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Abstract
Algebraic effect handlers are a powerful means for describing
effectful computations. They provide a lightweight and orthogonal
technique to define and compose the syntax and semantics of
different effects. The semantics is captured by handlers, which are
functions that transform syntax trees.

Unfortunately, the approach does not support syntax for scoping
constructs, which arise in a number of scenarios. While handlers can
be used to provide a limited form of scope, we demonstrate that this
approach constrains the possible interactions of effects and rules out
some desired semantics.

This paper presents two different ways to capture scoped con-
structs in syntax, and shows how to achieve different semantics by
reordering handlers. The first approach expresses scopes using the
existing algebraic handlers framework, but has some limitations. The
problem is fully solved in the second approach where we introduce
higher-order syntax.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming

General Terms Languages

Keywords Haskell, effect handlers, modularity, monads, syntax,
semantics

1. Introduction
Effect handlers [13] have established themselves as a lightweight
and compositional means of describing effectful computations. At
the heart of the solution is the idea that a program is composed
out of fragments of syntax that are often orthogonal to one another.
Those fragments can then in turn be given a semantics by handlers
that systematically deal with different effects.

One aspect of handlers that has not received much attention
are scoping constructs. Examples of this are abound: we see it in
constructions for control flow, such as while loops and conditionals,
but we also see this in pruning nondeterminsitic computations,
exception handling, and multi-threading. The current work on effect
handlers considers scoping to be in the province of handlers, who
not only provide semantics but also delimit the scope of their effects.

However, as this paper illustrates, using handlers for scoping has
an important limitation. The reason is that the semantics of handlers
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are not entirely orthogonal: applying handlers in different orders
may give rise to different interactions between effects—perhaps the
best known example is that of the two possible interactions between
state and non-determinism. The flexibility of ordering handlers is
of course crucial: we need control over the interaction of effects to
obtain the right semantics for a particular application. However, if
handlers double as scoping constructs, the two roles may be at odds:
one order of the handlers provides the right scopes and the other
order provides the right semantics. Unfortunately, we cannot have it
both ways.

This paper solves the dilemma by shifting the responsibility of
creating scopes from handlers to syntax. This way we can safely
reorder handlers to control the interaction semantics while scoping
is unaffected. Of course, handlers are still responsible for assigning
a semantics to syntax that create scopes.

The specific contributions of this paper are:

1. We provide several examples that demonstrate the problem of
scoping through handlers: pruning nondeterministic choices,
exception handling, and multi-threading.

2. We provide two different approaches for handling scoping
through syntax.

(a) First, we use syntax within the existing effect handlers frame-
work to delimit scopes, and show how to write a handler that
works with this syntax. This solution is conceptually light-
weight, since it makes use of syntax and is nothing other than
another handler. However, it is not general enough to capture
syntax that truly requires programs as arguments.

(b) As a second solution we provide higher-order syntax that
truly allows to embed programs within scoping constructs.
This solution is more general, but requires a substantial
adaptation of the effect handlers approach.

3. We illustrate both syntax scoping approaches on the examples
and show how they effectively solve the problem.

The remainder of this paper is structured as follows. The first part
provides background on the effect handlers approach through a num-
ber of examples and sets up the necessary infrastructure. We start
with a gentle introduction to handling backtracking computations
in Section 2. In Section 3 we prepare the ground for more modular
syntax by using the datatypes à la carte approach. We demonstrate
this modularity in Section 4, where we show how state can be added
to nondeterministic computation. We then show how handlers can
span different syntax signatures in Section 5.

The second part of this paper focuses on scoped effects. Section 6
builds grammars to parse input, and shows how using handlers
to create local scopes imposes undesired semantics. In Section 7
we fix this problem by using syntax to delimit scope. Section 8
demonstrates exception handling as another example that requires
scoped effects, which is resolved in Section 9. We show a more
robust solution to the problem in Section 10, where higher-order
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syntax is introduced. Section 11 gives an example where our first-
order approach fails, but that can be solved with higher-order syntax.
Finally, we discuss related work in Section 12 and conclude in
Section 13.

2. Backtracking Computation
The effect handlers approach splits the problem of modelling
behaviour into two parts. First syntax is introduced to represent
the actions of interest; second, so-called handlers are written that
interpret syntax trees into a semantic domain.

For instance, to model the behaviour of backtrackable computa-
tion, we use the datatype Backtr a to represent the syntax.

data Backtr a
= Return a
| Fail
| Backtr a :8Backtr a

Here, Return x represents a successful computation witnessed by
x, Fail is for computations that have failed, and choice is given by
p :8q, where p and q are backtrackable computations.

This representation of backtrackable computations forms a
monad, which will allow us to conveniently put syntax together.

instance Monad Backtr where
return a = Return a
Return a>>= r = r a
Fail >>= r = Fail
(p :8q) >>= r = (p>>= r) :8 (q>>= r)

As an example, consider how we might solve the well-known
knapsack problem, where we choose with replacement elements
from vs that sum to w. Assuming the values are all positive, the
following is a naive solution to the problem that goes through all the
different possibilities.

knapsack :: Int→ [Int ]→ Backtr [Int ]
knapsack w vs | w < 0 = Fail

| w 0 = return [ ]
| w > 0 = do v← select vs

vs′← knapsack (w− v) vs
return (v : vs′)

This makes use of the select function that turns a list of values into
backtrackable computations:

select :: [a ]→ Backtr a
select = foldr (:8) Fail · map Return

We fail when there are no values left to select, otherwise, we offer
the choice between a given value and the remaining ones.

The resulting construction of knapsack 3 [1,2] is a tree that
expresses the decisions that are made when choosing from the list
of values. This is the syntactic tree we are interested in.

knapsack 3 [3,2,1 ] = Return [3] :8 ((Fail :8 (Fail :8
(Return [2,1 ] :8Fail))) :8 ((Fail :8 (Return [1,2] :8
((Fail :8 (Fail :8 (Return [1,1,1 ] :8Fail))) :8Fail))) :8Fail))

We can extract successful computations by making use of the
function allsols p, which produces a list of all the solutions that
are generated by the program p. In fact, allsols is our first example
of a handler: it takes the syntax of a backtrackable computation, and
handles it to produce a list of all solutions.

allsols :: Backtr a→ [a]
allsols (Return a) = [a]
allsols (Fail) = [ ]
allsols (p :8q) = allsols p++allsols q

Putting the different parts together, we can use allsols to capture the
solutions to the knapsack problem:

allsols (knapsack 3 [3,2,1]) = [[3 ], [2,1], [1,2], [1,1,1 ]]

We characterize allsols as a handler since it turns the syntax tree of
nondeterministic choices into the semantic domain of solutions.

3. Syntax Signatures
We can generalize away from backtrackable computations by defin-
ing a datatype that is parametric in the signature of the syntax. We
factor syntax for programs into the Return constructor and a con-
structor Op that allows us to incorporate operations of interest from
some signature sig.

data Prog sig a
= Return a -- pure computations
| Op (sig (Prog sig a)) -- impure computations

For instance, the operations that give rise to computations of type
Backtr a are captured by the signature functor Nondet, such that
Backtr a∼= Prog Nondet a.

data Nondet cnt
= Fail′

| cnt :8′ cnt

The type argument cnt marks the recursive components, which in
this context are continuations into some other syntactic construct.
Here, and elsewhere in the paper, we assume that the functor instance
is automatically derived.

This abstraction has bought us an important benefit: the Prog sig
type forms a monad whenever sig is a functor (it is the free monad
for the functor sig), which helps us to easily compose programs
together from constituent parts.

instance (Functor sig)⇒Monad (Prog sig) where
return v = Return v
Return v>>=prog = prog v
Op op >>=prog = Op (fmap (>>=prog) op)

This monad instance allows us to conveniently write programs that
piggyback on Haskell’s do notation, which we will see later on.

In the monad instance, we can read (>>=) as substitution, where
each fragment of syntax represents first-order terms with variables:
Return v is a variable, and Op op is a compound term. Another
reading is that Prog sig a represents computations or programs:
Return v is a pure computation, Op op is an impure computation,
and here (>>=) represents the sequential chaining of computations.

Syntax Infrastructure So far we have looked at only one syntax
signature. More generally, we will be dealing with several different
effects that work together in a single program, and so we need
a means of flexibly composing signatures, where each signature
captures syntax that encodes a particular effect.

Perhaps the simplest way to compose signatures is with the
coproduct, where two signatures sig1 and sig2 are combined into a
single one.

data (sig1 + sig2) cnt = Inl (sig1 cnt) | Inr (sig2 cnt)

Handlers over such signatures must be run one after the other, each
dealing with part of the signature they recognize. In practice, this
becomes a little cumbersome since the handlers have to carefully
invoke the right mixture of Inl and Inr constructors to get access to
the syntax they are interested in.

To fix this, we want to be able to inject and project constructors
for some syntax into some larger language, and this is where the
datatypes à la carte technique [14] shines, by precisely expressing
the relationship between families of syntax:
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class (Functor sub,Functor sup)⇒ sub⊂ sup where
inj :: sub a→ sup a
prj :: sup a→Maybe (sub a)

instance Functor sig⇒ sig⊂ sig where
inj = id
prj = Just

The coproduct fits into this scheme nicely, as is evidenced by the
following instances:

instance (Functor sig1,Functor sig2)⇒
sig1 ⊂ (sig1 + sig2) where

inj = Inl
prj (Inl fa) = Just fa
prj = Nothing

instance (Functor sig1,sig⊂ sig2)⇒
sig⊂ (sig1 + sig2) where

inj = Inr · inj
prj (Inr ga) = prj ga
prj = Nothing

This gives a nice way of composing signatures, and makes it possible
to inject syntax into programs over those signatures.

inject :: (sub⊂ sup)⇒ sub (Prog sup a)→ Prog sup a
inject = Op · inj

As well as conveniently building operations of a program, we have
a way of extracting operations from that program for inspection.

project :: (sub⊂ sup)⇒ Prog sup a→Maybe (sub (Prog sup a))
project (Op s) = prj s
project = Nothing

This projection returns the syntax of interest when we are dealing
with an Op, and otherwise returns Nothing.

With smart constructors and destructors we can make the em-
bedding of syntax into a wider context relatively painless. We make
use of pattern synonyms and view patterns, which are recent ex-
tensions to Haskell. This allows us to create a new pattern called
Fail, which works on programs of type Prog sig a for any signature
where Nondet ⊂ sig. In the following pattern declaration, the func-
tion project is applied at the site of the pattern, and if the result is
Just Fail′, the match is a success.

pattern Fail← (project→ Just Fail′)
fail :: (Nondet ⊂ sig)⇒ Prog sig a
fail = inject Fail′

For choice we can again use the same approach:

pattern p :8q← (project→ Just (p :8′ q))
(8) :: (Nondet ⊂ sig)⇒ Prog sig a→ Prog sig a→ Prog sig a
p8q = inject (p :8′ q)

This time applying project to a program might yield Just (p :8′ q),
and if this is the case we bind the variables in that context to those
in the pattern p :8q.

We will be assembling programs using coproducts, Since our
goal is to inject syntax into some accumulating collection of syntax
functors we need a base case, and this is provided by Void, which is
the signature for empty syntax:

data Void cnt

Using this syntax functor as a signature results in programs of type
Prog Void a, where it is impossible to use the Op constructor. We
can nevertheless extract values from such programs:

run :: Prog Void a→ a
run (Return x) = x

This handler is usually the last one to be run, since it extracts a final
value from a program with no more syntax.

When providing semantics for programs with signatures made
up of coproducts, we will define handlers that deal with a specific
part of that signature, and leaves the rest untouched. This is the key
to modular semantics, allowing us to focus on the interesting details.
We use Other to represent the other syntax that is not interesting in
a given context:

pattern Other s = Op (Inr s)

For instance, we can evaluate a program with Nondet syntax on the
left of its signature by using the solutions function, which is highly
modular since sig can be an arbitrary signature:

solutions :: (Functor sig)⇒ Prog (Nondet+ sig) a→ Prog sig [a]
solutions (Return a) = return [a]
solutions (Fail) = return [ ]
solutions (p :8q) = liftM2 (++) (solutions p) (solutions q)
solutions (Other op) = Op (fmap solutions op)

This is a lifted, or monadized, version of allsols where there might
be syntax other than that given by Nondet involved. We can recover
allsols by noticing that Backtr a ∼= Prog (Nondet + Void) a, and
adapting the definition to fit our more modular framework:

allsols :: Prog (Nondet+Void) a→ [a]
allsols = run · solutions

This approach uses run to extract results from a program that has no
more syntax.

4. Composing Semantics
The main point of the effect handlers approach is that not only the
syntax of different effects, but also their semantics can be trivially
composed. In other words, effect handlers provide modular seman-
tics. This section illustrates that point by combining nondeterminism
with state.

4.1 The State Effect
Stateful operations are modelled with the assumption that there
exists some underlying state s, which can be updated with the
operation put s, and retrieved with get. The corresponding syntax is
as follows:

data State s cnt
= Get′ (s→ cnt)
| Put′ s cnt

pattern Get k← (project→ Just (Get′ k))
get :: (State s⊂ sig)⇒ Prog sig s
get = inject (Get′ return)

pattern Put s k← (project→ Just (Put′ s k))
put :: (State s⊂ sig)⇒ s→ Prog sig ()
put s = inject (Put′ s (return ()))

If we want to execute a stateful computation, then we can use the
following handler, which takes an initial state, and a program that
contains state manipulating syntax to return a residual program
which returns an output state.

runState :: Functor sig⇒
s→ Prog (State s+ sig) a→ Prog sig (s,a)

runState s (Return a) = return (s,a)
runState s (Get k) = runState s (k s)
runState s (Put s′ k) = runState s′ k
runState s (Other op) = Op (fmap (runState s) op)
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This works by carrying around the appropriate state in recursive
calls: when a new state is inserted with Put s′, then this new state s′
replaces the previous one.

4.2 Combining State and Nondeterminism
Now we can assign a semantics to syntactic programs that combine
nondeterminism and state by providing the semantics for both effects
separately: we just compose both handlers. The first handler tackles
one effect in the initial program while the second handler tackles
the other in the residual program.

It is vital to note that we have a degree of freedom when
composing two handlers: we can choose which handler to apply first.
For instance, for the runState and solutions handlers we can choose
between either runLocal or runGlobal:

runLocal :: Functor sig⇒
s→ Prog (State s+Nondet+ sig) a→ Prog sig [(s,a)]

runLocal s = solutions · runState s
runGlobal :: Functor sig⇒

s→ Prog (Nondet+State s+ sig) a→ Prog sig (s, [a])
runGlobal s = runState s · solutions

These two composite semantics are not equivalent; they differ in how
the two effects interact. Here we get two flavors of nondeterministic
state, local and global state. In runLocal, each branch of the
nondeterministic computation has its own local copy of the state,
while in runGlobal there is one state shared by all branches. The
difference between the two is also apparent at the type level:
runLocal returns a list of different final values with their associated
states, one state for each solution in the backtracking. The type of
runGlobal reveals that it produces a list of alternative solutions and
only one final state.

The fact that we get different semantics through different compo-
sitions is a great benefit of the effect handlers approach: in return for
writing the handlers in modular style, we get multiple interaction
semantics for free!

The following example illustrates that both flavors of nondeter-
ministic state are useful for different purposes. In fact, the example
even shows the use of two different semantics for the same program
and involves a third handler that counts how many number choices
are made.

choices :: (Nondet ⊂ sig,State Int ⊂ sig)
⇒ Prog sig a→ Prog sig a

choices (Return a) = return a
choices (Fail) = fail
choices (p :8q) = incr>> (choices p8 choices q)
choices (Op op) = Op (fmap choices op)
incr :: (State Int ⊂ sig)⇒ Prog sig ()
incr = get>>=put · (succ :: Int→ Int)

The counting is performed by incr, which simply increments an Int
stored in the state. We evaluate an incr every time we encounter a
choice, and then recursively count choices in each branch.

In order to apply the choices handler to the knapsack example,
we need to adapt the definitions of both knapsack and select to the
modular setting. Thankfully, this involves only a little more than
providing slightly different type signatures; the code body remains
unchanged, except that we use the smart constructors fail and (8):

knapsack :: (Nondet ⊂ sig)⇒ Int→ [Int ]→ Prog sig [Int ]
select :: (Nondet ⊂ sig)⇒ [a]→ Prog sig a

Now we can observe that both global and local state give us different
information. The global version tells us how many choice points are
explored to find all solutions:

> (run · runGlobal (0 :: Int) · choices) (knapsack 3 [3,2,1])
(12, [[3], [2,1], [1,2 ], [1,1,1]])

In contrast, the local version tells us exactly how deep in the tree of
choices each individual answer is found:

> (run · runLocal (0 :: Int) · choices) (knapsack 3 [3,2,1])
[(1, [3]),(5, [2,1]),(5, [1,2 ]),(9, [1,1,1])]

The information provided by the global version cannot be recon-
structed from the local information, and vice versa.

Summary In this section we have seen how easy it is to compose
the semantics of two orthogonal features, nondeterminism and state,
with effect handlers. In fact, we can express the two interactions of
state and nondeterminism simply by composing their handlers in
different orders.

5. Cut and Call
The effect handlers approach does not force us to write orthogonal
handlers. This section shows that we can extend nondeterminism
with a non-orthogonal feature. The Cutfail operation immediately
ends the search with failure, dropping all extant unexplored branches.
Hence, there is clearly interaction with Nondet.

data Cut cnt = Cutfail′

pattern Cutfail← (project→ Just Cutfail′)
cutfail :: (Cut ⊂ sig)⇒ Prog sig a
cutfail = inject Cutfail′

The expression call p, defined in terms of the go handler, delimits
the action of Cutfail in a program p.

call :: (Nondet ⊂ sig)⇒ Prog (Cut+ sig) a→ Prog sig a
call p = go p fail where

go :: (Nondet ⊂ sig)⇒
Prog (Cut+ sig) a→ Prog sig a→ Prog sig a

go (Return a) q = return a8q
go (Fail) q = q
go (Cutfail) q = fail
go (p1 :8p2) q = go p1 (go p2 q)
go (Other op) q = Op (fmap (flip go q) op)

The go p q handler accumulates in its second parameter q the
unexplored alternatives to p. When go encounters a Return or a Fail,
it explores the alternatives in q. When a Cutfail is encountered, the
computation fails immediately, without exploring any alternatives.
At a branching, go explores the left branch and adds the right branch
to the unexplored alternatives.

Often cutfail is used in the form of cut, which can be defined as:

cut :: (Nondet ⊂ sig,Cut ⊂ sig)⇒ Prog sig ()
cut = skip8 cutfail
skip :: Monad m⇒ m ()
skip = return ()

This commits the computation to the current branch, pruning any
unexplored alternatives. For example, once p commits to the first
solution that is found in p.

once :: (Nondet ⊂ sig)⇒ Prog (Cut+ sig) b→ Prog sig b
once p = call (do x← p ; cut ; return x)

This way we can compute only the first knapsack solution as follows.

> (run · solutions · once) (knapsack 3 [3,2,1 ])
[[3]]

In summary, we can write non-orthogonal handlers like call just
as easily as modular ones like solutions and they play nicely together.
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However, there lurks a deep problem in these murky waters, where
call does not always behave quite as we expect it to. We explore this
in the next section with a different example.

6. Grammars
This section establishes the central problem tackled in this paper.
We call a handler like call a scoping handler, because it not only
provides the semantics for particular syntax, but also creates a local
scope in which the impact of an effect is contained. The two roles
of scoping handlers can be fundamentally at odds with one another:
different orders of handlers affect the interaction semantics, while
different scopes affect the extent of an effect’s impact. With scoping
handlers these two choices are not independent; we cannot affect
one without the order. Yet, often we need to control both separately.
This section illustrates that point on grammars.

Grammars Grammars can be expressed compactly using syntax
signatures from a remarkably small base: the Symbol functor rep-
resents syntax that matches a single symbol from some source of
characters:

data Symbol cnt = Symbol′ Char (Char→ cnt)
symbol :: (Symbol⊂ sig)⇒ Char→ Prog sig Char
symbol c = inject (Symbol′ c return)

The constructor symbol c attempts to match c with the current input,
and if it succeeds, passes the value of c on to its continuation. For
instance, we can build a digit recognizer with the following:

digit :: (Nondet ⊂ sig,Symbol⊂ sig)⇒ Prog sig Char
digit = foldr (8) fail (fmap symbol [’0’ . .’9’])

This nondeterministically attempts to match all of the digits, and
fails if this is not possible.

The combinators many and many1 will be familiar to readers
who have worked with grammar libraries. Their definitions encode
an accumulation of values from nondeterministic programs:

many,many1 :: (Nondet ⊂ sig)⇒ Prog sig a→ Prog sig [a]
many p = many1 p8 return [ ]
many1 p = do a← p ; as← many p ; return (a : as)

Both of these functions build nondeterminism into the output of a
program that supports Nondet syntax.

The parse xs handler takes a grammar to a nondeterministic
program. It resolves the Symbol c k constructors by matching c
against the first element in the list of characters xs, turning it into
failure when the match fails, or passing c on to the continuation k if
it succeeds.

parse :: (Nondet ⊂ sig)⇒
[Char ]→ Prog (Symbol+ sig) a→ Prog sig a

parse [ ] (Return a) = return a
parse (x : xs) (Return a) = fail
parse [ ] (Symbol c k) = fail
parse (x : xs) (Symbol c k)
| x c = parse xs (k x)
| otherwise = fail

parse xs (Other op) = Op (fmap (parse xs) op)

This handler also fails if the input is not entirely consumed, or if the
grammar expects more symbols.

Parsing arithmetic expressions which are made up of sums and
products can be done using the traditional recipe, where an expr
deals with sums, and a term deals with with products. We return the
result of evaluating the payload directly.

expr :: (Nondet ⊂ sig,Symbol⊂ sig)⇒ Prog sig Int
expr = do i← term ; symbol ’+’ ; j← expr ; return (i+ j)

8 do i← term ; return i
term :: (Nondet ⊂ sig,Symbol⊂ sig)⇒ Prog sig Int
term = do i← factor ; symbol ’*’ ; j← term ; return (i∗ j)

8 do i← factor ; return i

The terminal case is in factor, which is either a string of digits, or
an expression in parentheses:

factor :: (Nondet ⊂ sig,Symbol⊂ sig)⇒ Prog sig Int
factor = do ds← many1 digit ; return (read ds)

8 do symbol ’(’ ; i← expr ; symbol ’)’ ; return i

To parse an expression, we simply handle the program with parse:

> (allsols · parse "2+8*5") expr
[42 ]

Grammar Refactoring We can left factor our grammars expr and
term to improve efficiency. Focusing on expr, we factor out the
common term prefix in the two branches.

expr1 :: (Nondet ⊂ sig,Symbol⊂ sig)⇒ Prog sig Int
expr1 = do i← term

( do symbol ’+’ ; j← expr1 ; return (i+ j)
8do return i)

In the refactored expr1 grammar, the two branches are mutually
exclusive. The reason is that the first branch requires the next
character in the input to be a ’+’, while the second branch can only
be followed by a ’)’ or the end of the input. Hence, after seeing a
’+’ we can safely commit to the first branch and prune the second
branch. Pruning the alternative should have a beneficial effect on
performance because the parser will no longer unnecessarily explore
the alternative.

In the previous section we introduced the control operator cut to
commit to a successful branch. In this case, we want to commit to
the first branch when a symbol ’+’ is encountered, so we might try
the following:

expr2 :: (Nondet ⊂ sig,Symbol⊂ sig)⇒ Prog sig Int
expr2 = do i← term

call ( do symbol ’+’ ; cut ; j← expr2 ; return (i+ j)
8do return i)

At a first glance, this seems sensible: the locally placed call handler
is needed to delimit the scope of the cut. After all the cut is only
meant to prune the one alternative, and should not affect other
alternatives made elsewhere in the grammar.

The Problem Alas, while the above grammar syntactically cap-
tures the desired pruning, it may come as a surprise that the handlers
do not provide the desired semantics:

> (allsols · parse "1") expr2
[ ]

We expect the result [1], but the parse fails instead. In order to
understand why this happens, we need to carefully consider the
impact of the following clause in the definition of the subsidiary go
handler of call.

go (Other op) q = Op (fmap (flip go q) op)

After one recursive invocation of call in expr2, this clause matches
the “other” operation symbol ’+’. In effect, we can think of this
execution as rewriting the body of expr2 to:

do i← term
symbol ’+’
go (do cut ; j← expr2 ; return (i+ j))

(return i8 fail)
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In other words, symbol ’+’ has been hoisted out of the left branch
and now happens before the call. Hence, the input always has to
contain a ’+’; this is obviously not what we want.

A Non-Solution The problem is that we have chosen the wrong
order for the parse and call handlers, which leads to the undesired
interaction. The appropriate interaction is obtained by first applying
parse and then call. This way there is no more symbol for call to
hoist out of a branch.

Unfortunately, we cannot reorder call and parse for other reasons:
call creates a local scope. We cannot put it anywhere else without
risking that cut prunes more alternatives than it should. Conversely,
it obviously does not make sense to apply parse only in the local
scope of call. Hence, we are stuck and call is to blame because it
unnecessarily couples scoping and semantics.

Summary This section has shown that the coupling of scoping
and semantics in scoping handlers is problematic. In the following
sections we look at two different solutions to this problem; both
solutions decouple scoping from semantics by making scoping the
province of syntax. The first solution uses lightweight syntax that
fits naturally into the first-order framework of effect handlers we
have been describing so far, but is prone to user errors. The second
solution we look at is more robust and expressive, but requires much
heavier machinery.

7. Scoped Syntax
One solution to the problem we encounter with call is to explicitly
delimit the beginning and end of the scope of the call. This can be
managed by giving the user syntax to explicitly set these boundaries:

data Call cnt = BCall′ cnt | ECall′ cnt

pattern BCall p← (project→ Just (BCall′ p))
pattern ECall p← (project→ Just (ECall′ p))

We will want to ensure that each BCall is paired with an ECall.
Hence, they should only be exposed to the user in the form of call′.

call′ :: (Call⊂ sig)⇒ Prog sig a→ Prog sig a
call′ p = do begin ; x← p ; end ; return x where

begin = inject (BCall′ (return ()))
end = inject (ECall′ (return ()))

With these changes, the left factored expression remains syntacti-
cally the same as expr2, except that call has been replaced by call′,
and the signature is now more elaborate, since the program explicitly
incorporates Cut and Call syntax.

expr3 :: (Nondet ⊂ sig,Symbol⊂ sig,Call⊂ sig,Cut ⊂ sig)⇒
Prog sig Int

expr3 = do i← term
call′ ( do symbol ’+’ ; cut ; j← expr3 ; return (i+ j)

8do return i)

We can run this with the runCut handler, that provides semantics to
cut in a way that respects the scope set out by BCall and ECall.

> run · solutions · runCut · parse "1"$ expr3
[1 ]

While on the surface not much has changed, there is a lot more
going on behind the scenes.

The runCut handler is now used to eliminate Call and Cut from
the signature:

runCut :: (Nondet ⊂ sig)⇒
Prog (Call+Cut+ sig) a→ Prog sig a

runCut p = call (bcall p)

The definition of runCut is in terms of two helper functions, bcall
and ecall. The interesting case for bcall is when it encounters a
BCall p. In this case, the handler call is used to handle the code in
the continuation p up until the matching ecall q, which is found by
the function ecall.

bcall :: (Nondet ⊂ sig)⇒
Prog (Call+Cut+ sig) a→ Prog (Cut+ sig) a

bcall (Return a) = return a
bcall (BCall p) = upcast (call (ecall p))>>=bcall
bcall (ECall p) = error "Mismatched ECall!"

bcall (Other op) = Op (fmap bcall op)

If an ECall is found during the execution of begin, then an error is
raised, since this must be a mismatched ECall p. An alternative to
raising an error is to simply ignore the spurious ECall, and continue
with p.

The function ecall takes a program with scoped syntax and
modifies it so that any scope context is removed. The code outside of
that scope is found in ECall p, where p :: Prog (Call+Cut+ sig) a
is a program in its own right.

ecall :: (Nondet ⊂ sig)⇒
Prog (Call+Cut+ sig) a→
Prog (Cut+ sig) (Prog (Call+Cut+ sig) a)

ecall (Return a) = return (Return a)
ecall (BCall p) = upcast (call (ecall p))>>= ecall
ecall (ECall p) = return p
ecall (Other op) = Op (fmap ecall op)

Since call removes all the syntax given by Cut from the signature,
we use upcast to ensure that the types match our expectations. The
function upcast simply extends a signature so that it contains an
additional syntax functor. It works by shifting operations in the
original signature into the right of the resulting coproduct.

upcast :: (Functor f ,Functor sig)⇒ Prog sig a→ Prog (f + sig) a
upcast (Return x) = return x
upcast (Op op) = Op (Inr (fmap upcast op))

In summary, the idea of the tagging technique is to mark the
beginning and the end of a scope with syntactic operations, the
tags. Handlers should takes these tags into account to determine the
impact of effects.

While this tagging of scope seems like a neat solution, we
find it lacking in several regards. For one, we require the user to
carefully ensure that scopes are nested correctly with begin and
end. We have solved this with some syntactic sugar, but this could
be circumvented unless the constructors are removed from the
programmer’s vocabulary. This can be achieved by abstraction.

Another criticism is that this solution is perhaps not as general
as we would hope. For instance, it is insufficient to solve the related
problem of expressing the scope of code with exception handling,
which we explore more carefully in the following section.

8. Exceptions
This section presents a second instance of the scoping handler
problem in the form of exception handling. Exception handling is a
fundamental feature of many programming languages. It allows a
block of code to terminate abruptly in a way that throws an exception
value from which the overall program resumes computation. We
will model this with effect handlers.

The syntax for exceptions is as follows, where an exception value
of type e is thrown by the syntax Throw′ e:

data Exc e cnt = Throw′ e
pattern Throw e← (project→ Just (Throw′ e))
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throw :: (Exc e⊂ sig)⇒ e→ Prog sig a
throw e = inject (Throw′ e)

To handle a thrown exception, we use runExc:

runExc :: Functor sig⇒
Prog (Exc e+ sig) a→ Prog sig (Either e a)

runExc (Return x) = return (Right x)
runExc (Throw e) = return (Left e)
runExc (Other op) = Op (fmap runExc op)

This handler uses the standard approach of encoding exceptions into
values of type Either e a: computations normally place their results
in Right a, unless an exception e is thrown, in which case this is
signalled with the value Left e.

In addition to propagating exceptions into the outer program,
we are also interested in catching exceptions in code, and handling
them with some computation that can recover. This can be modelled
by the following handler, where catch p h>>= k executes p, and
continues with k unless an exception e is thrown, in which case
h e>>= k is invoked.

catch :: (Exc e⊂ sig)⇒ Prog sig a→ (e→ Prog sig a)→ Prog sig a
catch (Return x) h = return x
catch (Throw e) h = h e
catch (Op op) h = Op (fmap (λp→ catch p h) op)

While this handler is perfectly reasonable at first glance, it suffers
from the same problem as our initial version of call: its does not
compose as flexibly as it could.

As a simple example, consider the interaction of exceptions and
state. The following code attempts to decrement the state counter
three times, and if an exception is thrown it is handled with return:

tripleDecr :: (State Int ⊂ sig,Exc ()⊂ sig)⇒ Prog sig ()
tripleDecr = decr>> catch (decr>>decr) return
decr :: (State Int ⊂ sig,Exc ()⊂ sig)⇒ Prog sig ()
decr = do x← get

if x> (0 :: Int) then put (pred x)
else throw ()

The decr decrements a counter held in state. However, if the
decrement would result in a negative value, then the state is left
unchanged and an exception is thrown.

If we run tripleDecr on a state that initially contains 2, then an
exception will be raised by the third decr. In this scenario, there are
two different reasonable final states to expect: a global interpretation
would result in a final state of 0, where the first two decrs persist; a
more local interpretation would lead us to expect all of the effects
within the catch to be rolled back, so that the final state 1 is the
result of the first decr only.

Obtaining these different behaviours should in principle be pos-
sible by reordering handlers. However, because catch is a scoping
handler that creates a local scope, we can only express the global
interpretation.

> (run · runExc · runState 2) tripleDecr
Right (0,())

Exchanging catch and runState does not make sense, because it
would change the scope created by catch.

9. Scoped Syntax Revisited
We already noted that the scoped syntax in Section 7 is insufficient
to capture the behaviour of exceptions. The issue is that a catch
block has two different continuations in addition to the body that is
to be executed: one continuation in the case where no exceptions
are thrown, and another for the exception handler.

We can solve the problem by extending the idea of using tags to
delineate the different blocks of code involved.

data Catch e cnt = BCatch′ cnt (e→ cnt) | ECatch′ cnt
pattern BCatch p q← (project→ Just (BCatch′ p q))
pattern ECatch p ← (project→ Just (ECatch′ p))

Instead of exposing smart constructors bcatch and ecatch, we
instead introduce the following syntactic sugar that ensures the
tags are matched appropriately:

catch′ ::∀sig e a . (Catch e⊂ sig)⇒
Prog sig a→ (e→ Prog sig a)→ Prog sig a

catch′ p h = begin (do x← p ; end ; return x) h where
begin p q = inject (BCatch′ p q)
end = inject (ECatch′ (return ()) :: Catch e (Prog sig ()))

Notice that the constructor for bcatch does not make use of return,
which is what we have done in every continuation parameter so
far: instead, the syntax bcatch p q takes two continuations explicitly,
where p represents the code that is to be tried, and q is the code that
handles potential exceptions.

The runCatch function is similar to runCut: it handles excep-
tions, and is defined in terms of two subsidiary functions bcatch and
ecatch.

runCatch :: (Functor sig)⇒
Prog (Catch e+(Exc e+ sig)) a→ Prog sig (Either e a)

runCatch p = runExc (bcatch p)

The function bcatch searches for a BCatch p q, and when one
is encountered, it recursively runs exception handling on p. If
an exception is raised, then the handling code q is used for the
continuation.

bcatch :: (Functor sig)⇒
Prog (Catch e+(Exc e+ sig)) a→ Prog (Exc e+ sig) a

bcatch (Return a) = return a
bcatch (BCatch p q) =

do r← upcast (runExc (ecatch p))
case r of

Left e → bcatch (q e)
Right p′→ bcatch p′

bcatch (ECatch p) = error "Mismatched ECatch!"

bcatch (Other op) = Op (fmap bcatch op)

The scope is delimited by an ECatch, which are handled by ecatch.
This implementation mirrors that of bcatch.

ecatch :: (Functor sig)⇒
Prog (Catch e+(Exc e+ sig)) a→
Prog (Exc e+ sig) (Prog (Catch e+(Exc e+ sig)) a)

ecatch (Return a) = return (Return a)
ecatch (BCatch p q) =

do r← upcast (runExc (ecatch p))
case r of

Left e → ecatch (q e)
Right p′→ ecatch p′

ecatch (ECatch p) = return p
ecatch (Other op) = Op (fmap ecatch op)

All that needs to change in our example is the type signature, since
we now use Catch markers before the exception syntax.

tripleDecr :: (State Int ⊂ sig,Exc ()⊂ sig,Catch⊂ sig)⇒
Prog sig ()

We are now able to change the behaviour by composing runCatch
and runState in different orders:
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> (run · runCatch · runState 2) tripleDecr
Right (1,())
> (run · runState 2 · runCatch) tripleDecr
(0,Right ())

Here we see that local state behaviour occurs when runState is run
first, and global state behaviour when it is last.

10. Higher-Order Syntax
The previous sections used syntax to carefully mark the beginning
and end of syntax blocks that should be handled in some self-
contained context. A more direct solution is to model scoping
constructs with higher-order syntax, where the syntax carries those
syntax blocks directly.

For the handler catch p h, we introduce the following signature,
where the syntax Catch′ p h k carries the program contained in p
directly as an argument, as well as the exception handler h. The
continuation is k, which takes the result of either a successful
program p, or from the exception handler h, depending on whether
an exception is thrown.

data HExc e m a
= Throw′ e
| ∀x . Catch′ (m x) (e→ m x) (x→ m a)

This differs from signatures we have seen previously in two im-
portant ways. First, higher-order signatures refine the single type
parameter cnt into two parts, m and a. By having m and a as two
separate type parameters we have tighter control over the type of
continuation that is allowed. For instance, in Catch′ p h k the scoped
computation p has type m x while the continuation k turns the result
x into a computation of type m a.

Higher-order signatures are functorial in both type parameters.
In the last parameter a they clearly satisfy the ordinary functor laws
when m is a functor.

instance Functor m⇒ Functor (HExc e m) where
fmap f (Throw′ e) = Throw′ e
fmap f (Catch′ p h k) = Catch′ p h (fmap f · k)

Functoriality in the parameter m makes such signatures higher-order
functors, which are functors in the category of functors and natural
transformations. This is captured by the HFunctor class.

type f →̇g = ∀x . f x→ g x
class HFunctor h where

hmap :: (Functor f ,Functor g)⇒ (f →̇g)→ (h f →̇h g)
instance HFunctor (HExc e) where

hmap t (Throw′ x) = Throw′ x
hmap t (Catch′ p h k) = Catch′ (t p) (t · h) (t · k)

This allows us to transform the type constructor m with a natural
transformation.

Higher-order signatures depart from ordinary ones in an impor-
tant way: they support more precise control over how they compose,
and how handlers must traverse them. In first-order signatures this
control is determined entirely by the functor instance, but on deeper
inspection the function fmap :: (cnt→ cnt′)→ (sig cnt→ sig cnt′)
plays two roles: first, to extend the continuation captured by the
syntax, and second, to thread handlers through the syntax.

We separate these two roles into two different functions for
higher-order syntax, where they will not always coincide. These are
captured in the Syntax class:

class HFunctor sig⇒ Syntax sig where
emap :: (m a→ m b)→ (sig m a→ sig m b)
weave :: (Monad m,Monad n,Functor s)⇒

s ()→ Handler s m n→ (sig m a→ sig n (s a))
type Handler s m n = ∀x . s (m x)→ n (s x)

Thus we use emap to extend the continuation, and weave to de-
termine how handlers should be threaded through the syntax. We
describe these functions in more detail below.

Extending the Continuation The emap method plays to first role,
extending the continuation, and has the following type signature.

emap :: Syntax sig⇒ (m a→ m b)→ (sig m a→ sig m b)

This type is obtained by refining cnt to m a in the signature of fmap.
The two are closely related, and emap is subject to similar laws:

emap id = id (1)
emap f · emap g = emap (f · g) (2)

Those versed in category theory will notice that these are the functor
laws for the action on arrows, and indeed, we can think of emap as
a functor from the sub-category obtained through the image of the
functor m. This gives the following condition:

fmap = emap · fmap (3)

The fmap on the left hand side is from the functor instance of sig m,
and this should agree with the fmap for m when extended by emap.

Since higher-order signatures and programs are a generalization
of first-order ones, we will redefine all of the infrastructure so
that it works in this setting. The type Prog now becomes slightly
different, since sig :: (∗→ ∗)→∗→∗ is of a different kind. The Op
constructor is also adjusted accordingly.

data Prog sig a
= Return a
| Op (sig (Prog sig) a)

We use emap in the definition of the free monad Prog over higher-
order signatures, since this is where continuations get plugged
together.

instance Syntax sig⇒Monad (Prog sig) where
return v = Return v
Return v>>=prog = prog v
Op op >>=prog = Op (emap (>>=prog) op)

The restricted type of emap precisely captures our requirements
here, where m is Prog sig.

Distributing Handlers Handlers of higher-order syntax have to be
formulated in a more modular form than first-order handlers. This is
because scoped syntax such as Catch′ p h k represents a sequential
computation p>>= k where p is isolated in a scope. However, this
scope is only relevant for the interpretation of Throw′ e, and not for
other effects.

The generic threading of another handler hdl through Catch′ p h k
results in Catch′ p′ h′ k′. When no exception is thrown in p, then
p′>>= k′ should be equivalent to running the hdl on p>>= k. This
means that it should be possible to suspend handlers and resume
them from an intermediate point like inbetween p and k.

Because a handler may be stateful, we need to capture its
intermediate state when it suspends and make it available when
resuming. We capture these requirements in the Handler s m n
synonym. Here s is a functor that captures the computation state of
the handler. A higher-order handler is then a function that transforms
a state-annotated computation in one monad m into a computation
in another monad n whose value is annotated with the final state.

The type of a handler hdl :: Handler s m n reveals that it is a
natural transformation, and by imposing the following conditions it
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is a distributive law which composes nicely with monads:

hdl · fmap return = return (4)
hdl · fmap join = join · fmap hdl · hdl (5)

These laws arise naturally as the coherence conditions that govern
the interaction between hdl and monadic computations.

The first law expresses that the handler preserves a pure compu-
tation without modifying its state. The second law expresses that
it makes no difference whether a composite computation is trans-
formed before or after composition, and makes use of join, which is
interdefinable with (>>=):

join mx = mx>>= id mx>>= f = join (fmap f mx)

While the second distributivity law is better expressed in terms of
join, an operational understanding might be more easily obtained
when we rewrite it using these equivalences and name values:

hdl (fmap (>>=k) sm) = hdl sm>>=hdl · fmap k

The weave method generically threads a handler through a
higher-order signature. In addition to the handler, the method also
takes the initial state of s, which is represented by s ().

weave :: (Monad m,Monad n,Functor s)⇒
s ()→ Handler s m n→ (sig m a→ sig n (s a))

Its interpretation is perhaps best understood with an example: here
is the Call instance of the Syntax class.

instance Syntax (HExc e) where
emap f (Throw′ e) = Throw′ e
emap f (Catch′ p h k) = Catch′ p h (f · k)

weave f hdl (Throw′ x) = Throw′ x
weave f hdl (Catch′ p h k) =

Catch′ (hdl (fmap (const p) f ))
(λe→ hdl (fmap (const (h e)) f ))
(hdl · fmap k)

The definition of emap is straightforward: the Throw′ case is trivial
since it does not carry a continuation, and in the Catch′ p h k case
we apply f to the continuation k.

The definition of weave for Throw′ is equally trivial, but Catch′ is
more involved. We derive its implementation as follows. Assuming
that weave s hdl (Catch′ p h k) yields Catch′ p′ h′ k′. In the absence
of exceptions in p we require that

p′>>= k′ = hdl (fmap (>>=k) (fmap (const p) s))

Based on the second handler law, the latter is equivalent to

hdl (fmap (const p) s)>>=hdl · fmap k

which gives us the following solutions for p′ and k′ in terms of p
and k respectively:

p′ = hdl (fmap (const p) s) k′ = hdl · fmap s

Similarly, if p = throw e, we require that

h′ e>>= k′ = hdl (fmap (>>=k) (fmap (const (h′ e) s))

which gives us, by way of the second handler law, a solution for h′:

h′ = λe→ hdl (fmap (const (h e)) s)

10.1 Infrastructure
The infrastructure that supports higher-order syntax is for the most
part an adapted version of what was presented in earlier sections, and
its definition is fairly routine. We need only change two things: the
Functor constraints now become Syntax instead, and continuation
parameters cnt now become m a.

As far as the datatypes à la carte machinery is concerned, the
only changes are the signatures of the class:

class (Syntax sub,Syntax sup)⇒ sub⊂ sup where
inj :: sub m a→ sup m a
prj :: sup m a→Maybe (sub m a)

All of the instances need only have their Functor constraints turned
into Syntax, and the bodies remain identical. We can provide patterns
for higher-order syntax in just the same way as before:

pattern Throw e← (project→ Just (Throw′ e))
throw :: (HExc e⊂ sig)⇒ e→ Prog sig a
throw e = inject (Throw′ e)

pattern Catch p h k← (project→ Just (Catch′ p h k))
catch :: (HExc e⊂ sig)⇒

Prog sig a→ (e→ Prog sig a)→ Prog sig a
catch p h = inject (Catch′ p h return)

The composition of higher-order syntax needs a little more atten-
tion, since weave must correctly thread handlers through subparts:

data (sig1 + sig2) (m ::∗→ ∗) a = Inl (sig1 m a) | Inr (sig2 m a)
instance (HFunctor sig1,HFunctor sig2)⇒

HFunctor (sig1 + sig2) where
hmap t (Inl op) = Inl (hmap t op)
hmap t (Inr op) = Inr (hmap t op)

instance (Syntax sig1,Syntax sig2)⇒
Syntax (sig1 + sig2) where

emap f (Inl op) = Inl (emap f op)
emap f (Inr op) = Inr (emap f op)
weave s hdl (Inl op) = Inl (weave s hdl op)
weave s hdl (Inr op) = Inr (weave s hdl op)

In addition, we can easily lift our existing first-order signatures to
higher-order signatures, by performing the refinement of cnt to m a.
In this lifting, the first-order fmap provides the definitions needed
for all the higher-order methods.

newtype (Lift sig) (m ::∗→ ∗) a = Lift (sig (m a))
instance Functor sig⇒ HFunctor (Lift sig) where

hmap t (Lift op) = Lift (fmap t op)
instance Functor sig⇒ Syntax (Lift sig) where

emap f (Lift op) = Lift (fmap f op)
weave s hdl (Lift op) =

Lift (fmap (λp→ hdl (fmap (const p) s)) op)

Providing signatures and syntax for first-order syntax is now sim-
ple boilerplate. For instance, running higher-order programs with
an empty signature is performed in the same way as first-order
programs, except the signature is now lifted:

type HVoid = Lift Void
run :: Prog HVoid a→ a
run (Return x) = x

The lifted signatures and syntax for State are outlined in Figure 1.

10.2 Higher-Order Handlers
With the infrastructure for higher-order syntax in place, we are now
in a position to define handlers.

State The first higher-order handler we look at is runState, which
is almost identical to its first-order counterpart. Two things have
changed: the type signature is modified to use HState, and the clause
for Other op involves weave.
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type HState s = Lift (State s)

pattern Get k← (project→ Just (Lift (Get′ k)))
get :: (HState s⊂ sig)⇒ Prog sig s
get = inject (Lift (Get′ return))

pattern Put s k← (project→ Just (Lift (Put′ s k)))
put :: (HState s⊂ sig)⇒ s→ Prog sig ()
put s = inject (Lift (Put′ s (return ())))

Figure 1. Lifted State signatures and syntax.

runState :: Syntax sig⇒
s→ Prog (HState s+ sig) a→ Prog sig (s,a)

runState s (Return a) = return (s,a)
runState s (Get k) = runState s (k s)
runState s (Put s′ k) = runState s′ k
runState s (Other op) = Op (weave (s,()) (uncurry runState) op)

Here we see that the fmap (runState s) op in the original definition
has been replaced with weave (s,()) (uncurry runState) op.

Exceptions Exceptions have a more complex handler. This is to be
expected since we must take care of the intermediate state that is to
be woven through higher-order syntax. The clauses for Return and
Throw remain identical, and only Catch and Other are of interest.

runExc :: Syntax sig⇒
Prog (HExc e+ sig) a→ Prog sig (Either e a)

runExc (Return x) = return (Right x)
runExc (Throw x) = return (Left x)
runExc (Catch p h k) =

do r← runExc p
case r of

Left e → do r← runExc (h e)
case r of

Left e → return (Left e)
Right a→ runExc (k a)

Right a→ runExc (k a)
runExc (Other op) = Op (weave (Right ()) hdl op) where

hdl :: Syntax sig⇒
Handler (Either e) (Prog (HExc e+ sig)) (Prog sig)

hdl = either (return · Left) runExc

The case for Catch p h k attempts to execute p. If an exception e is
thrown, then this is used to execute the exception handler h. If that
fails again, then this is an uncaught exception that propagates its
way out. In all other cases, some valid computation a is returned,
which is fed into runExc (k a), since k a may itself throw exceptions.

The Other case starts computations with a successful computa-
tion Right (). The distributive handler simply propagates errors when
they are encountered with return · Left, and otherwise recursively
applies runExc.

Recreating the example of the previous section requires very
little work indeed. For instance, here is the definition of tripleDecr:

tripleDecr :: (HState Int⊂ sig,HExc ()⊂ sig)⇒ Prog sig ()
tripleDecr = decr>> (catch (decr>>decr) return)

The only change is in the types of the functions, since we have
moved to a higher-order setting!

11. Multi-Threading
Cooperative multi-threading allows a thread to suspend its computa-
tion with a yield operation: this relinquishes control to the scheduler,
which may decide to run a different thread. We assume the existence

of an initial master thread, and new child threads are created by
calling fork.

The examples of scoped effects we have seen so far—pruning
non-deterministic computations, and exception handling—have
been solved both by clever use of first-order syntax tagging, and also
by higher-order syntax. We might, therefore, expect both techniques
to be equally expressive. In this section we put that expectation to
rest and show that cooperative multi-threading can only be solved
using the higher-order approach.

11.1 Signature
The multi-threading effect Thread concerns two operations: fork d
spawns a new thread d, and yield relinquishes control. While yield
is a plain algebraic operation, fork is clearly a scoping construct that
delimits the new thread.

It would be wrong to capture the signature as the following
first-order syntax.

data Thread cnt -- BOGUS!
= Yield′ cnt
| Fork′ cnt cnt

Here Fork′ p q would represent a computation that spawns a new
thread p, while the master thread continues with q. The problem is
that, in the first-order framework, we have that

Op (Fork′ p q)>>= k = Op (Fork′ (p>>= k) (q>>= k))

This is clearly not the desired semantics, since forking would result
in in the continuation k being run in both the parent thread and its
child. Instead we want the following, where the continuation is only
applied to the remainder of the parent q.

Op (Fork′ p q)>>= k = Op (Fork′ p (q>>= k))

In other words, we should distinguish between the subcomputation
for the child thread and the one for the continuation of the parent
thread. First-order syntax does not have this capability, only higher-
order syntax does:

data Thread m a
= Yield′ (m a)
| ∀x . Fork′ (m x) (m a)

pattern Yield p← (project→ Just (Yield′ p))
yield :: (Thread⊂ sig)⇒ Prog sig ()
yield = inject (Yield′ (return ()))

pattern Fork p q← (project→ Just (Fork′ p q))
fork :: (Thread⊂ sig)⇒ Prog sig a→ Prog sig ()
fork d = inject (Fork′ d (return ()))

The Syntax instance shown below distinguishes between the two
subcomputations, where emap marks the continuation and ensures
the desired semantics for (>>=).

instance Syntax Thread where
emap f (Yield′ p) = Yield′ (f p)
emap f (Fork′ d p) = Fork′ d (f p)

weave s hdl (Yield′ p) = Yield′ (hdl (fmap (const p) s))
weave s hdl (Fork′ d p) = Fork′ (hdl (fmap (const d) s))

(hdl (fmap (const p) s))

Note that the result type of the new thread is existentially quantified:

Fork′ ::∀x . m x→ m a→ Thread m a

This is in line with the notion that in Fork′ d p>>=k the continuation
k does not interact with the child’s result: there is no direct commu-
nication between the child and the master thread, and no need to
constrain its return type.

10 2014/6/10



We call a thread with an existentially quantified result type a
daemon, in contrast with the master thread of the program.

data Daemon sig = ∀x . Daemon (Prog (Thread+ sig) x)

11.2 Handler
We adopt the semantics that a thread suspends at every fork and
yield in favour of running another thread. Hence, a thread can be
in one of three different states, two of which are named after the
corresponding syntax:

data SThread sig r
= SYield (Prog (Thread+ sig) r)
| SFork (Daemon sig) (Prog (Thread+ sig) r)
| SActive r

instance Syntax sig⇒ Functor (SThread sig) where
fmap f (SActive x) = SActive (f x)
fmap f (SYield p) = SYield (liftM f p)
fmap f (SFork d p) = SFork d (liftM f p)

The default state is SActive, which denotes an ongoing thread.
The SFork d p state denotes a thread that has suspended at a fork
that spawns a daemon d and should continue with p. Similarly,
SYield p denotes a thread that has suspended at a yield and should
continue with p. The similarity between Thread and SThread is no
coincidence: SThread is very nearly Prog (Thread+ sig) a, except
that the latter has an additional constructor Other for syntax.

The runThread handler runs a thread and returns its resulting
state in the obvious way.

runThread :: Syntax sig⇒
Prog (Thread+ sig) x→ Prog sig (SThread sig x)

runThread (Return x) = return (SActive x)
runThread (Yield q) = return (SYield q)
runThread (Fork d q) = return (SFork (Daemon d) q)
runThread (Other op) = Op (weave (SActive ()) thread op)

The helper function thread decides how to continue from an inter-
mediate state. It calls runThread for an active thread, and extends
the continuation for both kinds of suspended threads.

thread :: Syntax sig⇒
Handler (SThread sig) (Prog (Thread+ sig)) (Prog sig)

thread (SActive p) = runThread p
thread (SYield p) = return (SYield (join p))
thread (SFork d p) = return (SFork d (join p))

Finally, the top-level schedule handler runs the master thread and
daemons in round-robin fashion. It switches from one thread to
another at every fork and yield.

schedule :: Syntax sig⇒ Prog (Thread+ sig) a→ Prog sig a
schedule p = master p [ ] where

master p ds =
do r← runThread p

case r of
SActive x → return x
SYield p → daemons ds [ ] p
SFork d p→ daemons (d : ds) [ ] p

daemons [ ] ds′ p = master p (reverse ds′)
daemons (Daemon q : ds) ds′ p =

do r← runThread q
case r of

SActive → daemons ds ds′ p
SYield q′ → daemons ds (Daemon q′ : ds′) p
SFork d′ q′→ daemons (d′ : ds) (Daemon q′ : ds′) p

The schedule function adopts the termination condition of the Go
language:1 the whole program ends when the master thread ends;
any unfinished daemons are discarded.

11.3 Threading in Action
In order to show an example of multi-threading behaviour, we will
introduce syntax for communicating to the outside world with IO.
The syntax Out′ x expresses that x should be written out.

data Out cnt = Out′ String cnt
type HOut = Lift Out

pattern Out s p← (project→ Just (Lift (Out′ s p)))
out :: (HOut⊂ sig)⇒ String→ Prog sig ()
out s = inject (Lift (Out′ s (return ())))

The io handler turns the syntax into semantics by invoking the
appropriate OS system call, which we model by putStrLn.

io :: Prog HOut a→ IO a
io (Return x) = return x
io (Out s p) = do putStrLn s ; io p

With this in place, the following program combines the multi-
threading effect with state and output.

prog :: (Thread⊂ sig,HState Int⊂ sig,HOut⊂ sig)⇒ Prog sig ()
prog = do logIncr "master"

fork (logIncr "daemon">> logIncr "daemon")
logIncr "master"

The master thread increments the state twice, but spawns a new
thread in between that increments the state twice too.

log :: (HState Int⊂ sig,HOut⊂ sig)⇒ String→ Prog sig ()
log x = do (n :: Int)← get ; out (x++": "++ show n)
logIncr :: (HState Int⊂ sig,HOut⊂ sig)⇒ String→ Prog sig ()
logIncr x = log x>> incr

The logIncr function outputs the state before incrementing it.
With our for multi-threading we can obtain two different seman-

tics for prog: one where the state is shared among all threads, and
one where it is local to each thread. By running runThread before
runState we share the state between the master and daemon:

> (io · runState (0 :: Int) · schedule) prog
master : 0
daemon : 1
daemon : 2
master : 3
(4,())

The other way around, fork creates a local copy of the state for the
daemon and updates are not shared:

> (io · schedule · runState (0 :: Int)) prog
master : 0
daemon : 1
daemon : 2
master : 1
(2,())

We have successfully shown how higher-order syntax allows
effects to be scoped, which has resulted in interesting compositional
semantics through the simple reordering of handlers.

1 http://golang.org/
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12. Related Work
12.1 Effect Handlers
Plotkin and Power were the first to explore effect operations [11],
and gave an algebraic account of effects [12] and their combina-
tion [4]. Subsequently, Plotkin and Pretnar [13] have added the
concept of handlers to deal with exceptions. This has led to many
implementations.

Languages Based on this idea, two entirely new programming
languages have been created from the ground up around algebraic
effect handlers.

• Eff [1] is an ML-variant that does not track effect signatures in
its static type system. Hence, its type system does not rule out
higher-order syntax. For instance, Bauer and Pretnar show how
to implement the multi-threading example in Eff, but can only
get the global state interpretation.

• Frank [10] does track effect signatures in its static type system
and does not allow higher-order syntax.

Libraries More recently, three proposals show how to implement
algebraic effect handlers on top of existing functional programming
languages:

• Brady [2] provides an effect handlers approach in the Idris lan-
guage. The approach supports only one special built-in syntactic
scoping construct, catch, but does not support additional higher-
order syntax.

• Kammar et al. [7] present several different implementations
in Haskell, OCaml, SML and Racket. These are based on
different implementation techniques: the free monad and a
continuation-based approach are considered in Haskell, and
delimited continuations for the other languages. Scoping syntax
is not covered. How delimited continuations can be used to
implement higher-order syntax requires further investigation.

• Kiselyov et al. [8] provide a Haskell implementation in terms
of the free monad, in combination with two optimizations: 1)
the codensity transformer improves the performance of (>>=),
and 2) their Dynamic-based open unions have a better time
complexity than nested co-products. We believe that both of
these optimizations can be applied to our first-order and higher-
order scoped syntax. They do not cover scoping syntax.
As far as we are aware Kiselyov et al. are the first to provide
a handler for Cut,2 inspired by Hinze’s monad transformer [3].
However, they do not discuss the scoping problem.

12.2 Monad Transformers
The issue of scoping operations already arises in the more general
setting of monad transformers [9] where different effects can be
composed in different ways to obtain different semantics. The lift
operation is used to combine operations from different transformers
in the same program. While lifting algebraic operations is typically
easy, lifting scoping operations is typically not. This problem is
addressed by Jaskelioff and Moggi [6] for a class of functorial
operations and available in the Monatron library [5].

13. Conclusion
We have shown that using effect handlers for scoping fixes the
interaction between effects. Our main message is that, in order
to regain control over the semantics of interaction, syntax should
determine scope.

2 Our variant in Section 5 simplifies theirs from n-way to 2-way choice and
omits the codensity optimization.

We provide two approaches for scoping syntax, scope markers
and higher-order syntax, each with their merits. Scope markers play
nicely with all existing effect handler frameworks and can piggy-
back on existing optimizations and convenience infrastructure (e.g.,
Template Haskell macros). In contrast, it is an open question how
higher-order syntax can be implemented on top of delimited con-
tinuations, which is the basis for effect handlers in strict languages.
The advantages of higher-order syntax are that it is strictly more
expressive and that is a more natural way to denote scoping; the
markers run the risk of being unbalanced.

For future work we believe that it should be possible to gener-
ically lift first-order handlers to the higher-order setting provided
that they are expressed in terms of algebras.
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