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Abstract—Smart contracts facilitate the execution of pro-
grammable code on a blockchain. The cost for executing smart
contract code is metered using gas – the exact amount of which is
based on the computational complexity of the underlying smart
contract. Hence, it is imperative to optimize smart contract code
to reduce gas consumption and, in some instances, to even avoid
malicious attacks. In this paper, we propose an approach to
optimize the gas consumption of smart contracts, specifically loop
control structures. We present a prototype implementation of our
approach using off-the-shelf tools for Solidity smart contracts. We
experimentally evaluate our technique using 72 Solidity smart
contracts. Our evaluation demonstrates the average gas cost
savings per transaction to be around 23, 943 gas units, or an
equivalent 21% decrease in gas costs. Although the approach
causes a slight increase in deployment costs due to the additional
internal functions, this is only 16, 710 gas units on the average,
or a 5% of the total deployment cost. As this overhead remains
quite reasonable when compared to the gas cost savings for
each transaction, it also confirms the efficacy, practicality and
effectiveness of the proposed methodology.

Index Terms—Smart contracts, Gas, Verification, Synthesis

I. INTRODUCTION

Blockchain offers an innovative approach that allows to

establish trust in an open environment without the need of

a centralized authority to do so. This is because no entity

can delete or modify blockchain transactions once they have

been recorded. Many consider blockchain as a breakthrough

application of cryptography and distributed systems, with use

cases ranging from globally deployed cryptocurrencies [1],

[2], to Central Bank Digital Currencies [3], supply chains [4],

Internet-of-Things networks [5] and insurance [6].

Popular blockchains, most prominently Ethereum [7], allow

the execution of application programs, called smart contracts,

that are stored on the blockchain. Smart contracts offer the au-

tonomy for arbitrarily-complex transactions between untrusted

parties in a secure manner without going through a middleman

(e.g., commercial financial institutions) using cryptocurrencies.

They are already powering a sizable economy: applications

include decentralized finance [8] and auctions [9]. A smart

contract manages a permanent state stored on the blockchain.

It is constituted of a set of functions that manipulate the state.

Functions can be called either directly by users or indirectly

by other smart contracts, through transactions. They allow

to perform arbitrarily-complex operations using cryptoassets

stored on the blockchain. Solidity [10] is the most popular

Turing-complete high-level programming language for smart

contracts, which is designed to target the Ethereum Virtual

Machine (EVM) [7]. A smart contract written in Solidity

resembles an object in a standard object-oriented programming

language, e.g., Java.

An important aspect in smart contract operation is this

of gas, that is, their underlying computational resource that

compensates system participants for executing transactions.

A transaction can be terminated if the amount of gas it has

consumed exceeds a certain limit fixed by the author of the

transaction. The amount of gas for a particular transaction

invoking a smart contract function depends on the number

of operations in the function and their types. For instance,

read and write operations on storage variables consumes much

greater amounts of gas than read and write operations for local

variables. In a nutshell, the total transaction fee is computed

by multiplying the total amount gas by the gas price1. Thus,

the more computation a smart contract function performs, the

more gas and fees it needs to pay for its execution. Therefore,

executing smart contracts with functions containing inefficient

or unnecessary operations can become a costly expedition.

Furthermore, these contracts can be targeted by malicious

attackers causing financial losses by exploiting gas related

vulnerabilities [11], [12]. A recent study on smart contracts on

the Ethereum blockchain reported gas related vulnerabilities in

contracts worth more than $2 billion USD [13].

Optimizing smart contracts may reduce gas consumption

and therefore the associated cost of executing transactions. It

also has the potential to mitigate against malicious exploita-

tion of smart contracts. A common optimization goal for a

smart contract aims to reduce the number of operations in

general, and in particular, those accessing storage variables

while ensuring functional correctness of the underlying code.

More specifically, loops can potentially cause an exponential

increase in gas consumption that relates to the number of

iterations a loop(s) is executed. Evidently, with an increasing

use of smart contracts to perform complex operations, the

usage of loops in those programs is likely to increase as

well. Therefore, it remains objectively important to develop

techniques to optimize loop structures in smart contracts.

In this paper, we propose an approach to optimize loop

structures in smart contracts. Our optimization consists of a

synthesis based technique for generating summaries of loops

using predefined templates such as the standard map-reduce

operators. Recent work showed that most smart contracts loops

can be summarized using map-reduce type operators [14],

1Gas price varies and is set by the author of a transaction depending on
the current ongoing gas price being used in the blockchain network.



[15]. In this paper, we apply syntactic transformations on the

generated summaries to use local variable instead of repeatedly

accessing storage variables. Doing syntactic transformations

on summaries is much simpler than doing them on the original

loops since summaries follow predefined templates and are

more compact. As an added advantage, we also verify the

equivalence between the generated contract with the trans-

formed summaries of loops and the original one. To prove

the equivalence, we adopt the notion of behavioral refinement

between smart contracts from [16] which relates the input-

output behavior of contracts’ transactions, i.e., transactions

parameters and effects on storage variables, ignoring internal

details such as local operations and control flow.

We implement our approach by leveraging the synthesizer

from [14] to generate summaries of loops. We then extend

the synthesizer to perform the syntactic transformations on

the generated summaries. Finally, we verify the equivalence

between contracts using solc-verify [17]. All in all,

the proposed implementation correctly optimizes the code of

nontrivial smart contracts, and integrates off-the-shelf tools to

optimize loop structures in Solidity smart contracts. In detail,

we empirically validate our approach on 72 Solidity smart

contracts. The experiments demonstrate a 21% decrease in gas

costs by applying the proposed optimization approach.

In summary, this paper makes the following contributions:

• We develop an approach to optimize smart contracts gas

consumption that combines loop summaries synthesis,

syntactic transformations, and equivalence proofs;

• We build an implementation of our approach for So-

lidity smart contracts that integrates off-the-shelf tools:

SOLIS [14] and solc-verify [17]; and,

• We evaluate our approach, optimizing loop structures for

72 Solidity smart contracts which results in 21% decrease

in gas costs.

The rest of the paper is organized as follows. In Section II,

we give a motivational overview of our methodology. Sec-

tion III presents the prior art. In Section IV, we detail the

technical elements of our methodology. Section V presents

the implementation of our approach for Solidity smart con-

tracts while Section VI contains the empirical results. Finally,

Section VII concludes this work.

II. PROBLEM & METHOD OVERVIEW

Here we give an overview of the gas optimization problem

investigated in this paper. First, we discuss three refactoring

patterns that can be applied to loops to optimize their gas con-

sumption. Then, we illustrate with an example our approach

for optimizing smart contracts using the above refactoring

patterns while ensuring that the resulting optimized smart

contracts are behaviorally equivalent to the original contracts.

Below we list the three loops refactoring patterns which we

target in our work:

1) Loops with repeated storage calls: A loop can make

many calls to the storage based on the number of steps

it is supposed to make. This is because read/write calls

for (uint i=0;i<length;i++) {

total += tokens[i];

}

Fig. 1. Repeated storage calls

uint local = total;

for (uint i=0;i<length;i++) {

local += tokens[i];

}

total = local;

Fig. 2. Refactored loop

uint x = 1;

for (uint i=0;i<length;i++) {

if(x + i > 0) {

total += tokens[i];

}

}

Fig. 3. Constant comparison

uint x = 1;

for (uint i=0;i<length;i++) {

total += tokens[i];

}

Fig. 4. Refactored loop

for (uint i=0;i<length;i++) {

tokens[i] += limit × price;

}

Fig. 5. Repeated computations

uint local = limit × price;

for (uint i=0;i<length;i++) {

tokens[i] += local;

}

Fig. 6. Refactored loop

to the storage variables requires high amounts of gas.

For instance, in each iteration of the loop in Figure 1,

we require a storage read for loading total value and a

storage write for updating total value after the addition

operation. A possible optimization, shown in Figure 2,

consists of using a local variable to store the total value,

and all updates are made to the local variable before re-

assigning it to total at the end of the loop. Thus, we

reduced the repeated storage calls to just two storage

calls.

2) Loops with a constant comparison: This pattern refers

to the case where there is a comparison operation within

a loop that always evaluate to a constant value. For

instance, Figure 3 shows an if condition that always

evaluate to True. An optimized version consists of

eliminating the if condition is shown in Figure 4.

3) Loops with repeated computations: Similar to the first

pattern 1, but this pattern involves computation that is re-

peated in each iteration of the loop and could be replaced

by a constant value computed once before entering the

loop. For instance, the computation limit ∗ price in

Figure 5 can be done outside the loop and assigned to

a local variable to optimize the gas usage as shown in

Figure 6.

A. A Motivating Example

We illustrate our approach using the smart contract in

Figure 7. The contract code consists of a single function

with a gas-inefficient loop because of unnecessary repeated

storage calls to read the value of active. Our approach

synthesizes a loop summary function to replace the gas-

inefficient loop such that the function parameters are the

loops parameters and the assigned value as demonstrated by

the function foo_for in Figure 8. Following, we apply



contract C {

mapping(address => bool) whitelist;

address[] beneficiaries;

bool active;

function foo() public {

for (uint i=0; i<beneficiaries.length; i++) {

whitelist[beneficiaries[i]] = active;

}

}

}

Fig. 7. Unoptimized contract

syntactic transformations that add local assignments operations

to copy the values from storage variables (e.g.,, active)

to local variables (e.g., rvariable) that are passed in the

invocation to the loop summary function foo_for as shown

in Figure 8. Thus, the intermediary function foo_for does all

the computations (previously done on storage variable) on the

newly passed local variable. Our approach follows a template-

based synthesis one which allows to optimize the loop body by

using the more compact template summary. Thus, it facilitates

applying the syntactic transformations by restricting them to

local assignments operations to copy the input and output

parameters of the loop summary function.

In the final step of our technique, we check whether the

optimized contract is behaviorally equivalent to the original

contract. More specifically, our behavioral (i.e., functional)

equivalence consists of a relation between the states of the

two contracts supporting a proof that the optimized contract

mimics every method invocation of the original contract. Since

in our optimization we do not alter the state representation of

the original contract than the relation supporting the proof

of equivalence is always a conjunction of equalities between

respective state variables as shown below:

Equiv
def
= C0.beneficiaries = C.beneficiaries ∧ (1)

C0.active = C.active ∧ C0.whitelist = C.whitelist

To prove the equivalence, we construct a product contract

in Figure 9 from the two contracts, where for each two

public methods (e.g., foo) of the two contracts we create

a corresponding public method in the product contract. Then,

an equivalence relation proof is valid iff it is a valid invariant

of the product contract. Here, we assume that contracts are

deterministic – a valid assumption by-definition for contem-

porary blockchain smart contracts. In Figure 9, we define the

synchronized product of the two contracts in Figures 7 and 8

using the inheritance mechanism of Solidity.

III. PRIOR ART

There are many works on the analysis or functional verifica-

tion of smart contracts, e.g., systems for detecting vulnerabil-

ities in smart contracts based on static analysis and symbolic

execution engines [13], [18]–[20], or systems for proving

full functional correctness of smart contracts using techniques

such as interactive theorem provers, SMT solvers, or predicate

contract C0 {

mapping(address => bool) whitelist;

address[] beneficiaries;

bool active;

function foo() public {

bool rvariable = active;

uint initial = 0;

uint loopcondition = beneficiaries.length;

foo_for(rvariable, initial, loopcondition);

}

function foo_for(bool rvariable, uint initial,

uint loopcondition) internal {

for (uint i=initial; i<loopcondition; i++) {

whitelist[beneficiaries[i]] = rvariable;

}

}

}

Fig. 8. Optimized contract

invariant C0.beneficiaries == C.beneficiaries

invariant C0.active == C.active

invariant C0.whitelist == C.whitelist

contract P is C, C0 {

constructor() public {

C();

C0();

}

function checkFoo() public {

C.foo();

C0.foo();

}

}

Fig. 9. Product contract

abstraction [21]–[24]. Recently, the high volatility in gas prices

has pushed for gas optimization techniques [13], [25]–[29].

Along those lines, this paper focuses on developing a novel

gas optimization approach for smart contracts written in a

high-level programming language. For our methodology, we

use existing techniques and tools for smart contracts synthesis

and verification [14], [16], [17]. In the remaining we review

techniques that optimize smart contract gas consumption.

There are many tools for detecting gas-inefficient patterns

and gas related vulnerabilities in smart contracts [13], [25]–

[34]. In [13], the authors develop a tool that detects gas-

related vulnerabilities. However, they do not propose any au-

tomated optimization to eliminate these vulnerabilities. Cheng

et al.’s [25] identify multiple patterns such as dead code,

opaque predicates, expensive operations in loops that can be

optimized. They develop a tool called GASPER to apply the

optimization to smart contracts at the bytecode level. They

also extend their initial work to create GasReducer [35] that

uses parallelized symbolic execution and handles additional

optimization patterns. Albert et al. [26] develop a tool called

GASOL to analyze gas consumption and to optimize smart con-

tract code by calculating an upper bound of gas consumption.

Their optimizations are specific to storage-related operations.

In [29], [34], the authors target Solidity smart contracts and

propose static analysis techniques based on syntactic transfor-
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mations that follow a predefined set of optimization patterns

similar to the ones we discussed in Section II. For instance,

in [29] a Python based optimizer is developed to detect the

predefined set of gas-inefficient patterns and replace them

with optimized code. Both [29], [34] do not formally proof

equivalence between the optimized contract and the original

contract. In contrast, our approach includes an equivalence

checking step to ensure equivalence between the two contracts

using simulation relation based proof. Furthermore, note that

techniques based on static analysis are less precise (i.e., in

terms of the number of false positives) than our synthesis based

technique. This is because they use syntactic approximation of

the variables accessed and bounded loop unrolling. Thus, in a

bounded loop unrolling it might seem that a block of code is

unreachable while this might not be valid in general.

IV. PROPOSED METHODOLOGY

We now describe our methodology for gas optimization.

Given a smart contract, our approach generates an opti-

mized contract that has the same state representations (storage

variables remain unchanged) as the original contract and is

behaviorally equivalent to the original contract as well. In

Figure 10, we show the three main steps that constitute our

methodology for gas optimization. The first step constitutes of

synthesizing a compact summary for each loop using an ap-

proximate synthesis technique based on predefined templates

like map-reduce operators. Our loop summarization allows

one to optimize code and it also reduces gas consumption.

For instance, it allows to remove unnecessary conditionals

according to the second pattern discussed in Section II. Then,

the second step constitutes of syntactic transformations where

we remove unnecessary accesses to storage variables, which

allow to reduce the gas consumption further. Our final step

consists of checking the behavioral equivalence between the

input contract and the optimized contract generated using the

previous two steps. In the rest of the section, we describe the

steps of our methodology in more details.

A. Loop Summary Synthesis

To synthesize a concise summary of a loop structure we

adopt a template-based synthesis technique. In particular, we

use the set of templates proposed by [14] which consists of

map-reduce operators such as Map, Fold, and Zip. This

is because it was shown in [14] that most smart contracts

loops can be summarized using the above set of templates.

For instance, the loop in the contract shown in Figure 7

can be summarized by a map operator function that assigns

a constant value (active) to a range of elements within

a Solidity map (whitelist). The function foo_for in

Figure 8 corresponds to the synthesized map operator function

parameterized by the constant value and the range of elements.

Using our template-based synthesis technique allows one to

derive a loop summary where dead code (i.e., code that is never

executed) within a loop body and unnecessary conditionals are

eliminated. Thus, we are able to carry gas optimization during

the synthesis step of our methodology.

B. Syntactic Transformations

After the previous semantics transformations based on

synthesis, in this step we use syntactic transformations to

apply further optimizations. In particular, our syntactic trans-

formations are guided by the goal to eliminate the first and

third gas-inefficient patterns that we discussed in Section II.

These patterns mainly target the reduction of gas consumption

associated with the usage of storage variables. Having a

concise loop summary generated in the previous step will

facilitate applying the syntactic transformations. Our syntactic

transformations consist of mainly eliminating repetitive calls

to a contract storage variables by storing copies of storage

variables in local variables. Following, the values stored in

local variables are moved back to the corresponding storage

variables. For instance, in Figure 8 the value of the storage

variable active is stored in a local variable rvariable

that is passed as parameter to the map operator function

foo_for. Note that if we consider the number of iterations

a loop will go through, eliminating repetitive calls to storage

variables allows to save substantial amounts of gas cost that

can reach more than 20,000 gas units.

Figure 8 shows the optimized contract code after applying

the above two steps of our gas optimization methodology.

Next, we describe how to check whether this optimized

contract is behaviorally equivalent to the original contract.

C. Equivalence Checking

We reduce the problem of verifying that the optimized

contract is behaviorally equivalent to the original contract to

proving bisimulation relation between the two contracts. The

bisimulation relation consists of the conjunction of equality

between corresponding state variables of the two contracts.

This is because in the previous optimization steps we do

not alter the state variables of contracts. Then, we prove





Note that checking the equivalence between the input contract

and the final optimized contract is sufficient.

Our equivalence checking consists of the reduction from

bisimulation checking to deductive verification that the bisim-

ulation relation between two contracts is a valid inductive

invariant of the product of the two contracts. For this purpose,

we use solc-verify [17], a modular verification tool

for Solidity smart contracts. solc-verify reduces Solidity

contract verification to Boogie verification which in turn

reduced to SMT solving.

VI. EXPERIMENTS

This section presents the results of an experimental evalu-

ation of the prototype implementation of our approach. The

workstation we use for our experiments is equipped with an In-

tel Core i3-4170 3.7GHz CPU, 16GB of DDR3 RAM, 512GB

SSD running Linux Ubuntu 14.04LTS operating system in a

local network environment.

We have three separate applications running for the exper-

imental setup: (i) automated tool based on SOLIS to create

the optimized contract given an input Solidity contract, (ii)

Truffle [37] and Ganache [38] local network to evaluate gas

costs by running minimal transactions on the input and output

contracts, and (iii) Solc-verify to check the equivalence

between the input and output contracts. The open-source code

for the implementation using python is available at Github2.

A. DataSet Collection

For our experiments, we collect a benchmark of smart

contracts constituted of two data-sets. The first data-set is

constituted of 22 contracts from the benchmark contracts used

in [14]. The second data-set is based on the set of contracts

used in [29], which we extract from Etherscan [39]. In total we

extract around 72 contracts that are supported by our prototype

containing functions with loop constructs. Apart from the

restriction on loops, we also check for the Solidity version

to be v0.5.0. The versions before had breaking changes that

make solc-verify and SOLIS incompatible for compiling

and analyzing the contracts.

B. Results

We run our tool with a benchmark of 72 Solidity smart

contracts. In Table I, we report the results of the experimental

evaluation for 23 contracts which have been selected based on

a set of criteria. Contracts need to adhere to at least one of

the following criteria below:

• contracts having more than one function;

• contracts containing maximum lines of code;

• contracts that account for the maximum gas cost savings;

or,

• contracts with deployment costs of more than 20, 000 gas

units.

The complete dataset with the cost savings and the increase in

the deployment costs can be found on the Github repository

2https://github.com/nelaturuk/loop-optimizer

Fig. 13. Comparison between deployment cost and transaction cost

with the implementation. The first two columns of Table I list

data concerning the smart contracts. The last four columns list

data concerning the application of our tool to these contracts.

We list the approximate gas cost savings. We calculate the

deployment costs for the original and the optimized contracts.

The invocation costs depict the transaction-related gas costs.

In the case of arrays or mappings being used, we set the initial

size to be 10 which is very low compared to the real-world

applications. Depending on the complexity of the code, the

average gas cost savings is 23, 943 gas units per transaction

for the contracts that we tested. We also highlight the increased

deployment cost due to the additional local variables and

the internal functions. The average increase in deployment

cost is around 16, 710 gas units. This cost will grow or fall

depending on the contract’s size and the complexity of the

implementations. The deployment cost is a one-time fee. The

transaction savings on the other hand are vital as end-users

pay the gas fees for further access to the deployed contract.

Figure 13 shows the comparison between one-time deployment

cost and transaction costs aggregated for 5 transactions. The

72 benchmark contracts are represented on x-axis. The y-axis

signifies the gas costs for both deployment and transactions.

As part of the evaluation, we verify all the 72 con-

tracts in our data-sets for bisimulation equivalence using

solc-verify. We are able to confirm the correspondence

for around 50 contracts that did not include arithmetic calcu-

lations. A significant drawback observed with solc-verify was

the semantic restrictions for predefined data types with loop

constructs due to which we are not able to verify some of the

contracts with arithmetic calculations.

C. Limitations

1) Program Synthesis: In the current setup, the set of

templates supported by CONSUL is constituted of only Map,

Fold, and Zip which restricts the number of contracts that

can be optimized using our methodology. This limitation is

one of the observations made during our evaluations. We also

could not extract summaries for contracts with complex loop

structures due to CONSUL implementation restrictions.



TABLE I
GAS COSTS FOR DEPLOYMENT AND TRANSACTIONS

Contract Name Lines of

Code

Number of

Functions

Deployment Cost Invocation Costs

Original Optimized Addional Cost Original Optimized Savings

SimpleAddition 36 1 90543 100221 +9678 82874 60453 -22421
SimpleMath 60 4 151729 190711 +38982 82874 60453 -22421
IfCheck 33 1 116131 142021 +25890 39414 35273 -4141
MappingWithIf 51 1 147775 154849 +7074 43542 39401 -4141
DeclarationInFor 30 1 119139 126021 +6882 97344 88891 -8453
NestedFor 20 1 117545 127427 +9882 474666 250456 -224210
AddressList 27 1 188359 192697 +4338 66243 57436 -8807
Airdrop 37 1 359969 368363 +8394 73838 58339 -15499
ALinuxGold 61 2 439885 448730 +8845 85575 76659 -8916
Allocations 35 1 107523 185596 +78073 83182 70321 -12861
ArrayTools 22 1 95901 100233 +4332 83843 60453 -23390
AshToken 23 1 104547 109753 +5206 82904 60453 -22451
BeneficiaryOptions 66 2 404778 412140 +7362 40582 31689 -8893
DividendManager 58 2 262298 268797 +6499 64725 41511 -23214
EthGain 43 3 206846 226652 +19806 646727 627425 -19302
EticaRelease 140 2 1289607 1299321 +9714 71725 50872 -20853
Future 38 4 554900 563423 +8523 477235 460444 -16791
Etheropt 31 1 175540 183466 +7926 72811 67768 -5043
IPO 50 2 1566755 1604980 +38225 526418 513412 -13006
ISDT 30 1 531584 545125 +13541 78993 69100 -9893
KYCVerification 30 1 129519 135421 +5902 444590 421341 -23249
League 32 2 1360814 1414840 +54026 89369 71305 -18064
LitionRegistry 26 1 169316 189552 +20236 68061 41632 -26429
LIXToken 47 1 97879 99606 +1727 85527 73334 -12193

2) Equivalence Checker: For equivalence checking, we use

solc-verify in our experiments. Except for arithmetic

calculations within the loop, we confirmed equivalence for all

the other structures. The issue with the arithmetic calculations

arises because of the encoding of unsigned Solidity integers as

mathematical integers in Boogie since they are well supported

by SMT solvers. Due to this limitation, we were not able to

check equivalence for certain contracts.

In summary, any limitations are centered around tools used

by our implementation rather than inherent elements of the

proposed methodology. However, with the increasing maturity

of the various program analysis tools for smart contracts, one

should expect future tools to address those limitations.

VII. CONCLUSION

A methodology for optimizing loop constructs in smart

contracts in terms of the gas costs is presented. By generating

summaries for loops using a DSL and syntactically modifying

the contracts, we synthesize optimized contracts. We addition-

ally verify the equivalence of the generated contracts with

the original contracts using refinement proofs. We implement

our methodology in a prototype tool and use this software to

optimize loops in 72 Solidity smart contracts. Our evaluation

shows that its optimizations produce significant gas cost sav-

ings. In the future we might extend our work to identify and

gather more gas-efficient patterns for control structures other

than loops for which we can use templates based synthesis

to generate concise summaries. Furthermore, for verifying

equivalence, our implementation assumes manually-provided

invariants and pre/post-conditions, which can be automated for

many contracts of interest using standard invariant-generation

techniques, e.g., [24].

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” 2008.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[2] V. Buterin, “What is ethereum?” Ethereum Official webpage. Available:

http://www.ethdocs.org/en/latest/introduction/what-is-ethereum.html,
2016.

[3] N. Pocher and A. Veneris, “Privacy and transparency in cbdcs: A
regulation-by-design aml/cft scheme,” in IEEE International Conference

on Blockchain and Cryptocurrency (ICBC 2021), 2021.
[4] “Carrefour says blockchain tracking boosting sales of some products.”

2019. [Online]. Available: https://www.reuters.com/article/us-carrefour-
blockchain-idUSKCN1T42A5

[5] J. Meijers, G. D. Putra, G. Kotsialou, S. S. Kanhere, and A. Veneris,
“Cost-effective blockchain-based iot data marketplaces with a credit
invariant,” in EEE International Conference on Blockchain and Cryp-

tocurrency (ICBC 2021), 2021.
[6] “Blockchain is empowering the future of insurance.” 2016.

[Online]. Available: https://techcrunch.com/2016/10/29/blockchain-is-
empowering-the-future-of-insurance/

[7] Ethereum, 2021. [Online]. Available: https://ethereum.org
[8] “Decentralized finance (defi).” 2021. [Online]. Available: https:

//ethereum.org/en/defi/
[9] “Christie’s auctions first digital-only artwork for $70m.” 2021.

[Online]. Available: https://www.theguardian.com/artanddesign/2021/
mar/11/christies-first-digital-only-artwork-70m-nft-beeple.

[10] Solidity, 2021. [Online]. Available: https://docs.soliditylang.org
[11] “Swc-126: Insufficient gas griefing.” 2021. [Online]. Available:

https://swcregistry.io/docs/SWC-126
[12] “Swc-128: Dos with block gas limit.” 2021. [Online]. Available:

https://swcregistry.io/docs/SWC-128
[13] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and

Y. Smaragdakis, “Madmax: surviving out-of-gas conditions in ethereum
smart contracts,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA,
pp. 116:1–116:27, 2018. [Online]. Available: https://doi.org/10.1145/
3276486



[14] B. Mariano, Y. Chen, Y. Feng, S. K. Lahiri, and I. Dillig, “Demystifying
loops in smart contracts,” in 35th IEEE/ACM International Conference

on Automated Software Engineering, ASE 2020, Melbourne, Australia,

September 21-25, 2020. IEEE, 2020, pp. 262–274. [Online]. Available:
https://doi.org/10.1145/3324884.3416626

[15] A. Li, J. A. Choi, and F. Long, “Securing smart contract with runtime
validation,” in Proceedings of the 41st ACM SIGPLAN International

Conference on Programming Language Design and Implementation,

PLDI 2020, London, UK, June 15-20, 2020, A. F. Donaldson and
E. Torlak, Eds. ACM, 2020, pp. 438–453. [Online]. Available:
https://doi.org/10.1145/3385412.3385982

[16] S. M. Beillahi, G. F. Ciocarlie, M. Emmi, and C. Enea, “Behavioral
simulation for smart contracts,” in Proceedings of the 41st ACM

SIGPLAN International Conference on Programming Language Design

and Implementation, PLDI 2020, London, UK, June 15-20, 2020, A. F.
Donaldson and E. Torlak, Eds. ACM, 2020, pp. 470–486. [Online].
Available: https://doi.org/10.1145/3385412.3386022
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