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3. Instruction set design

Clearly the design of a new machine is not a smooth process; the designer
of the architecture must be aware of the possible hardware limitations
when setting up the instruction set, while the hardware designers must be
aware of the consequences their decisions have over the software.

It is not seldom that some architectural features cannot be implemented (at
a reasonable price, in a reasonable time, using a reasonable surface of
silicon, or cannot be implemented at all!); in these cases the architecture
has to be redefined. Very often small changes in the instruction set can
greatly simplify the hardware; the converse is also true, the process of
designing the hardware often suggests improvements in the instruction set.

The topic of the following sections is the design of the instruction set: what
should be included in the instruction set (what is a must for the machine),
and what can be left as an option, how do instructions look like and what is
the relation between hardware and the instruction set are some of the ideas
to be discusses.

The coming section tries to answer the question: should we have a rich set
of instructions (CISC) or a simple one (RISC)?

3.1 RISC / CISC, where is the difference?

For many years the memory in a computer was very expensive; it was only
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after the introduction of semiconductor memories that prices began to fall
dramatically. As long as the memory is expensive low end computers
cannot afford to have a lot; there is a premium in a system with little
memory to reduce the size of programs. This was the case in the 60s and
70s.

Lot of effort was invested in making the instructions smaller (tighter
encoding) and in reducing the number of instructions in a program. It was
observed that certain sequences of instructions occur frequently in
programs like the following:

loop: .................
.................
DEC r1 # decrement r1 (in r1 is the loop counter)
BGEZ loop # branch if r1 >= 0

“Well let's introduce a new instruction that has to do the job of both” said
the designers and this happened: the programmers was offered a new
instruction which decrements a register and branches if the register is
greater of equal to zero.

The same phenomenon happened in many other cases, like instruction that
save/restore  multiple registers in the case of procedure calls/returns, string
manipulating instructions etc.

Another motivation that led to the development of complex instruction sets
was the insufficient development of compilers; software was dominated by
assembly language in so much that programmers found very pleasant and
efficient to have powerful instructions at hand. In this trend many
instructions became somehow like procedures, having parameters as the
procedures may have, and saving memory in the same way procedures do.

The landmark for CISC architectures (Complex Instruction Set
Computers) is the VAX family; introduced in 1977, the VAX architecture
has more than 200 instructions, some 200 addressing modes and
instructions with up to six operands. The instruction set is so powerful that
a C program has almost the same number of assembly language
instructions as the C source.

The main problem with CISC is that, due to different complexities,
instructions require very different number of clock cycles to complete thus
making very difficult efficient implementations (like pipelining); long
running instructions render the interrupt handling difficult, while uneven
sizes of instructions make the instruction decoding inefficient.

Due to the large number of instructions in the instruction set, the control
part of a CISC machine is usually microprogrammed: the implication is a
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lower clock rate (a higher Tck) than the one a hardwired implementation
would allow.

As the compiler technology developed, people realized how difficult is to
figure out what is the best instruction (sequence of instructions) to be
generated by the compiler: simply said there are too many combinations of
instructions to do the same job, when using a complex instruction set.
To summarize, remember that the CPU performance is given by:

where CPUtime is the time spent by a CPU to run a program (the effective
time), IC is the instruction count, CPI is the average number of clock
cycles per instruction, and Tck is the clock cycle (assumed to be constant).

Basically the CISC approach to reducing the CPUtime was to reduce the IC
as much as possible. As a side effect the CPI has increased (instructions are
complex and require many clock cycles to execute), as well as Tck due to
microprogramming. Very few new CISC have been introduced in the 80s
and many argue that CISC survive only due to compatibility to older
successful computers: a prominent example is the Intel's 80x86 family of
microprocessors.

In contrast with CISC architectures, the RISC (Reduced Instruction Set
Computers) ones make an attempt to reduce CPUtime by decreasing CPI and
Tck. Instructions are simple and only a few basic addressing modes are
provided. Simple instructions mean low CPI as well as the possibility of
easier hardwired implementation (thus lowering the clock cycle Tck).

However the major point is that simple instructions allow pipelined
implementations (all instruction execute in the same number of clock
cycles) which dramatically decreases the CPI (the ideal CPI in a pipelined
implementation is 1); moreover pipelining also permits higher clock rates.

The disadvantage is an increase in the number of instructions (IC); the
same program may have as much as twice the number of instructions
(assembly language) as compared with the same program that uses a CISC
assembly language.

In a CISC machine the CPI can be in the order of 10, while for a RISC
pipelined machine the CPI is some where between 1 and 2: roughly
speaking there is an order of magnitude difference between the two
approaches.

CPUtime IC * CPI * Tck=
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Example 3.1 RELATIVE PERFORMANCE:

The same program is compiled for a CISC machine (like a VAX) and for a
pipelined RISC (like a SPARC based computer). The following data is
available:

ICCISC = 500000
ICRISC = 1100000
CPICISC = 6.8
CPIRISC = 1.4

Tck CISC = 25 ns (25*10 -9 s)
Tck RISC = 30 ns

What is the relative performance of the two machines?

Answer:

The RISC machine is by 83% faster than the CISC one.

It is important to observe that we have only compared the CPU times:
however this does not say everything about the two machines; the overall
performance is affected by the memory and the I/O. For the user it is the
elapsed time which counts not the CPUtime.

Practically, at this moment, all major semiconductor producers are offering
at least one RISC architecture.

3.2 How many addresses?

After we have introduced, in the previous sections, some general ideas
about the hardware-software interaction, we shall be discussing, in more
detail, about the instruction set.

Consider the following statement in a high level language (C for instance):
a = a + b + a * c;

For all familiar with a programming language is clear what the meaning of
this statement is: take the value of a and multiply it with c, then add a and c
to the above result; the result is assigned to the variable a.

We know what are the rules of precedence and associativity; these rules are

CPUtimeCISC
CPUtimeRISC
--------------------------------------- 5 * 10

5
* 6.8 *25

11 * 10
5

* 1.4 * 30
------------------------------------------------ 850

462
--------- 1.83= = =
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also included in the high level languages (in the compiler more precisely).
It is however obvious that we cannot expect the hardware to directly use
these rules and to “understand” the whole sentence at once.

For sake of simplicity we require operations to be carried out in small
steps; the result will be obtained after a sequence of simple steps.
Incidentally this eliminates the need for the machine to know about the
grouping rules.

Example 3.2 OPERATION SEQUENCE:

What is the sequence of operations (single statement per operation) that
evaluates the statement:

a = a + b + a * c;

Answer:
t = a * c;
a = a + b;
a = a + t;

It is important to note that, in order to understand what the above sequence
does, one has to know:

• how sequencing works: execute the first instruction, then the
second and so on;

• what every operation does.

As an aside, the above sequence points out why our computers are said to
be sequential.
In the example above t stands for temporary, an intermediate variable that
holds the value of the first operation; in this case we could not assign the
value of multiplication a * c to a because a is also needed for the second
operation.

Which is the operation performed in the first statement of the answer in
example 3.2? The spontaneous and yet not very correct answer is
multiplication; it is not simple multiplication because the statement specify
not only the operation to be performed but also where the result is to be
stored (this is a computer statement, not a a simple mathematical equality).
The proper name is therefore multiply_and_store, while for the second
statement the proper name would be add_and_store.

Multiplication and addition are binary operations; multiply_and_store and
add_and _store are ternary operations.
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The operands which specify the values for the binary operation (which is a
part of the ternary operation) are called source operands. The operand that
specifies where the result is to be stored is called the destination operand.

Operands may be constants like in the following example:
a = b * 4

where we have to multiply the value designed by the operand b with 4 (the
other operand) and to assign the result to the operand a. However, in most
cases we deal with generic names: we don't know what the value is but
where it is stored: we know its address. This is the reason we discuss
about:

• 3-address machines;
• 2-address machines;
• 1-address machines;
• 0-address machines.

From now on, when we say we have an n-address machine we understand
that the maximum number of operands is n.

Throughout this lecture we shall use the convention that the destination is
the first operand in the instruction. This a commonly used convention
though not generally accepted. It is consistent with the assignment
statements in  high level languages. The other used convention, listing the
destination after the source operands, is coherent with our verbal
description of operations.

3.2.1 Three-address machines

In a 3-address machine all three operands are explicit in each instruction.
The general format of an instruction is:

operation dest, op1, op2

where:
• operation is the name of the operation to be performed;
• dest is the destination operand, the place where the result will be

stored;
• op1 and op2 are the two source operands.

Thus the meaning of:

ADD r2, r1, r0

is to add the value stored in register r1, with the value stored in register r0,
and put the result in the register r2.
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Let’s see what addresses can specify and what are the implications for the
hardware. In the example above all operands were held in registers and you
may wonder why we discuss about addresses in this case: the reason is that
registers can be seen as a special part of the memory, very fast and very
close to the CPU; for historical reasons they have special names instead of
being designated with some addresses.

Suppose you are designing an instruction set for a machine with 32
registers; then you need five bits to specify a register and, because the three
operands may be different, 15 bits to specify the three registers that hold
the three operands.

An instruction must also have a field to specify the operation to be
performed, the opcode, probably a few bits depending of the number of
instructions you want to have in the instruction set. We end up with an
instruction that is 20 to 22 bits wide only for reasons of specifying the
operands and the opcode. we shall see there are also other things to be
included in a instruction, like an offset, a displacement, or an immediate
value, with the possibility of having an even larger instruction size.

Should the machine be a 24 bit machine (24 is the first multiple of eight
after 20-22) or not, and the answer is not necessarily:

• if we choose to have a 24 bit (or more) datapath then there is a
definite advantage: the instruction is fetched at once, using a
single memory access   (assuming also that the data bus between
the CPU and the memory has the same size as the datapath);

• if we settle for a cheap implementation, an 8 bit machine for
instance, then the CPU must perform three memory accesses to
memory only to get the whole instruction; then it can execute it. It
is easy to see that in this case the performance both because
number are processes in 8 bit chunks and because the instruction
fetch takes so many clock cycles.

When all instructions (again we refer to the most common arithmetic/logic
operations) specify only register operands then we say we have a register-
register machine or a load-store machine; the load-store names comes
from the fact that operands have to be loaded in registers from memory,
and the result is stored in memory after the operation is performed.

In the following we'll take a different approach, we consider that all
operands are in memory.
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Example 3.3 UNDERSTANDING INSTRUCTIONS:

What is the meaning of the following instruction?

ADD x, y, z

Answer:
Add the value of variable y (this is somewhere in the memory, we don't
have to worry about, its address will be known after the translation is
done), to the value of variable z (also in memory), and then store the result
in the memory location corresponding the variable x.

Example 3.3 shows another way to process operands, when they all reside
in the memory. If all instructions specify only memory operands then we
say we have a memory-memory machine. We will next explore the
implications for hardware of a memory-memory architecture.
In the case of a memory-memory machine the CPU knows it has to get two
operands from memory before executing the operation, and has to store the
result in memory. There are several ways to specify the address of an
operand: this is the topic of addressing modes; for the following example
we will assume a very simple way to specify the address of an operand: the
absolute address of every operand is given in the instruction (this
addressing mode is called absolute).

Example 3.4 MEMORY ACCESSES:

Addresses in an 8 bit machine are 16 bit wide. How many memory
accesses are necessary to execute an instruction? Assume that the machine
is memory-memory and operands are specified using absolute addresses.

Answer:
The instruction must specify three addresses, which means 3*2 = 6 bytes,
plus an opcode (this is the first to be read by the CPU) which, for an 8 bit
machine, will probably fit in one byte. Therefore the CPU has to read:

1 + 6 = 7 bytes

only to get the whole instruction. The source operands have to be read from
memory and the result has to be stored into memory: this means 3 memory
accesses. The instruction takes:

7 + 3 = 10

memory accesses to complete.

So far a register-register machine seems to be faster than a memory-
memory machine, mainly because it takes less time to fetch the instruction
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and there are fewer accesses to the memory. The picture however is not
complete: to work within registers operands must be brought in from the
memory, and write out to the memory, which means extra instructions. On
the other hand intermediate results can be kept in registers thus sparing
memory accesses. We'll resume this discussion after introducing the
addressing modes.

3.2.2 Two-address machines

We start with an example.

Example 3.5 STATEMENT IMLPEMENTATION:

Implement the high level statement:

a = a + b + a * c

on a 3-address machine; assume that variables a, b, c are in registers r1, r2,
and r3 respectively.

Answer:
MUL r4, r1, r3 # use r4 as a temporary
ADD r1, r1, r2 # a + b in r1
ADD r1, r1, r4 # final result in r1

Note that if the values of b or c are no longer necessary, one of the registers
r2 or r3 could be used as a temporary.

In this example two out of three instructions have only two distinct
addresses; one of the operands is both a source operand and the
destination. This situation occurs rather frequently such that you may think
it is worth defining a 2-address machine, as one in which instructions have
only two addresses.

The general format of instructions is:
operation dest, op

where:
• operation is the name of the operation to be performed
• dest designates the name of one source operand and the name of

the destination
• op is the name of the second source operand

Thus the meaning of an instruction like:

ADD r1, r2

is to add the values stored in the registers r1 and r2, and to store the result
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in r1.

There is an advantage in having two-address instructions as compared with
three-address instructions, namely that instruction are shorter, which is
important when preserving memory is at big price; moreover shorter
instructions might be fetched faster (in the case instructions are wider than
the datapath and multiple accesses to memory are required). There is a
drawback however with two-address instructions: one of the source
operands is destroyed; as a result extra moves are sometimes necessary to
preserve the operands that will be needed later.

Example 3.6 STATEMENT IMLPEMENTATION:

Show how to implement the high level statement

a = a + b + a * c

on a 3-address machine and then on a 2-address machine. Both machines
are 8 bit register-register machines with 32 general purpose registers and a
16 bit addresses. The values of variables a, b, and c are stored in r1, r2 and
r3 respectively. In any case calculate the number of clock cycles necessary
if every memory access takes two clock cycles and the execution phase of
an instruction takes one clock cycle.

Answer:
For the 3-address machine:

MUL r4, r1, r3 # 3 * 2 + 1 clock cycles
ADD r1, r1, r2 # 3 * 2 + 1
ADD r1, r1, r4 # 3 * 2 + 1

This sequence requires 21 clock cycles to complete; each instruction has a
fetch phase that takes three (3 bytes/instruction) times two clock cycles (2
clock cycles per memory access), plus an execution phase which is one
clock cycle long.For the 2-address machine:

MOV r4, r1 # 2 * 2 + 1 clock cycles
MUL r4, r3 # 2 * 2 + 1
ADD r1, r2 # 2 * 2 + 1
ADD r1, r4 # 2 * 2 + 1

The sequence requires 20 clock cycles to complete; it is slightly faster than
the implementation of the same statement on the 3-address machine.
The two address machine requires 10 bits (5 + 5) to encode the two
operands and the example assumes an instruction is 16 bit wide.

The above example has introduced a new two operands instruction:
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MOV dest, op

which transfers (moves) the value stored at address op to address dest.

Even if the MOV instruction is typical two operands instruction there is no
reason to believe it only belongs to 2-address machines: a 3-address
machine is one in which instructions specify up to 3 operands, not a
machine in which all instructions have precisely 3 operands.

In this section we discussed about a register-register, 2-address machine.
Nothing can stop us thinking about a 2-address, memory-memory machine,
or even about a register-memory one.

3.2.3 One address machine (Accumulator machines)

In a 1-address machine the accumulator is implicitly both a source operand
and the destination of the operation. The instruction has only to specify the
second source operand. The format of an instruction is:

operation op

where:

• operation is the name of the operation to be performed

• op is a source or a destination operand. Example of source or
destination operand is the accumulator (in the case of a store op
denotes the destination).

Thus the meaning of:

ADD a

is to add the value of variable a to the content of the accumulator, and to
leave the result in the accumulator.The accumulator is a register which has
a special position in hardware and in software. Instructions are very simple
and the hardware is also very simple. Figure 2.2 is an exemplification of an
accumulator machine.
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Example 3.7 STATEMENT IMPLEMENTATION:

Show how to implement the statement

a = a + b + a * c

using an accumulator machine.

Answer:
LOAD a # bring the value of a in accumulator
MUL  c # a * c
ADD  b # a * c + b
ADD  a # a * c + b + a
STO  a # store the final result in memory

Due to its simplicity, only one operand has to be explicitly specified,
accumulator machines present compact instruction sets. The problem is
that the accumulator is the only temporary storage: memory traffic is the
highest for accumulator machines compared with other approaches.

3.2.4 Zero-address machines (stack machines)

How is it possible to have a machine without explicit operands
instructions? This is possible if we know where the operands are, and
where is the result to be stored. In other words all operands are implicit.

A stack is a memory (sometimes called LIFO = Last In First Out) defined
by two operations PUSH and POP: PUSH moves a new item from the
memory into the stack (you don't have to care where), while POP gets the
last item that was pushed into the stack. The formats of operations on a
stack machine are:

operation

PUSH op
POP  op

where:

• operation indicates the name of the operation to be performed
operation always acts on the value(s) at top of the stack

• op is the address in the main memory where the value to be
pushed/popped is located.

A stack machine has two memories: an unstructured one, we call it the
main memory, where instructions and data are stored, and a structured one,
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the stack where access is allowed only through predefined operations
(PUSH/POP). It is worth mentioning here that a stack has usually a very
fast part where the top of the stack is located, and which is usually inside
CPU, while the large body of the stack is outside the CPU (possibly
extensible to disk) and, hence, slower. One may envision the fast part of the
stack (inside CPU) as the registers of the machine; as a matter of fact, a
stack machine does not have explicit registers.

Example 3.8 STATEMENT IMLPEMENTATION:

Show how to implement the statement

a = a + b + a * c

using a stack machine.

Answer:
PUSH a # push the value of a;
PUSH c # push the value of c
MUL # multiply the two values on top of the stack
PUSH b
ADD
PUSH a
ADD
POP  a # store the result back in memory at the address

  where a is located.

Whenever an operation is performed, the source operands are popped from
the stack, the operation is performed, and the result is pushed into the
stack.

Example 3.9 STATEMENT IMLPEMENTATION:

Show the content of the stack while implementing the statement:

a = a + b + a * c

ANSWER:

PUSH a PUSH c MUL PUSH b ADD PUSH a ADD POP a

c b a

a a a*c a*c b+a*c b+a*c a+b+a*c
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The stack machine has the most compact encoded instructions possible.

To conclude this section let's see how fast is an expression evaluated on a
stack machine as compared with other machines.

Example 3.10 CALCULATION OF CLOCK CYCLES:

Compute the number of clock cycles necessary to evaluate the statement:

a = a + b + a * c;

on an 8 bit  stack machine, with 16 bit addresses. Assume that every
memory access takes two clock cycles and that the execution phase of any
instruction take only one clock cycle; assume also that addresses are
absolute.

Answer:

PUSH a # 2 + 2 * 2 + 2 clock cycles
PUSH c # 2 + 2 * 2 + 2
MUL # 2 + 1
PUSH b # 2 + 2 * 2 + 2
ADD # 2+ 1
PUSH a # 2 + 2 * 2 + 2
ADD # 2 + 1
POP  a # 2 + 2 * 2 + 2

The above sequence of code completes in 49 clock cycles. Every PUSH or
POP takes 2 clock cycles to read the opcode (one byte), plus 2 * 2 clock
cycles to read the address (2 bytes) of the operand, plus 2 clock cycles to
read/store the operand.

It would be unfair to directly compare the performance of the stack
machine in example 3.10 with the performance of machine in the previous
examples as long as the stack machine has to bring the operands from
memory while in the other cases it was assumed that the operands are in
registers. The stack has the disadvantage that, by definition, it cannot be
randomly accessed thus making difficult to generate efficient code; note
however that the easiest way to generate code in a compiler is for a stack
machine.

3.3 Register or memory?

In classifying architectures we used the number of operands the most
common arithmetic instructions specify. As we saw the 3-address and 2-
address machines may have operands in registers, memory or both. A
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question may be naturally asked: which is the best way to design the
instruction set? This is to say: should all instructions be register-register or
maybe should they all be memory-memory; what happens if we mix
registers and memory in specifying operands?

Example 3.11 CLOCK CYCLES AND MEMORY TRAFFIC:

We have two 32 bit machines, a register-register and a memory-memory
one. Addresses are 32 bit wide and the register-register machine has 32
general purpose registers. A memory access takes two clock cycles and an
arithmetic operation executes in two clock cycles (the execution phase).
Addresses of operands are absolute. Show how to implement the statement:
 a = b * c  + a * d;
and compare the number of clock cycles, and the memory traffic for the
two machines. Variables a, b, c, d reside in memory and no one may be
destroyed but a. Assume also that instructions are 32 bit wide or multiples
of 32 bit.

Answer:

For the memory-memory machine:

For the memory-memory machine every instruction require 7 memory
accesses: one to get the opcode, plus 3 to get the three addresses of the
operands, plus other 3 to access the operands. The code for the memory-
memory machine is shorter than the code for the register-register machine,
12 words as compared with 13, but the memory traffic is higher, as well as

Words per
instruction

Memory
accesses

Clock
cycles

            LOAD                 r1, b 2 3 6
            LOAD                 r2, c 2 3 6

MUL                 r3, r1, r2 1 1 3
            LOAD                 r1, a 2 3 6
            LOAD                 r2, d 2 3 6
            MUL                   r1, r1, r2 1 1 3
            ADD                    r1, r1, r3 1 1 3
            STORE                a, r1 2 3 6

Total  13 18 39

Words per
instruction

Memory
accesses

Clock
cycles

MUL temp, b, c 4 4+3 15
              MUL                 a, a, d 4 4+3 15
              ADD                 a, a, temp 4 4+3 15

Total 12   21  45
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the execution time.

Even though in the above example we considered two different machines,
it is quite common to have hardware that supports both models. This is the
case with very successful machines like IBM-360 or DEC VAX; moreover
these machines also support the register-memory model.

The most valuable advantage of registers is their use in computing
expression values and in storing variables. When variables are allocated to
registers, the memory traffic is lower, the speed is higher because registers
are faster than memory and code length decreases (since a register can be
named with fewer bits than a memory location). If the number of registers
is sufficient, then local variables will be loaded into registers when  the
program enters a new scope; the available registers will be used as
temporaries, i.e. they will be used for expression evaluation.

How many registers should a machine have? If their number is too small
then the compiler will reserve all for expression evaluation and variables
will be kept in memory thus decreasing the effectiveness of a register-
register machine. A too large number of registers, on the other hand, may
mean wasted resources that could be used otherwise for other purposes.

Most microprocessors from the first generation (8 bit like Intel 8080, or
Motorola 6800) had 8 general purpose registers. A very successful 16 bit
microprocessor, Intel 8086, had 14 registers though most of them were
reserved for special purposes. Almost all 32 bit microprocessors on the
market today have 32 integer registers, and many have special registers for
floating point operations.

32 registers seem to be sufficient even for a 64 bit architecture; at least this
is the point of view of the team who designed the ALPHA chip.

Let's now summarize some of the basic concepts we have introduced so far.
The basic criteria of differentiating architectures was the number of
operands an instruction can have. Operands may be named explicitly or
implicitly:

• stack architectures: all operands are implicitly on the stack

• accumulator architectures: one source operand and the
destination are implicitly the accumulator; the second source
operand has to be explicitly named

• general purpose register (GPR) architectures have only
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explicit operands, either registers or memory locations. GPR
architectures dominate the market at this moment, basically for
two reasons: first registers are faster than memory and second,
compilers use more efficient registers than other forms of
temporary storage like accumulators or stacks. The main
characteristics that divide GPRs are:

• the number of operands a typical arithmetic operation has we
discussed about 2-address machines (one of the operands is both
source and destination), and about three address-machines;

• number of operands that   may be memory addresses  in ALU
operation. This number may vary from none to three.

Using the two parameters we have to differentiate GPR architectures, there
are seven possible combinations in the table below:

Please observe that IBM-360 appears in several positions in the table, due
to the fact  that the architecture supports multiple formats. The same is true
for the VAX architecture.

Three combinations classify most of the existing machines:

• register-register machines which are also called load-store. They
are defined by 2-0 or 3-0 (operands-number of memory
addresses); in other words all operands are located in registers

• register-memory machines: defined by 2-1 (operands-number of
memory addresses); one of the operands may be a memory
address;

Number of
operands

Number of
memory addresses

Examples

0 IBM

2 1 PDP 10, Motorola 68000, IBM-360

2 PDP 11, IBM-360, National 32x32, VAX

0 SPARC, MIPS, HP-PA, Intel 860, Motorola
88000

3 1 IBM-360

2 -

3 VAX
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• memory-memory machines: 2-2 or 3-3; all operands are memory
addresses.

Here are some of the advantages and disadvantages of the above
alternatives:

register-register machines

Advantages:
• simple instruction encoding (fixed length)
• simple compiler code generation
• instruction may execute in the same number of clock cycles (for a
 carefully designed instruction set)

• lower memory traffic as compared with other architectures.

Disadvantages:
• higher   instruction   count   than   in   architectures   with memory

operands
• the fixed format wastes space in the case of simple instructions

that do not specify any register (NOP, RETURN etc.)

register-memory machines

Advantages:
• more compact instructions than in register-register machines
• in many cases loads are spared (when an operand is in register and

the other one is in memory)

Disadvantages:
• operands are not equivalent: in an arithmetic or logic operation

one of the source operands is destroyed (this complicates the code
generation in the compiler).

memory-memory machines

Advantages:
• compact code
• easy code generation

Disadvantages:
• different length instructions
• different running times for instructions
• high memory traffic.
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3.4 Problems in instruction set design

The instruction set is the collection of operations that define how data is
transformed/moved in the machine. An architecture has an unique set of
operations and addressing modes that form the instruction set.

The main problems the designer must solve in setting up an instruction set
for an architecture are:

• which are the operations the instruction set will implement;

• relationship between operations and addressing modes;

• relationship between operations and data representation.

3.4.1 Operations in the instruction set

We obviously need arithmetic and logic operations as the purpose of
most applications is to perform mathematical computation. We also need
data transfer operations as data has to be moved from memory to CPU,
from CPU to memory, between registers or between memory locations.

The instruction set must provide some instructions for the control flow of
programs; we need, in other words, instructions that allow us to construct
loops or to skip sections of code if some condition happens, to call
subroutines and to return from them.

Arithmetic and logic instructions

Integer operations:

• add and subtract are a must and they are provided by all
instruction sets. At this point it must be very clear how integers
are represented in the machine: unsigned or signed and, in the
latter case what signed representation is used? The most frequent
used representation for signed integers is the two's complement.
Some architectures provide separate instructions for unsigned
integers and for signed integers.

• multiply and divide: the early machines had no hardware support
for these operations. Almost all new integrated CPUs, introduced
since the early 80s provide hardware for multiplication and
division. Again the integer representation must be very clear
because it affects the hardware design. Integer multiplication and
division are complicated by the results they generate;
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multiplication of two n bit integers may result in a 2*n bit number.
If all registers are n bit wide, then some provisions must be made
in hardware to accommodate the result.

• compare instructions: compare two integers and set either a
condition code (a bit in a special register called the Status
Register), or a register (in the new architectures); EQ, NE, GT, LT,
GE, LE may be considered for inclusion in the instruction set. Set
operations are used in conjunction with branches, so they must be
considered together at the design time.

• others: like the remainder of a division, or increment/decrement
register, add with carry, subtract with borrow etc.; most of these
instructions can be found in the instruction sets of earlier
architectures (8 and 16 bit).

Floating point operations:

While the IEEE 754 standard is currently adopted by all new designs, there
are other formats still in use, like those in the IBM 360/370 or in the DEC's
machines.

• add, subtract, multiply, divide: are provided sometimes in an
additional instruction set; most of the new architectures have
special registers to hold floating point numbers.

• compare instructions: compare two floating point numbers and
set either a condition code or a register: EQ, NE, GT, LT, GE, LE
may be considered.

• convert instructions: convert numbers from integer to float and
vice-versa, conversion between single precision and double
precision representations might be considered.

Logical instructions

It is not necessary that all possible logical operations are provided, but care
must be taken that the instruction set provides the minimum necessary such
that the operations that are not implemented can be simulated.

Decimal operations

Decimal add, subtraction, multiply, divide are useful for machines running
business applications (usually written in COBOL); they are sometimes
primitives like in IBM-360 or VAX, but in most cases they are simulated
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using other instructions.

String operations

String move, string compare, string search, may be primitive operations as
in IBM-360 or VAX, or can be simulated using simpler instructions.

Shifts

Shift left, right, arithmetic/logic are useful in manipulating bit strings, in
implementing multiplication /division when not provided by hardware; all
new architectures provide shifts in the instruction set.

• arithmetic shift: whenever the binary configuration in a register is
shifted towards the least significant bit (shift right) the most
significant positions are filled with the value of the sign bit (the
most significant bit in register before shifting);

• logical shift: positions emptied by shift are filled with zeros.

Example 3.12 LOGICAL AND ARITHMETIC SHIFTS:

The binary configuration in a register is:
11010101
Show the register's configuration after the register is shifted one and two
positions, logical and arithmetic.

Answer:

Note that it does not make sense to discuss about left arithmetic shifts.

1 1 0 1 0 1 0 1          The initial configuration

1 1 1 0 1 0 1 0          arithmetic right one bit

1 1 1 1 0 1 0 1          arithmetic right two bits

0 1 1 0 1 0 1 0           logical right one bit

0 0 1 1 0 1 0 1           logical right two bits

1 0 1 0 1 0 1 0           left one bit

0 1 0 1 0 1 0 0           left two bits
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Data transfer instructions

As long as the CPUs were 8 bit wide the problem of transfers was simple:
loads and stores had to move bytes from memory to CPU, from CPU to
memory or between registers. With a 32 bit architecture we must consider
the following transfer possibilities:

• bytes (8 bits);
• half-words (16 bits);
• words (32 bits);
• double words (64 bits).

While allowing all transfers provides maximum flexibility, it also poses
some hardware complications that may slow down the clock rate (this will
be discussed again in chapter 4).

If transfers of items narrower than a word (for the today 32 bit
architectures) are included in the instruction set, then two possibilities are
to be considered for loads:

• unsigned: data is loaded in a register at the least significant
positions while the most significant positions are filled with zeros;

• signed: data is loaded into a register at the least significant
positions while the most significant positions in the register are
filed with the sign of the data being loaded (i.e. the MSB of data).

Example 3.13 EFFECT OF INSTRUCTIONS ON REGISTERS:

Show the content of the register r1 after executing the instructions:

LB r1, 0xa5 # load bite (signed)

and
LBU r1, 0xa5 # load byte unsigned

All registers are 16 bit wide.

Answer:
 MSB                                                      LSB

1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1                after executing LB  r1, 0xa5

0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1                after executing LBU r1, 0xa5
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Moves

Allow for transfer of data between registers; if the architecture provides
floating point registers, then the instruction set should include also the
possibility to transfer between the two sets of registers (integers & floats).

Control flow instructions

In the followings we shall use the names:

• branch: when the change in control is conditional
• jump: when the change in control is unconditional (like a goto).

The four categories of control flow instructions are:

• branches
• jumps
• subroutine calls
• subroutine returns

The destination address of a branch, jump or call can always be specified in
the instruction; this can be done because the target (i.e. the instruction
where control must be transferred) is known at compile time. In the case of
a return the target is not known at the compile time; a subroutine can be
called from different points in a program.

Specifying the destination

There are two basic ways to specify the target:

• use the absolute address of the target. This has two main
drawbacks, first it requires the full address of the target to be
provided in the instruction which is impossible for fixed length
instructions, and second, programs using absolute addresses are
difficult to relocate.

• use PC-relative computation of the target. This is the most used
way to specify the destination in control-flow; a displacement is
added to the program counter (PC) to get the target address. The
displacement is usually represented as a two's complement
integer, thus allowing to specify targets that are after the current
instruction (positive displacement), or before the present
instruction (negative displacement). The main advantages in using
the PC-relative way to compute the target address are:

• fewer bits necessary to specify the target. Targets are
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usually not very far away from the present instruction, so
that it is not worth specifying the target as an absolute
address;

• position independence: because addressing is PC-relative, the
code can run independent of where it is loaded in memory. The
linking and loading of programs is thus simplified.

What happens with returns

For returns the target address is not known at the compile time; the target
must be somehow specified dynamically so that it can change at run time:

• use the run time stack to hold the return address: the address of
the next address to be executed after a call instruction (at the
return from the subroutine) is pushed into the run time stack when
the subroutine is called; at the end of the subroutine the address
that was saved in the stack is popped into the PC;

• use a register that contains the target address (of course the
register must be wide enough to can accommodate an address);
most of the new architectures use this mechanism for the returns;
a register from the set of general purpose registers is dedicated to
this purpose.

A major concern in the design of an instruction set is the size of the
displacement; if the size is too small then we must very often resort to
absolute addresses which mean larger instructions. Too much space for
displacement may be detrimental for other useful functions.
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Exercises

3.1 What is the value of variables x and y after the following operations are
performed:

x = 3 - 2 - 1;
y = 12/6/3;

If you are unsure about the result, then write a small program in the
language you like, and see which are the rules for the associativity.

3.2  Addresses in a 32 bit machine are 32 bit wide. How many memory
accesses are necessary to execute an instruction? Assume that the machine
is memory-memory and operands are specified using absolute addresses.

3.3 What was the need for the early microprocessors (8 bit) to provide
instructions like add with carry or subtract with borrow? Modern 32 bit
CPUs do not provide such instructions.
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