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ABSTRACT
�is paper presents Conv-KNRM, a Convolutional Kernel-based Neu-
ral Ranking Model that models n-gram so� matches for ad-hoc
search. Instead of exact matching query and document n-grams,
Conv-KNRM uses Convolutional Neural Networks to represent n-
grams of various lengths and so� matches them in a uni�ed embed-
ding space. �e n-gram so� matches are then utilized by the kernel
pooling and learning-to-rank layers to generate the �nal ranking
score. Conv-KNRM can be learned end-to-end and fully optimized
from user feedback. �e learned model’s generalizability is inves-
tigated by testing how well it performs in a related domain with
small amounts of training data. Experiments on English search
logs, Chinese search logs, and TREC Web track tasks demonstrated
consistent advantages of Conv-KNRM over prior neural IR methods
and feature-based methods.
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1 INTRODUCTION
A recent success of neural methods in information retrieval (neu-
ral IR) is the development of interaction based models [13, 21, 29].
Interaction based models thrive with encoding word-word trans-
lations using word embeddings, and utilizing new pooling meth-
ods to be�er summarize the word translations into ranking sig-
nals [11, 13, 29]. Learned end-to-end from user feedbacks [23, 29],
the word embeddings can encode so� matches tailored for rele-
vance ranking, which has signi�cant advantages over traditional
feature-based methods [29, 30]. �ese initial successes of neural
IR were mainly from so� matching individual words. On the other
hand, the query and document o�en match at n-grams, such as
phrases [18], concepts [2], and entities [28]; how to e�ectively
model n-gram so�-matches remains an open question in neural IR.
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�is paper presents a new Convolutional Kernel-based Neural
Ranking Model(Conv-KNRM). We �rst embed words in continuous
vectors (embeddings), and then employ Convolutional Neural Net-
works (CNN) to compose adjacent words’ embeddings to n-gram
embeddings. In the n-gram embedding space, so�-matching n-
grams is as simple as calculating the similarity of two n-grams’ em-
beddings. �e current state-of-the-art kernel pooling and learning-
to-rank techniques are then used to combine the n-gram so�-
matches to the �nal ranking score [29].

�e CNN is the key to modeling n-grams. Typical IR approaches
treat n-grams as discrete terms and use them the same as unigrams.
For example, a document bigram ‘white house’ is one term, has its
own term frequency, and can only be matched to ‘white house’ in
queries. However, treating n-grams atomically in neural IR will ex-
plode the parameter space, and su�er from data sparsity. �is work
avoids the problem by learning a convolutional layer that forms
n-grams from individual words’ embeddings. �e convolutional
layer projects all n-grams into a uni�ed embedding space, allowing
matching n-grams of di�erent lengths. For instance, ‘white house’
in the document can provide partial evidence for the query ‘George
Walker Bush’.

�e whole Conv-KNRM model can be trained end-to-end with
relevance signals such as clicks, so that the n-gram so� matches are
fully optimized towards search accuracy. We also present a simple
yet e�ective domain adaptation method for applying Conv-KNRM
to search domains where large scale training data is not available.
We �rst train the word embedding and convolutional layers in
the source domain that has su�cient training labels. �e trained
Conv-KNRM is then adapted to a target domain with limited annota-
tions by only re-training the learning-to-rank layer. �e assumption
is that the so� matching pa�erns learned on one domain are likely
to generalize to similar domains, while the importance of each type
of so� match can vary across domains.

Our experiments on an English search log from Bing and a Chi-
nese search log from Sogou show the advantages of so�-matching n-
grams. As a precision oriented method, Conv-KNRM almost doubled
the NDCG@1 of standard feature-based learning-to-rank methods.
On the English log, Conv-KNRM outperformed state-of-the-art neu-
ral methods by over 30%; in the Chinese log where many unigrams
are already compound word, so�-matching n-grams still provided
signi�cant improvements. Our further study reveals that the key to



Conv-KNRM’s advantages is its ability to cross-match n-grams with
di�erent lengths in a uni�ed space.

Our domain adaptation experiment shows that the n-gram so�
matches are generalizable. When adapted to the TREC Web Track
task, the pre-trained Conv-KNRM from Bing’s log outperformed two
strong learning-to-rank baselines. A case study found that some
connections between queries and their relevant documents can
only be made by so�-matching n-grams, for example, ‘atypical
squamous cells’ and ‘cervical cancer’. To the best of our knowledge,
this is the �rst time such cross-domain generalization ability has
been achieved by neural methods in ad hoc search1.

In the rest of this paper, Section 2 discusses related work; Section
3 describes our model architecture; Section 4 describes the domain
adaptation method; Experimental setups and evaluation results are
presented in Section 5 and Section 6. We conclude in Section 7.

2 RELATEDWORK
�e current neural IR methods can be categorized into two classes:
representation based and interaction based [13]. �e earlier a�empts
of neural IR research were mainly about how to learn good represen-
tation of the query and document, and the ranking was simply done
by their representations’ similarities, for example, DSSM [15] and
its convolution version CDSSM [26]. A more recent example is the
weakly supervised ranking model in which all word embeddings of
a query or document are combined into one vector, and the match
of two vectors is done by deep neural networks [9].

�e interaction based methods, on the other hand, directly model
query-document matches at the word level. �ey are rooted in
statistical translation models, which construct a translation matrix
of word pairs between query and document, and summarize it to a
ranking score [4]. �e main challenge of translation models is that
the word-pair translations are too sparse to learn. To overcome
this problem, word embeddings [20] are introduced to calculate
the translation scores [12]. How to combine the word-level trans-
lation scores to generate query-document ranking scores has also
been improved by neural methods such as Convolutional Neural
Networks [14, 23].

A later study found that the CNN �lters tend to mix the match
signals in the translation matrix at various levels and are subop-
timal for ad hoc search [22]. �e DRMM model introduces the
histogram pooling (pyramid pooling [11]) technique to summarize
the translation matrix; it demonstrated that it is more e�ective
to ‘count’ the word-level translation scores at di�erent so� match
levels, instead of to weight-sum them [13]. �e interaction based
model and the representation based model can also be combined in
a duet architecture [21].

Another trend of neural IR research is to learn customized word
embeddings by and for ad-hoc ranking. �e surrounding text based
word embeddings, e.g. word2vec [20] and GloVe [24], have been
questioned about their suitability for ad hoc search [1, 25]. Diaz
et al. train word embeddings using pseudo relevance feedback
(PRF) documents, which are more e�ective than globally trained
word2vec in query expansion [10]. �e relevance feedback based

1Trained models available at: h�p://boston.lti.cs.cmu.edu/appendices/WSDM2018-
ConvKNRM/

word embeddings are then also found to be more e�ective in ad
hoc ranking [30].

K-NRM uni�ed the progress of IR customized embeddings and
interaction based model [29]. It �rst embeds words and builds the
translation matrix using the similarities between query and docu-
ment words’ embeddings. �en it uses kernel-pooling to summarize
the word embeddings and provide so� match signals for learning
to rank. �e kernel-pooling shares the advantage of pyramid pool-
ing [13] that it ‘counts’ the so� matches at multiple levels, while
also being di�erentiable so that word embeddings and ranking pa-
rameters can be learned together. When trained with user feedback
in a search log, K-NRM outperforms both neural IR methods and
feature-based learning-to-rank by a large margin [29].

�ough the so� matching of n-grams in information retrieval
remains an open topic, there has been a large amount of research
that utilizes n-gram exact matches. �e sequential dependency
model (SDM) that includes n-gram phrase matches has been a
standard in many IR systems [18]. �ere is also much work about
how to be�er weight n-grams in SDM, for example, by emphasizing
frequent and meaningful concepts [3, 32]. A more recent trend is to
use entities to introduce explicit semantics from knowledge graphs
to search systems [28]. �e majority of these work focuses on exact
matching n-grams, because learning a good statistical translation
model score for every possible n-gram pair inevitably faces data
sparsity and parameter explosion.

Modeling n-grams is much easier in the embedding space. Neural
methods have shown the bene�ts of modeling n-grams in some
related text processing tasks, especially with Convolutional Neural
Networks. For example, in sentence classi�cation, CNN has been
used to compose word embeddings into n-gram representations,
which are then max-pooled and combined by a feed-forward neural
network to classify the sentence [17]. �at research demonstrated
CNN’s ability of composing n-gram embeddings, while its ability
in relevance ranking is still being explored.

3 CONVOLUTIONAL N-GRAM RANKING
�is section presents our convolutional kernel-based neural ranking
Model (Conv-KNRM), shown in Figure 1. It �rst composes n-
gram embeddings using CNN, and constructs translation matrices
between n-grams of di�erent lengths in the n-gram embedding
space (Section 3.1). �en it ranks with the n-gram so� matches
using kernel-pooling and learning to rank (Section 3.2).

3.1 N-gram Composing and Cross-matching
Given a query q and document d , Conv-KNRM embeds their words
by a word embedding layer, composes n-grams with a CNN layer,
and cross-matches query n-grams and document n-grams of variant
lengths to the translation matrices.

�e word embedding layer maps each word t of a text to an
L-dimensional continuous vector (embedding): t → ®t . A query q
or document d is treated as a text sequence of m words {t1, ..., tm },
and is modeled as anm × L matrix:

T =


®t1
...
®tm

 . (1)
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Figure 1: �e Conv-KNRM Architecture. Given input query
and document, the embedding layer maps their words into
distributed representations, the convolutional layer gener-
ates n-gram embeddings ; the cross-match layermatches the
query n-grams and document n-grams of di�erent lengths,
and forms the translationmatrices; the kernel pooling layer
generates so�-TF features and the learning-to-rank (LeToR)
layer combines them to the ranking score. �e case with Un-
igrams and Bigrams (hmax = 2) is shown.

We denote the embedding matrix of the query and the document
by Tq and Td respectively.

�e convolutional layer applies convolution �lters to compose
n-grams from the text (Tq orTd ). A convolution �lter slide over the
text like a sliding window. For each window of h words, the �lter
sums up all elements in the h words’ embeddings Ti :i+h , weighted
by the �lter weights w ∈ RhL ,and produces a continuous score:

v = w ·Ti :i+h ,v ∈ R. (2)
Using F di�erent �lters w1, ...,wF gives F scores, each describing
Ti :i+h in a di�erent perspective. �en we add a bias and apply a non-
linear activation function, and obtain an F -dimensional embedding
for the h-gram:

®дhi = relu
(
W h ·Ti :i+h + ®bh

)
, i = 1...m. (3)

®дhi ∈ R
F is the embedding of the i-th h-gram. �e f -th element

in ®дhi is the score of the f -th �lter. W h and ®bh are the weights of
the F convolution �lters. |W h | = (hL) × F and | ®bh | = F . When a
convolution �lter slides across the boundary of the text, we append
up to h − 1 ‘<PAD>’ symbols for padding.

�us, for each n-gram length h ∈ {1, ..,hmax }, the CNN layer
converts the text embedding T into h-gram embedding Gh .

Gh = CNNh (T ) =

®дh1
...

®дhm

 (4)

|Gh | = m × F . Each of its rows correspond to a h-gram vector of
length F . h-gram embeddings for the query and the document are
denoted as Gh

q and Gh
d respectively.

�e ‘convolution’ assumption is applied in the n-gram compo-
sitions: the same set of convolution �lters is used to compose all

n-grams. �us, instead of learning an individual embedding for
each n-gram in the corpus, the model only needs to learn the CNN
weights for combining word-level embeddings, which have much
fewer parameters.

�e cross-match layer matches query n-grams and document
n-grams of di�erent lengths. For query n-grams of length hq and
document n-grams of length hd , a translation matrix Mhq,hd is
constructed. Its elements are the similarity scores between the
corresponding query-document n-gram pairs.

M
hq,hd
i, j = cos

(
®дhqi , ®д

hd
j

)
(5)

�e uni�ed embedding representations allow cross-matching
n-grams of di�erent lengths, e.g., the query trigram“convolutional
neural networks” and the document bigram “deep learning”. It
generates h2

max translation matrices.

M =
{
Mhq,hd |1 ≤ hq ≤ hmax , 1 ≤ hd ≤ hmax

}
(6)

3.2 Ranking with N-gram Translations
Conv-KNRM uses the kernel-pooling technique and a learning-to-
rank layer to calculate the ranking score using the n-gram transla-
tionsM. �is part extends K-NRM [29] to n-grams.

Kernel-pooling is a pooling technique that uses K Gaussian
kernels to count the so� matches of word or n-gram pairs at K
di�erent strength levels. Each kernel Kk summarizes the transla-
tion scores as so�-TF counts in the region de�ned by its mean µk
and width δk . As a result, a translation matrix M is pooled to a
K-dimensional so�-TF feature vector ϕ (M) = {K1(M), ...,KK (M)}.
Such counting-based pooling methods have shown be�er perfor-
mance than score-based ones like mean-pooling or max-pooling
[13, 29].

Kernel-pooling is applied to each Mhq,hd matrix inM to gen-
erate the so�-TF feature vector ϕ

(
Mhq,hd

)
, which describes the

distribution of match scores between query hq -grams and docu-
ment hd -grams. �is leads to the ranking features as follows.

Φ (M) = ϕ
(
M1,1

)
⊕ ... ⊕ ϕ

(
Mhq,hd

)
⊕ ... ⊕ ϕ

(
Mhmax ,hmax

)
Φ(M) has K × h2

max dimensions, K so�-TF features for each of the
h2
max translation matrices inM.

�e learning-to-rank (LeToR) layer combines the so�-TF rank-
ing features Φ(M) into a ranking score:

f (q,d) = tanh
(
wT
r Φ(M) + br

)
(7)

wr andbr are the linear ranking parameters to learn. |wr | = |Φ(M)|
and |br | = 1. tanh() is the activation function.

Standard pairwise learning-to-rank is used to train the model.

l =
∑
q

∑
d+,d−∈D+,−q

max(0, 1 − f (q,d+) + f (q,d−)) (8)

D+,−q are q’s pairwise preferences: d+ ranks higher than d−.
All of Conv-KNRM layers are di�erentiable; the whole model,

including word embeddings (V), CNN �lters (Wh ,bh ), and learning-
to-rank layers (wr ,br ) can be learned end-to-end from training
data. For a model with vocabulary size |V |, L-dimensional word



embeddings, F �lters,hmax maximum n-gram length andK kernels,
the embedding layer has |V | × L parameters, the CNN layer has
O(|hmax |LF ) parameters, and the learning-to-rank layer has K ×
hmax + 1 parameters.

�e main capacity of the model is in the word embedding and
CNN �lters. �ey are expected to learn the word embeddings and
n-gram compositions from training data and provide desired multi-
level n-gram so� matches. �e learning-to-rank layer serves as a
linear feature combiner as in standard feature-based ranking.

3.3 Summary
Conv-KNRM adds the ability of so� matching n-grams to the re-
cent state-of-the-art K-NRM model [29] with convolutional neural
networks (CNNs). Without CNNs, Conv-KNRM withdraws to K-NRM.

Matching n-grams is a well-established idea in information re-
trieval. However, n-grams are usually treated identically to words:
they are atomic index terms, have distinct term frequencies, use
the same weighting function as unigrams, and must match exactly
in query and document [7]. If that approach is used by a neural
ranker, the number of parameters to be learned can grow very large.
�e neural model has to deal with data sparsity and low e�ciency
problems, which are even harder for longer n-grams. Conv-KNRM
avoids these problems by using CNNs to compose n-grams without
dramatically enlarging the parameter space. It makes so�-matching
n-grams convenient and e�cient.

4 DOMAIN ADAPTATION
End-to-end training Conv-KNRM requires large-scale training data,
for example, user clicks in a commercial search log [29] or industry-
scale annotations [21]. However, for many search domains such as
TREC benchmarks, such data are not available. We propose a do-
main adaption strategy that learns Conv-KNRM from a source domain
that has su�cient training data, and then re-trains its learning-to-
rank layer in the target domain with limited labels.

�e parameters of the embedding and convolution layers are
learned in the source domain to absorb the rich relevance signals
in the training data. �ey are then used in the target domain to
generate so�-TF features Φ(M). Xiong, et al. [29] showed that
kernel-pooled so�-TF features reveal di�erent types of so� match.
For example, one kernel may count synonyms (e.g., ‘oppor9’ and
‘OPPOR’); another kernel may count word pairs from the same
concept class (e.g., ’son’ and ’daughter’, ‘Java’ and ‘C++’). �ese
so� match pa�erns are likely to be stable across related domains.

�e learning-to-rank parameters indicate the importance of each
kernel. �ey are re-trained on the target domain, because the
importances of each type of so� matches can change over domains.
For instance, the synonym kernel is of low importance in search logs
as all candidate documents already contain the query words [29];
however, synonyms can be a strong signal in a recall-oriented
domain.

Re-training the ranking layer in the target domain is a standard
feature based learning-to-rank tasks. �is allows one to add domain-
speci�c features from the target domain. �ere is also no limitation
on which learning to rank model to use in the target domain. One
can leverage the power of any learning-to-rank model such as
RankSVM [16] or LambdaMART [27].

Table 1: �ery log datasets. Sogou-Log is a sample of Chi-
nese query logs from Sogou.com in 2016. Bing-Log is a sam-
ple of English query logs from Bing.com in 2006

Sogou-Log Bing-Log
Training Testing Training Testing

Language Chinese English
Fields Title Title, Snippet
�eries 95,229 1,000 99,043 1,000
Docs Per �ery 12.17 30.50 50 50
Search Sessions 31M 4.1M 2.10M 0.14M
Vocabulary Size 165,877 19,079 131,225 41,940

5 EXPERIMENTAL METHODOLOGY
�is section describes our datasets, how training and testing were
performed, our baseline algorithms, and implementation details.

5.1 Datasets
Conv-KNRM was evaluated using two search logs in di�erent lan-
guages (Sogou, Bing), and a TREC dataset (ClueWeb09-B).

Sogou-Log: Sogou.com is a major Chinese commercial search
engine. �e same se�ings as K-NRM were used [29]. �e same
sample of Sogou log and training-testing splits are used (Table 1).
�e testing queries were sampled from queries with more than 1000
sessions (the head); none of them were in the training set.

Documents were represented by titles. �e search log did not
contain document body text. Testing document’s body texts were
crawled, and were used by the traditional IR baselines for stronger
baseline performance. Body texts of training documents were not
available [29]. �e Chinese text was segmented by ICTCLASS [31];
then Chinese words were treated like English words.

Bing-Log: We used a one-month sample of a 2006 Bing log from
the WSDM 2009 Web Search Click Data Workshop. It contained
the top 50 URLs for each query, and clicked URLs in each session.
Following Sogou-Log, we split the Bing sessions into training and
testing sets with no overlapping queries (Table 1). Test queries were
sampled uniformly because the log contained few head queries.

Bing-Log includes documents’ titles and snippets. Most snippets
had 30-50 words. We can not crawl enough body texts because
URLs were from 2006. All texts were tokenized and lower-cased.

ClueWeb09-B is used for domain adaptation experiments. �e
ClueWeb09-B corpus contains about 50 million English web doc-
uments from 2009. �e TREC 2009-2012 Web Tracks created 200
queries and corresponding relevance judgments. We followed a
standard re-ranking methodology in prior research [8, 28]: re-rank
the top 100 candidate documents retrieved by Galago using se-
quential dependency model queries; the INQUERY stopword list
augmented with web-speci�c stop words; KStemming; and spam
�ltering using Waterloo spam score with threshold 60. Documents
were parsed by Boilerpipe using the ‘KeepEverytingExtractor’. �e
title and the �rst 50 words in the body �eld were used to be more
consistent with the source domain (Bing-Log)’s title and snippet.

5.2 In-Domain Training and Testing
Training and testing labels on Sogou-Log and Bing-Log were gen-
erated following prior research [29].



Table 2: Training and testing labels for each dataset. DCTR
used theDCTR clickmodel to infer scores that weremapped
to 5 Likert scales [5]. Clicks used the sole click in a session
as the binary label. TREC labels were the 5 o�cial grades.

Dataset Train Test

Sogou-Log DCTR Testing-SAME: DCTR
Testing-RAW: Clicks

Bing-Log DCTR Testing-SAME: DCTR
Testing-RAW: Clicks

ClueWeb09-B
Embedding & CNN:

TREC labelsBing-Log, DCTR
LeToR: TREC labels

Training Labels: �e training labels for the Sogou and Bing
logs were generated by the DCTR click model from user clicks
in the training sessions [5], and training preference pairs were
constructed accordingly. DCTR uses the click through rate for each
query-document pair as the relevance score. DCTR is a strong
baseline in click model competitions [5].

Testing-SAME:�is set of testing labels was generated by DCTR,
as described for training data. �is se�ing evaluates the model’s
ability to �t explicit user preferences.

Testing-RAW: �is set of testing labels was motivated by the
cascade assumption [5]. Only the clicked document in a single-click
session was considered relevant. 57% of Sogou testing sessions had
only one click. 92% of Bing testing sessions had only one click. �e
Testing-DIFF condition was omi�ed due to space limits; it produced
results similar to Testing-RAW.

5.3 Domain Adaptation Training and Testing
NIST provides 200 queries and corresponding relevance judgments
for ClueWeb09-B. �e domain adaptation experiment tests how well
the n-gram so� matches trained from one domain (Bing) generalize
to a similar domain (ClueWeb09-B). Both datasets contain English
web documents, the timespans are somewhat similar (2006 vs. 2009),
and TREC queries are similar to Bing queries2. However, the two
datasets have di�erent documents, di�erent indexing methods, and
di�erent the initial rankers (Bing vs. Galago); the relevance labels
are also rather di�erent (clicks vs. manual assessments).

On ClueWeb09-B, Conv-KNRM was �rst trained with the Bing
log (as described above). �en the embeddings and convolution
�lters were ‘frozen’ and so� TF-features Φ (M) were extracted
using the same kernels for ClueWeb09-B. We also included the
initial retrieval score from Galago with sequential dependency
model (Galago-SDM) to provide whole-document information as
Conv-KNRM only uses the title and the �rst 50 words of the body.
�e learning-to-rank parameters were retrained and tested using
TREC relevance judgments (Table 2), 10-fold cross-validation, and
RankSVM to add regularization (as discussed in Section 4).

5.4 Baselines
Traditional IR baselines included standard unsupervised retrieval
models and feature-based learning-to-rank models. Unsupervised

2NIST sampled the TREC queries from a Bing search log. We removed TREC queries
from our Bing training data. Our training and testing data have no queries in common.

methods included BM25 and language model with Dirichlet smooth-
ing (Lm), applied on the full text of Sogou documents, or the title
plus snippet of Bing documents. Learning-to-rank baselines were
RankSVM [16] and coordinate ascent ( Coor-Ascent) [19] �ey used
20 features: Boolean AND; Boolean OR; Coordinate match; Cosine
similarity of bag-of-words vectors; TF-IDF; BM25; language mod-
els with no smoothing, Dirichlet smoothing, JM smoothing, and
two-way smoothing; all applied on the title and body (or snippet).
Default parameters were used in feature extraction.

For ClueWeb09-B, we used state-of-the-art baselines from prior
research [28] 3. �e baselines include Indri’s language model
(Indri), Galago with sequential dependency model queries (Galago-
SDM), and learning-to-rank models: RankSVM and Coor-Ascent.
Neural IR baselines included CDSSM [26], MatchPyramid (MP) [23],
DRMM [13], and K-NRM [29].

CDSSM [26] is uses CNNs to build query and document represen-
tations on their words’ le�er-tri-grams (or Chinese characters in
Sogou-Log [29]). �e ranking scores are calculated by the similarity
between the representations.

MP [23] and DRMM [13] are both interaction based models built
upon the embedding translation matrix. MP uses CNNs to directly
combine the translation scores to the ranking score, while DRMM
uses histogram pooling to count multiple levels of so�-TF, and use
learning-to-rank a�erwards.

K-NRM is a state-of-the-art neural model previously tested on the
Sogou-Log dataset [29]. It uses kernel-pooling instead of DRMM’s
histogram pooling, and learns the word embeddings and the ranking
layers end-to-end. It is the main baseline in our experiments.

Among these neural IR baselines, DRMM and K-NRM were com-
pared on the ClueWeb09-B dataset. DRMM uses �xed embeddings
and only learns the learning-to-rank layers, and can be trained with
limited training data. K-NRM was tested the same as Conv-KNRM in
the domain adaption fashion. MP and CDSSM performed worse than
DRMM on TREC data in previous studies [13, 22].

It is unfair for unsupervised [30] or pseudo-supervised [9] neural
IR methods to compete with Conv-KNRM, which is trained end-to-
end with large amount of supervisions.

5.5 Implementation Details
Model Training: All supervised traditional IR models were trained
and tested using cross-validation on the testing data. On search logs,
5-fold cross validation were used to be consistent with the previous
study on Sogou-Log [29]. On ClueWeb09-B, the 10-fold cross vali-
dation splits from the provided baselines were used. All RankSVM’s
used the linear kernel with the hyper-parameter C selected from the
range [0.0001, 10] on the development set. Recommended se�ings
of Coor-Ascentwere kept. All neural IR methods are trained on the
training splits. On ClueWeb09-B, DRMM was cross-validated; K-NRM
and Conv-KNRM was pretrained on Bing-Log, then used RankSVM
with cross-validation to retrain the learning-to-rank layer.
Document Fields: On Sogou-Log, traditional IR methods used
both title and body, and neural IR methods only used title [29], as
discussed in section 5.1. On Bing-Log, all methods used the title
and snippets. On ClueWeb09-B, all methods used title and body,
except K-NRM and Conv-KNRM which used title and �rst 50 words

3h�ps://boston.lti.cs.cmu.edu/appendices/SIGIR2017 word entity duet/



in the body as snippets, to be consistent with the source domain.
When multiple �elds were used, a separate set of features from each
�eld was generated; the combination weights were learned as well.
Word Embeddings: DRMM used pre-trained word2vec embeddings
from the candidate documents in the search log, or the ClueWeb
corpus. MP, K-NRM, and Conv-KNRM embeddings were all learned
end-to-end using the query logs. For Sogou-log, we set embedding
dimension L = 300 [29] . For Bing-Log, we set L = 100 because
our pilot study showed that L = 100 has similar performance with
L = 300 but the training is 3 times faster.
Hyper Parameters: n-gram lengths were h = 1, 2, 3. Longer n-
grams with h > 3 usually exceed the length of web search queries.
�e number of CNN �lters F was 128; we found that F in the range
of (50, 300) give similar results. �e kernel pooling layers in K-NRM
and Conv-KNRM and the histogram pooling layer in DRMM all used 11
kernels/bins. �e �rst one is the exact match kernel µ = 1,σ = 10−3,
or bin [1, 1]. �e other 10 kernels/bins equally split the cosine range
[−1, 1]: the µ or bin centers were: µ1 = 0.9, µ2 = 0.7, ..., µ10 = −0.9.
�e σ of the so� match bins were set to be 0.1 [29].
Model Implementation and E�ciency: �e model was imple-
mented with Tensor�ow. �e optimization used the Adam opti-
mizer, with batch size 16, learning rate 0.001, and early stopping
with the patience of 5 epochs. �e training of Conv-KNRM took
about 12 hours on an AWS GPU machine. �e training time is simi-
lar with prior work using only unigrams [29]. Most computation
time was spent on the embedding layer; the convolutional layer
was very e�cient.

6 EVALUATION RESULTS
�ree experiments were conducted to analyze Conv-KNRM’s perfor-
mance: its ranking accuracy when trained end-to-end, contribu-
tions of n-gram so� match, and the e�ectiveness when adapted to
new domain.

6.1 End-to-End Accuracy
�e ranking accuracies of each ranking method on the Sogou-Log
and Bing-Log datasets are shown in Table 3.

On Testing-SAME, Conv-KNRM outperformed all feature-based
and neural IR baselines by large margin with statistical signi�cance.
�e closest baseline is K-NRM, the non-convolutional version of
Conv-KNRM, but the di�erences were still large. Conv-KNRM per-
formed be�er in higher ranking positions: its NDCG@1 almost
doubled Coor-Ascent . �ese results show Conv-KNRM’s e�ective-
ness when trained and tested on the same labeling scenario.

Testing-Raw evaluates the model’s performance by raw user
clicks. �e same stable improvements of Conv-KNRM over all base-
lines were observed. Since this evaluation uses sessions with only
one click, the MRR scores directly re�ect the reciprocal rank of user-
clicked documents. On Sogou-Log, the average rank of clicked docu-
ments of all methods except K-NRM and Conv-KNRM was below rank
5. K-NRM pulled the clicked document to rank 3, and Conv-KNRM
further promoted it to rank 2.7. On Bing-Log, Conv-KNRM pulled
the clicked document of all methods more than 1 position higher.

�e only neural IR baselines that outperformed feature-based
learning-to-rank are the two interaction based and end-to-end trained
ones: MP and K-NRM. Although other neural IR methods can improve

over unsupervised baselines, feature-based learning-to-rank meth-
ods are harder to beat; end-to-end learned embeddings and match-
based techniques are necessary for current neural IR methods to
provide additional improvements [22, 29, 30]

Comparing the two strong neural IR baselines, K-NRM outper-
forms MP by a large margin. Both methods use end-to-end learned
word embeddings to build the translation matrix. �e di�erence
is that K-NRM uses kernel-pooling to summarize ‘so�-TF’ counts
from the translation matrix, while MP directly applies the CNN to
combine the translation scores. CNN in MP only has access to the
translation scores in the translation matrix, for example, a 2×2 CNN
�lter sees the similarity scores between two adjacent query words
and two adjacent document words, but not their embeddings. Our
experiments and prior studies show that counting the frequencies
of multi-level so� matches are more e�ective than weight-summing
the similarities [13, 29]—“similarity does not necessarily mean rele-
vance” [6].

Recall that Conv-KNRM is a richer model than K-NRM only because
it leverages convolutional neural networks to learn the n-gram
compositions and thus enable n-gram so� matches. �e improve-
ments of Conv-KNRM over K-NRM reveal the advantage of n-gram
so� matches. �e relative improvements on Sogou and Bing also
correlate with our intuitions of n-gram’s importance in Chinese and
English. In Chinese, words are segmented by word segmentation
tools. An important goal of Chinese word segmentation research is
to cut meaningful phrases into one word. For example, ‘information
retrieval’, ‘deep learning’, and ‘�e People’s Republic of China’ are
all unigrams in Chinese. As a result, the gains are much larger on
English than on Chinese.

6.2 Contribution of N-Gram So�-match
�is experiment studied the contribution of n-gram so� matches by
comparing several Conv-KNRM’s variations. Conv-KNRM composes n-
grams with lengths up to hmax and cross-matches them in a uni�ed
embedding space. We started with K-NRM, which is Conv-KNRM
without CNNs, and incrementally added bigram matches (+Bigram),
trigram matches (+Trigram), cross unigram-bigram matches (+Uni-
x-Bi), and cross all three n-grams’ matches which is the Full Model.
Results are shown in Table 4.

Longer n-gram were more e�ective in English. On the Bing-
Log, trigrams were be�er than bigrams, and bigrams were be�er
than unigrams. �e e�ect was weaker in Chinese, with mixed
performances on di�erent se�ings. Presumably it is because many
Chinese phrases were glued to one word by word segmentation.

Cross matching n-grams of di�erent lengths boosted accuracy
in both languages. +Uni-x-Bi performed signi�cantly be�er than
+Bigram on most metrics, and Full Model outperformed all other
variants signi�cantly. Cross matching is e�ective because related
concepts do not necessarily have the same length, e.g. ‘FIFA’ and
‘world cup’. Composing n-grams using CNNs makes cross matching
simple: all n-grams, despite with di�erent lengths, are represented
and matched in the same embedding space.

6.3 Domain Adaption
Our third experiment examined the e�ectiveness of Conv-KNRM
when adapted to a domain where large scale training data is not



Table 3: Ranking accuracy of Conv-KNRM and baselinemethods. Relative performances compared with K-NRM are in percentages.
†, ‡, §, ¶, ∗ indicate statistically signi�cant improvements over Coor-Ast†, DRMM‡, CDSSM§, MP¶ and K-NRM∗, respectively.

Method
Sogou-Log Bing-Log

Testing-SAME Testing-Raw Testing-SAME Testing-RAW
NDCG@1 NDCG@10 MRR NDCG@1 NDCG@10 MRR

BM25 0.142 −45% 0.287 −34% 0.228 −33% 0.043 −79% 0.123 −63% 0.102 −61%
RankSVM 0.146 −44% 0.309 −29% 0.224 −34% 0.128 −39% 0.266‡ −20% 0.207 −22%
Coor-Ascent 0.169‡§ −34% 0.355‡§ −16% 0.242 −29% 0.142 −32% 0.268‡ −20% 0.208 −22%
DRMM 0.137 −51% 0.315 −27% 0.234 −31% 0.137 −34% 0.247 −26% 0.200 −25%
CDSSM 0.144 −44% 0.333‡ −23% 0.232 −32% 0.156 −25% 0.273 −18% 0.212 −20%
MP 0.218†‡§ −15% 0.379†‡§ −12% 0.240 −29% 0.182†‡§ −12% 0.301†‡§ −10% 0.244†‡§ −8%
K-NRM 0.264†‡§¶ −− 0.428†‡§¶ −− 0.338†‡§¶ −− 0.208†‡§¶ −− 0.334†‡§¶ −− 0.265†‡§¶ −−
Conv-KNRM 0.336†‡§¶∗ +30% 0.481†‡§¶∗ +11% 0.358†‡§¶∗ +5% 0.300†‡§¶∗ +44% 0.437†‡§¶∗ +31% 0.354†‡§¶∗ +34%

Table 4: Ranking accuracy of Conv-KNRM variants. Relative performances compared with Unigram-only model (K-NRM) are
in percentages. †, ‡, §, ¶ indicate statistically signi�cant improvements over Unigram†, +Bigram‡, +Trigram§ and +Uni-x-Bi¶,
respectively.

Sogou-Log Bing-Log
Conv-KNRM Testing-SAME Testing-Raw Testing-SAME Testing-RAW
Variant NDCG@1 NDCG@10 MRR NDCG@1 NDCG@10 MRR

Unigram 0.264 −− 0.428 −− 0.338 −− 0.208 −− 0.334 −− 0.265 −−
+Bigram 0.287† +11% 0.442 +2% 0.314 −8% 0.235† +13% 0.385† +15% 0.301† +14%
+Trigram 0.286† +11% 0.454† +5% 0.330‡ −3% 0.252† +21% 0.399† +20% 0.318†‡ +20%
+Uni-x-Bi 0.308† +19% 0.458†‡ +6% 0.346‡§ +2% 0.275†‡ +32% 0.417†‡§ +25% 0.335†‡§ +26%
Full Model 0.336†‡§¶ +30% 0.481†‡§¶ +11% 0.358†‡§ +5% 0.300†‡§¶ +44% 0.437†‡§¶ +31% 0.354†‡§¶ +34%

Table 5: Performance on ClueWeb09-B using domain adaptation. Relative performance in percentages are compared to
Coor-Ascent. W(in)/T(ie)/L(oss) to Coor-Ascent are compared at NDCG@20. †, ‡, §, ¶∗ indicate statistically signi�cant improve-
ments over Indri†, Galago SDM‡, RankSVM§, Coor-Ascent ¶ and DRMM+SDM ∗.

Method ClueWeb09-B
NDCG@1 ERR@1 NDCG@10 ERR@10 NDCG@20 ERR@20 W/T/L

Indri 0.239 −6% 0.062‡∗ −12% 0.229 −15% 0.130 −15% 0.236 −12% 0.139 −14% 68/31/101
Galago-SDM 0.219 −14% 0.053 −25% 0.238 −11% 0.130 −16% 0.250† −7% 0.139 −14% 63/39/98
RankSVM 0.236 −7% 0.064∗ −10% 0.256†‡ −5% 0.146†‡ −5% 0.263†‡∗ −2% 0.154‡∗ −5% 82/47/71
Coor-Ascent 0.255†‡∗ −− 0.071 −− 0.268†‡ −− 0.154 −− 0.268†‡ −− 0.162 −− –/–/–
DRMM+SDM 0.215 −16% 0.049 −31% 0.261†‡ −3% 0.136 −12% 0.243 −9% 0.138 −15% 66/34/100
K-NRM 0.235 −8% 0.057 −20% 0.264†‡ −2% 0.140 −9% 0.269†‡∗ +0% 0.149 −8% 69/42/89
Conv-KNRM-exact 0.231 −10% 0.064∗ −10% 0.263†‡ −2% 0.146†‡∗ −5% 0.270†‡∗ +1% 0.155†‡∗ −4% 78/42/80
Conv-KNRM 0.294†‡§¶∗ +15% 0.093†‡§¶∗ +31% 0.289†‡§¶∗ +8% 0.172†‡§¶∗ +12% 0.287†‡§¶∗ +7% 0.181†‡§¶∗ +12% 88/38/74

available. We trained Conv-KNRM’s word embeddings and convolu-
tion �lters in Bing-Log with a large amount of user preference labels
from clicks, and re-trained the learning-to-rank part on ClueWeb09-
B’s TREC ranking labels. Results are shown in Table 5.

Indri and Galago-SDM are two unsupervised baselines. RankSVM,
Coor-Ascent, and DRMM+SDM are supervised baselines. �ey used
in-domain training with cross-validation, because their parameters
can be learned with TREC-scale training labels. DRMM+SDM is a vari-
ant of DRMM that uses Galago-SDM score as an additional feature; it
showed higher performance than the standard DRMMM. Conv-KNRM
and K-NRM were both trained using domain adaption. We also exam-
ined Conv-KNRM-exact which only uses exact-matches of n-grams,
e.g. ‘world cup’ can only be matched to ‘world cup’.

As shown in Table 5, K-NRM was not able to beat DRMM+SDM, mean-
ing that the e�ectiveness of unigram level so� matches was weak-
ened by domain di�erences. Conv-KNRM-exact performed about
the same, and was weaker than learning-to-rank approaches. It
does no more than exact phrase matching as in SDM. Conv-KNRM dif-
fers from K-NRM and Conv-KNRM-exact by so�-matching n-grams;
it outperformed the two strong traditional learning-to-rank models.
�e results demonstrate that the learned n-gram so� matches of
Conv-KNRM can generate to a di�erent domain.

Feature Weight Analysis: to further study the domain adap-
tion, we investigated the importance of Conv-KNRM so�-TF features
(Φ(M)) in the adapted model. If the so� n-gram matching pa�erns
learned from the Bing-Log is generalizable, their so�-TF feature
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Figure 2: Learned weights of di�erent parts of ranking fea-
tures on ClueWeb09-B. �e percentage is the fraction of ab-
solute weights on each side learned by linear RankSVM.

weights would share a reasonable chunk of learning to rank weights
in the adapted model.

We veri�ed this by analyzing the weights RankSVM assigned to
di�erent groups of ranking features, as shown in Figure 2. Each
analysis divides features into two groups, e.g. exact-match features
and so�-match features. It then calculates the percentage of weight
given to each type of features by summing up the absolute weight
values of the feature set. In Figure 2, most of the weight goes to so�
matches (Exact v.s. So�); N-gram matches have more weight than
unigram matches (Unigram vs. N-gram); and matching n-grams
of di�erent lengths is important compared to matching n-grams
with same length (Same-length v.s. Cross-length). �e high feature
weights on so� n-gram match features reveals that these features
do provide useful information to the learning-to-rank model—more
useful than n-gram exact matches, despite that the n-gram so�
matches were trained and tested on two rather di�erent domains:
di�erent labels, di�erent documents, and non-overlapping queries.

Case Studies: We performed case studies to be�er understand
the so� n-gram matching. Table 6 shows examples of relevant
documents that are correctly placed at rank 1 by Conv-KNRM, but
not by RankSVM and KNRM. By sorting n-gram pairs according to
each feature’s individual performance, we can �nd the most im-
portant so� match that makes the document ranked highly, as
highlighted in Table 6. �ese cases demonstrated the e�ectiveness
in Conv-KNRM. First, Conv-KNRM overcomes the lexical mismatch,
and �nds query-document connections that are di�cult for exact-
match-based approaches, e.g. ‘sewing instructions’ and ‘quilting
101’. Second, Conv-KNRM captures n-gram matches that are di�erent
with word matches like K-NRM. For example, (‘atypical squamous’,
‘cervical cancer’) is a strong match, but the connection between
their unigram pairs, e.g. (‘atypical’, ‘cervical’), are much weaker.
�ese examples also illustrates Conv-KNRM’s generalizability: the
matchings make sense in various contexts than just in one dataset.

In summary, the domain adaptation experiment provides a thor-
ough view of the generalization ability of Conv-KNRM. �e evalu-
ations on ClueWeb09-B shows that the cross-domain so� n-gram
matching provides signi�cant gains over in-domain feature-based
learning-to-rank. Feature weight analysis demonstrates that the
adapted model puts the majority of feature weights on n-gram so�
match signals. Case studies prove that the learned so�-matches are
intuitive and cover universally meaningful information needs. To
the best of our knowledge, this is the �rst time we have seen such
generalization ability in neural IR models.

7 CONCLUSION
�is paper presents Conv-KNRM, a convolutional kernel-based neu-
ral ranking model that models n-gram so� matches for ad hoc
search. Treating n-grams as discrete index terms faces the problem
of dimension explosion and data sparsity. In contrast, Conv-KNRM
uses Convolutional Neural Networks to compose n-gram embed-
dings from word embeddings, and cross-matches n-grams of various
lengths in the uni�ed embedding space. It then applies kernel pool-
ing to extract ranking features, and uses learning-to-rank to obtain
the �nal ranking score.

Our experiments on Chinese and English search logs demon-
strate the advantages of so�-matching n-grams in relevance rank-
ing. Gonv-GRAM almost doubled the NDCG@1 scores compared to
feature-based ranking approaches, and outperformed the previous
state-of-the-art model by over 30% at the top. Trained end-to-end
with user feedback, Conv-KNRM learns n-gram so� match pa�erns
tailored for matching queries and relevant documents, for example,
the query ‘farm’ is matched to ‘eat & drink’. Such IR-customized
n-gram so�-match has not been seen much in previous work.

Based on our analysis, the key to Conv-KNRM’s advantages is
cross-matching n-grams of di�erent lengths. Cross-matching con-
sistently outperformed its non-cross-matching variants. On the
Chinese search log, Conv-KNRM without cross-matching is about
the same as its unigram competitor K-NRM, due to the phrase-like
characteristics of Chinese unigrams. Cross-matching is important
because related concepts do not necessarily have the same number
of words, for instance, ‘deep learning’ and ‘convolutional neural
network’. But there has been li�le study on it due to the limitation
of discrete n-gram representation. �e CNN approach of modeling
n-grams makes cross-matching feasible, e�cient, and e�ective.

Beyond the good performance when trained end-to-end in do-
main, we show that the model trained on one domain is also gen-
eralizable to a related search domain. �e model learned from
Bing-log signi�cantly outperformed strong learning-to-rank base-
lines when adapted to TREC Web Track task, despite important
domain di�erences including corpus, queries and evaluation con-
ditions. Experiments show that the embedding and CNN layers
can be directly used in another related domain to generate n-gram
so�-matching features. Further analysis explains the generalizabil-
ity: the learned n-gram so�-matching pa�erns encode universal
properties of language usage in ad hoc search tasks, and provide
important evidences for relevance ranking even when used across
domains.
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Table 6: Examples of matched n-grams between query and snippets. Black phrases contribute more to the relevance score
than gray ones.

�ery Snippet
sewing instructions …home free resources! newsle�er sewing ideas…quilting 101 what is a quilt…

atypical squamous cells …treatment decision tools cervical cancer : prevention and early detection…
moths … grouping of moth families commonly known as the ’smaller moths ’ ( micro , lepidoptera)…

�ckle creek farm .. bed & breakfast inns extended stay lodging rv parks where to eat & drink nightlife …
university phoenix campus locations programs : bachelor degree masters degrees account degrees business degree…

wedding budget calculator …planning tips photographs bridal board my perfect planner tools my check lists…
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