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Abstract

Most successful object recognition systems are based
on a visual alphabet of quantised gradient orientations.
Here, we introduce two richer image feature alpha-
bets for use in object recognition. The two alphabets
are evaluated using the PASCAL VOC challenge 2007
dataset. The results show that both alphabets perform
as well as or better than the ’standard‘ gradient orien-
tation based one.

1. Introduction

Object recognition has progressed rapidly during the
last ten years. Performance scores are good [8, 11, 9]
and several challenging benchmark databases have been
established [2, 4]. Much of the success can be attributed
to the use of of bag-of-words like approaches, expres-
sive encodings of local image structure such as the SIFT
descriptor [7], and modern machine learning tools. A
‘standard’ approach typically comprises interest point
detection, SIFT-based patch description, a visual vo-
cabulary derived from a quantisation of SIFT-space,
a histogram-of-visual-words based image description,
and finally a classification scheme. In this pipeline, the
SIFT-descriptor uses a visual alphabet of quantised gra-
dient orientation to encode local image structure and the
subsequent quantisation provides a set of visual words
— typically in the order of hundreds or thousands.

In this paper, we investigate to what extent more
complex visual alphabets can benefit and simplify ob-
ject recognition. We introduce two novel feature alpha-
bets and evaluate them using the dataset provided by the
PASCAL VOC Challenge 2007 [2].

The rest of this paper is organised as follows. In sec-
tion 2, we briefly discuss visual alphabets and introduce
Basic Images Features and oriented Basic Image Fea-
tures. Section 3 focuses on visual words and present
three simple visual word encoding schemes. Section 4
reviews the PASCAL VOC Challenge and presents our

classification framework. Sections 5 and 6 contain re-
sults and discussion respectively.

2. Visual Alphabets

Image intensities are the simplest visual alphabet.
Although raw pixel intensities have been found useful
for e.g., texture classification [10], they inherently suf-
fer from lack of invariance and robustness to simple im-
age perturbations and transformations. Several alterna-
tives have been suggested for object recognition such
as quantised gradient orientation [7]. The bulk of re-
lated research contributions [11], however, focus on the
subsequent encoding of simple alphabets into region de-
scriptions or visual words.

We suggest using a richer and more invariant fea-
ture alphabet even at this early stage of the processing
pipeline.

2.1. Basic Image Features

Rich labelling of image positions according to its
type of geometrical structure is well established in the
computer vision literature. Typical schemes detect and
sparsely label feature types as e.g., edges and corners
[6].

Flat                     Slope           dark/light Blob      dark/light Line      Saddle

Figure 1. Basic Image Features.
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In [5, 1], the authors presented a dense labelling
scheme that labels all image positions as one of seven
possible types of local image symmetry. This alpha-
bet of Basic Image Features (BIFs) is based on a group
theoretical derivation of local image symmetry sensi-
tivities of a 2nd order filter bank of Gaussian deriva-
tives [5]. The seven BIFs are listed and illustrated
in the top two rows of Figure 1. An image loca-
tion is classified as the symmetry type with the largest
of the seven expressions in Figure 1 row 3. Here,
λ = σ2(s20 + s02), γ = σ2((s20 − s02)2 + 4s2
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is the inner prod-

uct between the image I and a two-dimensional Gaus-
sian Derivative. For simplicity, it is assumed that the
probed image position is at the origin. The parameter,
ε, controls the fractional contrast below which the im-
age is considered flat. The fourth row in Figure 1 is
the colour scheme used for the seven possible types of
symmetry — an example of an image and its BIF map
can be seen in Figure 2. The parameter σ controls the
scale of the Gaussian kernel and can be used to generate
a ‘scale space’ of increasingly blurred BIF maps. The
BIF labelling is invariant with respect to image transla-
tions/rotations and intensity scalings.

Figure 2. BIF example.

BIFs have successfully been used as the basis for
a state-of-the-art multi-scale texture classification algo-
rithm [1]. In the following, we assess this alphabet’s
utility for object recognition.

2.2. Oriented Basic Image Features

Given the success [8, 9] of gradient orientation based
visual alphabets it is natural to consider local orien-
tation in the context of BIFs. We initially note that
a pure gradient based orientation scheme only makes

sense for non-singular points and is likewise dubious
for e.g., near-singular but noisy locations. Both caveats
can be addressed satisfactory if local orientation is in-
troduced as an augmentation to a BIF based categorisa-
tion: oriented Basic Image Features (oBIFs).

Figure 3. Oriented Basic Image Features.

Flat or near-flat locations (pink BIFs) should not be
assigned an orientation at all. Slope-like points (grey
BIFs) are dominated by 1st order structure and can be
assigned a meaningful gradient orientation — we use
eight quantised orientation as suggested in [7]. The
rotationally symmetric blob-like points (white or black
BIFs) should, like flat point, not be assigned an orienta-
tion. Finally, line and saddle-like points (blue, yellow,
and green BIFs) are dominated by their 2nd order struc-
ture and the natural choice of orientation is the direction
perpendicular to the largest eigenvalue of the Hessian
(4 unoriented directions). This gives a total of 23 oBIFs
as illustrated in the bottom two rows of Figure 1. Fig-
ure 3 shows a zoomed version of the two red squares
marked in Figure 2 using oBIFs. If we only base oBIFs
on 1st order structure i.e., only use oriented pink and
grey BIFs, we effectively get the visual alphabet used
for SIFT features and as such this can be viewed as a
1st order oBIFs.

3. Visual Words

The next step in a standard object recognition
pipeline is to encode visual words using the visual al-
phabet of choice. Several encodings schemes or de-
scriptors have been suggested in the literature such as
SIFT, RIFT, and SPIN [11]. Slightly simplified, most
descriptors lie somewhere in the spectrum between a
template and a histogram with e.g., templates of his-
tograms or histograms of templates as examples of in-
between descriptors as illustrated in Figure 4 a). As
an example, the popular SIFT descriptor is, roughly, a
4 × 4 template of histograms (of gradient orientation)
each with a 4 × 4 pixel support. Although several de-
tails are omitted for clarity, we use this as the basis for



the evaluation of the two suggested BIF based visual al-
phabets and present results for the two extremes of the
spectrum: templates and histograms.
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Figure 4. Encoding of Visual Words.

Figure 4 b) illustrates another potential descriptor: a
region based graph which contrary to histogram or tem-
plate based descriptors encodes the full topology within
the region of support. Although a desirable property,
this is also a computationally very demanding descrip-
tor and we suggest using a simple approximation. The
first numbered row next to the graph gives the corre-
sponding region count for each type of BIF and finally
the second row contains binary indications of the pres-
ence of a type of region. We will also evaluate this re-
gion presence descriptor to get a first indication of the
potential of a graph based descriptor. In the follow-
ing, we will use Basic Image Patterns (BIPs) for visual
words based on BIF or oBIFs.

4. Evaluation Framework

The PASCAL VOC Challenge 2007 [2] dataset con-
tains 9963 images and has been manually annotated for
20 object classes. The dataset is split into roughly 25%
training images, 25% validation images, and 50% test
images. An evaluation framework has been trained and
tuned on the training and validation sets respectively
and results are presented for the test set. Results are
averaged over all 20 classes and presented as the area
under the ROC curve (AUC-ROC).

For each image, we calculate a scale space of BIFs
(or oBIFs) and extract BIPs densely for all combina-
tions of position and scale. We use ε = 0.05 through-
out. The union of BIPs from all images form the list of
uniquely occurring BIPs. This list is pruned by remov-
ing all BIPs that occur in only one image scale space.
For each of the 20 object classes, the 1000 most infor-
mative BIPs are selected as features. Information gain

is measured using mutual information for the initial se-
lection and additional mutual information once one or
more features are selected. This iterative feature selec-
tion scheme is adopted from Fleuret [3]. Subsequently
a Näive Bayes Classifier is trained for each class and
the initial list of 1000 features selected is reduced to the
most informative prefix using the validation set.

Note that all calculations are based on exact feature
matches. There is no data-driven quantisation step and
mutual information is thus based solely on the absence
and presence counts of the features relative to the class
in question.

We evaluate the BIF based alphabets using each of
the suggested BIP-schemes: templates, histograms, and
presences. We also include a pure gradient orientation
based (SIFT-like) alphabet for comparison. Each alpha-
bet/BIP combination is evaluated using regions of sup-
port from 2 × 2 up to 16 × 16. For this initial study,
all results are obtained using down-sampled images.
The average image size used is approximately 40 × 30
whereas the original mean image size is approximately
460×380. We cannot expect to obtain competitive [8, 9]
scores using images that small; but the comparative na-
ture of this study is unaffected.

5. Results
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Figure 5. Template results.

The results for templates, histograms, and presences
are shown in Figures 5, 6, and 7 respectively. Each plot
gives the AUC-ROC as a function of the size of the re-
gion of support for the BIP encoding and contains a
graph for each of the three evaluated alphabets: BIFs,
oBIFs, and gradient orientation.

The template results show that the three alphabets
have similar peak performances when encoded with no
spatial slack. BIFs slightly outperform gradient orien-
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Figure 6. Histogram results.

tation and oBIFs outperform both. oBIF, BIFs, and gra-
dient orientation obtain optimal scores for supports of
2× 2, 3× 3, and 3× 3 respectively.

For histograms, the most notable results are that
BIFs are outperformed by both gradient orientation and
oBIFs and that oBIFs outperform gradient orientation.
With no spatial constraints in the encoding, the impor-
tance of local orientation becomes clear. oBIF, BIFs,
and gradient orientation obtain optimal scores for sup-
ports of 3× 3, 4× 4, and 6× 6 respectively.

The presence results further emphasise oBIFs as the
better of the three alphabets but perhaps more interest-
ingly the best oBIF presence score is also the best score
across all BIP and BIF types.
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Figure 7. Presence results.

Initial experiments suggest that the described frame-
work would yield results at the median level of the PAS-
CAL 2008 entrants if applied to full-resolution images,
but a more complete study is needed to confirm this.

6. Discussion

We have presented two novel feature alphabets in the
context of object recognition and compared their perfor-
mance to the ‘standard’ gradient orientation alphabet.
The first, BIFs, achieve overall performance as good
as or better than gradient orientations; specifically for
templates. BIFs do, however, not perform as well as
the other two alphabets using local descriptors with less
spatial grip. The second alphabet, oBIFs, can be seen
as a natural 2nd order generalisation of gradient orien-
tation. In terms of performance, oBIFs deliver the best
overall score which is achieved for the simplest of the
three tested descriptors. We conclude that larger feature
alphabets can lead to both better performance and sim-
pler encodings of visual words. Furthermore, the simple
graph-approximating presence BIPs perform best and
shows promise for future research.
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