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Power-Normalized Cepstral Coefficients (PNCC) for
Robust Speech Recognition

Chanwoo Kim and Richard M. Stern,Member, IEEE

Abstract—This paper presents a new feature extraction algo-
rithm called Power Normalized Cepstral Coefficients (PNCC)
that is motivated by auditory processing. Major new features of
PNCC processing include the use of a power-law nonlinearity
that replaces the traditional log nonlinearity used in MFCC
coefficients, a noise-suppression algorithm based on asymmetric
filtering that suppress background excitation, and a modulethat
accomplishes temporal masking. We also propose the use of
medium-time power analysis, in which environmental param-
eters are estimated over a longer duration than is commonly
used for speech, as well as frequency smoothing. Experimental
results demonstrate that PNCC processing provides substantial
improvements in recognition accuracy compared to MFCC and
PLP processing for speech in the presence of various types of
additive noise and in reverberant environments, with only slightly
greater computational cost than conventional MFCC processing,
and without degrading the recognition accuracy that is observed
while training and testing using clean speech. PNCC processing
also provides better recognition accuracy in noisy environments
than techniques such as Vector Taylor Series (VTS) and the
ETSI Advanced Front End (AFE) while requiring much less
computation. We describe an implementation of PNCC using
“online processing” that does not require future knowledgeof
the input.

Index Terms—Robust speech recognition, feature extrac-
tion, physiological modeling, rate-level curve, power function,
asymmetric filtering, medium-time power estimation, spectral
weight smoothing, temporal masking, modulation filtering, on-
line speech processing

EDICS Category: SPE-ROBU, SPE-SPER

I. I NTRODUCTION

I N recent decades following the introduction of hidden
Markov models (e.g. [1]) and statistical language models

(e.g.[2]), the performance of speech recognition systems in
benign acoustical environments has dramatically improved.
Nevertheless, most speech recognition systems remain sensi-
tive to the nature of the acoustical environments within which
they are deployed, and their performance deteriorates sharply
in the presence of sources of degradation such as additive
noise, linear channel distortion, and reverberation.

One of the most challenging contemporary problems is that
recognition accuracy degrades significantly if the test environ-
ment is different from the training environment and/or if the
acoustical environment includes disturbances such as additive
noise, channel distortion, speaker differences, reverberation,
and so on. Over the years dozens if not hundreds of algorithms
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have been introduced to address this problem. Many of these
conventional noise compensation algorithms have provided
substantial improvement in accuracy for recognizing speech
in the presence of quasi-stationary noise (e.g. [3], [4], [5],
[6], [7], [8], [9], [10]). Unfortunately these same algorithms
frequently do not provide significant improvements in more
difficult environments with transitory disturbances such as a
single interfering speaker or background music (e.g. [11]).

Many of the current systems developed for automatic speech
recognition, speaker identification, and related tasks arebased
on variants of one of two types of features:mel frequency
cepstral coefficients(MFCC) [12] orperceptual linear predic-
tion (PLP) coefficients [13]. Spectro-temporal features have
also been recently introduced with promising results (e.g.
[14], [15]). It has been observed that two-dimensional Gabor
filters provide a reasonable approximation to the spectro-
temporal response fields of neurons in the auditory cortex,
which has lead to various approaches to extract features for
speech recognition (e.g. [16], [17], [18], [19]). In this paper
we describe the development of an additional feature set for
speech recognition which we refer to aspower-normalized
cepstral coefficients(PNCC).

We had introduced several previous of PNCC processing in
[20] and [21], and these implementations have been evaluated
by several teams of researchers and compared to several
different algorithms includingzero crossing peak amplitude
(ZCPA) [22], RASTA-PLP [23],perceptual minimum variance
distortionless response(PMVDR) [24], invariant-integration
features(IIF) [25], and subband spectral centroid histograms
(SSCH) [26]. As described in several papers (e.g. [27], [28],
[29], [30], [31]), PNCC has been shown to provide better
speech recognition accuracy than the other algorithms cited
above, particularly in conditions of training that is mismatched
across environments. For example, Müller and Mertins[32]
found that PNCC provides better results than the original IIF
features, but if IIF is combined with PNCC (PN-IIF), the result
is somewhat better than the original PNCC. Similar results had
been obtained withdelta-spectral cepstral coefficientsDSCC
[33] as well. Our previous implementations of PNCC have
also been employed in industry as well [34]. In selected other
studies, portions of PNCC processing have been incorporated
into other feature extraction algorithms (e.g [35], [36]). Even
though previous implementations of PNCC processing appear
to be promising, a major problem is that they cannot be easily
implemented for online applications without look-ahead over
an entire sentence. In addition, previous implementationsof
PNCC did not consider the effects of temporal masking, as is
the case for MFCC and PLP processing.

The implementation of PNCC processing in the present
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Fig. 1. Comparison of the structure of the MFCC, PLP, and PNCCfeature extraction algorithms. The modules of PNCC that function on the basis of
“medium-time” analysis (with a temporal window of 65.6 ms) are plotted in the rightmost column. If the shaded blocks of PNCC are omitted, the remaining
processing is referred to assimple power-normalized cepstral coefficients (SPNCC).

paper has been significantly revised to address these issuesin a
fashion that enables it to provide superior recognition accuracy
over a broad range of conditions of noise and reverberation
using features that are computable in real time using “online”
algorithms that do not require extensive look-ahead, and with
a computational complexity that is comparable to that of
traditional MFCC and PLP features. In the subsequent subsec-
tions of this Introduction we discuss the broader motivations
and overall structure of PNCC processing. We specify the
key elements of the processing in some detail in Sec. II.
In Sec. III we compare the recognition accuracy provided
by PNCC processing under a variety of conditions with that
of other processing schemes, and we consider the impact of
various components of PNCC on these results. We compare
the computational complexity of the MFCC, PLP, and PNCC
feature extraction algorithms in Sec. IV and we summarize
our results in the final section.

A. Broader motivation for the PNCC algorithm

The development of PNCC feature extraction was motivated
by a desire to obtain a set of practical features for speech
recognition that are more robust with respect to acoustical
variability in their native form, without loss of performance
when the speech signal is undistorted, and with a degree of
computational complexity that is comparable to that of MFCC
and PLP coefficients. While many of the attributes of PNCC
processing have been strongly influenced by consideration
of various attributes of human auditory processing, we have
favored approaches that provide pragmatic gains in robustness
at small computational cost over approaches that are more
faithful to auditory physiology in developing the specific
processing that is performed.

Some of the innovations of the PNCC processing that we
consider to be the most important include:

• The replacement of the log nonlinearity in MFCC pro-
cessing by a power-law nonlinearity that is carefully
chosen to approximate the nonlinear relation between
signal intensity and auditory-nerve firing rate. We believe
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that this nonlinearity provides superior robustness by sup-
pressing small signals and their variability, as discussed
in Sec. II-G.

• The use of “medium-time” processing with a duration
of 50-120 ms to analyze the parameters characterizing
environmental degradation, in combination with the tra-
ditional short-time Fourier analysis with frames of 20-30
ms used in conventional speech recognition systems. We
believe that this approach enables us to estimate envi-
ronmental degradation more accurately while maintaining
the ability to respond to rapidly-changing speech signals,
as discussed in Sec. II-B.

• The use of a form of “asymmetric nonlinear filtering”
to estimate the level of the acoustical background noise
for each time frame and frequency bin. We believe
that this approach enables us to remove slowly-varying
components easily without the need to deal with many of
the artifacts associated with over-correction in techniques
such as spectral subtraction [37], as discussed in Sec.
II-C. As shown in Sec. III-C, this approach is more
effective than RASTA processing [23].

• The development of a signal processing block that real-
izes temporal masking.

• The development of computationally-efficient realizations
of the algorithms above that support “online” real-time
processing that does not require substantial non-causal
look-ahead of the input signal to compute the PNCC
coefficients.

B. Structure of the PNCC algorithm

Figure 1 compares the structure of conventional MFCC
processing [12], PLP processing [13], [23], and the new PNCC
approach which we introduce in this paper. As was noted
above, the major innovations of PNCC processing include the
redesigned nonlinear rate-intensity function, along withthe
series of processing elements to suppress the effects of back-
ground acoustical activity based on medium-time analysis.

As can be seen from Fig. 1, the initial processing stages of
PNCC processing are quite similar to the corresponding stages
of MFCC and PLP analysis, except that the frequency analysis
is performed using gammatone filters [38]. This is followed
by the series of nonlinear time-varying operations that are
performed using the longer-duration temporal analysis that
accomplish noise subtraction as well as a degree of robustness
with respect to reverberation. The final stages of processing are
also similar to MFCC and PLP processing, with the exception
of the carefully-chosen power-law nonlinearity with exponent
1/15, which will be discussed in Sec. II-G below. Finally,
we note that if the shaded blocks in Fig. 1 are omitted,
the processing that remains is referred to assimple power-
normalized cepstral coefficients (SPNCC). SPNCC processing
has been employed in other studies on robust recognition (e.g.
[36]).

II. COMPONENTS OFPNCCPROCESSING

In this section we describe and discuss the major compo-
nents of PNCC processing in greater detail. While the detailed
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Fig. 2. The frequency response of a gammatone filterbank witheach
area of the squared frequency response normalized to be unity. Characteristic
frequencies are uniformly spaced between 200 and 8000 Hz according to the
Equivalent Rectangular Bandwidth (ERB) scale [39].

description below assumes a sampling rate of 16 kHz, the
PNCC features are easily modified to accommodate other
sampling frequencies.

A. Initial processing

As in the case of MFCC, a pre-emphasis filter of the form
H(z) = 1−0.97z−1 is applied. A short-time Fourier transform
(STFT) is performed using Hamming windows of duration
25.6 ms, with 10 ms between frames, using a DFT size of
1024. Spectral power in 40 analysis bands is obtained by
weighting the magnitude-squared STFT outputs for positive
frequencies by the frequency response associated with a 40-
channel gammatone-shaped filter bank [38] whose center
frequencies are linearly spaced in Equivalent Rectangular
Bandwidth (ERB) [39] between 200 Hz and 8000 Hz, using
the implementation of gammatone filters in Slaney’s Auditory
Toolbox [40]. In previous work [20] we observed that the use
of gammatone frequency weighting provides slightly better
ASR accuracy in white noise, but the differences compared
to the traditional triangular weights in MFCC processing are
small. The frequency response of the gammatone filterbank is
shown in Fig. 2. In each channel the area under the squared
transfer function is normalized to unity to satisfy the equation:

∫ 8000

0

|Hl(f)|
2df = 1 (1)

whereHl(f) is the frequency response of thelth gammatone
channel. To reduce the amount of computation, we modified
the gammatone filter responses slightly by settingHl(f)
equal to zero for all values off for which the unmodified
Hl(f) would be less than0.5 percent of its maximum value
(corresponding to -46 dB).

We obtain the short-time spectral powerP [m, l] using the
squared gammatone summation as below:

P [m, l] =

(K/2)−1
∑

k=0

|X [m, ejωk ]Hl(e
jωk)|2 (2)

whereK is the DFT size,m and l represent the frame and
channel indices, respectively, andωk = 2πk/Fs, with Fs

representing the sampling frequency.X [m, ejωk ] is the short-
time spectrum of themth frame of the signal.
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B. Temporal integration for environmental analysis

Most speech recognition and speech coding systems use
analysis frames of duration between 20 ms and 30 ms.
Nevertheless, it is frequently observed that longer analysis
windows provide better performance for noise modeling and/or
environmental normalization (e.g. [21], [41], [42]), because
the power associated with most background noise conditions
changes more slowly than the instantaneous power associated
with speech.

In PNCC processing we estimate a quantity we refer to
as “medium-time power”Q̃[m, l] by computing the running
average ofP [m, l], the power observed in a single analysis
frame, according to the equation:

Q̃[m, l] =
1

2M + 1

m+M
∑

m′=m−M

P [m′, l] (3)

wherem represents the frame index andl is the channel index.
We will apply the tilde symbol to all power estimates that are
performed using medium-time analysis.

We observed experimentally that the choice of the temporal
integration factorM has a substantial impact on performance
in white noise (and presumably other types of broadband
background noise). This factor has less impact on the accuracy
that is observed in more dynamic interference or reverberation,
although the longer temporal analysis window does provide
some benefit in these environments as well [43]. We chose the
value ofM = 2 (corresponding to five consecutive windows
with a total net duration of 65.6 ms) on the basis of these
observations. SincẽQ[m, l] is the moving average ofP [m, l],
Q̃[m, l] is a low-pass function ofm. If M = 2, the upper
frequency is approximately 15 Hz. Nevertheless, if we were to
use features based oñQ[m, l] directly for speech recognition,
recognition accuracy would be degraded because onsets and
offsets of the frequency components would become blurred.
Hence in PNCC, we usẽQ[m, l] only for noise estimation
and compensation, which are used to modify the information
based on the short-time power estimatesP [m, l]. We also
apply smoothing over the various frequency channels, which
will discussed in Sec. II-E below.

C. Asymmetric noise suppression

In this section, we discuss a new approach to noise com-
pensation which we refer to asasymmetric noise suppression
(ANS). This procedure is motivated by the observation men-
tioned above that the speech power in each channel usually
changes more rapidly than the background noise power in
the same channel. Alternately we might say that speech usu-
ally has a higher-frequency modulation spectrum than noise.
Motivated by this observation, many algorithms have been
developed using either high-pass filtering or band-pass filtering
in the modulation spectrum domain (e.g. [23], [44]). The
simplest way to accomplish this objective is to perform high-
pass filtering in each channel (e.g. [45], [46]) which has the
effect of removing slowly-varying components which typically
represent the effects of additive noise sources rather thanthe
speech signal.
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Fig. 3. Functional block diagram of the modules for asymmetric noise
suppression (ANS) and temporal masking in PNCC processing.All processing
is performed on a channel-by-channel basis.Q̃[m, l] is the medium-time-
averaged input power as defined by Eq.(3),R̃[m, l] is the speech output of
the ANS module, and̃S[m, l] is the output after temporal masking (which is
applied only to the speech frames). The block labelled Temporal Masking is
depicted in detail in Fig. 5

One significant problem with the application of conventional
linear high-pass filtering in the power domain is that the filter
output can become negative. Negative values for the power
coefficients are problematic in the formal mathematical sense
(in that power itself is positive). They also cause problems
in the application of the compressive nonlinearity and in
speech resynthesis unless a suitable floor value is applied to
the power coefficients (e.g. [46]). Rather than filtering in the
power domain, we could perform filtering after applying the
logarithmic nonlinearity, as is done with conventional cepstral
mean normalization in MFCC processing. Nevertheless, as
will be seen in Sec. III, this approach is not very helpful
for environments with additive noise. Spectral subtraction is
another way to reduce the effects of noise, whose power
changes slowly (e.g. [37]). In spectral subtraction techniques,
the noise level is typically estimated from the power of non-
speech segments (e.g.[37]) or through the use of a continuous-
update approach (e.g.[45]). In the approach that we introduce,
we obtain a running estimate of the time-varying noise floor
using an asymmetric nonlinear filter, and subtract that from
the instantaneous power.

Figure 3 is a block diagram of the complete asymmetric
nonlinear suppression processing with temporal masking. Let
us begin by describing the general characteristics of the
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asymmetric nonlinear filter that is the first stage of processing.
This filter is represented by the following equation for arbitrary
input and outputQ̃in[m, l] and Q̃out[m, l], respectively:

Q̃out[m, l] =



















λaQ̃out[m− 1, l] + (1− λa)Q̃in[m, l],

if Q̃in[m, l] ≥ Q̃out[m− 1, l]

λbQ̃out[m− 1, l] + (1− λb)Q̃in[m, l],

if Q̃in[m, l] < Q̃out[m− 1, l]

(4)

wherem is the frame index andl is the channel index, and
λa andλb are constants between zero and one.

If λa = λb it is easy to verify that Eq. 4 reduces to a
conventional IIR filter that is lowpass in nature because the
values of theλ parameters are positive, as shown in Fig. 4(a).
In contrast, If1 > λb > λa > 0, the nonlinear filter functions
as a conventional “upper” envelope detector, as illustrated
in Fig. 4(b). Finally, and most usefully for our purposes, if
1 > λa > λb > 0, the filter outputQ̃out tends to follow
the lower envelopeof Q̃in[m, l], as seen in Fig. 4(c). In our
processing, we will use this slowly-varying lower envelopein
Fig. 4(c) to serve as a model for the estimated medium-time
noise level, and the activity above this envelope is assumed
to represent speech activity. Hence, subtracting this low-level
envelope from the original input̃Qin[m, l] will remove a
slowly varying non-speech component.

We will use the notation

Q̃out[m, l] = AFλa,λb
[Q̃in[m, l]] (5)

to represent the nonlinear filter described by Eq. (4). We note
that that this filter operates only on the frame indicesm for
each channel indexl.

Keeping the characteristics of the asymmetric filter de-
scribed above in mind, we may now consider the structure
shown in Fig. 3. In the first stage, the lower envelopeQ̃le[m, l],
which represents the average noise power, is obtained by ANS
processing according to the equation

Q̃le[m, l] = AF0.999,0.5[Q̃[m, l]] (6)

as depicted in Fig. 4(c).̃Qle[0, l] is initialized to 0.9Q̃[m, l].
Q̃le[m, l] is subtracted from the input̃Q[m, l], effectively
highpass filtering the input, and that signal is passed through
an ideal half-wave linear rectifier to produce the rectified
output Q̃0[m, l]. The impact of the specific values of the
forgetting factorsλa and λb on speech recognition accuracy
is discussed below.

The remaining elements of ANS processing in the right-
hand side of Fig. 3 (other than the temporal masking block)
are included to cope with problems that develop when the
rectifier outputQ̃0[m, l] remains zero for an interval, or when
the local variance of̃Q0[m, l] becomes excessively small. Our
approach to this problem is motivated by our previous work
[21] in which it was noted that applying a well-motivated
flooring level to power is very important for noise robustness.
In PNCC processing we apply the asymmetric nonlinear filter
for a second time to obtain the lower envelope of the rectifier
outputQ̃f [m, l], and we use this envelope to establish this floor
level. This envelopeQ̃f [m, l] is obtained using asymmetric
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Fig. 4. Sample inputs (solid curves) and outputs (dashed curves) of the
asymmetric nonlinear filter defined by Eq. (4) for conditionswhen (a)λa =
λb (b) λa < λb , and (c)λa > λb . In this example, the channel indexl is
8.

filtering as before:

Q̃f [m, l] = AF0.999,0.5[Q̃0[m, l]] (7)

Q̃f [0, l] is initialized asQ̃0[m, l]. As shown in Fig. 3, we use
the lower envelope of the rectified signalQ̃f [m, l] as a floor
level for the ANS processing output̃R[m, l] after temporal
masking:

R̃sp[m, l] = max (Q̃tm[m, l], Q̃f [m, l]) (8)

whereQ̃tm[m, l] is the temporal masking output depicted in
Fig. 3. Temporal masking for speech segments is discussed in
Sec. II-D.

We have found that applying lowpass filtering to the signal
segments that do not appear to be driven by a periodic
excitation function (as in voiced speech) improves recognition
accuracy in noise by a small amount. For this reason we use
the lower envelope of the rectified signal̃Rle[m, l] directly
for these non-excitation segments. This operation, which is
effectively a further lowpass filtering, is not performed for the
speech segments because blurring the power coefficients for
speech degrades recognition accuracy.

Excitation/non-excitation decisions for this purpose areob-
tained for each value ofm and l in a very simple fashion:

“excitation segment” if Q̃[m, l] ≥ cQ̃le[m, l](9a)

“non-excitation segment” if Q̃[m, l] < cQ̃le[m, l](9b)

whereQ̃le[m, l] is the lower envelope of̃Q[m, l] as described
above, and in andc is a fixed constant. In other words, a partic-
ular value ofQ̃[m, l] is not considered to be a sufficiently-large
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Fig. 5. Block diagram of the components that accomplish temporal masking
in Fig. 3

excitation if it is less than a fixed multiple of its own lower
envelope.

We observed experimentally that while a broad range of
values ofλb between 0.25 and 0.75 appear to provide reason-
able recognition accuracy, the choice ofλa = 0.9 appears to
be best under most circumstances [43]. The parameter values
used for the current standard implementation areλa = 0.999
and λb = 0.5, which were chosen in part to maximize the
recognition accuracy in clean speech as well as performancein
noise. We also observed (in experiments in which the temporal
masking described below was bypassed) that the threshold-
parameter valuec = 2 provides the best performance for white
noise (and presumably other types of broadband noise). The
value of c has little impact on performance in background
music and in the presence of reverberation.

D. Temporal masking

Many authors have noted that the human auditory system
appears to focus more on the onset of an incoming power
envelope rather than the falling edge of that same power
envelope (e.g. [47], [48]). This observation has led to several
onset enhancement algorithms (e.g. [49], [46], [50], [51]). In
this section we describe a simple way to incorporate this effect
in PNCC processing, by obtaining a moving peak for each
frequency channell and suppressing the instantaneous power
if it falls below this envelope.

The processing invoked for temporal masking is depicted in
block diagram form in Fig. 5. We first obtain the online peak
powerQp[m, l] for each channel using the following equation:

Q̃p[m, l] = max
(

λtQ̃p[m− 1, l], Q̃0[m, l]
)

(10)

whereλt is the forgetting factor for obtaining the online peak.
As before,m is the frame index andl is the channel index.
Temporal masking for speech segments is accomplished using
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Fig. 6. Demonstration of the effect of temporal masking in the ANS module
for speech in simulated reverberation withT60 = 0.5 s (upper panel) and
clean speech (lower panel). In this example, the channel index l is 18.

the following equation:

R̃sp[m, l] =

{

Q̃0[m, l], Q̃0[m, l] ≥ λtQ̃p[m− 1, l]

µtQ̃p[m− 1, l], Q̃0[m, l] < λtQ̃p[m− 1, l]
(11)

We have found [43] that if the forgetting factorλt is equal
to or less than0.85 and if µt ≤ 0.2, recognition accuracy
remains almost constant for clean speech and most additive
noise conditions, and ifλt increases beyond0.85, performance
degrades. The value ofλt = 0.85 also appears to be best in
the reverberant condition. For these reasons we use the values
λt = 0.85 and µt = 0.2 in the standard implementation of
PNCC. Note thatλt = 0.85 corresponds to a time constant
of 28.2 ms, which means that the offset attenuation lasts
approximately 100 ms. This characteristic is in accordance
with observed data for humans [52].

Figure 6 illustrates the effect of this temporal masking. In
general, with temporal masking the response of the system
is inhibited for portions of the input signal̃R[m, l] other
than rising “attack transients”. The difference between the
signals with and without masking is especially pronounced in
reverberant environments, for which the temporal processing
module is especially helpful.

The final output of the asymmetric noise suppression and
temporal masking modules is̃R[m, l] = R̃sp[m, l] for the
excitation segments and̃R[m, l] = Q̃f [m, l] for the non-
excitation segments.

E. Spectral weight smoothing

In our previous research on speech enhancement and noise
compensation techniques (e.g., [20], [21], [41], [53], [54])
it has been frequently observed that smoothing the response
across channels is helpful. This is true especially in processing
schemes such as PNCC where there are nonlinearities and/or
thresholds that vary in their effect from channel to channel,
as well as processing schemes that are based on inclusion of
responses only from a subset of time frames and frequency
channels (e.g. [53]) or systems that rely on missing-feature
approaches (e.g. [55]).

From the discussion above, we can represent the combined
effects of asymmetric noise suppression and temporal masking
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for a specific time frame and frequency bin as the transfer
function R̃[m, l]/Q̃[m, l]. Smoothing the transfer function
across frequency is accomplished by computing the running
average over the channel indexl of the ratioR̃[m, l]/Q̃[m, l].
Hence, the frequency averaged weighting functionT̃ [m, l]
(which had previously been subjected to temporal averaging)
is given by:

S̃[m, l] =

(

1

l2 − l1 + 1

l2
∑

l′=l1

R̃[m, l′]

Q̃[m, l′]

)

(12)

wherel2 = min(l +N,L) and l1 = max(l −N, 1), andL is
the total number of channels.

The time-averaged frequency-averaged transfer function
S̃[m, l] is used to modulate the original short-time power
P [m, l]:

T [m, l] = P [m, l]S̃[m, l] (13)

In the present implementation of PNCC, we use a value of
N = 4, and a total number ofL = 40 gammatone channels,
again based on empirical optimization from the results of pilot
studies [43]. We note that if we were to use a different number
of channelsL, the optimal value ofN would be also different.

F. Mean power normalization

In conventional MFCC processing, multiplication of the
input signal by a constant scale factor produces only an
additive shift of theC0 coefficient because a logarithmic
nonlinearity is included in the processing, and this shift is
easily removed by cepstral mean normalization. In PNCC
processing, however, the replacement of the log nonlinearity
by a power-law nonlinearity as discussed below, causes the
response of the processing to be affected by changes in
absolute power, even though we have observed that this effect
is usually small. In order to minimize further the potential
impact of amplitude scaling in PNCC we invoke a stage of
mean power normalization.

While the easiest way to normalize power would be to
divide the instantaneous power by the average power over the
utterance, this is not feasible for real-time online processing
because of the “look ahead” that would be required. For
this reason, we normalize input power in the present online
implementation of PNCC by dividing the incoming power by
a running average of the overall power. The mean power esti-
mateµ[m] is computed from the simple difference equation:

µ[m] = λµµ[m− 1] +
(1− λµ)

L

L−1
∑

l=0

T [m, l] (14)

wherem and l are the frame and channel indices, as before,
andL represents the number of frequency channels. We use a
value of0.999 for the forgetting factorλµ. For the initial value
of µ[m], we use the value obtained from the training database.
Since the time constant corresponding toλµ is around 4.6
seconds, we normally do not need to incorporate a formal
voice activity detector(VAD) in conjunction with PNCC if
a continuous non-speech portion is not longer than 3 to 4
seconds, then we usually do not need to use a Voice Activity
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Fig. 7. Synapse output for a pure tone input with a carrier frequency of 500
Hz at 60 dB SPL. This synapse output is obtained using the auditory model
by Heinz et al. [56].
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Fig. 8. Comparison of the onset rate (solid curve) and sustained rate (dashed
curve) obtained using the model proposed by Heinzet al. [56]. The curves
were obtained by averaging responses over seven frequencies. See text for
details.

Detector (VAD) with PNCC. If silences of longer duration are
interspersed with the speech, however, we recommend the use
of a VAD in combination with PNCC processing.

The normalized power is obtained directly from the running
power estimateµ[m]:

U [m, l] = k
T [m, l]

µ[m]
(15)

where the value of the constantk is arbitrary. In pilot
experiments we found that the speech recognition accuracy
obtained using the online power normalization described above
is comparable to the accuracy that would be obtained by
normalizing according to a power estimate that is computed
over the entire estimate in offline fashion.

G. Rate-level nonlinearity

Several studies in our group (e.g.[20], [54]) have confirmed
the critical importance of the nonlinear function that describes
the relationship between incoming signal amplitude in a given
frequency channel and the corresponding response of the
processing model. This “rate-level nonlinearity” is explicitly or
implicitly a crucial part of every conceptual or physiological
model of auditory processing (e.g. [57], [58], [59]). In this
section we summarize our approach to the development of the
rate-level nonlinearity used in PNCC processing.
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Fig. 9. Comparison between a human rate-intensity relationusing the
auditory model developed by Heinzet al. [56], a cube root power-law ap-
proximation, an MMSE power-law approximation, and a logarithmic function
approximation. Upper panel: Comparison using the pressure(Pa) as thex-
axis. Lower panel: Comparison using the sound pressure level (SPL) in dB
as thex-axis.

It is well known that the nonlinear curve relating sound
pressure level in decibels to the auditory-nerve firing rateis
compressive (e.g [56] [60]). It has also been observed that
the average auditory-nerve firing rate exhibits an overshoot at
the onset of an input signal. As an example, we compare in
Fig. 8 the average onset firing rate versus the sustained rate
as predicted by the model of Heinzet al. [56]. The curves in
this figure were obtained by averaging the rate-intensity values
obtained from sinusoidal tone bursts over seven frequencies,
100, 200, 400, 800, 1600, 3200, and 6400 Hz. For the onset-
rate results we partitioned the response into bins of lengthof
2.5 ms, and searched for the bin with maximum rate during
the initial 10 ms of the tone burst. To measure the sustained
rate, we averaged the response rate between 50 and 100 ms
after the onset of the signals. The curves were generated under
the assumption that the spontaneous rate is 50 spikes/second.
We observe in Fig. 8 that the sustained firing rate (broken
curve) is S-shaped with a threshold around 0 dB SPL and a
saturating segment that begins at around 30 dB SPL. The onset
rate (solid curve), on the other hand, increases continuously
without apparent saturation over the conversational hearing
range of0 to 80 dB SPL. We choose to model the onset rate-
intensity curve for PNCC processing because of the important
role that it appears to play in auditory perception. Figure 9

compares the onset rate-intensity curve depicted in Fig. 8 with
various analytical functions that approximate this function.
The curves are plotted as a function of dB SPL in the lower
panel of the figure and as a function of absolute pressure in
Pascals in the upper panel, and the putative spontaneous firing
rate of 50 spikes per second is subtracted from the curves in
both cases.

The most widely used current feature extraction algorithms
are Mel Frequency Cepstral Coefficients (MFCC) and Per-
ceptual Linear Prediction (PLP) coefficients. Both the MFCC
and PLP procedures include an intrinsic nonlinearity, which
is logarithmic in the case of MFCC and a cube-root power
function in the case of PLP analysis. We plot these curves
relating the power of the input pressurep to the responses
in Fig. 9 using values of the arbitrary scaling parameters that
are chosen to provide the best fit to the curve of the Heinzet
al. model, resulting in the following equations:

scube = 4294.1p2/3 (16)

slog = 120.2 log(p) + 1319.3 (17)

We note that the exponent of the power function is doubled
because we are plotting power rather than pressure. Even
though scaling and shifting by fixed constants in Eqs. (16)
and (17) do not have any significance in speech recognition
systems, we included them in the above equation to fit these
curves to the rate-intensity curve in Fig. 9(a). The constants
in Eqs. (16) and (17) are obtained using an MMSE criterion
for the sound pressure range between 0 dB (20µPa) and 80
dB (0.2 Pa) from the linear rate-intensity curve in the upper
panel of Fig. 8.

We have also observed experimentally [43] that the power-
law curve with an exponent of1/15 for sound pressure
provides a reasonably good fit to the physiological data while
optimizing recognition accuracy in the presence of noise. We
have observed that larger values of the pressure exponent such
as 1/5 provide better performance in white noise, but they
degrade the recognition accuracy that is obtained for clean
speech [43]. We consider the value1/15 for the pressure
exponent to represent a pragmatic compromise that provides
reasonable accuracy in white noise without sacrificing recog-
nition accuracy for clean speech, producing the power-law
nonlinearity

V [m, l] = U [m, l]1/15 (18)

where againU [m, l] and V [m, l] have the dimensions of
power. This curve is closely approximated by the equation

spower = 1389.6p0.1264 (19)

which is also plotted in Fig. 9. The exponent of0.1264
happens to be the best fit to the Heinzet al. data as depicted
in the upper panel of Fig. 8. As before, this estimate was
developed in the MMSE sense over the sound pressure range
between 0 dB (20µPa) and 80 dB (0.2 Pa).

The power law function was chosen for PNCC processing
for several reasons. First, it is a relationship that is not affected
in form by multiplying the input by a constant. Second, it
has the attractive property that its asymptotic response atvery



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. X, MONTH, YEAR 9

0 100 (1s) 200 (2s) 300 (3s)
Frame Index  m

lo
g
P

[m
,l

]
Clean and Street 5 dB

 

 

Street 5 dB
Clean

0 100 (1s) 200 (2s) 300 (3s)
Frame Index  m

P̃
[m

,l
]1

/
1
5

Clean and Street 5 dB

 

 

Street 5 dB
Clean

Fig. 10. The effects of the asymmetric noise suppression, temporal masking,
and the rate-level nonlinearity used in PNCC processing. Shown are the
outputs of these stages of processing for clean speech and for speech corrupted
by street noise at an SNR of 5 dB when the logarithmic nonlinearity is used
without ANS processing or temporal masking (upper panel), and when the
power-law nonlinearity is used with ANS processing and temporal masking
(lower panel). In this example, the channel indexl is 8.

low intensities is zero rather than negative infinity, which
reduces variance in the response to low-level inputs such
as spectral valleys or silence segments. Finally, the power
law has been demonstrated to provide a good approximation
to the “psychophysical transfer functions” that are observed
in experiments relating the physical intensity of sensation
to the perceived intensity using direct magnitude-estimation
procedures (e.g. [61]).

Figure 10 is a final comparison of the effects of the
asymmetric noise suppression, temporal masking, channel
weighting, and power-law nonlinearity modules discussed in
Secs. II-C through II-G. The curves in both panels compare the
response of the system in the channel with center frequency
490 Hz to clean speech and speech in the presence of street
noise at an SNR of 5 dB. The curves in the upper panel
were obtained using conventional MFCC processing, including
the logarithmic nonlinearity and without ANS processing
or temporal masking. The curves in the lower panel were
obtained using PNCC processing, which includes the power-
law transformation described in this section, as well as ANS
processing and temporal masking. We note that the difference
between the two curves representing clean and noisy speech is
much greater with MFCC processing (upper panel), especially
for times during which the signal is at a low level.

III. E XPERIMENTAL RESULTS

In this section we present experimental results that are
intended to demonstrate the superiority of PNCC processing
over competing approaches in a wide variety of acoustical
environments. We begin in Sec. III-A with a review of the
experimental procedures that were used. We provide some
general results for PNCC processing, we assess the contri-
butions of its various components in PNCC in Sec. III-B, and
we compare PNCC to a small number of other approaches in
Sec. III-C.

It should be noted that in general we selected an algorithm
configuration and associated parameter values that provide

very good performance over a wide variety of conditions using
a single set of parameters and settings, without sacrificing
word error rate in clean conditions relative to MFCC pro-
cessing. In previous work we had described slightly different
feature extraction algorithms that provide even better perfor-
mance for speech recognition in the presence of reverberation
[21] and in background music [46], but these approaches do
not perform as well as MFCC processing in clean speech.
We used five standard testing environments in our work: (1)
digitally-added white noise, (2) digitally-added noise that had
been recorded live on urban streets, (3) digitally-added single-
speaker interference, (4) digitally-added background music,
and (5) passage of the signal through simulated reverberation.
The street noise was recorded by us on streets with steady but
moderate traffic. The masking signal used for single-speaker-
interference experiments consisted of other utterances drawn
from the same database as the target speech, and background
music was selected from music segments from the original
DARPA Hub 4 Broadcast News database. The reverberation
simulations were accomplished using theRoom Impulse Re-
sponseopen source software package [62] based on the image
method [63]. The room size used was3 × 4 × 5 meters, the
microphone is in the center of the room, the spacing between
the target speaker and the microphone was assumed to be 3
meters, and reverberation time was manipulated by changing
the assumed absorption coefficients in the room appropriately.
These conditions were selected so that interfering additive
noise sources of progressively greater difficulty were included,
along with basic reverberation effects.

A. Experimental Configuration

The PNCC features described in this paper were evaluated
by comparing the recognition accuracy obtained with PNCC
introduced in this paper to that obtained using MFCC and
RASTA-PLP processing. We used the version of conventional
MFCC processing implemented as part ofsphinx_fe in
sphinxbase 0.4.1 , both from the CMU Sphinx open
source codebase [64]. We used the PLP-RASTA implemen-
tation that is available at [65]. In all cases decoding was
performed using the publicly-available CMU Sphinx 3.8 sys-
tem [64] using training fromSphinxTrain 1.0 . We also
compared PNCC with thevector Taylor series(VTS) noise
compensation algorithm [4] and theETSI Advanced Front
End (AFE) which has several noise suppression algorithms
included [8]. In the case of the ETSI AFE, we excluded the
log energy element because this resulted in better results in
our experiments. A bigram language model was used in all
the experiments. We used feature vectors of length of 39
including delta and delta-delta features. For experimentsusing
the DARPA Resource Management (RM1) database we used
subsets of 1600 utterances of clean speech for training and
600 utterances of clean or degraded speech for testing. For
experiments based on the DARPA Wall Street Journal (WSJ)
5000-word database we trained the system using the WSJ0
SI-84 training set and tested it on the WSJ0 5K test set.

We typically plot word recognition accuracy, which is 100
percent minus the word error rate (WER), using the standard
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definition for WER of the number of insertions, deletions, and
substitutions divided by the number of words spoken.

B. General performance of PNCC in noise and reverberation

In this section we describe the recognition accuracy ob-
tained using PNCC processing in the presence of various types
of degradation of the incoming speech signals. Figures 11
and 12 describe the recognition accuracy obtained with PNCC
processing in the presence of white noise, street noise, back-
ground music, and speech from a single interfering speaker
as a function of SNR, as well as in the simulated reverberant
environment as a function of reverberation time. These results
are plotted for the DARPA RM database in Fig. 11 and for
the DARPA WSJ database in Fig. 12. For the experiments
conducted in noise we prefer to characterize the improvement
in recognition accuracy by the amount of lateral shift of the
curves provided by the processing, which corresponds to an
increase of the effective SNR. For white noise using the
RM task, PNCC provides an improvement of about 12 dB
to 13 dB compared to MFCC processing, as shown in Fig.
11. In the presence of street noise, background music, and
interfering speech, PNCC provides improvements of approxi-
mately 8 dB, 3.5 dB, and 3.5 dB, respectively. We also note
that PNCC processing provides considerable improvement in
reverberation, especially for longer reverberation times. PNCC
processing exhibits similar performance trends for speechfrom
the DARPA WSJ0 database in similar environments, as seen
in Fig. 12, although the magnitude of the improvement is
diminished somewhat, which is commonly observed as we
move to larger databases.

The curves in Figs. 11 and 12 are also organized in a
way that highlights the various contributions of the major
components. Beginning with baseline MFCC processing the
remaining curves show the effects of adding in sequence (1)
the power-law nonlinearity (along with mean power normal-
ization and the gammatone frequency integration), (2) the
ANS processing including spectral smoothing, and finally (3)
temporal masking. It can be seen from the curves that a
substantial improvement can be obtained by simply replacing
the logarithmic nonlinearity of MFCC processing by the
power-law rate-intensity function described in Sec. II-G.The
addition of the ANS processing provides a substantial further
improvement for recognition accuracy in noise. Although it
is not explicitly shown in Figs. 11 and 12, temporal masking
is particularly helpful in improving accuracy for reverberated
speech and for speech in the presence of interfering speech.

C. Comparison with other algorithms

Figures 13 and 14 provide comparisons of PNCC processing
to the baseline MFCC processing with cepstral mean normal-
ization, MFCC processing combined with the vector Taylor
series (VTS) algorithm for noise robustness [4], as well as
RASTA-PLP feature extraction [23] and the ETSI Advanced
Front End (AFE) [8]. We compare PNCC processing to MFCC
and RASTA-PLP processing because these features are most
widely used in baseline systems, even though neither MFCC
nor PLP features were designed to be robust in the presence
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Fig. 11. Recognition accuracy obtained using PNCC processing in various
types of additive noise and reverberation. Curves are plotted separately to
indicate the contributions of the power-law nonlinearity,asymmetric noise
suppression, and temporal masking. Results are described for the DARPA
RM1 database in the presence of (a) white noise, (b) street noise, (c)
background music, (d) interfering speech, and (e) artificial reverberation.

of additive noise. The experimental conditions used were the
same as those used to produce Figs. 11 and 12.

We note in Figs. 13 and 14 that PNCC provides substantially
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Fig. 12. Recognition accuracy obtained using PNCC processing in various
types of additive noise and reverberation. Curves are plotted separately to
indicate the contributions of the power-law nonlinearity,asymmetric noise
suppression, and temporal masking. Results are described for the DARPA
WSJ0 database in the presence of (a) white noise, (b) street noise, (c)
background music, (d) interfering speech, and (e) artificial reverberation.

better recognition accuracy than both MFCC and RASTA-
PLP processing for all conditions examined. It also provides
recognition accuracy that is better than the combination of
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Fig. 13. Comparison of recognition accuracy for PNCC with processing
using MFCC features, the ETSI AFE, MFCC with VTS, and RASTA-PLP
features using the DARPA RM1 corpus. Environmental conditions are (a)
white noise, (b) street noise, (c) background music, (d) interfering speech,
and (e) reverberation.

MFCC with VTS, and at a substantially lower computational
cost than the computation that is incurred in implementing
VTS. We also note that the VTS algorithm provides little
or no improvement over the baseline MFCC performance in
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Fig. 14. Comparison of recognition accuracy for PNCC with processing using
MFCC features, ETSI AFE, MFCC with VTS, and RASTA-PLP features
using the DARPA WSJ0 corpus. Environmental conditions are (a) white
noise, (b) street noise, (c) background music, (d) interfering speech, and (e)
reverberation.

difficult environments like background music noise, single-
channel interfering speaker or reverberation.

The ETSI Advanced Front End (AFE) [8] generally pro-
vides slightly better recognition accuracy than VTS in noisy

environments, but the accuracy obtained with the AFE does
not approach that obtained with PNCC processing in the most
difficult noise conditions. Neither the ETSI AFE nor VTS
improve recognition accuracy in reverberant environments
compared to MFCC features, while PNCC provides mea-
surable improvements in reverberation, and a closely related
algorithm [46] provides even greater recognition accuracyin
reverberation (at the expense of somewhat worse performance
in clean speech).

IV. COMPUTATIONAL COMPLEXITY

Table I provides estimates of the computational demands
MFCC, PLP, and PNCC feature extraction. (RASTA process-
ing is not included in these tabulations.) As before, we use
the standard open source Sphinx code insphinx_fe [64]
for the implementation of MFCC, and the implementation in
[65] for PLP. We assume that the window length is 25.6 ms
and that the interval between successive windows is 10 ms.
The sampling rate is assumed to be 16 kHz, and we use a
1024-pt FFT for each analysis frame.

It can be seen in Table I that because all three algorithms
use 1024-point FFTs, the greatest difference from algorithm to
algorithm in the amount of computation required is associated
with the spectral integration component. Specifically, thetrian-
gular weighting used in the MFCC calculation encompasses
a narrower range of frequencies than the trapezoids used in
PLP processing, which is in turn considerably narrower than
the gammatone filter shapes, and the amount of computation
needed for spectral integration is directly proportional to
the effective bandwidth of the channels. For this reason, as
mentioned in Sec. II-A, we limited the gammatone filter
computation to those frequencies for which the filter transfer
function is0.5 percent or more of the maximum filter gain. In
Table I, for all spectral integration types, we considered filter
portion whose magnitude is0.5 or more of the maximum filter
gain.

As can be seen in Table I, PLP processing by this tabula-
tion is about 32.9 percent more costly than baseline MFCC
processing. PNCC processing is approximately 34.6 percent
more costly than MFCC processing and 1.31 percent more
costly than PLP processing.

V. SUMMARY

In this paper we introduce power-normalized cepstral coef-
ficients (PNCC), which we characterize as a feature set that
provides better recognition accuracy than MFCC and RASTA-
PLP processing in the presence of common types of additive
noise and reverberation. PNCC processing is motivated by the
desire to develop computationally efficient feature extraction
for automatic speech recognition that is based on a pragmatic
abstraction of various attributes of auditory processing includ-
ing the rate-level nonlinearity, temporal and spectral integra-
tion, and temporal masking. The processing also includes a
component that implements suppression of various types of
common additive noise. PNCC processing requires only about
33 percent more computation compared to MFCC.
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TABLE I
NUMBER OF MULTIPLICATIONS AND DIVISIONS IN EACH FRAME

Item MFCC PLP PNCC

Pre-emphasis 410 410

Windowing 410 410 410

FFT 10240 10240 10240

Magnitude squared 512 512 512

Medium-time power calculation 40

Spectral integration 958 4955 4984

ANS filtering 200

Equal loudness pre-emphasis 512

Temporal masking 120

Weight averaging 120

IDFT 504

LPC and cepstral recursion 156

DCT 480 480

Sum 13010 17289 17516

Further details about the motivation for and implementation
of PNCC processing are available in [43]. This thesis also
includes additional relevant experimental findings including
results obtained for PNCC processing using multi-style train-
ing and in combination with speaker-by-speaker MLLR.

Open Source MATLAB code for PNCC may be found at
http://www.cs.cmu.edu/

˜robust/archive/algorithms/PNCC_IEEETran . The
code in this directory was used for obtaining the results for
this paper.
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