
An Investigation of Hierarchical Bit Vectors

James Glenn David Binkley
Loyola College in Maryland
{jglenn,binkley}@cs.loyola.edu

ABSTRACT
Hierarchical bit vectors represent sets of integers using acollection of bit vectors. At

the top level, a single bit is set iff the set is non-empty. Thebits of this next level summarize
ranges of the elements. In the case of a binary hierarchical bit vector the two bits of the next
level summarize two ranges: the lower half and the upper halfof the possible elements. At
the lowest level each bit records the membership of a particular integer.

Hierarchical bit vectors find application in information retrieval, bioinformatics, non-
averaging sets, and the conversion ofNFAs to DFAs. Competing data structures for such
applications include simple bit vectors and tree-based structures such as skip-lists. A com-
parison of hierarchical bit vectors with two other representations (simple bit vectors and
binary search trees) is presented. The comparison includesboth analytical and empirical
analysis of the hierarchical bit vectors.

The analytical results show that as the size of the set used increases, hierarchical bit vec-
tors enjoy an advantage over tree-based structures and thatas the sets used become sparser,
hierarchical bit vectors perform better than standard bit vectors. The empirical results con-
firm that hierarchical bit vectors sit in between the other two. The empirical investigation
also highlights the impact that the processor cache has on the break-even points.

1 INTRODUCTION

A hierarchical bit vector (HBV) is data structure for storing sets of integers in some fixed
range0, · · · , N − 1. HBVs are useful as a compromise between standard bit vectors,
which can perform set insertions and deletions in constant time, but are slower to enumerate
the elements of a set, and tree related structures where insertions and deletions require
logarithmic time, but enumeration is quick.

A HBV can be viewed as a sequence of bit vectors arranged in layers.At the lowest
layer is a vector ofN bits. Each bit at this level records the membership of a particular
integer in the set – this is a standard bit vector. The next higher level is a bit vector ofN/k
bits, each bit of which summarizes a group ofk consecutive bits of the level below. A bit at
this level is set iff any of the summarized bits are set. Consecutive layers summarize groups

1

2 James Glenn and David Binkley

Layered Bit Vector View Tree View

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

Figure 1: AnHBV representing{2, 3, 6}

of k bits from the next lower level until a layer of a single bit is produced. This bit records
whether or not the set is empty. The value ofk can differ on different levels.

For example, consider theHBV with N = 8 andk = 2 (the layered version is shown
in the left of Figure 1). The bits of the lowest level represent the bit vector for the set that
contains 2, 3, and 6. The bits of the second level (up from the bottom) summarize pairs of
bits from the lowest level. Here the first bit in the second level records whether or not either
of the values 0 or 1 is in the set (i.e., if either of the first two bits is set in the bottom level).
The second bit of the second level records whether or not either of the values 2 or 3 is in
the set, and so on. The bit vector at the third level (from the bottom) summarizes pairs of
bits from the second level (i.e., groups of four integers from the underlying set). Working
up, at the top level a single bit records whether or not the setis empty.

An HBV can also be viewed as a tree. For example, ifk = 2 andN is a power of two,
then theHBV can be thought of as a full binary tree withN leaves at the lowest level. Each
of those leaves corresponds to a number from0 to N − 1 and records whether or not that
integer is in the set. Each internal node in the tree will contain a1 if and only if one of its
two children contains a1. The tree view of anHBV with N = 8 andk = 2 is shown in the
right of Figure 1. Relating the two views of aHBV, the nodes from a given level of the tree
correspond to the bit vector at the same layer as seen in Figure 1.

This chapter introducesHBVs. It first considers several applications where the infor-
mation in the upper-level bit vectors is used to speed up set operations. The chapter then
presents a theoretical and an experimental analysis ofHBVs. The theoretic analysis care-
fully bounds the constants of theHBVs operations. The empirical work compares the run-
ning time of theHBV with that of simple linked lists and binary search trees.

Hierarchical Bit Vectors 3

2 APPLICATIONS

To provide a context for the investigation ofHBVs, we first consider four applications.
In each theHBV represents an alternative to simple bit vectors and tree-based structures
such as binary search trees, skiplists [5], and other competing data structures [4, 9]. The
applications require the following operations over sets ofpositive integers where the largest
possible element is knowna priori:

create() make an empty set
insert(n) add an element to the set
delete(n) remove an element from the set
contains(n) determine if an integer is in the set
min() find the smallest element in the set
succ(n) find the smallest element in the set that is greater thann

The first of the four applications considered is the conversion of nondeterministic finite
autotmata (NFA) to deterministic finite automata (DFA) [3]. The standard algorithm (see
Algorithm 1), first assigns an arbitrary but unique integer label to each state of theNFA and
then builds sets of states that represent which states the nondeterministic machine could
be in. The operations this algorithm performs on the state sets are those given above. For
example,min andsucc are used to iterate through the state sets in sorted order to check if
a state set is equal to a previously generated state set.

In the second application Putonti et al. consider the problem of testing for the pres-
ence of certain organisms (e.g., Anthrax) while excluding all DNA subsequences that are
present in a selected host (e.g., a benign bacteria) or a background genome (e.g., the human
genome) [6]. This is done by identifying all the fixed-lengthDNA subsequences (k-mers)
that occur in all of one set of genomes, but in none of another set of genomes.

The basic idea is to set in correspondence each of the4k k-mers and a particular element
of a counting array,A, by converting eachk-mer character sequence to an index of an
element inA. As described by Putonti et al. the algorithm builds a bit vector of every
possiblek-mer (note that fork=12 there are412 possible12-mers). (In contrast traditional
blast-based approaches use approximation heuristics and thus may miss certain cases.) The
approach then computes matches using a sequence of set unions and intersections. Based
on the experiments presented in this chapter, theHBV would make a good choice for this
identification.

The third application is to non-averaging sets. A non-averaging set is a set of integers
that does not contain the average of any pair of its elements (this is equivalent to saying
that the set does not contain all three elements of any arithmetic progressionx, x + d, x +
2d; thus, non-averaging sets are sometimes called 3-free sets). Gasarch et al. survey and
give empirical results from several methods of constructing large non-averaging subsets
of a fixed range0, · · · , N − 1 [2]. The best method (due to Behrend [1]) still does not
produce sets of optimal density. Post-processing of the sets in order to add elements can be
performed using theHBV’s operations. Furthermore, the maximum value and density of the
resulting sets are within the range for whichHBVs perform best relative to the alternatives.

4 James Glenn and David Binkley

Algorithm 1 NFA to DFA conversion
Require: M = (K,Σ,∆, s, F) is anǫ-freeNFA.
Ensure: M ′ = (K ′,Σ, δ, {s}, F ′) is aDFA such thatL(M ′) = L(M).

Add {s} to K ′.
repeat

Choose a stateS in K ′ such thatδ(S) is undetermined.
D ← ∅
for all σ ∈ Σ do ⊲ Determineδ(S, σ)

for all s ∈ S do
for all q such that(s, σ, q) ∈ ∆ do

D ← D ∪ {q} ⊲ Usesinsert
end for

end for
end for
if D 6∈ K ′ then ⊲ Can usemin andsucc

K ′ ← K ∪ {D}
if D ∩ F 6= ∅ then

F ′ ← F ′ ∪ {D}
end if

end if
δ(S, σ) ← D ⊲ δ(S, σ) is now determined

until All states inK ′ haveδ determined

The final application is in information retrieval (IR) and exploits a form of lazy alloca-
tion. TheHBV’s bit vectors are usually initialized by setting all the bits to zero. For sparse
sets, the initialization time can dominate the total time. Lazy initialization avoids allocating
and zeroing tree nodes until they are needed. Thus, the first time a bit is set among a group
of k siblings, we allocate the node and then initialize all the other bits in the group to zero.
In exchange for this space and initialization-time savings, membership tests can no longer
be performed by checking the corresponding bit in the lowestlevel. Instead, the algorithm
must do a top-down traversal of the structure.

Lazy allocation is important for IR applications such as thebuilding of a concor-
dance [7, 8]. A concordance records, for a list of keywordsw1, · · · , wn, which documents
in the collectiond1, · · · , dn contain which keywords. A bit vector is a natural way to rep-
resent this data: for each keywordwi store a bit vectorbi such that thejth bit of bi is set if
and only if documentdj containswi. As concordances are often stored on slow secondary
storage units (hard drives or optical disks, for example), the reduced storage space can lead
to time savings from the reduced number of I/O operations necessary to read the data.

Typically, the resulting bit vectors will be very sparse; thus, lazily initializedHBVs will
naturally compress the data, as blocks of all zeros are neverallocated. The remaining bits
in the higher levels allow the complete structure to be recovered: anywhere a bit vector
contains a zero, we know a group of zeros is in the vector at thenext lowest level.

Hierarchical Bit Vectors 5

3 Hierarchical Bit Vectors

This section first considers the special case of a binaryHBV (a HBV with k = 2) before
generalizing to ak-ary HBV. The discussion of binaryHBVs first considers two represen-
tation choices. It then looks at the definition and complexity of the sixHBV operations:
create, contains, insert, delete, min, andsucc. The key to an efficient implementation is
the function that determines the next bit to visit as part of thesucc operation; thus, careful
consideration is given to this function.

3.1 Binary Hierarchical Bit Vectors

Two representations for a binaryHBV are considered. The first stores the data in a single
bit vector. Viewing this bit vector as a tree, the root of the tree is stored in bit zero. The left
child of an internal node stored in biti is stored in bit2i + 1; its right child is stored in bit
2i + 2. The parent of biti is bit ⌊(i− 1)/2⌋.

As an alternative, the structure can be stored in an array of bit vectors having lengthN ,
N/2, N/4, · · ·. In the subsequent discussion it is convenient to number thebottom layer
as Level 0 and the remaining levels in increasing order as we go up the layers towards the
root. Again viewed as a tree, the children of biti at layerl are then bits2i and2i + 1 in
layeri−1 (not2i+1 and2i+2 as in the single bit vector case). The parent of biti of layer
l is bit ⌊i/2⌋ at layerl + 1. The empirical study presented in Section 4 uses this method
because of the simplicity of implementation.

The size of the single bit vector is no more than3N . In the case whereN is a power
of two, it is 2N − 1. Otherwise, there are wasted bits. For example, the lowest level can
include at mostN − 1 unused (wasted) bits (atN unused bits, the height of the tree can
simply be reduced by 1). At higher levels, bits that summarize only unused bits are also
wasted bits. Using layers of bit vectors obviates the need toallocate space for unused bits
as they always occur at the end of the vector. However, it has to allocate the array to hold
the levels, which has sizeO(log2 N).

We now analyze the complexity of the sixHBV operations:create, contains, insert,
delete, min, andsucc. TheHBV create operation takesO(N) time for a set capable of
holding the integers0, · · · , N − 1. Thecontains(n) operation can be performed inO(1)
time by simply examining the appropriate bit at the bottom ofthe tree. Theinsert operation
in a HBV is shown in Algorithm 2. In essence, this algorithm first findsthe appropriate bit
in the vector at the bottom layer. If the bit is not set, it setsit and moves to the next level
up. We continue upwards through the layers setting bits until we find a bit that is already
set or we come to the root of the tree. Using this algorithm, wecan perform an insertion
in worst-caseO(log2 N) time. As the time forinsert depends on the number of previous
insertions, we note that the total time over a sequence of insertions with no intervening
deletions is proportional to the number of bits which must beset, which isO(N) since
each bit can be set at most once. Thedelete operation starts on the lowest level where it
clears the selected bit. This bit is part of a pair summarizedat the second to last level. The
delete operation must check the other summarized bit. If this bit iszero, then the process

6 James Glenn and David Binkley

Algorithm 2 Inserting an integer in aHBV
Require: 0 ≤ x < N .
Ensure: x ∈ HBV

l← 0
b← x
while level l is not higher than the highest leveldo

if bit b at levell is setthen ⊲ (*)
STOP

else
Set bitb in level l ⊲ (**)
l← l + 1
b← b

2
end if

end while

is recursively repeated up one level until the root of the tree is reached. Thus, deletion is
worst-caseO(log2 N) time.

Themin andsucc operations are used to determine if twoHBVs represent the same set.
This is done by enumerating the two in sorted order. Our goal is to enumerate the elements
faster than can be done with a standard bit vector. The bit vector’s weakness is that it has
to examine each bit in turn; thus, for small sets with large ranges, it must examine long
stretches of0’s. We can overcome this by using the additional data stored in theHBV. Once
we have found one integer in the set, we can use the information in the next-to-last level of
theHBV to answer the question “is either of the next two integers in the set?” If the answer
is no, we use the next level up to answer the question “are any of the next four integers in
the set?” Continuing in this way, we can leap over long expanses of emptiness in a few
bounds. Once the answer to one of our questions is ‘yes’, we can go down the identified
subtree to find which integer is next.

It is easier to describe themin andsucc operations using the tree view of aHBV. It is
also convenient to define a new operationmin(n) that finds the minimum element contained
in the subtree rooted at noden. Thus,min() is equivalent tomin(root). Thesucc operation,
described below, also uses themin(n) operation.

To perform themin(n) operation on aHBV we begin at noden. If there is a zero stored
in that bit then the (sub)set is empty and we report that fact.If there is a one, we test the
left child. If the left child is one, we visit that node, otherwise we visit the right child. In
either case we proceed recursively. The complete algorithmis given as Algorithm 3. This
operation clearly takes time proportional to the number of layers, which isO(log2 N).

Finally, thesucc(x) operation, Algorithm 4, makes use of one more auxiliary function,
next(x), which denotes the next bit to consider after considering bit x. Thus, when searching
for the next element of a set, thesucc operation considers firstnext(x), thennext(next(x)),
and so forth until a bit that is set is encountered or the search falls off the side of the tree, in
which casex was the largest element in the set. In the following paragraphs several different

Hierarchical Bit Vectors 7

Algorithm 3 Themin operation for aHBV
Require: n is a node in theHBV
Ensure: The algorithm terminates withmin equal to the index of the leftmost set bit at the

bottom of the subtree rooted atn, or−1 if and only if n is not set.
if n is not setthen

min← −1
STOP

end if
while n is not a leafdo

n← left(n)
if n is not setthen

n← sibling(n)
end if

end while
min← the index of noden

candidatenext functions are considered. Some candidates may return an interior node,n,
from the tree. In this case, the successor is the smallest element in the tree rooted atn (i.e.,
min(n)).

The definition ofnext(x) has a significant impact on the performance of the algorithm.
Three possibilities are considered. First, ifnext(x) = x+1 then we are always checking
along the bottom of the tree; this corresponds to how we wouldsearch in a normal bit
vector. A better choice for sparse sets is to move up one or more levels for right children.
The second options move up a fixed single level:

next(x) =

{

x + 1 if x is a left child,
parent(x) + 1 if x is a right child.

Finally, the third choice allowssucc to find the ideal level. Initially we definenext(x) as
the node on the right branch from the last (lowest) node from which the path from the root
to x went left; this will visit nodes in the same order as a pre-order recursive traversal that
skips the children of nodes where the bit is not set. Note thatfor a left child this isx + 1 as it
was for Option 2. After some analysis acap will be placed on just how far up the structure
to go.

All three next functions result in different answers to the question “whenwe reach the
right edge of a subtree, how far up in the tree do we start searching?” In the first case, we
always look at the same level and hence never get out of the bottom level. In the second
case we look up at most one level. In the third case we look up asfar as possible. Starting
from the black node, Figure 2 illustrates these three: goingacross the bottom (choiceA)
works well when the set is dense. Going as far up the tree as possible works well when the
set is sparse (choiceC). Going one level up (choiceB) works well for in-between cases.

The remainder of this section demonstrates that the best definition of next is one that
dynamically determines which of the latter two options works best for a particular set.

8 James Glenn and David Binkley

Algorithm 4 Thesucc operation for aHBV
Require: 0 ≤ x < N
Ensure: The algorithm terminates withsucc equal to the smallest element of the set greater

thanx, or -1 is there is no such element.
n← the node containing bitx
while n is not null and is not setdo

n← next(n)
end while
if n is null then

succ← −1
else if n is a leafthen

succ← the index of noden
else

succ← min(n)
end if

A

B

C

Figure 2: From the black node we can go toA, B, or C.

Consider the choice of going to a node at levell versus going to its left child at levell − 1.
For example, from the black node in Figure 2, this is the choice of going to nodeC or node
B. If we expect the bit atC to be 0 then we should visit it next; doing so will skip its two
children altogether. However, if our expectation is incorrect, then upon finding that the node
was 1 we will have to visitB next – we would have been better off going directly toB.

To simplify the following analysis, we assume that the elements of the set are chosen
randomly and uniformly. Letp denote the probability that an integer is included in the set
andq = 1− p the probability that an integer is not in the set. Thus, for example, the size of
the set,n, is expected to bepN . As a further simplification, assume thatN = 2h for some
natural numberh.

In general, if the node at levell is 0 then we save one visit by going directly to it; that
happens with probabilityq2l

. If that node is 1 we visited one extra node; that happens with
probability 1 − q2l

. Thus, we want to go to the node at levell when that move will, on
average, save us work, or whenq2l

≥ 1 − q2l

. This leads to the sequence of equivalent
inequalities

Hierarchical Bit Vectors 9

q2l

≥ 1− q2l

q2l

≥
1

2
2l · log2 q ≥ −1

2l ≤ −
1

log2 q
l ≤ − log2(− log2 q). (1)

If l satisfies the last inequality then it is to our advantage to goto level l instead of
level l − 1; the optimal l is the greatest levell that satisfies that inequality:lopt =
min(⌊− log2(− log2 q)⌋, h). Alternately, we can find the densities for which a given level
is better than the one beneath it by rewriting the above inequalities as

q ≥

(

1

2

)
1

2l

and evaluating for different values ofl. For example, forl = 1 we getq ≥
√

1
2 and for

l = 2 we getq ≥ 4

√

1
2 .

As we build a set,q will start at1 and decrease. Asq decreases,l decreases. To simplify
keeping track of the optimall (by which we mean keeping down the number of floating
point operations needed to computel), we can first solve fordh−1, the highest density for
which traversing levelh−1 is better than traversing levelh. This can be done by taking the

original inequality and solving forq whenl = h − 1 and yieldsdh−1 = 1− (1
2)

1

2h . When
that density is reached, we computedh−2, which is just1− (1− dh−1)

2.
Based on the proceeding analysis we update Option 3 for the function next such that

next(x) determinesk, the maximum number of levels it can move up fromx. For example,
in Figure 3, the values ofk for nodes A, B, and C are 1, 2, and 3 respectively. If moving
up k levels results in a move above the optimal levell, it moves only as high as levell.
Otherwise, it moves up allk levels. This cap on how far up the tree to go complicates the
computation ofnext(x) for right children (for left children we still havenext(x) = x + 1).
Note that it is not the case that every time we move up a level wemove to the optimal
level: we only move to the optimal level from the rightmost child of a subtree rooted at that
level. For example, if the optimal level is Level 2 then from node A we cannot move to the
optimal level, but nodes B and C will move to the optimal level(from C we do not move as
high as possible because such a move would not be optimal).

When each level is kept in a separate vector, the location of the least significant zero
in the binary representation ofx + 1 gives k. We can then ‘shift compute’next(x) by
shifting x right by k bits to find the index ofx’s ancestor within the desired level. In the
case where a single bit vector is used for all of the levels, similar bit-level computations can
be used. Note that in both cases a lookup table can be used to compute the location of the
least significant zero on machines for which there is no appropriate hardware instruction to
perform that calculation.

10 James Glenn and David Binkley

A B C

Figure 3: Maximum possible levels to move up in a binaryHBV.

Having explained the three options used for the functionnext, we now analyze the
running time to enumerate a set using thesucc operation. Some intermediate values will
be convenient in the ensuing computations: letC(l) denote the expected number of nodes
visited in a subtree rooted at levell given that we enter it at its root and letC ′(l) denote the
expected number of nodes visited in a subtree entered at its level-l root given that the root’s
parent was 1. ThenC(0) = C ′(0) = 1 and

C ′(l) = 1 +
1− q2l

1− q2l+1
· 2C ′(l − 1) (2)

for l > 0. In other words,C ′(l) is the work done to visit the root plus the probability that
the root is non-zero times the work that must be done to visit the children, given that their
parent was non-zero.C(l) needs to account for the work done at the root and the work that
is done for its two children in the case that the root is non-zero:

C(l) = 1 + (1− q2l

) · 2C ′(l − 1). (3)

If l is the optimal levelnext should skip to, then an enumeration will visitevery node at
level l. The total work done for a traversal done at levell, denoted byT (l), is therefore the
number of nodes at levell times the amount of work done to traverse each level’s subtree:

T (l) =
N

2l
· C(l) = N ·

C(l)

2l
(4)

whereC(l)
2l is the constant of proportionality hidden by theO(N) from before.

To boundC(l) we first bound theq2l

term that appears in both Equations 2 and 3. From
Equation 1 we can derive

√

1

2
≥ q2l

≥
1

2

for the optimal value ofl, where the minimum value is achieved when− log2(− log2 q) is
an integer. We also have

1− q2l

1− q2l+1
≤

2

3
,

Hierarchical Bit Vectors 11

which can be used to find an upper bound onC ′(l): substitution into Equation 2 gives

C ′(l) ≤ 1 +
2

3
· 2C ′(l − 1)

= 1 +
4

3
C ′(l − 1)

=
∑

i=0

l

(

4

3

)i

= 3

[

(

4

3

)l+1

− 1

]

.

In addition, we have(1− q2l

) ≤ 1
2 , and so we can refine Equation 3:

C(l) = 1 + (1− q2l

) · 2C ′(l − 1)
≤ 1 + C ′(l − 1)

≤ 1 + 3

[

(

4

3

)l+1

− 1

]

= 3

(

4

3

)l+1

− 2
.

The constant of proportionality in Equation 4,C(l)
2l , can then also be bounded above by

substitution:

C(l)

2l
≤

[

3
(

4
3

)l+1
− 2

]

2l

= 3 ·

(

2

3

)l

−
2

2l

= 3 · (2l)log2
2

3 −
2

2l

≤ 3 ·

(

−
1

log2 q

)log2
2

3

−
2

− 1
log2 q

= 3(− log2 q)log2
3

2 + 2 log2 q. (5)

The first term in this expression is the dominant one.
The following table gives values for the number of nodes visited enumerating the set in

sorted order. The first line shows the number when the level used bynext is capped based
on Equation 5. The values when there is no cap on how high up in the tree thenext function
goes are listed on the second line for comparison. These figures can be compared with the
work done by an ordinary bit vector, which is always 1.00N . Note that because the fraction
of nodes tends to zero along withp, there must be a density below which the running time
to enumerate the set in sorted order is lower for aHBV than for a standard bit vector.

12 James Glenn and David Binkley

p = 0.000135 0.00540 0.0214 0.0830 0.293
cap 0.0165N 0.0772N 0.223N 0.555N 1.000N
no cap 0.0311N 0.0929N 0.251N 0.583N 1.077N

As illustrated above, for low density sets,HBVs outperform standard bit vectors because
they can enumerate a set in sorted order faster. For higher density sets,HBVs are better than
tree structures because they can perform a collection ofinserts faster. The time taken for
all insertions (assuming no interveningdeletes) is proportional to the number of times the
two marked lines of Algorithm 2 are executed. The total number of times those lines are
executed is equal to the number of bits that are set inHBV plus the number of times the
insert operation is used. Each of the2h leaves of the tree is set with probabilityp = 1− q.
Each of the2h−1 nodes at the second level from the bottom is set with probability 1 − q2.
Proceeding in this manner, we can computeI(h), the expected number of bits that are set
in a tree of heighth:

I(h) =
h

∑

i=0

2h−i(1− q2i

).

This is the number of times the line in Algorithm 2 marked with(**) is executed. The
line marked (*) is executed once for each insertion; if all the insertions are unique then (*)
is executedn = pN = (1−q)N times. The totalI(h)+n is a measure of the work done by
all insertions together; the cost per insertion isI(h)

n
+ 1. A table of this value for different

combinations ofN andp is given in Figure 4.
Note that for a fixed densityp, the average work per insertion approaches a constant

and so the total work forn insertions isO(n). Also under this assumption, the work to
enumerate the set in sorted order isO(N) = O(n

p
) = O(n). Therefore, for fixedp, anHBV

performsn distinct insertions followed by a enumeration inO(n) time. On the other hand,
a binary search tree will performO(n log2 n) work to don distinct insertions followed by
O(n) work to enumerate the set in order for a total ofO(n log2 n). Therefore, for a fixed
density, there is always anN large enough so that anHBV will outperform a binary search
tree or similar structure. For example, the empirical data presented in Section 4 show that
the break-even point forp = 1

1024 is aroundN = 226. Largerp yield lower break-even
points: forp = 1

4 it is aroundN = 1024.
However, asp increases, the advantage theHBV has over the bit vector gets smaller and

smaller until it disappears completely. Tests have shown that for p ≤ 1
65536 the HBV out-

performs an ordinary bit vector. However, for such sparse sets the range must be extremely
high for theHBV to outperform a binary tree.

3.2 k-ary Hierarchical Bit Vectors

This section generalizes the 2-aryHBVs from the previous section to values ofk other than
2. The high performance of the ordinary bit vector comes fromthe fact that no processor
works one bit at a time. If we want to list the elements stored in a bit vector in order using a
32-bit processor, we can break the vector into words of 32 bits each and examine each word

Hierarchical Bit Vectors 13

p (the probability that an integer is included in the set)
N(= 2h) p =0.0020 p =0.0078 p =0.0312 p =0.1250 p =0.5000

2 3.00 3.00 2.98 2.94 2.75
4 3.99 3.98 3.94 3.77 3.22
8 4.99 4.96 4.84 4.42 3.47

16 5.97 5.90 5.63 4.86 3.59
32 6.94 6.79 6.27 5.11 3.66
64 7.89 7.58 6.70 5.23 3.69

128 8.77 8.21 6.95 5.30 3.70
256 9.56 8.64 7.08 5.33 3.71
512 10.2 8.89 7.14 5.34 3.71

1024 10.6 9.02 7.17 5.35 3.72
2048 10.9 9.08 7.18 5.36 3.72
4096 11.0 9.11 7.19 5.36 3.72
8192 11.1 9.12 7.20 5.36 3.72

16384 11.1 9.13 7.20 5.36 3.72
32768 11.1 9.14 7.20 5.36 3.72
65536 11.1 9.14 7.20 5.36 3.72

131072 11.1 9.14 7.20 5.36 3.72
262144 11.1 9.14 7.20 5.36 3.72
524288 11.1 9.14 7.20 5.36 3.72

Figure 4: Insertion Cost

using one instruction. If a word is zero then we can ignore it.Only if it is non-zero do we
have to slow down and check it bit by bit. We use the same strategy to speed up theHBV.

A k-ary HBV (k-HBV for short) is similar to a binaryHBV, but each node in the tree
hask children all stored in the samek-bit word. Insertions and membership tests can be
done in much the same way as in the binaryHBV. Thenext operation can be reworked to
take advantage of the power of microprocessors to examine more than one bit at a time:
when finding the next integer in the set afterm, we first examine the rest of the bits inm’s
word. If one is non-zero, we find the first non-zero bit, often using a single CPU instruction,
for exampleBSR (“bit scan reverse”) on the x86 family of processors. If all the other bits
were zero, we choose a word in a higher level (the sibling of anancestor ofm’s word) and
examine it, continuing in this manner until we find a non-zerobit. Once found, we can go
down the tree to find the smallest non-zero descendant.

For example, in the4-ary HBV shown in Figure 5, to findsucc(0) we would mask the
most significant bit of the first word at the bottom level to getthe bit pattern0001. TheBSR
instruction tells us that the first non-zero bit is bit number3, so we know thatsucc(0) = 3.
To computesucc(3), we first notice that 3 was the last bit of its word, so we go directly
to that word’s parent, the first word of the middle layer of thefigure. We have already

14 James Glenn and David Binkley

Figure 5: An4-HBV representing{0, 3, 9, 18, 20, 26}.

examined that word’s leftmost child, so we again mask off themost significant bit to get
0010. BSR tells us that the first non-zero bit is number 2, so we next examine the third
child where we find the bit pattern0100. BSR now tells us that the first bit set is bit number
1, sosucc(3) = 1 + 2 ∗ 4 = 9, for bit number 1 in word number 2 at the lowest level.

With thek-HBV we face the same choice of the highest level used to traverse the struc-
ture during a sorted enumeration as we did for the binaryHBV. In Figure 5, if we traverse
at the middle level we will examine the first word at the middlelevel and discover that its
first bit is set, forcing us to examine the first word on the second level; we discover that it’s
first bit is set and then examine the last three bits, finding that the last is set; at that point we
return to the middle level and check the remaining three bitsof the first word. By continu-
ing in that manner we will examine 17 words or parts of words. By simply going along the
bottom layer we would have examined only 13. In this case the set is dense enough that a
standard bit vector would outperform aHBV.

In general, whenever we probe a word at any level of ak-HBV, we will examine the
entire word once and will examine parts of the word for each one we find in bits0 through
k− 2. So if we examine a word at levell that hasm non-zero children among its firstk− 1
children, we should expect to examine that wordm+1 times. We will also have to examine
those non-zero children but we will not examine the childrenwith all zero bits. On the other
hand, if we bypass the level-l word and instead examine all of its children, we will do the
same work that we did before for its non-zero children plus one examination each for the
children with all zero bits.

The expected benefit of traversing levell instead ofl − 1 is then the expected number
of zero words at levell − 1 minus the expected number of non-zero words among the first
k − 1 children minus 1. The probability that a word at levell − 1 is zero is(1 − p)k

l

so
the expected number of empty children isk · (1− p)k

l

. The probability that a word at level
l − 1 is non-zero is1 − (1 − p)k

l

, so the expected number of those among the firstk − 1

children is(k − 1) · (1− (1− p)k
l

). The expected benefit is then

k · (1− p)k
l

− (k − 1) · (1 − (1− p)k
l

)− 1.

Hierarchical Bit Vectors 15

As long as the above value is non-negative it is better (or at least just as good) to traverse
level l instead of levell−1. After some algebra, we conclude that traversing levell is better
than traversing levell − 1 when

(1− p)k
l

≥
k

2k − 1
.

By plugging in values fork andl, we can find the densities that are good for traversing

at any level. Fork = 32 and l = 1, we find thatp ≤ 1 − 32

√

32
63 ≈

1
48 , which means

Option 2 for the functionnext is preferred over Option 1 as traversing level1 we examine
fewer words than an ordinary bit vector (Option 1) for sets that are less than148 full. For

k = 32 and l = 2 we havep ≤ 1 − 1024

√

32
63 ≈

1
1512 and fork = 32 and l = 3 we get

p ≤ 1 − 32768

√

32
63 ≈

1
48374 ; however, at this point the binary search trees has a decided

advantage for commonly used values ofN .

4 Empirical Analysis

The three data structures: bit vectors,HBVs, and binary search trees were each implemented
and used in an empirical evaluation. This complements the analysis from the previous
section, which counted the number of words examined to enumerate a set in sorted order,
but ignored the associated constants and the work that has tobe done for other operations.
The experiments confirm that tree structures are superior for small sparse sets, bit vectors
are superior for dense sets, andHBVs are the best choice for large but sparse sets.

We ran the three implementations using randomly generated sets with various values of
N andp on an AMD Athlon 64. Each test consists of constructing an empty set, inserting
each integer with probabilityp (so the expected number of elements in the set ispN),
and finally outputting the elements of the set in sorted order. The order of the insertions
is randomized to avoid the worst-caseO(n) behavior of the binary search tree for this
operation. Each test run is intended to reflect the usage pattern of NFA determinization,
where state sets are created, populated, and then output in sorted order to allow comparisons
to other sets. We include only one enumeration because in thedeterminization algorithm,
the insertions are all performed before any enumerations; thus, the result from the the first
can be stored and used for subsequent operations. A model of the sequence of operations
for post-processing non-averaging sets would be similar but would includecontains and
delete operations as well.

ThreeHBV design decisions warrant mention. First, given the hardware we used, an
appropriate value fork was 32. Second, to save initialization time theHBV implementation
only initialized the top layer (to zero). The first time a bit is set (at internal nodes and leaves)
among a group ofk siblings, we initialize the other bits in its group to zero. Testing whether
we are setting the first bit in a group ofk siblings can be determined by checking whether
we have just changed the parent from 0 to 1. The sorted-order enumeration algorithm
does not need to be changed because it will never check bits that have not been initialized.

16 James Glenn and David Binkley

Membership tests can not be performed by checking the corresponding bit in the lower
lever, however. Instead, we must do a top-down traversal of the structure.

The third design decision follows from the theoretical result that levels above the bottom
three would only be useful for very sparse sets (p < 1

48374) where binary search trees have
a decided advantage. This is because above this level we do not expect to encounter many
zero bits; thus, the functionnext should never choose to traverse the tree above this level.
Retaining at most the bottom three levels pragmatically means either retaining 3 or just 2 (as
retaining just 1 would find theHBV degenerate into a simple bit vector). For the experiment,
rather than create one structure that adapts to different densities, we chose a fixed cutoff.
Making the structures non-adaptive significantly reduces the overhead of the operations.

Two different fixed cutoff values were experimented with: a 2-layer32-aryHBV (essen-
tially implementing Option 2 for the functionnext) and a 3-layer32-ary HBV (essentially
implementing a limited version of Option 3). The 2-layer version maintains only the bottom
two levels; thus, it assumes that all bits at higher levels are always 1. The 3-layer version
maintains the bottom 3 levels. Both choose the topmost retained layer as the optimal layer
for the purposes of thenext operation.

Comparing the simple bit vector and the twoHBV implementation empirically (see
Figure 6), the data reveal that the 2-level32-ary HBV can enumerate in sorted order in less
time than an ordinary bit vector for sets sparser thanp = 2−9 and the 3-layer32-ary HBV
enumerates in sorted order in less time than the 2-layer32-aryHBV for sets sparser thanp =
2−14. However, over the range of values forN we used during our experiment, densities
lower thanp = 2−14 give a clear advantage to tree structures. Thus, in the remainder of this
section only the2-layer 32-ary HBV is considered.

The results of the experiment are summarized graphically inFigure 7. Thex-axis of the
figure shows the range of values while they-axis shows the number of elements inserted.
Both use a logarithmic scale. The three bands in the figure follow the prediction of the
analysis done in Section 3 with the binary search tree being fastest for small sparse sets, the
bit vector being fastest for dense sets, and theHBV begin fastest in the middle range.

As evident in the figure, the boundaries are not straight lines, but show two anomalies
(regions where the results appear to ‘backtrack’). The firstanomaly occurs at(N,n) =
(217, 25) where theHBV is faster even though the binary search tree is faster for both N =
216 andN = 218. The second anomaly occurs atn = 217 where bit vectors perform better
for N = 222 andN = 225 but notN = 223, N = 224, orN = 226. Both appear to be cache
effects. For example, atN = 222 the bit vector would occupy all of the AMD’s 512KB L2
cache, yet layer 1 of theHBV will fit in the 64KB L1 cache forN ≤ 224.

To investigate this hypothesis, the experiment was repeated using an Intel Core 2, which
has a larger L2 cache, but a smaller L1 cache. The data, shown in Figure 8, supports the
hypothesis: the first anomaly moves to the left along with thedecrease in the Core 2’s L1
cache size, while the second anomaly moves to the right alongwith the increase in the L2
cache size.

Hierarchical Bit Vectors 17

Figure 6: Time to enumerate in sorted order versus density.

5 Conclusion

If it is known ahead of time that an application will make use of sparse sets and will have to
perform thesucc operation on those sets, then the32-ary HBV can be put to good use. The
more times thesucc operation is used, the greater theHBV’s advantage is over the standard
bit vector. The larger the set or the more times thecontains operation is used, the greater
the HBV’s advantage over the binary search tree. Applications suchas non-averaging set
post-processing where it is possible to determine the density of the sets used, theHBV
supports a more time-efficient implementation.

References

[1] F. Behrend. On sets of integers which contain no three in arithmetic progression.Proc.
of the National Academy of Science (USA), 23:331–332, 1946.

18 James Glenn and David Binkley

Figure 7: Comparison of three data structures (AMD Athlon 64Architecture)

[2] W. Gasarch, J. Glenn, and C. Kruskal. Finding large 3-free sets I: the small n case.
Journal of Computer and System Sciences, (to appear).

[3] James Glenn and William I. Gasarch. Implementing ws1s via finite automata: Per-
formance issues. In Derick Wood and Sheng Yu, editors,Workshop on Implementing
Automata, volume 1436 ofLecture Notes in Computer Science, pages 75–86. Springer,
1997.

[4] M. Korda and R. Raman. An experimental evaluation of hybrid data structures for
searching. InProceedings of the 3rd International Workshop in Algorithm Engineering,
Lecture Notes in Computer Science 1668, pages 213–227. Springer Verlag, 1999.

Hierarchical Bit Vectors 19

Figure 8: Comparison of three data structures (Intel Core 2 Architecture)

[5] W. Pugh. Skip lists: A probabilistic alternative to balanced trees.Commun. ACM,
33(6):668–676, 1990.

[6] C. Putonti, S. Chumakov, R. Mitra, G. Fox, R. Willso, and Y. Fofanov. Human-blind
probes and primers for dengue virus identification – exhaustive analysis of subse-
quences present in the human and 83 dengue genome sequences.Federation of Eu-
ropean Biochemical Societies (FEBS), 273, Feb 2006.

[7] O. Vallarino. On the use of bit-maps for multiple key retrieval. SIGPLAN Notices,
Special Issue, II:108–114, 1976.

[8] H. Wedekind and T. Härder.Datenbanksysteme II. B.-I. Wissenschaftsverlag, 1976.

20 James Glenn and David Binkley

[9] D. E. Willard. New trie data structures which support very fast search operations.
Journal of Computer and System Sciences, 28(3):279–294, 1984.

