
Instance-Level Segmentation
Mengye Ren

March 15, 2016

Agenda

● Introduction to instance-level segmentation
● N. Silberman, D. Sontag, R. Fergus. Instance Segmentation of Indoor Scenes

using a Coverage Loss. ECCV 2014.
● Z. Zhang, S. Fidler, R. Urtasun. Instance-Level Segmentation with Deep

Densely Connected MRFs. CVPR 2016.

What is instance-level segmentation

● Assign a label to each pixel of the image.
● Labels are class-aware and instance-aware. E.g. Chair_1, Chair_2, …, Table_1,

etc.

(Image from Silberman et al. 2014)

Difference from semantic segmentation

● One level increase in difficulty.
● More understanding on the instance individuals and reasoning about

occlusion.
● Essential to tasks such as counting the number of objects.

(Image from Silberman et al. 2014)

Difference from 2D object detection and matting

● A detection box is a very coarse object boundary. NMS will suppress
occluded objects or slanted objects.

(Image from Ren et al. 2015)

Instance Segmentation of Indoor
Scenes using a Coverage Loss

Instance Segmentation of Indoor Scenes using a
Coverage Loss

● Paper from Nathan Silberman, David Sontag, Rob Fergus, ECCV 2014.

Key contribution:

● Segmentation Tree-Cut algorithm
● High order
● A new dataset for indoor scenes: NYU v2 dataset.

Big Picture of the Pipeline

Segmentation
Tree

Boundary
Detector (gPb
and UCM)

Structured SVM
Feature
Extractor (SIFT
or CNN)

CNN feature extractor

● For each instance in the dataset, compute a tight bounding box plus 10%
margin, and feed it into the CNN.

● Train the CNN to predict the semantic labels of each instance.
● During inference, use the fully connected hidden layer as the features of an

image region.

Chair

Segmentation Tree

● Motivation: to limit the search space of instance segmentation. Instead of
arbitrarily assigning each pixel with a label, it needs to obey the tree structure.

● Completeness: Every pixel Ii is contained in at least one region of S.
● Tree Structure: Each region si has at most one parent: P(si) ∈ {∅, sj}, j≠i
● Strict Nesting: If P(si) = sj , then the pixels in si form a strict subset of sj

(Image from Silberman et al. 2014)

Building Segmentation Tree
i

j

W_i,j

● Starts with a 2-D planar
graph of H x W.

● Segmentation is equivalent
to performing graph cuts.

● Edge weights are
computed from boundary
probability algorithms (gPb
and UCM).

● Edges below thresholds are
removed at each iteration.

Building Segmentation Tree

● Then for the next iteration, we can dig into each connected component of the
resulting graph and perform finer cuts.

● In the end, we get a coarse-to-fine hierarchy of regions.

Biased Segmentation Tree

● Is tree a good structure in general to solve instance segmentation problems?
● Is it too limiting?
● To investivate this, the authors designed the so-called “biased segmentation

tree”
● Cut the tree until all groundtruth instance regions can be perfectly segmented

by all the regions.
● The performance generated from the biased segmentation tree is an upper

bound of the proposed model.

Structured SVM Learning and Inference

Output: y = (A, C) Regions {A: A_i ∊{0, 1}, i = 1...R}, Classes {C: C_i ∊ {1...K}, i=1...R}

wreg ∙ φreg(x, y) + ∑k wsem:k ∙ φsem:k(x, y) + wpair ∙ φpair(x, y) + φtree(y)

Four terms:

● Region (class agnostic)
● Semantic
● Pairwise
● Tree constraint

Structured SVM Learning and Inference

● Region term: Sum up feature descriptors for all proposed regions.
● Intuitively, this encodes how good a segmentation is without considering

class.

● Semantic term: Sum up feature descriptors for all proposed regions that
belongs to a certain class.

● This encodes how each region matches with their class label.

Structured SVM Learning and Inference

● Pair-wise term: Sum up features that describes neighbouring regions A_i and
A_j.

● This encode how adjacent regions are compatible with each other.

● Tree constraint term: Impose very high loss term if the resulting regions do
not form tree in the tree proposal.

● For every path from root to leaves, there is only one region gets selected.

Structured SVM Learning and Inference

● Learning: Use structured SVM formulation.
● argmin ½ w ∙ w + λ∑ξi s.t. w ∙ [φ(xi, yi) - φ(xi, y)] ≥ Δ(y, yi) - ξi ∀i, y
● xi and yi are training images and labels
● Δ(y, yi) is the loss function between proposed segmentation and GT.
● ξi is the slack variable for each training example.
● This is saying, the true label yi should be the best possible output, and should

have a margin of Δ(y, yi) compared to other possible output y, up to maybe a
slack variable ξi.

Structured SVM Learning and Inference

● Inference: can be formulated as an integer linear program (ILP).
● R := number of regions. E := number of edges.
● A ∊ [0,1]^{R x 2}, C ∊ [0,1]^{R x K}, P ∊ [0,1]^{E}
● ai, 0=0 indicates a region i is inactive. ai, 1=1 indices a region i is active.
● ci, k=1 indicates the semantic class of a region.
● pi, j=1 indicates the neighbouring regions i and j are both active.

Structured SVM Learning and Inference

● Inference:
● argmaxa,c,p ∑i θr ∙ ai,1 + ∑i∑kθs

ik ∙ cik + ∑iθ
p

ij ∙ pij
● s.t.
● ai,1 + ai,0 = 1 (A region is either active or inactive)
● ∑kci,k = 1 (A region has one semantic label)
● ∑i∊ᴦai,1= 1 (Tree constraint)
● pi,j ≤ ai,1 pi,j ≤ aj,1 ai,1+aj,1-pi,j ≤ 1 ∀i,j (Pairwise constraint)

Structured SVM Learning and Inference

● Up to now is only on region-semantic level. It cannot merge regions to a
instance yet. To do this, they proposed Loss Augmentation for ILP.

● G:= number of groundtruth instances.
● A ∊ [0,1]^{R x 2}, C ∊ [0,1]^{R x K}, P ∊ [0,1]^{E}, O ∊ [0,1]^{G x R}
● O is a mapping from active region to groundtruth instance ID.

More constraints...

● og,i ≤ ai,1 ∀g, i (Active regions only)
● ∑i og,i ≤ 1 ∀g (1 region can only map to 1 GT at most)
● og,i + aj,1 ≤ 1 ∀g ∊ G, i,j ∊ R s.t. IoU(sg, sj) > IoU(sg, si) (Maximum overlap)

Structured SVM Learning and Inference

● argmaxa,c,p ∑i θr ∙ ai,1 + ∑i∑kθs
ik ∙ cik + ∑iθ

p
ij ∙ pij - ∑g∑iθ

o
gi ∙ ogi

● θo
gi = IoU(rG

g, rS
s) - IoU(rG

g, rS
i)

● Minimize the difference between the groundtruth instance region and
proposed instance region.

● rS
s is the surrogate labelling => maximum overlap possible with the

groundtruth instance, given the tree structure.

Structured SVM Learning and Inference

● There is still another problem. How to get the groundtruth that corresponds to
the pre-defined segmentation tree regions?

● Solving an ILP problem can give us the surrogate labelling:
● argmina,o ∑g∑iθ

o
gi ogi

● subj. to.
● ai,0 + ai,1 = 1 ∀ i (Either active or inactive)
● ∑i∊ᴦai,1= 1 (Tree constraint)
● og,i ≤ ai,1 ∀g, i (Active regions only)
● ∑i og,i ≤ 1 ∀g (1 region can only map to 1 GT at most)
● og,i + aj,1 ≤ 1 ∀g ∊ G, i,j ∊ R s.t. IoU(sg, sj) > IoU(sg, si) (Maximum overlap)

Weighted Coverage Loss

● We haven’t introduced the actual form of Δ(y, y_i)
● We could use Hamming Loss between the class vector C and region vector A

since both are binary vector.

● They proposed Weighted Coverage Loss
● For each groundtruth instance, pick the maximum overlap output, and record

the IoU between the GT and the best output
● Sum up the IoU, weighted by the area of the groundtruth instance.

Loss Surrogate Labels

● When using surrogate labels, they modified the loss function
● z := surrogate label, y := groundtruth label, y’ := model prediction.
● Δw2(z, y’) = Δw1(y, y’) - Δw1(y, z)
● Δw1(y, z) can be pre-computed.
● Compensate for the inaccuracy of surrogate labels.

Experimental results

(Image from Silberman et al. 2014)

Experimental results

● Effect of depth information (upper bound): 70.6 (RGB-D) vs. 50.7 (RGB)
● Effect of CNN features: 62.5 (CNN) vs. 61.8 (SIFT)
● Effect of pairwise terms: 62.5 (with pairwise) vs. 62.4 (without pairwise)
● Effect of biased segmentation tree: 87.4 (biased) vs. 62.5 (standard)
● Effect of weighted coverage loss: 62.5 (Wt coverage) vs. 61.4 (Hamming)

Limitations

● Tree structure assumption. Cannot merge two non-neighbouring regions
together (happens in case of occlusion).

● Coverage loss function does not penalize false positives.
● Integer programs may be slow (NP-hard inference).
● Relies on depth information (poor performance without depth).

Instance-Level Segmentation with
Deep Densely Connected MRFs

Instance-Level Segmentation with Deep Densely
Connected MRFs

● Paper from Ziyu Zhang, Sanja Fidler, and Raquel Urtasun. CVPR 2016 (To
appear).

● A new architecture that combines patch-based CNN prediction and global
MRF reasoning.

Big Picture

MRFCNNPatches

Patch-based CNN

● KITTI dataset, 375 x 1242
● Extract patches of different sizes: 270 x 432, 180 x 288, and 120 x 192
● Run the extracted patches to obtain local instance predictions
● There are less number of instances in the patch, so easier for CNN to assign

instance labels.
● The instance ID is not guaranteed to be consistent across different patches.

(Image from Zhang et al. 2015)

MRF

● Undirected graphical model
● Each vertex represents a random variable
● Edge represents conditional dependence between variables
● P(x | θ) ∝ exp(-E(x | θ)) = exp (- ∑cE(xc | θ))
● We can factor the graphical model with maximal clique (Hammersley-Clifford

Theorem)
● C is the set of all maximal cliques in the graph.

Pairwise MRF

● P(x | θ) ∝ exp(-E(x | θ))
● = exp (- ∑cE(xc | θ))
● = exp (- ∑iE(xi | θ) - ∑ijE(xi , xj | θ))
● Unary energy: the probability of

individual node.
● Pairwise energy: smoothness

assumption.

Fully connected MRF

● Pairwise message passing
is very myopic.

● Especially very complicated
segmentations e.g. chair,
tree.

● It would be nice to have
each node to be neighbours
with all other nodes. =>
Longer range message
passing influence.

(Image from Krahenbuhl & Koltunan 2011)

Fully connected MRF

● Learning and inference could be computationally intractable for fully
connected models..

● But this requires that the energy function to be Gaussian.
● But if we define a dot product || ∙ ||2 for ɸ(xi) (i.e. a kernel),
● And if E(x) ∝ exp(-|| ɸ(xi) - ɸ(xj) ||

2 / 2θ2), then we can use Guassian blurring
as a mean field approximation to the original graphical model.

● Details can be found in P. Krahenbuhl, V. Koltun. Efficient Inference in Fully
Connected CRFs with Gaussian Edge Potentials. NIPS 2011.

MRF for instance segmentation

● Here each vertex represents the instance labelling of each pixels.
● In the paper, the authors designed three terms in the energy function.
● E(y) = Esmo(y) + Ecnn(y) + Eicc(y)
● y* = argminy E(y)
● Esmo: Smoothness. Close pixels should have similar instance labelling
● Ecnn: Local CNN prediction. Local instance boundary should be similar with

CNN prediction.
● Eicc: Inter-connected component. Same instance should not appear in

disconnected component.

MRF for instance segmentation

● Esmo Smoothness term
● 2 Gaussian kernels, output distance and spatial distance
● ksmo(ɸ(xi), ɸ(xj)) = exp(-||pi - pj||

 / 2θ2
1 - ||di - dj|| / 2θ2

2)
● pi: CNN prediction of xi
● di: Spatial position of xi
● Penalize pixels with similar positions and CNN predictions to have different

labels.
● Esmo = wsmoμsmo(yi, yj) ksmo(ɸ(xi), ɸ(xj))
● μsmo(yi, yj) = 1[yi ≠ yj].

MRF for instance segmentation

● Ecnn: Local CNN prediction term.
● Ecnn(y) = ∑z ∑i,j, i<j φ

z
cnn(yi, yj)

● Sum up all local patch predictions z
● The intuition is that, if the local CNN says that yi and yj are from different

instances, then their global configurations should respect that.
● Locally fully connected energy function on patch level.
● Encourage asymmetry to kick off the inference, apply penalty when i < j only.
● But this asymmetry does not work as a Gaussian kernel.
● So instead, the authors proposed a series of Gaussian kernels to approximate

this potential.

MRF for instance segmentation

● Ecnn(y) = ∑z ∑i,j, i<j ∑t φ
t
cnn(yi, yj)

● φt
cnn(yi, yj) = wcnnμcnn(yi, yj) kcnn(ht(pi), h-t(pj))

● μcnn(yi, yj) = -1 (i.e. encouraged configuration) if
○ yi < yj, t > 0
○ yi > yj, t < 0
○ yi = yj, t = 0 (No shift, encourage same label)

(Image from Zhang et al. 2015)

MRF for instance segmentation

● Eicc(y) = ∑m, n m<n ∑i∊m, j∊n wiccμicc(yi, yj)
● m and n are inter connected components
● μicc(yi, yj) = 1 if yi = yj
● i.e. discourage same labels across disconnected components.

Experimental results

(Image from Zhang et al. 2015)

Experimental results

(Image from Zhang et al. 2015)

Limitations

● Works on single object types in the paper.
● Inter-connectedness assumption may fail. In KITTI, there is occlusions such

as poles that “cuts” a car into two components.
● Empirically speaking, heavy occlusions and very small cars in distance is not

working ideally.

Thanks!

