An Investigation of Hierarchical Bit Vectors

James Glenn David Binkley
Loyola College in Maryland
{jglenn,binkley}} @cs.loyola.edu

ABSTRACT

Hierarchical bit vectors represent sets of integers usingllaction of bit vectors. At
the top level, a single bit is set iff the set is non-empty. Bhe of this next level summarize
ranges of the elements. In the case of a binary hierarchitcadttor the two bits of the next
level summarize two ranges: the lower half and the upperdidlfe possible elements. At
the lowest level each bit records the membership of a péaticuieger.

Hierarchical bit vectors find application in informatiortrieval, bioinformatics, non-
averaging sets, and the conversionNB#As to DFAs. Competing data structures for such
applications include simple bit vectors and tree-basadires such as skip-lists. A com-
parison of hierarchical bit vectors with two other repre¢agans (simple bit vectors and
binary search trees) is presented. The comparison incholisanalytical and empirical
analysis of the hierarchical bit vectors.

The analytical results show that as the size of the set useedses, hierarchical bit vec-
tors enjoy an advantage over tree-based structures anasthizd sets used become sparser,
hierarchical bit vectors perform better than standard déxters. The empirical results con-
firm that hierarchical bit vectors sit in between the othen.tWwhe empirical investigation
also highlights the impact that the processor cache hasedoréak-even points.

1 INTRODUCTION

A hierarchical bit vector (HBV) is data structure for storing sets of integers in some fixed
range0, ---, N — 1. HBVs are useful as a compromise between standard bit vectors,
which can perform set insertions and deletions in conshangt, tout are slower to enumerate
the elements of a set, and tree related structures whergigmseand deletions require
logarithmic time, but enumeration is quick.

A HBV can be viewed as a sequence of bit vectors arranged in lagé¢the lowest
layer is a vector ofV bits. Each bit at this level records the membership of a @adr
integer in the set — this is a standard bit vector. The nextdritevel is a bit vector oN/k
bits, each bit of which summarizes a groupkatonsecutive bits of the level below. A bit at
this level is set iff any of the summarized bits are set. Couthee layers summarize groups

2 James Glenn and David Binkley

Layered Bit Vector View Tree View

|

]

/.
L]

Figure 1: AnHBV representing2, 3,6}

of k bits from the next lower level until a layer of a single bit mguced. This bit records
whether or not the set is empty. The valuég:afan differ on different levels.

For example, consider theBV with N = 8 andk = 2 (the layered version is shown
in the left of Figure 1). The bits of the lowest level represte bit vector for the set that
contains 2, 3, and 6. The bits of the second level (up from tieim) summarize pairs of
bits from the lowest level. Here the first bit in the seconaleecords whether or not either
of the values 0 or 1 is in the satd,, if either of the first two bits is set in the bottom level).
The second bit of the second level records whether or nogreiththe values 2 or 3 is in
the set, and so on. The bit vector at the third level (from thgoon) summarizes pairs of
bits from the second level.€., groups of four integers from the underlying set). Working
up, at the top level a single bit records whether or not thésssnpty.

An HBV can also be viewed as a tree. For examplé,# 2 and N is a power of two,
then theHBV can be thought of as a full binary tree withleaves at the lowest level. Each
of those leaves corresponds to a number ffbta N — 1 and records whether or not that
integer is in the set. Each internal node in the tree will aona1 if and only if one of its
two children contains &. The tree view of atBV with N = 8 andk = 2 is shown in the
right of Figure 1. Relating the two views ofH#BV, the nodes from a given level of the tree
correspond to the bit vector at the same layer as seen ind=igur

This chapter introduceslBVs. It first considers several applications where the infor-
mation in the upper-level bit vectors is used to speed up @etations. The chapter then
presents a theoretical and an experimental analysi$ByMs. The theoretic analysis care-
fully bounds the constants of théBVs operations. The empirical work compares the run-
ning time of theHBV with that of simple linked lists and binary search trees.

Hierarchical Bit Vectors 3

2 APPLICATIONS

To provide a context for the investigation biBVs, we first consider four applications.
In each theHBYV represents an alternative to simple bit vectors and treeebatructures
such as binary search trees, skiplists [5], and other cangpédata structures [4,9]. The
applications require the following operations over setsasitive integers where the largest
possible element is knowapriori:

create() make an empty set

insert(n) add an element to the set

delete(n) remove an element from the set

contains(n) determine if an integer is in the set

min() find the smallest element in the set

succ(n) find the smallest element in the set that is greater than

The first of the four applications considered is the coneersif nondeterministic finite
autotmata IFA) to deterministic finite automatdDfA) [3]. The standard algorithm (see
Algorithm 1), first assigns an arbitrary but unique integdxdl to each state of tiéFA and
then builds sets of states that represent which states thdeterministic machine could
be in. The operations this algorithm performs on the staea&® those given above. For
examplemin andsucc are used to iterate through the state sets in sorted ordéetk f
a state set is equal to a previously generated state set.

In the second application Putonti et al. consider the probdé testing for the pres-
ence of certain organisme.g., Anthrax) while excluding all DNA subsequences that are
present in a selected hostd., a benign bacteria) or a background genomg ,(the human
genome) [6]. This is done by identifying all the fixed-lenddNA subsequences{mers)
that occur in all of one set of genomes, but in none of anotbieofggenomes.

The basic idea is to set in correspondence each aftfremers and a particular element
of a counting arrayA, by converting eaclk-mer character sequence to an index of an
element inA. As described by Putonti et al. the algorithm builds a bitteeof every
possiblek-mer (note that fok=12 there aret'? possible12-mers). (In contrast traditional
blast-based approaches use approximation heuristicdiasdrtay miss certain cases.) The
approach then computes matches using a sequence of se$ amidmtersections. Based
on the experiments presented in this chapter HBY would make a good choice for this
identification.

The third application is to non-averaging sets. A non-ayeaset is a set of integers
that does not contain the average of any pair of its elemdnis i€ equivalent to saying
that the set does not contain all three elements of any agtibmrogression:, x + d, x +
2d; thus, non-averaging sets are sometimes called 3-freg $&tsarch et al. survey and
give empirical results from several methods of constrgctarge non-averaging subsets
of a fixed range), ---, N — 1[2]. The best method (due to Behrend [1]) still does not
produce sets of optimal density. Post-processing of tteeisetrder to add elements can be
performed using thelBV's operations. Furthermore, the maximum value and denéttyeo
resulting sets are within the range for whidBVs perform best relative to the alternatives.

4 James Glenn and David Binkley

Algorithm 1 NFA to DFA conversion
Requiree M = (K,X, A, s, F) is ane-free NFA.
Ensure M’ = (K',%,6,{s}, F')is aDFAsuch thatL.(M') = L(M).
Add {s} to K'.
repeat
Choose a stat§ in K’ such that(.S) is undetermined.
D« 0
for all o € ¥ do > Determined (S, o)
for all s € Sdo
for all ¢ such thaf(s,o,q) € A do
D — DU{q} > Usesinsert
end for
end for
end for
if D ¢ K'then > Can useamin andsucc
K' — KU{D}
if DN F # (then
F' — F'U{D}
end if
end if
0(S,0) «— D > d(S, o) is now determined
until All states inK’ haves determined

The final application is in information retrieval (IR) andpdeits a form of lazy alloca-
tion. TheHBV's bit vectors are usually initialized by setting all theshib zero. For sparse
sets, the initialization time can dominate the total timazyinitialization avoids allocating
and zeroing tree nodes until they are needed. Thus, thefirst bit is set among a group
of k siblings, we allocate the node and then initialize all tHeeobits in the group to zero.
In exchange for this space and initialization-time savimgembership tests can no longer
be performed by checking the corresponding bit in the lowse&l. Instead, the algorithm
must do a top-down traversal of the structure.

Lazy allocation is important for IR applications such as btwlding of a concor-
dance [7, 8]. A concordance records, for a list of keywords, - - - , w,,, which documents
in the collectiondy, - - - , d,, contain which keywords. A bit vector is a natural way to rep-
resent this data: for each keywoud store a bit vectob; such that thgth bit of b; is set if
and only if documentl; containsw;. As concordances are often stored on slow secondary
storage units (hard drives or optical disks, for exampl&) reduced storage space can lead
to time savings from the reduced number of /O operationessary to read the data.

Typically, the resulting bit vectors will be very sparsayshlazily initializedHBVs will
naturally compress the data, as blocks of all zeros are radlesated. The remaining bits
in the higher levels allow the complete structure to be repes. anywhere a bit vector
contains a zero, we know a group of zeros is in the vector atélelowest level.

Hierarchical Bit Vectors 5

3 Hierarchical Bit Vectors

This section first considers the special case of a bikYy (a HBV with &k = 2) before
generalizing to &-ary HBV. The discussion of binarkiBVs first considers two represen-
tation choices. It then looks at the definition and compiegit the six HBV operations:
create, contains, insert, delete, min, andsucc. The key to an efficient implementation is
the function that determines the next bit to visit as parhefstucc operation; thus, careful
consideration is given to this function.

3.1 Binary Hierarchical Bit Vectors

Two representations for a binalBV are considered. The first stores the data in a single
bit vector. Viewing this bit vector as a tree, the root of theetis stored in bit zero. The left
child of an internal node stored in hiis stored in bit2; + 1; its right child is stored in bit
2i 4 2. The parent of bit is bit [(i — 1)/2].

As an alternative, the structure can be stored in an arraif egbtors having lengttv,
N/2, N/4, ---. In the subsequent discussion it is convenient to numbebdittemn layer
as Level 0 and the remaining levels in increasing order asomgpghe layers towards the
root. Again viewed as a tree, the children of bt layer! are then bit®i and2i + 1 in
layeri — 1 (not2: 4 1 and2i + 2 as in the single bit vector case). The parent ot bitlayer
lis bit |i/2] at layerl + 1. The empirical study presented in Section 4 uses this method
because of the simplicity of implementation.

The size of the single bit vector is no more tHaN. In the case wheré/ is a power
of two, itis2N — 1. Otherwise, there are wasted bits. For example, the lowest tan
include at mostV — 1 unused (wasted) bits (&f unused bits, the height of the tree can
simply be reduced by 1). At higher levels, bits that sumneadaly unused bits are also
wasted bits. Using layers of bit vectors obviates the needlécate space for unused bits
as they always occur at the end of the vector. However, ithaidcate the array to hold
the levels, which has siz@(log, V).

We now analyze the complexity of the 4BV operations:create, contains, insert,
delete, min, andsucc. TheHBV create operation take®) (V) time for a set capable of
holding the integer§, ---, N — 1. Thecontains(n) operation can be performed (1)
time by simply examining the appropriate bit at the bottortheftree. Thénsert operation
in aHBV is shown in Algorithm 2. In essence, this algorithm first fitigls appropriate bit
in the vector at the bottom layer. If the bit is not set, it seend moves to the next level
up. We continue upwards through the layers setting bitd watifind a bit that is already
set or we come to the root of the tree. Using this algorithm ceue perform an insertion
in worst-caseD(log, IV) time. As the time folinsert depends on the number of previous
insertions, we note that the total time over a sequence eftings with no intervening
deletions is proportional to the number of bits which mustsbg which isO(N) since
each bit can be set at most once. Tatete operation starts on the lowest level where it
clears the selected bit. This bit is part of a pair summaraetie second to last level. The
delete operation must check the other summarized bit. If this hiteio, then the process

6 James Glenn and David Binkley

Algorithm 2 Inserting an integer in iBV
Require: 0 <x < N.
Ensure: « € HBV
[0
b—=x
whilelevel is not higher than the highest levab
if bit b at levell is setthen > (*)
STOP
dse
Set bitb in level > (**)
l—1+1
b «— %
end if
end while

is recursively repeated up one level until the root of the feereached. Thus, deletion is
worst-case) (log, N) time.

Themin andsucc operations are used to determine if tWBVs represent the same set.
This is done by enumerating the two in sorted order. Our gotal enumerate the elements
faster than can be done with a standard bit vector. The bib¥Weaveakness is that it has
to examine each bit in turn; thus, for small sets with largegess, it must examine long
stretches of's. We can overcome this by using the additional data staréldeHBYV. Once
we have found one integer in the set, we can use the informatithe next-to-last level of
theHBV to answer the question “is either of the next two integerbénset?” If the answer
is no, we use the next level up to answer the question “are athemext four integers in
the set?” Continuing in this way, we can leap over long expamd emptiness in a few
bounds. Once the answer to one of our questions is ‘yes’, wegyoalown the identified
subtree to find which integer is next.

It is easier to describe thain andsucc operations using the tree view oHBV. It is
also convenient to define a new operatinim(n) that finds the minimum element contained
in the subtree rooted at node Thus,min() is equivalent tanin(root). Thesucc operation,
described below, also uses timén(n) operation.

To perform themin(n) operation on &BV we begin at noda. If there is a zero stored
in that bit then the (sub)set is empty and we report that flichere is a one, we test the
left child. If the left child is one, we visit that node, otl@se we visit the right child. In
either case we proceed recursively. The complete algorighgiven as Algorithm 3. This
operation clearly takes time proportional to the numbeagéts, which i€ (log, N).

Finally, thesucc(x) operation, Algorithm 4, makes use of one more auxiliary fiomg;
next(x), which denotes the next bit to consider after consideribhg.bihus, when searching
for the next element of a set, teacc operation considers firsiext(x), thennext(next(x)),
and so forth until a bit that is set is encountered or the &dalts off the side of the tree, in
which case« was the largest element in the set. In the following pardwgaeveral different

Hierarchical Bit Vectors 7

Algorithm 3 The min operation for ¢HBV
Require: n is a node in thedBV
Ensure: The algorithm terminates withvin equal to the index of the leftmost set bit at the
bottom of the subtree rootedator —1 if and only if n is not set.
if nis not sethen
min «— —1
STOP
end if
while n is not a leafdo
n <« left(n)
if n is not setthen
n < sibling(n)
end if
end while
min < the index of node:

candidatenext functions are considered. Some candidates may return enoinhoden,
from the tree. In this case, the successor is the smallaseealkein the tree rooted at(i.e.,
min(n)).

The definition ofnext(x) has a significant impact on the performance of the algorithm.
Three possibilities are considered. Firstnéxt(x) = x+1 then we are always checking
along the bottom of the tree; this corresponds to how we weselarch in a normal bit
vector. A better choice for sparse sets is to move up one oe tegels for right children.
The second options move up a fixed single level:

X+1 if X is a left child,

next(x) = { parent(x) + 1 if x is a right child.

Finally, the third choice allowsucc to find the ideal level. Initially we defineext(x) as
the node on the right branch from the last (lowest) node frdnitwthe path from the root
to x went left; this will visit nodes in the same order as a precomgcursive traversal that
skips the children of nodes where the bit is not set. Noteftat left child this isx + 1 as it
was for Option 2. After some analysisap will be placed on just how far up the structure
to go.

All three next functions result in different answers to the question “whanreach the
right edge of a subtree, how far up in the tree do we start ea®” In the first case, we
always look at the same level and hence never get out of therbdevel. In the second
case we look up at most one level. In the third case we look darass possible. Starting
from the black node, Figure 2 illustrates these three: gangss the bottom (choiok)
works well when the set is dense. Going as far up the tree ashp@svorks well when the
set is sparse (choidg). Going one level up (choicB) works well for in-between cases.

The remainder of this section demonstrates that the besititoeii of next is one that
dynamically determines which of the latter two options veblest for a particular set.

8 James Glenn and David Binkley

Algorithm 4 Thesucc operation for eHBV
Require 0 <x < N
Ensure: The algorithm terminates witku.cc equal to the smallest element of the set greater
thanz, or -1 is there is no such element.
n « the node containing bit
while n is not null and is not seto
n < next(n)
end while
if n is null then
succ «+— —1
elseif nis a leafthen
succ < the index of node:
ese
succ < min(n)
end if

Figure 2: From the black node we can goAoB, or C.

Consider the choice of going to a node at leveérsus going to its left child at levél- 1.
For example, from the black node in Figure 2, this is the ahoitgoing to nodeC or node
B. If we expect the bit a€ to be 0 then we should visit it next; doing so will skip its two
children altogether. However, if our expectation is ineoty then upon finding that the node
was 1 we will have to visiB next — we would have been better off going directlyBto

To simplify the following analysis, we assume that the eleta®f the set are chosen
randomly and uniformly. Lep denote the probability that an integer is included in the set
andq = 1 — p the probability that an integer is not in the set. Thus, faregle, the size of
the setpn, is expected to bpN. As a further simplification, assume thist = 2h for some
natural numben.

In general, if the node at levélis 0 then we save one visit by going directly to it; that
happens with probabilitfl. If that node is 1 we visited one extra node; that happens with
probability 1 — qzl. Thus, we want to go to the node at levelhen that move will, on
average, save us work, or Wh@?ll >1- q2l. This leads to the sequence of equivalent
inequalities

Hierarchical Bit Vectors 9

g = 1l—gq
2 > 1
' 22
2" -logoq > -1

ol <« 1
o logs q
~ —02_02q.

I < —logy(—logsq) (1)

If | satisfies the last inequality then it is to our advantage taaytevel ! instead of
level I — 1; the optimall is the greatest level that satisfies that inequalityl,,, =
min(|—logy(—logsy q)], k). Alternately, we can find the densities for which a given leve
is better than the one beneath it by rewriting the above ialiops as

1
1\ 2

> (=
q—<2>

and evaluating for different values af For example, foi = 1 we getq > \/g and for

[=2wegetg > (4/g

As we build a sety will start at1 and decrease. Asdecreases,decreases. To simplify
keeping track of the optimdl (by which we mean keeping down the number of floating
point operations needed to compufewe can first solve fot;,_+, the highest density for
which traversing leveh — 1 is better than traversing level This can be done by taking the
original inequality and solving fof whenl = h — 1 and yieldsd, 1 =1 — (%)Tlh. When
that density is reached, we compudige », which is justl — (1 — dj,_1)?.

Based on the proceeding analysis we update Option 3 for theifun next such that
next(x) determinesk, the maximum number of levels it can move up franfor example,
in Figure 3, the values of for nodes A, B, and C are 1, 2, and 3 respectively. If moving
up £ levels results in a move above the optimal lekelt moves only as high as levél
Otherwise, it moves up ak levels. This cap on how far up the tree to go complicates the
computation ohext(x) for right children (for left children we still havaext(x) = = + 1).
Note that it is not the case that every time we move up a leveieee to the optimal
level: we only move to the optimal level from the rightmosil@lof a subtree rooted at that
level. For example, if the optimal level is Level 2 then frowde A we cannot move to the
optimal level, but nodes B and C will move to the optimal leffedm C we do not move as
high as possible because such a move would not be optimal).

When each level is kept in a separate vector, the locatioheofdast significant zero
in the binary representation aof + 1 givesk. We can then ‘shift computenext(x) by
shifting x right by & bits to find the index ok’s ancestor within the desired level. In the
case where a single bit vector is used for all of the levetsilar bit-level computations can
be used. Note that in both cases a lookup table can be usethjut® the location of the
least significant zero on machines for which there is no gppate hardware instruction to
perform that calculation.

10 James Glenn and David Binkley

Figure 3: Maximum possible levels to move up in a binaBV.

Having explained the three options used for the functiemt, we now analyze the
running time to enumerate a set using fuec operation. Some intermediate values will
be convenient in the ensuing computations:(d¢t) denote the expected number of nodes
visited in a subtree rooted at levayiven that we enter it at its root and I€t(!) denote the
expected number of nodes visited in a subtree entered avéllIroot given that the root's
parent was 1. The@'(0) = C’(0) = 1 and

—_ 2
=1+ ——21_

20D (2)
for I > 0. In other words(’(l) is the work done to visit the root plus the probability that
the root is non-zero times the work that must be done to \hsitchildren, given that their
parent was non-zerd@.(l) needs to account for the work done at the root and the work that
is done for its two children in the case that the root is nammze

Cl)=1+(1-¢*)-2C(1—1). 3)

If [is the optimal levehext should skip to, then an enumeration will vigitery node at
level[. The total work done for a traversal done at leiyelenoted byl’(1), is therefore the
number of nodes at levéltimes the amount of work done to traverse each level's seibtre

N o)

T(l) =5 - Cl) =N -)

where% is the constant of proportionality hidden by ¢N) from before.
To boundC'(1) we first bound thq2l term that appears in both Equations 2 and 3. From

Equation 1 we can derive
Zq Z D)

for the optimal value of, where the minimum value is achieved whetog, (— log, q) is
an integer. We also have
1-— qzl

2
<_7
-3

Hierarchical Bit Vectors 11

which can be used to find an upper bound@ii): substitution into Equation 2 gives

c'(l) < 1+ ; 2C"(1 - 1)

= 1+ %C’(l— 1)

10
-S[]

In addition, we havel — qQL) < % and so we can refine Equation 3:

14+ (1—¢%)-20(1—1)
1+C'(1—1)

O
("

The constant of proportionality in Equation%(f—), can then also be bounded above by
substitution:

c()

IA I

IN

1+3

Le -

o =
= 3
@)
— 3 (2l log2
log 2

ey

10g2q _long
= 3(—10g2Q)l0g25 + 2log, . (5)

The first term in this expression is the dominant one.

The following table gives values for the number of nodeg®isenumerating the set in
sorted order. The first line shows the number when the levasl bynext is capped based
on Equation 5. The values when there is no cap on how high upeitrée thenext function
goes are listed on the second line for comparison. TheseeSgian be compared with the
work done by an ordinary bit vector, which is always INONote that because the fraction
of nodes tends to zero along withthere must be a density below which the running time
to enumerate the set in sorted order is lower fbtBY/ than for a standard bit vector.

12

James Glenn and David Binkley

p = 0.000135| 0.00540 | 0.0214 | 0.0830 | 0.293
cap 0.0165V | 0.0772V | 0.223V | 0.555V | 1.00QV
nocap|| 0.0311V | 0.0929v | 0.251N | 0.583V | 1.077N

As illustrated above, for low density sek$BVs outperform standard bit vectors because
they can enumerate a set in sorted order faster. For highsitgsetsHBVs are better than
tree structures because they can perform a collectionsefts faster. The time taken for
all insertions (assuming no intervenidgletes) is proportional to the number of times the
two marked lines of Algorithm 2 are executed. The total nurdddimes those lines are
executed is equal to the number of bits that are séiBV plus the number of times the
insert operation is used. Each of thé leaves of the tree is set with probability= 1 — ¢.
Each of the2"~! nodes at the second level from the bottom is set with proibabil— ¢>.
Proceeding in this manner, we can compiit®), the expected number of bits that are set
in a tree of height:

I(h) = Xh: 2h=i(1 — ¢2").
=0

This is the number of times the line in Algorithm 2 marked wth) is executed. The
line marked (*) is executed once for each insertion; if adl thsertions are unique then (*)
is executedh = pN = (1—¢)N times. The total (k) +n is a measure of the work done by
all insertions together; the cost per insertiorﬂ;@ + 1. A table of this value for different
combinations ofV andp is given in Figure 4.

Note that for a fixed density, the average work per insertion approaches a constant
and so the total work for insertions isO(n). Also under this assumption, the work to
enumerate the set in sorted orde®igV) = 0(3) = O(n). Therefore, for fixegp, anHBV
performsn distinct insertions followed by a enumeration(tin) time. On the other hand,
a binary search tree will perfori®(n log, n) work to don distinct insertions followed by
O(n) work to enumerate the set in order for a totak®(fn log, n). Therefore, for a fixed
density, there is always aNn large enough so that a#BV will outperform a binary search
tree or similar structure. For example, the empirical daesgnted in Section 4 show that
the break-even point fgy = ﬁ is aroundN = 226, Largerp yield lower break-even
points: forp = 1 itis aroundN = 1024.

However, ap increases, the advantage tiBV has over the bit vector gets smaller and
smaller until it disappears completely. Tests have showhftir p < ﬁ the HBV out-
performs an ordinary bit vector. However, for such spartetbe range must be extremely
high for theHBV to outperform a binary tree.

3.2 k-ary Hierarchical Bit Vectors

This section generalizes the 2-ay8Vs from the previous section to valueskobther than
2. The high performance of the ordinary bit vector comes fthenfact that no processor
works one bit at a time. If we want to list the elements stored bit vector in order using a
32-bit processor, we can break the vector into words of 32dzith and examine each word

Hierarchical Bit Vectors 13

p (the probability that an integer is included in the set)
N(=2") || p=0.0020| p =0.0078| p =0.0312| p =0.1250| p =0.5000
2 3.00 3.00 2.98 2.94 2.75
4 3.99 3.98 3.94 3.77 3.22
8 4.99 4.96 4.84 4.42 3.47
16 5.97 5.90 5.63 4.86 3.59
32 6.94 6.79 6.27 5.11 3.66
64 7.89 7.58 6.70 5.23 3.69
128 8.77 8.21 6.95 5.30 3.70
256 9.56 8.64 7.08 5.33 3.71
512 10.2 8.89 7.14 5.34 3.71
1024 10.6 9.02 7.17 5.35 3.72
2048 10.9 9.08 7.18 5.36 3.72
4096 11.0 9.11 7.19 5.36 3.72
8192 11.1 9.12 7.20 5.36 3.72
16384 11.1 9.13 7.20 5.36 3.72
32768 11.1 9.14 7.20 5.36 3.72
65536 11.1 9.14 7.20 5.36 3.72
131072 11.1 9.14 7.20 5.36 3.72
262144 11.1 9.14 7.20 5.36 3.72
524288 11.1 9.14 7.20 5.36 3.72

Figure 4: Insertion Cost

using one instruction. If a word is zero then we can ignor®itly if it is non-zero do we
have to slow down and check it bit by bit. We use the same glydatespeed up thelBV.

A k-ary HBV (k-HBYV for short) is similar to a binaryiBV, but each node in the tree
hask children all stored in the samiebit word. Insertions and membership tests can be
done in much the same way as in the binBI§V. The next operation can be reworked to
take advantage of the power of microprocessors to examime than one bit at a time:
when finding the next integer in the set after we first examine the rest of the bitssm's
word. If one is non-zero, we find the first non-zero bit, oftsing a single CPU instruction,
for exampleBSR (“bit scan reverse”) on the x86 family of processors. If bt bther bits
were zero, we choose a word in a higher level (the sibling adrasestor ofn’s word) and
examine it, continuing in this manner until we find a non-zeito Once found, we can go
down the tree to find the smallest non-zero descendant.

For example, in thd-ary HBV shown in Figure 5, to finducc(0) we would mask the
most significant bit of the first word at the bottom level to tiet bit patterrd001. TheBSR
instruction tells us that the first non-zero bit is bit numBgeso we know thasucc(0) = 3.
To computesucc(3), we first notice that 3 was the last bit of its word, so we godliye
to that word’s parent, the first word of the middle layer of frgure. We have already

14 James Glenn and David Binkley

Figure 5: An4-HBV representing0, 3, 9, 18, 20, 26}.

examined that word’s leftmost child, so we again mask offrtist significant bit to get
0010. BSR tells us that the first non-zero bit is number 2, so we next @xanhe third
child where we find the bit pattefii00. BSR now tells us that the first bit set is bit number
1, sosucc(3) = 1+ 2 x4 =9, for bit number 1 in word number 2 at the lowest level.

With the k-HBV we face the same choice of the highest level used to traveessruc-
ture during a sorted enumeration as we did for the bifdBY. In Figure 5, if we traverse
at the middle level we will examine the first word at the middieel and discover that its
first bit is set, forcing us to examine the first word on the sedevel; we discover that it's
first bit is set and then examine the last three bits, findiagtthe last is set; at that point we
return to the middle level and check the remaining threedjithe first word. By continu-
ing in that manner we will examine 17 words or parts of wordgsBnply going along the
bottom layer we would have examined only 13. In this case ¢héssdense enough that a
standard bit vector would outperformHBV.

In general, whenever we probe a word at any level &fldBV, we will examine the
entire word once and will examine parts of the word for eaahwa find in bits) through
k — 2. So if we examine a word at levethat hasn non-zero children among its firgt— 1
children, we should expect to examine that word- 1 times. We will also have to examine
those non-zero children but we will not examine the childrth all zero bits. On the other
hand, if we bypass the levélword and instead examine all of its children, we will do the
same work that we did before for its hon-zero children plus examination each for the
children with all zero bits.

The expected benefit of traversing levahstead ofl — 1 is then the expected number
of zero words at level — 1 minus the expected number of non-zero words among the first
k — 1 children minus 1. The probability that a word at leve} 1 is zero is(1 — p)kl SO
the expected number of empty childrerkis(1 — p)"fl. The probability that a word at level
[—1is non-zeroisl — (1 — p)"fl, so the expected number of those among the Airst1
children is(k — 1) - (1 — (1 — p)¥'). The expected benefit is then

l

k-(L=p) —(k—1)- -1 -p*) -1

Hierarchical Bit Vectors 15

As long as the above value is non-negative it is better (@astljust as good) to traverse
levell instead of level — 1. After some algebra, we conclude that traversing léisebetter
than traversing levdl— 1 when

k
1-pk > "
T

By plugging in values fok andi, we can find the densities that are good for traversing

at any level. Foik = 32 and! = 1, we find thatp < 1 — %¥/22 ~ L, which means
Option 2 for the functiomext is preferred over Option 1 as traversing levalie examine

fewer words than an ordinary bit vector (Option 1) for sets thre less thalglg full. For

k = 32andl = 2we havep < 1 — *%/22 ~ L and fork = 32 andl = 3 we get

p<1-— 3276.8/% A ﬁ; however, at this point the binary search trees has a decided
advantage for commonly used values\of

4 Empirical Analysis

The three data structures: bit vectdi#®Vs, and binary search trees were each implemented
and used in an empirical evaluation. This complements tladysis from the previous
section, which counted the number of words examined to eratma set in sorted order,
but ignored the associated constants and the work that Heesdone for other operations.
The experiments confirm that tree structures are supenaniall sparse sets, bit vectors
are superior for dense sets, adBVs are the best choice for large but sparse sets.

We ran the three implementations using randomly generatsdisth various values of
N andp on an AMD Athlon 64. Each test consists of constructing antgragt, inserting
each integer with probability (so the expected number of elements in the setNy,
and finally outputting the elements of the set in sorted ordére order of the insertions
is randomized to avoid the worst-caédn) behavior of the binary search tree for this
operation. Each test run is intended to reflect the usagerpatf NFA determinization,
where state sets are created, populated, and then outfauteéd srder to allow comparisons
to other sets. We include only one enumeration because ideteeminization algorithm,
the insertions are all performed before any enumeratidns, the result from the the first
can be stored and used for subsequent operations. A modet setjuence of operations
for post-processing non-averaging sets would be similamimuld includecontains and
delete operations as well.

ThreeHBV design decisions warrant mention. First, given the hardwes used, an
appropriate value fok was 32. Second, to save initialization time thBV implementation
only initialized the top layer (to zero). The first time a lsisiet (at internal nodes and leaves)
among a group of siblings, we initialize the other bits in its group to zer@sling whether
we are setting the first bit in a group bfsiblings can be determined by checking whether
we have just changed the parent from 0 to 1. The sorted-omi@meration algorithm
does not need to be changed because it will never check hitbdlre not been initialized.

16 James Glenn and David Binkley

Membership tests can not be performed by checking the @mnelng bit in the lower
lever, however. Instead, we must do a top-down traversdieo$tructure.

The third design decision follows from the theoretical iethat levels above the bottom
three would only be useful for very sparse s@&(@) where binary search trees have
a decided advantage. This is because above this level wetdxpect to encounter many
zero bits; thus, the functionext should never choose to traverse the tree above this level.
Retaining at most the bottom three levels pragmaticallymaedgther retaining 3 or just 2 (as
retaining just 1 would find thElBV degenerate into a simple bit vector). For the experiment,
rather than create one structure that adapts to differerditiks, we chose a fixed cutoff.
Making the structures non-adaptive significantly redubesotverhead of the operations.

Two different fixed cutoff values were experimented with-ayer32-ary HBV (essen-
tially implementing Option 2 for the functionext) and a 3-layeB2-ary HBV (essentially
implementing a limited version of Option 3). The 2-layersien maintains only the bottom
two levels; thus, it assumes that all bits at higher levedsadways 1. The 3-layer version
maintains the bottom 3 levels. Both choose the topmostredaayer as the optimal layer
for the purposes of theext operation.

Comparing the simple bit vector and the twiBV implementation empirically (see
Figure 6), the data reveal that the 2-leg2lary HBV can enumerate in sorted order in less
time than an ordinary bit vector for sets sparser than 2=2 and the 3-layeB2-ary HBV
enumerates in sorted order in less time than the 2-28<ary HBV for sets sparser than=
2~14 However, over the range of values fr we used during our experiment, densities
lower thanp = 2714 give a clear advantage to tree structures. Thus, in the nelaof this
section only th&-layer 32-ary HBV is considered.

The results of the experiment are summarized graphicaliygare 7. Ther-axis of the
figure shows the range of values while th&xis shows the number of elements inserted.
Both use a logarithmic scale. The three bands in the figuiewiahe prediction of the
analysis done in Section 3 with the binary search tree beisig$t for small sparse sets, the
bit vector being fastest for dense sets, andHB& begin fastest in the middle range.

As evident in the figure, the boundaries are not straighs|ibet show two anomalies
(regions where the results appear to ‘backtrack’). The éilimaly occurs atN,n) =
(217, 25) where theHBV is faster even though the binary search tree is faster for Not
216 and NV = 2'8, The second anomaly occursrat= 2'7 where bit vectors perform better
for N = 222 andN = 2%° but notN = 223, N = 224, or N = 226, Both appear to be cache
effects. For example, a&f = 222 the bit vector would occupy all of the AMD’s 512KB L2
cache, yet layer 1 of theBV will fit in the 64KB L1 cache forN < 224,

To investigate this hypothesis, the experiment was refesi®g an Intel Core 2, which
has a larger L2 cache, but a smaller L1 cache. The data, shoWwigure 8, supports the
hypothesis: the first anomaly moves to the left along withdeerease in the Core 2's L1
cache size, while the second anomaly moves to the right alatfigthe increase in the L2
cache size.

Hierarchical Bit Vectors 17

10000
—— Bit Vector
1000 H —m— 2-layer HBY
—k— 3-layer HBY
100
)
E
- 10
£
1
0.1
0.01 T T T T T
-30 -25 -20 -15 -10 -5 0

log {n/N)

Figure 6: Time to enumerate in sorted order versus density.

5 Conclusion

If it is known ahead of time that an application will make ussarse sets and will have to
perform thesucc operation on those sets, then g#ary HBV can be put to good use. The
more times thesucc operation is used, the greater tHBV's advantage is over the standard
bit vector. The larger the set or the more timestbatains operation is used, the greater
the HBV’s advantage over the binary search tree. Applications sgamon-averaging set
post-processing where it is possible to determine the tenséithe sets used, theBV
supports a more time-efficient implementation.

References

[1] F. Behrend. On sets of integers which contain no threeithraetic progressionPraoc.
of the National Academy of Science (USA), 23:331-332, 1946.

18 James Glenn and David Binkley

. Bit Vector
| Y,

Binary Search Tree

log: n
— -k -k —h _—h & & —h —h & I RI M
L L R e e e L= = O = e e o

L L T o o = M L= = O ¥ =

8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
logz: N

Figure 7: Comparison of three data structures (AMD AthlorABghitecture)

[2] W. Gasarch, J. Glenn, and C. Kruskal. Finding large &fsets I: the small n case.
Journal of Computer and System Sciences, (to appear).

[3] James Glenn and William |. Gasarch. Implementing wsksfiriite automata: Per-
formance issues. In Derick Wood and Sheng Yu, editdtskshop on Implementing
Automata, volume 1436 of_ecture Notesin Computer Science, pages 75—-86. Springer,
1997.

[4] M. Korda and R. Raman. An experimental evaluation of iylotata structures for
searching. IrProceedings of the 3rd Inter national Workshop in Algorithm Engineering,
Lecture Notes in Computer Science 1668, pages 213—-22 hdapii/erlag, 1999.

Hierarchical Bit Vectors 19

. Bit Vector
| Y,

Binary Search Tree

log: n
— -k -k —h _—h & & —h —h & I RI M
L L R e e e L= = O = e e o

L L T o o = M L= = O ¥ =

8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
logz: N

Figure 8: Comparison of three data structures (Intel Corechifecture)

[5] W. Pugh. Skip lists: A probabilistic alternative to bated trees. Commun. ACM,
33(6):668-676, 1990.

[6] C. Putonti, S. Chumakov, R. Mitra, G. Fox, R. Willso, andF6fanov. Human-blind
probes and primers for dengue virus identification — exhaustnalysis of subse-
guences present in the human and 83 dengue genome sequérdestion of Eu-
ropean Biochemical Societies (FEBS), 273, Feb 2006.

[7] O. Vallarino. On the use of bit-maps for multiple key retral. SGPLAN Notices,
Special Issue, 11:108-114, 1976.

[8] H. Wedekind and T. HardeDatenbanksysteme 11. B.-1. Wissenschaftsverlag, 1976.

20 James Glenn and David Binkley

[9] D. E. Willard. New trie data structures which support ywéast search operations.
Journal of Computer and System Sciences, 28(3):279-294, 1984.

