∇× F = 0 (1.5)

It is a deep property of flat space R3, proven in Vector Calculus, that (1.5) implies we

may write the force as

F = −∇V (r) (1.6)

for some potential V (r). Systems which admit a potential of this form include gravita-

tional, electrostatic and interatomic forces.

When we have a conservative force, we necessarily have a conservation law for energy.

To see this, return to equation (1.4) which now reads

T (t2)− T (t1) = −
∫ r2

r1

∇V · dr = −V (t2) + V (t1) (1.7)

Rearranging things, we have

T (t1) + V (t1) = T (t2) + V (t2) ≡ E (1.8)

which tells us that E = T + V is also a constant of motion. This is the energy.

Examples

Here are a collection of simple examples, all of which we met in our previous lectures

on classical mechanics.

• The Simple Harmonic Oscillator

This is a one-dimensional system with a force proportional to the distance x to

the origin: F (x) = −kx. This force arises from a potential V = 1
2
kx2. Since F ̸=

0, momentum is not conserved, which is obvious because the particle oscillates

backwards and forwards. And since the system lives in only one dimension,

angular momentum is not defined. But energy E = 1
2
mẋ2 + 1

2
kx2 is conserved.

• The Damped Simple Harmonic Oscillator

We now include a friction term so that F (x, ẋ) = −kx − γẋ. Since F is not

conservative, energy is no longer conserved. This system loses energy until it

comes to rest.
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• A Particle Moving Under Gravity

Consider a particle of mass m moving in 3 dimensions under the gravitational pull

of a much larger particle of mass M . The force is F = −(GMm/r2)r̂ which arises

from the potential V = −GMm/r. Again, the linear momentum p of the smaller

particle is not conserved, but the force is both central and conservative, ensuring

the particle’s total energy E and the angular momentum L are conserved.

1.3 Newtonian Mechanics: Many Particles

It’s easy to generalise the above discussion to many particles: we simply add an index

to everything in sight. We’ll consider N particles, labelled by the index a = 1, . . . , N .

We’ll denote the mass and position of the ath particle as ma and ra respectively. New-

ton’s law (1.1) now gets upgraded to

Fa = ṗa (1.9)

where Fa is the experienced force by the ath particle. The novelty is that, in addition

to external forces forces that act on all particles, there can also be interaction forces

acting between various particles. We assume that the forces only act between pairs of

particles, rather than between three or more particles. (This assumption holds for all

the known laws of physics.) This means that, in general, we can decompose the force

Fa acting on the ath particle as

Fa =
∑
b̸=a

Fab + Fext
a

where Fab is the force acting on the ath particle due to the bth particle, while Fext
a is

the external force on the ath particle.

We can make reveal something interesting by summing over all N particles,∑
a

Fa =
∑

a,bwith b ̸=a

Fab +
∑
a

Fext
a =

∑
a<b

(Fab + Fba) +
∑
a

Fext
a (1.10)

where, in the second equality, we’ve re-written the sum to be over all pairs a < b. At

this stage we invoke another assumption about the interaction forces Fab. We assume

that these forces obey

Fab = −Fba (1.11)

This assumption is important enough to be elevated to the grand sounding Newton’s

third law. It’s famous mantra is: every action has an equal and opposite reaction. For
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our purposes, it means that the first term in (1.10) vanishes and we’re left with∑
a

Fa =
∑
a

Fext
a ≡ Fext (1.12)

To see the physics lurking behind this, we define the total mass M and the centre of

mass R of the system by

M =
∑
a

ma and R =
1

M

∑
a

mara (1.13)

Then using Newton’s second law (1.9), and summing over all particles, we arrive at the

simple formula,

Fext = MR̈ (1.14)

which is identical to Newton’s second law (1.1) for a single particle. This is an important

formula. It tells that the centre of mass of a system of particles acts just as if all the

mass were concentrated there. Practically, it means that it doesn’t matter if you throw

a tennis ball or a very lively cat: the centre of mass of each traces the same path.

Newton’s third law (1.11) sometimes seems like a poor cousin of Newton’s second

law, F = ma. But the calculation above shows its importance. The result (1.14) tells

us that we don’t need to know about the internal constituents of any object to make

progress. You can figure out the motion of the planets around the Sun without knowing

about their internal geophysical dynamics because none of those internal forces matter:

they all just cancel out due Newton’s third law. Equally, you can figure out the motion

of the planets without knowing about the constituent quarks, again because Newton’s

third law tells us that all the interaction forces between the quarks cancel out. In other

words, Newton’s third law makes science possible. It tells us that you don’t have to

sweat the small stuff. You can just focus on the big, important things.

1.3.1 Momentum Revisited

The total momentum is defined to be P =
∑

a pa and our version of Newton’s law

(1.14) can be written as Ṗ = Fext. This immediately gives us a conservation law for

the total linear momentum of a system of particles: P is constant if Fext vanishes.

Similarly, we define total angular momentum to be L =
∑

a La. Previously we showed

that the change of angular momentum is equal to the torque (1.3). We now want a
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version of this equation for the total angular momentum of a system of particles. If we

compute the time derivative, we find

L̇ =
∑
a

ra × ṗa =
∑
a

ra ×

(∑
b ̸=a

Fab + Fext
a

)
=

∑
a,bwith a̸=b

ra × Fba +
∑
a

ra × Fext
a

The last term in this expression is the definition of total external torque:

τ ext =
∑
a

ra × Fext
a

However, that still leaves us with the first term on the right hand side. To get a

version of our previous result (1.3), we would need this term to vanish. But, given our

assumptions so far, there’s no reason for this to happen. In fact, we need yet another

assumption. To see this, we again rewrite this term as a sum over pairs a < b,∑
a,bwith a̸=b

ra × Fba =
∑
a<b

(ra − rb)× Fab

This will vanish if and only if the force Fab is parallel to the line joining to two particles

(ra − rb). We make this assumption. Together with (1.11), this is sometimes referred

to as the strong form of Newton’s third law. When this condition holds, we have

a L̇ = τ ext, which is the version of (1.3) that holds for a system of particles. We

can also immediately find a trivial statement about the conservation of total angular

momentum, namely L is constant if τ ext = 0.

Most forces do indeed obey the strong form of Newton’s third 1

2

Figure 1:

law, with Fab = −Fba and Fab is parallel to (ra − rb). In particular,

both the gravitational and electrostatic forces have this property.

However, at first glance, it appears that some forces do not obey

Newton’s third law. The most famous example is the Lorentz force

acting on two moving particles, each carrying electric charge q. This

force is given by

Fab = qva ×Bb

where va is the velocity of the ath particle and Bb is the magnetic field

generated by the motion of the bth particle. A description of both the Lorentz force law,

and the way a moving charge generates a magnetic field, can be found in the lectures

on Electromagnetism. For now, all we need is the direction of the magnetic field which
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is shown in the figure. This depicts two particles, crossing each other in a “T” . Taking

cross products, the force on particle 1 from particle 2 is schematically of the form

F12 ∼ → × ← = 0 (1.15)

Importantly it vanishes! Meanwhile, the force on particle 2 from particle 1 is non-zero,

and in the direction

F21 ∼ ↑ ×⊗ ∼ ← (1.16)

What’s going on? Above, I just bigged up Newton’s third law and said it was necessary

for science to happen. Does this violation mean that conservation of total linear and

angular momentum is violated? Thankfully, no! We need to realise that the electro-

magnetic field itself carries angular momentum which restores the conservation law.

Once we appreciate this, we’ve got a rather cheap counterexample to Newton’s third

law, little different from an underwater swimmer who can twist and turn and appear to

violate Newton’s third law if we don’t take into account the momentum of the water.

1.3.2 Energy Revisited

The total kinetic energy of a system of many particles is T = 1
2

∑
amaṙ

2
a. There’s a

useful way to write this. We decompose the position vector ra as

ra = R + r̃a

with R the centre of mass (1.13) and r̃a is the distance from the centre of mass to the

particle a. Then, a short calculation shows that the total kinetic energy decomposes as

T =
1

2
MṘ2 +

1

2

∑
a

ma
˙̃r2a (1.17)

Here the would-be cross-term
∑

amaṘ ˙̃ra vanishes on account of the fact that, by

construction,
∑

amar̃a = 0. We see that the kinetic energy splits up into the kinetic

energy of the centre of mass, together with an internal energy describing how the system

is moving around its centre of mass. We can now repeat the calculation that we did

for a single particle and see how the total kinetic energy changes over time. We have

T (t2)− T (t1) =
∑
i

∫
Fext
a · dra +

∑
a̸=b

∫
Fab · dra

We again need to restrict ourselves to conservative forces to find a form of energy

conservation. This time we need two requirements,

• Conservative external forces: Fext
a = −∇aVa(r1, . . . , rN)

• Conservative internal forces: Fab = −∇aVab(r1, . . . , rN)

where ∇a ≡ ∂/∂ra.
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There is a natural form of these conservative forces that results in the strong version

of Newton’s third law, Fab = −Fba together with the requirement that this is parallel

to (ra − rb). This follows for any internal potential satisfying Vab = Vba with

Vab(r1, . . . rN) = Vab(|ra − rb|) (1.18)

Note, in particular, that Vab depends only on the distance between the ath and bth

particles, and doesn’t care less where the other particles sit. We also insist on a similar

restriction for the external forces, Va(r1, . . . , rN) = Va(ria, so that the force on particle

a does not depend on the positions of the other particles. Then, following the steps we

took in the single particle case, we can define the total potential energy V =
∑

a Vi +∑
a<b Vab and we can show that E = T + V is conserved.
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2. The Lagrangian Formalism

When I was in high school, my physics teacher called me down one day after

class and said, “You look bored, I want to tell you something interesting”.

Then he told me something I have always found fascinating. Every time

the subject comes up I work on it. Richard Feynman

Feynman’s teacher told him about the “Principle of Least Action”, one of the most

profound results in physics.

2.1 The Principle of Least Action

First, let’s get our notation right. Part of the power of the Lagrangian formulation over

the Newtonian approach is that it does away with vectors in favour of more general

coordinates. We start by doing this trivially. We rewrite the positions of N particles

with coordinates ri as xA where A = 1, . . . 3N . Then Newton’s equations read

ṗA = − ∂V

∂xA
(2.1)

where pA = mAẋ
A. The number of degrees of freedom of the system is said to be 3N .

These parameterise a 3N -dimensional space known as the configuration space C. Each

point in C specifies a configuration of the system (i.e. the positions of all N particles).

Time evolution gives rise to a curve in C.

The Lagrangian

Define the Lagrangian to be a function of the positions xA and the velocities ẋA of all

the particles, given by

L(xA, ẋA) = T (ẋA)− V (xA) (2.2)

where T = 1
2

∑
AmA(ẋA)2 is the kinetic energy, and V (xA)

Figure 2:

is the potential energy. Note the all-important minus sign

between T and V ! This is what distinguishes the Lagrangian

from the energy (at least in these simplest examples.)

The principle of least action invites us to expand our hori-

zons. Rather than thinking only of the trajectory that obeys

Newton’s equations of motion, we will instead consider all

possible paths at once. We will only stipulate that the path

has some fixed beginning and some fixed end,

xA(ti) = xAinitial and xA(tf ) = xAfinal
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Figure 3: The path of particles in real space (on the left) and in configuration space (on the

right).

Of all these possible paths, only one is the true path taken by the system. The question

is: which one?

To answer this, we assign a number to each path. This number is called the action

S defined as

S[xA(t)] =

∫ tf

ti

L(xA(t), ẋA(t)) dt

The action is a functional (i.e. a function of the path which is itself a function). The

principle of least action is the following result:

Theorem (Principle of Least Action): The actual path taken by the system is an

extremum of S.

Proof: Consider varying a given path slightly, so

xA(t)→ xA(t) + δxA(t)

where we fix the end points of the path by demanding δxA(ti) = δxA(tf ) = 0. Then

the change in the action is

δS = δ

[∫ tf

ti

Ldt

]
=

∫ tf

ti

δL dt

=

∫ tf

ti

(
∂L

∂xA
δxA +

∂L

∂ẋA
δẋA

)
dt

At this point we integrate the second term by parts to get

δS =

∫ tf

ti

(
∂L

∂xA
− d

dt

(
∂L

∂ẋA

))
δxA dt+

[
∂L

∂ẋA
δxA

]tf
ti
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But the final term vanishes since we have fixed the end points of the path so δxA(ti) =

δxA(tf ) = 0. The requirement that the action is an extremum says that δS = 0 for all

changes in the path δxA(t). We see that this holds if and only if

∂L

∂xA
− d

dt

(
∂L

∂ẋA

)
= 0 for each A = 1, . . . 3N (2.3)

These are known as the Euler-Lagrange equations (or sometimes just as Lagrange’s

equations). To finish the proof, we need only show that Lagrange’s equations are

equivalent to Newton’s. From the definition of the Lagrangian (2.2), we have ∂L/∂xA =

−∂V/∂xA, while ∂L/∂ẋA = pA. It’s then easy to see that equations (2.3) are indeed

equivalent to (2.1). □

Some remarks on this important result:

• The principle of least action is a slight misnomer. The proof only requires that

δS = 0, and does not specify whether it is a maxima or minima of S. Since

L = T − V , we can always increase S by taking a very fast, wiggly path with

T ≫ 0, so the true path is never a maximum. However, it may be either a

minimum or a saddle point. So “Principle of stationary action” would be a more

accurate, but less catchy, name. It is sometimes called “Hamilton’s principle”.

• The Lagrangian L is not unique. We may make the transformation

L′ = αL (2.4)

with α ∈ R then the equations of motion remain unchanged. This is also true if

we add a total derivative to the Lagrangian,

L′ = L+
df

dt
(2.5)

for any function f . To see that the last statement is true, we could either plug

L′ into Lagrange’s equations or, alternatively note that the action changes only

by a constant under this transformation and so its stationary points remain the

same.

• The action has dimension [S] = ML2T−1. This is the same as the dimension

of angular momentum. More importantly, it is the same as the dimension of

Planck’s constant ℏ. This last statement underlies a beautiful generalisation of

the action principle to quantum mechanics, due to Feynman, in which the particle

takes all paths with some probability determined by S/ℏ. We will describe this

in Section 4.8.
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As an aside, neither of the transformation (2.4) and (2.5) leave the physics in-

variant in the quantum world. The first transformation (2.4) rescales Planck’s

constant, while the second transformation (2.5) is related to rather subtle and

interesting topological effects that will be discussed in the lectures on Gauge

Theory.

• All the fundamental laws of physics can be written in terms of an action principle.

This includes electromagnetism, general relativity, the standard model of particle

physics, and attempts to go beyond the known laws of physics such as string

theory. For example, (nearly) everything we know about the universe is captured

in the Lagrangian

L =
√
g
(
R− 1

2
FµνF

µν + ψ̄ /Dψ + |Dh|2 + hψ̄ψ − V (h)
)

where the terms carry the names of Einstein, Maxwell (or Yang and Mills), Dirac,

Higgs and Yukawa respectively, and describe gravity, the forces of nature (elec-

tromagnetism and the nuclear forces), the dynamics of particles like electrons and

quarks and the dynamics of the Higgs boson. If you want to understand what the

terms in this equation really mean, then you can find explanations in the lectures

on General Relativity, Electromagnetism, and Quantum Field Theory.

Back to more down-to-earth pursuits, there are three very important reasons for work-

ing with the Euler-Lagrange equations rather than Newton’s. The first is that Euler-

Lagrange equations hold in any coordinate system, while Newton’s are restricted to an

inertial frame. The second is that the Lagrangian approach reveals a deep connection

between symmetries and conservation laws. And the third is the ease with which we

can deal with constraints in the Lagrangian system. In the rest of this section, we look

at each of these in turn, illustrated with plenty of examples.

2.2 Generalised Coordinates

We shall now show that Lagrange’s equations hold in any coordinate system. In fact,

this follows immediately from the action principle, which is a statement about paths

and not about coordinates. But here we shall be a little more pedestrian in order to

explain exactly what we mean by changing coordinates, and why it’s useful. Let

qi = qi(x1, . . . , x3N , t) with i = 1, . . . , 3N

where we’ve included the possibility of using a coordinate system which changes with

time t. Then, by the chain rule, we can write

q̇i =
dqi

dt
=

∂qi

∂xA
ẋA +

∂qi

∂t
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In this equation, and for the rest of this course, we’re using the summation convention

in which repeated indices are summed over. To be a good coordinate system, we should

be able to invert the relationship so that xA = xA(qi, t) which we can do as long as we

have det
(
∂xA/∂qi

)
̸= 0. Then we have,

ẋA =
∂xA

∂qi
q̇i +

∂xA

∂t
(2.6)

Now we can look at what becomes of the Lagrangian L(xA, ẋA) when we substitute in

xA = xA(qi, t). Using (2.6) we have

∂L

∂qi
=

∂L

∂xA
∂xA

∂qi
+

∂L

∂ẋA

(
∂2xA

∂qi∂qj
q̇j +

∂2xA

∂qi∂t

)
(2.7)

while

∂L

∂q̇i
=

∂L

∂ẋA
∂ẋA

∂q̇i
=

∂L

∂ẋA
∂xA

∂qi
(2.8)

where, in the second equality, we “cancelled the dots” to write ∂ẋA/∂q̇i = ∂xA/∂qi

which we can prove by differentiating the expression (2.6) with respect to q̇i. Taking

the time derivative of (2.8) gives us

d

dt

(
∂L

∂q̇i

)
=

d

dt

(
∂L

∂ẋA

)
∂xA

∂qi
+

∂L

∂ẋA

(
∂2xA

∂qi∂qj
q̇j +

∂2xA

∂qi∂t

)
(2.9)

So combining (2.7) with (2.9) we find

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

[
d

dt

(
∂L

∂ẋA

)
− ∂L

∂xA

]
∂xA

∂qi
(2.10)

Equation (2.10) is our final result. We see that if the Euler-Lagrange’ equation is solved

in the xA coordinate system, so that [. . .] on the RHS vanishes, then it is also solved

in the qi coordinate system,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2.11)

Conversely, if (2.11) holds, then the Euler-Lagrange equation is also satisfied in the

xA coordinate system as long as our choice of coordinates is invertible, ensuring that

det
(
∂xA/∂qi

)
̸= 0.

The upshot is that the Euler-Lagrange equations hold in any coordinate system. This

is in contrast to Newton’s equations which are only valid in an inertial frame.
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In our original Cartesian coordinates, the momentum was related to the velocity by

pA =
∂L

∂ẋA

Now we have a more general set of coordinates at our disposal. Nonetheless, the

analogous quantity plays an important role. We define

pi =
∂L

∂q̇i
(2.12)

This is known as the generalised momentum conjugate to qi. Note that our notation has

become a little subtle here: pA and pi can be very different object, but are distinguished

only by the letter we’ve chosen to label the index. In practice, this won’t lead to much

ambiguity when solving specific problems. In terms of the generalised momentum pi,

the Euler-Lagrange equations become

∂pi
∂t
− ∂L

∂qi
= 0 (2.13)

We’ll meet many examples of generalised coordinates in these lectures. But to get us

going, here are two examples that we’ve seen before, but now phrased in the Lagrangian

language .

An Example: Polar Coordinates

Consider a particle moving in R3 with Cartesian coordinates x = (x, y, z) and a general

potential V (x). The Lagrangian is

L =
1

2
mẋ2 − V (x)

We can work instead in spherical polar coordinates, defined by

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. We can substitute this change of variables directly

into the Lagrangian to get

L = 1
2
m(ṙ2 + r2θ̇2 + r2 sin2 θ ϕ̇2)− V (r, θ, ϕ) (2.14)

The generalised momenta (2.12) are

pr = mṙ , pθ = mr2θ̇ , pϕ = mr2 sin2 θϕ̇

We can use this form of the Lagrangian to immediately derive the equations of motion

in polar coordinates. We’ll see a number of uses for this as we proceed.
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2.2.1 Rotating Coordinate Systems

Consider a free particle with Lagrangian given by

L = 1
2
mẋ2

with x = (x, y, z). Now measure the motion of the particle with respect to a coordinate

system which is rotating with angular velocity ω = (0, 0, ω) about the z axis. If

x′ = (x′, y′, z′) are the coordinates in the rotating system, we have the relationship

x′ = x cosωt+ y sinωt , y′ = y cosωt− x sinωt , z′ = z (2.15)

Then we can substitute these expressions into the Lagrangian to find L in terms of the

rotating coordinates,

L = 1
2
m[(ẋ′ − ωy′)2 + (ẏ′ + ωx′)2 + ż2] = 1

2
m(ẋ′ + ω × x′)2 (2.16)

In this rotating frame, we can use Lagrange’s equations to derive the equations of

motion. Taking derivatives, we have

∂L

∂x′ = m(ẋ′ × ω − ω × (ω × x′)) and
d

dt

(
∂L

∂ẋ′

)
= m(ẍ′ + ω × ẋ′)

so Lagrange’s equation reads

d

dt

(
∂L

∂ẋ′

)
− ∂L

∂x′ = 0 ⇒ mẍ′ = −mω × (ω × x′)− 2mω × ẋ′ (2.17)

The first and second terms on the right-hand side are the centrifugal and Coriolis

forces respectively: they are examples of “fictitious forces”, so called because they’re a

consequence of the reference frame, rather than any interaction.

The centrifugal force Fcent = −mω × (ω × x′) points outwards in the plane perpen-

dicular to ω with magnitude mω2|x′
⊥| = m|v⊥|2/ |x′

⊥| where ⊥ denotes the projection

perpendicular to ω.

The Coriolis force Fcor = −2mω × ẋ′ is responsible for the large scale circulation

of oceans and the atmosphere. For a particle travelling on the surface of the rotating

earth, the direction of the Coriolis force is drawn in figure 4. We see that a particle

thrown in the northern hemisphere will be seen to rotate in a clockwise direction; a

particle thrown in the southern hemisphere rotates in an anti-clockwise direction. For

a particle moving along the equator, the Coriolis force points directly upwards and

competes with gravity.
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Particle Velocity

Force parallel to the Earth’s surface

ω

Figure 4: In the northern hemisphere, a particle is deflected in a clockwise direction; in the

southern hemisphere in an anti-clockwise direction.

We previously derived the expressions for the centrifugal and Coriolis forces in our

earlier course on classical mechanics. There we introduced a time-dependent basis of

vectors, appropriate to describe what happens in the rotating frame and, after some

manipulations, derived the equation of motion (2.17). The derivation using the La-

grangian is somewhat easier, largely because we have to think less: we just plug in

the coordinate substitution (2.15) and go, with all the subtleties of which frame we’re

working in are dealt by the Lagrangian.

2.2.2 Joseph-Louis Lagrange (1736-1813)

“His voice is very feeble, at least in that he does not become heated; he

has a very pronounced Italian accent and pronounces the s like z ... The

students, of whom the majority are incapable of appreciating him, give him

little welcome, but the professors make amends for it.”

Fourier analysis of Lagrange

Lagrange started off life studying law but changed his mind and turned to mathe-

matics after reading a book on optics by Halley (of comet fame). Despite being mostly

self-taught, by the age of 19 he was a professor in his home town of Turin.

He stayed in Italy, somewhat secluded, for the next 11 years although he commu-

nicated often with Euler and, in 1766, moved to Berlin to take up Euler’s recently

vacated position. It was there he did his famous work on mechanics and the calculus of

variations that we’ve seen above. In 1787 he moved once again, now to Paris. He was

just in time for the French revolution and only survived a law ordering the arrest of
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all foreigners after the intervention of the chemist Lavoisier who was a rather powerful

political figure. (One year later, Lavoisier lost his power, followed quickly by his head.)

Lagrange published his collected works on mechanics in 1788 in a book called “Mechanique

Analytique”. He considered the work to be pure mathematics and boasts in the intro-

duction that it contains no figures, thereby putting the anal in analytique.

2.3 Symmetries and Conservation Laws

When approaching any problem, the first thing that you should do is look for conserved

quantities. One of the advantages of the Lagrangian approach is that conservation laws

are intimately tied to symmetries. The link, as we now explain, is through an important

and beautiful theorem due to Emmy Noether.

Let’s start with a definition. A function F (qi, q̇i, t) of the coordinates, their time

derivatives and (possibly) time t is called a conserved quantity if the total time derivative

vanishes

dF

dt
=

n∑
j=1

(
∂F

∂qj
q̇j +

∂F

∂q̇j
q̈j
)

+
∂F

∂t
= 0

whenever qi(t) satisfy Lagrange’s equations. Conserved quantities are also called con-

stants of motion, because F remains constant along the path followed by the system.

We’ll meet many conserved quantities in these lectures (and, indeed, in subsequent

lectures). Here are two of the most common and the most important:

Conservation of (Generalised) Momentum

Suppose that the Lagrangian L depends only on the time derivative of some coordinate,

but not on the coordinate itself, meaning that ∂L/∂qj = 0 for some qj. Then qj is said

to be ignorable. (Sometimes qj is said to be cyclic.) Then the corresponding generalised

momentum,

pj =
∂L

∂q̇j
(2.18)

is conserved.

The proof of this statement is straightforward. We have

dpj
dt

=
d

dt

(
∂L

∂q̇j

)
=
∂L

∂qj
= 0

where, in the second equality, we have used the Euler-Lagrange equation (2.11).
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If our chosen coordinates qi coincide with our original Cartesian coordinates xA, then

the conservation law described above is very intuitive. Suppose that a particle moves in

R2 in a potential V (x), with x = (x, y). Then if V (x) is independent of one coordinate

– say y – then the momentum in that direction, py, will be conserved. This is simply

because the force is F = −∇V and if ∂V/∂y = 0 then there’s no force in the y-direction.

However, the conservation law above is more general since it applies to generalised

coordinates, not just Cartesian coordinates. Here is another simple example to illustrate

the basic idea. We’ll stick with a particle moving in R2, but now we work in polar

coordinates, defined by

x = r cosϕ and y = r sinϕ

Following our discussion of generalised coordinates in Section 2.2, we can simply sub-

stitute this into the Lagrangian to get

L =
1

2
m(ẋ2 + ẏ2)− V (x) =

1

2
m(ṙ2 + r2ϕ̇2)− V (r, ϕ)

Suppose now that the potential is rotationally invariant, so ∂V/∂ϕ = 0. Then the

result above tells us that the generalised momentum pϕ is conserved, where

pϕ =
∂L

∂ϕ̇
= mr2ϕ̇

But this is something very familiar: it is just the angular momentum about the origin.

Conservation of Energy

Our second example arises when L does not depend explicitly on time t, so that ∂L/∂t =

0. In this case, we have the constant of motion

E = q̇j
∂L

∂q̇j
− L (2.19)

where, as always, we’re employing the summation convention in the first term. As the

name suggests, this constant of motion is identified as the energy of the system.

The proof that E is conserved is again of the plug-it-in-and-see variety. We have

dE

dt
= q̈j

∂L

∂q̇j
+ q̇j

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
q̇j − ∂L

∂q̇j
q̈j

=

[
d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj

]
q̇j

where, by assumption, a would-be ∂L/∂t term does not appear in the first line. We

see that the final expression in square brackets vanishes whenever the Euler-Lagrange

equations (2.11) hold.
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As these lectures progress, we’ll get more intuition for why E should be identified as

energy. But, for now, we can just look at our simplest example of a particle moving in

the presence of a potential,

L =
1

2
mẋ2 − V (x) ⇒ E = mẋ2 − L =

1

2
mẋ2 + V (x)

We see that we do indeed recover the familiar expression for energy.

One final comment: when the energy is written as a function of qi and pi, it is known

as the Hamiltonian of the system and denoted as H. We’ll learn more about this in

Section 4.

2.3.1 Noether’s Theorem

We now turn to Noether’s theorem, which relates symmetries of the action to conser-

vation laws. To understand this, we first need to define more carefully what we mean

by a symmetry.

Roughly speaking, a symmetry is a way to change the dynamical variables so that

the value of the Lagrangian remains unchanged. To quantify this, we first introduce

the idea of a one-parameter family of maps

qi(t)→ qi(s, t) s ∈ R

such that qi(0, t) = qi(t). Then this transformation is said to be a continuous symmetry

of the Lagrangian L if

∂

∂s
L(qi(s, t), q̇i(s, t), t) = 0

Noether’s theorem states that, for each such continuous symmetry, there exists a con-

served quantity.

Proof of Noether’s Theorem: The prof is again straightforward, once you know

what you’re looking for. Differentiating the Lagrangian with respect to the parameter

s, we have

∂L

∂s
=
∂L

∂qi
∂qi

∂s
+
∂L

∂q̇i
∂q̇i

∂s
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Evaluating this at s = 0, and using the fact that the parameter s labels a symmetry,

we have

0 =
∂L

∂s

∣∣∣∣
s=0

=
∂L

∂qi
∂qi

∂s

∣∣∣∣
s=0

+
∂L

∂q̇i
∂q̇i

∂s

∣∣∣∣
s=0

=
d

dt

(
∂L

∂q̇i

)
∂qi

∂s

∣∣∣∣
s=0

+
∂L

∂q̇i
∂q̇i

∂s

∣∣∣∣
s=0

(By Lagrange)

=
d

dt

(
∂L

∂q̇i
∂qi

∂s

∣∣∣∣
s=0

)
(2.20)

This tells us that the quantity

Q =
∂L

∂q̇i
∂qi

∂s

∣∣∣∣
s=0

(2.21)

is constant for all time. This is our conserved quantity. □

Noether’s theorem links two rather different ideas: symmetry and conservation.

Moreover, the theorem is constructive. It doesn’t just tell us there there is some

conserved quantity associated to a symmetry. It gives us an explicit expression for it,

namely (2.21). Therein lies its power.

Below, we will explain how Noether’s theorem relates to the conservation of momen-

tum, angular momentum, and energy. At heart, these results are only mildly different

from the stories of conservation of (generalised) momentum and energy that we’ve just

seen, albeit highlighting the symmetry aspect somewhat more.

However, as we proceed deeper into the laws of physics, we will see more intricate and

subtle examples of Noether’s theorem at play. In fact, it turns out that all conservation

laws that we know of in the Standard Model and General Relativity are related to sym-

metries through Noether’s theorem. This includes the conservation of electric charge

and the conservation of particles such as protons and neutrons, collectively known as

baryons.

Finally, a couple of caveats. First, Noether’s theorem necessarily holds for continuous

symmetries, meaning those that are parameterised by a parameter s ∈ R. There are

also discrete symmetries in nature which don’t depend on a continuous parameter. For

example, many theories are invariant under reflection, also known as parity, which acts

as ri → −ri. These types of symmetries do not give rise to conservation laws in classical

physics (although they do in quantum physics).
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The second caveat is that although all known conservation laws in Nature arise, via

Noether’s theorem, from conservation laws, it’s not quite true that this is the only way

in which conservation laws can arise. There is a second way in which things can be

conserved, associated to topology. We won’t mention this in these lectures, but you

can read more in the lectures on Solitons.

With these comments and caveats in place, let’s now turn to some simple applications

of Noether’s theorem.

Homogeneity of Space and Momentum

Consider the closed system of N particles discussed in Section 1 with Lagrangian

L = 1
2

N∑
i=1

miṙ
2
i − V (|ri − rj|) (2.22)

This Lagrangian has the symmetry of translation. This means that the Lagrangian is

unchanged for any ri → ri + sn for any vector n and for any real number s, so that

L(ri, ṙi, t) = L(ri + sn, ṙi, t)

This is the statement that space is homogeneous and a translation of the system by

sn does nothing to the equations of motion. These translations are elements of the

Galilean group that we met in section 1.2. From Noether’s theorem, we can compute

the conserved quantity associated with translations. It is

Q =
∑
i

∂L

∂ṙi
· n =

∑
i

pi · n (2.23)

which we recognise as the the total linear momentum in the direction n. Since this

holds for all n, we conclude that
∑

i pi is conserved. But this is very familiar. It is

simply the conservation of total linear momentum. To summarise

Homogeneity of Space ⇒ Translation Invariance of L

⇒ Conservation of Total Linear Momentum

This statement should be intuitively clear. One point in space is much the same as any

other. So why would a system of particles speed up to get over there, when here is just

as good? This manifests itself as conservation of linear momentum.
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Isotropy of Space and Angular Momentum

The isotropy of space is the statement that a closed system, described by the Lagrangian

(2.22), is invariant under rotations around an axis n̂, so all ri → r′i are rotated by the

same amount. To work out the corresponding conserved quantities it will suffice to

work with the infinitesimal form of the rotations

ri → ri + δri = ri + αn̂× ri (2.24)

where α is considered infinitesimal. To see that this is indeed a rotation, you could

calculate the length of the vector and notice that it’s preserved to linear order in α.

Then we have

L(ri, ṙi) = L(ri + αn̂× ri, ṙi + αn̂× ṙi)

which gives rise to the conserved quantity∑
i

∂L

∂ṙi
· (n̂× ri) =

∑
i

n̂ · (ri × pi) = n̂ · L

This is the component of the total angular momentum in the direction n̂. Since the

vector n̂ is arbitrary, we get the result

Isotropy of Space ⇒ Rotational Invariance of L

⇒ Conservation of Total Angular Momentum

Homogeneity of Time and Energy

Finally, we turn to the symmetry of time translation. The laws of physics are the same

today as they were yesterday. Indeed, as far as we can tell, the laws of physics are the

same today as they were during the big bang. In mathematical language, this means

L is invariant under t→ t+ s or, in other words, ∂L/∂t = 0.

But we already saw in (2.19) that any system with ∂L/∂t = 0 has a conserved energy

E = q̇i(∂L/∂q̇i)− L

This is telling us that the existence of a conserved quantity which we call energy can

be traced to the homogeneous passage of time. Putting this together with our previous

result, we see that

Time is to Energy as Space is to Momentum

Recall from the lectures on Special Relativity that energy and 3-momentum fit together

to form a 4-vector which rotates under spacetime transformations. Here we see that

the link between energy-momentum and time-space exists even in the non-relativistic

framework of Newtonian physics. You don’t have to be Einstein to see it. You just

have to be Emmy Noether.
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2.4 Lagrangians for the Laws of Physics

Having developed these tools, we now apply them to a few examples. The examples

that we’ve chosen in this section all come from the fundamental laws of physics: gravity,

electromagnetism, special relativity and, as we will see, a kind of warm-up example for

general relativity. If, instead, you’re more interested in mechanical kinds of problems,

like pendulum, or beads sliding on wires, then you will have to wait until Section 2.5

where we first develop the machinery of constraints.

2.4.1 Gravity: The Two Body Problem

We start by looking afresh at something that we studied in some detail in our previous

course: two objects interacting through a central force.

The most famous example of this type is the gravitational interaction between two

particles. Applied to objects in our solar system, this leads to the elliptic orbits of

planets and the hyperbolic orbits of comets. Our first task is to frame this famous

physics problem in the Lagrangian setting.

We take the two particles to have masses m1 and m2, and positions r1 and r2.

We start by rewriting the Lagrangian in terms of the centre of mass R, defined by

(m1 + m2)R = m1r1 + m2r2, and the separation r12 = r1 − r2. For now, we will work

with an arbitrary potential of the form V (|r12|)

L = 1
2
m1ṙ

2
1 + 1

2
m2ṙ

2
2 − V (|r12| = 1

2
(m1 +m2)Ṙ

2 + 1
2
µṙ212 − V (|r12|) (2.25)

where

µ =
m1m2

m1 +m2

is the reduced mass. The Lagrangian splits into a piece describing the centre of mass

R and a piece describing the separation. We’d already anticipated that this would

happen back in (1.17). From now on we neglect the centre of mass piece and focus on

the separation.

We know from Noether’s theorem that, because the Lagrangian has rotational sym-

metry, the angular momentum

J = r12 × p12

is conserved, where p12 is the momentum conjugate to r12. (In Section 1, and in

most other courses, we called the angular momentum vector L. But in the world of
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Lagrangians, the letter L has already been taken. The letter J is our fall back option.)

Since J is perpendicular to r12, the motion of the orbit must lie in a plane perpendicular

to J. This allows us to turn the 3d problem described by the Lagrangian (2.25) into a

2d problem. Using polar coordinates (r, ϕ) in the plane, where r = |r12|, the Lagrangian

becomes

L = 1
2
µ(ṙ2 + r2ϕ̇2)− V (r) (2.26)

To make further progress, notice that ϕ is ignorable so we can once again invoke

Noether’s theorem. This time it tells us that the magnitude of angular momentum

J = µr2ϕ̇ (2.27)

is conserved. To figure out the motion we calculate Lagrange’s equation for r from

(2.26)

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= µr̈ − µrϕ̇2 +

∂V

∂r
= 0

We then eliminate ϕ̇ from this equation by writing it in terms of the constant J to get

a differential equation for the orbit purely in terms of r,

µr̈ = − ∂

∂r
Veff(r)

where the effective potential is given by

Veff(r) = V (r) +
J2

2µr2

The last term is known as the angular momentum barrier.

There is an important point here: we must substitute the conserved quantity J

into the equations of motion. If you substitute J for ϕ̇ directly into the Lagrangian

(2.26), you will derive an equation that looks like the one above, but you’ll get a

minus sign wrong! This is because the Euler-Lagrange equations are derived under the

assumption that r and ϕ are independent and this is no longer the case if you impose

at the Lagrangian level that r and ϕ are related by (2.27).

If, however, we really want a Lagrangian that describes the dynamics for some fixed

angular momentum J , then we can simply work with the effective potential,

L =
1

2
µṙ2 − Veff(r)
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Figure 5: The effective potential for two bodies interacting gravitationally.

The next step is to note that, because ∂L/∂t = 0, energy is conserved. This means

that

E = 1
2
µṙ2 + Veff(r) (2.28)

is a constant of motion. We can invert this to get an expression for the time in terms

of the distance,

t− t0 =

√
µ

2

∫
dr√

E − Veff(r)
(2.29)

If we succeed in writing the solution to a problem in terms of an integral like this then

we say we’ve “reduced the problem to quadrature”. It’s kind of a cute way of saying

we can’t do the integral. But at least we have an expression for the solution that we

can play with or, if all else fails, we can simply plot numerically.

elliptic orbit circular orbit hyperbolic orbit

Up to this point the analysis is for an arbitrary potential V (r). At this point let’s

specialise to the case of two bodies interacting gravitationally with

V (r) = −Gm1m2

r
(2.30)

where G is Newton’s constant. For this potential, the different solutions were studied

in our previous Dynamics and Relativity course, where Kepler’s laws were derived. The

orbits fall into two categories: elliptic if E < 0 and hyperbolic if E > 0 as shown in

figure 5.
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It’s worth noting the methodology we used to solve this problem. We started with

6 degrees of freedom describing the positions of two particles. Translational invariance

allowed us to separate out the centre of mass, reducing this to 3 degrees of freedom

describing the distance between the particles. We then used rotational invariance to

deduce the existence of the conserved angular momentum J, using the conservation of

the direction of J to reduce to 2 degrees of freedom (r and ϕ), and conservation of the

magnitude |J| to reduce to a single variable r. Finally the fact that the Lagrangian is

independent of time meant that E is also conserved and this allowed us to solve the

problem. This nicely illustrates just how important symmetries, and their attendant

conservation laws, are in helping us solve problems.

Finally, this is a good time to point out that the Lagrangian approach isn’t a magic

bullet that allows us to solve problems without any work. Pretty much all the steps

described above, including the methodology of focussing on conservation laws, follow

the analysis of our earlier Dynamics and Relativity course. The Lagrangian merely

allows us to capture the equations of motion in a compact form, and then identify the

conservation laws through symmetries. Arguably, for this example, this isn’t a huge

advantage. But it really comes into its own as examples get more complicated, where

the Lagrangian is sometimes significantly simpler than the equations of motion.

2.4.2 Gravity Again: The Restricted Three Body Problem

As our next example, we stick with the gravitational theme, but this time we up the ante

and consider three particles instead of two. Now the problem becomes more challenging.

In fact, in general the problem of three or more particles interacting through gravity

does not have a closed solution and we must resort to numerical methods. However, it

turns out that, in particular limits we can make progress with approximations. That

is what we’ll focus on here.

We’ll take our particles to have masses m1, m2 and m3. The limit of interest here is

when m3 ≪ m1,m2. Then it is a good approximation to first solve for the motion of

m1 and m2 interacting alone, and then subsequently solve for the motion of m3 in the

time dependent potential set up by m1 and m2. We will now see how this works.

For simplicity, let’s assume m1 and m2 are in a circular orbit with, the angular

coordinate increasing as ϕ = ωt. We saw in the previous section that the circular orbit

occurs for ∂Veff/∂r = 0, from which we get an expression relating the angular velocity

of the orbit to the distance

ω2 =
G(m1 +m2)

r3
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which is a special case of Kepler’s third law. Let’s further assume that m3 moves in

the same plane as m1 and m2. (This is pretty good assumption for the sun-earth-moon

system.) To solve for the motion of m3 in this background, we use our ability to change

coordinates. We will go to a frame that rotates with m1 and m2, with the centre of

mass at the origin.

We saw in Section 2.2.1 how to write down the Lagrangian in a rotating frame. We

pick our frame so that the first particle, with mass m1, is a distance rµ/m1 from the

origin, while the second is a distance rµ/m2 from the origin in the opposite direction.

We can then write down the Lagrangian for the third particle, following (2.16)

L = 1
2
m3

[
(ẋ− ωy)2 + (ẏ + ωx)2

]
− V

Here V is the gravitational potential for the third particle interacting with the first two

V = −Gm1m3

r13
− Gm2m3

r23

where the separations are given by

r213 = (x+ rµ/m1)
2 + y2 , r223 = (x− rµ/m2)

2 + y2 (2.31)

Be aware that x and y are the dynamical coordinates in this system, while r is the

fixed separation between m1 and m2. The equations of motion arising from L are

m3ẍ = 2m3ωẏ +m3ω
2x− ∂V

∂x

m3ÿ = −2m3ωẋ+m3ω
2y − ∂V

∂y
(2.32)

The full solutions to these equations are interesting and complicated. In fact, in 1889,

Poincaré studied the restricted three-body system and discovered the concept of chaos

in dynamical systems for the first time. (There is a cute story in which Poincaré’s

discovery led him to win 2,500 krona and lose 3,500 krona). Here we’ll be less ambitious

and try to find solutions of the form ẋ = ẏ = 0. This is where the third body sits

stationary to the other two and the whole system rotates together. Physically, this

arises because the centrifugal force of the third body exactly cancels its gravitational

force. The equations we have to solve are

m3ω
2x =

∂V

∂x
= Gm1m3

x+ rµ/m1

r313
+Gm2m3

x− rµ/m2

r323
(2.33)

m3ω
2y =

∂V

∂y
= Gm1m3

y

r313
+Gm2m3

y

r323
(2.34)
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Figure 6: The three solutions sitting on y = 0.

As we’ll now show, there are five solutions to these equations. First, suppose that y = 0

so that the particle with mass m3 sits on the same line as those with masses m1 and

m2. Then we have to solve the algebraic equation

ω2x = Gm1
x+ rµ/m1

|x+ rµ/m1|3
+Gm2

x− rµ/m2

|x− rµ/m2|3
(2.35)

There are three solutions to this equation. To see this, we can plot the left-hand and

right-hand sides of these equations, as shown in Figure 6. This shows that there is one

solutions sit in each of the regimes,

x < − rµ
m1

, − rµ
m1

< x <
rµ

m2

, x >
rµ

m2

(2.36)

Next, we look for solutions with y ̸= 0. From (2.34) we have

Gm2

r323
= ω2 − Gm1

r313

which we can substitute into (2.33). After a little algebra, we find the condition for

solutions to be

ω2 =
G(m1 +m2)

r313
=
G(m1 +m2)

r323
(2.37)

which means that we must have r13 = r23 = r. This means that the three particles

form an equilateral triangle. There are two such points.

The five stationary points are shown in Figure 7. They are known as Lagrange points.

The three solutions (2.36) that have y = 0 are called L1, L2 and L3. Those with y ̸= 0,

that solve (2.37), are called L4 and L5.
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Figure 7: The five Lagrange points in the Earth-Sun system. (This figure was made as part

of the educational outreach programme for the WMAP satellite.)

For the Earth-Sun system, we make good use of the Lagrange points L1 and L2 to

place satellites in orbits that are a constant distance from the Sun, and hence at a con-

stant temperature. Solar observatories sit at L1, between us and the Sun. Meanwhile,

more cosmologically minded satellites sit at L2. In the past, this was home to WMAP

and PLANCK, important missions that measured the cosmic microwave background

radiation in exquisite detail. (You can read more about what they found in the lectures

on Cosmology.) The James Webb Telescope is one of the current inhabitants of L2.

We’ll return to the Lagrange points in Section 2.6.3 where we analyse their stability.

The Lagrange point L3 hasn’t yet found any use in science, but it has found plenty

of use in science fiction. It’s a popular location for authors to place a planet, hidden

at all times from the Earth by the Sun.

2.4.3 A Particle in an Electromagnetic Field

We turn now to electromagnetism. Of course, if we’re just interested in the Coulomb

force between particles then we’ve already done the work in the previous section be-

cause, famously, the Coulomb force has the same inverse-square form as the force of

gravity. Here, instead, we’ll think of electromagnetism as an external force acting on a

particle.

Our goal is to write down the Lagrangian that describes a particle carrying electric

charge q moving in a background electric field E and magnetic field B. As we now

explain, there’s actually a small surprise waiting for us in this Lagrangian.
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Recall from our course on Electromagnetism that the electric field E and the magnetic

field B can be written in terms of a vector potential A(x, t) and a scalar potential

ϕ(x, t),

E = −∇ϕ− ∂A

∂t
and B = ∇×A (2.38)

We will show that the force on a particle of electric charge q is captured by the La-

grangian

L =
1

2
mẋ2 − qϕ+ qẋ ·A (2.39)

The surprise is that this Lagrangian depends on the potentials ϕ and A, rather than

the electric and magnetic field themselves. When we first encounter these potentials in

electromagnetism, they’re nothing more than a useful trick to allow us to solve for two

of the four Maxwell equations. However, as we look at more advanced theories, both

ϕ and A become more and more indispensable. The Lagrangian approach to electro-

magnetism is the first place we see this: it’s not possible to write down a Lagrangian

in terms of E and B. Instead, we’re obliged to use the potentials ϕ and A.

Next, we compute the canonical momentum of the particle. It is

p =
∂L

∂ẋ
= mẋ + qA (2.40)

Here there’s another minor surprise. The canonical momentum p is not the usual mass

times velocity. It is altered in the presence of a magnetic field. We’ll say a little more

about this below.

From here, it’s straightforward to derive the Euler-Lagrange equation. We have

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
=

d

dt
(mẋ + qA) + q∇ϕ− q∇(ẋ ·A) = 0

To disentangle this, it’s useful to work with indices a, b = 1, 2, 3 on the Cartesian

coordinates, and rewrite the equation of motion as

mẍa = −q
(
∂ϕ

∂xa
+
∂Aa
∂t

)
+ q

(
∂Ab
∂xa
− ∂Aa
∂xb

)
ẋb

Happily, the potentials ϕ and A have arranged themselves back into the combinations

E and B in this expression. This is simplest to see if we rewrite out original definition

(2.38) in index form, so it reads

Ea = − ∂ϕ

∂xa
− ∂Aa

∂t
and Bc = ϵcab

∂Ab
∂xa

⇒ ∂Ab
∂xa
− ∂Aa
∂xb

= ϵabcBb
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The equation of motion then becomes

mẍa = eEa + qϵabcẋ
bBc

or, reverting to vector notation,

mẍ = q (E + ẋ×B) (2.41)

This is the Lorentz force law that we met in our previous course on Classical Mechanics.

We saw from the beginning that the Lagrangian formulation works is well adapted to

conservative forces that can be written in terms of a potential. This means that it’s no

surprise to see the potential ϕ in the Lagrangian (2.39) giving rise to the electric part of

the Lorentz force law (2.4.3). But we also mentioned that the Lagrangian formalism is

no good at dealing with friction-type forces which are velocity dependent, like F = −kẋ.

Here we see that there are other velocity-dependent forces, such as that arising from

a magnetic field, that can be nicely captured in the Lagrangian framework. Part of

the reason for this is that the magnetic part of the Lorentz force law does no work,

so energy remains conserved. But, in addition, there is the subtlety that we already

mentioned that the Lagrangian necessarily depends on A and cannot be expressed in

terms of the original magnetic field B, even though the final equation of motion only

depends on ∇×A = B.

The fact that the Lagrangian (2.39) depends on ϕ and A might ring alarm bells. This

is because neither ϕ nor A are uniquely defined. We’re always at liberty to change these

by transformations of the form

ϕ→ ϕ− ∂χ

∂t
, A→ A +∇χ (2.42)

for any function χ(x, t). This is known as a gauge transformation. Using the definitions

(2.38), it’s straightforward to show that the electric and magnetic fields E and B are

unchanged under gauge transformations. In fact, it should be the case that nothing

physical depends on the “choice of gauge”, meaning the choice of the function χ.

We’ve already seen that the equation of motion (2.4.3) derived from our Lagrangian

(2.39) is independent of gauge transformations, since it depends only on E and B. But

we might be nervous about the fact that the Lagrangian itself does depend on χ. We

can, however, alleviate these nerves. Under a gauge transformation (3.66), we have

L→ L+ q
∂χ

∂t
+ qẋ · ∇χ = L+ q

dχ

dt

The Lagrangian changes by a total derivative. This means that the action S =
∫
dt L

changes only by a constant which explains why the equations of motion are independent

of the function χ.
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Note, however, that the canonical momentum (2.40) does depend on the choice of

gauge. This means that the momentum p can’t have a physical meaning because it takes

different values depending on which potentials you choose to describe the electric and

magnetic fields. Meanwhile, the usual momentum mẋ, sometimes called the mechanical

momentum in this context, is physical but isn’t conjugate to the position x. At this

point, this may sound like nothing more than a pedantic mathematical observation,

but it has many interesting consequences that arise when we describe the quantum

mechanics of particles in magnetic fields.

An Example: A Particle in a Uniform Magnetic Field

We can build some intuition for some of the peculiarities of the Lagrangian by looking

at the simple example of a particle moving in a uniform magnetic field B = (0, 0, B).

First, let’s remind ourselves of the physics, and we’ll then see what this looks like from

the Lagrangian perspective. The Lorentz force law reads

ẍ = −qBẏ , ÿ = qBẋ , z̈ = 0 (2.43)

The particle travels at some constant speed in the z-direction. This is boring and we’ll

ignore it. More interesting is the motion in the (x, y)-plane. The equations are solved

by

x = x0 +R sin(ωt) and y = y0 +R cos(ωt) (2.44)

Here x0, y0 and R are all integration constants, while the frequency ω is given by

ω =
qB

m

This is known as the cyclotron frequency. We see that the particle goes in circles in the

(x, y)-plane.

Now let’s return to the Lagrangian. Obviously we will ultimately end up with the

same equations of motion (2.43) and solution (2.44). But our interest here is what

happens in the intermediate steps. In particular, to build the Lagrangian we much first

find a vector potential A such that B = ∇ ×A. There are many choices, related by

gauge transformations. For example, we could pick

A = (−By, 0, 0) (2.45)

At first glance, there’s something a little disconcerting about this. Our magnetic field

is uniform, so it looks as if our system has translational invariance in all directions.

But the choice of the vector potential (2.45) is not translationally invariant in the y-

direction. In fact, it’s simple to convince yourself that there is no choice of A that

respects all the symmetric of B.
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Given the relationship between translational invariance and momentum conservation

that may raise some alarm bells. It means that choosing (2.45) has the consequence

that py is not conserved, even though the magnetic field itself is translationally invariant

in the y-direction.

From (2.40), the momenta p are

px = mẋ− qBy and py = mẏ

The fact that A in (2.45) depends on y means that py is not conserved. But that’s ok!

After all, we’ve seen that the particles go in circles (2.44), so it’s certainly true that ẏ is

not a constant of motion. In fact, the lack of py conservation turns out to be a feature,

not a bug. This is because, as we’ve seen above, the solution is that the particle travels

in circles. But A is independent of x, so px is conserved. But px = mẋ + qAx and

gets the additional contribution from Ax. So while it’s certainly true that ẋ is not a

constant of motion, it’s simple to check that the canonical momentum px is a constant

of motion when evaluated on the circle solution (2.44).

The upshot is that the need to write the Lagrangian in terms of A, rather than

B, tallies nicely with Noether’s theorem. A naive application of Noether’s theorem

might suggest that momentum is conserved when the magnetic field is translationally

invariant. In fact, things are a little more subtle.

Lagrangians for Fields

In these lectures, we restrict ourselves to the classical dynamics of particles. But,

ultimately, the laws of physics do not describe particles: they describe fields. One of

the most important aspects of the principle of least action is that it generalises very

easily to fields.

For particles, the dynamical degrees of freedom are things like the position x(t) which,

as the notation shows, depend on time. Correspondingly, the action is an integral over

time so that it ascribes a number to each particle trajectory. Fields, however, are

functions of space and time. The most familiar examples are the electric and magnetic

fields E(x, t) and B(x, t). Now we want the action to ascribe a number to every possible

field configuration. This means that the action should be an integral over time and

space.

We won’t describe the action principle for fields in these lectures. But, in passing, I

will just mention that it is very straightforward. In particular, the Maxwell equations
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follow from the action

S =

∫
dtd3x

(
ϵ0
2
E2 − 1

2µ0

B2

)
where ϵ0 and µ0 are the constants of nature with pretentious names that describe the

strength of the electric and magnetic forces respectively. Importantly, the action above

should be varied with respect to the potentials ϕ and A, rather than the electric and

magnetic fields themselves. This then reproduces the Maxwell equations. All of this

will be explained in great detail in Section 5 of the lectures on Electromagnetism.

2.4.4 Special Relativity

Our focus in these lectures is very much on Newtonian mechanics. But, as we know,

when the speed of particles is some fraction of the speed of light c, we must replace

Newtonian mechanics with the framework of special relativity. In this section, we

explain how to describe relativistic particles using Lagrangians and actions. I should

warn you that I won’t recap much of special relativity here: you might want to refresh

a few things from the lectures on Dynamics and Relativity. (Or from the lectures on

Electromagnetism which contain a section essentially identical to this one.)

We can start by writing down a naive action principle for a free, relativistic particle.

(For once, we’ll write down actions rather than Lagrangians; the reason for this will

become clear as we proceed.) We can consider

S[x(t)] = −mc2
∫
dt

√
1− ẋ2

c2
(2.46)

This looks promising for a few reasons. First, if we Taylor expand the action we get

S[x(t)] =

∫
dt

[
−mc2 +

1

2
mẋ2 + . . .

]
The first term is just a constant and doesn’t affect the equation of motion, while the

second term is the familiar action for a free, non-relativistic particle. The . . . are then

corrections that kick in as the particle gets close to the speed of light. Next, we can

look at the canonical momentum. It is

p(t) =
∂S

∂ẋ(t)
= mγẋ(t) with γ =

√
1

1− ẋ2/c2

This is indeed the right momentum for a relativistic particle, replete with the familiar

gamma factor. This means that we get the right equation of motion for a free particle,

namely dp/dt = 0. We could now think about adding further forces to the action, such

as the coupling to electric and magnetic fields that we described in Section 2.4.3. We

will again see that the action (2.46) gives the right answer.
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All of this means that there’s a lot to like about the simple action (2.46). It gives

the right answers. However, there’s also something more than a little unsatisfactory

about it, because it doesn’t seem to embrace the spirit of special relativity. Recall

that the essence of special relativity is that there is a symmetry, captured by Lorentz

transformations, that relate different observers. Moreover, we’ve been bragging in this

section about how well suited the Lagrangian approach is to symmetries. Yet there’s no

hint of the Lorentz symmetry in the action (2.46). This is because the action is written

for an observer in a very particular reference frame, with a very particular choice of

the time coordinate t.

It would be nice to do better and write down an action principle that holds for

observers in any reference frame. And we can, but it’s going to take a little bit of work.

First, we can see why it might be tricky to write down an action that holds in any

reference frame. We know from special relativity that the position x of a particle sits

in a 4-vector Xµ with µ = 0, 1, 2, 3 with components

Xµ = (ct,x)

Ideally we want to write down an action that depends on the trajectory Xµ that the

particle makes in spacetime. To do this, we first need to parameterise the worldline of

the particle. We’ll call this parameter σ and think of the trajectory of the particle as

tracing out a worldline Xµ(σ) in spacetime.

But this means that the degrees of freedom for our relativistic particle are very

different from those of a non-relativistic particle. For a non-relativistic particle, the

action is a function of x(t). But for a relativistic particle, the action is a function

of x(σ) and t(σ) for some parameter σ. This means that we have one more degree

of freedom, t(σ), for the relativistic particle. In addition, we’ve got to introduce this

new parameter σ that describes where we are on the worldline. Yet, despite these

differences, the relativistic action should reduce to the non-relativistic action when the

speed of a particle is small. How can we achieve all these things?

The answer to this is rather nice. It’s simplest if we just write down the action and

then explore its properties. The better action for a relativistic particle is a functional

of the trajectory Xµ(σ), given by

S[Xµ(σ)] = −mc
∫ σ2

σ1

dσ

√
ηµν

dXµ

dσ

dXν

dσ
(2.47)
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Here ηµν is the Minkowski metric which we take to have signature

ηµν = diag(+1,−1,−1,−1)

There are a number of interesting properties of (2.47). First, it is manifestly invariant

under Lorentz transformations. These are symmetries of the form

Xµ → Λµ
νX

ν with Λρ
µηρσΛσ

ν = ηµν

and you can see by inspection that this leaves the action (2.47) unchanged. For this

reason, (2.47) is sometimes known as the covariant action.

The action S is actually closely related to something familiar from the world of special

relativity: it is proportional to the proper time experienced by the particle. Recall that

a particle moving along a worldline Xµ(σ), experience a proper time

τ(σ) =
1

c

∫ 0

σ

dσ′

√
ηµν

dXµ

dσ′
dXν

dσ′ (2.48)

In special relativity, the proper time is maximised by a particle that does not accelerate.

This fact is famous from the twin paradox where the dull stay-at-home twin ages fastest.

Here it sits nicely with the fact that the proper time is identified with the action and

hence is extremised on solutions to the equations of motion.

In addition to Lorentz invariance, the action (2.47) has a second symmetry of a

very different kind, and this is the key to understanding its properties. This second

symmetry is reparameterisation invariance. So far, we didn’t say how we picked the

parameterisation σ of the worldline. Suppose that we made a different choice, and

parameterised the worldline by a different coordinate σ̃, related to the first parame-

terisation by a monotonic function σ̃(σ). Then we could equally as well construct an

action S̃ using this new parameter, given by

S̃ = −mc
∫ σ̃2

σ̃1

dσ̃

√
ηµν

dXµ

dσ̃

dXν

dσ̃

We might worry that this different parameterisation will give different equations of

motion. Happily this is not the case because the two actions are, in fact, identical.

This follows from a quick calculation,

S̃ = −mc
∫ σ2

σ1

dσ
dσ̃

dσ

√
ηµν

dXµ

dσ

dXν

dσ

(
dσ

dσ̃

)2

= S
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We see that the action takes the same form regardless of our choice of parameterisa-

tion. Although we’ve called this a “symmetry”, it’s not a symmetry in the same sense

as Lorentz transformations. In particular, reparameterisation does not generate new

solutions from old ones. Instead, it is a redundancy in the way we describe the system.

It is similar to the gauge “symmetry” of electromagnetism which, despite the name, is

also a redundancy rather than a symmetry.

Reparameterisation invariance has a number of consequences. The first is that it

explains why the action (2.47) has only three degrees of freedom, even though it is a

function of four variables Xµ(σ). This is because one of the degrees of freedom Xµ is

not physical. Suppose that you solve the equation of motion to find a trajectory Xµ(σ).

In most dynamical systems, each of these four functions would tell you something about

the physical trajectory. But, for us, reparameterisation invariance means that there is

no actual information in the value of σ. To find the physical path, we should eliminate

σ to find the relationship between the Xµ. And this kills one degree of freedom.

We can see this most clearly by making a cunning choice for the parameter σ that

parameterises the worldline. Suppose that we choose σ to coincide with the time t for

some intertial observer: σ = t. Then dX0/dσ = c and the action (2.47) then becomes

S = −mc2
∫ t2

t1

dt

√
1− ẋ2

c2
(2.49)

where here ẋ = dx/dt. But this is the action (2.46) that we started this section

with. So our two actions (2.47) and (2.46) are indeed equivalent, but each has different

advantages. The action (2.46) makes it clear that we are dealing with a system with

three degrees of freedom x, but Lorentz invariance is hidden. Meanwhile the action

(2.47) has manifest Lorentz invariance, but at the cost of introducing more degrees of

freedom than are physical. But, as we’ve seen above, the reparameterisation invariance

of the action allows us to remove the time degree of freedom and return to (2.46).

There’s yet another manifestation of reparameterisation invariance. To see this, we

compute the canonical momentum associated to Xµ,

Pµ =
∂L

∂Ẋµ
= −mc 1√

ẊνẊν

Ẋµ

where here Ẋµ = ∂Xµ/∂σ. You can check that this coincides with the usual definition

of 4-momentum P µ = mdXµ/dτ . (This follows from the fact that the proper time τ

defined by (2.48) obeys dτ/dσ = L/mc2 with L the Lagrangian.) It’s a familiar result
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from special relativity that these momenta are not all independent, but obey

P µPµ = m2c2 (2.50)

While this result is familiar in special relativity, it’s rather surprising from the perspec-

tive of Lagrangian mechanics. In all the other examples we’ve met in these lectures, the

canonical momenta are independent of each other. But not here. This novel feature

can be traced to the existence of reparameterisation invariance, meaning that there

was a redundancy in our original description. Indeed, whenever theories have such a

redundancy there will be some constraint analogous to (2.50). As one final comment,

note that if we expand out (2.50), we have

(P 0)2 = p2 +m2c2

In particular, we see that we must have P 0 ̸= 0. This is important. There’s nothing

that tells us that we must have p ̸= 0. The particle is quite able to just sit still in

space if it wants. But P 0 ̸= 0 tells us that the particle is obliged to move in the time

direction. Physically, this again reflects the fact that the action (2.47) has only three

degrees of freedom, not four. Physiologically, this is why you get old.

So far, our covariant action (2.47) only describes a free, relativistic particle. But

it’s straightforward to couple it to relativistic forces. The most obvious such force is

electromagnetism and here there is a nice interplay with relativity. It turns out that the

potentials ϕ and A that we introduced in (2.38) sit nicely in a 4-vector Aµ = (ϕ/c,A),

known as a gauge field. If the particle carries electric charge q, then it couples to the

electromagnetic field through the action

S[Xµ(σ)] =

∫ σ2

σ1

dσ

[
−mc

√
ηµν

dXµ

dσ

dXν

dσ
− qAµ(X)

dXµ

dσ

]
(2.51)

If we again pick the worldline parameter σ to coincide with the time of some inertial

observer, σ = t, then the calculation that previously led us to the action (2.49) will

now include the additional terms of the electromagnetic action (2.39). You can find

more details on this in the lectures on Electromagnetism.

2.4.5 A Brief Look at Curved Geometry

We now turn to a slightly more abstract, but extremely useful Lagrangian. We will

consider a particle moving in N -dimensional space, and introduce generalised coordi-

nates qi, with i = 1, . . . , N . Furthermore, we’ll consider a particle with no potential

energy, only kinetic energy. The novelty is that the particle is moving a on general,

curved space rather than flat space that we’ve considered so far. How do we describe

this?
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There is a whole mathematical framework, known as differential geometry, to describe

curved spaces. (It is covered in some detail in the lectures on General Relativity.) Here

we will be very brief. The key idea is to introduce a function that describes the distance

between two nearby points. We consider the point labelled by coordinates qi and a

nearby point labelled by coordinates qi + δqi. The the distance δs between them is

δs =
√
gij(q) δqi δqj (2.52)

Here, we have introduced a matrix of functions, gij(q) known as the metric. In principle,

each element of this matrix can be a function of all N coordinates qk, k = 1, . . . , N .

The metric is a symmetric matrix, so that gij = gji. (One way of seeing this is that

there’s no point including an anti-symmetric piece of gij because it won’t contribute

to the distance (2.52) anyway.) We will assume that det(gij) ̸= 0, so that the inverse

matrix (g−1)ij exists, with (g−1)ijgjk = δik.

Suppose that the particle is moving on flat, Euclidean space R2, with Cartesian

coordinates qi = (x, y), Then the metric is simply gij = δij and the distance above is

nothing more than Pythagoras’ theorem

δs =
√
δx2 + δy2

The more general form of the metric gij(q) allows us to describe curved space. Note,

however, that just because gij(q) depends on q doesn’t mean that we necessarily have

a curved space. We may just be working in some other coordinates. For example, if

we work with flat R2 in polar coordinates, so that qi = (r, ϕ), then

gij =

(
1 0

0 r2

)
⇒ δs =

√
δr2 + r2δϕ2

which is the way we measure distances in polar coordinates.

With this preamble in place, we can now write down the Lagrangian for a non-

relativistic particle moving on this (possibly) curved space. It takes the rather natural

form

L =
1

2
gij(q) q̇

iq̇j (2.53)

Deriving the equations of motion from this Lagrangian is an exercise in keeping index

notation straight. We have

∂L

∂qk
=

1

2

∂gij
∂qk

q̇iq̇j and
∂L

∂q̇k
= gikq̇

i
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The Euler-Lagrange equations are then

0 =
d

dt

(
∂L

∂q̇k

)
− ∂L

∂k
= gikq̈

i +
∂gik
∂qj

q̇iq̇j − 1

2

∂gij
∂qk

q̇iq̇j

= gikq̈
i +

1

2

(
∂gik
∂qj

+
∂gjk
∂qi
− ∂gij
∂qk

)
q̇iq̇j

where, to go from the first to the second line, we’ve the fact that the ∂g/∂q terms are

contracted with q̇iq̇j which is symmetric in i and j indices. The upshot is that the

equation of motion can be written as

q̈ i + Γijkq̇
j q̇k = 0 where Γijk =

1

2
(g−1)il

(
∂gjl
∂qk

+
∂gkl
∂qj
− ∂gjk

∂ql

)
(2.54)

In the language of differential geometry, the object Γijk is known as Christoffel symbol

(or sometimes as the Levi-Civita connection), while the equation of motion (2.54) is

called the geodesic equation.

In general relativity, there is a natural generalisation of the geodesic equation (2.54)

to describe a particle moving in curved spacetime, rather than just curved space. This,

it turns out, is the correct description of gravity.

The Lagrangian (2.53) describes a particle moving in curved space. There are also

natural field theory version of this Lagrangian in which qi are functions of both space

and time. These Lagrangians have the uninspiring name of sigma models. They crop

up all over the place, in condensed matter physics, particle physics, and even string

theory.

2.5 Constraints

There is one last advantage of the Lagrangian formulation that we now explain. In the

above examples, we worked with particles roaming freely throughout space, with their

motion only affected by various potentials. But in many examples in Newtonian me-

chanics, there are various constraint forces at play that can’t be described by potentials.

These are things like the tension of ropes, and normal forces applied by surfaces. In

the Lagrangian formulation, we don’t have to worry about such things. In this section,

we’ll show why.

An Example: The Pendulum

We can illustrate the basic by looking at the simply pendulum of length l. This has a

single dynamical degree of freedom θ, the angle the pendulum makes with the vertical.
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The position of the mass m in the plane is described by two

Figure 8:

cartesian coordinates x and y subject to a constraint x2+y2 = l2.

We can easily solve this constraint and parameterise the general

solution by an angle θ,

x = l sin θ and y = l cos θ (2.55)

Employing the Newtonian method to solve this system, we intro-

duce the tension T as shown in the diagram and resolve the force

vectors to find,

mẍ = −Tx
l

, mÿ = mg − Ty

l
(2.56)

To determine the motion of the system, we we substitute in the constrained coordinates

(2.55) and easily find

θ̈ = −g
l

sin θ , T = mlθ̇2 +mg cos θ (2.57)

While this example was pretty straightforward to solve using Newtonian methods,

things get rapidly harder when we consider more complicated constraints (and we’ll

see plenty presently). Moreover, you may have noticed that half of the work of the

calculation went into computing the tension T . On occasion we’ll be interested in this.

For example, we might want to know how fast we can spin the pendulum before it

breaks. But often we won’t care about these constraint forces, but will only want to

know the motion of the pendulum itself. In this case it seems like a waste of effort to

go through the motions of computing T . We’ll now see how we can avoid this extra

work in the Lagrangian formulation. First, we define what we mean by constraints

more rigorously.

2.5.1 Holonomic Constraints

We’ll take as our starting point N particles, each of which can move freely in R3. This

means that our configuration space is parameterised by Cartesian coordinates xA, with

A = 1, . . . , 3N . This isn’t the most general starting point, but it will serve our purposes

and the generalisations should hopefully be obvious.

Holonomic Constraints are relationships between the coordinates of the form

fα(xA, t) = 0 α = 1, . . . , 3N − n (2.58)

– 47 –



In general the constraints can be time dependent and our notation above allows for

this. Holonomic constraints can be solved in terms of n generalised coordinates qi,

i = 1, . . . n. So

xA = xA(q1, . . . , qn) (2.59)

The system is said to have n degrees of freedom. For the pendulum example above,

the system has a single degree of freedom, q = θ.

Now let’s see how the Lagrangian formulation deals with constraints of this form.

We introduce 3N − n new dynamical degrees of freedom, λα(t). These are called

Lagrange multipliers. Note that each sits on the same footing as the original xA(t) in

the sense that the Lagrange multipliers are also functions of time. We now define a

new Lagrangian

L′ = L(xA, ẋA) + λαfα(xA, t) (2.60)

where, in the second term, the repeated index means that we’re summing over all

α = 3N − n. We now treat λα like new coordinates. Since L′ doesn’t depend on λ̇α,

Lagrange’s equations for λα are

∂L′

∂λα
= fα(xA, t) = 0 (2.61)

But this is precisely the constraints that we want. It tells us that we are indeed solving

a problem with the constraints imposed. However, this comes with a price, because the

Euler-Lagrange equation for xA is now

d

dt

(
∂L

∂ẋA

)
− ∂L

∂xA
= λα

∂fα
∂xA

(2.62)

The left-hand-side is the equation of motion for the unconstrained system. The right-

hand-side is the novel and captures the constraint forces in the system. We can now

solve these equations as we did in the Newtonian formulation.

The Pendulum Example Again

The Lagrangian for the pendulum is given by that of a free particle moving in the

plane, augmented by the Lagrange multiplier term for the constraints. It is

L′ = 1
2
m(ẋ2 + ẏ2) +mgy + 1

2
λ(x2 + y2 − l2)

From this we can calculate the two equations of motion for x and y,

mẍ = λx and ÿ = mg + λy
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while the equation of motion for λ reproduces the constraint x2 + y2 − l2 = 0. Com-

paring with the Newtonian approach (2.56), we find that the Lagrange multiplier λ is

proportional to the tension: λ = −T/l.

So we see that we can easily incorporate constraint forces into the Lagrangian setup

using Lagrange multipliers. But the big news is that we don’t have to! Often we don’t

care about the tension T or other constraint forces, but only want to know what the

generalised coordinates qi are doing. In this case we have the following useful theorem

Theorem: For constrained systems, we may derive the equations of motion directly

in generalised coordinates qi

L[qi, q̇i, t] = L[xA(qi, t), ẋA(qi, q̇i, t)] (2.63)

Proof: Let’s work with L′ = L+ λαfα and change coordinates to

xA →

{
qi i = 1, . . . , n

fα α = 1, . . . 3N − n
(2.64)

Here, the novelty is that we’re treating the constraints fα(xA, t) as coordinates of the

original system. We know from our discussion in Section 2.2 that the Euler-Lagrange

equations take the same form in these new coordinates. In particular, we may look at

the equations for qi,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λα

∂fα
∂qi

But, by definition, ∂fα/∂q
i = 0. So we are left with the Euler-Lagrange equations

purely in terms of qi, with no sign of the constraint forces,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 i = 1, . . . , n (2.65)

This means that if we are only interested in the dynamics of the generalised coordinates

qi, we may ignore the Lagrange multipliers and work entirely with the unconstrained

Lagrangian L(qi, q̇i, t) defined in (2.63) where we just substitute in xA = xA(qi, t). The

resulting equations of motion are then given by (2.65). □
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The Pendulum Example for the Last Time

Let’s see how this works in the simple example of the pendulum. We can parameterise

the constraints in terms of the generalised coordinate θ so that x = l sin θ and y =

l cos θ. We now substitute this directly into the Lagrangian for a particle moving in

the plane under the effect of gravity, to get

L = 1
2
m(ẋ2 + ẏ2) +mgy = 1

2
ml2θ̇2 +mgl cos θ (2.66)

From this we may derive Lagrange’s equations using the coordinate θ directly

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= ml2θ̈ +mgl sin θ = 0 (2.67)

which indeed reproduces the equation of motion for the pendulum (2.57). Note that,

as promised, we haven’t calculated the tension T using this method. This has the

advantage that we’ve needed to do less work. If we need to figure out the tension, we

have to go back to the more laborious Lagrange multiplier method.

Non-Holonomic Constraints

Before we turn to various examples of holonomic constraints, it’s worth flagging up

that there are plenty of other kinds of constraints that can’t be written in holonomic

form fα(xA, t) = 0. Systems with non-holonomic constraints may be straightforward

to solve, or they may be more complicated. But there’s no general theory that covers

then and you’ll need to develop different methods for each problem.

Here’s a simple example of a non-holonomic constraint. Consider a particle moving

under gravity, constrained to move on the outside of a sphere of radius R. This means

that the position of the particle is constrained by an inequality, x2 + y2 + z2 ≥ R2,

rather than an equality, which is a kind of non-holonomic constraint. We might, for

example, start the particle perched on the top of the sphere, give it a slight nudge,

and want to know when it falls off. It’s straightforward to solve this: the particle falls

off when the normal, contact force vanishes. But the theory of holonomic constraints

won’t help you.

Here’s a second example. A coin, or radius R, is balanced on its edge, and rolls along

the ground. The coin’s position in the plane is described by Cartesian coordinates x

and y. But the coin has two, further degrees of freedom. This is the angle θ that it

makes with the x-axis, and the angle ϕ that some chosen point on the rim makes with

the ground. If the coin rolls without slipping, then the velocity of the rimvrim = Rϕ̇.

So, in terms of our four coordinates, we have the constraint

ẋ = Rϕ̇ sin θ and ẏ = Rϕ̇ cos θ
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Now we have a velocity-dependent constraint. It is non-holonomic because it can’t

be integrated to give a constraint of the form f(x, y, θ, ϕ) = 0. Again, this particular

example isn’t hard to solve. (Indeed, we looked at very similar problems in the lectures

on Dynamics and Relativity.)

2.5.2 A Bead on a Rotating Hoop

Take a hoop of radius a that rotates about the vertical axis with frequency ω. A bead

of mass m is threaded on the hoop and moves without friction, as shown in the figure.

We want to determine the motion of this bead.

This is an example of a system with a time dependent holonomic constraint. There

is a single degree of freedom ψ(t), the angle the bead makes with the vertical. In terms

of Cartesian coordinates (x, y, z) the position of the bead is

Figure 9:

x = a sinψ cosωt

y = a sinψ sinωt

z = a− a cosψ

To determine the Lagrangian in terms of the generalised

coordinate ψ, we simply substitute these expressions into

the Lagrangian for the free particle. For the kinetic en-

ergy T we have

T = 1
2
m(ẋ2 + ẏ2 + ż2) = 1

2
ma2[ψ̇2 + ω2 sin2 ψ]

while the potential energy V is given by (ignoring an over-

all constant)

V = mgz = −mga cosψ

This means that our Lagrangian, as a function of ψ and ψ̇, is given by

L = ma2
(

1
2
ψ̇2 − Veff

)
where the effective potential is

Veff =
1

ma2
(
−mga cosψ − 1

2
ma2ω2 sin2 ψ

)
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Figure 10: The effective potential for the bead depends on how fast the hoop is rotating

We can now derive the equations of motion for the bead simply from Lagrange’s equa-

tions which read

ψ̈ = −∂Veff
∂ψ

We can look for stationary solutions of these equations in which the bead doesn’t

move, i.e solutions of the form ψ̈ = ψ̇ = 0. From the equation of motion, we must solve

∂Veff/∂ψ = 0 to find that the bead can remain stationary at points satisfying

g sinψ = aω2 sinψ cosψ

The number of solutions depends on how fast the hoop is spinning. There are always

two such solutions, given by ψ = 0 and ψ = π while, if the hoop is spinning fast enough,

so that ω2 ≥ g/a, then a third stationary point exists at cosψ = g/aω2. Which of these

stationary points is stable depends on whether Veff(ψ) has a local minimum (stable) or

maximum (unstable). This in turn depends on the value of ω.

The effective potential Veff is drawn in Figure 10 two values of ω, the first below the

critical value, the second above. For all values of ω the bead perched at the top of

the hoop at ψ = π is unstable. For ω2 < g/a, the stable equilibrium point is at the

bottom of the hoop at ψ = 0. But, as the hoop spins faster, at some point this position

becomes unstable. For ω2 > g/a, the bead is still in equilibrium at ψ = 0, but it’s an

unstable equilibrium. Instead, a new minimum of Veff appears at cosψ = g/aω2 and

this is the stable point.
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2.5.3 The Double Pendulum

Figure 11:

A double pendulum is drawn in the figure to the right. It

consists of two particles of mass m1 and m2, connected by

light rods of length l1 and l2. For the first particle, the kinetic

energy T1 and the potential energy V1 are the same as for a

simple pendulum (2.66)

T1 = 1
2
m1l

2
1θ̇

2
1 and V1 = −m1gl1 cos θ1

For the second particle, things are a little more involved. Con-

sider the position of the second particle in the plane of the pendulum swings. We’ll

give use Cartesian coordinates (x, y), with y pointing downwards, and take the origin

to be the pivot of the first pendulum. We then have

x2 = l1 sin θ1 + l2 sin θ2 and y2 = l1 cos θ1 + l2 cos θ2

We can substitute into the kinetic energy for the second particle

T2 = 1
2
m2(ẋ

2 + ẏ2) = 1
2
m2

(
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2 cos(θ1 − θ2)θ̇1θ̇2

)
while the potential energy is given by

V2 = −m2gy2 = −m2g (l1 cos θ1 + l2 cos θ2)

The Lagrangian is given by the sum of the kinetic energies, minus the sum of the

potential energies: it is

L = 1
2
(m1 +m2)l

2
1θ̇

2
1 + 1

2
m2l

2
2θ̇

2
2 +m2l1l2 cos(θ1 − θ2)θ̇1θ̇2

+ (m1 +m2)gl1 cos θ1 +m2gl2 cos θ2 (2.68)

The equations of motion now follow in the usual way by computing the two Euler-

Lagrange equations, one for θ1 and one for θ2. It turns out that the solutions to these

equations are complicate and, above a certain energy, the motion is chaotic. We’ll

return briefly to the double pendulum in Section 2.6 where we look at the decidedly

non-chaotic motion when the energy is very small.

2.5.4 The Spherical Pendulum

A spherical pendulum consists of a heavy particle, attached to a light, rigid rod that is

free to rotate in three dimensions, as shown in the figure. The system has two degrees

of freedom which cover the range

0 ≤ θ < π and 0 ≤ ϕ < 2π
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In terms of cartesian coordinates, we have

Figure 12:

x = l cosϕ sin θ

y = l sinϕ sin θ

z = −l cos θ

We substitute these constraints into the Lagrangian for a

free particle to get

L =
1

2
m(ẋ2 + ẏ2 + ż2)−mgz =

1

2
ml2(θ̇2 + ϕ̇2 sin2 θ) +mgl cos θ

The first thing to note is that the coordinate ϕ is ignorable.

We know from our discussion in Section 2.3 that the corre-

sponding conserved quantity is is given by

J =
∂L

∂ϕ̇
= ml2ϕ̇ sin2 θ (2.69)

This is the component of angular momentum in the ϕ direction. Meanwhile, the equa-

tion of motion for θ follows from the Euler-Lagrange equation. It is

ml2θ̈ = ml2ϕ̇2 sin θ cos θ −mgl sin θ

We can substitute ϕ̇ for the constant J in this expression to get an equation entirely in

terms of θ which we chose to write as

θ̈ = −∂Veff
∂θ

(2.70)

where the effective potential is defined to be

Veff(θ) = −g
l

cos θ +
J2

2m2l4
1

sin2 θ

Let me reiterate a warning that we gave already when discussing the two body problem:

do not substitute J = µr2ϕ̇ directly into the Lagrangian – you will get a minus sign

wrong! You must substitute it into the equations of motion.

As well as the conservation of angular momentum J , we also have ∂L/∂t = 0 so

energy is conserved. This is given by

E = 1
2
θ̇2 + Veff(θ) (2.71)
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Figure 13: The effective potential for the spherical pendulum.

where E is a constant. In fact we can invert this equation for E to solve for θ in terms

of an integral

t− t0 =
1√
2

∫
dθ√

E − Veff(θ)

Once we have an expression for θ(t) we can solve for ϕ(t) using the expression for J ,

ϕ =

∫
J

ml2
1

sin2 θ
dt =

J√
2ml2

∫
1√

E − Veff(θ)

1

sin2 θ
dθ

which gives us ϕ = ϕ(θ) = ϕ(t).

To get more of a handle on what these solutions look

Figure 14:

like, we plot the function Veff in Figure 13. For a given

energy E, the particle is restricted to the region Veff ≤ E

(a fact which follows from (2.71)). So from the figure we

see that the motion is pinned between two points θ1 and

θ2. If we draw the motion of the pendulum in real space, it

must therefore look something like the figure on the right,

in which the bob oscillates between the two extremes: θ1 ≤
θ ≤ θ2.

Note that we could make more progress in understanding

the motion of the spherical pendulum than for the double

pendulum, where we essentially stopped after writing down

the Lagrangian. The reason for this is the existence of two conservation laws for the

spherical pendulum, energy and angular momentum, compared to just one, the energy,

for the double pendulum.
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There is a stable orbit which lies between the two extremal points at θ = θ0, cor-

responding to the minimum of Veff . This occurs if we balance the angular momentum

J and the energy E just right. We can look at small oscillations around this point by

expanding θ = θ0 + δθ. Substituting into the equation of motion (2.70), we have

δθ̈ = −
(
∂2Veff
∂θ2

∣∣∣∣
θ=θ0

)
δθ +O(δθ2)

so small oscillations about θ = θ0 have frequency ω2 = (∂2Veff/∂θ
2) evaluated at θ = θ0.

2.6 Small Oscillations and Stability

“Physics is that subset of human experience which can be reduced to cou-

pled harmonic oscillators”
Michael Peskin

The harmonic oscillator is by far the most important system in all of physics. Partly,

this is because we can solve it. And partly it’s because a large number of other systems

can, in certain circumstances, be made to look like a bunch of harmonic oscillators.

Indeed, the art of physics often boils down to figuring out how to make things look like

harmonic oscillators.

In this section we’ll see one reason why the simple harmonic oscillator is so important.

We will study the motion of systems close to equilibrium and see that the dynamics

is described by n decoupled simple harmonic oscillators, each ringing at a different

frequency.

Let’s start with a single degree of freedom x(t). We’ve already seen several examples

where we get an equation of the form

ẍ = f(x)

An equilibrium point, x = x0 satisfies f(x0) = 0. This means that if we start with the

initial conditions

x = x0 and ẋ = 0

then the system will stay there forever. But what if we start slightly away from x = x0?

To analyse this, we write

x(t) = x0 + η(t)
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where η is assumed to be small so that we can Taylor expand f(x) to find

η̈ = f ′(x0) η +O(η2) (2.72)

We neglect the terms quadratic in η and higher. There are three possible behaviours

of this system

• f ′(x0) < 0: In this case the restoring force sends us back to η = 0 and the solution

is

η(t) = A cos(ω(t− t0))

where A and t0 are integration constants, while ω2 = −f ′(x0). The system

undergoes stable oscillations about x = x0 at frequency ω.

• f ′(x0) > 0: In this case, the force pushes us away from equilibrium and the

solution is

η(t) = Aeλt +Be−λt

where A and B are integration constants, while λ2 = f ′(x0). In this case, there

is a very special initial condition A = 0 such that x → x0 at late times. But for

generic initial conditions, η gets rapidly large and the approximation that η is

small breaks down. We say the system has a linear instability.

• f ′(x0) = 0: In this case, it was a bad idea to neglect the quadratic terms in (2.72)

since they are where the physics lies. This means that we have to go back and

do more work.

We now generalise this discussion to N degrees of freedom with equations of motion

of the form,

q̈i = f i(q1, . . . , qN) i = 1, . . . , N (2.73)

An equilibrium point qi0 must satisfy fi(q
1
0, . . . , q

N
0 ) = 0 for all i = 1 . . . , N . Consider

small perturbations away from the equilibrium point

qi(t) = qi0 + ηi(t) (2.74)

where, again, we take the ηi to be small so that we can Taylor expand the f i, and

neglect the quadratic terms and higher. We have

η̈i ≈ ∂f i

∂qj

∣∣∣∣
q=q0

ηj (2.75)
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where the sum over j = 1, . . . , N is implicit. It’s useful to write this in matrix form.

We define the vector η and the N ×N matrix F as

η =


η1

...

ηN

 , F =


∂f 1/∂q1 . . . ∂f 1/∂qN

...
...

∂fN/∂q1 . . . ∂fN/∂qN


where each partial derivative in the matrix F is evaluated at qi = qi0. The equation

(2.75) now becomes simply

η̈ = Fη (2.76)

Our strategy is simple: we search for eigenvectors of F . If F were a symmetric matrix,

it would have a complete set of orthogonal eigenvectors with real eigenvalues. Unfortu-

nately, there’s no reason to think that F is symmetric. Nonetheless, it is true that for

equations of the form (2.76) arising from physical Lagrangian systems, the eigenvalues

will be real. We shall postpone a proof of this fact for a couple of paragraphs and

continue under the assumption that F has real eigenvalues.

In general, F will have different left and right eigenvectors,

Fµa = λ2aµa and ζTaF = λ2a ζ
T
a a = 1, . . . , N (2.77)

where there’s no sum over a in these equations. Note that although the eigenvectors

differ, the eigenvalues λ2a for a = 1, . . . , n are the same. Note also that, somewhat

unusually, we’ve denoted the eigenvalues as square numbers, λ2a. This is to make the

expressions below simpler. However, the fact that the eigenvalue is λ2a does not imply

that it’s a positive number: it could be positive or negative (or, indeed, zero).

By combining the two expressions above, we have

ζTaFµb = λ2aζa · µb = λ2bζa · µb

If all eigenvalues are distinct, so λ2a ̸= λ2b , then the expression above tells us that we

necessarily have ζa · µb = δab. If F has degenerate eigenvalues, it turns out that it’s

always possible to pick eigenvectors so that ζa · µb = δab.

With the eigenvectors and eigenvalues to hand, the most general solution to (2.77)

is

η(t) =
∑
a

µN
a=1

[
Aae

λat +Bae
−λat

]
where Aa and Ba are 2N integration constants. Again, we have three possibilities for

each eigenvalue
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• λ2a < 0: In this case λa = ±iωa for some real number ωa. The system will be

stable in the corresponding direction η = µa.

• λ2a > 0: Now ±λa are real and the system exhibits a linear instability in the

direction η = µa.

• λ2a = 0: In this case, the linearised analysis that we’ve done here is insufficient to

tell us the full story.

The eigenvectors µa are called normal modes. The equilibrium point is only stable if

λ2a < 0 for every a = 1, . . . , N . If this holds, then the system will oscillate around

the equilibrium point as a linear superposition of all the normal modes, each typically

vibrating at a different frequency.

To keep things real, we can write the most general solution as

η(t) =
∑

a :λ2a>0

µa

[
Aae

λat +Bae
−λat

]
+
∑

a :λ2a<0

µaAa cos(ωa(t− ta))

where now Aa, Ba and ta are the 2N integration constants.

The Reality of the Eigenvalues

Finally, let’s show what we put off above: that the eigenvalues λ2a are real for matrices

F derived from a physical Lagrangian system. Consider a general Lagrangian of the

form,

L = 1
2
Tij(q)q̇

iq̇j − V (q)

We will require that Tij(q) is invertible and positive definite for all q. Here the matrix

Tij plays the same role as the metric in Section 2.4.5. Expanding about an equilibrium

point as in (2.74), to linear order in ηi the equations read

Tij η̈j = −Vijηj

where Tij = Tij(q
0) and Vij = ∂2V/∂qi∂qj, also evaluated at qi = qi0. Then in the

matrix notation of (2.76), we have F = −T−1V . Both Tij and Vij are symmetric, but

not necessarily simultaneously diagonalisable. This means that Fij is not necessarily

symmetric. Nevertheless, F does have real eigenvalues. To see this, look at

Fµ = λ2µ ⇒ V µ = −λ2 Tµ (2.78)
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So far, both µ and λ2 could be complex. We will now show that they’re not. Take the

inner product of this equation with the complex conjugate eigenvector µ†,

µ†V µ = λ2µ†Tµ

But for any symmetric matrix S, the quantity µ†Sµ is real, a fact that follows from

expanding µ in the complete set of real, orthogonal eigenvectors of S, each of which

has a real eigenvalue. Therefore both µ†V µ and µ†Tµ are both real. Since we have

assumed that T is invertible and positive definite, we know that µ†Tµ0 so, from (2.78),

we conclude that the eigenvalue λ2 is indeed real.

We now illustrate these ideas with a couple of examples.

2.6.1 The Double Pendulum Revisited

We derived the Lagrangian for the double pendulum in Section 2.5.3. Restricting to

the case where the two masses are the same m1 = m2 = m and the two lengths are the

same l1 = l2 = l, we derived the Lagrangian (2.68) for arbitrary oscillations

L = ml2θ̇21 + 1
2
ml2θ̇22 +ml2 cos(θ1 − θ2)θ̇1θ̇2 + 2mgl cos θ1 +mgl cos θ2

The stable equilibrium point is clearly θ1 = θ2 = 0. (You could check mathematically if

you’re sceptical). Let’s expand for small θ1 and θ2. If we want to linearise the equations

of motion for θ, then we must expand the Lagrangian to second order (so that after we

take derivatives, there’s still a θ left standing). We have

L ≈ ml2θ̇21 + 1
2
ml2θ̇22 +ml2θ̇1θ̇2 −mglθ21 − 1

2
mglθ22

where we’ve thrown away an irrelevant constant. From this we can use Lagrange’s

equations to derive the two linearised equations of motion

2ml2θ̈1 +ml2θ̈2 = −2mglθ1

ml2θ̈2 +ml2θ̈1 = −mglθ2

Or, writing θ = (θ1, θ2)
T , this becomes(

2 1

1 1

)
θ̈ = −g

l

(
2 0

0 1

)
θ ⇒ θ̈ = −g

l

(
2 −1

−2 2

)
θ

We have two eigenvectors. They are

1. µ1 = (1,
√

2)T which has eigenvalue λ21 = −(g/l)(2 −
√

2). This corresponds to

the motion shown on left-hand side of Figure 15.
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Figure 15: The two normal modes of the double pendulum

2. µ2 = (1,−
√

2)T which has eigenvalue λ22 = −(g/l)(2 +
√

2). This corresponds to

the motion shown on the right-hand side of Figure 15.

We see that the frequency of the mode in which the two rods oscillate in different

directions should be higher than that in which they oscillate together.

2.6.2 The Linear Triatomic Molecule

Figure 16:

Consider a linear molecule, comprised of three atoms. The

other two have mass m, the middle one has mass M . An

example is shown in the figure. This can be viewed as a

rough approximation of CO2. We’ll only consider motion

in the direction parallel to the molecule for each atom, in

which case the Lagrangian for this molecule takes the form,

L = 1
2
mẋ21 + 1

2
Mẋ22 + 1

2
mẋ23 − V (x1 − x2)− V (x2 − x3)

The function V is some rather complicated interatomic potential. But, the point of this

section is that if we’re interested in oscillations around equilibrium, this doesn’t matter.

Assume that xi = x0i in equilibrium. By symmetry, we have |x01 − x02| = |x02 − x03| = r0.

We write deviations from equilibrium as

xi(t) = x0i + ηi(t)

Taylor expanding the potential about the equilibrium point,

V (r) = V (r0) +
∂V

∂r

∣∣∣∣
r=r0

(r − r0) + 1
2

∂2V

∂r2

∣∣∣∣
r=r0

(r − r0)2 + . . .
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Here the first term V (r0) is a constant and can be ignored, while the second term ∂V/∂r

vanishes since we are in equilibrium. Substituting into the Lagrangian, we have

L ≈ 1
2
mη̇21 + 1

2
Mη̇22 + 1

2
mη̇23 −

k

2

[
(η1 − η2)2 + (η2 − η3)2

]
where k = ∂2V/∂r2 evaluated at r = r0. Then the equations of motion are

mη̈1

Mη̈2

mη̈3

 = −k


η1 − η2

(η2 − η1) + (η2 − η3)
η3 − η2


or, putting it in the form η̈ = Fη, we have

F =


−k/m k/m 0

k/M −2k/M k/M

0 k/m −k/m


Again, we must look for eigenvectors of F . There are three:

1. µ = (1, 1, 1)T which has eigenvalue λ21 = 0. But this is just an overall translation

of the molecule. It’s not an oscillation.

2. µ2 = (1, 0,−1)T which has eigenvalue λ22 = −k/m. In this motion, the outer

two atoms oscillate out of phase, while the middle atom remains stationary. The

oscillation has frequency ω2 =
√
k/m.

3. µ3 = (1,−2m/M, 1)T which has eigenvalue λ23 = −(k/m)(1 + 2m/M). This

oscillation is a little less obvious. The two outer atoms move in the same direction,

while the middle atom moves in the opposite direction. The frequency of this

vibration ω3 =
√
−λ23 is greater than that of the second normal mode.
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For small deviations from equilibrium, the most general motion is a superposition

of all of these modes.

η(t) = µ1(A+Bt) + µ2C cos(ω2(t− t2)) + µ3D cos(ω3(t− t3))

with A, B, C and D all arbitrary integration constants, albeit ones that should be

taken to be suitably small.

2.6.3 The Stability of Lagrange Points

In Section 2.4.2, we studied the three-body problem, at least in the restricted sense.

Recall that we consider a light particle, with mass m3, moving in the gravitational

potential of two much heavier particles, with masses m1,m2 ≫ m3.

For simplicity, we took the two heavy particles to orbit in a circle of radius r. The

frequency of their orbit is, by Kepler’s third law,

ω2 =
G(m1 +m2)

r3

In the reference frame that rotates at the same frequency ω, we derived the equations

of motion for the third particle (2.32),

m3ẍ = 2m3ωẏ +m3ω
2x− ∂V

∂x

m3ÿ = −2m3ωẋ+m3ω
2y − ∂V

∂y
(2.79)

Here the potential experienced by the third particle is given by

V = −Gm1m3

r13
− Gm2m3

r23

where the separations are given by

r213 = (x+ rµ/m1)
2 + y2 + z2 and r223 = (x− rµ/m2)

2 + y2 + z2

which contains the reduced mass µ = m1m2/(m1 +m2).
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In Section 2.4.2, we found the stationary solutions to (2.79), satisfying ẋ = ẍ = 0.

There are five such solutions, known as Lagrange points. Three of these points, L1, L2,

and L3, lie on the y = 0 axis, co-linear with the original orbiting particles. The other

two, L4 and L5, lie in the orbital plane, but with y ̸= 0.

Our goal in this section is to understand the stability of these Lagrange points.

Suppose that you sit just away from them. Do you get pushed further away, or slowly

drift back?

To answer this, first recall that, as part of our derivation in Section 2.4.2, we assumed

that the third particle was moving in the same orbital plane as the first two which,

in our notation, is the z = 0 plane. It’s simple to check that the particle is stable to

perturbations out of this plane. The additional equation of motion is just

z̈ = −∂
2V

∂z2

It’s simple to check that ∂2V/∂z2
∣∣
z=0

> 0, which means that each of the Lagrange

points is at least stable to perturbations out of the z = 0 plane. But what about

within the plane?

This calculation is a little more involved. We expand

x = x0 + δx and y = y0 + δy

Here (x0, y0) is one of the Lagrange points: we know that these obey m3ω
2x0 = ∇V

∣∣
x0

.

Substituting this into the equation of motion (2.79), and expanding to leading order in

δx, we have

δẍ− 2ωδẏ = ω2δx− ∂2V

∂x2
δx− ∂2V

∂x∂y
δy

δÿ + 2ωδẋ = ω2δy − ∂2V

∂y2
δy − ∂2V

∂x∂y
δx (2.80)

At this stage we make an ansatz for the time dependence,

δx = δx0e
λt and δy = δy0e

λt

Here δx0 is the amplitude of the perturbation which is left arbitrary (but necessarily

small). We know from the general analysis of this section that the system will be

unstable if λ is real, but will oscillate about the equilibrium point if λ is complex.
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Substituting this into the perturbed equation of motion (2.80) gives us the matrix

equation

M

(
δx

δy

)
= 0 with M =

(
λ2 − ω2 + A −2ωλ+B

2ωλ+B λ2 − ω2 + C

)
(2.81)

where we’ve defined the partial derivatives

A =
∂2V

∂x2
, B =

∂2V

∂x∂y
, C =

∂2V

∂y2

each of which should be evaluated at the particular Lagrange point. The expressions

for these partial derivatives are easily found, but are a little messy,

A =
Gm1(y

2 − 2(x+ rµ/m1)
2)

r513
+
Gm2(y

2 − 2(x− rµ/m2)
2)

r523

B = −3Gm1y(x+ rµ/m1)

r513
− 3Gm2y(x− rµ/m2)

r523

C =
Gm1((x+ rµ/m1)

2 − 2y2)

r513
+
Gm2((x− rµ/m2)

2 − 2y2)

r523

where we’ve taken the liberty of setting z = 0 since each Lagrange point sits in the

plane. We’ll see below how to extract what we need from these expressions.

The matrix equation (2.81) is like an eigenvalue equation: we should solve it at each

Lagrange point for λ. We can do this by taking the determinant,

detM = (λ2 − ω2 + A)(λ2 − ω2 + C) + 4ω2λ2 −B2 = 0 (2.82)

This is a quadratic equation in λ2, so that solutions come in ±λ pairs. An equilibrium

point will be stable only if λ is purely imaginary, which means that all the roots λ2

must be real and negative for stability.

The story is slightly different for the three co-linear Lagrange points L1, L2 and L3

and the other two. We’ll start with the co-linear points. These sit at y = 0, which

means that the partial derivatives are

B = 0 and A = −2C with C =
Gm1

(|x+ rµ/m1|3
+

Gm2

|x− rµ/m2|3
> 0

Solving the quadratic (2.82) in this case gives

λ2 =
1

2

(
C − 2ω2 ±

√
C(9C − 8ω2)

)
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The roots are clearly real only if 9C ≥ 8ω2. But, for stability, we also require that both

roots are negative and this gives the extra condition

8

9
ω2 ≤ C < ω2

So does this condition hold? The answer is no. To see this, we need to use the fact,

derived in (2.35), that at these co-linear Lagrange points obey

ω2x = Gm1
x+ rµ/m1

|x+ rµ/m1|3
+Gm2

x− rµ/m2

|x− rµ/m2|3

Dividing through by x, we can use this to write

C = ω2 +
Grµ

x

(
1

|x− rµ/m2|3
− 1

|x+ rµ/m1|3

)
But it’s not hard to show that the extra term is always positive, so C > ω2. For

example, at the Lagrange point L2, we have x > rµ/m2 > 0 and the term in brackets

above is positive. Similar arguments hold for L1 and L3. This means that the co-linear

Lagrange points are all unstable.

We learned in Section 2.4.2 that L1 and L2 are particularly useful points for placing

satellites. Now we see that they are unstable. Without doing any further work, we

can see that the time scale of the instability is set by ω = (year)−1. In fact, a more

accurate analysis shows that it’s unstable on a time scale of less than a month. This

means that satellites must be equipped with the ability to correct their position.

This leaves us with the Lagrange points L4 and L5, in which the three particles

make an equilateral triangle, so that r13 = r23 = r. Some simple geometry shows that

(x + rµ/m1) = −(x − rµ/m2) = r/2 and y = ±
√

3r/2, where the ± sign are for L4

and L5 respectively. From this, we can explicitly calculate the values of the partial

derivatives. We have

A =
1

4

G(m1 +m2)

r3
=

1

4
ω2 , C = −5

4

G(m1 +m2)

r3
= −5

4
ω2

while the mixed partial derivative depends on the ratio of masses,

B = −3
√

3

4

G(m1 −m2)

r3
= −3

√
3

4
ω2

(
m1 −m2

m1 +m2

)
With these results, it’s straightforward to find the roots of the quadratic (2.82). We

have

λ2

ω2
= −1

2
± 1

2

√√√√1− 27

4

(
1−

(
m1 −m2

m1 +m2

)2
)
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Recall that both roots should be real and negative for stability. This holds provided

that one of the original masses is sufficiently smaller than that other, so that(
m1 −m2

m1 +m2

)2

>
23

27

If we take m2 < m1, then the condition for stability becomes

m2

m1 +m2

≲ 0.0385

The Earth-Sun system comfortably obeys this, with mEarth/mSun ≈ 10−5 and a collec-

tion of dust has gathered at L4 and L5. It is also obeyed by Jupiter, withmJupiter/mEarth ≈
0.01. in this case, a number of large asteroids have gathered at L4 and L5, known as

trojans.

2.7 A First Look at Perturbation Theory

In the previous section, we looked at small perturbations about an equilibrium point.

In this section, we develop perturbation theory in a slightly different direction. Here’s

the basic idea. Suppose that you have a problem that you can’t solve. (This, it turns

out, is the normal way of things when doing research.) If you’re lucky, it might be close

to a problem that you can solve. The hope, then, is that you can build a solution to

the problem you care about by starting with a problem that you can make progress on.

There is a lot to say about these kinds of perturbation methods. Here we just sketch

the basics and highlight a simple, but important issue that arises. We’ll do this by

looking at a particular example.

2.7.1 The Anharmonic Oscillator

Our example of choice is the anharmonic, or non-linear oscillator. This has Lagrangian

L =
1

2
ẋ2 − 1

2
ω2x2 − 1

4
λx4

where we’ve set the mass of the particle to unity. The equation of motion is

ẍ = −ω2x− λx3 (2.83)

When λ = 0, this is just the usual harmonic oscillator. It’s clear that the additional

term shouldn’t qualitatively change the dynamics of the system: for λ > 0 the extra

force pushes us back towards the origin, just like the linear term. Moreover, the energy

E =
1

2
ẋ2 +

1

2
ω2x2 +

1

4
λx4
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is conserved and so we see that the particle will oscillate back and forth in a potential

V = 1
2
ω2x2 + 1

4
λx4, just like a harmonic oscillator. However, we’d like to do better

than this qualitative analysis and actually find a solution to (2.83). Sadly, however,

the general solution cannot be written down in closed form.

Our goal here is to make progress when λ is, in some sense, small. This looks

promising because we certainly know the solution when λ = 0. It is (ignoring a possible

phase),

x0(t) = A cos(ω(t− t0)) (2.84)

The hope is that we can build off this solution to find an approximation to the true

solution when λ is small.

Our first task is to clarify what it means for λ to be small. This is because λ has

dimensions [λ] = L−2T−2 and so can only be small relative to something else. In fact

there’s a unique combination of parameters that have the same dimension and so we’re

looking for solutions in the situation that

λ≪ ω2

A2

Note that ω is a parameter of our equation of motion (2.83), but A is an integration

constant for our starting solution (2.84). This reflects the fact that we’re not going to

find approximations to the general solution to (2.83) using this method: only to some

restricted class of solutions. In fact, it’s perhaps better to say that this method works

for any λ, but restricted to solutions with A2 ≪ ω2/λ. Either way, we introduce the

dimensionless small quantity

ϵ =
λA2

ω2
≪ 1

Our task is to set up a perturbative expansion in ϵ.

The obvious way to proceed is to postulate a solution that has the expansion

x(t) = x0(t) + ϵx1(t) + ϵ2x2(t) + . . . (2.85)

We substitute this into the equation of motion (2.83) and equate terms order by order

in ϵ. The first first equation is simply ẍ0 = −ω2x0 and is solved by (2.84). To find the

subsequent equations, it’s best to think of λ ∼ ϵ and let the dimensions come out in
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the wash. We have

O(ϵ) : ẍ1 + ω2x1 = −ω
2

A2
x30 (2.86)

O(ϵ2) : ẍ2 + ω2x2 = −3ω2

A2
x20x1

We see that we can now solve these equations successively. The solution x0 acts as a

source for x1. Both x0 and x1 act as sources for x2. And so on.

Let’s start by solving the first equation (2.86). For simplicity, I’ll set the integration

constant t0 = 0 in (2.84). (As we’ll see, this will turn out be not as innocent as it

looks!) Plugging in the solution (2.84), we have

ẍ1 + ω2x1 = −ω2A cos3(ωt) = −ω
2A

4
(cos(3ωt) + 3 cos(ωt)) (2.87)

This is a linear equation in x1, with two sources on the right-hand side: one proportional

to cos(3ωt) and one proportional to cos(ωt). We can solve each of these in turn. First,

we have

ẍ1 + ω2x1 = −ω
2A

4
cos(3ωt) ⇒ x1 = A1 cos(3ωt)

where a quick calculation shows that the overall amplitude is A1 = A/32. This is

typical of the kind of behaviour that arises in perturbation theiry: we started with a

system oscillating at one frequency ω, and the perturbation induces an oscillation at a

different frequency, here 3ω.

Next we turn to the second source term in (2.87). And here we hit a snag. This is

because the frequency of the source is ω, which coincides with the natural frequency of

x1. The solution isn’t x1 ∼ cos(ωt) because that’s the homogeneous solution. Instead

the solution is

ẍ1 + ω2x1 = −3ω2A

4
cos(ωt) ⇒ x1 = A′

1ωt sin(ωt) (2.88)

where, again, a short calculation shows that A′
1 = −3A/8. Rather worryingly, this

solution isn’t oscillatory, but grows with t. This means that beyond some time, t ∼
1/ωϵ, the term x1(t) will not be a small correction to our original solution x0(t). Instead

it will dominate. And that’s bad because our whole strategy was based on finding

increasingly small corrections. Term like (2.88) that grow with time are called secular.
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What to do about this? The answer depends on the problem at hand. For some

problems, the secular growth may well be telling us that the original solution was

unstable. However, that can’t be the case for the anharmonic oscillator as we’ve already

seen, on energy grounds, that the solution can’t run away. Instead, the culprit is our

original expansion (2.85).

The problem is that, to leading order, the non-linear term has two effects: it induces

a second frequency, 3ω, in the oscillation. And it also changes the original frequency

ω. This means that a better perturbative expansion, at leading order, is to take

x(t) = A cos((ω + ϵω1)t) + ϵx1(t) +O(ϵ2)

which allows for a change in the frequency of the original solution. If we expand out

this first term to leading order in ϵ, we have

cos((ω + ϵω1)t) ≈ cos(ωt)− ϵω1t sin(ωt) + . . .

There we see the same ωt sin(ωt) behaviour that appeared in (2.88). Except now we

understand the meaning of this: it is just a small change to the original frequency.

Comparing to our solution (2.88), this shift in the frequency must be

∆ω = ϵω1 =
3

8
ϵω (2.89)

The frequency should be expected to pick up further shifts at O(ϵ2) and higher.

There is another way to think about this. Our original solution (2.84) included an

integration constant t0 that we set to zero in our subsequent analysis. The shift of

frequency (2.89) can be viewed as endowing this integration constant with some time

dependence, so that t0 → −3
8
ϵt. This kind of behaviour is common in many problems.

As a general rule of thumb, when secular terms arise one should see if they can be

accounted for by endowing integration constants with some small time dependence.
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Figure 17: Wolfgang Pauli and Niels Bohr stare in wonder at a spinning top.

3. The Motion of Rigid Bodies

In this section, we turn to a slightly different topic. We will look at the motion of

rotating objects. This is a story that we started in the lectures on Dynamics and

Relativity but, as we shall see, there is a lot more to say. One of the lessons is that

things that spin can be somewhat counterintuitive.

For the most part, we will consider rigid bodies. These are

Figure 18:

extended objects that don’t have any internal degrees of freedom.

You could have in your mind a bunch of point masses, fixed together

by rigid rods as shown on the right. Mathematically, the definition

of a rigid body is a collection of N points constrained so that the

distance between the points is fixed. i.e.

|ri − rj| = constant
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for all i, j = 1, . . . , N . In many situations, we’re interested in continuous solids, rather

than discrete point masses. As we’ll see, it’s simple to generalise our ideas to this

situation.

3.1 Kinematics

Our first tasks are to understand the ways in which a rigid body can move, and then

to develop a mathematical description of this. We already made a start at this in our

earlier lectures classical mechanics. For example, there we learned that a rigid body

has six degrees of freedom: three translations, and three rotations. Now we will finish

the job.

To kick things off, we will ignore translations. We achieve this by considering a

rigid body that is fixed at some point, P . This means that the only allowed motion is

rotation about P . We want to describe this rotation.

To do this, we introduce two different sets of axes. The first is a set of axes that

is fixed in space. We denote these as {ẽa : a = 1, 2, 3}. The second is a set of axes

that is embedding in the rigid body. We denote these as {ea : a = 1, 2, 3}. The idea

is that the rotation of the rigid body can be described by saying how the body frame

axes ea(t) move with respect to the space frame axes ẽa.

We take both sets of axes to be orthonormal, meaning that

ẽa · ẽb = δab and ea(t) · eb(t) = δab (3.1)

These two orthonormal bases must are related by time-dependent rotation matrix R(t),

so that

ea(t) = Rab(t)ẽb (3.2)

The fact that R(t) is a rotation matrix follows from (3.1): substituting (3.2), we have

ea · eb = (Racẽa) · (Rbdẽd) = RacRbc = δab. Losing the indices, this tells us that R is an

orthogonal matrix, satisfying RRT = 1. Any such matrix describes a rotation, together

with a reflection.

We will assume that the bases {ea} and {ẽa} share the same handedness. (For

example, it may be useful to take ea(t = 0) = ẽa.) This means that detR = 1 and is a

rotation matrix. For concreteness, we take both bases to be right-handed.
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Figure 19: The space frame {ẽa} stays fixed, while the body frame {ea} changes with time,

rotating with the rigid body.

As the rigid body rotates it is described by a time dependent matrix R(t) ∈ SO(3).

Conversely, every one-parameter family R(t) describes a possible motion of the rigid

body. Translating this into the language of classical dynamics, it means that the

configuration space C of a rotating rigid body is identified with the space of all 3 × 3

orthogonal matrices with unit determinant. Or, more concisely,

C = SO(3)

A 3× 3 matrix has 9 components but the condition of orthogonality RTR = 1 imposes

6 relations, so the configuration space C is 3 dimensional and we need 3 generalised

coordinates to parameterise C. We shall describe a useful choice of coordinates, known

as Euler angles, in section 3.5.

3.1.1 Angular Velocity

Any point r in the body can be expanded in either the space frame or the body frame:

r(t) = r̃a(t) ẽa in the space frame

= ra ea(t) in the body frame (3.3)

Note the different places where time dependence occurs. From the perspective of the

space frame, any point in the body is moving: hence r̃a(t). In contrast, from the

perspective of the body frame all the points are at some fixed distance ra, independent

of time. Instead, it is the axes ea(t) that move.
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Substituting the relation (3.2) into (3.3), we get the relationship between coordinates

r̃b(t) = raRab(t) (3.4)

Next, we can take time derivatives to see how things change with time. In fact, there

are two different questions that we can ask: how does the body basis ea(t) change with

time, and how do the coordinates r̃a(t) change with time? We’ll answer both here,

although it turns out that the former is the more useful, so we start with that. From

(3.2), we have

dea
dt

=
dRab

dt
ẽb =

Rab

dt
R−1
bc ec (3.5)

The matrix ṘR−1 is important enough to deserve its own name. We call it

Ω =
dR

dt
R−1 =

dR

dt
RT (3.6)

It’s simple to show that Ω is an anti-symmetric matrix. This follows from the fact that

RRT = 1 which, upon differentiation, gives

Ω =
dR

dt
RT = −RdR

T

dt
= −ΩT

We write the entries of this anti-symmetric matrix as

Ω =


0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 or Ωab = ϵabcωc ⇒ ωa =
1

2
ϵabcΩbc

We think of the ωa as the components of a vector in the body frame, and define

ω = ωaea

The vector ω is called the instantaneous angular velocity. As we see above, its com-

ponents ωa are measured with respect to the body frame. Our expression (3.5) for the

change of the body basis then becomes

dea
dt

= Ωacec = ϵacbωbec = ω × ea (3.7)

where, in the final step, we’ve used the fact that our body frame basis is right-handed

and so obeys ea × eb = ϵabcec. Equivalently, expanding r = raea(t) in the body frame,

we have

dr

dt
= ra

dea
dt

= raω × ea = ω × r (3.8)
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We’ve seen the final expression (3.7) in our previous lec-

Figure 20:

tures on classical mechanics. It is the usual description of a

basis rotating with angular velocity ω. Here the derivation

was a little more formal from what we saw previously but we

can recapture our previous intuition for ω by drawing a simple

picture, as shown on the right. Consider a displacement of a

given point r in the body by rotating an infinitesimal amount dϕ

about an axis n̂. From the figure, we see that |dr| = |r| dϕ sin θ.

Moreover, this displacement is perpendicular to r since the dis-

tance to P is fixed by the definition of a rigid body. So we

have

dr = dϕ× r (3.9)

with dϕ = n̂dϕ. “Dividing” this equation by dt, we have the result

ṙ = ω × r (3.10)

where ω = dϕ/dt is the instantaneous angular velocity. In general, both the axis of

rotation n̂ and the rate of rotation dϕ/dt will change over time. This, of course, is our

result (3.8).

Finally, we mentioned above that, in addition to asking how ea(t) changes with time,

we could also ask how the space frame coordinates r̃a(t) change with time. Differenti-

ating (3.4), we have

dr̃a
dt

= ra
dRab

dt
= r̃cR

−1
ac

dRab

dt

Stare closely at the indices and you’ll see that it’s not the angular velocity matrix

Ω = ṘRT that appears in this expression. Instead, we have ˙̃ra = r̃cΩ̃ca, with

Ω̃ = R−1dR

dt
(3.11)

with R−1m and Ṙ appearing in the opposite order in this new matrix Ω̃ from the

angular velocity matrix Ω. The matrix Ω̃ is sometimes called the convective angular

velocity. You can think of the two as like the difference between passive and active

transformations. As these things are confusing, it’s best to pick one and stick with it.

So for the rest of these lectures we’ll work only with our original Ω = ṘRT defined in

(3.6).
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3.1.2 Path Ordered Exponentials

Our goal throughout this chapter will be to figure out the angular velocity vector ω(t) of

various objects as they spin and turn. In general, once we’ve got an expression for ω(t)

we’ll simply declare success and move on. However, as we’ve seen, the configuration

space C is actually parameterised by the SO(3) matrix R(t). So one might wonder how,

given ω(t), we can reconstruct the evolution of R(t). The purpose of this short section

is to briefly explain how to do this, at least in principle.

As we’ve seen above, the angular momentum vector ω is equivalent to the anti-

symmetric matrix Ωab = ϵabcωc and we can determine the rotation matrix R(t) by

solving the differential equation

Ω =
dR

dt
R−1 (3.12)

So what do solutions to this equation look like? If Ω and R were scalar functions of

time, then life would be straightforward: we could simply integrate this equation to

get the solution

R(t) = exp

(∫ t

0

Ω(t′) dt′
)

(3.13)

which satisfies the initial condition R(0) = 1. But things are slightly more complicated

because both Ω and R are matrices. Let’s first describe how we take the exponential

of a matrix. And, as we now show, the would-be solution (3.13) no longer works for

matrices.

To see what goes wrong with (3.13), first recall that the exponential of any matrix

M is defined by the Taylor expansion,

exp(M) ≡ 1 +M + 1
2
M2 + . . . (3.14)

This means that we should think of the would-be solution (3.13) as a Taylor expansion

in M =
∫ t
0

Ω(t′)dt′. The trouble comes when we get to the quadratic term in the

expansion. If we differentiate this with respect to time, we have

1

2

d

dt

(∫ t

0

Ω(t′) dt′
)2

=
1

2
Ω(t)

(∫ t

0

Ω(t′) dt′
)

+
1

2

(∫ t

0

Ω(t′) dt′
)

Ω(t) (3.15)

The ordering here is important. In particular, we can’t commute the Ω(t) past the

terms in the integral with Ω(t′) with t′ ̸= t because there is no reason to think that

the angular velocity matrices Ω(t) commute at different times. This is the reason that
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(3.13) does not solve our original equation (3.12), which can be written as Ṙ = ΩR.

The first term on the right-hand side of (3.15) looks good, since this also appears in the

Taylor expansion of ΩR. But the second term isn’t right just because the Ω(t) sits in

the wrong place. The upshot is that equation (3.13) is not the solution to (3.12) when

Ω and R are matrices.

However, seeing how (3.13) fails to solve (3.12) does give us an idea of how to proceed.

But it does give us a hint about how we should proceed. Since the problem is in the

ordering of the matrices, the correct solution to (3.12) takes a similar form as (3.13), but

with a different ordering. This is known as the time ordered exponential, and denoted

as

R(t) = T exp

(∫ t

0

Ω(t′) dt′
)

(3.16)

All the subtleties are hiding in that capital T that sits in front. This means that when

we Taylor expand the exponential, all matrices are ordered so that later times appear

on the left. In other words

R(t) = 1 +

∫ t

0

Ω(t′) dt′ +

∫ t′′

0

∫ t

t′
Ω(t′′) Ω(t′) dt′dt′′ + . . . (3.17)

The double integral is taken over the range 0 < t′ < t′′ < t. If we now differentiate this

double integral with respect to t, we get just the one term,

d

dt

∫ t′′

0

∫ t

t′
Ω(t′′) Ω(t′) dt′dt′′ = Ω(t)

(∫ t

0

Ω(t′) dt′
)

instead of the two that appear in (3.15). It can be checked that the higher terms in the

Taylor expansion also have the correct property if they are ordered so that matrices

evaluated at later times appear to the left in the integrals.

In some ways, the solution (3.17) feels a bit like cheating. To some extent, we solved

the problem by introducing a new notation - the time ordering symbol T – to do the

job for us. And it’s certainly true that for a given Ω(t) it can be difficult to explicitly

construct the corresponding R(t). Nonetheless, this kind of ordered integral shows up

frequently in theories involving non-commuting matrices. Examples include Dyson’s

formula in the lectures on Quantum Field Theory and the Wilson line in the lectures

on Gauge Theories.
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As an aside, there’s some interesting group theory lurking in (3.17). We’ve already

seen that the rotation matrix R(t) lies in the group SO(3). Continuous groups of this

kind are known as Lie groups. It’s a fact that any element of a Lie group can be written

as the exponential of a different kind of matrix which, in this case, is the anti-symmetric

angular velocity matrix Ω. The matrices that sit in the exponents are said to belong

to the Lie algebra, usually denoted in lower case as so(3). And the Lie algebra so(3) is

defined to be the space of 3× 3 anti-symmetric matrices.

3.2 The Inertia Tensor

Having discussed the way to describe a rotating body, we now turn to the dynamics.

Our route to the dynamics is through the kinetic energy which, for our pinned, rotating

rigid body, is given by

T = 1
2

∑
i

miṙ
2
i

= 1
2

∑
i

mi (ω × ri) · (ω × ri)

= 1
2

∑
i

mi

(
(ω · ω)(ri · ri)− (ri · ω)2

)
We can succinctly write this as

T =
1

2
ωaIabωb (3.18)

where Iab, a, b = 1, 2, 3 are the components of the inertia tensor measured in the body

frame

Iab =
∑
i

mi ((ri · ri)δab − (ri)a(ri)b) (3.19)

Note that the inertia tensor is symmetric: Iab = Iba. Furthermore, the components are

independent of time since they are measured with respect to the body frame. As we

mentioned in the introduction to this section, we will often be interested in continuous

bodies rather than discrete point masses. In this case, there’s an obvious, analogous

expression for the inertia tensor

I =

∫
d3r ρ(r)


y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2
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Since Iab is a symmetric real matrix, we can diagonalise it. Moreover, it can be diago-

nalised by an orthogonal matrix O, such that

OIOT = I ′ = diag(I1, I2, I3)

Because O is orthogonal, it can be viewed as a rotation of the original body frame basis

{ea} to a new basis {Oea}. This new basis is precisely the eigenvectors of the inertia

tensor I.

Physically, there’s something rather surprising about this result. It means that every

object, no matter how complicated, has a preferred set of orthogonal axes sitting within

it. For an object that has a lot of symmetry, this is no surprise as the axes simply align

with the symmetry. For example, for a cube rotating around its middle point, the axes

will be perpendicular to the faces of the cube. But complicated objects that have no

symmetry at all also have a preferred set of axes. These are the eigenvectors of the

inertia tensor.

The preferred body frame axes are known as principal axes. As we have seen, in this

frame the inertia tensor takes the diagonal form

I = diag(I1, I2, I3)

The eigenvalues Ia are called the principal moments of inertia. The kinematical prop-

erties of a rigid body are fully determined by its mass, principal axes, and moments of

inertia.

These principal moments of inertia are real and positive. To see this, consider some

arbitrary vector n and look at

Ibcnbnc =
∑
i

mi(r
2
in

2 − (ri · n)2) ≥ 0

The inequality is a strict equality only if all the ri lie on a line. If n is the ath eigenvector

of I then this result becomes Ibcnbnc = Ia|n|2 which tells us Ia ≥ 0.

In our previous lectures on classical mechanics, we introduced the idea of a moment

of inertia about a given axis n. The inertia tensor is the grown-up version of this. We

can use it to compute the moment of inertia around any axis n by I = n̂ · In̂. We’ll

now illustrate these ideas with some simple examples, all of which we also covered in

our previous course.
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Example: The Rod

As a first example, consider a uniform rod of length l and mass M . We will compute

the inertia tensor about the centre of the rod. By symmetry, the tensor takes the form

I = diag(I1, I1, 0) where a quick calculation is needed to figure out the moment of

inertia I1,

I1 =

∫ l/2

−l/2
ρ x2 dx =

1

12
Ml2

This is a result that we saw in our previous course.

Another Example: The Disc

Now consider a uniform disc of radius R and mass M , lying in

Figure 21:

the (x, y)-plane. The density of the disc is ρ = M/πr2 We’ll

again compute I about the centre of the disc. This time we

have I = diag(I1, I2, I3), with

I1 =

∫
ρy2d2x , I2 =

∫
ρx2d2x

so I1 = I2 by symmetry, while

I3 =

∫
ρ(x2 + y2)d2x

Therefore

I3 = I1 + I2 = 2πρ

∫ r

0

r′ 3 dr′ = 1
2
Mr2 (3.20)

and the moments of inertia are I1 = I2 = 1
4
Mr2 and I3 = 1

2
Mr2.

3.2.1 Parallel Axis Theorem

The inertia tensor depends on what point P in the body is held fixed. In general, if

we know I about a point P then it is messy to compute I ′ about some other point P ′.

But this computation becomes very simple if P happens to coincide with the centre of

mass of the object. This follows from the parallel axis theorem:

Claim: If I is the inertia tensor about the centre of mass and P ′ is displaced by

a vector d from the centre of mass, then the inertia tensor about P ′ is

I ′ab = Iab +M(d2δab − dadb) (3.21)
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Note that the additional term M(d2δab − dadb) is the inertia tensor we would find for

a point mass M sitting at point d.

Proof: The proof is of the plug-it-in-and-check variety

I ′ab =
∑
i

mi

{
(ri − d)2δab − (ri − d)a(ri − d)b

}
=
∑
i

mi

(
r2i δab − (ri)a(ri)b + d2δab − dadb − [2ri · dδab − (ri)adb − (ri)bda]

)
But the term in square brackets is linear in r, and so proportional to

∑
miri which

vanishes if ri is measured from the centre of mass. The remaining terms give the

promised result (3.21). □

Example: The Rod Again

The inertia tensor of the rod about one of its ends is I1 = 1
12
Ml2 +M(l/2)2 = 1

3
Ml2.

Another Example: The Disc Again

We can consider our previous example of the disc, now displaced by d = (d, 0, 0) from

the centre. We have

I ′c =
M

4


r2

r2

2r2

+M


0

d2

d2

 =
M

4


r2

r2 + 4d2

2r2 + 4d2


Note that I ′ remains diagonal because we have shifted the point P along a principal

axis.

3.2.2 Angular Momentum

Next we turn to the angular momentum of a rigid body. Again, we consider the case

where the body is pinned at some point P , about which it rotates. We have

L =
∑
i

miri × ṙi =
∑
i

miri × (ω × ri) =
∑
i

mi(r
2
iω − (ω · ri)ri)

We recognise the two terms in the sum as the inertia tensor (3.19), now multiplying

the angular velocity ω,

L = Iω
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Note that, perhaps counterintuitively, the angular momentum L is not necessarily

aligned with the spin ω. If the spin happens to point along a principal axis of the

rigid body then ω and L do align. Otherwise ω and L point in different directions.

Many of the more peculiar properties of spinning objects follow from this simple fact.

The components of the inertia tensor Iab are found in the body frame. Here we can

write

La = Iabωb (3.22)

where L = Laea and ω = ωaea.

3.3 Free Tops

“To those who study the progress of exact science, the common spinning-top

is a symbol of the labours and the perplexities of men.”

James Clerk Maxwell, no less

We now have the tools at our disposal to understand the the motion of objects as

they twist and turn.

Until now, we’ve only considered rigid bodies pinned at some point P . Now we

free things up. The body will be suspended in space, free to move or rotate in any

direction. We won’t, for now, consider the effects of gravity, an omission that we’ll

remedy in Section 3.5. That means that the analysis of this section will describe

planets or satellites, or simply objects in free fall where we ignore the fact that it’s

accelerating downwards.

The most general motion of a rigid body is an over-

Figure 22:

all translation, superposed with a rotation. In principle,

we could think about this rotation as being about any

point inside or outside the body. But, as we now show,

nice things happen if we consider the point of rotation to

be about the centre of mass. We will write the position of

a general point ri in the rigid body as

ri(t) = R(t) + yi(t)

where R is the centre of mass and, by definition, yi is the position measured from the

centre of mass. Considering the body to be rotating about the centre of mass means

that

ẏi = ω × yi
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The kinetic energy for the rigid body is then

T = 1
2

∑
i

miṙ
2
i

=
∑
i

mi

[
1
2
Ṙ2 + Ṙ · (ω × yi) + 1

2
(ω × yi)

2
]

= 1
2
MṘ2 + 1

2
ωaIabωb

where, to go to the final line, we’ve used the fact that
∑

imiyi = 0, which ensures that

the term linear in ω vanishes. We’ve also used our original definition of the inertia

tensor (3.18) as it appears in the kinetic energy of a rotating body. This is a rather

nice result: it tells us that the dynamics separates into the translational motion of the

centre of mass R, together with rotation about the centre of mass. Happily, this means

that the work we did in the previous sections describing an object that rotates about

a fixed point is also valid for a free object.

3.3.1 Euler’s Equations

We know how the centre of mass of an object moves. For this reason, we will focus

only on the rotational motion of the rigid body.

The basic idea underlying the rotation of a free, rigid body is very simple: angular

momentum is conserved. This gives us the vector equation

dL

dt
= 0 (3.23)

We expand this in the body frame, with L = Laea. Both the components La and the

basis vectors ea can change with time, so we have

0 =
dL

dt
=
dLa
dt

ea + La
dea
dt

=
dLa
dt

ea + Laω × ea (3.24)

where we’ve used the expression ėa = ω × ea, derived in (3.7), to express the change

of the body frame basis in terms of the angular velocity.

The next step is to combine (3.24) with the relation L = Iω from (3.22). Things are

significantly simpler if we pick the body frame axes {ea} to coincide with the principal

axes. Then the inertia tensor is diagonal and the expression La = Iabωb becomes

L1 = I1ω1 and so on. The conservation of angular momentum (3.23) now becomes

three non-linear coupled first order differential equations,

I1ω̇1 + ω2ω3(I3 − I2) = 0

I2ω̇2 + ω3ω1(I1 − I3) = 0 (3.25)

I3ω̇3 + ω1ω2(I2 − I1) = 0
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These are Euler’s Equations. (As an aside, Euler has way too many things named after

him! Euler’s equations are not to be confused with the more general Euler-Lagrange

equations, nor with the equation for a fluid which is usually called the Euler equation.)

It is straightforward to extend the analysis above to include a torque τ acting on the

body. The equation of motion becomes L̇ = τ and repeating the steps above results in

Euler’s equations (3.25), now with the components of the torque τ = τaea, expanded

in the body frame, arising on the right-hand side.

3.3.2 The Symmetric Top

The simplest example of a rigid body is the sphere. It is,

Figure 23:

sadly, too simple. The moments of inertia all coincide, I1 =

I2 = I3, which means that the inertia tensor I is diagonal and

the angular momentum ω is parallel to the angular momentum

L. Euler’s equations (3.25) then tell us that ω is constant. If

you spin a sphere about some axis, then it continues to spin

about the same axis.

To find something more interesting, we need to go to the

next simplest case. This an object with I1 = I2 ̸= I3, known

as the symmetric top. An example is shown in the figure to

the right. Euler’s equations (3.25) for the symmetric top are,

I1ω̇1 = ω2ω3(I1 − I3)
I2ω̇2 = −ω1ω3(I1 − I3) (3.26)

I3ω̇3 = 0

We see that ω3, which is the spin about the axis of symmetry, is a constant of motion.

In contrast, the spins about the other two axes vary in time, and obey the equations

ω̇1 = Ωω2 and ω̇2 = −Ωω1 with Ω =
I1 − I3
I1

ω3 (3.27)

These are familiar equations, with (ω1, ω2) tracing out a circle

ω1 = ω0 sin Ωt and ω2 = ω0 cos Ωt (3.28)

for some integration constant ω0. Recall that the components ωa in Euler’s equations

describe the angular velocity in the body frame. The solution (3.28) is then telling us

that, in the body frame, the direction of the spin precesses about the axis of symmetry

e3, with frequency Ω. Note from (3.27) that the sign of Ω depends on whether I1 > I3
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Figure 24: The precession of the spin: the direction of precession depends on whether the

object is tall and skinny with I3 < I1 (known as a prolate spheroid or is short and fat with

I3 > I1 (known as an oblate spheroid.

or I1 < I3. For a tall, skinny object, like the one shown in the figure above, I3 < I1
and Ω > 0. Meanwhile, a short, fat object has I1 < I3 and Ω < 0. Examples of the

spin precession are shown in Figure 24.

The story above holds in the body frame, meaning it’s

Figure 25:

relevant for someone unlucky enough to be clinging to the spin-

ning object (presumably trying to keep their food down). But

what does the situation look like for someone in the inertial,

space frame? The angular momentum L is a fixed vector. But

ω3, and hence L3, are also fixed which ensures that the angle

between e3 and L doesn’t change in time. Instead, e3 precesses

around L, while the body simultaneously spins such that ω re-

mains between e3 and L. A picture of this motion, albeit one

that is necessarily rather static, is shown to the right1. The fact

that ω precesses around the body frame axis e3 is sometimes

referred to, reasonably, as a wobble. We’ll return to the motion

of the symmetric top in the space frame in Section 3.4.3 where

we’ll parameterise the motion in terms of Euler angles.

1You can find more enlightening videos of this motion on YouTube.
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An Example: The Earth’s Wobble

When we were children, our teachers told us that the Earth is round. They presumably

meant this as a topological statement rather than a statement about the metric. The

spin of the Earth causes it to bulge at the equator so it is no longer a sphere but is closer

to an oblate ellipsoid. In other words, the Earth is a symmetric top. The moments of

inertia turn out to be

I1 − I3
I1

≈ − 1

300

Our childhood teachers also told us that ω3 = (1 day)−1. This information is enough

to calculate the frequency of the earth’s wobble; from (3.27), it should be

Ωearth =
1

300
day−1

This calculation was first performed by Euler in 1749 who pre-

Figure 26:

dicted that the Earth completes a wobble every 300 days. Note,

however, that the size of the wobble isn’t predicted by the analysis

above: it is given by the integration constant ω0.

Despite many searches, this effect wasn’t detected until 1891

when Chandler re-analysed the data and saw a wobble with a

period of 427 days. It is now known as the Chandler wobble. It is

very small! The angular velocity ω intercepts the surface of the

earth approximately 10 metres from the North pole and precesses

around it. A greatly exaggerated picture of the wobble is shown

in the figure.

More recent measurements place the frequency at 435 days. The discrepancy with the

predicted 300 days can be traced to the fact that the Earth is not, in fact, a rigid body.

Instead it is flexible because of tidal effects. Less well understood is why these same

tidal effects haven’t caused the wobble to dampen and disappear completely. There are

various theories about what keeps the wobble alive, from earthquakes to fluctuating

pressure at the bottom of the ocean.

3.3.3 The Asymmetric Top: Stability

The most general rigid body has no symmetries and distinct moments of inertia, Ia ̸= Ib
for a ̸= b. Euler’s equations are now non-linear differential equations and the general

solution is complicated; we will give some insight into it in Section 3.3.4. Here, we look

at a special case of the motion and present a simple but striking result.
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The special situation that we’re interested in is when the spin is aligned with one of

the principal axes, say e1, so that

ω1 = Ω and ω2 = ω3 = 0

This is a steady state solution to Euler’s equations (3.25), with ω̇a = 0. The question

we want to ask is: what happens if we perturb the system, so that the spin lies close

to the e1 axis, but isn’t quite aligned. To answer this, we write the spin as

ω1 = Ω + η1 , ω2 = η2 , ω3 = η3 (3.29)

where ηa, a = 1, 2, 3 are all taken to be small which, in this case, means ηa ≪ Ω.

Substituting this into Euler’s equations and ignoring terms of order η2 and higher, we

get the system of linear differential equations

I1η̇1 = 0

I2η̇2 = Ωη3(I3 − I1)
I3η̇3 = Ωη2(I1 − I2)

We substitute the third equation into the second to find an equation for just one of the

perturbations, say η2,

I2η̈2 = Ω2 (I3 − I1)(I1 − I2)
I3

η2 ≡ Aη2

The fate of the small perturbation depends on the sign of the quantity A. We have two

possibilities

• A < 0: In this case, the disturbance will oscillate around the original solution.

• A > 0: In this case, the disturbance will grow exponentially.

Examining the definition of A, we find that if the body was originally spinning around

the axis with the middle moment of inertia, meaning

I2 < I1 < I3 or I3 < I1 < I2,

then the motion is unstable. In contrast, if the body was originally spinning about an

axis with either the smallest moment of inertia I1 < I2, I3 or the largest moment of

inertia I1 > I2, I3, then the motion will be stable.
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You can get a vivid (and, if you’re not careful, painful) demonstration of this result

by picking up some suitable object – say a book or, if you’re brave, a tennis racket – and

trying it for yourself. Throw the object upwards, spinning around either the axis with

the largest or smallest moment of inertia, and it will gracefully return to you. Throw

it spinning around the intermediate axis then good luck catching it as it tumbles and

turns in unexpected directions due to the instability.

3.3.4 The Poinsot Construction

As we mentioned above, for unequal moments of inertia, Euler’s equations are non-

linear. But they’re not terribly non-linear and there’s no chaotic motion. Indeed, it

turns out that there is an analytic solution for the general solution of an asymmetric

top, given in terms of elliptic functions. We won’t describe this here, but instead

present a nice, geometrical perspective on the motion, due to Poinsot.

We start by working in the body frame. As always, we make progress by focussing

on conserved quantities. There are two: the kinetic energy T and the magnitude of the

angular momentum L2. In terms of the angular velocity, they are

2T = I1ω
2
1 + I2ω

2
2 + I3ω

2
3 (3.30)

L2 = I21ω
2
1 + I22ω

2
2 + I23ω

2
3 (3.31)

Each of these equations defines an ellipsoid in ω space. The motion of the vector ω is

constrained to lie on the intersection of these two ellipsoids. The first of these ellipsoids,

defined by

I1
2T

ω2
1 +

I2
2T

ω2
2 +

I3
2T

ω2
3 = 1 (3.32)

is known as the inertia ellipsoid (or, sometimes, the inertia quadric). If we fix the

kinetic energy, we can think of this abstract ellipsoid as embedded within the object,

rotating with it.

As in the previous section, we’ll take I1 > I2 > I3. This means that ω3 is the major

axis of the inertial ellipsoid, while ω1 is the minor axis. The second ellipsoid, defined

by (3.31), has the same major and minor axes because I21 > I22 > I23 . To understand

the motion in the body frame, we can consider the intersection of the two ellipsoids for

different values of L2. These lines of intersection are drawn on the inertia ellipsoid in

the figure.
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Figure 27: The intersection of the inertia ellipsoid with the polhode cone. On the left,

L2 > 2I2T and the cone is oriented along the ω3 axis. On the right, 2I2T < L2 < 2I3T , and

the cone is oriented along the ω1 axis.

On the major and minor axes, the two

Figure 28:

ellipsoids intersect in small closed orbits, as

shown. Meanwhile, the behaviour is different

along the intermediate axis ω2, where the in-

tersection appears as two crossed lines. This

gives a graphical rendering of the result that

saw in the previous section. If the body is

spinning along either the ω1 or ω3 axis, then

a perturbation is stable, and the spin will pre-

cess around the original axis. Meanwhile, if

it was originally spinning around ω2, then a general perturbation will be unstable and

the orientation of the spin will rapidly change when perturbed.

The path that ω traces on the inertia ellipsoid is known as the polhode curve. One

of the things we learn from this pictorial representation is that the polhode curves are

always closed and therefore motion in the body frame is periodic.

There is a slightly different way to view this. Equations (3.30) and (3.31) can be

rearranged to give the condition

(2I1T − L2) I1ω
2
1 + (2I2T − L2) I2ω

2
2 + (2I3T − L2) I3ω

2
3 = 0 (3.33)

This is the equation for a cone. To see this, note that if ω satisfies (3.33), then so

does any rescaled vector λω for all real numbers λ. It is known as the polhode cone.
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Figure 29: The inertia ellipsoid rolling around on the invariable plane, with the polhode

and herpolhode curves drawn for a fixed time period.

For fixed T and L2, the motion of ω in the body frame runs along the intersection of

the inertia ellipsoid and the polhode cone. Two examples are shown in Figure 27, the

first with L2 < 2I2T , the second with 2I2T < L2 < 2I3T , so that the orientation of the

cone is different in the two cases.

The discussion above holds in the body frame. What does all this look like in the

space frame? The vector L is a constant of motion. Since the kinetic energy 2T = L ·ω
is also constant, we learn that ω must lie in a fixed plane perpendicular to L. This

is known as the invariable plane. The inertia ellipsoid touches the invariable plane

at the point defined by the angular velocity vector ω. Moreover, the invariable plane

is always tangent to the inertial ellipsoid at the point ω. To see this, note that the

angular momentum can be written as

L = ∇ωT (3.34)

where the gradient operator is in ω space, i.e. ∇ω = (∂/∂ω1, ∂/∂ω2, ∂/∂ω3). But

recall that the inertia ellipsoid is defined as a level surface of T , so equation (3.34) tells

us that the angular momentum L is always perpendicular to the ellipsoid. This, in

turn, ensures that the invariable plane is always tangent to the ellipsoid.

In summary, the angular velocity traces out two curves: one on the inertia ellipsoid,

known as the polhode curve, and another on the invariable plane, known as the herpol-

hode curve. The body moves as if it is embedded within the inertia ellipsoid, which rolls

around the invariable plane without slipping, with the centre of the ellipsoid a constant
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Figure 30: By Toutatis! The three principal axes are shown in red, green and blue (without

arrows). The angular momentum L is the vertical, purple arrow. The angular velocity ω is

the circled, yellow arrow.

distance from the plane. The motion is shown in Figure 29. Unlike the polhode curve,

the herpolhode curve does not necessarily close.

An Example: The Asteroid Toutatis

Astronomical objects are usually symmetric, but there’s an important exception wan-

dering around our solar system, shown2 in Figure 30 This is the asteroid Toutatis.

In September 2004, Toutatis passed the earth at a distance of about four times that

to the moon. This is (hopefully!) the closest any asteroid will come for the next 60

2This picture was created by Scott Hudson of Washington State University. You can find many

interesting facts about the asteroid on his webpage.
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years. The orbit of Toutatis is thought to be chaotic, which could potentially be bad

news for Earth a few centuries from now. As you can see from the picture, its tumbling

motion is complicated. It is aperiodic. The pictures show the asteroid at intervals

of a day. The angular momentum vector L remains fixed and vertical throughout the

motion. The angular velocity ω traces out the herpolhode curve in the horizontal plane,

perpendicular to L. The angular momentum vector ω also traces out a curve over the

asteroid’s surface: this is the polhode curve. It has a period of 5.4 days which you can

observe by noting that ω has roughly the same orientation relative to the principal

axes every five to six days.

However, there are further effects at play in a real object like Toutatis which is not

spinning around a principal axis. Various stresses and strains lead to dissipation. This

means that the angular velocity ω does not quite follow the polhode curve. Instead it

begins close to the major axis ω3 and slowly spirals towards the minor axis ω1. This is

why we see so few wobbling asteroids.

3.4 Euler Angles

So far, we’ve made a fair bit of progress simply by using the relation L = Iω between

angular momentum and angular velocity, and interpreting what this means for the

tumbling motion of rigid bodies. Notice, in particular, that we haven’t needed to say

anything about what this motion looks like in the configuration space C of the rigid

body.

However, to make further progress we will need to get a better handle on the way to

describe the orientation of the rigid body. Recall that the configuration space is given

by all possible rotations of a set of axes. An example of such a rotation is shown in

Figure 31. Our first task is to find a way to explicitly parameterise such a rotation.

Happily, there is a way do do this, due to Euler, that often leads to simple solutions.

As an aside, we mentioned previously that the configuration space is actually the

group C = SO(3). This means that we will be looking for a way to parameterise the

group manifold SO(3). We will use the following fact:

Euler’s Theorem: An arbitrary rotation may be expressed as the product of 3 suc-

cessive rotations about 3 (in general) different axes.

Proof: Let {ẽa} be space frame axes. Let {ea} be body frame axes. We want to

find the rotation R so that ea = Rabẽb. We can accomplish this in three steps:

{ẽa}
R3(ϕ)−→ {e′a}

R1(θ)−→ {e′′a}
R3(ψ)−→ {ea} (3.35)
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Figure 31: The rotation from space frame {ẽa} to body frame {ea}.

Let’s look at these step in turn.

Step 1: Rotate by ϕ about the ẽ3 axis. So e′a = R3(ϕ)abẽb with

R3(ϕ) =


cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

 (3.36)

This rotates the axes like this:

Step 2: The next step is to totate by θ about the new axis e′1. This axis e′1 is sometimes

called the “line of nodes”. We write e′′a = R1(θ)abe
′
b with

R1(θ) =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (3.37)
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This time, it acts on the axes like this:

Step 3: Finally, we rotate by ψ about the new new axis e′′3 so ea = R3(ψ)abe
′′
b with

R3(ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (3.38)

This final rotation looks like this:

This brings us to the promised rotation shown in Figure 31. Putting it all together, we

have

Rab(ϕ, θ, ψ) = [R3(ψ)R1(θ)R3(ϕ)]ab (3.39)

This is our claimed result. The angles ϕ, θ and ψ are known as Euler angles. □

If we write out the matrix R(ϕ, θ, ψ) in longhand, it reads

R =


cosψ cosϕ− cos θ sinϕ sinψ sinϕ cosψ + cos θ sinψ cosϕ sin θ sinψ

− cosϕ sinψ − cos θ cosψ sinϕ − sinψ sinϕ+ cos θ cosψ cosϕ sin θ cosψ

sin θ sinϕ − sin θ cosϕ cos θ
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Before we proceed, a warning. Here we’ve thought about the rotations as acting on the

basis vectors {ea}. Some textbooks instead choose to think of the rotations as acting

on the components of a vector r = raea = r̃aẽa, writing r̃b = raRab. When expanded

in terms of Euler angles, this can result in an apparent reversal of the ordering of the

three rotation matrices in (3.39).

3.4.1 Leonhard Euler (1707-1783)

As is clear from the section headings, the main man for this chapter is Euler, by far the

most prolific mathematician of all time. As well as developing the dynamics of rotations,

he made huge contributions to the fields of number theory, geometry, topology, analysis

and fluid dynamics. For example, the lovely equation eiθ = cos θ + i sin θ is due to

Euler. In 1744 he was the first to correctly present a limited example of the calculus of

variations (which we saw in section 2.1) although he generously gives credit to a rather

botched attempt by his friend Maupertuis in the same year. Euler also invented much

of the modern notation of mathematics: f(x) for a function; e for exponential; π for,

well, π and so on.

Euler was born in Basel, Switzerland and held positions in St Petersburg, Berlin and,

after falling out with Frederick the Great, St Petersburg again. He was pretty much

absorbed with mathematics day and night. Upon losing the sight in his right eye in

his twenties he responded with: “Now I will have less distraction”. Even when he went

completely blind later in life, it didn’t slow him down much as he went on to produce

over half of his total work. The St Petersburg Academy of Science continued to publish

his work for a full 50 years after his death.

3.4.2 Angular Velocity

There is a simple expression for the instantaneous angular velocity ω in terms of Euler

angles. One way straightforward, but slightly tedious, way to derive this is to plug

in the the expression (3.39) into the definition (3.6) of the angular momentum matrix

Ω = ṘR−1. However, a little thought about what this means physically will get us

there quicker. Consider the motion of a rigid body in an infinitesimal time dt, during

which each of the Euler angles will change a little

(ψ, θ, ϕ)→ (ψ + dψ, θ + dθ, ϕ+ dϕ) (3.40)

From the definition of the Euler angles, the angular velocity must be of the form

ω = ϕ̇ ẽ3 + θ̇ e′1 + ψ̇ e3 (3.41)
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Figure 32: Euler angles for the free symmetric top when L coincides with ẽ3

We just need to write each of these vectors in the same basis. We’ll choose to write

everything in the body frame basis {ea}. We can write the first two vectors above as

ẽ3 = sin θ sinψ e1 + sin θ cosψ e2 + cos θ e3

e′1 = cosψ e1 − sinψ e2

from which we find the expression for the angular velocity ω in terms of Euler angles

in the body frame axis

ω = [ϕ̇ sin θ sinψ + θ̇ cosψ]e1 + [ϕ̇ sin θ cosψ − θ̇ sinψ]e2 + [ψ̇ + ϕ̇ cos θ]e3 (3.42)

By playing a similar game, we can also express ω in the space frame axis.

3.4.3 The Free Symmetric Top Revisited

To get some intuition for Euler angles, we can return to the free symmetric top that

we looked at in Section 3.3.2. There we studied the angular velocity components in the

body frame and found that ω3 is constant while, as shown in (3.28), ω1 and ω2 precess

as

(ω1, ω2) = ω0(sin Ωt, cos Ωt) with Ω = ω3
(I1 − I3)

I1
(3.43)

But what does this look like in the space frame? Now that we have parametrised

motion in the space frame in terms of Euler angles, we can answer this question. This

is simplest if we choose the angular momentum L to lie along the ẽ3 space-axis. The

resulting rigid body, garlanded with its many angles, is shown in Figure 32.
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Because both L and its body-frame component L3 = I3ω3 are conserved, so too is the

angle between them. But this angle is identified with the Euler angle θ. This means

that θ̇ = 0.

Next, we want to compute ψ̇. The simplest way to do this is to state at Figure 32

and convince yourself that

ψ̇ = Ω

Alternatively, you can reach the same result by comparing the expression for the angular

velocity (3.42) with our result (3.43) for the precession. Next, we can get an expression

for ϕ̇ by using the component of the body frame angular velocity

ω3 = ψ̇ + ϕ̇ cos θ

Substituting our expressino Ω = ψ̇, we find the precession frequency

ϕ̇ =
I3ω3

I1 cos θ
(3.44)

This is the rate of the wobble as seen from the space frame.

An Example: The Wobbling Plate

The physicist Richard Feynman tells the following story:

“I was in the cafeteria and some guy, fooling around, throws a plate in the

air. As the plate went up in the air I saw it wobble, and I noticed the red

medallion of Cornell on the plate going around. It was pretty obvious to me

that the medallion went around faster than the wobbling.

I had nothing to do, so I start figuring out the motion of the rotating plate.

I discover that when the angle is very slight, the medallion rotates twice as

fast as the wobble rate – two to one. It came out of a complicated equation!

I went on to work out equations for wobbles. Then I thought about how the

electron orbits start to move in relativity. Then there’s the Dirac equation

in electrodynamics. And then quantum electrodynamics. And before I knew

it....the whole business that I got the Nobel prize for came from that piddling

around with the wobbling plate.”

Feynman was right about quantum electrodynamics. But what about the plate?
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We can look at this easily using what we’ve learnt.

Figure 33:

The spin of the plate is ω3, while the precession, or wobble,

rate ϕ̇ is given in (3.44). The relevant moments of inertia

for a plate were calculated in Section 3.2 where we found

that I3 = 2I1. From (3.43), we then have Ω = −ω3. We

can use this to see that ψ̇ = −ω3 for this example and so,

for slight angles θ, with cos θ ≈ 1, we have

ϕ̇ ≈ −2ψ̇ (3.45)

This means that the wobble rate of the plate is twice as

fast as the spin. It’s the opposite to how Feynman remembers!

There is another elegant and simple method you can use to see that Feynman was

wrong: you can pick up a plate and throw it. It’s hard to see that the wobble to spin

ratio is exactly two. But it’s easy to see that it wobbles faster than it spins.

3.5 The Heavy Symmetric Top

Until now, all our rigid bodies have been free. They tumble and turn, only because of

conservation of angular momentum. Now we start adding forces to the story. And the

most obvious force to add is gravity.

We’ll work with a symmetric top, pinned at a point P which is a distance l from the

centre of mass as shown in Figure 34. The principal axes are e1, e2 and e3 and we have

I1 = I2. It’s straightforward to write down the Lagrangian in terms of Euler angles

L = 1
2
I1(ω

2
1 + ω2

2) + 1
2
I3ω

2
3 −Mgl cos θ

= 1
2
I1(θ̇

2 + sin2 θϕ̇2) + 1
2
I3(ψ̇ + cos θ ϕ̇)2 −Mgl cos θ

Clearly both ψand ϕ are ignorable coordinates, giving us two constants of motion. The

first of these is

pψ = I3(ψ̇ + cos θ ϕ̇) = I3ω3 (3.46)

This is the angular momentum about the symmetry axis e3 of the top. The angular

velocity ω3 about this axis is called the spin of the top and, as for the free symmetric

top, it is a constant. The other constant of motion is

pϕ = I1 sin2 θ ϕ̇+ I3 cos θ (ψ̇ + ϕ̇ cos θ) (3.47)

In addition to these two conjugate momenta, the total energy E is also conserved
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Figure 34: The heavy top with its Euler angles

E = T + V = 1
2
I1(θ̇

2 + ϕ̇2 sin2 θ) + 1
2
I3ω

2
3 +Mgl cos θ

To simplify these equations, we define the two constants

a =
I3ω3

I1
and b =

pϕ
I1

(3.48)

Then we can write

ϕ̇ =
b− a cos θ

sin2 θ
(3.49)

and

ψ̇ =
I1a

I3
− (b− a cos θ) cos θ

sin2 θ
(3.50)

So if we can solve θ = θ(t) somehow, then we can always integrate these two equations

to get ϕ(t) and ψ(t). But first we have to figure out what θ is doing. To do this, we

define the “reduced energy” E ′ = E − 1
2
I3ω

2
3. Because both E and ω3 are constant, so

too is E ′. We have

E ′ = 1
2
I1θ̇

2 + Veff(θ) (3.51)

where the effective potential is

Veff(θ) =
I1(b− a cos θ)2

2 sin2 θ
+Mgl cos θ (3.52)
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Figure 35: The cubic f(u), defined in (3.54)

This now looks like the kind of things that we can understand, simply by plotting the

effective potential Veff(θ). It turns out to be simpler if we define the new coordinate

u = cos θ

Clearly −1 ≤ u ≤ 1. We’ll also define two further constants to help put the equations

in the most concise form

α =
2E ′

I1
and β =

2Mgl

I1
(3.53)

With all these redefinitions, the equations of motion (3.49), (3.50) and (3.51) can be

written as

u̇2 = (1− u2)(α− βu)− (b− au)2 ≡ f(u) (3.54)

ϕ̇ =
b− au
1− u2

(3.55)

ψ̇ =
I1a

I3
− u(b− au)

1− u2

We could take the square root of equation (3.54) and integrate to reduce the problem

to quadrature. The resulting integral is known as an elliptic integral. But, rather than

doing this, there’s a better way to understand the physics qualitatively.

Note that the function f(u) defined in (3.54) is a cubic polynomial that behaves as

f(u)→

{
+∞ as u→ +∞
−∞ as u→ −∞

and f(±1) = −(b∓ a)2 ≤ 0. This means that if we plot the function f(u) then it looks

like figure 35
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Figure 36: The three different types of motion depend on the direction of precession ϕ̇ when

θ reaches its maximum and minimum values..

The physical range is u̇2 = f(u) > 0 and −1 ≤ u ≤ 1 so we find that, like in the

spherical pendulum and central force problem, the system is confined to lie between

the two roots of f(u).

There are three possibilities for the motion depending on the sign of ϕ̇ at the two

roots u = u1 and u = u2 as determined by (3.55). These are

• ϕ̇ > 0 at both u = u1 and u = u2

• ϕ̇ > 0 at u = u1, but ϕ̇ < 0 at u = u2

• ϕ̇ > 0 at u = u1 and ϕ̇ = 0 at u = u2

The different paths of the top corresponding to these three possibilities are shown in

figure 36. Motion in ϕ is called precession while motion in θ is known as nutation.

Letting the Top Go

The last of these three motions is not as unlikely as it may first appear. Suppose

we spin the top and let it go at some angle θ. What happens? We have the initial

conditions

θ̇t=0 = 0 ⇒ f(ut=0) = 0 ⇒ ut=0 = u2

and ϕ̇t=0 = 0 ⇒ b− aut=0 = 0 ⇒ ut=0 =
b

a

Remember also that the quantity

pϕ = I1ϕ̇ sin2 θ + I3ω3 cos θ = I3ω3 cos θt=0 (3.56)

is a constant of motion. We now have enough information to figure out the qualitative

motion of the top. Firstly, it starts to fall under the influence of gravity, so θ increases.
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But as the top falls, ϕ̇ must turn and increase in order to keep pϕ constant. Moreover,

we also see that the direction of the precession ϕ̇ must be in the same direction as the

spin ω3 itself. What we get is motion of the third kind.

3.5.1 Uniform Precession

Can we make the top precess without bobbing up

Figure 37:

and down? This would require θ̇ = 0 and ϕ̇ constant.

For this to happen, we would need the function f(u)

to have a single root u0 lying in the physical range

−1 ≤ u0 ≤ +1, as shown in the figure. This root must

satisfy,

f(u0) = (1− u20)(α− βu0)− (b− au0)2 = 0

and f ′(u0) = −2u0(α− βu0)− β(1− u20) + 2a(b− au0) = 0

Combining these, we find 1
2
β = aϕ̇− ϕ̇2u0. Substituting the definitions I1a = I3ω3 and

β = 2Mgl/I1 into this expression, we find

Mgl = ϕ̇(I3ω3 − I1ϕ̇ cos θ0) (3.57)

The interpretation of this equation is as follows: for a fixed value of ω3 (the spin of the

top) and θ0 (the angle at which you let it go), we need to give exactly the right push

ϕ̇ to make the top spin without bobbing. In fact, since equation (3.57) is quadratic in

ϕ̇, there are two frequencies with which the top can precess without bobbing.

Of course, these “slow” and “fast” precessions only

Figure 38:

exist if equation (3.57) has any solutions at all. Since

it is quadratic, this is not guaranteed, but requires

ω3 >
2

I3

√
MglI1 cos θ0 (3.58)

So we see that, for a given θ0, the top has to be spinning

fast enough in order to have uniform solutions. What

happens if it’s not spinning fast enough? Well, the top

falls over!

3.5.2 The Sleeping Top

Suppose we start the top spinning in an upright position, with

θ = θ̇ = 0 (3.59)
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Figure 39: The function f(u) for the stable sleeping top (on the left) and the unstable

sleeping top (on the right).

When it spins upright, it is called a sleeping top. The question we want to answer is:

will it stay there? Or will it fall over? From (3.54), we see that the function f(u) must

have a root at θ = 0, or u = +1: f(1) = 0. From the definitions (3.48) and (3.53), we

can check that a = b and α = β in this situation and f(u) actually has a double zero

at u = +1,

f(u) = (1− u)2(α(1 + u)− a2) (3.60)

The second root of f(u) is at u2 = a2/α− 1. There are two possibilities

• The first possibility is when u2 > 1 or, equivalently, ω2
3 > 4I1Mgl/I23 . In this

case, the graph of f(u) is drawn in first in figure 39. This motion is stable: if we

perturb the initial conditions slightly, we will perturb the function f(u) slightly,

but the physical condition that we must restrict to the regime f(u) > 0 means

that the motion will continue to be trapped near u = 1

• The second possibility is when u2 < 1, or ω2
3 < 4I1Mgl/I23 . In this case, the

function f(u) looks like the second figure of 39. Now the top is unstable; slight

changes in the initial condition allow a large excursion.

In practice, the top spins upright until it is slowed by friction to I3ω3 = 2
√
I1Mgl,

at which point it starts to fall and precess.

3.5.3 The Precession of the Equinox

The Earth spins at an angle of θ = 23.5o to the plane of its orbit around the Sun, known

as the plane of the elliptic. The spin of the earth is familiar: it is ψ̇ = (day)−1. This

spin causes the Earth to bulge at the equator so it is no longer a sphere, but rather a
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Figure 40: The precession of the Earth. (Not to scale.)

symmetric top. This, in turn, allows both the Sun and Moon to exert a torque on the

Earth which produces a precession ϕ̇. Physically this means that the direction in which

the North Pole points traces a circle in the sky and what we currently call the “pole

star” will no longer be in several thousand years time. It turns out that this precession

is “retrograde” i.e. opposite to the direction of the spin. The relevant angles are shown

in Figure 40.

One can calculate the precession ϕ̇ of the earth due to the moon and sun using the

techniques described in the chapter. We won’t. Instead, we will use a more novel

technique to calculate the precession of the earth: astrology. After all, it’s got to be

good for something3.

To compute the precession of the earth, the first fact we need to know is that Jesus

was born in the age of Pisces. This doesn’t mean that Jesus looked up Pisces in his

daily horoscope (while scholars are divided over the exact date of his birth, he seems to

exhibit many traits of a typical Capricorn) but rather refers to the patch of the sky in

which the sun appears during the first day of spring. Known in astronomical terms as

the “vernal equinox”, this day of the year is defined by the property that the sun sits

directly above the equator at midday. As the earth precesses, this event takes place

at a slightly different point in its orbit each year, with a slightly different backdrop of

stars as a result. The astrological age is defined to be the background constellation in

which the sun rises during vernal equinox.

3I learned about this fact from John Baez’ website.
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It is easy to remember that Jesus was born in the age of Pisces since the fish was

used as an early symbol for Christianity. The next fact that we need to know is

that we’re currently entering the age of Aquarius (which anyone who has seen the

musical Hair will know). So we managed to travel backwards one house of the zodiac

in 2,000 years. We’ve got to make it around 12 in total, giving us a precession time of

2, 000 × 12 = 24, 000 years. The actual value of the precession is 25, 700 years. Our

calculation is pretty close considering the method!

The earth also undergoes other motion. The value of θ varies from 22.1o to 24.5o

over a period of 41, 000 years, mostly due to the effects of the other planets. These also

affect the eccentricity of the orbit over a period of 105,000 years.

3.6 The Motion of Deformable Bodies

Take a lively cat. (Not one that’s half dead like Schrödinger’s). Hold it upside down and

drop it. The cat will twist its body and land sprightly on its feet4. Yet it doesn’t do this

by pushing against anything and its angular momentum is zero throughout. If the cat

were rigid, such motion would be impossible since a change in orientation for a rigid

body necessarily requires non-vanishing angular momentum. But the cat isn’t rigid

(indeed, it can be checked that dead cats are unable to perform this feat) and bodies

that can deform are able to reorient themselves without violating the conservation of

angular momentum. In this section we’ll describe some of the beautiful mathematics

that lies behind this. I should warn you that this material is somewhat more advanced

than the motion of rigid bodies. The theory described below was first developed in the

late 1980s in order to understand how micro-organisms swim5.

3.6.1 Kinematics

We first need to describe the configuration space C of a deformable body. We factor

out translations by insisting that all bodies have the same center of mass. Then the

configuration space C is the space of all shapes with some orientation.

Rotations act naturally on the space C: they simply rotate each shape. This allows

us to define the smaller shape space C̃ so that any two configurations in C which are

related by a rotation are identified in C̃. In other words, any two objects that have the

same shape, but different orientation, are described by different points in C, but the

same point in C̃. Mathematically, we say C̃ ∼= C/SO(3).

4Here is Étienne-Jules Marey’s famous video of a falling cat from 1894.
5See A. Shapere and F. Wilczek, “Geometry of Self-Propulsion at Low Reynolds Number”, J. Fluid

Mech. 198 557 (1989) . This is the same Frank Wilczek who won the 2004 Nobel prize for his work

on quark interactions.
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Figure 41: Three possible shapes of a deformable object.

We can describe this in more detail for a body consisting of N point masses, each with

position ri. Unlike in section 3.1, we do not require that the distances between particles

are fixed, i.e. |ri − rj| ̸= constant. (However, there may still be some restrictions on

the ri). The configuration space C is the space of all possible configurations ri. For

each different shape in C, we pick a representative r̃i with some, fixed orientation. It

doesn’t matter what representative we choose — just as long as we pick one. These

variables r̃i are coordinates on the space shape C̃. For each ri ∈ C, we can always find

a rotation matrix R ∈ SO(3) such that

ri = R r̃i (3.61)

As in section 3.1, we can always do this to continuous bodies. In this case, the con-

figuration space C and the shape space C̃ may be infinite dimensional. Examples of

different shapes for a continuously deformable body are shown in figure 41.

We want to understand how an object rotates as it changes shape keeping its angular

momentum fixed (for example, keeping L = 0 throughout). The first thing to note is

that we can’t really talk about the rotation between objects of different shapes. (How

would you say that the the third object in figure 41 is rotated with respect to the first

or the second?). Instead, we should think of an object moving through a sequence

of shapes before returning to its initial shape. We can then ask if there’s been a net

rotation. As the object moves through its sequence of shapes, the motion is described

by a time dependent r̃i(t), while the corresponding change through the configuration

space is

ri(t) = R(t) r̃(t) (3.62)

where the 3 × 3 rotation matrix R(t) describes the necessary rotation to go from our

fixed orientation of the shape r̃ to the true orientation. As in section 3.1.1, we can define

the 3 × 3 anti-symmetric matrix that describes the instantaneous angular velocity of
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the object. In fact, it will for once prove more useful to work with the “convective

angular velocity” matrix defined around equation (3.11)

Ω̃ = R−1 dR

dt
(3.63)

This angular velocity is non-zero due to the changing shape of the object, rather than

the rigid rotation that we saw before. Let’s do a quick change of notation and write

coordinates on the shape space C̃ as xA, with A = 1, . . . , 3N instead of in vector

notation r̃i, with i = 1, . . . , N . Then, since Ω is linear in time derivatives, we can write

Ω̃ = ΩA(x) ẋA (3.64)

The component ΩA(x) is the 3×3 angular velocity matrix induced if the shape changes

from xA to xA + δxA. It is independent of time: all the time dependence sits in

the ẋA factor which tells us how the shape is changing. The upshot is that for each

shape x ∈ C̃, we have a 3 × 3 anti-symmetric matrix ΩA associated to each of the

A = 1, . . . , 3N directions in which the shape can change.

However, there is an ambiguity in defining the angular velocity Ω. This comes about

because of our arbitrary choice of reference orientation when we picked a representative

r̃i ∈ C̃ for each shape. We could quite easily have picked a different orientation,

r̃i → S(xA) r̃i (3.65)

where S(xA) is a rotation that, as the notation suggests, can vary for each shape xA. If

we pick this new set of representative orientations, then the rotation matrix R defined

in (3.62) changes: R(t)→ R(t)S−1(xA). Equation (3.63) then tells us that the angular

velocity also change as

ΩA → S ΩA S
−1 + S

∂S−1

∂xA
(3.66)

This ambiguity is related to the fact that we can’t define the meaning of rotation

between two different shapes. Nonetheless, we will see shortly that when we come to

compute the net rotation of the same shape, this ambiguity will disappear, as it must.

Objects such as ΩA which suffer an ambiguity of form (3.66) are extremely important

in modern physics and geometry. They are known as non-abelian gauge potentials to

physicists, or as connections to mathematicians.
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3.6.2 Dynamics

So far we’ve learnt how to describe the angular velocity Ω̃ of a deformable object. The

next step is to see how to calculate Ω̃. We’ll now show that, up to the ambiguity

described in (3.66), the angular velocity Ω̃ is specified by the requirement that the

angular momentum L of the object is zero.

L =
∑
i

mi ri × ṙi

=
∑
i

mi

[
(Rr̃i)× (R ˙̃ri) + (Rr̃i)× (Ṙr̃i)

]
= 0 (3.67)

In components this reads

La = ϵabc
∑
i

mi

[
RbdRce(r̃i)d( ˙̃ri)e +RbdṘce(r̃i)d(r̃i)e

]
= 0 (3.68)

The vanishing L = 0 is enough information to determine the following result:

Claim: The 3× 3 angular velocity matrix Ω̃ab = R−1
ac Ṙcb is given by

Ω̃ab = ϵabc Ĩ
−1
cd L̃d (3.69)

where Ĩ is the instantaneous inertia tensor of the shape described by r̃i,

Ĩab =
∑
i

mi((r̃i · r̃i)δab − (r̃i)a(r̃i)b) (3.70)

and L̃a is the apparent angular momentum

L̃a = ϵabc
∑
i

mi (r̃i)b( ˙̃ri)c (3.71)

Proof: We start by multiplying La by ϵafg. We need to use the fact that if we

multiply two ϵ-symbols, we have ϵabcϵafg = (δbfδcg − δbgδcf ). Then

ϵafgLa =
∑
i

mi

[
RfdRge(r̃i)d( ˙̃ri)e −RgdRfe(r̃i)d( ˙̃ri)e

−RgdṘfe(r̃i)d(r̃i)e +RfdṘge(r̃i)d(r̃i)e

]
= 0 (3.72)

Now multiply by RfbRgc. Since R is orthogonal, we known that RfbRfd = δbd which,

after contracting a bunch of indices, gives us

RfbRgcϵafgLa =
∑
i

mi

[
(r̃i)b( ˙̃ri)c − (r̃i)c( ˙̃ri)b − Ω̃bd(r̃i)c(r̃i)d + Ω̃cd(r̃i)b(r̃i)d

]
= 0
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This is almost in the form that we want, but the indices aren’t quite contracted in the

right manner to reproduce (3.69). One can try to play around to get the indices working

right, but at this stage it’s just as easy to expand out the components explicitly. For

example, we can look at

L̃1 =
∑
i

mi

[
(r̃i)2( ˙̃ri)3 − ((r̃i)3( ˙̃ri)2

]
=
∑
i

mi

[
Ω̃21(r̃i)3(r̃i)1 + Ω̃23(r̃i)3(r̃i)3 − Ω̃31(r̃i)2(r̃i)1 − Ω̃32(r̃i)2(r̃i)2

]
= Ĩ11Ω̃23 + Ĩ12Ω̃31 + Ĩ13Ω̃12 = 1

2
ϵabcĨ1aΩ̃bc (3.73)

where the first equality is the definition of L̃1, while the second equality uses our result

above, and the third equality uses the definition of Ĩ given in (3.70). There are two

similar equations, which are summarised in the formula

L̃a = 1
2
ϵbcdĨabΩ̃cd (3.74)

Multiplying both sides by Ĩ−1 gives us precisely the claimed result (3.69). This con-

cludes the proof. □.

To summarise: a system with no angular momentum that can twist and turn and

change its shape has an angular velocity (3.69) where r̃i(t) is the path it chooses to take

through the space of shapes. This is a nice formula. But what do we do with it? We

want to compute the net rotation R as the body moves through a sequence of shapes

and returns to its starting point at a time T later. This is given by solving (3.63) for

R. The way to do this was described in section 3.1.2. We use path ordered exponentials

R = P̃ exp

(∫ T

0

Ω̃(t) dt

)
= P̃ exp

(∮
ΩA dx

A

)
(3.75)

The path ordering symbol P̃ puts all matrices evaluated at later times to the right.

(This differs from the ordering in section 3.1.2 where we put later matrices to the

left. The difference arises because we’re working with the convective angular velocity

Ω̃ = R−1Ṙ instead of the angular velocity Ω = ṘR−1). In the second equality above,

we’ve written the exponent as an integral around a closed path in shape space. Here

time has dropped out. This tells us an important fact: it doesn’t matter how quickly

we perform the change of shapes — the net rotation of the object will be the same.

In particle physics language, the integral in (3.75) is called a “Wilson loop”. We can

see how the rotation fares under the ambiguity (3.64). After some algebra, you can

find that the net rotation R of an object with shape xA is changed by

R→ S(xA)RS(xA)−1 (3.76)
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This is as it should be: the S−1 takes the shape back to our initial choice of standard

orientation; the matrix R is the rotation due to the change in shape; finally S puts us

back to the new, standard orientation. So we see that even though the definition of the

angular velocity is plagued with ambiguity, when we come to ask physically meaningful

questions — such as how much has a shape rotated — the ambiguity disappears.

However, if we ask nonsensical questions — such as the rotation between two different

shapes — then the ambiguity looms large. In this manner, the theory contains a rather

astonishing new ingredient: it lets us know what are the sensible questions to ask!

Quantities for which the ambiguity (3.64) vanishes are called gauge invariant.

In general, it’s quite hard to explicitly compute the integral (3.75). One case where

it is possible is for infinitesimal changes of shape. Suppose we start with a particular

shape x0A, and move infinitesimally in a loop in shape space:

xA(t) = x0A + αA(t) (3.77)

Then we can Taylor expand our angular velocity components,

ΩA(x(t)) = ΩA(x0) +
∂ΩA

∂xB

∣∣∣∣
x0
αB (3.78)

Expanding out the rotation matrix (3.75) and taking care with the ordering, one can

show that

R = 1 +
1

2
FAB

∮
αAα̇B dt+O(α3)

= 1 +
1

2

∫
FAB dAAB +O(α3) (3.79)

where FAB is anti-symmetric in the shape space indices A and B, and is a 3× 3 matrix

(the a, b = 1, 2, 3 indices have been suppressed) given by

FAB =
∂ΩA

∂xB
− ∂ΩB

∂xA
+ [ΩA,ΩB] (3.80)

It is known as the field strength to physicists (or the curvature to mathematicians). It is

evaluated on the initial shape x0A. The second equality in (3.79) gives the infinitesimal

rotation as the integral of the field strength over the area traversed in shape space. This

field strength contains all the information one needs to know about the infinitesimal

rotations of objects induced by changing their shape.

One of the nicest things about the formalism described above is that it mirrors very

closely the mathematics needed to describe the fundamental laws of nature, such as

the strong and weak nuclear forces and gravity. They are all described by “non-abelian

gauge theories”, with an object known as the gauge potential (analogous to ΩA) and

an associated field strength.
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4. The Hamiltonian Formalism

In this section, we describe a different approach to classical mechanics, initially devel-

oped by Hamilton around 1830. Our goal here is not to solve increasingly complicated

problems. Instead, we will use the Hamiltonian formalism to the structure underlying

classical dynamics. If you like, it will help us understands what questions we should

ask. In addition, we will start to see striking connections to quantum mechanics.

4.1 Hamilton’s Equations

The Lagrangian formulation of classical mechanics starts with a function, the epony-

mous the Lagrangian, L(qi, q̇i, t). As the notation shows, this function depends on n

generalised coordinates, qi, i = 1, . . . , n, their time derivatives q̇i and, possibly, time.

The Euler-Lagrange equations are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (4.1)

These are n 2nd order differential equations. Crucially, if we wish to find a solution

then we have to give 2n initial conditions, say qi and q̇i at time t = 0.

Roughly speaking, the basic idea of Hamilton’s approach is to try and place positions

and velocities on a more symmetric footing. The “rough speaking” here is because it

turns out that it’s not quite the velocities that we should consider: instead it is the

generalised momenta that we introduced in Section 2.2,

pi =
∂L

∂q̇i
(4.2)

In terms of the generalised momenta, the Euler-Lagrange equations (4.1) take the

particularly simple form

ṗi =
∂L

∂qi
(4.3)

We should think of these generalised momenta as functions pi(q
j, q̇j, t). In many familiar

situations the Lagrangian is quadratic in velocities (because the kinetic energy is 1
2
mv2)

in which case the momenta will be linearly related to the velocities. But this need not

be the case, and we’ll see examples in this section where p and q̇ have a different

relationship.

Now we can state more precisely the key idea of the Hamiltonian formalism: it is to

put coordinates qi and momenta pi on a more symmetric footing.
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Figure 42: Motion in configuration space on the left, and in phase space on the right.

Phase Space

First, a definition. Recall that the generalised coordinates qi parameterise the configu-

ration space C of the system. Time evolution can be viewed as a path in in C. However,

if we know the that the system sits at a point in C at some particular time t0, that’s

not enough information to determine where the system is at some later time. This is

because we also need the initial conditions: we need q̇i at time t0 as well. Only then is

the full evolution of the system uniquely determined.

As we mentioned above, throughout this section we will replace the velocities q̇i in

favour of the momenta pi. So, alternatively, we could say that the future evolution of

the system is uniquely determined by specifying the pair (qi, pi) at some moment in

time. This pair (qi, pi) defines the state of the system. The space of all states comprise

the 2n-dimensional phase space, M, parameterised by (qi, pi).

In contrast to configuration space, if you sit at a point in phase space at some time

then your future (and, indeed past) evolution is uniquely determined. This means,

among other things, that paths in phase space can never cross. We say that evolution

is governed by a flow in phase space.

An Example: The Pendulum

Here’s a simple example. The pendulum has a configuration space C = S1, parame-

terised by an angle θ ∈ [−π, π). The phase space is then the cylinder M = R × S1,

with the R factor corresponding to the momentum pθ. We’ve drawn this in Figure 43

by flattening out the cylinder, so that the left-hand edge at θ = −π and the right-hand

edge at θ = π are identified. The phase space flows are also shown.

Two different types of motion are clearly visible in the flows. For small θ and small

momentum, the pendulum oscillates back and forth, motion which appears as an ellipse
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Figure 43: Flows in the phase space of a pendulum.

in phase space. But for large momentum, the pendulum swings all the way around,

which appears as lines wrapping around the S1 of phase space. Separating these two

different motions is the special case where the pendulum starts upright, falls, and just

makes it back to the upright position. This curve in phase space is called the separatrix.

4.1.1 The Hamiltonian

We’ve seen that dynamical evolution is given by a flow on phase space. Our next goal

is to write down equations that describe this flow. We do this by constructing the

Hamiltonian. This is a function H(q, p), on phase space. (Note that when we write

H(q, p), with no indices on q and p, we mean that it depends on all coordinates qi and

pi with i = 1, . . . , n.) The Hamiltonian is defined in terms of the Lagrangian by

H(q, p, t) = piq̇
i − L(q, q̇, t) (4.4)

We’ve met something very similar to the Hamiltonian function before: we saw in (2.19)

that, if ∂L/∂t = 0, then the function H(q, p) is identified as the conserved energy. This,

of course, is also familiar from quantum mechanics where the Hamiltonian is identified

as the energy operator.

However, there’s more to the Hamiltonian than just the energy. In what follows, it’s

crucial that we think of the Hamiltonian as a function on phase space. This means that
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H is a function of qi and pi. This is in contrast to the Lagrangian which is a function

of qi and q̇i.

In practice, this means that, given a Lagrangian, you first compute the momentum

pi =
∂L

∂q̇i

and then compute the right-hand side of (4.4). Often the resulting expression will be

given as a function of qi and q̇i. The last step is to then invert q̇i = q̇i(q, p, t), so that

the Hamiltonian takes the desired for H(q, p, t) as a function over phase space.

The difference between thinking of H(q, p, t) as a function of momentum vs velocities

may seem like a pedantic one. But it’s a difference on which the whole Hamiltonian

formalism hangs. We’ll see this in some examples as we move forwards. But, mathe-

matically, the reason is that the Hamiltonian is a Legendre transform of the Lagrangian.

We now take a small detour to explain what this means.

An Aside: The Legendre Transform

The Legendre transform arises in a number of places in physics. As we’e seen above, in

classical mechanics it relates the Lagrangian and Hamiltonian. But we will also see the

same transformation in thermodynamics, where it relates different functions of state,

like energy and free energy. Here we give a brief account of the mathematics behind

the Legendre transform.

First, consider an arbitrary function f(x, y). Here the variable y will just go along

for the ride. (It will be like the coordinates q in the Lagrangian.) Meanwhile, we’re

going to do the transform with respect to the variable x (which is like the q̇ in the

Lagrangian).

The total derivative of f is

df =
∂f

∂x
dx+

∂f

∂y
dy

Next, define the related function

g(x, y, u) = ux− f(x, y) (4.5)

The function g(u, x, y) depends on the original two variable x and y, as well as a third

variable u that, for now, just appears linearly in the definition. The total derivative of

g is

dg = d(ux)− df = u dx+ x du− ∂f

∂x
dx− ∂f

∂y
dy (4.6)
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So far, we’ve viewed u as a new independent variable. At this point, we choose it to

be a specific function of x and y, defined by

u(x, y) =
∂f

∂x
(4.7)

With this choice, the term proportional to dx in (4.6) vanishes. We have

dg = x du− ∂f

∂y
dy (4.8)

This is telling us that g can be thought of as a function of just u and y. If we want

an explicit expression for g(u, y), we must first invert (4.7) to get x = x(u, y) and then

insert this into the definition (4.5), so that

g(u, y) = ux(u, y)− f(x(u, y), y) (4.9)

This is the Legendre transform. It takes us from one function f(x, y) to a different

function g(u, y) where u = ∂f/∂x.

A crucial fact about the Legendre transformation is that (with one caveat to be

explained below) it doesn’t lose any information about the original function. To see

this, we just need to note that we can recover the original f(x, y) from g(u, y) by doing

a second Legendre transformation. We have

∂g

∂u

∣∣∣∣
y

= x(u, y) and
∂g

∂y

∣∣∣∣
u

= −∂f
∂y

(4.10)

This assures us that the inverse Legendre transform f = (∂g/∂u)u−g does indeed take

us back to the original function.

We can get more insight into the Legendre trans-

Figure 44:

form by thinking geometrically. The figure shows the two

curves f(x, y) and ux for fixed y and for fixed u. The

function g(u;x), as defined in (4.5), is just the difference

between these two curves. But the all-important condi-

tion (4.7) tells us that, for fixed u, the function g(u) is

the maximum distance between these curves. You can see

this geometrically (because the maximum distance occurs

when the tangents of the two curves are equal). Or you

can see this algebraically by extremising the distance

d

dx
(ux− f(x)) = 0 ⇒ u =

∂f

∂x
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This, then, is the geometrical interpretation of the Legendre transform. As you change

u, you change the slope of the line ux. The function g(u) is the maximum distance

between that line and the original curve f(x).

The graphical approach also hints at the caveat that we mentioned above. This is

because there is only a unique, local maximum distance between the curves when the

original function f(x) is convex.

Hamilton’s Equations

With a better understanding of the Legendre transform, we can now return to physics.

We have the Hamiltonian H(q, p, t), defined in (4.4), and we know from the discussion

above that this contains the same information as our original Lagrangian L(q, q̇, t).

Let’s follow the discussion of the Legendre transform and consider the total derivative

of the Hamiltonian

dH = (q̇idpi + pi dq̇
i)−

(
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i +

∂L

∂t
dt

)
= q̇idpi −

∂L

∂qi
dqi − ∂L

∂t
dt (4.11)

We see that the dq̇i terms have cancelled upon using the definition of generalised mo-

menta pi = ∂L/∂q̇i. This mimics the fact that dx term vanished in (4.8) and is telling

us that we can think of H = H(q, p, t). In other words, we must have

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt (4.12)

Now we simply equate terms between (4.11) and (4.12). So far this is repeating the

steps of the Legendre transformation. We now add a physics ingredient into the mix

in the guise of the Euler-Lagrange equation (4.3) which reads ṗi = ∂L/∂qi. The result

is a collection of first order differential equations,

ṗi = −∂H
∂qi

and q̇i =
∂H

∂pi
(4.13)

These are Hamilton’s equations. In addition, if the Lagrangian L has explicit time

dependence, then so too does the Hamiltonian with

−∂L
∂t

=
∂H

∂t
(4.14)

In Hamilton’s equations (4.13), we have replaced n second order equations of motion

with 2n first order equations of motion. This may not seem like a great leap forward.
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In particular, when we come to solve these equations we will often revert back to the

second order form. Nevertheless, as we promised above, Hamilton’s equations are the

starting point for peeling apart the structure of classical mechanics. We’ll see more of

this as we progress. For now, we just note that we can already see a glimpse of the

symmetry between q and p in Hamilton’s equations: both sit on a similar footing, with

just a minus sign in the first equation of (4.13) to distinguish them.

Briefly, Conservation Laws

We saw in Section 2.3 how conservation laws arise in the Lagrangian formalism. While

Noether’s theorem lives most naturally in the Lagrangian formalism, some of the sim-

pler results carry over straightforwardly to the Hamiltonian formalism.

For example, if ∂H/∂t = 0 then H itself is a constant of motion. This follows by

looking at the total time derivative

dH

dt
=
∂H

∂qi
q̇i +

∂H

∂pi
ṗi +

∂H

∂t
= −ṗiq̇i + q̇iṗi +

∂H

∂t
=
∂H

∂t

where we’ve imposed the equations of motion in the second equality. In most examples,

H will be identified with the energy.

Similarly, if an coordinate q doesn’t appear in the Lagrangian then, by construction, it

also doesn’t appear in the Hamiltonian. The conjugate momentum pq is then conserved

since

ṗi =
∂H

∂∂qi
= 0 (4.15)

We’ll have more to say about conservation laws in the Hamiltonian formalism in Section

4.4.2.

4.1.2 The Principle of Least Action

The principle of least action is a central piece of the Lagrangian formalism of clas-

sical mechanics. We define the action as a functional of all possible paths qi(t) in

configuration space,

S[q(t)] =

∫ t2

t1

L(q, q̇, t) dt (4.16)

The equations of motion then follow by insisting that δS = 0 for all paths with fixed

end points so that δqi(t1) = δqi(t2) = 0.

– 117 –



There is a version of this story in the Hamiltonian formalism that goes through with

only minor tweaks. This time, we define the action

S[q(t), p(t)] =

∫ t2

t1

(piq̇
i −H)dt (4.17)

where q̇i = ∂H/∂pi. This looks the same as our original action (4.16) but the devil is

in the details: the action now is a function of all possible paths qi(t) and pi(t) in phase

space. We now vary qi(t) and pi(t) independently. This differs from the Lagrangian

formalism where a variation of qi(t) automatically leads to a variation of q̇i. But

remember that the whole point of the Hamiltonian formalism is that we treat qi and

pi on equal footing. So we vary both. We have

δS =

∫ t2

t1

{
q̇iδpi + piδq̇

i − ∂H

∂pi
δpi −

∂H

∂qi
δqi
}
dt

=

∫ t2

t1

{[
q̇i − ∂H

∂pi

]
δpi +

[
−ṗi −

∂H

∂qi

]
δqi
}
dt+

[
piδq

i
]t2
t1

(4.18)

and there are Hamilton’s equations waiting for us in the square brackets. If we look

for extrema δS = 0 for all δpi and δqi we get Hamilton’s equations

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
(4.19)

Except there’s a very slight subtlety with the boundary conditions. We need the last

term in (4.18) to vanish, and so require only that

δqi(t1) = δqi(t2) = 0

while δpi can be free at the end points t = t1 and t = t2. So, despite our best efforts,

qi and pi are not quite symmetric in this formalism.

Note that we could simply impose δpi(t1) = δpi(t2) = 0 if we really wanted to and

the above derivation still holds. It would mean we were being more restrictive on the

types of paths we considered. But it does have the advantage that it keeps qi and pi
on a symmetric footing. It also means that we have the freedom to add a function to

consider actions of the form

S =

∫ t2

t1

(
piq̇

i −H(q, p) +
dF (q, p)

dt

)
so that what sits in the integrand differs from the Lagrangian. For some situations this

may be useful.
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4.1.3 A Particle in a Potential

We can illustrate the Hamiltonian formalism by looking at a particle moving in R3 in

the presence of a potential V (x). In this simple example, there are no surprises. (This

will not continue to be the case as we look at more complicated examples.)

The Lagrangian is

L =
1

2
mẋ2 − V (r)

The corresponding momentum takes the familiar form

p =
∂L

∂ẋ
= mẋ

The Hamiltonian is then given by

H = p · ẋ− L =
1

2m
p2 + V (x)

In the final step, we’ve eliminated ṙ in favour of p. Of course, this is trivial to do in

the present example, but it is important nonetheless. It means that the kinetic energy

is written as p2/2m rather than the mẋ2/2.

You may recall that that Hamiltonian plays a staring role in quantum mechanics.

There too, it should be thought of as a function of momentum, rather than velocity,

albeit with the momentum variable replaced by the operators p→ −iℏ∇.

Back in the classical world, Hamilton’s equations (4.13) are

ẋ =
∂H

∂p
=

1

m
p and ṗ = −∂H

∂x
= −∇V

Both of these are familiar. The first just recapitulates the definition of velocity in terms

of momentum, while the second is Newton’s equation of motion for this system.

4.1.4 A Particle in an Electromagnetic Field

We described the Lagrangian for a particle with charge q moving in electric and mag-

netic fields in Section 2.4.3. One of the surprises was that the Lagrangian necessarily

depends on the vector potential A

L = 1
2
mẋ2 − q (ϕ− ẋ ·A)

The conjugate momentum is now given by

p =
∂L

∂ẋ
= mẋ + qA
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Crucially, the momentum p is not just “mass times velocity”. It now gets an extra

contribution from the vector potential. Moreover, as we stressed in Section 2.4.3, the

momentum p is not gauge invariant, so it’s not possible to ascribe physical meaning

to the value of p! These issues notwithstanding, it’s trivial to invert the relationship

above and write the velocity as

ẋ =
1

m
(p− qA) (4.20)

We now calculate the Hamiltonian

H(p,x) = p · ẋ− L

=
1

m
p · (p− qA)−

[
1

2m
(p− qA)2 − qϕ+

q

m
(p− qA) ·A

]
=

1

2m
(p− qA)2 + qϕ (4.21)

There’s something curious about this expression. If we were to write the Hamiltonian

in terms of the velocity ẋ, then the first term is just the usual kinetic energy mẋ2/2

and the Hamiltonian coincides with the energy E = mẋ2/2 + qϕ. This energy has

no dependence on the vector potential A which is just the statement that magnetic

fields do no work, and so don’t affect the energy. But, as we’ve stressed above, the

Hamiltonian must be thought of as a function of p. And, when viewed as a function of

p, the gauge potential A sneaks back in. This means that the Hamiltonian depends on

A, and so magnetic fields can affect the equations of motion, even though the energy

is independent of A.

The first of Hamilton’s equations reads

ẋ =
∂H

∂p
=

1

m
(p− qA)

which, as usual, is a recapitulation of our earlier expression (4.20). The second of

Hamilton’s equations, ṗ = −∂H/∂r, is best expressed in terms of components

ṗa = −∂H
∂xa

= −e ∂ϕ
∂xa

+
e

m
(pb − eAb)

∂Ab
∂xa

(4.22)

A little rearranging of indices shows that this coincides with the Lorentz force law

(2.4.3).
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4.1.5 The Relativistic Particle

We met two Lagrangians for a free, relativistic particle in Section 2.4.4. The first of

these, (2.46), holds in a particular reference frame

S[x(t)] =

∫
dt L[ẋ] with L[ẋ] = −mc2

√
1− ẋ2

c2

This has the advantage that it only depends on the physical degrees x(t), but has the

disadvantage that Lorentz invariance is not manifest. We have the conjugate momen-

tum

p =
∂L

∂ẋ
= mγẋ with γ =

√
1

1− ẋ2/c2
(4.23)

which we can invert to find

ẋ =
p√

m2 + p2/c2
(4.24)

The Hamiltonian is then

H[x,p] = p · ẋ− L = mc2γ (4.25)

This we recognise as the energy of a relativistic particle. The only catch is that, as

usual, we should view the Hamiltonian as a function of the momentum p rather than

the velocity. Substituting (4.24) into (4.23), we have

γ =

√
1 +

p2

m2c2

As a sanity check, if you Taylor expand the Hamiltonian (4.25) for small p, you find

the usual kinetic energy H = p2/2m+ . . ..

The second Lagrangian that we met in Section 2.4.4 is more subtle. The action (2.47)

is now a functional of the four-vector Xµ = (ct,x), and is given by the proper time

experienced by the particle

S[Xµ(σ)] =

∫
dσ L[Ẋ] with L[Ẋ] = −mc

√
ẊµẊµ (4.26)

where indices are raised and lowered by the Minkowski metric ηµν = diag(+1,−1,−1,−1),

and Ẋµ = dXµ/dσ, with σ is an arbitrary parameter that labels the worldline. This

action has manifest Lorentz invariance. But it also has reparameterisation invariance,

meaning that we can choose to redefine the way we label the worldline, so σ → σ̃(σ),

and the action remains unchanged. As we explained in Section 2.4.4, this reparam-

eterisation invariance allows us to remove one of the four degrees of freedom in Xµ,

bringing us back down to the three physical degrees of freedom of a particle moving in

R3.
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Let’s see what becomes of (4.26) in the Hamiltonian formalism. The conjugate

momentum is

Pµ =
∂L

∂Ẋµ
= −mc 1√

ẊνẊν

Ẋµ

The corresponding Hamiltonian is

H = PµẊ
µ − L = 0

Wait. What? That’s certainly unexpected: the Hamiltonian for this action with repa-

rameterisation invariance vanishes!

What’s going on here is that the Hamiltonian governs evolution with respect to the

appropriate “time” coordinate which, in the present case, is the label σ on the worldline.

But the label σ is a coordinate that has no independent meaning. And the way the

formalism deal with this is by handing us a Hamiltonian H = 0 which is telling us that

there is no evolution with respect to σ.

Instead, you have to look elsewhere for the dynamics in this Hamiltonian. And the

right place is in the constraints. Recall from (2.50) that the momenta Pµ are not all

independent: instead they obey the equation

P µPµ = m2c2 (4.27)

which is the energy-momentum relation in special relativity.

It turns out that these kind of issues raise their heads whenever we have a theory

with reparameterisation invariance and, to a lesser extent, when we have a theory

with gauge symmetry. In particular, the Hamiltonian for General Relativity turns out

to be H = 0. Again, the physics is hiding in the constraints. For Maxwell theory,

the Hamiltonian is non-vanishing but there are also constraints that arise from gauge

symmetry that complicate the issue.

We will not address these issues further in these lectures, but this is example is there

simply as a warning shot. First, you shouldn’t blindly equate the Hamiltonian with

what you think is the energy of the system. In many examples this will be the case but

not always, as illustrated clearly by the covariant Lagrangian (4.26) which has H = 0.

Second, the Hamiltonian framework may come with certain constraints, like (4.27),

that tell you that the momenta are not all independent. These can affect the dynamics

in interesting ways.
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4.1.6 What’s Your Name, Man? William Rowan Hamilton (1805-1865)

The formalism described above arose out of Hamilton’s interest in the theory of optics.

The ideas were published in a series of books entitled “Theory of Systems of Rays”, the

first of which appeared while Hamilton was still an undergraduate at Trinity College,

Dublin. They also contain the first application of the Hamilton-Jacobi formulation

(which we shall see in Section 4.7) and the first general statement of the principal of

least action, which sometimes goes by the name of “Hamilton’s Principle”.

Hamilton’s genius was recognised early. His capacity to soak up classical languages

and to find errors in famous works of mathematics impressed many. In an unprece-

dented move, he was offered a full professorship in Dublin while still an undergraduate.

He also held the position of “Royal Astronomer of Ireland”, allowing him to live at

Dunsink Observatory even though he rarely did any observing. Unfortunately, the

later years of Hamilton’s life were not happy ones. The woman he loved married an-

other and he spent much time depressed, mired in drink, bad poetry and quaternions6.

4.2 Liouville’s Theorem

Now it’s time to use the Hamiltonian formalism to uncover some of the features of

classical dynamics. In section we’ll describe two such features, each of which follows

from the description of the dynamics in terms of a flow in phase space, captured by

Hamilton’s equations (4.13).

Usually when considering classical mechanics, we think of our system at sitting in

some point in phase space and then that point moving in time. But for our next result,

we want to extend this viewpoint a little: we instead think of some region of phase

space evolving in time. There are various reasons to do this, but one obvious one is

because we want to admit to some uncertainty. Maybe we’re not sure of the exact

position or momentum of the system, but can confidently say that it sits in some small

region of phase space. We then have the following important result:

Liouville’s Theorem: As a region of phase space evolves in time, its shape will

typically change, but its volume will not.

Proof: We start by considering the evolution of an infinitesimal volume moving for an

infinitesimal time. We’ll take this region of phase space to be centred around the point

6The ”What’s your name, man?” joke is not mine. I stole it from the outrageously talented Tim

Blais, whose scholarly account of the life of Hamilton can be seen on YouTube.
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(qi, pi) in phase space, with volume

V = dq1 . . . dqndp1 . . . dpn (4.28)

Then in time dt, we know that

qi → qi + q̇idt = qi +
∂H

∂pi
dt ≡ q̃i (4.29)

and

pi → pi + ṗidt = pi −
∂H

∂qi
dt ≡ p̃i (4.30)

So the new volume in phase space is

Ṽ = dq̃1 . . . dq̃ndp̃1 . . . dp̃n = (det{J })V (4.31)

where det{J } is the Jacobian of the transformation defined by the determinant of the

2n× 2n matrix

J =

(
∂q̃i/∂qj ∂q̃i/∂pj

∂p̃i/∂q
j ∂p̃i/∂pj

)
(4.32)

To prove the theorem, we need to show that det{J } = 1. First consider a single degree

of freedom (i.e. n = 1). Then we have

det{J } = det

(
1 + (∂2H/∂p∂q)dt (∂2H/∂p2) dt

−(∂2H/∂q2) dt 1− (∂2H/∂q∂p) dt

)
= 1 +O(dt2) (4.33)

which means that

d(det{J })
dt

= 0 (4.34)

so that the volume remains constant for all time. Now to generalise this to arbitrary

n, we have

det{J } = det

(
δij + (∂2H/∂pi∂q

j)dt (∂2H/∂pi∂pj) dt

−(∂2H/∂qi∂qj) dt δij − (∂2H/∂qi∂pj) dt

)
(4.35)

To compute the determinant, we need the result that det(1 + ϵM) = 1+ ϵTrM +O(ϵ2)

for any matrix M and small ϵ. Then we have

det{J } = 1 +
∑
i

(
∂2H

∂pi∂qi
− ∂2H

∂qi∂pi

)
dt+O(dt2) = 1 +O(dt2) (4.36)

and we’re done. □
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Liouville’s theorem is telling us that classical systems act, in many ways, like an

incompressible fluid. But the fluid is incompressible in phase space, rather than in

configuration space.

Notice that Liouville’s theorem holds whether or not the system conserves energy.

(i.e. whether or not ∂H/∂t = 0). But the system must be described by a Hamiltonian.

For example, systems with friction that exhibit dissipation do not obey Liouville’s

theorem. Instead, they tend to grind to a halt, heading to ever smaller regions of phase

space with q̇i = 0.

Liouville’s theorem states that the volume of a region of phase space stays constant

under Hamiltonian evolution. But the theorem says nothing about the shape of that

region. In some simple examples, the region might retain its rough shape. But there’s

nothing that says that this must be the case. Indeed, in systems that exhibit chaos,

a given starting region will stretch and twist, keeping its original volume until but

ultimately spreading tendril-like over a large region of phase space, rather like a droplet

of ink spreading in water. This means that although Liouville’s theorem tells us that

the volume in phase space is strictly unchanged, in any practical terms our ignorance

nonetheless increases.

The central idea of Liouville’s theorem – that volume of phase space is constant –

is somewhat reminiscent of quantum mechanics. Indeed, this is the first of several oc-

casions where we shall see ideas of quantum physics creeping into the classical world.

Suppose we have a system of particles distributed randomly within a square ∆q∆p in

phase space. Liouville’s theorem implies that if we evolve the system in any Hamil-

tonian manner, we can cut down the spread of positions of the particles only at the

cost of increasing the spread of momentum. We’re reminded strongly of Heisenberg’s

uncertainty relation, which is also written ∆q∆p = constant. While Liouville and

Heisenberg seem to be talking the same language, there are very profound differences

between them. The distribution in the classical picture reflects our ignorance of the

system rather than any intrinsic uncertainty.

4.2.1 Liouville’s Equation

To describe the evolution of a region of phase space more quantitatively, we introduce

a density function ρ(q, p, t). This could have one of two different interpretations

• If we have a single system, but don’t know the exact state very well, then ρ can

be interpreted as a probability distribution parameterising our ignorance. In this
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case, the distribution should be normalised to∫ ∏
i

dpidq
i ρ(q, p, t) = 1

• We may have a large number N of identical, non-interacting systems, for example

N = 1023 gas molecules in a jar. In this case, we really only care about the

averaged behaviour. The distribution ρ now satisfies∫ ∏
i

dqidpi ρ(q, p, t) = N

In either case, we would like to know how the distribution ρ(p, q, t) evolves in time.

In both cases, the normalisations should hold for all time t. We know from Liouville’s

theorem that co-moving volume elements dp dq are preserved, so the normalisations

can only hold for all time if

dρ

dt
=
∂ρ

∂t
+
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi = 0

If we replace the expressions for ṗi and q̇i by Hamilton’s equations (4.13) then, rear-

ranging terms, we get

∂ρ

∂t
=

∂ρ

∂pi

∂H

∂qi
− ∂ρ

∂qi
∂H

∂pi
(4.37)

This is Liouville’s equation.

Time Independent Distributions

Liouville’s equation rests on the fact that the total time derivative of the distribution

vanishes: dρ/dt = 0. But often in physics we’re interested in situations in which there

is no explicit time dependence in the probability distribution, so ∂ρ/∂t = 0. In this

case, Liouville’s equation (4.37) becomes

∂ρ

∂pi

∂H

∂qi
− ∂ρ

∂qi
∂H

∂pi
= 0

An important class of solutions are probability distributions that are functions of the

Hamiltonian,

ρ = ρ(H(q, p))
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To see that these are indeed time independent, so that ∂ρ/∂t = 0, we just need to

check

∂ρ

∂pi

∂H

∂qi
− ∂ρ

∂qi
∂H

∂pi
=

∂ρ

∂H

∂H

∂pi

∂H

∂qi
− ∂ρ

∂H

∂H

∂qi
∂H

∂pi
= 0 (4.38)

A very famous example of this type is the Boltzmann distribution

ρ = exp

(
−H(q, p)

kBT

)
(4.39)

which describes the probability distribution for a system at a temperature T . Here kB
is the Boltzmann constant. You can read (a lot) more about this in the lectures on

Statistical Physics.

For example, for a free particle with H = p2/2m, the Boltzmann distribution is

ρ = exp(−mẋ2/2kBT ) which is a Gaussian distribution in velocities. Things get more

interesting when you add some interaction terms to describe collisions between atoms in

a gas. In fact, one can start from the Boltzmann distribution for 1023 atoms and derive

the Navier-Stokes equation describing fluids. This, somewhat long story, is described

in the lectures on Kinetic Theory.

There’s an interesting historical story here. We can look back to the Hamiltonian

of a free particle in a magnetic field (4.21), H = (p − eA)2/2m. But, as we noted

back then, written in terms of the velocity, the Boltzmann distribution for a bunch of

particles takes the form

ρ = exp

(
−H(q, p)

kBT

)
= exp

(
− mẋ2

2kBT

)
(4.40)

This is again a Gaussian distribution of velocities, independent of the magnetic field.

This is a concern: the magnetism of solids is all about how the motion of electrons is

affected by magnetic fields. Yet the magnetic field doesn’t affect the velocity distribu-

tion of electrons. This is known as the Bohr-van Leeuwen paradox: there can be no

magnetism in classical physics. This was one of the motivations for the development

of quantum theory.

As an aside: there are actually two mechanisms for magnetism in solids. The first,

known as Landau diamagnetism, is a quantum effect and is due to the motion of parti-

cles moving in magnetic fields. Roughly speaking, it’s a rerun of the above argument,

but with a different conclusion because things in the quantum world are different from

the classical. The second, known as Pauli paramagnetism, arises because electrons carry

a little internal degree of freedom known as spin. This too is, ultimately, a quantum

effect. But there’s a classical version of spin that we describe in Section 4.3.4.
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Figure 45: The Hamiltonian map in a time step T .

4.2.2 Poincaré Recurrence Theorem

Next, we turn to another aspect of motion in phase space. The following theorem

applies to systems with bounded phase space, meaning that it has finite volume. At

first glance, this seems unlikely all the phase spaces we’ve met so far have unbounded

phase spaces. But all is not lost. If we have a conserved energy, E = T +V with T > 0

and V > 0, then the accessible phase space is bounded by the spatial region V (r) ≤ E.

With this in mind, we have the following theorem, due to Poincaré around 1890.

Roughly speaking, it says that wherever you start in phase space, if you wait long

enough you will ultimately return to somewhere arbitrarily close to this point. More

precisely:

Theorem: Consider an initial point P in phase space. Then for any neighbourhood

D0 of P , there exists a point P ′ ∈ D0 that will return to D0 in a finite time.

Proof: Consider the evolution of the region D0 over a finite time interval T . Hamil-

ton’s equations provide a map D0 7→ D1 shown in figure 45. By Liouville’s theorem, we

know that Vol(D0) = Vol(D1), although the shapes of these two regions will in general

be different. Let Dk be the region after time kT , with k a positive integer. Then we

first note that there there must exist integers k and k′ such that the intersection of Dk

and Dk′ is not empty:

Dk ∩Dk′ ̸= ϕ

To see this, suppose that it’s not true. Then the total volume
⋃∞
k=0Dk → ∞ but, by

assumption, the accessible phase space volume is finite.

Take k′ > k such that the intersection region ωk,k′ = Dk ∩ Dk′ in not empty. But

since the Hamiltonian mapping Dk → Dk+1 is invertible, we can track backwards to

find ω0,k′−k = D0 ∩ Dk′−k ̸= ϕ, as shown in Figure 46. This tells us that some point

P ′ ∈ D0 has returned to D0 in k′ − k time steps T . □
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Figure 46: The inverse Hamiltonian map for k′−k time steps proves the Poincaré recurrence

theorem.

What does the Poincaré recurrence theorem mean? Consider gas molecules all in

one corner of the room. If we let them go, they fill the room. But this theorem tells us

that if we wait long enough, they will all return once more to the corner of the room.

That’s a little disconcerting. One of the most powerful laws of physics is the second

law of thermodynamics which says that entropy always increases. (This is described in

detail in the lectures on Statistical Physics.) Yet this appears to be in stark contradic-

tion to the Poincaré recurrence theorem which says that, if you wait long enough, The

trick is that the Poincaré recurrence time for this to happen you’ll get arbitrarily close

to your starting point. If entropy did indeed increase, then it must later decrease.

We reconcile these contradictory statements only by considering the timescales in-

volved. The Poincaré recurrence theorem says that there exists a time (k′ − k)T after

which we return to our starting point, but it says nothing about how long we would ex-

pect to wait. The precise recurrence time depends on how “close” we want the system

to return. (In fact, this questions isn’t fully well defined in classical mechanics, because

phase space doesn’t come with a natural metric to allow us to measure distances in it.)

But we can get some idea through a simple, crude argument.

To illustrate this, let’s go back to a gas, with all the molecules initially confined to

one half of a room. We let the gas go and it rapidly fills the room. At some fixed time

later, there is a probability 1/2 that a given gas molecule will be in the original half

of the room. If we assume that the motion of the gas molecules are independent, this

means that that the probability that all N = 1023 gas molecules return to the original

half of the room is

P =

(
1

2

)1023
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That’s a very small number! Suppose, however, that a gas molecule takes some takes

some characteristic time T to cross the room. (Say, T = L/v with L the size of the

room, and v the velocity of the molecule.) Then, one might expect that all molecules

return to the original half in some recurrence time of order

Trecurrence ∼ 21023 T

That’s now a very very long time! Rather amusingly, it doesn’t matter what the

characteristic time scale T actually is. A reasonable estimate might be T = 1 second,

but if you replace this with a Planck time T ∼ 10−44 seconds or a Hubble time, T = 10

billion years you still get the same ball park answer for the recurrence time because

everything is swamped by that double exponential. (For example, 1023 − 43 ≈ 1023.)

More generally, the recurrence time of a complicated system is of order

Trecurrence ∼ eS × some unit of time

with S the entropy of the system. Again, the unit of time is completely irrelevant when

S is exponentially large.

There is something of an irony to this. The second law of thermodynamics is one

law of physics that we can be confident will never be overthrown. But this is precisely

because we know that it’s not an exact statement! The second law of thermodynamics

is probabilistic in nature. There is a small chance that it’s violated, but we know that

the probability of this happening is so vanishingly small that it’s a good operational

definition of the word “never”. Relatedly, we know that if we wait long enough then

the second law will certainly be violated. But, again, the time that you need to wait it

so unfathomably vast that, from a physics perspective, it’s again as good as “never”.

4.3 Poisson Brackets

Let’s now continue with our study of the structure underlying classical mechanics. We

start with a definition that looks slightly weird when you first see it.

Let f(q, p) and g(q, p) be two functions on phase space. Then the Poisson bracket is

defined to be

{f, g} =
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
(4.41)

The Poisson bracket obeys the following properties, all of which are straightforward to

prove:
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• {f, g} = −{g, f}.

• linearity: {αf + βg, h} = α{f, h}+ β{g, h} for all α, β ∈ R.

• Leibniz rule: {fg, h} = f{g, h} + {f, h}g. This follows from the chain rule in

differentiation.

• Jacobi identity: {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0. To prove this you

need a large piece of paper and a hot cup of coffee. Expand out all 24 terms and

watch them cancel one by one.

We can also compute the Poisson bracket among the coordinates on phase space,

{qi, qj} = {pi, pj} = 0 and {qi, pj} = δij (4.42)

There might be something a little familiar about these results. The same four algebraic

properties are obeyed by matrix commutators [ , ]. Moreover, the basic Poisson bracket

relations (4.42) on phase space look very much like the commutation relations between

position and momentum operators in quantum mechanics, with the Poisson bracket

replaced by commutators. This, it turns out, is no coincidence, and the Poisson bracket

provides one of the most direct connections to between quantum mechanics and classical

mechanics. We”ll explore this further in Section 4.8.

(As an aside: the four algebraic properties are also obeyed by a derivative operator,

known as the Lie derivative, that naturally arises in differential geometry.)

Another, more relevant aside: the Poisson bracket is an example of what math-

ematicians call a symplectic structure on phase space. Roughly speaking, given an

even-dimensional manifold, a symplectic structure is an anti-symmetric pairing coor-

dinates on the space. In physics language, this means that directions on the space are

paired into position variables q and their conjugate momenta p, as captured by the

relations (4.42).

There is, it turns out, a natural way to describe time evolution in terms of the Pois-

son bracket.

Claim: For any function f(q, p, t) on phase space, evolution under Hamilton’s equa-

tions is given by the following lovely result:

df

dt
= {f,H}+

∂f

∂t
(4.43)
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Proof: We simply need to look at

df

dt
=
∂f

∂pi
ṗi +

∂f

∂qi
q̇i +

∂f

∂t
= − ∂f

∂pi

∂H

∂qi
+
∂f

∂qi
∂H

∂pi
+
∂f

∂t
= {f,H}+

∂f

∂t

where we’ve invoked Hamilton’s equations in the second equality. □

If we restrict to the function f = qi or f = pi, them the expression (4.43) simply

gives us back Hamilton’s equations

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi

But (4.43) generalises this to any function f(q, p). This general expression also has a

counterpart in quantum mechanics, where an analogous equation describes the time

evolution of operators in the so-called Heisenberg picture.

A simple consequence of (4.43) is that any function Q(p, q) on phase space that obeys

{Q,H} = 0

then is a constant of motion. We say that Q and H Poisson commute. As an example

of this, suppose that some coordinate qi, so that it doesn’t appear in the Hamiltonian.

Then, from the definition of the Poisson bracket, we have

ṗi = {pi, H} = 0 (4.44)

which tells us that the conjugate momentum pi is a conserved quantity. This, of course,

simply confirms the result that we saw earlier in both the Lagrangian formalism (2.18)

and the Hamiltonian formalism (4.15), now in the language of Poisson brackets.

Note that if Q1 and Q2 are constants of motion, so that {Q1, H} = {Q2, H} = 0, then

the Jacobi identity tells us that {{Q1, Q2}, H} = {Q1, {Q2, H}} + {{Q1H}, Q2} = 0

which means that {Q1, Q2} is also a constant of motion. We say that the constants of

motion form a closed algebra under the Poisson bracket.

We now illustrate the Poisson bracket structure with a number of examples.

4.3.1 Angular Momentum

The angular momentum of a particle is given by L = x×p. In components, this reads

L1 = x2p3 − x3p2 , L2 = x3p1 − x1p3 , L3 = x1p2 − x2p1 (4.45)
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The Poisson bracket structure is

{L1, L2} = {x2p3 − x3p2, x3p1 − x1p3}
= {x2p3, x3p1}+ {x3p2, x1p3}
= −x2p1 + p2x

1 = L3

So if L1 and L2 are conserved, we see that L3 must also be conserved. By symmetry,

this means that the whole vector L is conserved if any two components are. A similar

calculation for other components gives

{Li,  Lj} = ϵijkLk (4.46)

Similarly, one can show that

{L2, Li} = 0 i = 1, 2, 3

where L2 =
∑

i L
2
i . All of this is very reminiscent of the angular momentum commu-

tation relations in quantum mechanics. We again see that what appears to be a novel

quantum structure was actually lurking all along in classical mechanics.

In fact, there is some group theory that sits behind this structure. The Poisson

bracket structure (4.46) is the structure that underlies the Lie group SO(3) of rotations.

Or, more precisely, it is the structure of the related Lie algebra so(3). This is ultimately

the reason why this same kind of structure arises in both classical mechanics and

quantum mechanics.

4.3.2 A Particle in a Magnetic Field, Revisited

We saw the Hamiltonian for a particle of charge q moving in a magnetic field B in

Section 4.1.4. It is described by

H =
1

2m
(p− qA)2 =

1

2
mẋ2

with the vector potential A related to the magnetic field by B = ∇×A. As emphasised

in the expression above, when written in terms of the velocity ẋ, the Hamiltonian takes

the same form with and without a magnetic field. All the physics in this example is

buried in the relation between the momentum p and the velocity ẋ,

p = mẋ + qA

This means that, when written int terms of the velocity, the Hamiltonian is H =
1
2
mẋ2 and the magnetic field disappears. But it’s really hiding in the Poisson bracket

structure. The canonical momentum has the Poisson brakcet

{xi, pj} = δij and {pi, pj} = 0
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But, as we’ve mentioned before, the canonical momentum p is not gauge invariant: it

changes under a gauge transformation A→ A+∇χ. This means that there’s no sense

in which you can assign an unambiguous number to the momentum because someone

else, working with a different but physically equivalent choice of A, will assign a different

number. In contrast, the velocity mẋ is gauge invariant and physical: everyone agrees

on the value of the velocity. But its Poisson bracket structure is more complicated

{xi, ẋj} =
1

m
δij and {ẋi, ẋj} =

q

m2
ϵijkBk (4.47)

It’s this Poisson bracket structure that is responsible for the interesting physics of a

particle moving in a magnetic field.

A Curious Example: The Magnetic Monopole

It is an experimental fact that magnets have both a north and south pole. Cut a

magnet in two, and each piece also has a north and a south pole.

Nonetheless, we can postulate the existence of a magnetic monopole which would

be, say, just a north pole on its own. Such a magnetic monopole would emit a radial

magnetic field,

B = g
r

r3
(4.48)

with g the “magnetic charge”.

Magnetic monopoles have never been observed. Moreover, at first glance there is a

law of physics that says that they can’t exist. This law of physics follows immediately

from the formulation of electromagnetism in terms of the vector potential A. Since we

define B = ∇×A, we immediately have one of Maxwell’s equations,

∇ ·B = 0 (4.49)

This states that any flux that enters a region must also leave. In particular, it prohibits

field configurations of the form (4.48) which give rise to a delta-function source on the

right-hand side of ∇ ·B.

So if magnetic monopoles have never been observed, and, moreover, are forbidden by

the laws of physics, then why are we interested in them?! The reason is that every theory

that goes beyond Maxwell’s equations and tries to unify electromagnetism with the

other forces of Nature predicts magnetic monopoles. In fact, the existence of magnetic

monopoles are one of the few robust predictions of every attempt to go beyond the
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current laws of physics. Which means that there’s reason to suspect that, somewhere in

the universe, there may be particles with a radial magnetic field given by (4.48). Indeed,

magnetic monopoles will be a constant companion as we learn theoretical physics, and

will make an appearance in the lectures on Electromagnetism, Solid State Physics and

Gauge Theory.

Here we ask a very simple question: what motion does an electron make when it

moves in the presence of a magnetic monopole? It’s tricky to set up the Lagrangian

as we don’t have a gauge potential A. (Actually, one can work with certain singular

gauge potentials but we won’t go there). However, there is a more straightforward way

to determine the motion using the Poisson brackets (4.47).

The trick is to look at the angular momentum. Or, more precisely, to look at the

modified angular momentum

J = mx× ẋ− qgr̂

where r̂ = x/|x| is the unit, radial vector. When g = 0, this reduces to the usual

angular momentum. But the usual angular momentum isn’t conserved in the presence

of a magnetic monopole. Instead, J is the conserved quantity. Indeed, it’s simple to

show, using the Poisson brackets (4.47), together with the Hamiltonian H = 1
2
mẋ2,

that

{H,J} = 0

This ensures that J is a constant of motion. Note that we managed to do this calculation

without ever introducing a gauge potential A: the Poisson bracket structure for the

velocity depends only on the magnetic field B.

So what do we learn from this? Since J is conserved, we can look at

r̂ · J = −qg

This tells us that the radial direction r̂ of the electron always sits at a constant angle

relative to J. In other words, the electron lies on a cone of angle cos θ = qg/J pointing

away from the vector J. This is rather surprising behaviour: if we throw an electron

at a magnetic monopole, it will spiral towards the monopole on the cone, reach some

minimal distance, and then spiral back out again.

4.3.3 First Order Vortex Dynamics in the Plane

Sometimes, we might find ourselves given a set of equations of motion and wish to cast

them in the framework of Hamiltonian dynamics. Here’s an example.
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Consider N vortices moving in the (x, y)-plane. The vortices have position xi =

(xi, yi) and each is assigned a vorticity γi, which you can think of as something akin

to electric charge. In certain situations, the dynamics of these vortices is described by

the equations of motion

ẋi = −
∑
j ̸=i

γj
yi − yj
|xi − xj|2

ẏi = +
∑
j ̸=i

γj
xi − xj
|xi − xj|2

(4.50)

The interaction terms between vortices drops off as 1/r, which is like the electrostatic

force confined to a plane.

The novelty with these equations is that they are first order, rather than second

order. It’s like the particles live in the world envisaged by Aristotle, in which forces

directly change velocities, rather than the world Galileo appreciated in which forces

cause only acceleration. It means, in particular, that you only need to specify the

initial positions xi of each vortex to uniquely solve the equations of motion. In other

words, the positions xi specify the state of the system. This is in contrast to more

familiar second-order equations of motion where you need the positions and momenta

to specify the state of the system.

But, recall from earlier in this section that the state of the system parameterises

what we called phase space. This means that the phase space of a first-order system is

parameterised only by the positions which, for N particles, means M = R2N .

This has consequence for the Hamiltonian formulation of these equations. In partic-

ular, the Poisson bracket is a structure on phase space. This means that the bracket

{f, g} acts on functions f(xi) and g(xi). For our vortex dynamics, it turns out that

the relevant Poisson bracket structure is

{f, g} =
n∑
i=1

1

γi

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
(4.51)

In particular, we have

{xi, yj} =
δij
γi

(4.52)

This is a slightly strange structure: it means that one the positions, say y, is the

canonical momentum for the other position, x. It arises whenever we are dealing

with first-order, rather than second-order, equations of motion. that the particular

Poisson bracket structure (4.52) is nice in the sense that it preserves both translational

symmetry and rotational symmetry for each particle.
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To specify the dynamics, we also need to write down the Hamiltonian on phase space.

We take

H = −
∑
i<j

γiγj log |ri − rj| (4.53)

Note that there is no kinetic energy term because there is no obvious momentum

variable p in phase space. However, the Hamiltonian is not unfamiliar: it takes the

same form as a potential between electric charges confined to a plane. We can now

check that the Poisson bracket (4.51), together with the Hamiltonian (4.53), does indeed

reproduce our equations of motion. We have

ẋi = {xi, H} =
1

γi

∂H

∂yi
= −

∑
j ̸=i

γj
yi − yj
|xi − xj|2

ẏi = {yi, H} = − 1

γi

∂H

∂xi
=
∑
j ̸=i

γj
xi − xj
|xi − xj|2

We can also briefly say a few words about the solutions to these equations. First, there

are a few conserved quantities. There is one that follows from overall translational

symmetry that we wish to call the total momentum although, in this context, it is

more like a kind of centre of mass

Px =
∑
i

γiyi and Py = −
∑
i

γixi

These satisfy {Px, H} = {Py, H} = 0, ensuring that they are conserved quantities.

We also have {Px, Py} =
∑

i γi and the right hand side, being constant, is trivially

conserved.

Another conserved quantity follows from rotational invariance on the plane, so we

would usually identify it as the total angular momentum. In this case, it takes the form

J = −1

2

n∑
i=1

γi(x
2
i + y2i ) (4.54)

which again satisfies {J,H} = 0, ensuring it is conserved. The full algebra of the

conserved quantities includes {Px, J} = −Py and {Py, J} = Px, so the system closes

(meaning we get back something we know on the right hand side). In fact, one can

show that H, J and (P 2
x + P 2

y ) provide three mutually Poisson commuting conserved

quantities.
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So what is the resulting motion of a bunch of vortices? A single vortex doesn’t move:

it’s stuck in position. However, two vortices are induced to move by their mutual

interaction. It’s simple to solve their equations of motion to find that they move in a

circle

x1 − x2 = R sin (ω(t− t0))
y1 − y2 = R cos (ω(t− t0)) (4.55)

where R is the separation between the vortices and ω = (γ1 + γ2)/R
2. So we learn

that two vortices orbit each other with frequency inversely proportional to the square

of their separation.

For three vortices, it turns out that there is a known solution which is possible

because of the three mutually Poisson commuting conserved quantities we saw above.

For four or more vortices, the motion turns out to be is chaotic.

The Poisson bracket structure (4.52) is rather odd. However, it also arises naturally

in another familiar system: a particle moving in a uniform magnetic field B = (0, 0, B).

We discussed this example previously in Section 2.4.3 and Section 4.1.4 where we saw

that the canonical momentum gets modified to

p = mẋ + qA

If we work in the gauge A = (−By, 0, 0) then px = mẋ− qBy/m. We might consider

situations in which the magnetic field is strong, so the second term dominates. In this

case

px ≈ −
qBy

m
and {x, px} = 1 ⇒ {x, y} ≈ − m

qB
(4.56)

This is the same Poisson bracket structure (4.52) that we saw for vortices. I should

confess that the ≈ sign is doing quite a lot of heavy lifting in (4.56). It’s not really

obvious that we can ignore the ẋ term in the momentum in the classical world. However,

the same approximation is certainly valid in quantum mechanics where this can be

thought of as the projection to the lowest Landau level and underlies, among other

things, the quantum Hall effect.

4.3.4 Spin and a Compact Phase Space

Our next example is again a story about angular momentum. This, however, won’t

become apparent for a while. Instead, we’re going to motivate this example with a

rather different question.

– 138 –

http://www.damtp.cam.ac.uk/user/tong/qhe.html


So far, in all our examples of phase space it’s been obvious what directions are

“position” and what directions are “momentum”. Indeed, we always started with

some configuration space C, describing the positions of the system, and then doubled

the dimension to get the phase space. (For what it’s worth, in fancy mathematical

language the phase space in these familiar cases is called the cotangent bundle of the

configuration space and denoted M = T ⋆C.)

However, now that we’ve got a more abstract formulation of classical mechanics, we

can spread our wings a little. We could take any even-dimensional spaceM (strictly a

manifold) and think of it as the phase space of some system. To do this, we just need

to equip it with a Poisson bracket structure. Then, adding a function over M that we

identify as the Hamiltonian H will tell us how anything evolves in time, using (4.43).

Here we give the simplest example of this kind of approach. We will consider a phase

space that is a two-dimensional sphere,

M = S2

This certainly doesn’t look like our previous phase spaces, not least because it’s a

compact space meaning that it doesn’t extend to infinity in any direction. In contrast,

for all our other phase spaces, the momentum direction was always non-compact. For

example, for the pendulum example the phase space was a cylinderM = R×S1, with

the momentum parameterising the R direction.

We’ll parameterise phase space with the usual spherical polar coordinates,

θ ∈ [0, π] and ϕ ∈ [0, 2π)

and consider the somewhat unusual action

S =

∫
dt Jϕ̇ cos θ (4.57)

with J a constant that, for reasons that we will see below, should be thought of as the

radius of the sphere. This is different from our previous actions because it is only linear

in velocities, rather than quadratic. This means that the momentum conjugate to ϕ is

pϕ =
∂L

∂ϕ̇
= J cos θ

which is the other coordinate on the S2. This is why S2 is the phase space, rather

than the configuration space. Meanwhile, there is no momentum conjugate to θ, since
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pθ = ∂L/∂θ̇ = 0. The Poisson bracket structure is defined on functions f(θ, ϕ) and

g(θ, ϕ) by

{f, g} = − 1

J sin θ

(
∂f

∂ϕ

∂g

∂θ
− ∂f

∂θ

∂g

∂ϕ

)
The peculiar 1/ sin θ factor out front ensures that this gives

{ϕ, pϕ} = {ϕ, J cos θ} = 1

which is the expected Poisson bracket between a coordinate and its conjugate momen-

tum.

So far, it’s not obvious that the action (4.57) preserves the SO(3) rotational sym-

metry of the sphere. It turns out that it does. One way to see this is to construct the

3-vector from the origin to some point on the sphere. We will call this 3-vector J (pre-

empting the fact advertised above that J is the radius of the sphere). The components

of this three vector are

J1 = J sin θ cosϕ

J2 = J sin θ sinϕ (4.58)

J3 = J cos θ

We can compute the Poisson brackets between these. We have

{J1, J2} = J2{sin θ cosϕ, sin θ sinϕ}

= − J

sin θ

(
− sin θ cos θ sin2 ϕ− sin θ cos θ cos2 ϕ

)
= J cos θ = J3

Similar calculations show that we have the cyclic Poisson bracket

{Ja, Jb} = ϵabcJc (4.59)

The symmetry of this Poisson bracket structure reflects the underlying SO(3) sym-

metry of the action. Indeed, the Poisson bracket structure (4.59) is identical to the

angular momentum Poisson bracket structure (4.46). This is not a coincidence. As we

mentioned previously, the commutation relation (4.59) captures the essence of SO(3)

rotation group. (In more mathematical terms, the algebra is closely related to the Lie

algebra so(3).)
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In fact, the vector J has a physical connection to angular momentum: it describes

the spin of a particle. Note that we already used the word “spin” in Section 3 when

describing rigid body motion. (It was the ω3 component of the angular velocity.)

But that’s not the same thing as our spin J, although both are related to angular

momentum. Instead the spin J is something that is usually first introduced in quantum

mechanics and is something rather unfamiliar in classical mechanics. For this reason,

it’s worth pausing to take a brief diversion into the quantum world.

Elementary particles such as electrons, or quarks, carry an internal angular momen-

tum known as spin. In quantum mechanics, this manifests as two internal states of

the particles, often denoted “spin up” |↑⟩ and “spin down” |↓⟩. In contrast to other

systems, we tend not to introduce spin in quantum mechanics by starting with some

classical set-up and then quantising it. Indeed, some authors will tell you that spin is

an intrinsically quantum mechanical property with no classical analog. But that’s not

true. The classical analog is precisely the action (4.57). It turns out that it is precisely

because we have a compact phase spaceM = S2 that we get only a finite dimensional

Hilbert space after quantisation. (For what it’s worth, the classical magnitude of the

spin J determines the number of states in the Hilbert space.)

Back to classical mechanics, we can now ask: what is the dynamics of the spin J? If

we compute the Hamiltonian that follows from the action (4.57), we find H = ϕ̇pϕ−L =

0. There’s nothing deep going on here. In particular, the vanishing Hamiltonian is not

akin to the covariant relativistic particle that we saw in Section 4.1.5, where we found

H = 0 because of reparameterisation invariance. Instead, the action (4.57) has H = 0

for the obvious reason: the spin J doesn’t move. In fact, this is always the case whenever

we have an action that is first order in time derivatives, rather than second order.

To initiate some motion, we need to add a potential term to the action. Physically,

we do this by coupling the spin to a magnetic field B. Mathematically, we do this by

adding a term to the action (4.57)

S =

∫
dt Jϕ̇ cos θ + µB · Ĵ

Here Ĵ = J/J should be thought of as a function of θ and ϕ µ, i.e. a function on phase

space. Meanwhile µ is a parameter that governs the strength of the coupling to to the

spin, known as the magnetic moment. This now gives the Hamiltonian

H = −µB · Ĵ = −µ(B1 sin θ cosϕ+B2 sin θ sinϕ+B3 cos θ)
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The motion of the spin J can be seen from (4.43),

dJa
dt

= {Ja, H} = −µ
J
{Ja, Jb}Bb = −µ

J
ϵabcBbJc ⇒ dJ

dt
= −µB× Ĵ

This tells us that the spin J only moves if it is not parallel to B. Suppose that

B = (0, 0, B) then the equation of motion reads J3 = constant, so θ̇ = constant, while

J̇1 = µBĴ2 and J̇2 = −µBĴ1 ⇒ ϕ =
µB

J
t

In other words, the spin precesses around the direction of B.

4.4 Canonical Transformations

There is a way to write Hamilton’s equations so that they look even more symmetric.

Define the 2n vector x = (q1, . . . , qn, p1, . . . , pn)T and the 2n× 2n matrix J ,

J =

(
0 1

−1 0

)
(4.60)

where each entry is itself an n×nmatrix. Then with this notation, Hamilton’s equations

read

ẋ = J
∂H

∂x
(4.61)

Now remember that in the Lagrangian formalism we made a big deal about the fact that

we could change coordinates qi → qi(q) without changing the form of the equations.

Since we’ve managed to put qi and pi on an equal footing in the Hamiltonian formalism,

one might wonder if its possible to make an even larger class of transformations of the

form,

qi → qi(q, p) and pi → Pi(q, p) (4.62)

The answer is yes! But not all such transformations are allowed. To see what class of

transformations leaves Hamilton’s equations invariant, we use our new symmetric form

in terms of x and write the transformation as

xi → yi(x) (4.63)

Note that we’ll continue to use the index i which now runs over the range i = 1, . . . , 2n.

We have

ẏi =
∂yi
∂xj

ẋj =
∂yi
∂xj

Jjk
∂H

∂yl

∂yl
∂xk

(4.64)
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or, collating all the indices, we have

ẏ = (J J J T )
∂H

∂y
(4.65)

where Jij = ∂yi/∂xj is the Jacobian that we met in section 4.2. We see that Hamilton’s

equations are left invariant under any transformation whose Jacobian J satisfies

J J J T = J ⇒ ∂yi
∂xj

Jjk
∂yl
∂xk

= Jil (4.66)

The Jacobian J is said to be symplectic if this holds. A change of variables with a

symplectic Jacobian is said to be a canonical transformation.

There is a nice method to construct canonical transformations using “generating

functions” which we will mention in section 4.4.3. Before we get to this, let’s look

at some uses. We start by proving a theorem relating canonical transformations with

Poisson brackets.

Theorem: The Poisson bracket is invariant under canonical transformations. Con-

versely, any transformation which preserves the Poisson bracket structure so that

{qi, qj} = {Pi, Pj} = 0 and {qi, Pj} = δij (4.67)

is canonical.

Proof: Let’s start by showing that the Poisson bracket is invariant under canonical

transformations. Consider two functions f(xi) and g(xi). Then,

{f, g} =
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

=
∂f

∂xi
Jij

∂g

∂xj
(4.68)

So if x→ y(x), we have

∂f

∂xi
=

∂f

∂yk
Jki (4.69)

and, assuming the transformation is canonical, the Poisson bracket becomes

{f, g} =
∂f

∂yk
Jki Jij Jlj

∂g

∂yl
=

∂f

∂yk
Jkl

∂g

∂yl
(4.70)
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This means that we can compute our Poisson brackets in any coordinates related by a

canonical transformation. Now let’s show the converse. Go back to the notation (qi, pi)

and the new coordinates (qi(q, p), Pi(q, p)). The Jacobian is given by

Jij =

(
∂qi/∂qj ∂qi/∂pj

∂Pi/∂q
j ∂Pi/∂pj

)
(4.71)

If we now compute J JJ T in components, we get

(J JJ T )ij =

(
{qi, qj} {qi, Pj}
{Pi, qj} {Pi, Pj}

)
(4.72)

So whenever the Poisson bracket structure is preserved, the transformation is canonical.

□

Example

In the next section we’ll see several non-trivial examples of canonical transformations

which mix up q and p variables. But for now let’s content ourselves with reproducing

the coordinate changes that we had in section 2. Consider a change of coordinates of

the form

qi → qi(q) (4.73)

We know that Lagrange’s equations are invariant under this. But what transformation

do we have to make on the momenta

pi → Pi(q, p) (4.74)

so that Hamilton’s equations are also invariant? We write Θij = ∂qi/∂qj and look at

the Jacobian

Jij =

(
Θij 0

∂Pi/∂q
j ∂Pi/∂pj

)
(4.75)

in order for the transformation to be canonical, we require J JJ T = J . By expanding

these matrices out in components, we see that this is true if

Pi = (Θ−1)jipj (4.76)

This is as we would expect, for it’s equivalent to Pi = ∂L/∂q̇i. Note that although

qi = qi(q) only, Pi ̸= Pi(p). Instead, the new momentum Pi depends on both q and p.
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4.4.1 Infinitesimal Canonical Transformations

Consider transformations of the form

qi → qi = qi + αFi(q, p)

pi → Pi = pi + αEi(q, p) (4.77)

where α is considered to be infinitesimally small. What functions Fi(q, p) and Ei(q, p)

are allowed for this to be a canonical transformation? The Jacobian is

Jij =

(
δij + α ∂Fi/∂q

j α ∂Fi/∂pj

α ∂Ei/∂q
j δij + α ∂Ei/∂pj

)
(4.78)

so the requirement that J JJ T = J gives us

∂Fi
∂qj

= −∂Ei
∂pj

(4.79)

which is true if

Fi =
∂G

∂pi
and Ei = −∂G

∂qi
(4.80)

for some function G(q, p). We say that G generates the transformation.

This discussion motivates a slightly different way of thinking about canonical trans-

formations. Suppose that we have a one-parameter family of transformations,

qi → qi(q, p;α) and pi → Pi(q, p;α) (4.81)

which are canonical for all α ∈ R and have the property that qi(q, p;α = 0) = qi and

Pi(q, p;α = 0) = pi. Up until now, we’ve been thinking of canonical transformations in

the “passive” sense, with the (qi, Pi) labelling the same point in phase space as (qi, pi),

just in different coordinates. But a one-parameter family of canonical transformations

can be endowed with a different interpretation, namely that the transformations take

us from one point in the phase space (qi, pi) to another point in the same phase space

(qi(q, p;α), Pi(q, p;α)). In this “active” interpretation, as we vary the parameter α we

trace out lines in phase space. Using the results (4.77) and (4.80), the tangent vectors

to these lines are given by,

dqi

dα
=
∂G

∂pi
and

dpi
dα

= −∂G
∂qi

(4.82)

But these look just like Hamilton’s equations, with the Hamiltonian replaced by the

function G and time replaced by the parameter α. What we’ve found is that every
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one-parameter family of canonical transformations can be thought of as “Hamiltonian

flow” on phase space for an appropriately chosen “Hamiltonian” G. Conversely, time

evolution can be thought of as a canonical transformation for the coordinates

(qi(t0), pi(t0))→ (qi(t), pi(t)) (4.83)

generated by the Hamiltonian. Once again, we see the link between time and the

Hamiltonian.

As an example, consider the function G = pk. Then the corresponding infinitesimal

canonical transformation is qi → qi + αδik and pi → pi, which is simply a translation.

We say that translations of qk are generated by the conjugate momentum G = pk.

4.4.2 Noether’s Theorem Revisited

Recall that in the Lagrangian formalism, we saw a connection between symmetries and

conservation laws. How does this work in the Hamiltonian formulation?

Consider an infinitesimal canonical transformation generated by G. Then

δH =
∂H

∂qi
δqi +

∂H

∂pi
δpi

= α
∂H

∂qi
∂G

∂pi
− α ∂H

∂pi

∂G

∂qi
+O(α2)

= α {H,G} (4.84)

The generator G is called a symmetry of the Hamiltonian if δH = 0. This holds if

{G,H} = 0 (4.85)

But we know from section 4.3 that Ġ = {G,H}. We have found that if G is a symmetry

then G is conserved. Moreover, we can reverse the argument. If we have a conserved

quantity G, then we can always use this to generate a canonical transformation which

is a symmetry.

Explain that G is the Noether charge that generates the symmetry...

The Runge-Lenz Vector

Another interesting object is the (Hermann-Bernoulli-Laplace-Pauli-) Runge-Lenz vec-

tor, defined as

A =
1

m
p× L− r̂ (4.86)
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where r̂ = r/r. This vector satisfies A · L = 0. If you’re willing to spend some time

playing with indices, it’s not hard to derive the following expressions for the Poisson

bracket structure

{La, Ab} = ϵabcAc , {Aa, Ab} = − 2

m

(
p2

2m
− 1

r

)
ϵabcLc (4.87)

The last of these equations suggests something special might happen when we consider

the familiar Hamiltonian H = p2/2m− 1/r so that the Poisson bracket becomes

{Aa, Ab} = −2H

m
ϵabcLc (4.88)

Indeed, for this choice of Hamiltonian is a rather simple to show that

{H,A} = 0 (4.89)

So we learn that the Hamiltonian with−1/r potential has another constant of motion A

that we’d previously missed! The fact that A is conserved can be used to immediately

derive Kepler’s elliptical orbits: dotting A with r̂ yields r̂ ·A + 1 = L2/r which is the

equation for an ellipse. Note that the three constants of motion, L, A and H form a

closed algebra under the Poisson bracket.

Noether’s theorem tells us that the conservation of L and H are related to rotational

symmetry and time translation respectively. One might wonder whether there’s a

similar symmetry responsible for the conservation of A. It turns out that there is: the

Hamiltonian has a hidden SO(4) symmetry group. You can read more about this in

Goldstein.

4.4.3 Generating Functions

There’s a simple method to construct canonical transformations between coordinates

(qi, pi) and (qi, Pi). Consider a function F (q,Q) of the original qi’s and the final qi’s.

Let

pi =
∂F

∂qi
(4.90)

After inverting, this equation can be thought of as defining the new coordinate qi =

qi(q, p). But what is the new canonical momentum P? We’ll show that it’s given by

Pi = −∂F
∂qi

(4.91)
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The proof of this is a simple matter of playing with partial derivatives. Let’s see how

it works in an example with just a single degree of freedom. (It generalises trivially to

the case of several degrees of freedom). We can look at the Poisson bracket

{Q,P} =
∂Q

∂q

∣∣∣∣
p

∂P

∂p

∣∣∣∣
q

− ∂Q

∂p

∣∣∣∣
q

∂P

∂q

∣∣∣∣
p

(4.92)

At this point we need to do the playing with partial derivatives. Equation (4.91) defines

P = P (q,Q), so we have

∂P

∂p

∣∣∣∣
q

=
∂Q

∂p

∣∣∣∣
q

∂P

∂Q

∣∣∣∣
q

and
∂P

∂q

∣∣∣∣
p

=
∂P

∂q

∣∣∣∣
Q

+
∂Q

∂q

∣∣∣∣
p

∂P

∂Q

∣∣∣∣
q

(4.93)

Inserting this into the Poisson bracket gives

{Q,P} = − ∂Q

∂p

∣∣∣∣
q

∂P

∂q

∣∣∣∣
Q

=
∂Q

∂p

∣∣∣∣
q

∂2F

∂q∂Q
=
∂Q

∂p

∣∣∣∣
q

∂p

∂Q

∣∣∣∣
q

= 1 (4.94)

as required. The function F (q,Q) is known as a generating function of the first kind.

There are three further types of generating function, related to the first by Leg-

endre transforms. Each is a function of one of the original coordinates and one of

the new coordinates. You can check that the following expression all define canonical

transformations:

F2(q, P ) : pi =
∂F2

∂qi
and qi =

∂F2

∂Pi
(4.95)

F3(p,Q) : qi = −∂F3

∂pi
and Pi = −∂F3

∂qi

F4(p, P ) : qi = −∂F4

∂pi
and qi =

∂F4

∂Pi

4.5 Action-Angle Variables

We’ve all tried to solve problems in physics using the wrong coordinates and seen

what a mess it can be. If you work in Cartesian coordinates when the problem really

requires, say, spherical polar coordinates, it’s always possible to get to the right answer

with enough perseverance, but you’re really making life hard for yourself. The ability

to change coordinate systems can drastically simplify a problem. Now we have a much

larger set of transformations at hand; we can mix up q’s and p’s. An obvious question

is: Is this useful for anything?! In other words, is there a natural choice of variables

which makes solving a given problem much easier. In many cases, there is. They’re

called “angle-action” variables.
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4.5.1 The Simple Harmonic Oscillator

We’ll start this section by doing a simple example which will illustrate the main point.

We’ll then move on to the more general theory. The example we choose is the simple

harmonic oscillator. Notice that as our theory gets more abstract, our examples get

easier!

We have the Hamiltonian

q

p

Figure 47:

H =
p2

2m
+

1

2
mω2q2 (4.96)

so that Hamilton’s equations are the familiar

ṗ = −mω2q and q̇ =
p

m
(4.97)

which has the rather simple solution

q = A cos(ω(t− t0)) and p = −mωA sin(ω(t− t0)) (4.98)

where A and t0 are integration constants. The flows in phase space are ellipses as shown

in the figure.

Now let’s do a rather strange change of variables in which we use our freedom to mix

up the position and momentum variables. We write

(q, p)→ (θ, I) (4.99)

where you can think of θ is our new position coordinate and I our new momentum

coordinate. The transformation we choose is:

q =

√
2I

mω
sin θ and p =

√
2Imω cos θ (4.100)

It’s an odd choice, but it has advantages! Before we turn to these, let’s spend a minute

checking that this is indeed a canonical transformation. There’s two ways to do this

and we’ll do both:

1) We can make sure that the Poisson brackets are preserved. In fact, it’s easier to

work backwards and check that {q, p} = 1 in (θ, I) coordinates. In other words, we

need to show that

{q, p}(θ,I) ≡
∂q

∂θ

∂p

∂I
− ∂q

∂I

∂p

∂θ
= 1 (4.101)
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To confirm this, let’s substitute the transformation (4.100),

{q, p}(θ,I) =

{√
2I

mω
sin θ,

√
2Imω cos θ

}
(θ,I)

= 2
{√

I sin θ,
√
I cos θ

}
(θ,I)

= 1 (4.102)

where the final equality follows after a quick differentiation. So we see that the trans-

formation (4.100) is indeed canonical.

2) The second way to see that the transformation is canonical is to prove that the

Jacobian is symplectic. Let’s now check it this way. We can calculate

J =

(
∂θ/∂q ∂θ/∂p

∂I/∂q ∂I/∂p

)
=

(
(mω/p) cos2 θ −(mωq/p2) cos2 θ

mωq p/mω

)
(4.103)

from which we can calculate J JJ T and find that it is equal to J as required.

So we have a canonical transformation in (4.100). But what’s the point of doing

this? Let’s look at the Hamiltonian in our new variables.

H =
1

2m
(2mωI) sin2 θ +

1

2
mω2 2I

mω
cos2 θ = ωI (4.104)

so the Hamiltonian doesn’t depend on the variable θ! This means

θ=2πθ=0

I

Figure 48:

that Hamilton’s equations read

θ̇ =
∂H

∂I
= ω and İ = −∂H

∂θ
= 0 (4.105)

We’ve managed to map the phase space flow onto a cylinder param-

eterised by θ and I so that the flows are now all straight lines as

shown in the figure. The coordinates (θ, I) are examples of angle-

action variables.

4.5.2 Integrable Systems

In the above example, we saw that we could straighten out the flow lines of the simple

harmonic oscillator with a change of variables, so that the motion in phase space became

trivial. It’s interesting to ask if we can we do this generally? The answer is: only for

certain systems that are known as integrable.
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Suppose we have n degrees of freedom. We would like to find canonical transforma-

tions

(qi, pi)→ (θi, Ii) (4.106)

such that the Hamiltonian becomes H = H(I1, . . . , In) and doesn’t depend on θi. If we

can do this, then Hamilton’s equations tell us that we have n conserved quantities Ii,

while

θ̇i =
∂H

∂Ii
= ωi (4.107)

where ωi is independent of θ (but in general depends on I) so that the solutions are

simply θi = ωit. Whenever such a transformation exists, the system is said to be

integrable. For bounded motion, the θi are usually scaled so that 0 ≤ θi < 2π and the

coordinates (θi, Ii) are called angle-action variables.

Liouville’s Theorem on Integrable Systems: There is a converse statement.

If we can find n mutually Poisson commuting constants of motion I1, . . . , In then this

implies the existence of angle-action variables and the system is integrable. The re-

quirement of Poisson commutation {Ii, Ij} = 0 is the statement that we can view the

Ii as canonical momentum variables. This is known as Liouville’s theorem. (Same

Liouville, different theorem). A proof can be found in the book by Arnold.

Don’t be fooled into thinking all systems are integrable. They are rather special and

precious. It remains an active area of research to find and study these systems. But

many – by far the majority – of systems are not integrable (chaotic systems notably

among them) and don’t admit this change of variables. Note that the question of

whether angle-action variables exist is a global one. Locally you can always straighten

out the flow lines; it’s a question of whether you can tie these straight lines together

globally without them getting tangled.

Clearly the motion of a completely integrable system is restricted to lie on Ii =

constant slices of the phase space. A theorem in topology says that these surfaces must

be tori (S1 × . . .× S1) known as the invariant tori.

4.5.3 Action-Angle Variables for 1d Systems

Let’s see how this works for a 1d system with Hamiltonian

H =
p2

2m
+ V (q) (4.108)
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Since H itself is a constant of motion, with H = E for some constant E throughout

the motion, the system is integrable. We assume that the motion is bounded so that

q1 ≤ q ≤ q2 as shown in the figure. Then the motion is periodic, oscillating back and

forth between the two end points, and the motion in phase space looks something like

the figure 50. Our goal is to find a canonical transformation to variables θ and I that

straightens out this flow to look like the second figure in the diagram.

θ=2πθ=0

I

q

p

Figure 50: Can we straighten out the flow lines in phase space?

So what are I and θ? Since I is a constant of motion,

1
q

2
q

V(q)

q

E

Figure 49:

it should be some function of the energy or, alternatively,

H = H(I) = E (4.109)

But which choice will have as its canonical partner θ ∈
[0, 2π) satisfying

θ̇ =
∂H

∂I
=
∂E

∂I
≡ ω (4.110)

for a constant ω which is the frequency of the orbit?

Claim: The correct choice for I is

I =
1

2π

∮
p dq (4.111)

which is the area of phase space enclosed by an orbit (divided by 2π) and is a function

of the energy only.

Proof: Since the Hamiltonian is conserved, we may write the momentum as a function

of q and E:

p =
√

2m
√
E − V (q) (4.112)
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We know that for this system p = mq̇ so we have

dt =

√
m

2

dq√
E − V (q)

(4.113)

Integrating over a single orbit with period T = 2π/ω, we have

2π

ω
=

√
m

2

∮
dq√

E − V (q)

=

∮ √
2m

(
d

dE

√
E − V (q)

)
dq (4.114)

At this point we take the differentiation d/dE outside the integral. This isn’t obviously

valid since the path around which the integral is evaluated itself changes with energy

E. Shortly we’ll show that this doesn’t matter. For now, let’s assume that this is valid

and continue to find

2π

ω
=

d

dE

∮ √
2m
√
E − V (q) dq

=
d

dE

∮
p dq

= 2π
dI

dE
(4.115)

where in the last line, we’ve substituted for our putative action variable I. Examining

our end result, we have found that I does indeed satisfy

dE

dI
= ω (4.116)

where ω is the frequency of the orbit. This is our required

result, but it remains to show that we didn’t miss anything

by taking d/dE outside the integral. Let’s think about this.

We want to see how the area enclosed by the curve changes

under a small shift in energy δE. Both the curve itself and

the end points q1 ≤ q ≤ q2 vary as the energy shifts. The

latter change by δqi = (dV (qi)/dq)−1 δE. Allowing the

differential d/dE to wander inside and outside the integral

is tantamount to neglecting the change in the end points.

The piece we’ve missed is the small white region in the figure. But these pieces are of

order δE2. To see this, note that order δE pieces are given by∫ qi

qi+δqi

√
2m
√
E − V (q) dq ≈

√
2m
√
E − V (q)

(
∂V

∂q

)−1

δE (4.117)
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evaluated at the end point q = qi. They vanish because E = V (qi) at the end points.

This completes the proof. □

This tells us that we can calculate the period of
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Figure 51:

the orbit ω by figuring out the area enclosed by the

orbit in phase space as a function of the energy. Notice

that we can do this without ever having to work out

the angle variable θ (which is a complicated function

of q and p) which travels with constant speed around

the orbit (i.e. satisfies θ = ωt).

In fact, it’s not too hard to get an expression for θ

by going over the above analysis for a small part of

the period. It follows from the above proof that

t =
d

dE

∫
p dq (4.118)

but we want a θ which obeys θ = ωt. We see that we can achieve this by taking the

choice

θ = ω
d

dE

∫
p dq =

dE

dI

d

dE

∫
p dq =

d

dI

∫
p dq (4.119)

Because E is conserved, all 1d systems are integrable. What about higher dimen-

sional systems? If they are integrable, then there exists a change to angle-action vari-

ables given by

Ii =
1

2π

∮
γi

∑
j

pj dq
j

θi =
∂

∂Ii

∫
γi

∑
j

pj dq
j (4.120)

where the γi are the periods of the invariant tori.

4.5.4 Action-Angle Variables for the Kepler Problem

Perhaps the simplest integrable system with more than one degree of freedom is the

Kepler problem. This is a particle of mass m moving in three dimensions, subject to

the potential

V (r) = −k
r
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We solved this already back in the Dynamics and Relativity course. Recall that we can

use the conservation of the (direction of) angular momentum to restrict dynamics to

a two-dimensional plane. We’ll work in polar coordinates (r, ϕ) in this spatial plane.

The associated momenta are pr = mṙ and pϕ = mr2ϕ̇. The Hamiltonian is

H =
1

2m
p2r +

1

2mr2
p2ϕ −

k

r
(4.121)

There are two action variables, one associated to the radial motion and one associated

to the angular motion. The latter is straightforward: it is the angular momentum itself

Iϕ =
1

2π

∫ 2π

0

pϕdϕ = pϕ

The action variable for the radial motion is more interesting. We can calculating it

by using the fact that the total energy, E, and the angular momentum Iϕ are both

conserved. Then, rearranging (4.121), we have

p2r = 2m

(
E +

k

r

)
−
I2ϕ
r2

and the action variable is

Ir =
1

2π

∮
prdr =

1

2π
2

∫ rmax

rmin

prdr =
1

2π
2

∫ rmax

rmin

√
2m

(
E +

k

r

)
−
I2ϕ
r2
dr

Here rmin and rmax are, respectively, the closest and furthest distance to the origin.

(If you try to picture this in space, you’ll need to recall that in the Kepler problem

the origin sits on the focus of the ellipse, rather than the centre; this means that the

smallest and furthest distance are opposite each other on the orbit).The factor of 2 in

the second equality comes because a complete cycle goes from rmin to rmax and back

again. To do this integral, you’ll need the result∫ rmax

rmin

√(
1− rmin

r

)(rmax

r
− 1
)

=
π

2
(rmin + rmax)− π

√
rminrmax

Using this, we find

Ir =

√
m

2|E|
k − Iϕ

Or, re-arranging,

E = − mk2

2(Ir + Iϕ)2
(4.122)
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There’s something rather nice lurking in this result. The energy is the same as the

Hamiltonian in this case and we can use it to compute the speed at which the angular

variables change. This follows from Hamilton’s equations,

θ̇r =
∂H

∂Ir
and θ̇ϕ =

∂H

∂Iϕ

Here θϕ = ϕ while θr is some complicated function of r. But we see from (4.122) that

the Hamiltonian is symmetric in Ir and Iϕ. This means that the frequency at which the

particle completes a ϕ cycle is the same frequency with which it completes a θr cycle.

But that’s the statement that the orbit is closed: when you go around 2π in space, you

come back to the same r value. The existence of closed orbits is a unique feature of

the 1/r potential. The calculation reveals the underlying reason for this.
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4.6 Adiabatic Invariants

Consider a 1d system with a potential V (q) that de- V(q)

q

E

Figure 52:

pends on some parameter λ. If the motion is bounded by

the potential then it is necessarily periodic. We want to

ask what happens if we slowly change λ over time. For

example, we may slowly change the length of a pendulum,

or the frequency of the harmonic oscillator.

Since we now have λ = λ(t), the energy is not conserved.

Rather E = E(t) where

Ė =
∂H

∂λ
λ̇ (4.123)

But there are combinations of E and λ which remain (approximately) constant. These

are called adiabatic invariants and the purpose of this section is to find them. In fact,

we’ve already come across them: we’ll see that the adiabatic invariants are the action

variables of the previous section.

For the 1d system, the Hamiltonian is

H =
p2

2m
+ V (q;λ(t)) (4.124)

and we claim that the adiabatic invariant is

I =
1

2π

∮
p dq (4.125)

where the path in phase space over which we integrate now depends on time and is

given by p =
√

2m
√
E(t)− V (q;λ(t)). The purpose of this section is to show that I

is indeed an adiabatic invariant. At the same time we will also make clearer what we

mean when we say that λ must change slowly.

Let’s start by thinking of I as a function of the energy E and the parameter λ. As

we vary either of these, I will change. We have,

İ =
∂I

∂E

∣∣∣∣
λ

Ė +
∂I

∂λ

∣∣∣∣
E

λ̇ (4.126)

where the subscripts on the partial derivatives tell us what variable we’re keeping fixed.

For an arbitrary variation of E and λ, this equation tells us that I also changes. But,

of course, E and λ do not change arbitrarily: they are related by (4.123). The point of

the adiabatic invariant is that when Ė and λ̇ are related in this way, the two terms in

(4.126) approximately cancel out. We can deal with each of these terms in turn. The

first term is something we’ve seen previously in equation (4.116) which tells us that,
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q

p

λ

λ

1

2

Figure 53:

∂I

∂E

∣∣∣∣
λ

=
1

ω(λ)
=
T (λ)

2π
(4.127)

where T (λ) is the period of the system evaluated at fixed λ.

The second term in (4.126) tells us how the path changes

as λ is varied. For example, two possible paths for two

different λ’s are shown in the figure and the change in I is

the change in the area of under the two curves. We have

∂I

∂λ

∣∣∣∣
E

=
1

2π

∂

∂λ

∣∣∣∣
E

∮
pdq =

1

2π

∮
∂p

∂λ

∣∣∣∣
E

dq =
1

2π

∫ T (λ)

0

∂p

∂λ

∣∣∣∣
E

∂H

∂p

∣∣∣∣
λ

dt′ (4.128)

where, in the second equality, we have neglected a contribution arising from the fact

that the path around which we integrate changes as λ changes. But this contribution

can be safely ignored by the same argument given around (4.117).

We can get a simple expression for the product of partial derivatives by differentiating

the Hamiltonian and remembering what depends on what. We have the expression

H(q, p, λ) = E where, in the left-hand side we substitute p =
√

2m
√
E(t)− V (q;λ(t)).

Then differentiating with respect to λ, keeping E (and q) fixed, we have

∂H

∂λ

∣∣∣∣
p

+
∂H

∂p

∣∣∣∣
λ

∂p

∂λ

∣∣∣∣
E

= 0 (4.129)

So substituting this into (4.128) we have

∂I

∂λ

∣∣∣∣
E

= − 1

2π

∫ T (λ)

0

∂H

∂λ

∣∣∣∣
E

dt′ (4.130)

So putting it all together, we have the time variation of I given by

İ =

[
T (λ)

∂H

∂λ

∣∣∣∣
E

−

(∫ T (λ)

0

∂H

∂λ

∣∣∣∣
E

dt′

)]
λ̇

2π
(4.131)

where, in the first term, we’ve replaced Ė with the expression (4.123). Now we’re

almost done. So far, each term on the right-hand side is evaluated at a given time t or,

correspondingly for a given λ(t). The two terms look similar, but they don’t cancel!

But we have yet to make use of the fact that the change in λ is slow. At this point

we can clarify what we mean by this. The basic idea is that the speed at which the

particle bounces backwards and forwards in the potential is much faster than the speed
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at which λ changes. This means that the particle has performed many periods before

it notices any appreciable change in the potential. This means that if we compute

averaged quantities over a single period,

⟨A(λ)⟩ =
1

T

∫ T

0

A(t, λ) dt (4.132)

then inside the integral we may treat λ as if it is effectively constant. We now consider

the time averaged motion ⟨İ⟩. Since λ can be taken to be constant over a single period,

the two terms in (4.131) do now cancel. We have

⟨İ⟩ = 0 (4.133)

This is the statement that I is an adiabatic invariant: for small changes in λ, the

averaged value of I remains constant7.

The adiabatic invariants played an important role in the early history of quantum

mechanics. You might recognise the quantity I as the object which takes integer values

according to the old 1915 Bohr-Sommerfeld quantisation condition

1

2π

∮
p dq = nℏ n ∈ Z (4.134)

The idea that adiabatic invariants and quantum mechanics are related actually predates

the Bohr-Somerfeld quantisation rule. In the 1911 Solvay conference Einstein answered

a question of Lorentz: if the energy is quantised as E = ℏnω where n ∈ Z then what

happens if ω is changed slowly? Lorentz’ worry was that integers cannot change slowly

– only by integer amounts. Einstein’s answer was not to worry: E/ω remains constant.

These days the idea of adiabatic invariants in quantum theory enters into the discussion

of quantum computers.

An Example: The Simple Harmonic Oscillator

We saw in section 4.5 that for the simple harmonic oscillator we have I = E/ω. So

if we change ω slowly, then the ratio E/ω remains constant. This was Einstein’s 1911

point. In fact, for the SHO it turns out that there is an exact invariant that remains

constant no matter how quickly you change ω and which, in the limit of slow change,

goes over to I. This exact invariant is

J =
1

2

[
q2

g(t)2
+ (g(t)q̇ − qġ(t))2

]
(4.135)

7The proof given above is intuitive, but begins to creak at the seams when pushed. A nice descrip-

tion of these issues, together with a more sophisticated proof using generating functions for canonical

transformations is given in in the paper “The Adiabatic Invariance of the Action Variable in Classical

Dynamics” by C.G.Wells and S.T.Siklos which can be found at http://arxiv.org/abs/physics/0610084.

– 159 –



where g(t) is a function satisfying the differential equation

g̈ + ω2(t)g − 1

g3
= 0 (4.136)

4.6.1 Adiabatic Invariants and Liouville’s Theorem

There’s a way to think of adiabatic invariants using Li-

q

p

Figure 54:

ouville’s theorem. Consider first a series of systems, all

described by a Hamiltonian with fixed parameter λ. We

set off each system with the same energy E or, equiva-

lently, the same action I, but we start them with slightly

different phases θ. This means that their dynamics is de-

scribed by a series of dots, all chasing each other around a

fixed curve as shown in the figure. Now let’s think about

how this train of dots evolves under the Hamiltonian with

time dependent λ(t). Recall that Liouville’s theorem states

that the area of phase space is invariant under any Hamiltonian evolution. This holds

whether or not ∂H/∂t = 0, so is still valid for the time dependent Hamiltonian with

λ(t). One might be tempted to say that we’re done since all the words sound right:

Liouville’s theorem implies that the area is conserved which is also the statement that

our adiabatic invariant I doesn’t change with time. But this is a little too fast! Liou-

ville’s theorem says the area of a distribution of particles in phase space is conserved,

not the area enclosed by a perimeter ring of particles. Indeed, Liouville’s theorem holds

for any variation λ(t), not just for adiabatic variations. For a fast change of λ(t), there

is nothing to ensure that the particles that had the same initial energy, but different

phases, would have the same final energy and we lose the interpretation of a ring of

dots in phase space enclosing some area.

The missing ingredient is the “adiabatic principle”. In this context it states that for

a suitably slow change of the parameter λ, all the systems in the same orbit, with the

same energy, are affected in the same manner. If this holds, after some time the dots

in phase space will still be chasing each other around another curve of constant energy

E ′. We can now think of a distribution of particles filling the area I inside the curve.

As λ varies slowly, the area doesn’t change and the outer particles remain the outer

particles, all with the same energy. Under these circumstances, Liouville’s theorem

implies the adiabatic invariant I is constant in time.

4.6.2 An Application: A Particle in a Magnetic Field

We saw in Section 4.1 that a particle in a constant magnetic field B = (0, 0, B) makes

circles with Larmor frequency ω = eB/mc and a radius R, which depends on the energy
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of the particle. But what happens if B is slowly varying over space? i.e. B = B(x, y),

but with

∂iB ≪ R (4.137)

so that the field is roughly constant over one orbit.

In this example, there is no explicit time dependence of the Hamiltonian so we know

that the Hamiltonian itself is an exact constant of motion. For a particle in a constant

magnetic field we can calculate H of an orbit by substituting the solutions (??) into

the Hamiltonian (??). We find

H =
1

2
mω2R2 =

e2R2B2

2mc2
(4.138)

This quantity is conserved. But what happens to the particle? Does it drift to regions

with larger magnetic field B, keeping H constant by reducing the radius of the orbit?

Or to regions with smaller B with larger orbits?

We can answer this by means of the adiabatic invariant. We can use this because the

motion of the particle is periodic in space so the particle sees a magnetic field which

varies slowly over time. The adiabatic invariant is

I =
1

2π

∮
p dq (4.139)

which is now to be thought of as a line integral along the orbit of the electron. We

evaluate this on the solution for the uniform magnetic field (??)

I =
1

2π

∫ T

0

(pxẋ+ pyẏ) dt

=
1

2π

∫ T

0

(
bRω cosωt+mω2R2 sin2 ωt

)
dt

=
mωR2

2π

∫ 2π

0

sin2 θ dθ (4.140)

Setting ω = eB/mc, we see that the adiabatic invariant I is proportional to (e/c)BR2.

Since the electric charge e and the speed of light c are not things we can change, we find

that BR2 is constant over many orbits. But as H ∼ B2R2 is also conserved, both the

magnetic field B seen by the particle and the radius of the orbit R must be individually

conserved. This means the particle can’t move into regions of higher or lower magnetic

fields: it must move along constant field lines8.

8For results that go beyond the adiabatic approximations, see the paper by the man: E. Witten

“A Slowly Moving Particle in a Two-Dimensional Magnetic Field”, Annals of Physics 120 72 (1979).
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Finally, there’s a simple physical way to see that the particle indeed drifts along lines

of constant magnetic field. As the particle makes its little Larmor circles, it feels a

slightly stronger force when it’s, say, at the top of its orbit where the field is slightly

larger, compared to when its at the bottom. This net force tends to push the particle

to regions of weaker or stronger magnetic field. But we’ve seen through the use of

adiabatic invariants that this isn’t possible. The slow drift of the particle acts such

that it compensates for this small force, keeping the particle on constant field lines.

There’s a slight variant of the above set-up which allows you to trap charged particles

using magnetic fields. Consider the particle making its little Larmor circles in the (x, y)

plane, but also moving in the z direction and take a magnetic field that’s constant in

the (x, y)-plane, but ever increasing in the z-direction. The energy of the particle is

given by,

H =
1

2
mż2 +

e2R2B2

2mc2
=

1

2
mż2 +

IemB

mc
(4.141)

Both H > 0 and I > 0 are constant in time. This ensures that there exists a value of

the magnetic field B > 0 at which we necessarily have ż = 0 and the particle can go

no further. At this stage it turns round and goes back again. By creating a magnetic

field that increases at two ends, charged particles can be made to bounce back and

forth in the z direction, while executing their little circles in the (x, y)-plane. It is this

mechanism that traps charged particles in magnetic loops emitted from the sun and is

ultimately responsible for solar flares.

4.6.3 Hannay’s Angle

Consider a particle bouncing around, with periodic motion, in an arbitrary potential.

There are many parameters λa describing the shape of the potential. As we slowly vary

the λa the path in phase space changes although, as we have seen, the area enclosed

by the path remains the same. After some time tlong (which, by the assumption of

adiabiticity, is much longer than the period T of a single orbit) we return to the original

parameters so that λa(tlong) = λa(0). The question we want to ask is: how has the

phase angle θ changed?

For any fixed λa, the velocity of the angle variable is θ̇ = ∂H/∂I = ω(I, λa). As

we slowly vary the parameters, the particle is spinning around its phase space orbits.

When we return we therefore expect that the phase has been shifted by
∫
ωdt. Which

is true. But it turns out that there is another, more subtle, contribution to the phase

shift as well. We’ll now see where this comes from.
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As the parameters change, we can write the change in the angle θ as

θ̇ =
∂H

∂I
+

∂θ

∂λa
λ̇a (4.142)

Which looks simple enough. But there’s a problem. The second term is not well defined.

For each set of parameters λa we have different action angle variables I(λa) and θ(λa).

But there’s nothing that stops choosing a different origin θ = 0 for each choice of the

parameters. In other words, we could always redefine

θ(λa)→ θ(λa) + β(λa) (4.143)

where we shift by a different constant β for each λa. What this means is that it doesn’t

really make any sense to compare the angle variable for different parameters λa. This

makes the second term — which tells us how the angle variable changes as we change

the parameters — ambiguous. One might think this means that we can just ignore it.

Or, more precisely, we could choose the shifts β so that the angle variables are defined

in such a way that the second term vanishes. But it turns out that this isn’t possible.

Let’s see why. The point is that it does make sense to compare the angle variable for

the same parameters λa. After such a time tlong, we have

θ(tlong) = θ(0) +

∫ tlong

0

ω dt+ ∆θ (4.144)

The term
∫
ωdt is the dynamic term that we anticipated above, arising from the fact

that θ is continually making orbits around the curve in phase space. It depends on the

time tlong that we took to make the change. The other term that we call ∆θ is more

interesting. From (4.142) it is given by

∆θ =

∫ tlong

0

〈
∂θ

∂λa

〉
λ̇i dt =

∮
C

〈
∂θ

∂λa

〉
dλa (4.145)

where we’ve used the fact that the change in λa is adiabatic to replace the integrand

with its average over one period of the orbit. The final expression above means an

integration over the curve C that the system traces in parameter space. We see that

∆θ is independent of the time tlong taken to make the change. However, it does depend

on the path that we took through the space of all possible potentials. It is known as

the ”Hannay angle”. Note that the Hannay angle is invariant under the ambiguity

(4.144) even though the quantity ∂θ/∂λa that appears in the integrand isn’t. This

idea of integrating quantities around loops is an example of ”holonomy”, an important

concept in modern physics.
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Rather surprisingly, the Hannay angle was first discovered only in 1984. The history

is interesting. First Berry discovered a similar phase for the wavefunction in quantum

mechanics (now known as the Berry phase). Many physicists were shocked that such

a simple and profound idea as Berry’s phase had lain hidden in the formulation of

quantum mechanics for 50 years and it set off a flurry of theoretical and experimental

research. Soon after this, Hannay showed that an analogous phase had lain undis-

covered in classical mechanics for 150 years! Although, in certain examples in celestial

mechanics, the phase ∆θ had been correctly calculated, the general theory lying behind

it had not been appreciated. We now describe this theory.

The first step is to use a higher dimensional version of Stokes’ theorem to express

the contour integral (4.145) as a surface integral

∆θ =

∫
S

(
∂

∂λa

〈
∂θ

∂λb

〉
− ∂

∂λb

〈
∂θ

∂λa

〉)
dAab (4.146)

where S is a surface in parameter space bounded by the curve C and dAab is the in-

finitesimal surface element.

Claim: The Hannay angle can be written as

∆θ =
d

dI

∫
S

Wab dAab (4.147)

where the anti-symmetric matrix Wab (known mathematically as a 2-form) is given by

Wab =

〈
∂θ

∂λa

∂I

∂λb
− ∂θ

∂λb

∂I

∂λa

〉
(4.148)

Proof: To start with let’s think about the averaging procedure a little more. In

equation (4.132) we wrote ⟨A⟩ as a time average, integrating over a single period. We

could equally as well write it as an angle average,

⟨A⟩ =

∮
A(I, θ) dθ =

∫
A(q′, p′) δ(I ′ − I)

dq′dp′

2π
(4.149)

where in the second equality we integrate over all of phase space and insert the delta

function δ(I ′− I) to restrict the integral to the orbit over the curve with action I. It’s
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this latter formula that we’ll use. This allows us to write,

∂

∂λa

〈
∂θ

∂λb

〉
− ∂

∂λb

〈
∂θ

∂λa

〉
=

[
∂

∂λa

∫
∂θ

∂λb
− ∂

∂λ b

∫
∂θ

∂λa

]
δ(I ′ − I)

dq′dp′

2π

=

∫ [
∂θ

∂λb

∂δ

∂λa
− ∂θ

∂λa

∂δ

∂λb

]
dq′dp′

2π

=

∫ [
∂θ

∂λb

∂I ′

∂λa
− ∂θ

∂λa

∂I ′

∂λb

]
∂δ

∂I ′
dq′dp′

2π

= − d

dI

∫ [
∂θ

∂λb

∂I ′

∂λa
− ∂θ

∂λa

∂I ′

∂λb

]
δ(I ′ − I)

dq′dp′

2π

=
d

dI
Wab (4.150)

which completes the proof. I haven’t included any examples here of the Hannay angle:

some simple ones can be found in the original literature9 and more advanced applica-

tions can be found by googling ”Hannay angles”. For the pendulum example, in which

the length of the pendulum varies, the Hannay angle vanishes. This is because there is

only one parameter to vary, while a non-trivial ∆θ occurs only if we make a non-trivial

loop C in parameter space.

4.7 The Hamilton-Jacobi Equation

In this section we will describe yet another viewpoint on t

initial 

final

q

q

q

Figure 55:

classical dynamics, known as Hamilton-Jacobi theory. It will

tie together several concepts that we’ve met so far. Recall

from section 2.1 the principle of least action. We define the

action

S =

∫ T

0

L(qi, q̇i, t) dt (4.151)

which we evaluate for all paths q(t) with fixed end points

qi(0) = qiinitial , qi(T ) = qifinal (4.152)

Then the true path taken is an extremum of the action: δS = 0.

Now let’s change perspective a little. Consider the action evaluated only along the

true path qiclassical(t) and define

W (qiinitial, q
i
final, T ) = S[qiclassical(t)] (4.153)

While S is a functional on any path, W is to be considered as a function of the initial

and final configurations qiinitial and qifinal as well as the time T it takes to get between

them.
9J. Hannay, ”Angle Variable Holonomy in Adiabatic Excursion of an Integrable Hamiltonian” J.

Phys A, 18 221 (1985); M. Berry, ”Classical Adiabatic Angles and Quantal Adiabatic Phase” J. Phys

A, 18 15 (1985).
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Now let’s ask what happens if we keep qiinitial fixed but vary the end point qifinal. We

can go back to the analysis of section 2.1 to see that when the action is varied it looks

like

δS =

∫ T

0

dt

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi(t) +

[
∂L

∂q̇i
δqi(t)

]T
0

(4.154)

If we evaluate this on the classical path the first term vanishes. We’re left with

∂W

∂qifinal
=

∂L

∂q̇i

∣∣∣∣
t=T

= pfinali (4.155)

The next thing we want to compute is ∂W/∂T . Let’s start by considering a classical

path with fixed initial configuration qiinitial. We’ll let the path run on a little longer

than before, so T → T + δT . Then we have

dW

dT
=
∂W

∂T
+

∂W

∂qifinal
q̇ifinal =

∂W

∂T
+ pfinali q̇ifinal (4.156)

But this total derivative is easily calculated since dS/dT = L, or

dW

dT
= L(qiclassical(T ), q̇iclassical(T ), T ) = L(qifinal, q̇

i
final, T ) (4.157)

So we arrive at the equation,

∂W

∂T
= −

(
pfinali q̇ifinal − L(qifinal, q̇

i
final, T )

)
= −H(qifinal, p

final
i , T ) (4.158)

At this stage, the only time in the game is T and the only position in the game is qifinal.

So we can simply drop the word “final”, and relabel T → t. We have found ourselves

a time dependent function on configuration space W = W (qi, t) which satisfies

∂W

∂qi
= pi and

∂W

∂t
= −H(qi, pi, t) (4.159)

or, substituting the first into the second, we have

∂W

∂t
= −H(qi, ∂W/∂qi, t) (4.160)

This is the Hamilton-Jacobi Equation.

We’ve shown how a solution to the Hamilton-Jacobi equation can be constructed

by looking at the classical action of paths which reach a point qi at time T starting

from some initial reference point qiinitial. The starting point qiinitial can be considered

integration constants. In fact, there are more general solutions to the Hamilton-Jacobi

equation, although all are related to the classical action in a similar way.
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Suppose we find a solution to (4.160). What do we do with it? We’re now armed

with some time-dependent function W (qi, t) on configuration space. We combine this

with the first of Hamilton’s equations which reads

q̇i =
∂H

∂pi

∣∣∣∣
pi=∂W/∂qi

(4.161)

where, on the right-hand-side, we’ve replaced every appearance of the momenta pi by

a function of the coordinates using pi = ∂W/∂qi. What we’re left with is n first-order

differential equations for the evolution of qi. In this manner the function W determines

the path of the classical system: start it off at a point in configuration space and W

can be considered as a real valued classical wavefunction which tells it how to evolve.

What we need to show is that the evolution dictated by (4.161) does indeed satisfy the

equations of motion. In other words, we should prove that the second of Hamilton’s

equations, ṗi = −∂H/∂qi, is satisfied. We have

ṗi =
d

dt

(
∂W

∂qi

)
=

∂2W

∂qi∂qj
q̇j +

∂2W

∂t∂qi
(4.162)

But differentiating the Hamilton-Jacobi equation (4.160) with respect to qi, we see that

we can rewrite the right-hand-side of this equation using

∂2W

∂t∂qi
= −∂H

∂qi
− ∂H

∂pj

∂2W

∂qi∂qj
= −∂H

∂qi
− q̇j ∂

2W

∂qi∂qj
(4.163)

So that (4.162) becomes ṗi = −∂H/∂qi as required.

Let’s see what we’ve done. We’re used to dealing with second order differential equa-

tions for the time evolution on configuration space (i.e. Lagrange’s equations) and

first order differential equations for time evolution on phase space (Hamilton’s equa-

tions). But the Hamilton-Jacobi approach allows us to incorporate n of the integration

constants in the function W (qi, t) so that we’re left solely with first order differential

equations on configuration space given by (4.161).

When we have conservation of the Hamiltonian, so ∂H/∂t = 0, there is solution of

the Hamilton-Jacobi equation of a particularly simple form. Define

W (qi, t) = W 0(qi)− Et (4.164)

for some constant E. Then the time dependence drops out and we get the equation

H(qi, ∂W 0/∂qi) = E (4.165)
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W 0 is known as Hamilton’s principal function. The spe-

i
r

level surfaces of W

Figure 56:

cial property of this solution to the Hamilton-Jacobi

equation is that every path in configuration space de-

termined by the function W0 has the same energy E.

With a little thought, we can envisage how to construct

solutions to (4.165). Start with a co-dimension one sur-

face in configuration space which we will specify to be a

surface of constant W0. (Co-dimension one means that

the surface has dimension (n−1): it splits the configura-

tion space in two). At any point in this surface, the potential energy V (q) is determined.

Since pi = ∂W0/∂q
i, the momentum is perpendicular to the surface and in the direc-

tion of increasing W0. Its magnitude is fixed by requiring that the total energy is E.

But this magnitude then tells us the position of the next surface of constant W0 (with

incremental increase). In this manner, it should be clear that, in multi-dimensional

configuration spaces there are many solutions to (4.165). It should also be clear that

something singular happens to W0 in regions where V (qi) = 0. Finally, we note that

even when ∂H/∂t = 0, there exist other solutions W to (4.160) which encode families

of trajectories on configuration space which have different energies.

4.7.1 Action and Angles from Hamilton-Jacobi

For the majority of examples the Hamilton-Jacobi approach doesn’t give a particularly

useful way for solving a problem; its utility really lies in the structure it reveals about

classical dynamics. So rather than go through the gymnastics of solving a complicated

problem using this method, let us focus on a rather simple example which which il-

lustrates connections between the different ideas we’ve seen. A system with a single

degree of freedom has Hamiltonian

H =
p2

2m
+ V (q) (4.166)

Since the Hamiltonian is time independent, energy is conserved and the solution to

the Hamilton-Jacobi equation has a single integration constant, let’s call it β, which

is necessarily some function of the energy. In the above discussion we were a little lax

about showing these integration constants explicitly, but let’s do it now: we’ll write

W = W (q, t; β) with β = β(E). Now we ask a somewhat strange question: suppose we

try to perform a canonical transformation from (q, p) to new coordinates (α, β) such

that β is the new momentum. What is the new coordinate α?
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Since we wish the change of coordinates to be canonical, we must be able to write

q = q(α, β) and p = p(α, β) such that

{q, p}(α,β) ≡
∂q

∂α

∂p

∂β
− ∂q

∂β

∂p

∂α
= 1 (4.167)

Using p = ∂W/∂q and remembering what all depends on what all (W = W (q, β) and

q = q(α, β) and p = p(α, β)) we can write this as,

{q, p}(α,β) =
∂q

∂α

(
∂2W

∂β∂q
+
∂2W

∂q2
∂q

∂β

)
− ∂q

∂β

∂2W

∂q2
∂q

∂α
=
∂q

∂α

∂

∂q

(
∂W

∂β

)
(4.168)

and we find that the transformation is canonical if we take α = ∂W/∂β. Note the nice

symmetry here: we have a solution W (q, t; β) to the Hamilton Jacobi equation and we

can think in terms of canonical coordinates (q, p) or alternatively (α, β) where

p =
∂W

∂q
, α =

∂W

∂β
(4.169)

The function W is an example of a generating function of the second kind (4.95).

So what to do with this? Let’s look at some examples. Take β = E, so that our new

momentum variable is the energy itself. What is the canonical coordinate? If we write

W (q, t;E) = W0(q, E)− Et then the coordinate canonically dual to E is

α =
∂W0

∂E
(q, E)− t (4.170)

Taking the time dependence over the left-hand-side, we see that α has the interpretation

of −t0, the initial starting time. This tells us that we may parameterise every trajectory

in a one-dimensional system in terms of the energy and starting time of the path, and

that these are canonical variables. Again we see the dual relationship between energy

and time. Note that both E and t0 are independent of time; we’ve found canonical

variables for which neither the coordinate nor the momentum vary along the path.

As another example consider the case of β = I, our action variable of Section 4.5.

What is the canonical coordinate α in this case? We expect that it will be related to

the angle variable θ. To see this, we use the fact that W is the classical action to write

W0 =

∫
Ldt+ Et =

∫
(L+H)dt =

∫
q̇p dt =

∫
p dq (4.171)

So we have that

α =
∂W

∂β
=

d

dI

∫
p dq − dE

dI
t = θ − ωt (4.172)
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where we’ve used our expression (4.119) for the angle variable, as well as the equation

(4.116) for the frequency of motion ω. So we see that α is not quite equal to θ,

but is shifted by a term linear in time. In fact this means that α itself does not

change in time. Once again, we’ve arrived at a way to parameterise the orbits of

motion by canonical variables which do not themselves change with time. In fact, in

most presentations, this is the starting motivation for the Hamilton-Jacobi approach

to classical dynamics and, even for higher dimensional systems, the function W can

be thought of as a way to generate new, time independent, canonical variables. More

discussion on the relationship between canonical transformations, angle-action variables

and the Hamilton-Jacobi formulation can be found in the book by Hand and Finch, or

deep within Goldstein.

4.8 Quantum Mechanics

One of the primary reasons for studying the rather formal aspects of classical mechanics

discussed in this course is to make contact with quantum mechanics. For this reason,

in this last section of the course we will illustrate the connection between the classical

and quantum world and point out a few analogies that might just make the quantum

behaviour look a little less weird. (Just a little less: after all, it really is weird!)

In classical mechanics the state of a system is described by a point (qi, pi) in phase

space. In quantum mechanics the state is described by a very different object: a

complex valued wavefunction ψ(q) over the configuration space. The observables are

operators on the space of wavefunctions. The standard representations of the position

operator q̂i and momentum operator p̂i are

q̂iψ(q) = qiψ(q)

p̂iψ(q) = iℏ
∂ψ

∂qi
(4.173)

which leads to the well known Heisenberg commutation relations

[p̂i, p̂j] = 0

[q̂i, q̂j] = 0 (4.174)

[q̂i, p̂j] = iℏ δij

Of course, we’ve already seen something very familiar in section 4.3 on Poisson brackets

as summarised in equation (4.42). Although the bilinear, antisymmetric operators

[ , ] and { , } act on very different spaces, they carry the same algebraic structure.

Heuristically the relations (4.42) and (4.174) both represent the mathematical fact
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that momentum pi generates infinitesimal translations of qi: in classical mechanics we

saw this in when we studied infinitesimal canonical transformations in section 4.4.1; in

quantum mechanics it follows from the representation (4.173) and Taylor’s expansion.

In general the map between a classical system and a quantum system goes via the

Poisson brackets and was formulated by Dirac:

{ , }classical ↔ −
i

ℏ
[ , ]quantum (4.175)

This prescription for going between the classical and quantum theories is known as

canonical quantisation. It also gives rise to the quantum equations of motion. In the

Poisson bracket language, we have seen that the classical equation of motion for an

arbitrary function f(q, p) is

ḟ = {f,H} −→ iℏ ˙̂
f = [f̂ , Ĥ] (4.176)

which is the equation of motion in the Heisenberg picture, in which the time dependence

is assigned to the operator rather than the state.

While a great physicist, Dirac was never much of a storyteller. It shows in the

following anecdote recounting his graduate student days:

“I went back to Cambridge at the beginning of October 1925, and resumed

my previous style of life, intense thinking about these problems during the

week and relaxing on Sunday, going for a long walk in the country alone.

The main purpose of these long walks was to have a rest so that I would

start refreshed on the following Monday.

It was during one of the Sunday walks in October 1925, when I was think-

ing about this (uv − vu), in spite of my intention to relax, that I thought

about Poisson brackets. I remembered something which I had read up previ-

ously, and from what I could remember, there seemed to be a close similarity

between a Poisson bracket of two quantities and the commutator. The idea

came in a flash, I suppose, and provided of course some excitement, and

then came the reaction “No, this is probably wrong”.

I did not remember very well the precise formula for a Poisson bracket,

and only had some vague recollections. But there were exciting possibilities

there, and I thought that I might be getting to some big idea. It was really

a very disturbing situation, and it became imperative for me to brush up on
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my knowledge of Poisson brackets. Of course, I could not do that when I

was right out in the countryside. I just had to hurry home and see what I

could find about Poisson brackets.

I looked through my lecture notes, the notes that I had taken at various

lectures, and there was no reference there anywhere to Poisson brackets.

The textbooks which I had at home were all too elementary to mention them.

There was nothing I could do, because it was Sunday evening then and the

libraries were all closed. I just had to wait impatiently through that night

without knowing whether this idea was really any good or not, but I still

think that my confidence gradually grew during the course of the night.

The next morning I hurried along to one of the libraries as soon as it

was open, and then I looked up Poisson brackets in Whitackers Analytical

Dynamics, and I found that they were just what I needed.”

4.8.1 Hamilton, Jacobi, Schrödinger and Feynman

While the Poisson bracket structure of quantum mechanics dovetails nicely with Heisen-

berg’s approach, the Hamilton-Jacobi equation is closely tied to Schrödinger’s wave

equation. Let’s first recall what Schrödinger’s equation looks like for a one-dimensional

system with a Hamiltonian operator Ĥ = p̂2/2m+ V (q̂) acting on wavefunctions ψ(q),

iℏ
∂ψ

∂t
= Ĥψ = − ℏ2

2m

∂2ψ

∂q2
+ V (q)ψ (4.177)

where we have used the representation (4.173) for the position and momentum opera-

tors. To see the relationship of this equation to classical dynamics we decompose the

wavefunction into the modulus and phase,

ψ(q, t) = R(q, t) eiW (q,t)/ℏ (4.178)

where R and W are both real functions. We know that R is related to the probability

P for finding a particle at position q at time t: P (q, t) = |ψ(q, t)|2 = R(q, t)2. But what

is the interpretation of the phase W? Let’s substitute this decomposition of ψ into the

Schrödinger equation to find

iℏ
[
∂R

∂t
+
iR

ℏ
∂W

∂t

]
= − ℏ2

2m

[
∂2R

∂q2
+

2i

ℏ
∂R

∂q

∂W

∂q
− R

ℏ2

(
∂W

∂q

)2

+
iR

ℏ
∂2W

∂q2

]
+ V R

– 172 –



At this stage, we take the classical limit ℏ → 0. Or, more precisely, we consider a

situation with

ℏ
∣∣∣∣∂2W∂q2

∣∣∣∣≪ ∣∣∣∣∂W∂q
∣∣∣∣ (4.179)

which can be understood physically as the requirement that the de Broglie wavelength

of the particle is much smaller than any other length scale around. Either way, collecting

together the terms above to leading order in ℏ we find

∂W

∂t
+

1

2m

(
∂W

∂q

)2

+ V (q) = O(ℏ) (4.180)

which we recognise as the Hamilton-Jacobi equation (4.160). So in the classical limit

the phase of the wavefunction is understood as the classical action of the path taken

by the particle.

Finally, let us finish on the same topic that we started: the principle of least action.

Recall from section 2.1 that we can determine the true path of a system by assigning a

number, called the action S, to every possible path. The equations of motion are then

equivalent to insisting that the true path is an extremum of S. But what about all the

other paths? Do they play any role in Nature? The answer is that, in the quantum

world, they do. Suppose a particle is observed to be at position qi at time t = 0. Then

the probability P that it will later be observed to be at position qf at time t = T is

encapsulated in the wavefunction ψ(qf , T ). The Feynman path integral formula for the

wavefunction is

ψ(qf , T ) = N

∫ qf

qi
Dq(t) eiS[q(t)]/ℏ (4.181)

The N here is just a normalisation constant to ensure that probabilities add up to one:

i.e.
∫
|ψ(q)|2dq = 1. The tricky part of this formula is the integral: it is a sum over all

possible paths from q = qi at time 0 to q = qf at time T . These paths are weighted

with their action. It’s as if the particle really does take every possible path, but with

a particular phase. In the limit ℏ → 0, the phases oscillate wildly for any path away

from the classical equation of motion δS = 0 and they cancel out in the integral. But

for situations where ℏ is important, the other paths are also important.

Let’s prove that the wavefunction defined by (4.181) satisfies the Schrödinger equa-

tion. Firstly we need to understand this integral over paths a little better. We do this

by splitting the path into n small segments, each ranging over a small time δt = t/n.
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Figure 57: Discretising the paths.

Then we define ∫
Dq(t) = lim

n→∞

n∏
k=1

∫ +∞

−∞

dqk
C

(4.182)

where qk is the position of the particle at time t = kδt. In this expression C is a

constant that we’re going to figure out shortly that will be required to make sense of

this infinite number of integrals. In any given segment, we treat the path as straight

lines as shown in the figure and replace the action with the appropriate quantity,

S =

∫ T

0

dt

(
1

2
mq̇2 − V (q)

)
→

n∑
k=1

(
m

2

(qk+1 − qk)2

δt
− δt V

(
qk+1 + qk

2

))
Then to prove that ψ defined in (4.181) satisfies Schrödinger’s equation, let’s consider

adding a single extra time step to look at the wavefunction at time t + δt. We can

Taylor expand the left hand side of (4.181) happily

ψ(qf , T + δt) = ψ(qf , T ) +
∂ψ

∂T
δt+O(δt2) (4.183)

while the right hand side requires us to do one extra integral over the penultimate posi-

tion of the path q′. But the first n integrals simply give back the original wavefunction,

now evaluated at q′. We get∫ +∞

−∞

dq′

C
exp

[
im

2ℏ
(qf − q′)2

δt
− i

ℏ
δt V

(
qf + q′

2

)]
ψ(q′, t) (4.184)

The term in the exponent means that the integral oscillates wildly whenever q′ is far

from qf and these regions of the integral will all cancel out. We can therefore Taylor

expand around (qf − q′) to rewrite this as∫ +∞

−∞

dq′

C
exp

[
im

2ℏ
(qf − q′)2

δt

](
1− iδt

ℏ
V (qf ) + . . .

)
(

1 + (q′ − qf )
∂

∂qf
+ 1

2
(q′ − qf )2

∂2

∂q2f
+ . . .

)
ψ(qf , T ) (4.185)
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At this stage we do the integral over q′. We’ll use the formulae for Gaussian integration∫
dy e−ay

2

=

√
π

a
,

∫
dy ye−ay

2

= 0 ,

∫
dy y2e−ay

2

=
1

2a

√
π

a
(4.186)

Then equating the lefthand side (4.183) with the righthand side (4.185), we have

ψ(qf , T ) +
∂ψ

∂T
δt =

1

C

√
2πℏδt
−im

[
1− iδt

ℏ
V (qf ) +

iℏδt
2m

∂2

∂q2f
+O(δt2)

]
ψ(qf , T )

At this stage we see what the constant C has to be to make sense of this whole calcu-

lation: we should take

C =

√
2πℏδt
−im

(4.187)

so that C → 0 as δt→ 0. Then the terms of order O(δt0) agree. Collecting the terms

of order O(δt), and replacing the time T at the end point with the general time t, we

see that we have

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂q2f
+ V (qf )ψ = Ĥψ (4.188)

and we recover Schrödinger’s equation as promised.

4.8.2 Nambu Brackets

Throughout this section, we’ve seen that several of the structures appearing in quantum

mechanics were anticipated, in some form, within the framework of classical dynamics.

You just need to know where to look. One might wonder whether classical mechanics

also contains other structures which will prove to be important in future discoveries.

Or, alternatively, whether there are ways to extend the framework of classical dynamics

that hints at new ways to formulate the laws of physics. In this section, I’ll briefly

describe such an extension due to Nambu in 1973. I should confess immediately that

there’s no known use for Nambu’s formalism! And it’s not at all clear that one will be

found! But then again, maybe it holds the clue that will prove crucial in the search for

the ideas beyond the known laws of Nature.

We’ve seen that the Hamiltonian framework deals with canonical pairs of coordinates

and momenta (qi, pi) with i = 1, . . . , n. Nambu’s idea was to extend this to triplets of

objects (qi, pi, ri) with i = 1, . . . , n. We don’t say what this extra variable ri is: just

that it is necessary to define the state of a system. This means that the phase space
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has dimension 3n. The Nambu bracket, which replaces the Poisson bracket, acts on

three functions f, g and h in phase space,

{f, g, h} =
∑
i

∂f

∂qi
∂g

∂pi

∂h

∂ri
− ∂f

∂qi
∂g

∂ri

∂h

∂pi
+
∂f

∂ri

∂g

∂qi
∂h

∂pi

− ∂f

∂ri

∂g

∂pi

∂h

∂qi
+
∂f

∂pi

∂g

∂ri

∂h

∂qi
− ∂f

∂pi

∂h

∂qi
∂h

∂ri
(4.189)

This satisfies similar properties to the Poisson bracket, including linearity and

• Anti-symmetry: {f, g, h} = −{g, f, h} = {g, h, f}.

• Leibniz: {fg, h, l} = f{g, h, l}+ {f, h, l}g.

• “Jacobi”: {{f, g, h}, l,m}+ {h, {f, g, l},m}+ {h, l, {f, g,m}} = {f, g, {h, l,m}}.

In order to specify time evolution, we need two ”Hamiltonians”. We call them H(q, p, r)

and G(q, p, r). Then any function f over phase space evolves as

df

dt
= {f,G,H} (4.190)

In particular, the new version Hamilton’s equations read

q̇i =
∂G

∂pi

∂H

∂ri
− ∂G

∂ri

∂H

∂pi

ṗi =
∂G

∂ri

∂H

∂qi
− ∂G

∂qi
∂H

∂ri
(4.191)

ṙi =
∂G

∂qi
∂H

∂pi
− ∂G

∂pi

∂H

∂qi

where there’s no sum over i on the right-hand side of these equations. By the anti-

symmetry of the Nambu bracket, we learn that both H and G are conserved (as long

as neither have explicit time dependence).

Many of the key features of classical dynamics are retained in Nambu’s formalism.

For example, Liouville’s theorem still holds. (This was Nambu’s original motivation

for suggesting this framework). Similarly, canonical transformations can be defined as

a change of variables qi → qi(q, p, r) and pi → Pi(q, p, r) and ri → Ri(q, p, r) such that

the Nambu bracket structure is preserved, for example

{qi, Pj, Rk} =

{
1 if i = j = k

0 otherwise
(4.192)

together with similar equations involving other combinations of Q’s, P ’s and R’s.

”Hamilton’s” equations (4.191) are invariant under these canonical transformations.
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The Nambu bracket provides a generalisation of classical dynamics. But can we

quantise it? In other words, can we find some operators which reproduce the Nambu

bracket structure (up to a factor of ℏ and perhaps an i) in much the same way that the

usual quantum theory ties in with the Poisson bracket? This turns out to be pretty

tricky. In particular, it seems difficult to keep all three conditions: anti-symmetry,

Leibniz and Jacobi. Perhaps this suggests that the correct mathematical structure has

not yet been uncovered. Perhaps it suggests that the Nambu bracket is just not useful!

Chances are that you won’t ever have any use for the Nambu bracket. But you never

know. Perhaps one day, like Dirac, you’ll return from wandering the fields around

Cambridge and desperately need to recall this concept. But, unlike Dirac, you’ll be

able to find a reference in your lecture notes (the notes you had taken at various

lectures).
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