
Collaborative Topic Modeling
for Recommending GitHub Repositories

Naoki Orii
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

norii@cs.cmu.edu

ABSTRACT
The rise of distributed version control systems has led to a
significant increase in the number of open source projects
available online. As a consequence, finding relevant projects
has become more difficult for programmers. Item recom-
mendation provides a way to solve this problem. In this pa-
per, we utilize a recently proposed algorithm that combines
traditional collaborative filtering and probabilistic topic mod-
eling. We study a large dataset from GitHub, a social net-
working and open source hosting site for programmers, and
compare the method against traditional methods. We also
provide interpretations on the latent structure for users and
repositories.

1. INTRODUCTION
Since the mid-2000’s, there has been an increased adop-

tion in distributed version control systems among software
developers. Several mature systems such as Bazaar, Mer-
curial, and Git have appeared, alongside with hosting sites
such as Launchpad, Bitbucket, and GitHub. Combined with
these hosting sites, the distributed version control paradigm
has led to an adoption of collaborative software develop-
ment, with a significant increase in the number of open
source software projects. In particular, GitHub (https:
//github.com/) has attracted the largest user base of these
websites with 2.7 million users and hosting over 4.5 million
projects1. The site hosts a wide array of projects, ranging
from the Linux kernel to famous web application frameworks
such as Ruby on Rails, and non-software related projects
such as the German Federal Law.

In addition to its role as a hosting site, GitHub also func-
tions as a social network for programmers. Projects on
GitHub, also known as repositories, have profile pages. Users
can download, fork2, and commit to any repository. A key
feature of GitHub is that it allows users to watch repositories
that they find intreresting and want to keep track of3.

1As of December 2012.
2Forking is a feature on GitHub that allows a users to copy
another user’s project in order to contribute to it, or to use
it as a starting point for his/her own project.
3Note that the semantics of watching repositories in GitHub
has changed in August 2012 (https://github.com/blog/
1204-notifications). GitHub has now introduced stars,
which function similarly as the previous version of watched
repositories. In the new watch functionality, once a user

While an increase in the number of availble open source
software projects certainly benefits the open source ecosys-
tem, it has become more difficult for programmers to find
projects of interest. In 2009, GitHub hosted a recommenda-
tion contest to recommend repositories to users. The train-
ing dataset was based on 440,000 user-watches-repository
relationships given by over 56,000 users to nearly 121,000
repositories. The test dataset consisted of 4,800 users (which
all of them are in the training data), and the goal is to rec-
ommend up to 10 repositories for each of the test users.

The problem of item recommendation has been studied
extensively, especially involving the Netflix Prize. However,
there is a distinct difference between the Netflix Prize and
GitHub’s recommendation contest. While in both contests
we have the user-item matrix, we can also consider source
code data in the GitHub contest. The source code of a soft-
ware library can tell us rich information about the content
of the repository, and by exploiting this we expect to im-
prove recommendation results. A recent paper formulated
this idea, combining traditional collaborative filtering on the
user-item matrix and probabilistic topic models on text cor-
pora. In this paper, we apply this method on a large dataset
from GitHub.

2. PROBLEM DEFINITION
We assume there are I users and J items. Let R =
{rij}I×J denote the user-item matrix, where each element
rij ∈ {0, 1} represents whether or not user i “favorited” item
j. While rij = 1 represents that user i is interested in item
j, note that rij = 0 does not necessarily mean that the user
is not interested in the item: it can also be the case the user
i does not know about item j.

In this paper, we consider two tasks: (i) in-matrix predic-
tion and (ii) out-of-matrix prediction. For in-matrix predic-
tion, the task is to estimate the missing values in R based
on the known values. For out-of-matrix prediction, the task
is to predict user interest for items that are not included
in R. In this paper, this amounts to recommending new
repositories that have never been watched by a single user.

3. METHODS
We first give brief explanations of probabilistic matrix

factorization and probabilistic topic models. We then de-

watches a repository, he/she will receive notifications for up-
dates in discussions (project issues, pull requests, and com-
ments).

scribe Collaborative Topic Regression, which combines the
two methods.

3.1 Probabilistic Matrix Factorization
The basic idea behind latent factor models is that user

preference is determined by a small number of unobserved,
latent factors. The goal is to uncover these latent user and
item features that explain the observed ratings R. User
i is represented by a latent vector ui ∈ RK , and item j is
represented by a latent vector vj ∈ RK . K is typically chosen
such that K � I, J . The predicted rating r̂ij is given by
the inner product of the two latent vectors:

r̂ij = uT
i vj (1)

Thus, given R, the problem is to compute the latent feature
vectors u and v. We commonly do this by minimizing the
following regularized square error:

min
U,V

∑

i,j

(
rij − uT

i vj
)2

+ λu‖ui‖2 + λv‖vj‖2 (2)

λu and λv are regularization parameters.

It is possible to adopt a probabilistic approach for matrix
factorization [9]. We can imagine a simple generative model
using a probabilistic linear model with Gaussian observation
noise as follows:

1. For each user i, draw user latent vector ui ∼ N (0, λ−1
u IK)

2. For each item j, draw item latent vector vj ∼ N (0, λ−1
v IK)

3. For each user-item pair (i, j), draw the response

rij ∼ N
(
uT
i vj , c

−1
ij

)
(3)

where IK is a K-dimensional identity matrix, and cij mea-
sures our confidence in observing rij . As discussed earlier,
we are confident that user i is interested in item j when
rij = 1, but we are not as confident that i is not interested
in j when rij = 0. Accordingly, we use different values for
cij depending on the value of rij , as follows:

cij =

{
a if rij = 1

b if rij = 0
(4)

where a > b > 0.

3.2 Probabilistic Topic Models
Topic modeling algorithms can be used to automatically

extract topics from a corpus of text documents. Each topic
represents a distribution of terms, and gives high probability
to a group of tightly co-occuring words. A document can be
represented by a small set of topics.

Source code in software projects can also be thought of
text documents. Typically, programmers give meaningful
names to variables, types, and functions. Unless they pur-
posely try to obfuscate, minimize, or compress the code,
programmers adhere to naming conventions that improve
its readability. Thus, groups of tightly co-occuring words
appear in source code, much similar to the way in that of
text documents written in natural language. In the con-
text for software repositories, we expect to see topics such
as “database connection”, “encoding”, and “networking.”
For example, the topic “database” may contain the terms
{table, column, select, connection}, and the topic “user
interface” may contain the terms {click, top, width, button,

hidden}. In this paper, we use these discovered topics to im-
prove recommendation, as described in the following section.

The simplest form of a probabilistic topic model is Latent
Dirichlet Allocation (LDA) [3]. The generative process for
LDA is formulated as follows:

1. Draw topic proportions θj ∼ Dirichlet(α) for docu-
ment wj

2. For each term n in wj ,

(a) Draw topic assignment zjn ∼ Mult(θj)
(b) Draw word wjn ∼ Mult(βzjn)

3.3 Collaborative Topic Regression
The collaborative topic regression (CTR) model combines

traditional collaborative filtering with topic modeling [10].
Note that the term “item” used in collaborative filtering and
the term “document” used in LDA both refer to the same
thing. Unless otherwise noted, from now on we will use these
two terms interchangeably.

Similarly to LDA, in CTR each item j is assigned a topic
proportion θj that is used to generate the words. A näıve
approach is to directly use θj to represent the item latent
vector in equation 3:

rij ∼ N
(
uT
i θj , c

−1
ij

)
(5)

Instead of taking this approach, CTR exploits the user data
to get an “adjusted” item latent vector vj . The generative
process for CTR is formulated as follows:

1. For each user i, draw user latent vector ui ∼ N (0, λ−1
u IK)

2. For each item j,

(a) Draw topic proportions θj ∼ Dirichlet(α)
(b) Draw item latent offset εj ∼ N (0, λ−1

v IK) and the
item latent vector as vj = εj + θj

(c) For each word wjn,

i. Draw topic assignment zjn ∼ Mult(θj)
ii. Draw word wjn ∼ Mult(βzjn)

3. For each user-item pair (i, j), draw the rating

rij ∼ N
(
uT
i vj , c

−1
ij

)
(6)

Note that in Step 2(b), εj is added to item j’s topic pro-
portion θj in order to obtain the adjusted item latent vector
vj .

The graphical representation of the model is given in Fig-
ure 1. The top part of the model represents the repository
content, and is essentially an LDA model. The bottom half
of the model deals with user-repository data.

✓ z w
N K

�↵

r

u

�v v

�u
I

J

Figure 1: The graphical model for the CTR model

4. EXPERIMENTAL STUDY

4.1 Dataset
The original GitHub recommendation contest dataset con-

tains 440,237 user-watches-repository relationships among
56,159 users and 120,867 repositories. The metadata for
repositories consists of repository ID, repository name, date
of creation, and (if applicable) the repository ID that it was
forked off of. Example lines of the repository metadata file
is given in Figure 2.

� z w
N K

��

r

u

�v v

�u
I

J

Figure 1: The graphical model for the CTR model

In a probabilistic approach for matrix factorization [2], prob-
abilistic linear model with Gaussian observation noise as fol-
lows:

1. For each user i, draw user latent vector ui ⇠ N (0, ��1
u IK)

2. For each item j, draw item latent vector vj ⇠ N (0, ��1
v IK)

3. For each user-item pair (i, j), draw the response

rij ⇠ N
⇣
uT

i vj , c
�1
ij

⌘
(3)

where cij measures our confidence in observing rij .

iterative algorithm [1].

4.2 Probabilistic Topic Models

4.3 Collaborative Topic Regression
proposed in [3].

5. EXPERIMENTAL STUDY

5.1 Dataset
The original GitHub recommendation contest dataset con-
tains 440,237 user-watches-repository relationships among
56,159 users and 120,867 repositories. The metadata for
repositories consists of repository ID, repository name, date
of creation, and (if applicable) the repository ID that it was
forked o↵ of3. Example lines of the repository metadata file
is given in Figure 1.

Table 1: Example lines of the repository metadata file
1382:mojombo/grit,2007-10-29

...
1449:schacon/grit,2008-04-18,1382

1450:tokuhirom/http-mobileattribute,2009-03-24

1451:pjhyett/github-services,2008-04-28

As the original dataset contains only the metadata for each
repository and not the actual source code files themselves,
we crawled git repositories from GitHub. Once we crawl
the repositories, using git, we revert the repositories to the
condition they were in July 2009, or when the contest was
held.

3Forking is a feature on GitHub that allows a users to copy
another user’s project in order to contribute to it, or to use
it as a starting point for his/her own project.

Prior to applying the topic model on the repositories, we
first separate the repositories by their programming lan-
guage. As each repository can contain files with di↵ering
languages, we classify a given repository into a particular
language category if that language’s proportion (in lines of
code with respect to the entire repository) exceeds 50%.

We ignore non source code files (e.g. README.txt, LICENSE.
txt) and vendored files (e.g. commonly bundled files, such
as jQuery for web application frameworks).

While a single repository can contain multiple files, in this
paper we treat a repository as a single document

For a given repository, we look at each file and We prepro-
cess the source files by using an appropriate lexer to extract
tokens. The types of allowed tokens are given in Table 2.
Note that comments are removed. In addition, we split to-

Table 2: Allowed tokens
Literal.String
Literal.String.Single
Literal.String.Double
Name.Class
Name.Constant
Name.Decorator
Name.Entity
Name.Exception
Name.Function
Name.Label
Name.Namespace
Name.Variable

kens with CamelCase (fooBar) and underscores (foo_bar).
Finally, words that occur in more than 80% of the docu-
ments and in less than 2% of the documents are removed.

After preprocessing, one repository is seen as a single docu-
ment.

Statistics about the repsositories by language is presented
in Table 3

5.2 Evaluation
foobar

recall@M =
number of repos the user watches in the top M

total number of repos the user watches

6. RELATED WORK
hoge

7. CONCLUSION AND FUTURE WORK
baz

8. REFERENCES

[1] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collabo-
rative filtering for implicit feedback datasets. In Proceed-
ings of the 2008 Eighth IEEE International Conference
on Data Mining, ICDM ’08, pages 263–272, Washington,
DC, USA, 2008. IEEE Computer Society.

[2] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic
matrix factorization. In Advances in Neural Information
Processing Systems, volume 20, 2008.

Figure 2: Example lines of the repository metadata file.
Note that repository 1449 is forked from repository 1382.

As the original dataset contains only the metadata for
each repository and not the actual source code files them-
selves, we crawled git repositories from GitHub using the
repository names4. Once we crawl the repositories, using
git, we revert the repositories to the condition they were in
July 2009, when the contest was held.

Prior to applying the topic model on the repositories, we
first separate the repositories by their programming lan-
guage. As each repository can contain files with various
languages, we classify a given repository into a particular
language category if that language’s proportion (in lines of
code with respect to the entire repository) exceeds 50%. We
ignore non source code files (e.g. README.txt, LICENSE.txt)
and vendored files (e.g. commonly bundled files, such as
jQuery for web application frameworks). We preprocess the
source files by using an appropriate lexer to extract tokens.
The types of allowed tokens are given in Table 1. Note that

Type Example in Java
Literal.String.Single ‘foobar’

Literal.String.Double "foobar"

Name.Class FileSystem

Name.Constant RESOURCE_PROCESSOR

Name.Decorator @Cacheable

Name.Exception RuntimeException

Name.Function main

Name.Namespace java.util

Name.Variable this.name

Table 1: Allowed token types

comments are removed. In addition to limiting the types of
tokens, we also split tokens with CamelCase (fooBar) and
underscores (foo_bar). After the above preprocessing, each
repository is seen as an individual document represented
with its bag-of-words. Finally, words that occur in more
than 80% of the documents and in less than 2% of the doc-
uments are removed.

Statistics about the repositories by programming language
are presented in Table 2. As GitHub is a Ruby-centric com-

4The crawling was done between October 25st and Novem-
ber 1st of 2012.

munity, Ruby is the dominant language in the dataset. It is
also interesting to note that while many scripting languages
(Ruby, Python, and Perl) have a smaller vocabulary size
compared to “heavyweight” languages (C, C++, and Java),
PHP has the largest vocabulary size with over 10,000 terms.

4.2 Evaluation
As we do not know whether rij = 0 represent that user i

is interested in item j or not, we do not use precision but
instead use recall to evaluate all of our experiments. Given
M recommendations, for each user, we calculate recall@M
as follows:

recall@M =
number of repos the user watches in the top M

total number of repos the user watches

This measure is averaged over all users to obtain a global
metric.

We perform model evaluation using two different tasks:
in-matrix recommendation and out-of-matrix recommenda-
tion:

In-matrix recommendation
This is the case where we recommend items that have been
watched by at least one user.

We divide up the dataset into a training set and test set,
making sure that all items in the test set have appeared at
least once in the training set. We perform a 5-fold cross-
validation. For repositories that have been watched by 3 or
more users, their user-repository pairs will be evenly split
into 5 folds. Repositories that have been watches by less
than 3 users are always put into the training data.

User preferences are known to drift over time [5], and thus,
ideally, we should consider the temporal aspects, ensuring
that user-repository pairs in the test data occur later than
those in the training data. However, although the original
dataset contains the date of creation for repositories, it does
not contain the date where users watch repositories. There-
fore in this paper, we split the user-repository pairs into
folds irrespectively of their (unknown) date. We similarly
ignore temporal aspects for out-of-matrix recommendation.

Out-of-matrix recommendation
This is the case where we recommend new repositories that
have not been watched previously. As we do not have user
data for these repositories, we recommend these based solely
on their source code content.

Similarly to in-matrix recommendation, we perform a 5-
fold cross-validation. We first evenly split the repositories
into 5 folds, and train a model using user-repository pairs
that correspond to repositories in 4 of the 5 folds. We test
on user-repository pairs that correspond to repositories in
the remaining fold.

4.3 Experimental Setting
For matrix factorization (denoted MF), we used the fol-

lowing paramter settings: K = 200, λu = λv = 0.01, a = 1,
and b = 0.01. For collaborative topic regression (denoted
CTR), we used K = 200, λu = 0.01, λv = 10, a = 1, and
b = 0.01. These values were chosen using grid search on
held-out data. In addition to MF and CTR, we also com-
pare against a model that only uses text content, which is
based on equation 5 (denoted LDA). This is equivalent to a
CTR model where we fix vj = θj .

Ruby Python Perl PHP C C++ Java
of user-watches-repo 160,205 15,192 6,548 6,667 8,271 3,414 4,677
of users 19,263 5,780 1,806 3,664 5,038 2,651 3,054
of repos 14,298 3,943 2,483 2,036 2,248 1,388 1,820
of vocabulary terms 2,057 4,223 2,866 10,243 7,706 6,131 4,826
of total words 23,189,461 17,500,898 11,998,887 51,828,603 59,022,110 17,329,607 25,559,017

Table 2: Repository statistics by language.

Figure 3 shows the overall performance for in-matrix and
out-of-matrix prediction, when we vary the number of rec-
ommended articles from M = 10, 30, ...150. For in-matrix-
recommendation, CTR slightly underperforms MF. Note that
MF is not able to recommend any repositories in the out-
of-matrix setting, as the task is to predict repositories that
have never been watched before. CTR and LDA perform
similarly for out-of-matrix recommendation.

in-matrix out-of-matrix

0.0

0.2

0.4

0.6

40 80 120 40 80 120
number of recommended repos

re
ca
ll

method

CTR

LDA

MF

Figure 3: Recall comparison for in-matrix and out-of-matrix
prediction tasks for the Ruby language. Error bars are too
small to show. CTR shows a slight drop in performance
compared against MF. Similar patterns were observed for
other languages.

5. EXPLORATORY STUDY
In this section, we conduct an exploratory study, looking

at topics discovered from data, which repositories are associ-
ated with a given topic, which repositories and topics a given
user is interested in, and which topics are associated with
a given repository. Most of these analyses are not possible
with classical matrix factorization.

Table 3 shows some example topics and their correspond-
ing words learned from the Ruby data and Java data. We
are able to uncover topics such as “database access”, “user
interface”, and “encoding.” Hadoop, Android, and Clojure
are so influential that they form their own topics.

We next examine the item latent space by looking at topic
distributions of specific repositories. In particular, we look
at Ruby on Rails (RoR)5, one of the most famous web ap-
plication framework, and the most watched Ruby reposi-
tory in our dataset. Figure 4 shows the topic proportion θj
and adjusted item latent vector vj for RoR. Using source
code content, we are able to identify topics such as “active
record”6 {active, record, models}, “view” {show, render,

5https://github.com/rails/rails
6Active Record is a design pattern used for accessing data

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Topic

P
ro
po
rti
on

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Topic

P
ro
po
rti
on

active, support, app,
record, rails, models

http, show, render,
partial, content, div

test, default, has,
unit, mock, inspect

merb, mongrel, rack,
core, spec, should

jruby, org, ruby,
java, rb, override

Figure 4: Topic proportion θj (top and bottom, in red) and
item latent vector vj (bottom, in black) for Ruby on Rails.
Most probable words for the prominent topics are shown for
interpretability.

partial}, and “testing” {test, default, mock}. With user
data, we are able to discover further topics such as “Merb”7

{merb, mongrel, rack} and “jRuby” {jruby, org, java}.
Merb is another web application framework that was once
considered as a rival to RoR. However, on December 2008,
it was announced that Merb would get merged into RoR8,
and the actual merge took place on the relase of Rails 3 on
August 2010. Considering that the original GitHub dataset
was released on August 2009, it is not surprising that the
topic “Merb” does not come up using source code alone (as
RoR and Merb had yet to merge), but only comes up using
user-watches-repository data.

Next, we examine user profiles. Table 4 shows two ex-
ample users and their top 3 topics along with their top 10
repositories recommended by the CTR model. We see that
user I is interested in the topics “git” and “search.” User II
is interested in the topics “RoR”, “images”, and “testing.”

We can also inspect repositories that have a large item
latent offset εj , or the deviation between the item latent
vector vj and topic proportions θj . Table 5 shows the re-
sults, with the deviation measured by the (squared) norm

in a database. By default, RoR employs this patten for its
database access. Note that ActiveRecord is also the name
of the implementation of the Active Record pattern in RoR.
7https://github.com/wycats/merb
8http://weblog.rubyonrails.org/2008/12/23/
merb-gets-merged-into-rails-3/

“datetime” “database” “web” “UI” “packaging” “encoding” “process” “filesystem” “mail”
time table com ui ruby utf start file to
date column http li config iso pid dir content
day name www click install name run path net
month db google top path rb stop directory from
year database url left exec jp process files subject
en sql example selected for length running filename text
us create with show dir encoding server name mail
am from domain width ext char log tmp header
in adapter uri button no cp master error utf
locale select org position the ascii daemon exist multipart

“HTTP” “database” “UI” “testing” “hadoop” “android” “clojure” “git” “audio”
http sql image test hadoop android lang revision frame
org id awt junit org content clojure git audio
apache name color not apache view invoke commit text
request table javax framework io override seq project album
io select event case file text meta idea sync
response foo mouse should test widget fn version artist
connection from data is output database symbol branch track
protocol null io up status app lazy file media
not column point run write cursor bindings operation information
client insert file value input create nil unsupported tag

Table 3: Example topics discovered from the Ruby data and Java data.

User I watches repo?

Top 3 topics
1. git, tree, refs, pack, io, object, repository, override, lib, file, commit, ref, id
2. search, field, query, index, lucene, override, time, term, value, data, result, string
3. apache, org, io, cos, pd, stream, row, ts, name, dictionary, array, scanner, base, list

Top 10 repos

1. Fudge/gitidea X
2. we4tech/semantic-repository X
3. imyousuf/jgit-usage X
4. we4tech/folder-content-guard X
5. imyousuf/smart-dao X
6. tjake/thrudb
7. j16sdiz/egit-freenet
8. sonatype/JGit
9. we4tech/bangla-dictionary-based-on-lucene-proximity-search X
10. we4tech/java-open-search-servlet X

User II watches repo?

Top 3 topics
1. rails, application, data, helper, config, gemfile, bundler, data, create, gems
2. image, png, jpg, attachment, public, gif, size, file, jpeg, thumbnail, upload, content
3. returns, the, spec, helper, to, when, if, raises, passed, self, error, fixtures, is, method

Top 10 repos

1. rails/exception_notification
2. technoweenie/attachment_fu X
3. activescaffold/active_scaffold
4. technoweenie/restful-authentication X
5. dchelimsky/rspec-rails X
6. rails/rails X
7. mislav/will_paginate
8. dchelimsky/rspec X
9. drnic/ruby-on-rails-tmbundle
10. thoughtbot/paperclip X

Table 4: Two example users, one from the Java dataset and another from the Ruby dataset. We show their position in latent
space via their highest weighted topics in ui. We also list the top 10 repositories as predicted by CTR. The last column shows
whether each repository is actually watched by the user.

of εj , ε
T
j εj = (vj − θj)T (vj − θj). A repository with a vj

that is drastically different from θj suggests that the repos-
itory is being watched by a wide range of users, as the table
indicates.

Finally, extending the idea of looking at the difference
between θj and vj , we can find:

• widely watched repositories in a topic
(in-topic, watched in topic)
• repositories in a topic that are widely read in other

topics
(in-topic, watched in other topics)
• repositories from other topics that are widely read in

a topic
(out-of-topic, watched in topic)

Let θij represent the topic proportion for item j with respect

to topic i, and similarly, vij represent the ith element of the
jth item’s latent vector, corresponding to topic i. If we
want to find a repository from other topics that are widely
read in a topic i, we can look for item j that has a low
θij value and high vij value. A schematic of this is shown
in Figure 5. Table 6 shows the resulting repositories for
the topics “Active Record” and “Hadoop (Distributed File
System).” RoR, probability due to its fame, is watched by
users both who are primarily interested in “Active Record”
and those who aren’t, while docrails is watched only by
those who are primarily interested in “Active Record.” This
makes sense, considering that docrails is a specific branch
of RoR where users can make documentation fixes (which
is used for fixing typos and factual errors, adding examples,
and complementing existing documentation). Thus, we ex-
pect users who are deeply involved with RoR development
to be interested in docrails, whereas casual users might
be interested in RoR itself but not docrails. We also see
that users interested in “Active Record” is also interested in
will_paginate, rspec, merb, and sinatra, all of which are
famous libraries in Ruby’s ecosystem.

RoRMerb RoRMerb

RoRMerb RoRMerb

RoRMerb RoRMerb

In-topic,
watched in topic

In-topic,
watched in
other topics

Out-of-topic,
watched in topic

✓j vjwith
user
data

Figure 5: Schematic of the 3 different cases for the relation-
ship between θj and vj .

6. RELATED WORK
Much of this paper is influenced by a recent paper that

proposed collaborative topic regression [10]. This paper is

Topic active, record, rails, models

In-topic,watched in topic
lifo/docrails
rails/rails

In-topic,watched in other topic rails/rails

Out-of-topic,watched in topic

mislav/will_paginate
dchelimsky/rspec
wycats/merb
bmizerany/sinatra
chneukirchen/rack

Topic hadoop, io, fs, output

In-topic,watched in topic

apache/hadoop
apache/mahout
apache/pig
apache/hive

In-topic,watched in other topic
apache/nutch
apache/hadoop

Out-of-topic,watched in topic
myabc/nbgit
talios/clojure-maven-plugin

Table 6: Topic Exploration for “Active Record” and
“Hadoop (Distributed File System).”

an application of collaborative topic regression on an alter-
native dataset. Another relevant work is fLDA [1], which is
a generalization of the supervised topic model for collabora-
tive filtering.

Applying probabilistic topic models to source code is itself
not a new idea. Researchers have recently applied topic
models to various aspects of software development, including
both source code [2; 6] and documentation [4]. There has
been work on extracting the relationship between developers
(authors) and source code topics [7] using the Author-Topic
model [8].

7. CONCLUSION AND FUTURE WORK
In this paper, we applied collaborative topic regression, a

method that combines collaborative filtering and topic mod-
eling, on a large dataset from GitHub. While this method
does not outperform existing methods, it produces highly
interpretable latent structures for users and items.

One possible future area of work is to to exploit the struc-
ture of repositories. Complex software libraries almost al-
ways divide their functionality in a logical structure to make
it easier for developers to navigate easily and better com-
prehend the library. For example, modern web application
frameworks such as RoR employ the Model-View-Controller
design pattern, where the model takes care of the data rep-
resentation, and the controller mediates between the model
and the view, which is responsible for generating output that
is visible to the user. Many web application frameworks,
including RoR, have directory structures that reflect this
architecture.

8. REFERENCES

[1] Deepak Agarwal and Bee-Chung Chen. flda: matrix
factorization through latent dirichlet allocation. In Pro-
ceedings of the third ACM international conference on
Web search and data mining, WSDM ’10, pages 91–100,
New York, NY, USA, 2010. ACM.

[2] Pierre F. Baldi, Cristina V. Lopes, Erik J. Linstead,
and Sushil K. Bajracharya. A theory of aspects as latent

Repository # dataset # stars # fork
joshuaclayton/blueprint-css 4,200 5,038 480
rails/rails 10,793 16,739 4,391
technoweenie/restful-authentication 2,301 1,659 260
binarylogic/authlogic 1,680 3,397 457
insoshi/insoshi 1,311 1,480 436
thoughtbot/factory_girl 2,517 2,509 370
mislav/will_paginate 2,051 3,410 512
chriseppstein/compass 1,099 4,022 566
thoughtbot/paperclip 3,882 4,656 988
mojombo/jekyll 1,088 8,368 1,338

Table 5: Top 10 Ruby repositories with the largest deviation between the item latent vector vj and topic proportions θj ,

measured by (vj − θj)T (vj − θj). Column 2 shows the number of users watching the repository in the original dataset.
Columns 3 and 4 show the number of stars and number of forks (retrieved from GitHub on Dec 10, 2012). All of these
repositories are extremely popular.

topics. In Proceedings of the 23rd ACM SIGPLAN con-
ference on Object-oriented programming systems lan-
guages and applications, OOPSLA ’08, pages 543–562,
New York, NY, USA, 2008. ACM.

[3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–
1022, March 2003.

[4] Abram Hindle, Michael W. Godfrey, and Richard C.
Holt. What’s hot and what’s not: Windowed developer
topic analysis. In ICSM, pages 339–348. IEEE, 2009.

[5] Yehuda Koren. Collaborative filtering with temporal
dynamics. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, KDD ’09, pages 447–456, New York, NY,
USA, 2009. ACM.

[6] Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina
Lopes, and Pierre Baldi. Mining concepts from code
with probabilistic topic models. In Proceedings of the
twenty-second IEEE/ACM international conference on
Automated software engineering, ASE ’07, pages 461–
464, New York, NY, USA, 2007. ACM.

[7] Erik Linstead, Paul Rigor, Sushil Bajracharya, Cristina
Lopes, and Pierre Baldi. Mining eclipse developer con-
tributions via author-topic models. In Proceedings of
the Fourth International Workshop on Mining Software
Repositories, MSR ’07, pages 30–, Washington, DC,
USA, 2007. IEEE Computer Society.

[8] Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers,
and Padhraic Smyth. The author-topic model for au-
thors and documents. In Proceedings of the 20th con-
ference on Uncertainty in artificial intelligence, UAI
’04, pages 487–494, Arlington, Virginia, United States,
2004. AUAI Press.

[9] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic
matrix factorization. In Advances in Neural Informa-
tion Processing Systems, volume 20, 2008.

[10] Chong Wang and David M. Blei. Collaborative topic
modeling for recommending scientific articles. In Pro-
ceedings of the 17th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, KDD
’11, pages 448–456, New York, NY, USA, 2011. ACM.

