IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSBY VOL. X, NO. X, MONTH, YEAR 1

Power-Normalized Cepstral Coefficients (PNCC) for
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Abstract—This paper presents a new feature extraction algo- have been introduced to address this problem. Many of these
rithm called Power Normalized Cepstral Coefficients (PNCC) conventional noise compensation algorithms have provided
that is motivated by auditory processing. Major new features of ¢, ysiantial improvement in accuracy for recognizing speec

PNCC processing include the use of a power-law nonlinearity . . - .
that replaces the traditional log nonlinearity used in MFCC N the presence of quasi-stationary noigeg([3], [4], [S],

coefficients, a noise-suppression algorithm based on asyretric  [6], [7], [8], [9], [10]). Unfortunately these same algdmihs
filtering that suppress background excitation, and a modulethat ~ frequently do not provide significant improvements in more
accomplishes temporal masking. We also propose the use ofdifficult environments with transitory disturbances suchaa
medium-time power analysis, in which environmental param- single interfering speaker or background musigy([11]).

eters are estimated over a longer duration than is commonly M fth t svst develoned f " i h
used for speech, as well as frequency smoothing. Experimext any orthe current systems developed for automatic speec

results demonstrate that PNCC processing provides substsial ~ 'ecognition, speaker identification, and related tasksased
improvements in recognition accuracy compared to MFCC and on variants of one of two types of featurasel frequency
PLP processing for speech in the presence of various types ofcepstral coefficient@MFCC) [12] or perceptual linear predic-
additive noise and in reverberant environments, with only fightly tion (PLP) coefficients [13]. Spectro-temporal features have

greater computational cost than conventional MFCC processg, | b tv introd d with L
and without degrading the recognition accuracy that is obseved also been recently introduced with promising resuksg(

while training and testing using clean speech. PNCC procesgy  [14], [15]). It has been observed that two-dimensional Gabo

also provides better recognition accuracy in noisy enviroments filters provide a reasonable approximation to the spectro-
than techniques such as Vector Taylor Series (VTS) and the temporal response fields of neurons in the auditory cortex,
ETSI Advanced Front End (AFE) while requiring much less \hich has lead to various approaches to extract features for

computation. We describe an implementation of PNCC using . .
“online processing” that does not require future knowledge of speech recognitione(g. [16], [17], [18], [19]). In this paper

the input. we describe the development of an additional feature set for

Index Terms—Robust speech recognition, feature extrac- speech recognition which we refer to aswer-normalized

tion, physiological modeling, rate-level curve, power funtion, CePstral coefficientePNCC).

asymmetric filtering, medium-time power estimation, speatal We had introduced several previous of PNCC processing in
weight smoothing, temporal masking, modulation filtering, on-  [20] and [21], and these implementations have been evaluate
line speech processing by several teams of researchers and compared to several

different algorithms includingzero crossing peak amplitude
(ZCPA) [22], RASTA-PLP [23] perceptual minimum variance
distortionless responséPMVDR) [24], invariant-integration
. ) ) ~ features(lIF) [25], and subband spectral centroid histograms
I N recent decades following the introduction of h|dde|(55CH) [26]. As described in several papezsy([27], [28]

Markov models €.g.[1]) and statistical Ian.g.uage modelsfzg]' [30], [31]), PNCC has been shown to provide better
(e.g[2]), the performance of speech recognition SYStemseieech recognition accuracy than the other algorithmsl cite
benign acoustical environments has dramatically improveghoye, particularly in conditions of training that is misreed
Nevertheless, most speech recognition systems remaift Seggyoss environments. For example, Miller and Mertins[32]
tive to the nature of the acoustical environments withinalihi 5,,nd that PNCC provides better results than the origirfal 11
they are deployed, and their performance deteriorateplshakeatyres, but if IIF is combined with PNCC (PN-IIF), the rksu
in the presence of sources of degradation such as addity@omewhat better than the original PNCC. Similar resudts h
noise, linear channel distortion, and reverberation. ~been obtained witllelta-spectral cepstral coefficienBSCC

One of the most challenging contemporary problems is thafs] a5 well. Our previous implementations of PNCC have
recognition accuracy degrades significantly if the testrenv 5,55 heen employed in industry as well [34]. In selected othe
ment is different from the training environment and/or iéth studies, portions of PNCC processing have been incorgbrate
acoustical environment includes disturbances such asialdi;iq other feature extraction algorithme.§[35], [36]). Even
noise, channel distortion, speaker differences, revatloer, ,,,gh previous implementations of PNCC processing appear
and so on. Over the years dozens if not hundreds of algorithfgs,e promising, a major problem is that they cannot be easily
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Fig. 1. Comparison of the structure of the MFCC, PLP, and PNE€&ure extraction algorithms. The modules of PNCC thattion on the basis of
“medium-time” analysis (with a temporal window of 65.6 msg glotted in the rightmost column. If the shaded blocks of0@Nare omitted, the remaining
processing is referred to ample power-normalized cepstral coefficients (SPNCC)

paper has been significantly revised to address these issaesA. Broader motivation for the PNCC algorithm

fashion that enables it to provide superior recognitionia®ty e gevelopment of PNCC feature extraction was motivated

over a broad range of conditions of noise and re.zver‘t‘)ergtlgg) a desire to obtain a set of practical features for speech
using features that are computable in real time using em'n_recognition that are more robust with respect to acoustical

algorithms that do not require extensive look-ahead, antl Wi, japility in their native form, without loss of performes

a C(_)_mputanonal complexity that is comparable to that Qfpen the speech signal is undistorted, and with a degree of
traditional MFCC and PLP features. In the subsequent sebsgg ational complexity that is comparable to that of MFCC
tions of this Introduction we discuss the .broader motl\{aﬂlo and PLP coefficients. While many of the attributes of PNCC
and overall structure of PNCC processing. We specify t’E‘?ocessing have been strongly influenced by consideration
key elements of the processing in some detail in Sec. Y \arioys attributes of human auditory processing, we have
In Sec. Il we compare the recognition accuracy provided,red approaches that provide pragmatic gains in robastn
by PNCC processing under a variety of conditions with tha gma|| computational cost over approaches that are more

of other processing schemes, and we consider the impactgfyq| to auditory physiology in developing the specific
various components of PNCC on these results. We comp Mcessing that is performed.

the computational complexity of the MFCC, PLP, and PNCC g, of the innovations of the PNCC processing that we
feature extraction algorithms in Sec. IV and we summarize - <ider to be the most important include:

our results in the final section. . I
o The replacement of the log nonlinearity in MFCC pro-

cessing by a power-law nonlinearity that is carefully
chosen to approximate the nonlinear relation between
signal intensity and auditory-nerve firing rate. We believe
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that this nonlinearity provides superior robustness by sup
pressing small signals and their variability, as discussed
in Sec. II-G.

o The use of “medium-time” processing with a duration
of 50-120 ms to analyze the parameters characterizing
environmental degradation, in combination with the tra-
ditional short-time Fourier analysis with frames of 20-30
ms used in conventional speech recognition systems. We
believe that this approach enables us to estimate envi-
ronmental degradation more accurately while maintaining
the ability to respond to rapidly-changing speech signals, Freque%%y H2)
as discussed in Sec. II-B.

« The use of a form of “asymmetric nonlinear filtering”Fig. 2.~ The frequency response of a gammatone filterbank wetth

. . -area of the squared frequency response normalized to he Ghiaracteristic
to estimate the level of the acoustical baCkground no'%?quencies are uniformly spaced between 200 and 8000 Hxding to the

for each time frame and frequency bin. We believequivalent Rectangular Bandwidth (ERB) scale [39].
that this approach enables us to remove slowly-varying
components easily without the need to deal with many @kscription below assumes a sampling rate of 16 kHz, the

the artifacts associated with over-correction in techegJUPNCC features are easily modified to accommodate other
such as spectral subtraction [37], as discussed in Seampling frequencies.

II-C. As shown in Sec. IlI-C, this approach is more
effective than RASTA processing [23]. A. Initial processing

« The development of a signal processing block that real—AS in the case of MFCC, a pre-emphasis filter of the form

izes temporal masking. . - .. H(z)=1-0.972""1is applied. A short-time Fourier transform
« The development of computationally-efficient realization : : : . .
. T .~ (STFT) is performed using Hamming windows of duration
of the algorithms above that support “online” real-tim . . )
. : . 56 ms, with 10 ms between frames, using a DFT size of
processing that does not require substantial non-cau 8& : ) . .
. : g 4. Spectral power in 40 analysis bands is obtained by
look-ahead of the input signal to compute the PNCC™" " . ) "
- weighting the magnitude-squared STFT outputs for positive
coefficients. ; . i
frequencies by the frequency response associated with a 40-
_ channel gammatone-shaped filter bank [38] whose center
B. Structure of the PNCC algorithm frequencies are linearly spaced in Equivalent Rectangular
Figure 1 compares the structure of conventional MFCBandwidth (ERB) [39] between 200 Hz and 8000 Hz, using
processing [12], PLP processing [13], [23], and the new PNQ@e implementation of gammatone filters in Slaney’s Augitor
approach which we introduce in this paper. As was notd@olbox [40]. In previous work [20] we observed that the use
above, the major innovations of PNCC processing include thé gammatone frequency weighting provides slightly better
redesigned nonlinear rate-intensity function, along whie ASR accuracy in white noise, but the differences compared
series of processing elements to suppress the effects kf bdo the traditional triangular weights in MFCC processing ar
ground acoustical activity based on medium-time analysis. small. The frequency response of the gammatone filterbank is
As can be seen from Fig. 1, the initial processing stages sifown in Fig. 2. In each channel the area under the squared
PNCC processing are quite similar to the correspondingestadransfer function is normalized to unity to satisfy the eiipra
of MFCC and PLP analysis, except that the frequency analysis 8000
is performed using gammatone filters [38]. This is followed / |Hi(f))?df =1 Q)
by the series of nonlinear time-varying operations that are 0
performed using the longer-duration temporal analysig¢ thahereH,(f) is the frequency response of thé gammatone
accomplish noise subtraction as well as a degree of rosstnehannel. To reduce the amount of computation, we modified
with respect to reverberation. The final stages of procgssie the gammatone filter responses slightly by settifg(f)
also similar to MFCC and PLP processing, with the excepti®@fual to zero for all values of for which the unmodified
of the carefully-chosen power-law nonlinearity with expah  H;(f) would be less than.5 percent of its maximum value
1/15, which will be discussed in Sec. 1I-G below. Finally,(corresponding to -46 dB).
we note that if the shaded blocks in Fig. 1 are omitted, We obtain the short-time spectral powBfm, !] using the
the processing that remains is referred tosaaple power- squared gammatone summation as below:
normalized cepstral coefficients (SPNCSPNCC processing (K/2)—1
has been employed in other studies on robust recognigian ( Plm,l] = Z | X [m, /¥ H (7% ) |? )
[36)). =
where K is the DFT size;n and! represent the frame and
Il. COMPONENTS OFPNCCPROCESSING channel indices, respectively, and, = 2rk/F,, with F,
In this section we describe and discuss the major compepresenting the sampling frequend§jm, e/*] is the short-
nents of PNCC processing in greater detail. While the deailtime spectrum of then!” frame of the signal.

It
e

T2
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B. Temporal integration for environmental analysis Qm,1]
Most speech recognition and speech coding systems use
analysis frames of duration between 20 ms and 30 ms. .
. . Asymmetric
Nevertheless, it is frequently observed that longer amalys Lowpass Filtering
windows provide better performance for noise modeling and/ =
) o -y Qelm1]
environmental normalizatione(g. [21], [41], [42]), because N
the power associated with most background noise conditions +\V
changes more slowly than the instantaneous power assciate Halfwave
with speech. Rectification
In PNCC processing we estimate a quantity we refer to _
as “medium-time powerQ[m,!] by computing the running QIml]
average ofP[m,!], the power observed in a single analysis Ten:roral = mr'nemc
frame, according to the equation: Mas‘f(ing Lowpsa}llssFiltering
- m+M ~ | —
Qlm. 1] = 2Ml+1 > Pl ©) Gmlly 3 Q[m1]
m/=m—M MAX
wherem represents the frame index ahid the channel index. R mi]
We will apply the tilde symbol to all power estimates that are ’ O«
performed using medium-time analysis. Excitation Non-Excitation
We observed experimentally that the choice of the temporal
integration factorM has a substantial impact on performance _
in white noise (and presumably other types of broadband Rim,1] | |
background noise). This factor has less impact on the acgura
that is observed in more dynamic interference or revertmerat Noise Removal Floor Level
although the longer temporal analysis window does provide 3"7":275;’3/ Estimation

some benefit in these environments as well [43]. We chose the

value of M = 2 (corresponding to five consecutive window ig. 3. Functional block diagram of the modules for asyminetoise

with a tqtal net_ duration _Of 65.6 mS) on the basis of thesgppression (ANS) and temporal masking in PNCC processifgrocessing
observations. Sinc@[m, (] is the moving average dP[m, ], is performed on a channel-by-channel bag)m,!] is the medium-time-

Q[m,l] is a Iow-pass function ofn. If M = 2, the upper averaged input power as de_fined by Eq.(éjm, 1] is the speegh outpL_Jt of_
frequency is approximately 15 Hz. Nevertheless, if we were he (-\'\és "}Odtmf,; amﬁ[m’hl]f's the output after temporal masking (which is
~ pplied only to the speech frames). The block labelled Teaipdasking is
use features based @pm, (] directly for speech recognition, depicted in detail in Fig. 5
recognition accuracy would be degraded because onsets and
offsets of the frequency components would become blurred One significant problem with the application of conventiona
Hence in PNCC, we us€[m, ] only for noise estimation linear high-pass filtering in the power domain is that thefilt
and compensation, which are used to modify the informati@/tput can become negative. Negative values for the power
based on the short-time power estimat@gn,!]. We also coefficients are problematic in the formal mathematicaksen
apply smoothing over the various frequency channels, whi€i that power itself is positive). They also cause problems
will discussed in Sec. II-E below. in the application of the compressive nonlinearity and in
speech resynthesis unless a suitable floor value is appmlied t
] ) ] the power coefficientse(g.[46]). Rather than filtering in the
C. Asymmetric noise suppression power domain, we could perform filtering after applying the
In this section, we discuss a new approach to noise cotagarithmic nonlinearity, as is done with conventional stegl
pensation which we refer to asymmetric noise suppressiormean normalization in MFCC processing. Nevertheless, as
(ANS). This procedure is motivated by the observation mewm4ll be seen in Sec. Ill, this approach is not very helpful
tioned above that the speech power in each channel usuédly environments with additive noise. Spectral subtracii®
changes more rapidly than the background noise power&another way to reduce the effects of noise, whose power
the same channel. Alternately we might say that speech usbanges slowly€.9.[37]). In spectral subtraction techniques,
ally has a higher-frequency modulation spectrum than noigbe noise level is typically estimated from the power of non-
Motivated by this observation, many algorithms have beepeech segments.f.[37]) or through the use of a continuous-
developed using either high-pass filtering or band-passifiy update approacte(g.[45]). In the approach that we introduce,
in the modulation spectrum domaire.§. [23], [44]). The we obtain a running estimate of the time-varying noise floor
simplest way to accomplish this objective is to perform highusing an asymmetric nonlinear filter, and subtract that from
pass filtering in each channed.g.[45], [46]) which has the the instantaneous power.
effect of removing slowly-varying components which tygiga  Figure 3 is a block diagram of the complete asymmetric
represent the effects of additive noise sources rather thean nonlinear suppression processing with temporal maskieg. L
speech signal. us begin by describing the general characteristics of the
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asymmetric nonlinear filter that is the first stage of proicegs
This filter is represented by the following equation for &dry oy NWW
input and output);, [m, ] and Q,..[m, ], respectively: 5L -
2
~ ~ o
XaQout[m — 1,1 + (1 — Xg)Qin[m, 1], “l k :8?[771[]1](,\ —0.9,\ = UA9)’>
~ B if Qinlm, 1] > Qout[m —1,1] 0 100 (1s) 200 (25) 300 (3s)
Qout [m l] = )\bQout [m 1, l] 4 (1 _ )\b)Qm [m, l], (4) Frame(lan)dex m
if an [m, l] < Qout [m -1, l]
wherem is the frame index and is the channel index, and @ va
Ao, and )\, are constants between zero and one. s .

If A\e = Xp it is easy to verify that Eq. 4 reduces to a fo_ i : —Qin[m.1] T
conventional IIR filter that is lowpass in nature because the ‘ = Qoue[m, (A = 0.5, Ay = 0.95)
values of the\ parameters are positive, as shown in Fig. 4(a). © 100 (1s) 200 (2s) 300 (3s)
In contrast, If1 > A\, > A\, > 0, the nonlinear filter functions Frame Lndex m
as a conventional “upper” envelope detector, as illustrate
in Fig. 4(b). Finally, and most usefully for our purposes, if _
1 > X > X > 0, the filter outputQ,.; tends to follow g _\A.‘WAA&
the lower envelopef Q;,,[m, 1], as seen in Fig. 4(c). In our gl 7
processing, we will use this slowly-varying lower envelape @& | ~ —_— Qin[m, ] T
Fig. 4(c) to serve as a model for the estimated medium-tim : = Qout[m, | = 0999, 4 = 0.5)
noise level, and the activity above this envelope is assume © 10009 index mooC ) 300 (39)
to represent speech activity. Hence, subtracting thislémet (©
envelope from the original inpu®;,[m,] will remove a
slowly varying non-speech component. Fig. 4. Sample inputs (solid curves) and outputs (dashedesprof the

W will use the notation e e o o WiV

Qout [m7 l] = -/4]:)\@,)\1, [an [m7 l]] (5) .
filtering as before:

to represent the nonlinear filter described by Eq. (4). We not -
that that this filter operates only on the frame indicegor Qs[m, 1] = AF0.999,0.5(Qo[m, 1] (7)

ea}ih channel indek - o Q[0,1] is initialized asQo[m, I]. As shown in Fig. 3, we use
eeping the characteristics of the asymmetric filter d e lower envelope of the rectified S|gr'@lj (m, 1] as a floor

scribed above in mind, we may now consider the SUUCIUIR | for the ANS processing outpwlm. 1 after temporal
shown in Fig. 3. In the first stage, the lower enveléhg[m, [], P g put[m, ] P

ki
which represents the average noise power, is obtained by AN§‘S ng: i )
processing according to the equation Rgp[m, 1] = max (Qum[m, 1], Q s[m, 1)) @)
Qie[m, 1] = AF0.990,0.5[Q[m, 1]] (6) WwhereQuy[m, 1] is the temporal masking output depicted in

~ _ Fig. 3. Temporal masking for speech segments is discussed in

as depicted in Fig. 4(aPec[0,1] is initialized to 0.9Q[m,l]. Sec. lII-D.
Qie[m, 1] is subtracted from the inpu@[m,], effectively  We have found that applying lowpass filtering to the signal
highpass filtering the input, and that signal is passed fftousegments that do not appear to be driven by a periodic
an ideal half-wave linear rectifier to produce the rectifiegdxcitation function (as in voiced speech) improves recogmi
output Qo[m,{]. The impact of the specific values of theaccuracy in noise by a small amount. For this reason we use
forgetting factors\, and )\, on speech recognition accuracythe lower envelope of the rectified sign&i.[m, ] directly
is discussed below. for these non-excitation segments. This operation, which i

The remaining elements of ANS processing in the righeffectively a further lowpass filtering, is not performed the
hand side of Fig. 3 (other than the temporal masking blockpeech segments because blurring the power coefficients for
are included to cope with problems that develop when tk@eech degrades recognition accuracy.
rectifier outputQo[m, !] remains zero for an interval, or when  Excitation/non-excitation decisions for this purpose aie
the local variance of)y[m, I] becomes excessively small. Ourained for each value af, and! in a very simple fashion:
approach to this problem is motivated by our previous work o L~ -
[21] in which it was noted that applying a well-motivated excitation segment” it Qm,l] = cQe[m,)(9a)
flooring level to power is very important for noise robustes  “non-excitation segment” if Q[m,l] < cQic[m,1[9b)
In PNCC processing we apply the asymmetric nonlinear filter
for a second time to obtain the lower envelope of the rectifiathereQ;.[m, [] is the lower envelope of)[m, ] as described
outputc}f[m, 1], and we use this envelope to establish this flo@bove, and in andis a fixed constant. In other words, a partic-
level. This envelope);[m, ] is obtained using asymmetricular value ofQ[m, ] is not considered to be a sufficiently-large
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Q,[m, ] 6 [m,I] _\[—80m.1 (T = 05 5)
> MAX p ’ Q|| == S[m, 1] without Temporal Masking (Tgo = 0.5 s) 3
> l % |
o
71 i
0 100 (1s)
Frame Index m
A e Q,Im-11] R
m
E r ;|
5]
2|
o
o
< 0 100 (1s)
Hy Frame Index m
Qo[m’ l] < AtQp[m_l’ l] Fig. 6. Demonstration of the effect of temporal masking ie &NS module

O for speech in simulated reverberation willyp = 0.5 s (upper panel) and
ﬁs [m |] clean speech (lower panel). In this example, the channeiihds 18.
p el

60[m, ) 2/]t6p[m—1. ) the following e~quation: ) )

~ o QO[mvl]a QO[mal] > /\tQp[m_ 1al]

Roplm, 1] = : :
MtQp[m_Ll]a QO[mal] < /\tQP[m_ 11”

We have found [43] that if the forgetting factoy is equal

excitation if it is less than a fixed multiple of its own lowert@ OF less thar0.85 and if y; < 0.2, recognition accuracy
envelope. remains almost constant for clean speech and most additive
We observed experimentally that while a broad range BPiS€ conditions, and X; increases beyon@85, performance
values of)\, between 0.25 and 0.75 appear to provide reasdigdrades. The value of; = 0.85 also appears to be best in
able recognition accuracy, the choice Jof = 0.9 appears to the reverberant condition. For these reasons we use thesvalu
be best under most circumstances [43]. The parameter valges= 0-85 and u; = 0.2/in the standard implementation of
used for the current standard implementation are= 0.999 PNCC. Note that\, = 0.85 corresponds to a time constant
and \, = 0.5, which were chosen in part to maximize thf 28.2 ms, which means that the offset attenuation lasts
recognition accuracy in clean speech as well as performanc@Pprox'mately 100 ms. This characteristic is in accordance
noise. We also observed (in experiments in which the tenipof4th observed data for humans [52]. _
masking described below was bypassed) that the thresholgFigure 6_|Ilustrates the effe_ct of this temporal masking. In
parameter value = 2 provides the best performance for whitd€neral, with temporal masking the response of the system
noise (and presumably other types of broadband noise). Thelnhibited for portions of the input signak[m, (] other

value of ¢ has little impact on performance in background!an rising “attack transients”. The difference betweea th
music and in the presence of reverberation. signals with and without masking is especially pronounced i

reverberant environments, for which the temporal proogssi
_ module is especially helpful.

D. Temporal masking The final output of the asymmetric noise suppression and

Many authors have noted that the human auditory systéemporal masking modules i8[m,l] = R.,[m,l] for the
appears to focus more on the onset of an incoming powacitation segments an&[m,!] = Q¢[m,!] for the non-
envelope rather than the falling edge of that same powexcitation segments.
envelope €.9.[47], [48]). This observation has led to several
oqset er_lhancement _algorithmsg{. [49], [4.6], [50], [51]).. In g Spectral weight smoothing
this section we describe a simple way to incorporate thisceff . .
in PNCC processing, by obtaining a moving peak for each !N our previous research on speech enhancement and noise

frequency channdl and suppressing the instantaneous powgpmpensation techniquee.g, [20], [21], [41]’. [53], [54])
i it falls below this envelope. it has been frequently observed that smoothing the response

The processing invoked for temporal masking is depicted figross channels is helpful. This is true especially in prsing

block diagram form in Fig. 5. We first obtain the online peaﬁ::hemes such as PNCC where there are nonlinearities and/or

power(,[m, ] for each channel using the following equationt. resholds that vary in their effect from channel to chan_nel
as well as processing schemes that are based on inclusion of
Qplm, 1] = max (/\tQp[m _ l,l],Qo[m,l]) (10) responses only from a subset of time frames and frequency
channels €.g. [53]) or systems that rely on missing-feature
where)\; is the forgetting factor for obtaining the online peakapproachese(g.[55]).
As before,m is the frame index and is the channel index. From the discussion above, we can represent the combined

Temporal masking for speech segments is accomplished usafigcts of asymmetric noise suppression and temporal mgski

(11)

Fig. 5. Block diagram of the components that accomplish talpmasking
in Fig. 3
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4000

for a specific time frame and frequency bin as the transfer
function R[m,]/Q[m,1]. Smoothing the transfer function 3500/
across frequency is accomplished by computing the running
average over the channel indexf the ratio R[m, 1]/Q[m, .
Hence, the frequency averaged weighting functibpm, |
(which had previously been subjected to temporal averaging
is given by:

= N N w
a o a1 o
o (=} o [}
o o o o

- B 1 l2 R[m,l’] 10001
Stm. 1] = <12 -l +1 Z Q[m,l’]) (12) 500¢

U=l

Synapse Output (spikes/sec

wherely = min(l + N, L) andl; = max(l — N,1), andL is
the total number of channels.
The time-averaged frequency-averaged transfer functipila. 7

20 40 60 80 100 120 140
Time (ms)

Synapse output for a pure tone input with a carriegfemcy of 500

S'[m, I] is used to modulate the original short-time powenz at 60 dB SPL. This synapse output is obtained using thetaydinodel
P[m, 1] by Heinz et al. [56].
= S 1000[— ‘
T(m, 1] = P[m, 1][m, | (13) v
In the present implementation of PNCC, we use a value of so0| —teined Rate
N =4, and a total number of. = 40 gammatone channels, .
again based on empirical optimization from the results titpi g sool
studies [43]. We note that if we were to use a different number ¢
of channeld., the optimal value ofV would be also different. Z
5 400+
F. Mean power normalization 200l
In conventional MFCC processing, multiplication of the
input signal by a constant scale factor produces only an o ‘ ‘ ‘ ‘ ‘
") . L H H -40 -20 0 20 40 60 80
additive shift of the Cy coefficient because a logarithmic Sound Pressure Level (dB)

nonlinearity is included in the processing, and this stsft i

easily removed by cepstral mean normalization. In PNCK&g. 8. Comparison of the onset rate (solid curve) and sustiaiate (dashed

processing, however, the replacement of the |Og non”neaﬁ:urve) obpamed using thq model proposed by Heshal. [56]. T_he curves

by a power-law nonlinearity as discussed below. causes ere_| obtained by averaging responses over seven freqeersie text for
' ils.

response of the processing to be affected by changes in

absolute power, even though we have observed that thist effeetector (VAD) with PNCC. If silences of longer duration are

is usually small. In order to minimize further the potentighterspersed with the speech, however, we recommend the use

impact of amplitude scaling in PNCC we invoke a stage @f a VAD in combination with PNCC processing.

mean power normalization. The normalized power is obtained directly from the running
While the easiest way to normalize power would be tgower estimateu[m):

divide the instantaneous power by the average power over the

utterance, this is not feasible for real-time online preoes Um,l] =k

because of the “look ahead” that would be required. For ulm]

this reason, we normalize input power in the present onlinédere the value of the constart is arbitrary. In pilot

implementation of PNCC by dividing the incoming power bygxperiments we found that the speech recognition accuracy

a running average of the overall power. The mean power esibtained using the online power normalization describeab

mate u[m] is computed from the simple difference equationis comparable to the accuracy that would be obtained by

normalizing according to a power estimate that is computed

over the entire estimate in offline fashion.

Tm,]

(15)

(1 ) ) L—-1

plm] = Aap[m — 1] + T” Z T[m,l] (14)
1=0 G. Rate-level nonlinearity

wherem and! are the frame and channel indices, as before, Several studies in our group..[20], [54]) have confirmed
and L represents the number of frequency channels. We ustha critical importance of the nonlinear function that déses
value 0f0.999 for the forgetting facton,,. For the initial value the relationship between incoming signal amplitude in &giv
of u[m], we use the value obtained from the training databaseequency channel and the corresponding response of the
Since the time constant corresponding Xg is around 4.6 processing model. This “rate-level nonlinearity” is exfily or
seconds, we normally do not need to incorporate a formaiplicitly a crucial part of every conceptual or physiologi
voice activity detecto(VAD) in conjunction with PNCC if model of auditory processinge@. [57], [58], [59]). In this
a continuous non-speech portion is not longer than 3 toséction we summarize our approach to the development of the
seconds, then we usually do not need to use a Voice Activitgte-level nonlinearity used in PNCC processing.
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compares the onset rate-intensity curve depicted in Figtt8 w

1400} : : : __.»‘f various analytical functions that approximate this fuowti
12001 _‘.—" ] The curves are plotted as a function of dB SPL in the lower
= 1000l - l panel of the figure and as a function of absolute pressure in
3 Pascals in the upper panel, and the putative spontanemgs firi
g 800 rate of 50 spikes per second is subtracted from the curves in
3 600 both cases.
g 400 ] The most widely used current feature extraction algorithms
& ool +* — Human Rate—Intensity Model | are Mel Frequency Cepstral Coefficients (MFCC) and Per-
O,' -_-_jﬁtﬁgERgg;v Z?XvLe;v—VL:w ﬁ)r;ri)[mir:stion ceptual Linear Prediction (PLP) coefficients. Both the MFCC
LoganthmicAppmximﬂ%m and PLP procedures include an intrinsic nonlinearity, Whic
-200 0.05 o1 015 02 is logarithmic in the case of MFCC and a cube-root power
Pressure (Pa) function in the case of PLP analysis. We plot these curves

@ relating the power of the input pressupeto the response

—— Human Rate—Intensity Model ‘ 1 in Fig. 9 using values of the arbitrary scaling parameteas$ th

= = = Cube Root Power-Law Approximation ' are chosen to provide the best fit to the curve of the Heinz

1500

000 N eritic Approsimaon " al. model, resulting in the following equations:
§ 500 = /l 1 Scube = 42941]92/3 (16)
S I AP L Slog = 120.21og(p) + 1319.3 (17)
2z 0 ------'f" . .
§ We note that the exponent of the power function is doubled

U | because we are plotting power rather than pressure. Even
\\\\\\\ though scaling and shifting by fixed constants in Egs. (16)
and (17) do not have any significance in speech recognition
40 20 0 20 40 60 80 systems, we included them in the above equation to fit these
Tontpy e @ S curves to the rate-intensity curve in Fig. 9(a). The cortstan
in Egs. (16) and (17) are obtained using an MMSE criterion
Fig. 9.  Comparison between a human rate-intensity relatisimg the for the sound pressure range between O d.Pa) and 80
auditory model developed by Heiret al. [56], a cube root power-law ap- dB (0.2 Pa) from the linear rate-intensity curve in the upper

proximation, an MMSE power-law approximation, and a logemic function panel of Fig. 8.

approximation. Upper panel: Comparison using the pres@ag as ther- .
axis. Lower panel: Comparison using the sound pressuré (8®L) in dB We have also observed experimentally [43] that the power-

as thez-axis. law curve with an exponent of /15 for sound pressure

provides a reasonably good fit to the physiological dataevhil

It is well known that the nonlinear curve relating soun ptimizing recognition accuracy in the presence of noise. W
ave observed that larger values of the pressure expongmt su

pressure level in decibels to the auditory-nerve firing iate . . . .
. s 1/5 provide better performance in white noise, but they

compressive €.g [56] [60]). It has also been observed tha L . .
degrade the recognition accuracy that is obtained for clean

the average auditory-nerve firing rate exhibits an overshbo sHeech [43]. We consider the valug15 for the pressure

the onset of an input signal. As an example, we compare Bnonent to represent a pragmatic compromise that provides
Fig. 8 the average onset firing rate versus the sustained R b brag P P

as predicted by the model of Heirz al. [56]. The curves in reasonable accuracy in white noise without sacrificing geco

this figure were obtained by averaging the rate-intensilyes ”'“OT‘ accuracy for clean speech, producing the power-law
. ; . .nonlinearity

obtained from sinusoidal tone bursts over seven frequsncie

100, 200, 400, 800, 1600, 3200, and 6400 Hz. For the onset- Vim,l] = U[m,l]1/15 (18)

rate results we partitioned the response into bins of length . . .

2.5 ms, and searched for the bin with maximum rate durif§’€re againU[m, ] and V[m,I] have the dimensions of

the initial 10 ms of the tone burst. To measure the sustainB@Wer. This curve is closely approximated by the equation

rate, we averaged the response rate between 50 and 100 ms s — 1380.6p1204 (19)

after the onset of the signals. The curves were generatest und power

the assumption that the spontaneous rate is 50 spikesfsecarhich is also plotted in Fig. 9. The exponent 6f1264

We observe in Fig. 8 that the sustained firing rate (brokdmppens to be the best fit to the Hewmizal. data as depicted

curve) is S-shaped with a threshold around 0 dB SPL andrmathe upper panel of Fig. 8. As before, this estimate was

saturating segment that begins at around 30 dB SPL. The ordeteloped in the MMSE sense over the sound pressure range

rate (solid curve), on the other hand, increases continyoubetween 0 dBZ0uPa) and 80 dB (0.2 Pa).

without apparent saturation over the conversational hgari The power law function was chosen for PNCC processing

range of0 to 80 dB SPL. We choose to model the onset ratdor several reasons. First, it is a relationship that is fffecéed

intensity curve for PNCC processing because of the impbrtan form by multiplying the input by a constant. Second, it

role that it appears to play in auditory perception. Figure (€as the attractive property that its asymptotic responsergt

-1000
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Clean and Street 5 dB very good performance over a wide variety of conditions gisin
a single set of parameters and settings, without sacrificing
word error rate in clean conditions relative to MFCC pro-

T

ED cessing. In previous work we had described slightly diffre
& = Street 5 dB || . . .
- —— Clean feature extraction algorithms that provide even bettefaper
0 100 (1s) 200 (2s) 300(3s) Mmance fo_r speech recognitiop in the presence of reverberati
Frame Index m [21] and in background music [46], but these approaches do
Clean and Street 5 dB not perform as well as MFCC processing in clean speech.

We used five standard testing environments in our work: (1)
N digitally-added white noise, (2) digitally-added noisattihad

J1/15

K been recorded live on urban streets, (3) digitally-addedlst
~ = Street 5 dB || K .. .
A ——Clean speaker interference, (4) digitally-added background ioyus
0 100 (1s) 200 (23) 300 3s) and (5) passage of the signal through simulated reverberati
Frame Index m The street noise was recorded by us on streets with steady but

moderate traffic. The masking signal used for single-speake
Fig. 10. The effects of the asymmetric noise suppressiompoeal masking, interference experiments consisted of other utterancasrdr
and the rate-level nonlinearity used in PNCC processingw@hare the from the same database as the target speech, and background
outputs of these stages of processing for clean speech aspdech corrupted . . L
by street noise at an SNR of 5 dB when the logarithmic nonfiess used MUSIC was selected from music segments from the original
without ANS processing or temporal masking (upper panel)i when the DARPA Hub 4 Broadcast News database. The reverberation
power-law nonlinea_rity is used with ANS pr_oce_ssing and terapmasking simulations were accomplished using tReom Impulse Re-
(lower panel). In this example, the channel indes 8. .
sponseopen source software package [62] based on the image
low intensities is zero rather than negative infinity, whicinethod [63]. The room size used was< 4 x 5 meters, the
reduces variance in the response to low-level inputs sugficrophone is in the center of the room, the spacing between
as spectral valleys or silence segments. Finally, the povthe target speaker and the microphone was assumed to be 3
law has been demonstrated to provide a good approximatipeters, and reverberation time was manipulated by changing
to the “psychophysical transfer functions” that are obsdrvthe assumed absorption coefficients in the room appropyiate
in experiments relating the physical intensity of sensatioThese conditions were selected so that interfering additiv
to the perceived intensity using direct magnitude-esimnat noise sources of progressively greater difficulty weretided,
proceduresd.g.[61]). along with basic reverberation effects.
Figure 10 is a final comparison of the effects of the
asymmetric noise suppression, temporal masking, channel _ i )
weighting, and power-law nonlinearity modules discussed f EXperimental Configuration
Secs. II-C through II-G. The curves in both panels compare th The PNCC features described in this paper were evaluated
response of the system in the channel with center frequermy comparing the recognition accuracy obtained with PNCC
490 Hz to clean speech and speech in the presence of stiegbduced in this paper to that obtained using MFCC and
noise at an SNR of 5 dB. The curves in the upper panRASTA-PLP processing. We used the version of conventional
were obtained using conventional MFCC processing, inalgidiMFCC processing implemented as part sghinx_fe  in
the logarithmic nonlinearity and without ANS processingphinxbase 0.4.1 , both from the CMU Sphinx open
or temporal masking. The curves in the lower panel wesnurce codebase [64]. We used the PLP-RASTA implemen-
obtained using PNCC processing, which includes the powestion that is available at [65]. In all cases decoding was
law transformation described in this section, as well as AN&erformed using the publicly-available CMU Sphinx 3.8 sys-
processing and temporal masking. We note that the differenem [64] using training fronSphinxTrain 1.0 . We also
between the two curves representing clean and noisy speectompared PNCC with theector Taylor serieVTS) noise
much greater with MFCC processing (upper panel), espgcialompensation algorithm [4] and theTSI Advanced Front

for times during which the signal is at a low level. End (AFE) which has several noise suppression algorithms
included [8]. In the case of the ETSI AFE, we excluded the
I1l. EXPERIMENTAL RESULTS log energy element because this resulted in better results i

In this section we present experimental results that apeir experiments. A bigram language model was used in all
intended to demonstrate the superiority of PNCC processitigg experiments. We used feature vectors of length of 39
over competing approaches in a wide variety of acoustidacluding delta and delta-delta features. For experimesitsg
environments. We begin in Sec. lll-A with a review of thehe DARPA Resource Management (RM1) database we used
experimental procedures that were used. We provide sosubsets of 1600 utterances of clean speech for training and
general results for PNCC processing, we assess the corfifl0 utterances of clean or degraded speech for testing. For
butions of its various components in PNCC in Sec. IlI-B, aneixperiments based on the DARPA Wall Street Journal (WSJ)
we compare PNCC to a small number of other approaches5@00-word database we trained the system using the WSJO
Sec. llI-C. SI-84 training set and tested it on the WSJO 5K test set.

It should be noted that in general we selected an algorithmWe typically plot word recognition accuracy, which is 100
configuration and associated parameter values that provcent minus the word error rate (WER), using the standard
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definition for WER of the number of insertions, deletionsgan 100 RM1 (White Noise)
substitutions divided by the number of words spoken.

(o]
o

(o2
(=]

B. General performance of PNCC in noise and reverberation

In this section we describe the recognition accuracy ob-
tained using PNCC processing in the presence of varioustype
of degradation of the incoming speech signals. Figures 11
and 12 describe the recognition accuracy obtained with PNCC 0 5 R (dBf’ 20 Clean
processing in the presence of white noise, street noisé;- bac ()
ground music, and speech from a single interfering speaker
as a function of SNR, as well as in the simulated reverberant
environment as a function of reverberation time. Theseltesu
are plotted for the DARPA RM database in Fig. 11 and for
the DARPA WSJ database in Fig. 12. For the experiments
conducted in noise we prefer to characterize the improvémen
in recognition accuracy by the amount of lateral shift of the
curves provided by the processing, which corresponds to an
increase of the effective SNR. For white noise using the 0 5 10 15 20 Clean
RM task, PNCC provides an improvement of about 12 dB By @
to 13 dB compared to MFCC processing, as shown in Fig. RM1 (Music Noise)
11. In the presence of street noise, background music, and 100
interfering speech, PNCC provides improvements of approxi
mately 8 dB, 3.5 dB, and 3.5 dB, respectively. We also note
that PNCC processing provides considerable improvement in
reverberation, especially for longer reverberation tiniRi$CC
processing exhibits similar performance trends for spé@ch
the DARPA WSJO0 database in similar environments, as seen
in Fig. 12, although the magnitude of the improvement is 0 5 N 20 Clean
diminished somewhat, which is commonly observed as we (©
move to larger databases. RML (Interfering Speaker)

The curves in Figs. 11 and 12 are also organized in a
way that highlights the various contributions of the major
components. Beginning with baseline MFCC processing the
remaining curves show the effects of adding in sequence (1)
the power-law nonlinearity (along with mean power normal-
ization and the gammatone frequency integration), (2) the
ANS processing including spectral smoothing, and finally (3
temporal masking. It can be seen from the curves that a
substantial improvement can be obtained by simply reptacin
the logarithmic nonlinearity of MFCC processing by the
power-law rate-intensity function described in Sec. 11The
addition of the ANS processing provides a substantial &urth
improvement for recognition accuracy in noise. Although it
is not explicitly shown in Figs. 11 and 12, temporal masking
is particularly helpful in improving accuracy for reverbézd
speech and for speech in the presence of interfering speech.

B

20

Accuracy (100 - WER)

RM1 (Street Noise)

Accuracy (100 - WER)

e Power-Law Nonlinearity with
SKe V' ans processing

'Power-Law Nonlinearity
e

Accuracy (100 - WER)

Accuracy (100 - WER)

Accuracy (100 - WER)

0O 0.1 0.2 0.3 0.4 05 0.6 0.9 1.2
i . . Reverberation Time (s)
C. Comparison with other algorithms (e)

Figures 13 and 14 provide comparisons of PNCC processifig 11. Recognition accuracy obtained using PNCC proegsisi various

to the baseline MFCC processing with cepstral mean norm3es Of additive noise and reverberation. Curves are quiotieparately to
indicate the contributions of the power-law nonlineariggymmetric noise

ization, MFCC processing combined with the vector TaylQjuppression, and temporal masking. Results are descriirethd DARPA
series (VTS) algorithm for noise robustness [4], as well &M1 database in the presence of (a) white noise, (b) streiendc)

RASTA-PLP feature extraction [23] and the ETSI Advance%ackground music, (d) interfering speech, and (e) artifi@aerberation.

Front End (AFE) [8]. We compare PNCC processing to MFCC - . . -

and RASTA-PLP processing because these features are n@dgidditive noise. The experimental conditions used weee th
widely used in baseline systems, even though neither MFG@me as those used to produce Figs. 11 and 12.

nor PLP features were designed to be robust in the presenc®@e note in Figs. 13 and 14 that PNCC provides substantially
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(e)
Fig. 13. Comparison of recognition accuracy for PNCC witlogassing
i p : ing MFCC features, the ETSI AFE, MFCC with VTS, and RASTAPP
types of additive noise and reverberation. Curves are qulosteparately to using - ! ! . ! L
indicate the contributions of the power-law nonlineariggymmetric noise fea_tures using the DARPA RM1 corpus. EnV|ronn_1enta| coqdm are (a)
suppression, and temporal masking. Results are descrirethé DARPA White noise, (b) street noise, (c) background music, (djrfating speech,
WSJ0 database in the presence of (a) white noise, (b) sti@@se,n(c) and (e) reverberation.
background music, (d) interfering speech, and (e) artifi@aerberation.

Fig. 12. Recognition accuracy obtained using PNCC proogsisi various

MFCC with VTS, and at a substantially lower computational
better recognition accuracy than both MFCC and RASTAost than the computation that is incurred in implementing
PLP processing for all conditions examined. It also prosid&/TS. We also note that the VTS algorithm provides little
recognition accuracy that is better than the combination of no improvement over the baseline MFCC performance in
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Fig. 14. Comparison of recognition accuracy for PNCC withgeissing using
MFCC features, ETSI AFE, MFCC with VTS, and RASTA-PLP featur
using the DARPA WSJO corpus. Environmental conditions ap white

noise, (b) street noise, (c) background music, (d) intergespeech, and (e)
reverberation.

environments, but the accuracy obtained with the AFE does
not approach that obtained with PNCC processing in the most
difficult noise conditions. Neither the ETSI AFE nor VTS
improve recognition accuracy in reverberant environments
compared to MFCC features, while PNCC provides mea-
surable improvements in reverberation, and a closely aélat
algorithm [46] provides even greater recognition accuracy
reverberation (at the expense of somewhat worse perforenanc
in clean speech).

IV. COMPUTATIONAL COMPLEXITY

Table | provides estimates of the computational demands
MFCC, PLP, and PNCC feature extraction. (RASTA process-
ing is not included in these tabulations.) As before, we use
the standard open source Sphinx codesjphinx_fe  [64]
for the implementation of MFCC, and the implementation in
[65] for PLP. We assume that the window length is 25.6 ms
and that the interval between successive windows is 10 ms.
The sampling rate is assumed to be 16 kHz, and we use a
1024-pt FFT for each analysis frame.

It can be seen in Table | that because all three algorithms
use 1024-point FFTs, the greatest difference from algorith
algorithm in the amount of computation required is assediat
with the spectral integration component. Specifically,ttfan-
gular weighting used in the MFCC calculation encompasses
a narrower range of frequencies than the trapezoids used in
PLP processing, which is in turn considerably narrower than
the gammatone filter shapes, and the amount of computation
needed for spectral integration is directly proportional t
the effective bandwidth of the channels. For this reason, as
mentioned in Sec. II-A, we limited the gammatone filter
computation to those frequencies for which the filter transf
function is0.5 percent or more of the maximum filter gain. In
Table |, for all spectral integration types, we considerédrfi
portion whose magnitude 65 or more of the maximum filter
gain.

As can be seen in Table I, PLP processing by this tabula-
tion is about 32.9 percent more costly than baseline MFCC
processing. PNCC processing is approximately 34.6 percent
more costly than MFCC processing and 1.31 percent more
costly than PLP processing.

V. SUMMARY

In this paper we introduce power-normalized cepstral coef-
ficients (PNCC), which we characterize as a feature set that
provides better recognition accuracy than MFCC and RASTA-
PLP processing in the presence of common types of additive
noise and reverberation. PNCC processing is motivateddy th
desire to develop computationally efficient feature extoac
for automatic speech recognition that is based on a pragmati
abstraction of various attributes of auditory processimud-
ing the rate-level nonlinearity, temporal and spectrabgna-

channel interfering speaker or reverberation.

component that implements suppression of various types of

The ETSI Advanced Front End (AFE) [8] generally procommon additive noise. PNCC processing requires only about
vides slightly better recognition accuracy than VTS in gois33 percent more computation compared to MFCC.
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TABLE |
NUMBER OF MULTIPLICATIONS AND DIVISIONS IN EACH FRAME

El

Item | MFCC  PLP  PNCC

[10]
Pre-emphasis 410 410
Windowing 410 410 410 [11]
FFT 10240 10240 10240
Magnitude squared 512 512 512
Medium-time power calculation 40 [12]
Spectral integration 958 4955 4984
ANS filtering 200
Equal loudness pre-emphasis 512 [13]
Temporal masking 120 [14]
Weight averaging 120
IDFT 504
LPC and cepstral recursion 156 (15]
DCT 480 480
Sum 13010 17289 17516

[16]

Further details about the motivation for and implementatio
of PNCC processing are available in [43]. This thesis aldt’!
includes additional relevant experimental findings inatgd
results obtained for PNCC processing using multi-stylantra [18]
ing and in combination with speaker-by-speaker MLLR.

Open Source MATLAB code for PNCC may be found afi9)
http://www.cs.cmu.edu/

“robust/archive/algorithms/PNCC_IEEETran The
code in this directory was used for obtaining the results for

this paper. 21]
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