Advanced Real-Time Cel Shading Techniques in OpenGL

Adam Hutchins
Sean Kim

Cel shading, also known as toon shading, is a non-photorealistic rending technique that
has been used in many animations and video games. The first video game to popularize the
technique was Jet Set Radio, published in June of 2000. Since then it has been used in well over
100 videogames; however, the popularity of true cel shading — where meshes have outlines and
surfaces are shaded, not textured, seems to have waned in recent years. Instead, most modern
cartoon-like games, like Borderlands or The Walking Dead, use traditional texturing with
textures that are manually shaded and outlined by an artist.

This project explores advanced methods of true toon shading, hopefully showing that it
can still produce visually appealing effects. It starts with basic shading, which can be seen as
sampling a one-dimensional texture, and follows the ideas presented in the paper X-toon: An
Extended Toon Shader by Barla et al. to expand this to a two-dimensional texture. This allows
view-dependent effects to be used in the shader such as depth of field, highlighting, and near-
silhouette lighting. Secondly, shaders that make a less realistic and more stylized highlight as
discussed in Stylized Highlights for Cartoon Rendering and Animation by Anjyo et al are
investigated. Finally, the two effects can be combined together to form a toon shader that
produces customizable stylized highlights.

Basic Cel Shading

An early form of cel shading was first described in 1996 by Philippe Decaudin in his
paper Cartoon-Looking Rendering of 3D-Scenes. Since then, the method has become quite
simple. First of all, outline edges are generated on the 3D object. This can be implemented on
the CPU by checking for edges that join one triangle that is facing the camera and another that
is not, similar to how silhouette edges are generated for creating shadow polygons. If an edge is
determined to require an outline, it is drawn by a call to OpenGL. Obviously, this is expensive
for models with many polygons, such as the 40,000 polygon model used here. It also caused a
problem which can be seen in Figure 1.
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Figure 1: Poor selection of outline edges from the simple software method.

Thankfully, outline edges can easily be drawn using graphics hardware. First of all,
culling is enabled on the front faces of the model, as well as line mode for the back faces. A
wire mesh is then drawn with thick black lines. Finally, the code draws the front-facing polygons
as normal. The result can be seen in Figure 2. This works very well, but it also has some minor
issues. For example, imperfect meshes may have outline edges in incorrect places. The 40,000
polygon Stanford bunny model used here has a few such areas. This problem can be solved by
careful work of a mesh creator, and is considered beyond the scope of this paper.
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Figure 2: A simple rendering of the Stanford bunny with outline edges drawn by the GPU. A model with only 1,000 polygons
is shown to show the method more clearly.



Polygon shading is also simple with modern graphics hardware and software. The
implementation defines basic GLSL vertex shaders, which do calculations such as the normal
and position of a pixel, and fragment shaders, which do the bulk of the coloring work. First, the

fragment shader calculates the Lambertian shading at each point, 71 - Z where 7 is the unit
normal at a point on the mesh, and [is the unit direction to the light; therefore
—1 <7 -l <1.Areaswhere—1 <7 -1 < 0 are all shaded the same color because they

will all be shadowed from the light. Values of 71 - [ > 0 can be used to choose a color along
discreet increments, from a dark color to a lighter color. This is what makes the rendering look
“cartoonish.” For example, for a simple black, white, and grey shader, the fragment code looks
like:

if (nl > 0.5

)
color = vec4(1.0,1.0,1.0,1.0);
else 1f (nl > 0.0)
color = vec4(0.33,0.33,0.33,1.0);

else
color = vec4(0.0,0.0,0.0,1.0);

Although this is procedural shading, it can be thought of as sampling a simple one-dimensional

texture basedon 71 - f, as shown in Figure 3.
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Figure 3: A black and white one-dimensional texture, with pixel positions from 0 to 1.

Shadow polygons were used to create shadows from a single point light. In areas that
are in shadow, the color returned by the shader needs to be the darkest possible color. In order
to accomplish this, an attribute variable was passed into GLSL from the C++ rendering code. In
retrospect, a uniform variable (which is similar, but not allowed to be set per vertex) could have
been used to prevent unnecessary instructions in the vertex shader. Results are good, as can be
seen in Figure 4, except on one PC used, where some polygons near silhouette edges tended to
flicker. This can only be seen when the scene is animated, and may be due to a small error in
the shadow rendering code.



Figure 4: Self-shadowing with a basic toon shader.

X-Toon Shading

One problem with traditional cel shading is that the shading is not view dependent,
which prevents effects like specular highlighting and backlighting, which are frequently seen in
cartoons. To allow these effects to be rendered in a scene that still looks toon-shaded, Barla et
al. propose adding a level of abstraction to the traditional toon shading model. This can be
represented by expanding the one-dimensional texture into two dimensions. This texture can

then be sampled at a point (71 - T, D). Barla et al. show how using different methods to select D
can generate the desired effects.

It can be surprisingly difficult to import simple textures for sampling into OpenGL. A
great deal of time was spent staring at screens similar to those shown in Figure 5.



Figure 5: Texture not loading properly into OpenGL, and texture loading and being applied to all surfaces (even though the
shader was not).
Initially, the texture was only available in the shader when stored as a mipmap, a specific kind
of texture designed to be efficient for displaying traditional textures at different ranges.
Although this may not be ideal for sampling purposes, it works. Later it was found that in order
to load it as a simple texture for sampling, several texture parameters set for mipmapping had
to be changed. Now the code correctly loads and samples a simple 2D texture.

The first effect that this new dimension can create is a simple depth of field effect. This
can be generated by selecting D based upon the pixel’s distance to the camera. In cartoons,
objects in the background are frequently rendered with little to no detail. Barla et al. suggested
picking D according to the following rule:

Z
D=1 log(zmin
The authors also propose other ways to pick D for a slightly different depth effect. For example,

Zmax
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it’s possible to simulate a blurring effect for both objects too close to the eye and too far away
from it for a more “realistic” depth of field effect. However, here we pick D according to this
rule for purposes of a simple demonstration. Implementing this in a GLSL shader yields good
results, as shown in Figure 6.
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Figure 6: Depth rendering of the Stanford bunny, using the texture shown above the image. As the camera gets further away
from the mesh, pixels from lower areas of the texture are sampled, causing a blurring effect.

Next, calculating D in a different way, once again inside a GLSL shader, can be used to
generate more realistic, but still cartoon-like highlights. In this method, D is calculated as

follows:
D=|v-7|°

where 7 is the normalized view vector, s > 1 is a user-defined “shininess” value related to the
material properties, and 7 is the normalized reflected light vector determined by
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Figure 7: X-Toon textures used to generate specular highlights. Notice how the texture can be modified to customize the look
of the highlights and shading for a more stylized look.



Finally, choosing D using the following equation
D= B

where r = 0 can be adjusted to change the magnitude of the affect, and 71 and ¥ are the same
as defined before. This allows us to make an interesting effect on near-silhouette polygons that
can be seen as simulating back-lighting on the object. Although it has little basis in reality,
except perhaps for simulating a cartoon-like bloom effect, near-silhouette edge highlighting can
generate some interesting and beautiful effects. See Figure 8 for results.

Figure 8: Near-silhouette edge highlighting effect. In the first image, edges are simply highlighted white as if a bright light
were causing a bloom effect. In the second image, near-silhouette edges use a blurrier part of the texture, causing the edge
to look fuzzy while the facing-size looks crisp.

Finally, this rendering technique can use any 2D texture as a shading source, although currently
only very simple .ppm ASClI-encoded files are supported. This means that almost anyone with a
simple image editor that supports .ppm files, such as Paint.NET with a downloadable extension,
can create X-Toon textures. Although, as shown in Figure 9, just because an artist can use any

image as a texture, doesn’t mean that one should.



Figure 9: Strange (but expected) results when using the Mona Lisa as a highlighting texture and the “Awesome Face” as a
backlighting texture.

To see more results, please look at|this YouTube video!that demonstrates most of the

textures described in X-Toon.

Stylized Highlights

The model for highlights examined in this paper for different stylistic techniques
involves using the Blinn method over the Phong specular highlights. Instead of using the light
vector reflected across the normal of the point, the inspected vector is halfway between the
reflected light vector and the vector pointing at the camera. If the dot product of this halfway
vector, H, and the normal, N, at this point, P, is greater than 1 — g, then the point is highlighted.
An example rendering using this type of highlight can be seen below.


http://www.youtube.com/watch?v=fxrcGrNZNwQ
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Figure 10: Basic specular highlight

There are many different operations that can be performed to modify this highlighted
area. One of the simplest involves modifying the value of €. The size of the highlighted area is
directly proportional to the value of e (0<€<1.0).

The many other transformations are based in modifying H in some way. To modify this
vector, the tangent plane to P has to first be calculated. Since we are given a point and the unit
normal to that point, solving for the Cartesian equation (Ax + By + Cz = D) is trivial.
Once this is calculated, a random point on the plane is chosen. The unit vector from P to this
random point is designated as one of the linearly independent unit vectors, du. By taking the
cross product of du and the normal, we can get the other unit vector dv.

Affine Transformations

To translate the position of the highlight on the object, given two real numbers, x and y,
the function below can be used.

H := H + xdu + ydv
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t(H) =

Rotation can be achieved by rotating the du and dv vectors about the normal by a
specified angle, followed by reevaluating the vector H using the following formula where du’
and dVv' represent the rotated axes.

H':=H + (H - du)du” + (H - dv) dv"

r(H) = T

Directional scaling can be done in any direction, though it is defined in the du direction
in the following segment. For a number x ( 0 < x < 1.0 ), the equation for this method is

H'":= H-xx*(H - du)du

H):i= ——
S( ) ”HIII”

This function only scales the highlight in the du direction, by combining this functionality
with rotation, the highlight can be effectively scaled in any direction.
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Figure 11: Directional scaling of highlight



Stylized Transformations

In addition to the affine transformations listed above, there are a few stylistic
transformations that can add more variety and character to the highlights, suggesting more
details than the simple affine transformations.

The highlighted area can be split along both of its unit vectors using the following
function, given two non-negative numbers i and j. The sign function simply returns -1 if the
number is negative, and 1 otherwise.

A

H := H-1i * sign(H -du)* du — j = sign(H - dv) * dv
N

[1H™|

split(H) :=
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Figure 12: Combined split and directional scaling function.

The highlighted area can also be squared, creating hard edges. Given an integer
exponent, n, and a positive number x ( 0.0 < x < 1.0 ), the function is calculated as follows

Vii=(H -du) *du+ (H -dv) * dv
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V=

0 := min(cos ™ (V - du),cos™ (V - dv))
k :=sin(20 )"

HN := H-k xx x V

U

SQT‘(H) = m

These different functions can all be combined to create a wealth of different effects.

Figure 13: Left: Directional Scale, Split, and Squaring function. Right: Squaring function.
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Figure 14: Stanford bunny with stylized highlights

X-Toon & Stylized Highlights Combined Effects

The calculation of D for use in the y direction for the texture look up is normally
dependent on the view, but can be generated in any number of methods. By combining the
stylized highlight functionality with the 2D texture map, interesting highlights and textures can
be created. This is due to the fact that all of the modifications that the stylized functions
perform only change an intermediate vector. The following function demonstrates how the two
functions can be combined, given the modified vector, V, the normal to the point, N, and the
exponent, s, to modify the value further.

D:=|sin(V-N)|S

This combination of effects removes the extreme stylized look from the results shown
below, but also allows for a range of different effects due to the combination of both
techniques.



Figure 15: Combined effects, splitting and directional scaling of highlight area using 2D texture.

Results

Overall, the implementation runs smoothly. Currently, the test cases are lacking what
models were used. The object files could have been chosen better, and if they had correct
normal values, then there would have been many more examples. Everything runs smoothly in
real time, as it was mostly implemented using GLSL, except for animated shadow polygons on a
detailed model, which is not the focus of this paper. Using parallel processors or a shadowing
method that does not rely on the CPU could alleviate this problem.

Unfortunately, two of the functions detailed above for the stylized highlights were not
fully implemented. The square function certainly makes the edges straighter, but they do not
scale properly, becoming oblique parallelograms rather than rectangles. The rotation function
also does not work, there was difficulty in actually implementing rotation about a central
vector, and the multiple attempts did not result in the desired effect.



Conclusion

Despite some problems with the stylized renderings, the overall goal of this paper has
been achieved. These different effects make toon shading look vastly improved over older
versions.

Over the course of this project, the combined workload was about 60 hours, split evenly
between the two participants. Adam focused on the implementation of the 2D textures, and
Sean implemented the different stylized highlights. Both participants worked equally on the
initial cel shader, including the outlines and general purpose shading. Much of the time for both
contributors was spent simply debugging the code.
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