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AbstractLenient languages, such as Id90, have been touted as amongthe best functional languages for massively parallel machines[AHN88]. Lenient evaluation combines non-strict semanticswith eager evaluation [Tra91]. Non-strictness gives theselanguages more expressive power than strict semantics, whileeager evaluation ensures the highest degree of parallelism.Unfortunately, non-strictness incurs a large overhead, as itrequires dynamic scheduling and synchronization. As a re-sult, many powerful program analysis techniques have beendeveloped to statically determine when non-strictness is notrequired [CPJ85, Tra91, Sch94].This paper studies a large set of lenient programs andquanti�es the degree of non-strictness they require. Weidentify several forms of non-strictness, including functional,conditional, and data structure non-strictness. Surprisingly,most Id90 programs require neither functional nor condi-tional non-strictness. Many benchmark programs, however,make use of a limited form of data structure non-strictness.The paper refutes the myth that lenient programs requireextensive non-strictness.1 IntroductionNon-strict functional languages have been widely regardedas an attractive basis for parallel computing. Unlike sequen-tial languages, they expose all the parallelism in a program.In side-e�ect{free functional languages, the arguments to afunction call can be evaluated in parallel. Further, non-strictexecution can substantially enhance parallelism, since func-tions can start executing before all of their arguments havebeen provided. In a language with non-strict semantics itis possible to de�ne functions which return a result even ifone of the arguments diverges. Among other things, thismakes it possible to create recursively de�ned and cyclicdata structures, since portions of the result of a functioncall can be used as arguments to that call. Non-strictnessincreases the expressiveness of the language but requires amore 
exible strategy than strict evaluation, which evalu-ates all arguments before calling a function.Non-strictness is usually combined with lazy evaluation,which delays evaluation of an expression until it is known toTo appear in 7th Annual ACM SIGPLAN/SIGARCHConference on Functional Programming Languages andComputer Architecture (FPCA'95).

contribute to the result, thus decreasing parallelism. How-ever, non-strictness can also be combined with eager evalu-ation. This combination, called lenient evaluation [Tra91],exhibits more parallelism than lazy evaluation while retain-ing much of the latter's expressive power.Unfortunately, non-strictness comes at a high implemen-tation cost, since it requires �ne-grained dynamic schedul-ing and synchronization. Non-strict semantics can make itimpossible to statically determine the order in which ar-guments are evaluated and operations execute. Expressionscan be evaluated only after all of the arguments they dependon are available. This dynamic scheduling is expensive oncommodity microprocessors, which e�ciently support onlya single thread of control and incur a high cost for contextswitching.Much research has been devoted to analysis techniquesthat determine when the full generality of non-strictnessis not required. These techniques include strictness anal-ysis [Pey87], backwards analysis [Hug88b], path analysis[BH87], and partitioning [Tra91, SCvE91, HDGS91]. Forlenient languages the compilation approach is to scheduleinstructions statically into sequential threads and have dy-namic scheduling only between threads. The task of identi-fying portions of the program that can be scheduled stati-cally and ordered into threads is called partitioning [Tra91].Two operations can be placed into the same thread onlyif the compiler can statically determine the order in whichthey execute.In [Sch94] we presented a new thread partitioning al-gorithm, separation constraint partitioning, which improvessubstantially on previous work [Tra91, HDGS91, SCvE91].To evaluate our partitioning algorithm, we compared bench-mark programs compiled using our algorithm and using strictpartitioning. Strict partitioning ignores possible non-strict-ness and compiles functions and conditionals strictly, thusrepresenting the best possible partitioning. Obviously, strictpartitioning produces an incorrect partitioning (i.e., leadingto a deadlock) for programs which require non-strictness.Surprisingly, almost all of our benchmark programs still rancorrectly, an indication that non-strictness is rarely used inlenient programs.This observation led us to pursue a more detailed studyof how much non-strictness lenient programs use, and tofocus on a larger set of programs. In this paper, we eval-uate the strictness properties of a large collection of pro-grams written in Id90, a non-strict functional language thatuses lenient evaluation. We de�ne three catagories of non-strictness: functional, conditional, and data-structure non-strictness. We �nd that functional and conditional non-strictness are rarely used in lenient programs. On the otherhand, data structure non-strictness is used extensively. We



further catagorize data-structure non-strictness into circu-lar, recursive, and dynamically scheduled non-strictness, andwe see that the expensive dynamically scheduled non-strict-ness is seldom required.In this study our focus is on whether non-strictness isrequired (and if it is, what kind is required) for executinglenient programs correctly. Therefore, the study is not af-fected by whether the programs are executed in parallel orsequentially. We chose to study the sequential executionbehavior. However, evaluating functions, even strict func-tions, non-strictly can increase parallelism. We �nd thatnon-strictness is rarely used, suggesting that future work onlenient languages should focus less on techniques for deter-mining when non-strictness is not used, and more on whenstrict functions and conditionals should be evaluated non-strictly.The remainder of the paper is structured as follows. Sec-tion 2 summarizes the di�erent evaluation strategies for func-tional languages (strict, lenient, and lazy) and previous ar-guments for lenient evaluation as the most suitable way towrite programs for massively parallel machines. Section 3identi�es and illustrates three kinds of non-strictness: con-ditional, functional, and data structure non-strictness. Sec-tion 4 describes the methodology and the benchmark pro-grams which were used for this study, and presents the re-sults which show the type of non-strictness each programrequires. Section 5 discusses related work and Section 6suggests directions for future work.2 Lenient EvaluationThis section summarizes di�erent evaluation strategies forfunctional languages: strict, lenient, and lazy. The threeevaluation strategies di�er in their expressiveness, paral-lelism, and e�ciency. Many arguments have been madein favor of lenient evaluation, as embodied in the languageId90,1 as the best choice for massively parallel machines[AHN88, Nik90]. Being non-strict, lenient evaluation retainsmuch of the expressive power of lazy evaluation at a muchlower overhead, while exhibiting more parallelism than bothstrict and lazy evaluation [Tra91].2.1 The Lenient Language Id90Id90 is a functional language augmented with synchronizingdata structures. It consists of three layers, as shown in Fig-ure 1. The functional core has all of the properties of purelyfunctional languages, including referential transparency anddeterminacy. Id90 provides array comprehensions for e�-ciently expressing scienti�c computation requiring arrays orother large data structures. These are purely functional con-structs and de�ne an array by de�ning each element. Witharray comprehensions, elements of the array can be de�nedin terms of other elements. One limitation is that in or-der to be purely functional, the elements of the array haveto be de�ned completely within the array comprehension.This ensures that referential transparency is preserved. Be-cause this is not su�cient for certain problems [ANP87],Id90 also provides two non-functional data structures, I-structures [ANP89] and M-structures [BNA91].I-structures are write-once data structures which sepa-rate the creation of the structure from the de�nition of its1Parallel Haskell (pH), an ongoing development which integratesmany concepts of Id90 into Haskell, may also be based on lenientevaluation.
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simpler semanticsFigure 1: The three layers of Id90 (from [Nik93]).elements. Like functional arrays, I-structures provide e�-cient indexed access to the individual elements. In addi-tion, I-structures provide element-by-element synchroniza-tion between the producer and consumer. I-structures arenot purely functional, since they lose referential transpar-ency. Any function obtaining a pointer to an I-structuremay store into it. On the other hand, determinacy is pre-served because each location can be stored into at most once.Non-deterministic computation can be expressed with M-structures, mutable data structures that provide support foratomic updates.2.2 Evaluation StrategiesThe two most widely used evaluation strategies for func-tional languages are strict and lazy evaluation. We com-pare them to lenient evaluation, the strategy used in Id90.The three strategies di�er in how they handle the evalua-tion of type constructors and function calls. As presentedin [Tra91], to evaluate a function call f e1 : : : en,Strict evaluation �rst evaluates all of the argument ex-pressions e1 to en, and then evaluates the functionbody, passing in the evaluated arguments;Lenient evaluation starts the evaluation of the functionbody f in parallel with the evaluation of all the argu-ment expressions e1 to en, evaluating each only as faras the data dependencies permit;Lazy evaluation starts the evaluation of the function body,passing the arguments in an unevaluated form.The evaluation rules for constants, arithmetic primitives,and conditionals are the same for the three strategies. Theevaluation of a constant yields that constant. Arithmeticoperators are strict in their arguments, so they evaluate thearguments before performing the operation. The evaluationof a conditional if e1 then e2 else e3 �rst evaluates the pred-icate e1; depending on the result, either e2 or e3 is thenevaluated. The three evaluation strategies treat the condi-tional conservatively: they do not start evaluating e2 and e3speculatively before knowing the value of the predicate.We see that under strict evaluation it is impossible tocall a function with only some of the arguments. Thus onecannot pass the result (or part of it) back into the function.On the other hand, this is possible under both lenient andlazy evaluation, both of which implement non-strict seman-tics. Lazy evaluation ensures that only expressions whichcontribute to the �nal answer are evaluated; the evaluationis demand-driven. In contrast, strict and lenient evaluationevaluate all expressions (with the exception of those insidethe arms of conditionals); they use eager evaluation, which isdata-driven in the sense that an expression can be evaluatedas soon as its data inputs are available.As Table 1 shows, the three evaluation strategies di�ersubstantially in their expressiveness, the amount of paral-lelism they expose, the implementation overhead, and the2



amount of speculative computation. These di�erences arediscussed in the following subsections.Expressiveness strict < lenient < lazyParallelism lazy � strict � lenientOverhead strict � lenient � lazySpeculative comp. lazy � lenient = strictTable 1: Comparison of the three evaluation strategies.2.2.1 ExpressivenessAs shown in Figure 2, the expressiveness of the evalua-tion strategies forms a three-level hierarchy. Lazy evalua-tion results in more expressiveness than lenient evaluation,which in turn has more expressiveness than strict evalua-tion. By \more expressiveness," we informally mean thatthe translation of a program which uses non-strictness intoa strict equivalent may require a global reorganization ofthe entire program; a more formal de�nition of expressive-ness is given in [Fel91]. Non-strictness, as present in lenientand lazy evaluation, signi�cantly increases expressiveness:The programmer can create circular data structures and de-�ne data structures recursively in terms of their own ele-ments. In Section 3 we present several of such examples.Under the purely functional setting, non-strictness resultsin more e�cient programs|in both space and time require-ments [Hug88a, Bir84, Joh87]. In addition, lazy evaluationprovides the control structure to handle in�nite data struc-tures, as long as only a �nite part is accessed. Using explicitdelays, programmers can obtain the same bene�t under le-nient evaluation [Hel89].
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Figure 2: Expressiveness of the three evaluation strategies.2.2.2 ParallelismThe evaluation strategy can have a strong impact on theamount of parallelism [HA87]. Lenient evaluation resultsin the largest amount of parallelism, while lazy evaluationshows the least amount of parallelism [Tre94]. Lazy evalua-tion needs to show that an argument is actually required forthe �nal answer before starting its evaluation, while strictand lenient evaluation can always evaluate independent ar-guments in parallel. In addition, lenient evaluation can ex-ploit producer-consumer parallelism. Consider the functionflat which produces a list of the leaves of a binary treeusing accumulation lists [Nik91].def flat tree acc =if (leaf tree) then (cons tree acc)else flat (left tree) (flat (right tree) acc);This example does not require non-strictness; thereforeit can be executed with any of the three evaluation strate-gies. However, under strict evaluation this code exhibits

little parallelism. The right subtree is completely 
attenedbefore starting with the left subtree. And this holds forevery level, so the tree is 
attened sequentially.Under lenient execution the 
attening of the two sub-trees can be pipelined. Flattening of the right subtree canbe started simultaneously with the 
attening of the left sub-tree. The resulting list for the right subtree is fed into thefunction working on the left subtree. In e�ect, the entire listis constructed in parallel. This example shows that overlap-ping the consumer and producer can yield more than just aconstant factor increase in parallelism [Nik91].2Lazy evaluation 
attens the subtrees in the opposite or-der from strict evaluation. Lazy evaluation �rst 
attens theleft subtree, and then starts working on the right subtree.3Therefore lazy evaluation also does not exhibit any paral-lelism.2.2.3 Evaluation OverheadAs should already be clear, the evaluation strategies di�ersubstantially in their overhead. The biggest di�erences arein the costs for argument passing and dynamic scheduling.Strict evaluation has the lowest overhead. All argumentscan be evaluated before calling a function, and therefore canbe passed by value. Furthermore, it is possible to stati-cally schedule all of the computation inside a function andproduce e�cient sequential code. The compilation of strictfunctional languages is therefore similar to well understoodimplementations of sequential languages.4 Lazy evaluationhas a high overhead because it requires arguments to bepassed in unevaluated form, unless it can be shown thatthey contribute to the �nal result. The overhead of lenientevaluation falls between that of lazy and strict evaluation[Tra91].2.2.4 Speculative ComputationLazy evaluation is the only strategy which completely avoidsspeculative computation; it evaluates only expressions whichcontribute to the �nal result. The other two schemes docomputation eagerly, thereby putting the burden on the pro-grammer to avoid in�nite or speculative computation.2.2.5 SummaryWe have seen that both lenient and lazy evaluation real-ize non-strictness, i.e., they may start the evaluation of afunction body before evaluating the arguments. When non-strictness is combined with eager evaluation, as in lenientevaluation, parallelism is increased substantially, becauseall arguments can be evaluated in parallel with the func-tion body. This is why many researchers have claimed thatlenient evaluation is best for parallel implementation of func-tional languages.2Simulations for the data
ow architecture TTDA show that withlenient evaluation the critical path on a full binary tree of depth 10consists of 250 time steps with a maximum parallelism of 1776 andan average parallelism of 266 instructions (assuming the resources areavailable). If executed strictly, the critical path would grow to 26,650time steps, with a maximum parallelism of 4 instructions.3Of course, lazy evaluation would only produce as much of the
attened list as is actually required.4Additional issues arise due to the use of higher-order functions,partial applications, parallelism, and single assignment limitations.
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3 Forms of Non-strictnessIn this section we identify di�erent forms of non-strictnessand present examples to illustrate them. The present workfocuses on programs which execute under lenient evaluationand does not consider programs requiring lazy evaluation,i.e., those that manipulate potentially in�nite data struc-tures. Thus we limit our discussion of the various forms ofnon-strictness to lenient evaluation.3.1 Functional Non-strictnessFunctional non-strictness arises from feedback dependenciesfrom the results of a function invocation to its arguments.To illustrate this form of non-strictness and the need for dy-namic scheduling we use the following simple, but somewhatcontrived, computation [SCG95].5def two x y = (x*x, y+y);def g z = { a,b = (two z a) in b};def h z = { a,b = (two b z) in a};In this example, the function two takes two arguments,x and y, and returns two results, x � x and y+ y. Inside thefunction two there is no dependence between the multiplica-tion and addition; thus code to evaluate the two halves of thepair can be put in either order when compiling the functionunder traditional strict evaluation. This is not true undernon-strict evaluation. In our example, the function two isused in two di�erent contexts which require non-strictness.In the function g the argument z is given as the �rst ar-gument to the function two, while the second argument totwo is taken from its �rst result. This requires that two�rst compute z � z, return this result, and then compute(z � z)+ (z � z) = 2z2. We see that in this case the multipli-cation is executed before the addition. In the function h justthe opposite occurs: The second result of the function twois fed back in as the �rst argument. Here z+ z is computed�rst and then (z + z) � (z + z) = 4z2. Now the additionis executed before the multiplication. Thus the multiplica-tion and the addition have to be scheduled independently.Notice that the scheduling is independent of the data val-ues for the arguments; it depends only on the context inwhich the function is used and how results are fed back inas arguments.3.2 Conditional Non-strictnessNon-strictness and the requirement for dynamic schedulingnot only occur across function calls, but can also appearwithin conditionals. The following example, taken from[Tra91], illustrates this.def kt p z = { a,b,c = if p then (y,z,x) else (z,x,y);x = a+a;y = b*bin c};def g z = kt true z;def h z = kt false z;In this example a single conditional steers the evaluationof three variables, a, b, and c. If the predicate is true then5In all of the examples we present, the di�erent de�nitions of thefunction g always perform the same computation (z�z)+(z�z) = 2z2.Similarly, the di�erent de�nitions of the function h always compute(z + z) � (z + z) = 4z2. In all cases a single addition and singlemultiplication are executed; in the functions g the multiplication oc-curs before the addition, while in the functions h they execute in thereverse order.

b gets the value of z, y the value z � z, and a the same valueas y; x and the result, c, become z � z + z � z = 2z2. In thiscase the multiplication is executed before the addition. Ifthe predicate is false the variables are evaluated in a di�er-ent order. First the variable a is bound to the argument z,then x and b evaluate to z + z, and �nally y and the result,c, evaluate to (z + z) � (z + z) = 4z2. Now the additionis performed before the multiplication. Again, we see thatboth the addition and the multiplication have to be sched-uled dynamically. Though the operations appear outside ofthe scope of the conditional, the conditional a�ects the orderin which the values a, b, and c are available.It may seem that in this example, unlike the previousone, the scheduling is at least data-dependent, since it isin
uenced by the conditional and therefore depends on thevalue of the predicate. While this observation is correct, wecan obtain precisely the same behavior without conditionalsas shown in the next example.def f1 x y z = (y,z,x);def f2 x y z = (z,x,y);def kt2 func z = { a,b,c = (func x y z);x = a+a;y = b*bin c};def g z = kt2 f1 z;def h z = kt2 f2 z;Here the conditional is replaced with a call to a functiontaking three arguments and returning three results. The ar-gument func determines which function is called; it is f1 inthe case of g and f2 in the case of h. These two functions, f1and f2, do not perform any computation; they just shu�ethe results around and thereby a�ect the order in which theaddition and multiplication in the caller get executed. Thisexample illustrates that in addition to the caller a�ectingthe order in which operations get executed in the callee, thecallee can also a�ect the order in the caller. In general, itis the whole context|i.e., the whole call tree|in which afunction appears which determines the order. This exam-ple also shows the duality between conditionals and functioncalls made through function variables. A conditional can beviewed as a call site, where one of two functions is calleddepending on the predicate [AA89]. These two functionscontain the code of the then side and else side of the condi-tional, respectively.3.3 Data Structure Non-strictnessIn non-strict languages, data structure constructors exhibitthe same form of non-strictness as function calls, i.e., theresult may be required before all the elements are de�ned.This gives the programmer the ability to de�ne circular datastructures or recursively de�ne some elements in terms ofother elements. For example, the recursive binding a =(cons 1 a) denotes a simple cyclic list, and a = (cons 2(hd a)) denotes an 2-tuple containing the same element.This power of non-strictness also extends to list compre-hensions, array comprehensions, and I- and M-structures[AHN88, ANP89, BNA91].We can de�ne the following hierarchy of non-strictnessin data structures.Functionally strict: All elements must be evaluated be-fore the data structure is created.Circular: A pointer to a data structure may be stored intoone of its elements.4



Recursive: An element of a data structure may be de�nedin terms of other elements. For this case we can distin-guish two subcases which describe the schedule usedto �ll in the elements.Static: A static schedule can be found for the pro-gram which �lls in the elements in the right order.Dynamic: A dynamic schedule is required. (This im-plies that presence bits are needed, as fetches fromelements may defer.)The two small examples above using cons can be classi-�ed as circular and recursive, respectively. Other frequentlycited examples using recursively de�ned data structures arewavefront [ANP89] and the following function computing anarray of the �rst n Fibonacci numbers.def fib_array n = { array (0,n) of| [0] = 1| [1] = 1| [i] = A[i-1]+A[i-2] || i <- 2 to n};Both examples can be scheduled statically, i.e., a staticscheduling of the program can be found which obeys thedata dependencies among the array elements (left-to-rightin the case of �b array and left-to-right, top-to-bottom inthe case of wavefront). With such a schedule it is possibleto implement the arrays without any presence bits (just likeplain arrays in standard imperative languages). This maynot always be the case, as the following example illustrates.def dyn A k l m n = { A[k] = A[m] * A[m];A[l] = A[n] + A[n]};def g z = { A = I_array (1,3);A[1] = z;_ = (dyn A 2 3 1 2);in A[3] };def h z = { A = I_array (1,3);A[1] = z;_ = (dyn A 3 2 2 1);in A[3] };This example shows that dynamic scheduling may berequired for non-strict I-structures. The function dyn takes�ve arguments|an I-structure A and four indices k, l, m,and n. It fetches an element from A[m], multiplies thiswith itself, and stores the result into location A[k]. Thefunction also fetches from location A[n], adds this elementto itself, and stores it into location A[l]. Figure 3 showsthe dependencies for the body of function dyn, and whathappens for the two cases where k = n and l = m.
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the store to the fetch (as indicated by the dashed line),and the multiplication has to be executed before the ad-dition. Note that this dependence is not directly presentin the function, but is established through the synchroniz-ing I-structure. Should the fetch occur before the store, itwould get deferred until the store happens. In the case wherel = m, the operations would execute in the reverse order.Obviously, the conditions k = l and l = m should not holdtogether, since deadlock would result.In general, it is not known which function �lls in an I-structure; the consumer of an I-structure element cannotname its producer. Therefore if a fetch defers, it is necessaryto continue with the evaluation of any expression which doesnot depend on the fetch, even if the computation is in adi�erent function activation. This example illustrates thatdependencies have to unravel at run time and that they maytravel not only through arguments, results, and internal callsites, but also through I-structure accesses.4 Experimental ResultsIn this section we assess the degree of non-strictness requiredby a large set of Id90 programs. Most of these programs wereimplemented by other researchers.4.1 MethodologyTo determine how much functional or conditional non-strict-ness our programs require, we extend the compiler withoptions to treat function calls and conditionals in a strictfashion. Under this mode, a function is invoked only afterall of its arguments have been evaluated, and results arereturned only after they have been completely computed.Similarly, we can also compile conditionals so that they areevaluated only after the predicate and all inputs are avail-able, and return only after all results have been produced.In the case where a program requires functional or condi-tional non-strictness, this compilation scheme leads eitherto a static dependence cycle (which the compiler detects) orto deadlock at run-time. In either case we know that theprogram requires non-strictness.To check for data structure non-strictness we extend therun-time system to handle synchronizing data structuresdi�erently. These variations in the run-time system emu-late the di�erent degrees of data structure non-strictness.For example, to check whether elements are recursively de-�ned, we make structures fully strict in all elements. A fetchfrom a structure is deferred until all structure elements havebeen �lled in. The run-time system reports if the programdeadlocks, which is an indication of recursive dependenciesamong elements of the same structure. Similarly, to checkwhether a program can execute using a static schedule wetest whether any deferred fetches occur. If no fetches defer,this is an indication that the current schedule �lls in thedata elements in the right order. Obviously, this approachwould determine only that a static schedule exists for thecurrent input of the program under the current partitioningand execution order. To determine that this is also the casefor any input, we study the program in detail to ensure thatdata dependencies are not related to problem size and otherinput parameters (for example, wavefront), or make surethat all possible data dependencies are generated (for ex-ample, dyn). As it turns out, most of the original programsexecute with defers because they are inherently parallel andthe compiler and run-time system just happen to schedule aproducer and consumer in the wrong order. We solved this5



by adding explicit sequentialization statements (barriers) tothe program to ensure the correct order of execution.4.2 Compilation FrameworkThe programs were all compiled using the Id90 compilerwith the Berkeley TAM back-end. The compiler uses afront-end developed at MIT [Tra86] which produces data
owgraphs. The back-end partitions these data
ow graphs intothreads and then generates code for TAM, a Threaded Ab-stract Machine [CGSvE93]. The TAM code is then trans-lated to the target machine. Our translation path uses Cas a portable \intermediate form" and produces code forthe CM-5 as well as for various standard sequential ma-chines [Gol94]. For the experiments performed in this paperwe limit ourselves to sequential execution on a SparcSta-tion 10. As we have explained, the compiler has been ex-tended with options to treat function calls and conditionalsstrictly, as well as with a run-time system to test for thedi�erent degrees of non-strictness in data structures.4.3 ProgramsWe used the benchmark programs shown in Table 2. Theprograms vary substantially in size and application area aswell as in behavior. They range in size from a few to sev-eral thousand lines of source code. The small examples dis-cussed so far in this paper are included as a point of refer-ence. The application areas represented by these programsinclude scienti�c computing, sorting and search problems,symbolic computing, NAS parallel benchmarks, and smallkernels. Most of the programs fall into the catagory of sci-enti�c computing, the area speci�cally targeted by the im-plicitly parallel language Id90 [AE88]. Most of the programscontain many conditionals and function calls and exhibit�ne-grained behavior (e.g., Quicksort), while programs suchas the blocked matrix multiply are more medium-grained[SGS+93].4.4 Non-strictness RequirementsFollowing the methodology described above we determinedthe degree of non-strictness each of the programs requires.The results of our measurements are summarized in Table 3.The �rst two columns indicate whether the program containsany functional or conditional non-strictness. The third col-umn shows whether the program has any circular data struc-ture de�nitions. The fourth column shows whether any dataelement is de�ned recursively in terms of other elements ofthe same data structure. Finally, the last column indicateswhether the program requires dynamic scheduling. Often wewere able to �nd a static scheduling of the program (pos-sibly by inserting barriers) that would allow it to executewithout deferred fetches.Most of the Id programs still run correctly after they arecompiled with strict functions and strict conditionals. Thisindicates that programmers rarely make use of the addi-tional expressiveness provided by non-strictness at the func-tional or conditional level. On the other hand, many of thebenchmark programs make use of a limited form of datastructure non-strictness. The ability to de�ne circular datastructures or array elements in terms of other elements iscertainly important.For most of the programs we were able to �nd a schedulethat results in no fetches deferring at run-time. This resultis contrary to the current thought that lenient programsinherently require dynamic scheduling.

Program Lines Short Description and ReferenceSymbolic computationPara�ns 185 Enumerate isomers of para�ns[AHN88]Primes �lter 40 Generate primes by �ltering [Hel89]Primes sieve 50 Primes using sieve of Eratosthenes[Tre94]Compresspath 89 Recursive doubling algorithm[SPR90]N-Queens 66 N-queens problem (using circularlists) [All93]NQ Solutions 66 Number of N-queens solutions[All93]Permutations 57 Generate permutations of sets ofelements (using circular structure)[All93]Id Compiler 38919 Id in Id compilerId Interpreter 740 Top level Id interpreterQuicksort 55 Quick sort on lists [CSS+91]Arraysort 75 Selection sort on arrays [CSS+91]Bitonicsort 142 Bitonic sort (M-structures) [SB93c]Bubblesort 67 Bubble sort (M-structures) [SB93c]Heapsort IS 128 Heap sort (I-structures) [SB93c]Heapsort MS 123 Heap sort (M-structures) [SB93c]Quicksort IS 124 Quick sort (I-structures) [SB93c]Quicksort MS 115 Quick sort (M-structures) [SB93c]Mergesort 103 Merge sort (I-structures) [SB93c]Shellsort 90 Shell sort (M-structures) [SB93c]Scienti�c computationWavefront 40 Simple wavefront SOR [ANP89]Pseudoknot 3323 Molecular Biology [HFA+94]Gamteb 649 Monte Carlo neutron transport[BCS+89]MCNP 2351 Monte Carlo photon transport[HL93]Simple 1105 Hydrodynamics and heat conduc-tion [AE88]Speech 172 Speech processing [Sah91]DTW 100 Dynamic time warp [Sah91]MM 74 Matrix multiply [HCAA93]MMT44 118 Blocked matrix multiply test[CGSvE93]Eigen3 151 Eigen problemHouseholder 304 Householder Eigen-Solver [SB93a]Jacobi 215 Jacobi Eigen-Solver [BH93]Jacobi group 162 Jacobi Eigen-Solver (group rota-tions) [BH93]FT fu 370 NAS benchmark FT (functional)[SB93b]FT is 333 NAS benchmark FT (I-structures)[SB93b]FT ms 356 NAS benchmark FT(M-structures)[SB93b]Small examplesKT-cond 5 Traub's non-strict conditional[Tra91]Two 5 Non-strict function with two results[SCG95]Cube 6 Non-strict cube function [SCvE91]Flat 17 Flatten leaves of tree [Nik91]Fib 3 Doubly recursive FibonacciFib lazy 5 In�nite list of Fibonacci numbersFib lenient 6 Finite list of Fibonacci numbersFib strict 5 Fibonacci using linear recurrenceFib array 5 Fibonacci using functional arraysTable 2: Benchmark programs. The programs are availablefrom http://www.cs.ucsb.edu/�schauser/id90.6



Form of non-strictnessProgram Func. Cond. Circ. Recu. Dyn.Symbolic computationPara�ns No No No Yes NoPrimes �lter Yes No No Yes YesPrimes sieve No No No No NoCompresspath No No Yes No NoN-Queens Yes No No Yes YesNQ Solutions Yes No No Yes YesPermutations Yes No No Yes YesId Compiler Yes Yes Yes Yes YesId Interpreter No No No Yes NoQuicksort No No No No NoArraysort No No No No NoBitonicsort No No No Yes NoBubblesort No No No Yes NoHeapsort IS No No No Yes NoHeapsort MS No No No Yes NoQuicksort IS No No No Yes NoQuicksort MS No No No Yes NoMergesort No No No Yes NoShellsort No No No Yes NoScienti�c computationWavefront No No No Yes NoPseudoknot No No No No NoGamteb Yes No No Yes YesGamteb(defsubst) No No No Yes NoMCNP No No No Yes NoSimple No No No Yes NoSpeech No No No Yes NoDTW No No No Yes NoMM No No No No NoMMT44 No No No No NoEigen3 No No No No NoHouseholder No No No Yes NoJacobi No No No No NoJacobi group No No No No NoFT fu No No No Yes NoFT is No No No Yes NoFT ms No No No Yes NoSmall examplesKT-cond No Yes No No YesTwo Yes No No No YesCube Yes No No No YesFlat No No No No NoFib No No No No NoFib lazy Lazy No No No YesFib lenient Yes No No No YesFib strict No No No No NoFib array No No No Yes NoTable 3: Non-strictness requirements. The entries indicatewhether the program requires functional, conditional, ordata structure non-strictness. Data structure non-strictnessis further divided into circular, recursive, and dynamic non-strictness.4.5 DiscussionWe now present the results in more detail, focusing on the in-dividual programs and the di�erent forms of non-strictness.4.5.1 Functional Non-strictnessFew programs require functional non-strictness, and most ofthose that do were written precisely to exhibit this behavior.The two exceptions are Gamteb and the Id Compiler, whichwe discuss in more detail below.For the small examples, the non-strict functions two (pre-

sented in Section 3.1), the non-strict Cube, and the lenientversion of Fibonacci use functional non-strictness. We havealso included a lazy version of Fibonacci which generates thein�nite list of Fibonacci numbers and then returns the nthnumber. Under our lenient evaluation, this program fails toreturn the answer because it runs out of heap space whilegenerating the in�nite list. There are also several medium-sized programs|Primes �lter, N Queens, NQ Solutions, andPermutations|which use functional non-strictness. Theyuse it in a very similar way, which is most easily illustratedwith the lenient Fibonacci function.% list of Fibonacci numbers from i to ndef fib_list l i n =if i > n then nil else(((nth (i-1) l)+(nth (i-2) l)) :(fib_list l (i+1) n));def fib n = { li = (1 : 1 : (fib_list li 2 n));in nth n li };This function creates the list of Fibonacci numbers from1 to n and then returns the nth number. The function thatcreates the list of Fibonacci numbers from i to n requiresthe Fibonacci numbers below i so that it can compute thesubsequent numbers. This is achieved by providing the baselist for the �rst two numbers and then feeding the resultlist li back in as an argument to fib list. The programsPrimes �lter, N Queens, NQ Solutions, and Permutationsare based on the same principle.The largest program requiring functional non-strictnessis the Id Compiler. Non-strictness is used to create circulardata structures, where one element of a data structure con-tains a reference to the data structure itself. One such pat-tern which occurs frequently is found in the code for creatingvariable structures that contain information pertinent to Ididenti�ers. This is done using a record which contains �eldsabout the identi�er. Some of the record �elds are de�ned asfunctional properties (de�ned at creation time and not mod-i�ed thereafter), some are I-structure properties (emtpy atcreation time, to be �lled in later at most once), and someare M-structure properties (mutuable, capable of repeatedmodi�cation). As shown in the example code below, oneof the functional �elds, vr node, includes a reference to therecord itself, thus introducing non-strictness.def make_var_struct sourcename place arity opcode ={vs = {record... % other entriesvr_node = (func (vs:nil));};In vs};One way of avoiding the mutual recursion would be tochange the functional �eld vr node into an I-structure �eld.When creating the variable structure record this �eld wouldinitially be left empty. After the record is created, funccould be invoked and the result used to �ll in the �eldvr node. Of course, this solution goes beyond the purelyfunctional programming style, but the non-functional aspectis not visible outside of this function.Another interesting program in this category is Gamteb,which requires functional non-strictness because it uses thelibrary-de�ned accumulators to tally statistics. Gamteballocates several of these accumulators using the functionmake accumulator.result, accum = make_accumulator (1,35) (+) done;7



This library function takes three arguments: the boundsof the accumulator, the operation used for accumulation,and �nally a trigger to indicate that the accumulation has�nished. The function returns two results: the accumula-tor structure which is used to perform the accumulations(accum) and the array which contains the �nal result (result).The accumulation is done using M-structures, which per-form the updates in place. It is important that the �nalresult be returned only after all of the accumulations aredone. Otherwise a consumer of the result may read incor-rect values while the accumulation is still going on. Thusthe function make accumulator exhibits the classical form ofnon-strictness. It has to return the accumulation structureafter receiving the bounds and the operation, and can returnthe �nal result only after receiving done when all accumula-tions have completed. Trying to pass in all three argumentstogether will result in deadlock.Nevertheless, it is possible to modify the program so thatit does not use functional non-strictness.6 What is requiredis to separate the creation of the accumulator from the clos-ing of it. Then we can call them by separate functions andhave the programmer ensure that they execute in the correctorder (e.g., using explicit barriers).4.5.2 Conditional Non-strictnessOnly two programs require conditional non-strictness. The�rst is the small function presented in Section 3.2, speci�-cally developed by Traub to illustrate the concept of non-strictness going through conditionals. The second is theId Compiler which uses conditional non-strictness to condi-tionally create circular data structures. As shown below, theexample is very similar to the code presented in the previoussubsection. But this time, depending on the arity argumentone of two records is created.def make_var_struct2 sourcename place arity opcode ={vs = if (eq 0 arity) then{record.... % entries for arity equal 0vr_node = (func (vs:nil));}else{record.... % entries for arity not 0vr_node = (func (vs:nil));};In vs}; It is straightforward to change this code to avoid usingconditional non-strictness. All we need to do is fully de�nethe record in each arm of the conditional. For example itcould be changed into the following.def make_var_struct2 sourcename place arity opcode ={vs = if (eq 0 arity) then{vst = {record.... % entries for arity equal 0vr_node = (func (vst:nil));}in vst}else{vse = {record.... % entries for arity not 0vr_node = (func (vse:nil));6In fact, the version of Gamteb that we tested did not exhibitfunctional non-strictness as the calls to allocate the accumulators wereinlined into the caller using Id90's defsubst mechanism. Only wheninlining was disabled did we encounter functional non-strictness.

}in vse};In vs}; Our results seem to be a strong indication that, except inthe simplest cases, conditional non-strictness is too compli-cated for programmers to use. Just tracing the dependenciesof the small example given in Section 3.2 already requiressubstantial e�ort. Unfortunately, conditional non-strictnesshas a serious impact on code-generation. The compiler gen-erates an independent switch for every input to a conditionaland an independent merge for every output. This results ina large run-time overhead. This can be avoided only if thecompiler does the appropriate analysis to �gure out that theconditional non-strictness does not occur.4.5.3 Data Structure Non-strictnessData-structure non-strictness seems to be the most impor-tant form of non-strictness. Many programs use it. Somecreate circular data structures, but most de�ne array ele-ments recursively in terms of other elements. The prototyp-ical example is wavefront or the fib array presented in Sec-tion 3.3. The ability to de�ne data structures recursively isessential for e�ciency. Without this feature, de�ning a newelement would require subsequent allocation of new copiesof the arrays. Obviously, imperative languages have pro-vided the power of non-strict data structures all along. Inimperative languages, the programmer can allocate a datastructure and then �ll it in any order; values can even beupdated in place.One feature imperative data structures do not have ispresence bits to provide synchronization on an element-by-element basis. The programmer has to explicitly ensurethat all dependencies are satis�ed and that the structureis �lled in the right order. In Id90 presence bits automati-cally ensure the right order. For almost all of the programs,we were able to �nd a static schedule such that fetches ofdata elements would never defer. Often we were requiredto enhance our benchmark programs with explicit sequen-tialization statements (we used barriers) to ensure the rightexecution order.Non-strict data structures are critical and are requiredfor e�cient execution. The lenient Fibonacci example fromSection 4.5.1 and the Fibonacci array from Section 3.3 il-lustrate this. Both construct a data structure with the �rstn Fibonacci numbers (either a list or an array), and thenreturn the nth number. This is the idea underlying manydynamic programming problems [Tra91]. Thus one of thereasons we don't see more functional non-strictness may bethat we have data structure non-strictness, which gives us asimilar expressive power and often can express complicateddependencies more elegantly and e�ciently.5 Related workAs far as we know, this is the �rst study to focus on howmuch non-strictness lenient programs require.Tremblay did a similar study for lazy evaluation [Tre94].He collected a large set of benchmark programs and de-termined whether they actually require lazy evaluation orwhether lenient evaluation su�ces. Lazy evaluation is re-quired only if the program manipulates in�nite lists. Hisobservation is that for most programs lenient evaluation issu�cient. He found that, contrary to what other authorsclaimed, most of the programs presented in [Bir84, All92,8



All93] do not require laziness. Tremblay also studied howlazy evaluation impacts parallelism (under the TTDA exe-cution model).Much research has been devoted to analysis techniquesthat determine when the full generality of non-strictnessis not required. These techniques include strictness anal-ysis [Pey87], backwards analysis [Hug88b], and path analy-sis [BH87]. For lenient languages this is approached by par-titioning a program into sequential threads [Tra91]. Parti-tioning algorithms have been developed by [Tra91, SCvE91,HDGS91, SCG95].Many researchers have studied the parallel execution of avariety of lenient programs [AHN88, Hel89, CSS+91, SB93c,ANP89, AE88, Sah91, HCAA93, CGSvE93, SB93a, BH93,SB93b, SCG95, Nik91, SGS+93]. These studies have beenperformed on various hardware and simulation platforms,including the TTDA data
ow machines, Monsoon architec-ture, and MINT simulator, as well as TAM implementationson the CM-5, Sequent, and J-Machine. All of the programsused in those studies are included in this paper.6 ConclusionsThis paper studies a large set of Id90 benchmark programsand determines the degree of non-strictness they require.Contrary to current thought, most of the programs requireneither functional nor conditional non-strictness. The onlylarge program which requires these forms of non-strictnessis the Id compiler, which uses them to de�ne circular datastructures. We believe that both functional and conditionalnon-strictness are seldom used because they are di�cult tograpple with mentally: The seemingly cyclic dependenciesfrom results back to arguments automatically unravel atrun-time and are di�cult to trace. Another reason for thelack of functional non-strictness may be that programmerstend to follow the imperative programming style they areused to. For example, many of the larger programs we stud-ied fall into the area of scienti�c computation and may havebeen based on FORTRAN equivalents (e.g., Gamteb andSimple).We think, however, that the main reason for the lackof functional non-strictness lies elsewhere. Even a limiteduse of non-strict data structures, viz. the ability to de�nedata structure elements recursively, provides essentially thesame expressiveness as, and often can encode these recur-sive dependencies more e�ciently than, purely functionalnon-strictness using lists. Thus many of the programs makeuse of data structure non-strictness. An unexpected resultis that for many of the programs we were able to determinea schedule such that none of the fetches to data structuresdeferred. This seems to indicate that at least a sequentialimplementation of lenient languages might be able to elimi-nate much of the overhead in managing the presence bits ofsynchronizing data structures.One form of non-strictness that lenient evaluation doesnot provide is support for streams and in�nite data struc-tures. While we think that this may be very useful, wewould caution against making a language lazy just for thisreason. First, by using explicit delays or control constructs,programmers can obtain the same bene�t without lazy eval-uation [Hel89]. Second, Tremblay has observed that manysupposedly lazy programs require only lenient evaluation[Tre94].Since funtional and conditional non-strictness are rarelyused and often unnecessary, we suggest eliminating themfrom the language. We believe that data structure non-strictness is su�cient. Researchers should devote more e�ort

to developing techniques which determine when strict func-tions and conditionals should be evaluated in a non-strictfashion to bene�cially increase the parallelism. As the exam-ple flat from Section 2.2.2 clearly shows, lenient evaluationcan expose large amounts of consumer-producer parallelismwhich may be completely lost under strict evaluation. Whileidealized parallelism pro�les derived from data
ow simula-tions such as the TTDA are capable of exposing the inherentparallelism in a program under lenient evaluation, more re-alistic methods have to be used to gain information aboutparallelism which re
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