How Much Non-strictness do Lenient Programs Require?

Klaus E. Schauser
Department of Computer Science

University of California, Santa Barbara

Santa Barbara, CA 93106
schauser@cs.ucsb.edu

Abstract

Lenient languages, such as Id90, have been touted as among
the best functional languages for massively parallel machines
[AHNR8S]. Lenient evaluation combines non-strict semantics
with eager evaluation [Tra91]. Non-strictness gives these
languages more expressive power than strict semantics, while
eager evaluation ensures the highest degree of parallelism.
Unfortunately, non-strictness incurs a large overhead, as it
requires dynamic scheduling and synchronization. As a re-
sult, many powerful program analysis techniques have been
developed to statically determine when non-strictness is not
required [CPJ85, Tra91, Sch94].

This paper studies a large set of lenient programs and
quantifies the degree of non-strictness they require. We
identify several forms of non-strictness, including functional,
conditional, and data structure non-strictness. Surprisingly,
most Id90 programs require neither functional nor condi-
tional non-strictness. Many benchmark programs, however,
make use of a limited form of data structure non-strictness.
The paper refutes the myth that lenient programs require
extensive non-strictness.

1 Introduction

Non-strict functional languages have been widely regarded
as an attractive basis for parallel computing. Unlike sequen-
tial languages, they expose all the parallelism in a program.
In side-effect—free functional languages, the arguments to a
function call can be evaluated in parallel. Further, non-strict
execution can substantially enhance parallelism, since func-
tions can start executing before all of their arguments have
been provided. In a language with non-strict semantics it
is possible to define functions which return a result even if
one of the arguments diverges. Among other things, this
makes it possible to create recursively defined and cyclic
data structures, since portions of the result of a function
call can be used as arguments to that call. Non-strictness
increases the expressiveness of the language but requires a
more flexible strategy than strict evaluation, which evalu-
ates all arguments before calling a function.

Non-strictness is usually combined with lazy evaluation,
which delays evaluation of an expression until it is known to

To appear in 7th Annual ACM SIGPLAN/SIGARCH
Conference on Functional Programming Languages and
Computer Architecture (FPCA’95).

Seth C. Goldstein
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720
sethg@cs.berkeley.edu

contribute to the result, thus decreasing parallelism. How-
ever, non-strictness can also be combined with eager evalu-
ation. This combination, called lenient evaluation [Tra91],
exhibits more parallelism than lazy evaluation while retain-
ing much of the latter’s expressive power.

Unfortunately, non-strictness comes at a high implemen-
tation cost, since it requires fine-grained dynamic schedul-
ing and synchronization. Non-strict semantics can make it
impossible to statically determine the order in which ar-
guments are evaluated and operations execute. Expressions
can be evaluated only after all of the arguments they depend
on are available. This dynamic scheduling is expensive on
commodity microprocessors, which efficiently support only
a single thread of control and incur a high cost for context
switching.

Much research has been devoted to analysis techniques
that determine when the full generality of non-strictness
is not required. These techniques include strictness anal-
ysis [Pey87], backwards analysis [Hug88b], path analysis
[BH87], and partitioning [Tra91, SCvE91, HDGS91]. For
lenient languages the compilation approach is to schedule
instructions statically into sequential threads and have dy-
namic scheduling only between threads. The task of identi-
fying portions of the program that can be scheduled stati-
cally and ordered into threads is called partitioning [Tra91].
Two operations can be placed into the same thread only
if the compiler can statically determine the order in which
they execute.

In [Sch94] we presented a new thread partitioning al-
gorithm, separation constraint partitioning, which improves
substantially on previous work [Tra9l, HDGS91, SCvE91].
To evaluate our partitioning algorithm, we compared bench-
mark programs compiled using our algorithm and using strict
partitioning. Strict partitioning ignores possible non-strict-
ness and compiles functions and conditionals strictly, thus
representing the best possible partitioning. Obviously, strict
partitioning produces an incorrect partitioning (i.e., leading
to a deadlock) for programs which require non-strictness.
Surprisingly, almost all of our benchmark programs still ran
correctly, an indication that non-strictness is rarely used in
lenient programs.

This observation led us to pursue a more detailed study
of how much non-strictness lenient programs use, and to
focus on a larger set of programs. In this paper, we eval-
uate the strictness properties of a large collection of pro-
grams written in Id90, a non-strict functional language that
uses lenient evaluation. We define three catagories of non-
strictness: functional, conditional, and data-structure non-
strictness. We find that functional and conditional non-
strictness are rarely used in lenient programs. On the other
hand, data structure non-strictness is used extensively. We

further catagorize data-structure non-strictness into circu-
lar, recursive, and dynamically scheduled non-strictness, and
we see that the expensive dynamically scheduled non-strict-
ness is seldom required.

In this study our focus is on whether non-strictness is
required (and if it is, what kind is required) for executing
lenient programs correctly. Therefore, the study is not af-
fected by whether the programs are executed in parallel or
sequentially. We chose to study the sequential execution
behavior. However, evaluating functions, even strict func-
tions, non-strictly can increase parallelism. We find that
non-strictness is rarely used, suggesting that future work on
lenient languages should focus less on techniques for deter-
mining when non-strictness is not used, and more on when
strict functions and conditionals should be evaluated non-
strictly.

The remainder of the paper is structured as follows. Sec-
tion 2 summarizes the different evaluation strategies for func-
tional languages (strict, lenient, and lazy) and previous ar-
guments for lenient evaluation as the most suitable way to
write programs for massively parallel machines. Section 3
identifies and illustrates three kinds of non-strictness: con-
ditional, functional, and data structure non-strictness. Sec-
tion 4 describes the methodology and the benchmark pro-
grams which were used for this study, and presents the re-
sults which show the type of non-strictness each program
requires. Section 5 discusses related work and Section 6
suggests directions for future work.

2 Lenient Evaluation

This section summarizes different evaluation strategies for
functional languages: strict, lenient, and lazy. The three
evaluation strategies differ in their expressiveness, paral-
lelism, and efficiency. Many arguments have been made
in favor of lenient evaluation, as embodied in the language
1d90,! as the best choice for massively parallel machines
[AHNS88, Nik90]. Being non-strict, lenient evaluation retains
much of the expressive power of lazy evaluation at a much
lower overhead, while exhibiting more parallelism than both
strict and lazy evaluation [Tra91].

2.1 The Lenient Language 1d90

1d90 is a functional language augmented with synchronizing
data structures. It consists of three layers, as shown in Fig-
ure 1. The functional core has all of the properties of purely
functional languages, including referential transparency and
determinacy. Id90 provides array comprehensions for effi-
ciently expressing scientific computation requiring arrays or
other large data structures. These are purely functional con-
structs and define an array by defining each element. With
array comprehensions, elements of the array can be defined
in terms of other elements. One limitation is that in or-
der to be purely functional, the elements of the array have
to be defined completely within the array comprehension.
This ensures that referential transparency is preserved. Be-
cause this is not sufficient for certain problems [ANP87],
1d90 also provides two non-functional data structures, I-
structures [ANP89] and M-structures [BNA91].
I-structures are write-once data structures which sepa-
rate the creation of the structure from the definition of its

IParallel Haskell (pH), an ongoing development which integrates
many concepts of 1d90 into Haskell, may also be based on lenient
evaluation.

more expressive power
M-structures

I-structures
determinate

Functional core
referentially transparent
determinate

simpler semantics
Figure 1: The three layers of Id90 (from [Nik93]).

elements. Like functional arrays, I-structures provide effi-
cient indexed access to the individual elements. In addi-
tion, I-structures provide element-by-element synchroniza-
tion between the producer and consumer. I-structures are
not purely functional, since they lose referential transpar-
ency. Any function obtaining a pointer to an I-structure
may store into it. On the other hand, determinacy is pre-
served because each location can be stored into at most once.
Non-deterministic computation can be expressed with M-
structures, mutable data structures that provide support for
atomic updates.

2.2 Evaluation Strategies

The two most widely used evaluation strategies for func-
tional languages are strict and lazy evaluation. We com-
pare them to lenient evaluation, the strategy used in 1d90.
The three strategies differ in how they handle the evalua-
tion of type constructors and function calls. As presented
in [Tra91], to evaluate a function call fe;...en,

Strict evaluation first evaluates all of the argument ex-
pressions e; to ep, and then evaluates the function
body, passing in the evaluated arguments;

Lenient evaluation starts the evaluation of the function
body f in parallel with the evaluation of all the argu-
ment expressions e; to ey, evaluating each only as far
as the data dependencies permit;

Lazy evaluation starts the evaluation of the function body,
passing the arguments in an unevaluated form.

The evaluation rules for constants, arithmetic primitives,
and conditionals are the same for the three strategies. The
evaluation of a constant yields that constant. Arithmetic
operators are strict in their arguments, so they evaluate the
arguments before performing the operation. The evaluation
of a conditional if e; then es else es first evaluates the pred-
icate e1; depending on the result, either e» or es is then
evaluated. The three evaluation strategies treat the condi-
tional conservatively: they do not start evaluating e> and e3
speculatively before knowing the value of the predicate.

We see that under strict evaluation it is impossible to
call a function with only some of the arguments. Thus one
cannot pass the result (or part of it) back into the function.
On the other hand, this is possible under both lenient and
lazy evaluation, both of which implement non-strict seman-
tics. Lazy evaluation ensures that only expressions which
contribute to the final answer are evaluated; the evaluation
is demand-driven. In contrast, strict and lenient evaluation
evaluate all expressions (with the exception of those inside
the arms of conditionals); they use eager evaluation, which is
data-driven in the sense that an expression can be evaluated
as soon as its data inputs are available.

As Table 1 shows, the three evaluation strategies differ
substantially in their expressiveness, the amount of paral-
lelism they expose, the implementation overhead, and the

amount of speculative computation. These differences are
discussed in the following subsections.

Expressiveness strict < lemient < lazy
Parallelism lazy < strict < lenient
Overhead strict < lenient < lazy
Speculative comp. lazy < lenient = strict

Table 1: Comparison of the three evaluation strategies.

2.2.1 Expressiveness

As shown in Figure 2, the expressiveness of the evalua-
tion strategies forms a three-level hierarchy. Lazy evalua-
tion results in more expressiveness than lenient evaluation,
which in turn has more expressiveness than strict evalua-
tion. By “more expressiveness,” we informally mean that
the translation of a program which uses non-strictness into
a strict equivalent may require a global reorganization of
the entire program; a more formal definition of expressive-
ness is given in [Fel91]. Non-strictness, as present in lenient
and lazy evaluation, significantly increases expressiveness:
The programmer can create circular data structures and de-
fine data structures recursively in terms of their own ele-
ments. In Section 3 we present several of such examples.
Under the purely functional setting, non-strictness results
in more efficient programs—in both space and time require-
ments [Hug88a, Bir84, Joh87]. In addition, lazy evaluation
provides the control structure to handle infinite data struc-
tures, as long as only a finite part is accessed. Using explicit
delays, programmers can obtain the same benefit under le-
nient evaluation [Hel89].

Lazy evaluation more expressiveness

non-strictness
infinite structures
Lenient evaluation
non-strictness

circular structures

Strict evaluation

Figure 2: Expressiveness of the three evaluation strategies.

2.2.2 Parallelism

The evaluation strategy can have a strong impact on the
amount of parallelism [HA87]. Lenient evaluation results
in the largest amount of parallelism, while lazy evaluation
shows the least amount of parallelism [Tre94]. Lazy evalua-
tion needs to show that an argument is actually required for
the final answer before starting its evaluation, while strict
and lenient evaluation can always evaluate independent ar-
guments in parallel. In addition, lenient evaluation can ex-
ploit producer-consumer parallelism. Consider the function
flat which produces a list of the leaves of a binary tree
using accumulation lists [Nik91].

def flat tree acc =
if (leaf tree) then (cons tree acc)
else flat (left tree) (flat (right tree) acc);

This example does not require non-strictness; therefore
it can be executed with any of the three evaluation strate-
gies. However, under strict evaluation this code exhibits

little parallelism. The right subtree is completely flattened
before starting with the left subtree. And this holds for
every level, so the tree is flattened sequentially.

Under lenient execution the flattening of the two sub-
trees can be pipelined. Flattening of the right subtree can
be started simultaneously with the flattening of the left sub-
tree. The resulting list for the right subtree is fed into the
function working on the left subtree. In effect, the entire list
is constructed in parallel. This example shows that overlap-
ping the consumer and producer can yield more than just a
constant factor increase in parallelism [Nik91].>

Lazy evaluation flattens the subtrees in the opposite or-
der from strict evaluation. Lazy evaluation first flattens the
left subtree, and then starts working on the right subtree.?
Therefore lazy evaluation also does not exhibit any paral-
lelism.

2.2.3 Evaluation Overhead

As should already be clear, the evaluation strategies differ
substantially in their overhead. The biggest differences are
in the costs for argument passing and dynamic scheduling.

Strict evaluation has the lowest overhead. All arguments
can be evaluated before calling a function, and therefore can
be passed by value. Furthermore, it is possible to stati-
cally schedule all of the computation inside a function and
produce efficient sequential code. The compilation of strict
functional languages is therefore similar to well understood
implementations of sequential languages.? Lazy evaluation
has a high overhead because it requires arguments to be
passed in unevaluated form, unless it can be shown that
they contribute to the final result. The overhead of lenient
evaluation falls between that of lazy and strict evaluation
[Trad1].

2.2.4 Speculative Computation

Lazy evaluation is the only strategy which completely avoids
speculative computation; it evaluates only expressions which
contribute to the final result. The other two schemes do
computation eagerly, thereby putting the burden on the pro-
grammer to avoid infinite or speculative computation.

2.2.5 Summary

We have seen that both lenient and lazy evaluation real-
ize non-strictness, i.e., they may start the evaluation of a
function body before evaluating the arguments. When non-
strictness is combined with eager evaluation, as in lenient
evaluation, parallelism is increased substantially, because
all arguments can be evaluated in parallel with the func-
tion body. This is why many researchers have claimed that
lenient evaluation is best for parallel implementation of func-
tional languages.

2Simulations for the dataflow architecture TTDA show that with
lenient evaluation the critical path on a full binary tree of depth 10
consists of 250 time steps with a maximum parallelism of 1776 and
an average parallelism of 266 instructions (assuming the resources are
available). If executed strictly, the critical path would grow to 26,650
time steps, with a maximum parallelism of 4 instructions.

30f course, lazy evaluation would only produce as much of the
flattened list as is actually required.

4 Additional issues arise due to the use of higher-order functions,
partial applications, parallelism, and single assignment limitations.

3 Forms of Non-strictness

In this section we identify different forms of non-strictness
and present examples to illustrate them. The present work
focuses on programs which execute under lenient evaluation
and does not consider programs requiring lazy evaluation,
i.e., those that manipulate potentially infinite data struc-
tures. Thus we limit our discussion of the various forms of
non-strictness to lenient evaluation.

3.1 Functional Non-strictness

Functional non-strictness arises from feedback dependencies
from the results of a function invocation to its arguments.
To illustrate this form of non-strictness and the need for dy-
namic scheduling we use the following simple, but somewhat
contrived, computation [SCG95].5

def two x y = (x*x, y+y);
def g z = { a,b = (two z a) in b};
def h z = { a,b = (two b z) in a};

In this example, the function two takes two arguments,
z and y, and returns two results, x * ¢ and y + y. Inside the
function two there is no dependence between the multiplica-
tion and addition; thus code to evaluate the two halves of the
pair can be put in either order when compiling the function
under traditional strict evaluation. This is not true under
non-strict evaluation. In our example, the function two is
used in two different contexts which require non-strictness.
In the function g the argument z is given as the first ar-
gument to the function two, while the second argument to
two is taken from its first result. This requires that two
first compute z # z, return this result, and then compute
(z%2) + (2% z) = 22°. We see that in this case the multipli-
cation is executed before the addition. In the function h just
the opposite occurs: The second result of the function two
is fed back in as the first argument. Here z + z is computed
first and then (z + z) * (z + 2) = 42°. Now the addition
is executed before the multiplication. Thus the multiplica-
tion and the addition have to be scheduled independently.
Notice that the scheduling is independent of the data val-
ues for the arguments; it depends only on the context in
which the function is used and how results are fed back in
as arguments.

3.2 Conditional Non-strictness

Non-strictness and the requirement for dynamic scheduling
not only occur across function calls, but can also appear
within conditionals. The following example, taken from
[Tra91], illustrates this.

def kt p z = { a,b,c = if p then (y,z,x) else (z,x,y);

X = ata;

y = bxb

in c};
def g z = kt true z;
def h z = kt false z;

In this example a single conditional steers the evaluation
of three variables, a, b, and ¢. If the predicate is true then

5In all of the examples we present, the different definitions of the
function g always perform the same computation (z%z)+(zxz) = 222,
Similarly, the different definitions of the function h always compute
(2 +2) * (2 + 2z) = 422, In all cases a single addition and single
multiplication are executed; in the functions g the multiplication oc-
curs before the addition, while in the functions h they execute in the
reverse order.

b gets the value of z, y the value z % z, and a the same value
as y; = and the result, ¢, become z % z + z * z = 222, In this
case the multiplication is executed before the addition. If
the predicate is false the variables are evaluated in a differ-
ent order. First the variable a is bound to the argument z,
then x and b evaluate to z + z, and finally y and the result,
¢, evaluate to (z + 2) * (2 + z) = 42°. Now the addition
is performed before the multiplication. Again, we see that
both the addition and the multiplication have to be sched-
uled dynamically. Though the operations appear outside of
the scope of the conditional, the conditional affects the order
in which the values a, b, and ¢ are available.

It may seem that in this example, unlike the previous
one, the scheduling is at least data-dependent, since it is
influenced by the conditional and therefore depends on the
value of the predicate. While this observation is correct, we
can obtain precisely the same behavior without conditionals
as shown in the next example.

def f1 x y z = (y,z,x);

def f2 x y z = (2,x,y);

def kt2 func z = { a,b,c = (func x y 2);
X = ata;
y = bxb
in c};

kt2 f1 z;

kt2 £f2 z;

def g z
def h z

Here the conditional is replaced with a call to a function
taking three arguments and returning three results. The ar-
gument func determines which function is called; it is f1 in
the case of g and f2 in the case of h. These two functions, f1
and f2, do not perform any computation; they just shuffle
the results around and thereby affect the order in which the
addition and multiplication in the caller get executed. This
example illustrates that in addition to the caller affecting
the order in which operations get executed in the callee, the
callee can also affect the order in the caller. In general, it
is the whole context—i.e., the whole call tree—in which a
function appears which determines the order. This exam-
ple also shows the duality between conditionals and function
calls made through function variables. A conditional can be
viewed as a call site, where one of two functions is called
depending on the predicate [AA89]. These two functions
contain the code of the then side and else side of the condi-
tional, respectively.

3.3 Data Structure Non-strictness

In non-strict languages, data structure constructors exhibit
the same form of non-strictness as function calls, i.e., the
result may be required before all the elements are defined.
This gives the programmer the ability to define circular data
structures or recursively define some elements in terms of
other elements. For example, the recursive binding a =
(cons 1 a) denotes a simple cyclic list, and a = (cons 2
(hd a)) denotes an 2-tuple containing the same element.
This power of non-strictness also extends to list compre-
hensions, array comprehensions, and I- and M-structures
[AHNS8S8, ANP89, BNAO9I].

We can define the following hierarchy of non-strictness
in data structures.

Functionally strict: All elements must be evaluated be-
fore the data structure is created.

Circular: A pointer to a data structure may be stored into
one of its elements.

Recursive: An element of a data structure may be defined
in terms of other elements. For this case we can distin-
guish two subcases which describe the schedule used
to fill in the elements.

Static: A static schedule can be found for the pro-
gram which fills in the elements in the right order.

Dynamic: A dynamic schedule is required. (This im-
plies that presence bits are needed, as fetches from
elements may defer.)

The two small examples above using cons can be classi-
fied as circular and recursive, respectively. Other frequently
cited examples using recursively defined data structures are
wavefront [ANP89] and the following function computing an
array of the first n Fibonacci numbers.

def fib_array n = { array (0,n) of

| [0] =1
I 11 =1
| [i] = A[i-11+A[i-2] || 1 <- 2 to n};

Both examples can be scheduled statically, i.e., a static
scheduling of the program can be found which obeys the
data dependencies among the array elements (left-to-right
in the case of fib_array and left-to-right, top-to-bottom in
the case of wavefront). With such a schedule it is possible
to implement the arrays without any presence bits (just like
plain arrays in standard imperative languages). This may
not always be the case, as the following example illustrates.

def dyn A k 1 mn = { A[k] = A[m] * A[m];
A[1] = A[n] + A[nl};
def gz = { A = I_array (1,3);
A[1] = z;
_=(dyn A 2 31 2);
in A[3] };
def hz={A = I_array (1,3);
Al1] = z;
_=(dyn A 3 2 2 1);
in A[3] };

This example shows that dynamic scheduling may be
required for non-strict I-structures. The function dyn takes
five arguments—an I-structure A and four indices k, I, m,
and n. It fetches an element from A[m], multiplies this
with itself, and stores the result into location A[k]. The
function also fetches from location A[n], adds this element
to itself, and stores it into location A[l]. Figure 3 shows
the dependencies for the body of function dyn, and what
happens for the two cases where k = n and | = m.

(][])]
G e
I I
’:: ALKl ‘ ’ = Al ‘ ’:: ALKl ‘ B \‘ = Alll ‘

Figure 3: The dependencies for function dyn and two pos-
sible scenarios, k = n and |l = m.

If k = n, as is the case when dyn is called from the func-
tion g, then the store into location A[k] defines the value
which is fetched from A[n]. So there is a dependence from

the store to the fetch (as indicated by the dashed line),
and the multiplication has to be executed before the ad-
dition. Note that this dependence is not directly present
in the function, but is established through the synchroniz-
ing I-structure. Should the fetch occur before the store, it
would get deferred until the store happens. In the case where
I = m, the operations would execute in the reverse order.
Obviously, the conditions k¥ = [and [= m should not hold
together, since deadlock would result.

In general, it is not known which function fills in an I-
structure; the consumer of an I-structure element cannot
name its producer. Therefore if a fetch defers, it is necessary
to continue with the evaluation of any expression which does
not depend on the fetch, even if the computation is in a
different function activation. This example illustrates that
dependencies have to unravel at run time and that they may
travel not only through arguments, results, and internal call
sites, but also through I-structure accesses.

4 Experimental Results

In this section we assess the degree of non-strictness required
by a large set of Id90 programs. Most of these programs were
implemented by other researchers.

4.1 Methodology

To determine how much functional or conditional non-strict-
ness our programs require, we extend the compiler with
options to treat function calls and conditionals in a strict
fashion. Under this mode, a function is invoked only after
all of its arguments have been evaluated, and results are
returned only after they have been completely computed.
Similarly, we can also compile conditionals so that they are
evaluated only after the predicate and all inputs are avail-
able, and return only after all results have been produced.
In the case where a program requires functional or condi-
tional non-strictness, this compilation scheme leads either
to a static dependence cycle (which the compiler detects) or
to deadlock at run-time. In either case we know that the
program requires non-strictness.

To check for data structure non-strictness we extend the
run-time system to handle synchronizing data structures
differently. These variations in the run-time system emu-
late the different degrees of data structure non-strictness.
For example, to check whether elements are recursively de-
fined, we make structures fully strict in all elements. A fetch
from a structure is deferred until all structure elements have
been filled in. The run-time system reports if the program
deadlocks, which is an indication of recursive dependencies
among elements of the same structure. Similarly, to check
whether a program can execute using a static schedule we
test whether any deferred fetches occur. If no fetches defer,
this is an indication that the current schedule fills in the
data elements in the right order. Obviously, this approach
would determine only that a static schedule exists for the
current input of the program under the current partitioning
and execution order. To determine that this is also the case
for any input, we study the program in detail to ensure that
data dependencies are not related to problem size and other
input parameters (for example, wavefront), or make sure
that all possible data dependencies are generated (for ex-
ample, dyn). As it turns out, most of the original programs
execute with defers because they are inherently parallel and
the compiler and run-time system just happen to schedule a
producer and consumer in the wrong order. We solved this

by adding explicit sequentialization statements (barriers) to
the program to ensure the correct order of execution.

4.2 Compilation Framework

The programs were all compiled using the Id90 compiler
with the Berkeley TAM back-end. The compiler uses a
front-end developed at MIT [Tra86] which produces dataflow
graphs. The back-end partitions these dataflow graphs into
threads and then generates code for TAM, a Threaded Ab-
stract Machine [CGSvE93]. The TAM code is then trans-
lated to the target machine. Our translation path uses C
as a portable “intermediate form” and produces code for
the CM-5 as well as for various standard sequential ma-
chines [Gol94]. For the experiments performed in this paper
we limit ourselves to sequential execution on a SparcSta-
tion 10. As we have explained, the compiler has been ex-
tended with options to treat function calls and conditionals
strictly, as well as with a run-time system to test for the
different degrees of non-strictness in data structures.

4.3 Programs

We used the benchmark programs shown in Table 2. The
programs vary substantially in size and application area as
well as in behavior. They range in size from a few to sev-
eral thousand lines of source code. The small examples dis-
cussed so far in this paper are included as a point of refer-
ence. The application areas represented by these programs
include scientific computing, sorting and search problems,
symbolic computing, NAS parallel benchmarks, and small
kernels. Most of the programs fall into the catagory of sci-
entific computing, the area specifically targeted by the im-
plicitly parallel language Id90 [AE88]. Most of the programs
contain many conditionals and function calls and exhibit
fine-grained behavior (e.g., Quicksort), while programs such
as the blocked matrix multiply are more medium-grained
[SGS*93].

4.4 Non-strictness Requirements

Following the methodology described above we determined
the degree of non-strictness each of the programs requires.
The results of our measurements are summarized in Table 3.
The first two columns indicate whether the program contains
any functional or conditional non-strictness. The third col-
umn shows whether the program has any circular data struc-
ture definitions. The fourth column shows whether any data
element is defined recursively in terms of other elements of
the same data structure. Finally, the last column indicates
whether the program requires dynamic scheduling. Often we
were able to find a static scheduling of the program (pos-
sibly by inserting barriers) that would allow it to execute
without deferred fetches.

Most of the Id programs still run correctly after they are
compiled with strict functions and strict conditionals. This
indicates that programmers rarely make use of the addi-
tional expressiveness provided by non-strictness at the func-
tional or conditional level. On the other hand, many of the
benchmark programs make use of a limited form of data
structure non-strictness. The ability to define circular data
structures or array elements in terms of other elements is
certainly important.

For most of the programs we were able to find a schedule
that results in no fetches deferring at run-time. This result
is contrary to the current thought that lenient programs
inherently require dynamic scheduling.

[Program [[Lines | Short Description and Reference

Symbolic computation

Paraffins 185 | Enumerate isomers of paraffins
[AHNS8S]

Primes_filter 40 | Generate primes by filtering [Hel89]

Primes_sieve 50 | Primes using sieve of Eratosthenes
[Tre94]

Compresspath 89 | Recursive doubling algorithm
[SPR90]

N-Queens 66 | N-queens problem (using circular

lists) [A1193]

NQ_Solutions 66 | Number of N-queens solutions
[A1193]

Permutations 57 | Generate permutations of sets of
elements (using circular structure)
[A1193]

Id Compiler 38919 | Id in Id compiler

Id Interpreter 740 | Top level Id interpreter

Quicksort 55 | Quick sort on lists [CSST91]

Arraysort 75 | Selection sort on arrays [CSSt91]

Bitonicsort 142 | Bitonic sort (M-structures) [SB93c]

Bubblesort 67 | Bubble sort (M-structures) [SB93c]

Heapsort_IS 128 | Heap sort (I-structures) [SB93c]

Heapsort_MS 123 | Heap sort (M-structures) [SB93c]

Quicksort_IS 124 | Quick sort (I-structures) [SB93c]

Quicksort_-MS 115 | Quick sort (M-structures) [SB93c]

Mergesort 103 | Merge sort (I-structures) [SB93c]

Shellsort 90 | Shell sort (M-structures) [SB93c]

Scientific computation

Wavefront 40 | Simple wavefront SOR [ANP8&9]

Pseudoknot 3323 | Molecular Biology [HFA194]

Gamteb 649 | Monte Carlo neutron transport
[BCSt89]

MCNP 2351 | Monte Carlo photon transport
[HL.93]

Simple 1105 | Hydrodynamics and heat conduc-
tion [AES88]

Speech 172 | Speech processing [Sah91]

DTW 100 | Dynamic time warp [Sah91]

MM 74 | Matrix multiply [HCAA93]

MMT44 118 | Blocked matrix multiply test
[CGSVE93)]

Eigen3 151 | Eigen problem

Householder 304 | Householder Eigen-Solver [SB93a]

Jacobi 215 | Jacobi Eigen-Solver [BH93]

Jacobi_group 162 | Jacobi Eigen-Solver (group rota-
tions) [BH93]

FT_fu 370 | NAS benchmark FT (functional)
[SBY3b)

FT.is 333 | NAS benchmark FT (I-structures)
[SBY3b)

FT_ms 356 | NAS benchmark FT
(M-structures)
[SBY3b)

Small examples

KT-cond 5 | Traub’s non-strict conditional
[Tra91]

Two 5 | Non-strict function with two results
[SCGY5]

Cube 6 | Non-strict cube function [SCvE91]

Flat 17 | Flatten leaves of tree [Nik91]

Fib 3 | Doubly recursive Fibonacci

Fib_lazy 5 | Infinite list of Fibonacci numbers

Fib_lenient 6 | Finite list of Fibonacci numbers

Fib_strict 5 | Fibonacci using linear recurrence

Fib_array 5 | Fibonacci using functional arrays

Table 2: Benchmark programs. The programs are available
from http://www.cs.ucsb.edu/~schauser/id90.

Form of non-strictness

Program Func. | Cond. | Circ. | Recu. | Dyn.
Symbolic computation

Paraffins No No No Yes No
Primes_filter Yes No No Yes Yes
Primes_sieve No No No No No
Compresspath No No Yes No No
N-Queens Yes No No Yes Yes
NQ-Solutions Yes No No Yes Yes
Permutations Yes No No Yes Yes
Id Compiler Yes Yes Yes Yes Yes
Id Interpreter No No No Yes No
Quicksort No No No No No
Arraysort No No No No No
Bitonicsort No No No Yes No
Bubblesort No No No Yes No
Heapsort_IS No No No Yes No
Heapsort_MS No No No Yes No
Quicksort_IS No No No Yes No
Quicksort_-MS No No No Yes No
Mergesort No No No Yes No
Shellsort No No No Yes No
Scientific computation

Wavefront No No No Yes No
Pseudoknot No No No No No
Gamteb Yes No No Yes Yes
Gamteb(defsubst) No No No Yes No
MCNP No No No Yes No
Simple No No No Yes No
Speech No No No Yes No
DTW No No No Yes No
MM No No No No No
MMT44 No No No No No
Eigen3 No No No No No
Householder No No No Yes No
Jacobi No No No No No
Jacobi_group No No No No No
FT_fu No No No Yes No
FT.is No No No Yes No
FT_ms No No No Yes No
Small examples

KT-cond No Yes No No Yes
Two Yes No No No Yes
Cube Yes No No No Yes
Flat No No No No No
Fib No No No No No
Fib_lazy Lazy No No No Yes
Fib_lenient Yes No No No Yes
Fib_strict No No No No No
Fib_array No No No Yes No

Table 3: Non-strictness requirements. The entries indicate
whether the program requires functional, conditional, or
data structure non-strictness. Data structure non-strictness
is further divided into circular, recursive, and dynamic non-
strictness.

4.5 Discussion

We now present the results in more detail, focusing on the in-
dividual programs and the different forms of non-strictness.

4.5.1 Functional Non-strictness

Few programs require functional non-strictness, and most of
those that do were written precisely to exhibit this behavior.
The two exceptions are Gamteb and the Id Compiler, which
we discuss in more detail below.

For the small examples, the non-strict functions two (pre-

sented in Section 3.1), the non-strict Cube, and the lenient
version of Fibonacci use functional non-strictness. We have
also included a lazy version of Fibonacci which generates the
infinite list of Fibonacci numbers and then returns the nth
number. Under our lenient evaluation, this program fails to
return the answer because it runs out of heap space while
generating the infinite list. There are also several medium-
sized programs—Primes_filter, N_Queens, NQ_Solutions, and
Permutations—which use functional non-strictness. They
use it in a very similar way, which is most easily illustrated
with the lenient Fibonacci function.

% list of Fibonacci numbers from i to n
def fib_list 1 i n =
if i > n then nil else
(((nth (i-1) 1L)+(nth (i-2) 1))
(fib_list 1 (i+1) n));
def fibn = { 1i = (1 : 1 : (fib_list 1i 2 n));
in nth n 1i };

This function creates the list of Fibonacci numbers from
1 to n and then returns the nth number. The function that
creates the list of Fibonacci numbers from i to n requires
the Fibonacci numbers below ¢ so that it can compute the
subsequent numbers. This is achieved by providing the base
list for the first two numbers and then feeding the result
list 1i back in as an argument to fib_list. The programs
Primes_filter, N_Queens, NQ_Solutions, and Permutations
are based on the same principle.

The largest program requiring functional non-strictness
is the Id Compiler. Non-strictness is used to create circular
data structures, where one element of a data structure con-
tains a reference to the data structure itself. One such pat-
tern which occurs frequently is found in the code for creating
variable structures that contain information pertinent to Id
identifiers. This is done using a record which contains fields
about the identifier. Some of the record fields are defined as
functional properties (defined at creation time and not mod-
ified thereafter), some are I-structure properties (emtpy at
creation time, to be filled in later at most once), and some
are M-structure properties (mutuable, capable of repeated
modification). As shown in the example code below, one
of the functional fields, vr_node, includes a reference to the
record itself, thus introducing non-strictness.

def make_var_struct sourcename place arity opcode =
{vs = {record
.. % other entries
vr_node = (func (vs:nil));
};
In vs

};

One way of avoiding the mutual recursion would be to
change the functional field vr_node into an I-structure field.
When creating the variable structure record this field would
initially be left empty. After the record is created, func
could be invoked and the result used to fill in the field
vr_node. Of course, this solution goes beyond the purely
functional programming style, but the non-functional aspect
is not visible outside of this function.

Another interesting program in this category is Gamteb,
which requires functional non-strictness because it uses the
library-defined accumulators to tally statistics. Gamteb
allocates several of these accumulators using the function
make_accumulator.

result, accum = make_accumulator (1,35) (+) done;

This library function takes three arguments: the bounds
of the accumulator, the operation used for accumulation,
and finally a trigger to indicate that the accumulation has
finished. The function returns two results: the accumula-
tor structure which is used to perform the accumulations

(accum) and the array which contains the final result (result).

The accumulation is done using M-structures, which per-
form the updates in place. It is important that the final
result be returned only after all of the accumulations are
done. Otherwise a consumer of the result may read incor-
rect values while the accumulation is still going on. Thus
the function make_accumulator exhibits the classical form of
non-strictness. It has to return the accumulation structure
after receiving the bounds and the operation, and can return
the final result only after receiving done when all accumula-
tions have completed. Trying to pass in all three arguments
together will result in deadlock.

Nevertheless, it is possible to modify the program so that
it does not use functional non-strictness.® What is required
is to separate the creation of the accumulator from the clos-
ing of it. Then we can call them by separate functions and
have the programmer ensure that they execute in the correct
order (e.g., using explicit barriers).

4.5.2 Conditional Non-strictness

Only two programs require conditional non-strictness. The
first is the small function presented in Section 3.2, specifi-
cally developed by Traub to illustrate the concept of non-
strictness going through conditionals. The second is the
Id Compiler which uses conditional non-strictness to condi-
tionally create circular data structures. As shown below, the
example is very similar to the code presented in the previous
subsection. But this time, depending on the arity argument
one of two records is created.

def make_var_struct2 sourcename place arity opcode =
{vs = if (eq O arity) then
{record
e % entries for arity equal 0
vr_node = (func (vs:nil));

}

else

{record
R % entries for arity not 0
vr_node = (func (vs:nil));

};

In vs
}

It is straightforward to change this code to avoid using
conditional non-strictness. All we need to do is fully define
the record in each arm of the conditional. For example it
could be changed into the following.

def make_var_struct2 sourcename place arity opcode =
{vs = if (eq O arity) then
{vst = {record
e % entries for arity equal 0
vr_node = (func (vst:nil));
}
in vst}
else
{vse = {record
. % entries for arity not 0
vr_node = (func (vse:nil));

5In fact, the version of Gamteb that we tested did not exhibit
functional non-strictness as the calls to allocate the accumulators were
inlined into the caller using Id90’s defsubst mechanism. Only when
inlining was disabled did we encounter functional non-strictness.

in vse};
In vs

};

Our results seem to be a strong indication that, except in
the simplest cases, conditional non-strictness is too compli-
cated for programmers to use. Just tracing the dependencies
of the small example given in Section 3.2 already requires
substantial effort. Unfortunately, conditional non-strictness
has a serious impact on code-generation. The compiler gen-
erates an independent switch for every input to a conditional
and an independent merge for every output. This results in
a large run-time overhead. This can be avoided only if the
compiler does the appropriate analysis to figure out that the
conditional non-strictness does not occur.

4.5.3 Data Structure Non-strictness

Data-structure non-strictness seems to be the most impor-
tant form of non-strictness. Many programs use it. Some
create circular data structures, but most define array ele-
ments recursively in terms of other elements. The prototyp-
ical example is wavefront or the fib_array presented in Sec-
tion 3.3. The ability to define data structures recursively is
essential for efficiency. Without this feature, defining a new
element would require subsequent allocation of new copies
of the arrays. Obviously, imperative languages have pro-
vided the power of non-strict data structures all along. In
imperative languages, the programmer can allocate a data
structure and then fill it in any order; values can even be
updated in place.

One feature imperative data structures do not have is
presence bits to provide synchronization on an element-by-
element basis. The programmer has to explicitly ensure
that all dependencies are satisfied and that the structure
is filled in the right order. In Id90 presence bits automati-
cally ensure the right order. For almost all of the programs,
we were able to find a static schedule such that fetches of
data elements would never defer. Often we were required
to enhance our benchmark programs with explicit sequen-
tialization statements (we used barriers) to ensure the right
execution order.

Non-strict data structures are critical and are required
for efficient execution. The lenient Fibonacci example from
Section 4.5.1 and the Fibonacci array from Section 3.3 il-
lustrate this. Both construct a data structure with the first
n Fibonacci numbers (either a list or an array), and then
return the nth number. This is the idea underlying many
dynamic programming problems [Tra91]. Thus one of the
reasons we don’t see more functional non-strictness may be
that we have data structure non-strictness, which gives us a
similar expressive power and often can express complicated
dependencies more elegantly and efficiently.

5 Related work

As far as we know, this is the first study to focus on how
much non-strictness lenient programs require.

Tremblay did a similar study for lazy evaluation [Tre94].
He collected a large set of benchmark programs and de-
termined whether they actually require lazy evaluation or
whether lenient evaluation suffices. Lazy evaluation is re-
quired only if the program manipulates infinite lists. His
observation is that for most programs lenient evaluation is
sufficient. He found that, contrary to what other authors
claimed, most of the programs presented in [Bir84, All92,

All93] do not require laziness. Tremblay also studied how
lazy evaluation impacts parallelism (under the TTDA exe-
cution model).

Much research has been devoted to analysis techniques
that determine when the full generality of non-strictness
is not required. These techniques include strictness anal-
ysis [Pey87], backwards analysis [Hug88b], and path analy-
sis [BH87]. For lenient languages this is approached by par-
titioning a program into sequential threads [Tra91]. Parti-
tioning algorithms have been developed by [Tra91, SCvE91,
HDGS91, SCG95].

Many researchers have studied the parallel execution of a
variety of lenient programs [AHNS88, Hel89, CSST91, SB93c,
ANP89, AES88, Sah91, HCAA93, CGSvE93, SB93a, BH93,
SB93b, SCG95, Nik91, SGST93]. These studies have been
performed on various hardware and simulation platforms,
including the TTDA dataflow machines, Monsoon architec-
ture, and MINT simulator, as well as TAM implementations
on the CM-5, Sequent, and J-Machine. All of the programs
used in those studies are included in this paper.

6 Conclusions

This paper studies a large set of 1d90 benchmark programs
and determines the degree of non-strictness they require.
Contrary to current thought, most of the programs require
neither functional nor conditional non-strictness. The only
large program which requires these forms of non-strictness
is the Id compiler, which uses them to define circular data
structures. We believe that both functional and conditional
non-strictness are seldom used because they are difficult to
grapple with mentally: The seemingly cyclic dependencies
from results back to arguments automatically unravel at
run-time and are difficult to trace. Another reason for the
lack of functional non-strictness may be that programmers
tend to follow the imperative programming style they are
used to. For example, many of the larger programs we stud-
ied fall into the area of scientific computation and may have
been based on FORTRAN equivalents (e.g., Gamteb and
Simple).

We think, however, that the main reason for the lack
of functional non-strictness lies elsewhere. Even a limited
use of non-strict data structures, viz. the ability to define
data structure elements recursively, provides essentially the
same expressiveness as, and often can encode these recur-
sive dependencies more efficiently than, purely functional
non-strictness using lists. Thus many of the programs make
use of data structure non-strictness. An unexpected result
is that for many of the programs we were able to determine
a schedule such that none of the fetches to data structures
deferred. This seems to indicate that at least a sequential
implementation of lenient languages might be able to elimi-
nate much of the overhead in managing the presence bits of
synchronizing data structures.

One form of non-strictness that lenient evaluation does
not provide is support for streams and infinite data struc-
tures. While we think that this may be very useful, we
would caution against making a language lazy just for this
reason. First, by using explicit delays or control constructs,
programmers can obtain the same benefit without lazy eval-
uation [Hel89]. Second, Tremblay has observed that many
supposedly lazy programs require only lenient evaluation
[Tre94].

Since funtional and conditional non-strictness are rarely
used and often unnecessary, we suggest eliminating them
from the language. We believe that data structure non-
strictness is sufficient. Researchers should devote more effort

to developing techniques which determine when strict func-
tions and conditionals should be evaluated in a non-strict
fashion to beneficially increase the parallelism. As the exam-
ple flat from Section 2.2.2 clearly shows, lenient evaluation
can expose large amounts of consumer-producer parallelism
which may be completely lost under strict evaluation. While
idealized parallelism profiles derived from dataflow simula-
tions such as the TTDA are capable of exposing the inherent
parallelism in a program under lenient evaluation, more re-
alistic methods have to be used to gain information about
parallelism which reflects more accurately the execution on
real parallel machines.

We conclude that while it is desirable to exploit the in-
creased parallelism under lenient evaluation, is not necessary
to make the language non-strict.

Acknowledgments

We are grateful to Martin Rinard, Guy Tremblay, Nathan
Tawil, Pedro Dinez, and the anonymous referees for their
valuable comments. Further, we want to thank Guy Trem-
blay, Wim Bohm, Olaf Lubeck, Jeff Hammes, Christina
Flood, R. Paul Johnson, and the whole Id-in-Id compiler
group at MIT for providing us with the large collection
of Id programs. Computational support at Berkeley was
provided by the NSF Infrastructure Grant number CDA-
8722788. Klaus Erik Schauser received research support
from the Department of Computer Science at UCSB. Seth
Copen Goldstein is supported by an AT&T Graduate Fel-
lowship.

References
[AA89] Z. Ariola and Arvind. P-TAC: A parallel intermedi-
ate language. In Proceedings of the 1989 Conference
on Functional Programming Languages and Com-
puter Architecture, pages 230-242, September 1989.

[AES88] Arvind and K. Ekanadham. Future Scientific Pro-
gramming on Parallel Machines. Journal of Parallel
and Distributed Computing, 5(5):460-493, October
1988.

Arvind, S. K. Heller, and R. S. Nikhil. Programming
Generality and Parallel Computers. In Proc. of the
Fourth Int. Symp. on Biological and Artificial Intel-
ligence Systems, pages 255-286. ESCOM (Leider),
Trento, Italy, September 1988.

[AHNSS]

[Al192] L. Allison. Lazy dynamic-programming can be eager.
Info. Proc. Letters, 43(4):207-212, 1992.

[A1193] L. Allison. Application of recursively defined data
structures. Australian Comp. Journal, 25(1):14-20,
1993.

Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures:
Data Structures for Parallel Computing. Technical
Report CSG Memo 269, MIT Lab for Comp. Sci.,
February 1987. (Also in Proc. of the Graph Reduction
Workshop, Santa Fe, NM. October 1986.).

Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures:
Data Structures for Parallel Computing. ACM
Transactions on Programming Languages and Sys-
tems, 11(4):598-632, October 1989.

[BCSt89] P. J. Burns, M. Christon, R. Schweitzer, O. M.
Lubeck, H. J. Wasserman, M. L. Simmons, and
D. V. Pryor. Vectorization of Monte-Carlo Particle
Transport: An Architectural Study using the LANL
Benchmark “Gamteb”. In Proc. Supercomputing ’89.
IEEE Computer Society and ACM SIGARCH, New
York, NY, November 1989.

[ANP87]

[ANP89]

[BHS87

[BHY3]

[Birg4]

[BNA91]

[CGSVE93)

[CPJ85]

[CSST91]

[Fel91]

[Gol94]

[HAS7]

[HCAA93]

[HDGS91]

[Hel89]

[HFA+94]

[H1.93]

[Hug88a]

A. Bloss and P. Hudak. Path Semantics. In Mathe-
matical Foundations of Programming Language Se-
mantics (LNCS 298). Springer-Verlag, April 1987.

W. Bohm and R. E. Hiromoto. A Functional Imple-
mentation of the Jacobi Eigen-Solver. Tech. Report
CS-93-106, Colorado State University, May 1993.

R. S. Bird. Using Circular Programs to Elimi-
nate Multiple Traversals of Data. Acta Informatica,
21(4):239-250, 1984.

P. S. Barth, R. S. Nikhil, and Arvind. M-Structures;
Extending a Parallel, Non-strict, Functional Lan-
guage with State. In Proceedings of the 1991 Con-
ference on Functional Programming Languages and
Computer Architecture, Cambridge, MA, August
1991.

D. E. Culler, S. C. Goldstein, K. E. Schauser, and
T. von Eicken. TAM — A Compiler Controlled
Threaded Abstract Machine. Journal of Parallel and
Distributed Computing, 18:347-370, July 1993.

C. Clack and S. L. Peyton-Jones. Strictness Analysis
- A Practical Approach. In Proc. Functional Pro-
gramming Languages and Computer Architecture,
Sept. 1985. Springer-Verlag LNCS 201.

D. Culler, A. Sah, K. Schauser, T. von Eicken,
and J. Wawrzynek. Fine-grain Parallelism with
Minimal Hardware Support: A Compiler-Controlled
Threaded Abstract Machine. In Proc. of 4th Int.
Conf. on Architectural Support for Programming
Languages and Operating Systems, Santa-Clara, CA,
April 1991.

M. Felleisen. On the expressive power of program-
ming languages. Science of Computer Programming,
17(1-3):35-75, December 1991.

S. C. Goldstein. Implementation of a Threaded Ab-
stract Machine on Sequential and Multiprocessors.
Master’s thesis, Computer Science Division — EECS,
U.C. Berkeley, 1994. (UCB/CSD 94-818).

P. Hudak and S. Anderson. Pomset Interpretations
of Parallel Functional Programs. In Proc. Functional
Programming Languages and Comp. Arch., Septem-
ber 1987.

J. Hicks, D. Chiou, B. S. Ang, and Arvind. Perfor-
mance Studies of Id on the Monsoon Dataflow Sys-
tem. Journal of Parallel and Distributed Computing,
18:273-300, July 1993.

J. E. Hoch, D. M. Davenport, V. G. Grafe, and K. M.
Steele. Compile-time Partitioning of a Non-strict
Language into Sequential Threads. In Proc. Symp.
on Parallel and Distributed Processing, Dec. 1991.

S. K. Heller. Efficient Lazy Data-Structures on a
Dataflow Machine. PhD thesis, Dept. of EECS, MIT,
February 1989.

P. H. Hartel, M. Feeley, M. Alt, L. Augustsson,
P. Baumann, M. Beemster, E. Chailloux, C. H.
Flood, W. Grieskamp, J. H. G. van Groningen,
K. Hammond, B. Hausman, M. Y. Ivory, P. Lee,
X. Leroy, S. Loosemore, N. Rgjemo, M. Serrano, J.-
P. Talpin, J. Thackray, P. Weis, and P. Wentworth.
Pseudoknot: a Float-Intensive benchmark for func-
tional compilers (DRAFT). In J. R. W. Glauert, edi-
tor, Implementation of Functional Languages, pages
13.1-13.34. School of Information Systems, Univ. of
East Anglia, Norwich NR4 7TJ, UK, Sep 1994.

J. Hammes and O. Lubeck. MCNP-ID — A Dataflow
Photon Transport Code. LANL, June 1993.

J. Hughes. Why Functional Programming Matters.
The Computer Journal, 32(2):187-208, 1988.

10

[Hug88b]

[Joh87]

[Nik90]

[Nik91]

[Nik93]

[Pey87]

[Sah91]

[SB93a]

[SB93b)

[SB93c]

[SCGY5)

[Sch94]

[SCVE91]

[SGSt93]

[SPRI0]

[Tra86]

[Tra91]

[Tre94]

R. J. M. Hughes. Backwards Analysis of Functional
Programs, pages 187-208. Elsevier Science Publish-
ers, B.V. (North Holland), 1988.

T. Johnsson. Attribute Grammars as a Functional
Programming Paradigm. In Proceedings of the Con-
ference on Functional Programming Languages and
Computer Architecture, February 1987. Springer-
Verlag LNCS 274.

R. S. Nikhil. Id (Version 90.0) Reference Manual.
Technical Report CSG Memo, MIT Lab for Comp.
Sci., 1990.

R. S. Nikhil. The Parallel Programming Language Id
and its Compilation for Parallel Machines. In Proc.
Workshop on Massive Parallelism, Amalfi, Italy,
October 1989. Academic Press, 1991.

R. S. Nikhil. An Overview of the Parallel Language
Id (a foundation for pH, a parallel dialect of Haskell).
Technical report, Digital Equipment Corp., Cam-
bridge Research Laboratory, September 1993.

S. L. Peyton Jones. The Implementation of Func-
tional Programming Languages. Prentice Hall, 1987.

A. Sah. Parallel Language Support for Shared mem-
ory multiprocessors. Master’s thesis, Computer Sci-
ence Div., University of California at Berkeley, May
1991.

S. Sur and W. Bohm. Analysis of Non-Strict Func-
tional Implementations of the Dongarra-Sorensen
Eigensolver. Tech. Report CS-93-133, Colorado State
University, December 1993.

S. Sur and W. Bohm. Efficient Declarative Programs:
Experience in Implementing NAS Benchmark FT.
Tech. Report CS-93-128, Colorado State University,
October 1993.

S. Sur and W. Bohm. NAS parallel benchmark in-
teger sort (IS) performance on MINT. Tech. Report
(CS-93-107, Colorado State University, May 1993.

K. E. Schauser, D. E. Culler, and S. C. Goldstein.
Separation Constraint Partitioning — A New Algo-
rithm for Partitioning Non-strict Programs into Se-
quential Threads. In Proc. Principles of Program-
ming Languages, January 1995.

K. E. Schauser. Compiling Lenient Languages for
Parallel Asynchronous Execution. PhD thesis, Com-
puter Science Div., University of California at Berke-
ley, May 1994.

K. E. Schauser, D. Culler, and T. von Eicken.
Compiler-controlled Multithreading for Lenient Par-
allel Languages. In Proc. Conf. on Functional Pro-
gramming Languages and Comp. Arch., Aug. 1991.

E. Spertus, S. C. Goldstein, K. E. Schauser, T. von
Eicken, D. E. Culler, and W. J. Dally. Evaluation
of Mechanisms for Fine-Grained Parallel Programs
in the J-Machine and the CM-5. In Proc. of the
20th Int’l Symposium on Computer Architecture, San
Diego, CA, May 1993.

R. C. Sekar, S. Pawagi, and I.V. Ramakrishnan.
Small domains spell fast strictness analysis. In Proc.
ACM Symp. on Principles of Programming Lan-
guages, pages 169-183, 1990.

K. R. Traub. A Compiler for the MIT Tagged-Token
Dataflow Architecture. Technical Report TR-370,
MIT Lab for Comp. Sci., August 1986. (MS The-
sis, Dept. of EECS, MIT).

K. R. Traub. Implementation of Non-strict Func-
tional Programming Languages. MIT Press, 1991.
G. Tremblay. Parallel Implementation of Lazy Func-
tional Languages using Abstract Demand Propaga-
tion. PhD thesis, McGill University, School of Com-
puter Science, November 1994.

