Hand Drawn Rendering

Matthew McMullan and Ian Ooi

May 3, 2012

Abstract

There are many photo-realistic, or near photo-
realistic games and engines available, and the video
game industry in general has a fairly strong focus
on realistic and semi-realistic 3D graphics, while the
more artistic, non-realistic styles have been more lim-
ited to 2D games.

This paper describes our engine, which seeks
to render scenes with a non-photo-realistic, “hand
drawn” style. Cel-shading is used, as well as different
methods of drawing outlines on objects to produce a
“toon” look. To shade the scene, a cross-hatching ef-
fect is applied. Combined, the effects can be applied
in real-time.

1 Introduction

Video games do not often include non-
photorealistically rendered 3D graphics, especially
with more stylized effects such as a hand-drawn look.
As photorealism of 3D graphics improves, it becomes
increasingly difficult for smaller, independent game
developers to produce 3D titles with strong visuals,
due to their lower polygon budgets and general
inability to compete with large, well-established
publishers and studios and their available resources.

An alternative to trying to compete with the larger
publishers is to use non-photorealistic graphics. Out-
side of independent, small studios, relatively untried
styles like many non-photorealistic effects are too
large a risk to take on. For independent developers
however, this difference can make a game stand out
from the rest of the market and allow it to compete.

The hatching effects indicated by ¢“Real-Time
Hatching” by Praun et al., provide an interesting, dis-
tinctive, style which would fit well in an independent
development environment. Since it is implemented
as a shader, it may be modified and swapped in and
out for other effects without major changes to the
engine itself, allowing the same engine to also use
cel-shading, cartoon outlines, or even combinations
of these effects. Other effects could also be applied

in the future.

2 Prior Work

A method of cross hatching was described by, Praun
et al in their paper Real-Time Hatching, which
shaded an object using textures which had the hatch
marks drawn. Several different sizes of image were
used, organized into a tonal art map, where different
textures were used, with varied average lightnesses.
Each darker texture in the TAM contains the same
lines as the lighter textures, and each larger texture
contains the same lines as the smaller textures in or-
der to have continuity when blending between the
textures. The different sizes of texture are used in
a mipmap so as to have continuity in the size of the
lines as the camera moves closer or farther away from
objects in the scene.

Textures in the TAMs are generated by drawing
numerous lines and choosing the “best fitting” one,
based on a fitness function, and then only drawing
that one into the final image. To determine the fit-
ness, given a candidate stroke s;, the average tones
T; and Tf are determined at level [of the TAM. The
darkness the stroke would add is then expressed as:

SN (17 - 1) (1)

These fitnesses are also calculated in an image pyra-
mid to achieve greater uniformity, such that a stroke
that is near others in a finer level of the pyramid will
actually overlap, giving instead:

Z (Tzfl o Tpl)

p,l

(2)

At a certain threshold, vertical lines are drawn as
well as horizontal. The marks vary in size, as well as
orientation. Different patterns such as stippling may
also be used in the TAMs.

To apply these to the model, a method of blending
is used. Lighting values are obtained for each vertex,
and the individual TAM images are blended across
the surface using a 6-way blending scheme. [4, 6]

Lapped textures are used to apply the TAM to ar-
bitrary surfaces to avoid extraneous artist input. [3]

Cel-shading is a well known effect, with numer-
ous methods available to produce similar results. We
found little published work relating to methods to
cel-shade objects in a scene, but general research and
intuition indicated the use of step functions or thresh-
olds to limit the number of colors in an image and to
force other shades to a few values, either through cal-
culation or the use of pre-calculation of desired colors
and color indexing.

Philippe Decaudin shows some methods of drawing
outlines, using a Sobel filter depth information, to
find the silhouette, and again on the normal map to
produce continuous cartoon outlines for models. An
undescribed method of cel-shading is also used, as
well as a method of producing proper shadows for
this style [2].

Decaudin’s method requires the use of a Sobel fil-
ter, which we implemented. Again, it was difficult to
find publications relating to the creation of the Sobel
filter, but descriptions of its use and implementation
are relatively easy to find. Chris Wyman’s website
contained a short description [7] which we utilized
for completing our implementation.

3 OGRE

In order to expedite our project, we choose to use
the OGRE 3D rendering engine. OGRE handles our
scene management, imports models, handles textures
and geometry, and sends the geometry to the GPU.
This allowed us to focus on the effects and allows for
modularity, so that we can swap out effects with ease.

We each compiled the source on our systems, and
after we managed to set up the engine, we created
a simple scene and used our various textures and
shaders to produce effects.

To test frame rates, we used the built-in frame
counter that OGRE provides. There was an issue
in the library code however, that caused the frame
rate counter to display incorrect values. Accordingly,
we implemented a fix so as to be able to test our
frame rates and ensure they are real-time. The bug
in OGRE was found in its file SdkTrays.h. The fixed
version is included for convenience.

4 Cel-Shading

To cel-shade our scene, we attempted two methods.
First, we tried calculating, for each pixel, a new color,
limiting each channel to a finite number of shades.
Given a desired number n4 of shades per channel and

the original color Ciert = (R, G, B), we calculate the
new, cel-shaded color as:

([(Cteat xns) +0.5])

ns

C1cel = (3)
This method, when applied to our ogre head mesh,
produces results as seen in Figure 2(a). Some unde-
sirable artifacts can be seen. There is some distortion
in the color as an effect of modifying the RGB values,
as well as loss of detail due to too quick a drop-off in
brightness, resulting in large parts of the model being
colored black, or in our case, a dark grey due to limi-
tations we placed on how dark the color can be. The
edges of the cels are also poorly defined, with some
patchiness caused by irregularities in the original tex-
ture of the model. The patchiness can be solved by
only applying the technique to simply colored models,
instead of using noisy textures. To attempt to correct
the lost detail and distortions in color, we convert the
colors to the HSL color representation as seen in §4.1
and apply the same method, but only to the satu-
ration and lightness channels before converting back
to RGB using the method in §4.2 and applying the
color to the fragment. This causes desaturation as
well as changes in brightness, producing the effect of
losing color as the shade gets darker. It also preserves
texture detail, which may be desirable depending on
circumstance. For a more noticeable effect, smaller
values of n, are used.

4.1 HSL Color Representations

The HSL color representation contains three compo-
nents, hue, saturation and lightness, which represent
points in the RGB color scheme. Hue is calculated
by first finding chroma. Chroma (C) in turn is cal-
culated as follows:

C=M-m (4)

where
M = maz(R,G, B) (5)
m = min(R, G, B) (6)

and R, G, and B are the red, green, and blue values
of the color respectively. The hue is then defined by
a piecewise function:

0, ifC=0
TmodG7 if M =R

= B;R+z it M =G (™)
R_G+¢ if M =B

FPS: 809.2

(a)

Figure 1: A simple texture

Lost Detail

Distorted Color
Poorly defined edges

FPS: 369.3

(a)

FPS: 647.4

(b)

mapping can be seen in 1(a). Our per-pixel lighting.

Desaturate the color proportionally
to the lighting values.

Hard Boundaries

Undistorted Color

FPS: 348.7 e—Very Happy GPU

(b)

Figure 2: Our original cel-shading 2(a) and improved cel-shading 2(b).

To calculate the lightness L, the M and m values are
used from before:

L:l(M—I—m)

; (5)

Finally, the saturation value is obtained through the
following:

C

SZl—\QL—l\

(9)

4.2 Converting from HSL to RGB

To convert HSL to RGB, assuming H € [0°,360°),
Susr € 10,1], and L € [0, 1], the first step is to again
calculate chroma.

C=(1-|2L—-1]|) x Susr (10)
The hue H in our method was unmodified, and there-

fore required no conversion to find H’. Another value
X is necessary to calculate colors.

(0,0,0) if H is undefined
(C,X,0) if0<H <1
(X,0,0) if1<H <2
(R,G'",B)={ (0,0,X) if2<H <3
(0,X,C) if3<H <4
(X,0,C) if4<H <5
(C,0,X) ifs<H' <6

(11)
R, G and B are then found by adding a factor m to
each term, where m is based on lightness. [1]

1
(R,G,B) = (R +m,G +m,B +m)

5 Cartoon Outlines

We produce cartoon outlines through two different
methods. First, we apply a Sobel filter as a post-
processing effect, resulting in the lines seen in Figure
3(a). A few issues are present, such as some extra
lines drawn on the tip of the model’s tusk, and the
incomplete lines around the eyes.

Our filter uses color information to detect the edges
and draw outlines accordingly, due to limitations in
the current version of OGRE which does not allow
access to depth information. Converting to a depth-
based filter would solve some of these issues, but for
creases in the model, such as the incomplete lines
around the eye, information about the normals in
the area would be necessary, such as described in
[2], where outlines are drawn using a combination of

depth and normal map information. Since our cur-
rent approach uses per-pixel lighting, we would need
to modify our method to be able to access informa-
tion about the normals. For depth, the next version
of OGRE will support access to the depth informa-
tion.

Due to the issues of the first method, we imple-
mented an alternative method of drawing outlines.
The geometry is drawn a second time, with the ver-
tices offset from their original positions relative to the
normal at that vertex. The anticlockwise faces, i.e.
front faces, are culled such that only the back faces
(clockwise faces) are rendered. The faces are drawn
with a solid color, such as black, to produce the ef-
fect of an outline around the geometry. This method
also fails to handle creases, such as round the eyes,
but produces a much more continuous, tidy outline
for the objects in the scene as demonstrated in figures
3(b) and 3(c). This method also has the advantage of
working in object space as opposed to image space,
allowing some objects to be rendered with outlines
and others to not have outlines.

6 Hatching

We generate TAMs similar to the method described
in [4], but did not use an image pyramid. This led to
some loss of uniformity, which we attempted to com-
bat with a few different stratified sampling methods.
First, we attempted to restrict where our candidate
lines are drawn, subdividing our image into a grid
and at each iteration forcing the line into that region
in either the horizontal or vertical direction. Due to
the fact that we perform this step when drawing can-
didate lines, applying it to each separately, and only
1 of 1000 was chosen, the line placement is still non-
uniform. Next, we tried applying the first scheme in
both the horizontal and vertical directions simulta-
neously, but this resulted in some diagonal patterns
in the line placement. Finally, we tried performing
local averages to determine the fitness of a line in a
limited, local area of the image, but met with little
success.

Currently, our implementation uses a per-pixel
lighting model, as opposed to the per-vertex light-
ing used in [4]. This allows us to perform a some-
what simpler blending, between two different “bright-
nesses” of the TAM and two different sizes, where the
sizes translate to levels in the mipmaps. Blending is
handled in a Cg shader, which is called by an OGRE
material file (which also applies a vertex shader). The
blending is achieved by applying weights to the dif-
ferent textures and performing a weighted average to

A

FPS: 331.7 FPs: 3858

(b)

More Subtle

FPS: 359.3

(©)

Figure 3: The effect of our Sobel filter is visible in 3(a). Note the extra lines captured in the tip of the tusk,
as well as around the ear, and parts of lines missing, especially at creases in the model, such as around the
eye. Our alternative outlines are shown in 3(b), drawn in red for visibility and in black in 3(c).

|

|

|

Figure 4: Our generated tonal art maps. Loss of uniformity is seen, due to lack of an image pyramid. To
counteract this, we used a scheme of limiting the line locations based on a uniform grid, with a random
location chosen within the grid cell. The lines are still non-uniform, but further improvements could be
made by generating from the bottom-up and using the pyramid method. Additional levels of the TAM

omitted for space reasons.

get a color value for the pixel. This color value is then
multiplied by the color value of the object’s texture
(or face color) to allow for non-white objects.

To choose the image from the TAM with the de-
sired brightness, we first calculate the diffuse fall off.
This value indicates how the light value changes as
the point in question moves farther from the light
source. Given a light source at distance r from the
point in question, diffuse fall off is calculated as:

(14)

DFO — min (10000.0)

T, 1.0

This value is then used to calculate a color Chrigne.
as follows:

Cb'right. = DFOx (Ldiff * Lity + Lgpee. x Lit, —|—Laznb4;
15
The Cyrigne. is then converted to HSL from RGB so
we may extract lighting and saturation values as seen
in §4.1 Once the color has been converted, the light-
ness is used to determine which two darkness levels of
the TAM to blend, using thresholds as seen in Table
1. These thresholds are determined through a tree-
structured series of if statements for efficiency. The
distances of the current brightness from the low and
high values of the range are then determined, and
these weights are used to calculate a weighted aver-
age for each of the textures to blend at the pixel.
After calculating the color from the texture and
the color from the cel-shading, the final color of the

pixel may be calculated as follows.

Caut = C’TAIW * Ccel,shading (16)

7 Results and Discussion

As can be seen in figure 5(a), we achieve a final scene,
rendered in real time, with cel-shading, cartoon out-
lines, and cross hatched shading. We tried different
combinations, which are not all shown, such as apply-
ing the hatching before cel-shading. Another notable
change we tried were variations in how dark the ob-
ject could be shaded, to vary how much of the shading
was suggested by the cross hatching and how much
was handled by darkening the object. Overall, the
effects are very easy to modify and combine.

Our method overall is a fairly expensive effect in
terms of calculation, though it still runs in real-time.
Cross-hatching also relies heavily on the texture map-
ping, requiring either an automatic method of map-
ping the textures of the TAM to each model, or exten-
sive user input. The hatching effects shade properly,
and produce coherent, aesthetically pleasing results.

Our outlines are currently imperfect, failing to
draw outlines for creases in the geometry, and in our
Sobel filtering method, applying to every object in
the screen as well as drawing lines where an outline
should not be present. This is a result of our Sobel
filter working off of the color information instead of
the depth and normal information in the scene. Our

Low High TAM Level 1 TAM Level 2

0.0 0.0033 | Black (0.5, 0.5, 0.5) TAM 5
0.0033 | 0.1060 TAM 5 TAM 4
0.1060 | 0.2053 TAM 4 TAM 3
0.2053 | 0.4040 TAM 3 TAM 2
0.4040 | 0.5364 TAM 2 TAM 1
0.5364 | 0.7351 TAM 1 TAM 2
0.7351 | 0.93 TAM 1 TAM 0

0.93 1.0 TAM 0 White (1, 1, 1)

Table 1: The lightness thresholds and the corresponding levels of the TAM at the given brightness. The
individual textures of the TAM are labeled in order according to their average brightness, with 5 being the
darkest and 0 being the lightest.

Procedural

Qutlines %

Lighting-Based

?_ Hatch Marks

~,
3

S Cel-shaded
f ' esaturation
n
Texture
Mapping

Real-Time ; X
Framerate; :) Transition between
g e, HAPPY GPU : hatching and

FPS: 1.4 e cross-hatching

(a) (b)

Figure 5: Our results are shown in 5(a). Note the combination of all of the effects, and the real-time frame
rates. In 5(b), we demonstrate cross-hatching applied to a plain, untextured model.

alternative method fails to capture the full range of
outlines that would be aesthetically ideal.

8 Summary and Future Work

We presented a technique for producing real-time
nonphotorealistic renderings that mimic a hand-
drawn style. This technique made use of several, pre-
viously disjoint, techniques to produce components of
the final rendering [4] [6] [2]. On top of the combina-
tion, we have modernized several of the components
to achieve better effect, and to allow for a coherent
look [4] [2]. Our results could be improved in a num-
ber of areas by applying this knowledge to expand
upon our technique.

The TAM generation system can be improved by
adding extra constraints to distribute the lines bet-
ter. Our first improvement would be to generate the
TAMs in reverse order. Currently, we generate the
TAMs from smallest and least dense to largest and
most dense. This allows lines to be added in the
smaller levels that would be far from ideal in the
larger and more dense levels. To do this, we would
generate a number of possible lines on the largest
level and select a subset of those that produces an
optimal TAM. In reducing to smaller levels, ideal
subsets would be extracted from the larger concrete
set. When determining the placement of the lines in
the larger levels, the smaller levels would be consid-
ered in the weighting function. This allows for lines
that are poor choices on any level to get naturally
weeded out of the system. This method would re-
quire a large number of samples, so to improve the
efficiency, we would introduce a stratified sampling
system that would guarantee that the initial pool of
lines had a more uniform distribution across the sur-
face. With this improvement, the number of lines to
consider would be greatly reduced and so generation
times would go down.

Another improvement to the hatching method in-
volves the creation of different TAM styles. In previ-
ous work, other styles such as stippling and multicolor
lines were generated to achieve a different aesthetic
[4] [6]. Although these techniques were not specifi-
cally described in their respective papers, they could
be implemented based on the core generation tech-
nique. We could also implement haphazard grayscale
splotches. When multiplied with the output color in
the final steps, this may achieve a somewhat paint-
like look. Our current implementation does not al-
low for variable stroke widths. Implementing such an
addition would allow for more control in any of the
prosed TAM generation techniques.

There are several different styles for cel-shading
that do not preserve the color of the underlying tex-
ture as well [2]. We could implement one of these
techniques to see if it melds better with the hatched
style. It is also a possibility that our current tech-
nique would look better with some of the proposed
TAM styles, while a more traditional cel-shading im-
plementation could work better with others.

It is also possible to remove some of the artist inter-
action from the process of mapping the TAMs to the
surface. By implementing lapped textures [3] like the
original hatching papers, we could reduce artist in-
volvement primarily to specifying the principle curva-
ture of the surface [4] [6]. Even this involvement could
be eliminated by adapting techniques from newer pa-
pers to work as input to the lapped textures imple-
mentation [5].

As it stands, our implementation requires signifi-
cant branching and several divisions in the fragment
shader. Together, these take a significant proportion
of the time spent rendering each frame. In order to
use it in a production game, it may be necessary to
optimize these elements to reduce branching and pos-
sibly offload more of the work to the vertex shader.

A final improvement would be to apply the Sobel
filter to both a depth map and the normal map. This
would catch depth discontinuities and highlight some
more important surface features. This would elimi-
nate the problem with our current filter that causes
lines to be drawn at color discontinuities This could
be added by extending the renderer to use multiple
render targets in a way similar to differed shading.
The color and alpha channel would be rendered to
one image while the normal and depth would be ren-
dered to another. The Sobel filter can be applied
using the second image on the first to achieve the
artistic strokes. This would be a significant improve-
ment over our current offset geometry method.

References

[1] Max K. Agoston. Computer Graphics and Ge-
ometric Modeling: Implementation and Algo-
rithms, pages 305-306. Springer, 2005.

[2] Philippe Decaudin. Cartoon looking rendering of
3D scenes. Research Report 2919, INRIA, June
1996.

[3] Praun, Finkelstein, and Hoppe. Lapped textures.
In SIGGRAPH, 2001.

[4] Praun, Hoppe, Webb, and Finkelstein. Real-time
hatching. In SIGGRAPH, 2001.

[5] Vergne, Barla, Granier, and Schlick. Apparent
relief: a shape descriptor for stylized shading. In
NPAR, 2008.

[6] Webb, Praun, Finkelstein, and Hoppe. Fine tone
control in hardware hatching. In NPAR, 2002.

[7] Chris Wyman. Sobel filtering. 2008.

