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Abstract. Unlike classroom education, immediate feedback from the student is 
less accessible in Massive Open Online Courses (MOOC). A new type of sen-
sor for detecting students’ mental states is a single-channel EEG headset simple 
enough to use in MOOC. Using its signal from adults watching MOOC video 
clips in a pilot study, we trained and tested classifiers to detect when the student 
is confused while watching the course material. We found weak but above-
chance performance for using EEG to distinguish when a student is confused or 
not. The classifier has a comparable performance to human observers observing 
body language in predicting students’ confusion. This pilot study shows prom-
ise for MOOC-deployable EEG devices being able to capture tutor relevant in-
formation. 
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1 Introduction 

In recent years, there is an increasing trend towards the use of Massive Open Online 
Courses (MOOC), and it is likely to continue [1]. MOOC can serve millions of stu-
dents at the same time, but it also has its own shortcomings. In [2], Thompson has 
explored the attitudes of post-secondary students who were negatively disposed to-
ward correspondence-based distance education programs. Their results indicate that 
feedback and interaction are two problems of long-distance education. Current 
MOOC can offer interactive forums and feedback quizzes to help improve the com-
munication between students and professors, but the impact of the absence of a class-
room is still under heated discussion. [3] indicates lacking feedback if one of the main 
problems for students-teachers long distance communication.  

There are many gaps between online education and in-class education [4] and we 
will focus on one of them: detecting students’ confusion level. Unlike in-class educa-
tion, where a teacher can judge if the students understand the materials by verbal in-
quiries or their body language (e.g., furrowed brow, head scratching, etc.), immediate 
feedback from the student is less accessible in long distance education. We address 
this limitation by using electroencephalography (EEG) input from a commercially 
available device as evidence of students’ mental states.  



The EEG signal is a voltage signal that can be measured on the surface of the 
scalp, arising from large areas of coordinated neural activity manifested as synchroni-
zation (groups of neurons firing at the same rate) [3]. This neural activity varies as a 
function of development, mental state, and cognitive activity, and the EEG signal can 
measurably detect such variation. Rhythmic fluctuations in the EEG signal occur 
within several particular frequency bands, and the relative level of activity within 
each frequency band has been associated with brain states such as focused attentional 
processing, engagement, and frustration [4-6], which in turn are important for and 
predictive of learning [7]. 

The recent availability of simple, low-cost, portable EEG monitoring devices now 
makes it feasible to take this technology from the lab into schools. The NeuroSky 
“MindSet,” for example, is an audio headset equipped with a single-channel EEG 
sensor [8]. It measures the voltage between an electrode that rests on the forehead and 
electrodes in contact with the ear. Unlike the multi-channel electrode nets worn in 
labs, the sensor requires no gel or saline for recording and therefore requires much 
less expertise to position. Even with the limitations of recording from only a single 
sensor and working with untrained users, a previous study [9] found that the MindSet 
distinguished two fairly similar mental states (neutral and attentive) with 86% accura-
cy. MindSet has been used to detect reading difficulty [10] and human emotional 
responses [11] in the domain of intelligent tutoring systems. 

A single-channel EEG device headset currently costs around $99-149 USD, which 
is a cost added on to the free service of MOOC. We propose that MOOC providers 
(e.g. Coursera, edX) supply an EEG device for students. In return, MOOC providers 
would get feedback on students EEG brain activity or confusion level while students 
watch their course materials. These objective EEG brain activities can be aggregated 
and augment subjective rating of course materials to provide a simulation of real 
world classroom responses, where a teacher is given feedback from an entire class. 
Then teachers can improve video clips based on these impressions. Moreover, even 
though EEG device is a luxury device at the moment, the increasing popularity of 
consumer-friendly EEG devices may one day makes it a house-hold accessory just 
like audio headset, keyboard and mouse. Thus, we are hopeful to see our proposed 
solution to be applicable as the market of MOOC grows and the importance of course 
quality and student feedback rises.  

To assess the feasibility of collecting useful information about cognitive processing 
and mental states using a portable EEG monitoring device, we conducted a pilot 
study. We wanted to know if EEG data can help distinguishing among mental states 
relevant to confusion. If we can do so better than chance, then there is a “there there” 
– i.e., these data contain relevant information that future work may decode more accu-
rately. Thus we address two questions:   

1. Can EEG detect confusion? 
2. Can EEG detect confusion better than human observers? 

The rest of this paper is organized as follows. Section 2 describes the experiment 
design. Section 3 and 4 answers the two research questions, respectively. Finally, 
Section 5 concludes and suggests future work.  



2 Experiment Design 

In a pilot study, we collected EEG signal data of college students while they watched 
MOOC video clips. We extracted online education videos that are assumed to be not 
confusing for a college student, like videos of introduction of basic algebra or geome-
try. We also prepare videos that are assumed to confuse a normal college student if a 
student is not familiar with the video topics like Quantum Mechanics, Stem Cell Re-
search 1 . We prepared 20 videos, 10 in each category. Each video was about 2 
minutes. We chopped the two-minute clip in the middle of a topic to make the videos 
more confusing.  

We collect data from 10 students. One student was removed because of missing da-
ta due to technical difficulty. An experiment with a student consisted of 10 sessions. 
We randomly picked five videos of each category and randomized the presentation 
sequence so that the student could not guess the predefined confusion level. In each 
session, the student was first instructed to relax their mind for 30 seconds. Then, a 
video clip was shown to the student where he/she was instructed to try to learn as 
much as possible from the video. After each session, the student rated his/her confu-
sion level on a scale of 1-7, where 1 corresponded to the least confusing and 7 corre-
sponded to the most confusing. Additionally, there were three student observers 
watching the body-language of the student. Each observer rated the confusion level of 
the student in each session on a scale of 1-7. The conventional scale of 1-7 was used. 
Four observers were asked to observe 1-8 students each, so that there were not an 
effect of observers just studying one student. 

The students wore a wireless single-channel MindSet that measured activity over 
the frontal lobe. The MindSet measures the voltage between an electrode resting on 
the forehead and two electrodes (one ground and one reference) each in contact with 
an ear. More precisely, the position on the forehead is Fp1 (somewhere between left 
eye brow and the hairline), as defined by the International 10-20 system [12]. We 
used NeuroSky’s API to collect the following signal streams: 

 
1. The raw EEG signal, sampled at 512 Hz 
2. An indicator of signal quality, reported at 1 Hz 
3. MindSet’s proprietary “attention” and “meditation” signals said to measure 

the user’s level of mental focus and calmness, reported at 1 Hz 
4. A power spectrum, reported at 8 Hz, clustered into the standard named fre-

quency bands: delta (1-3Hz), theta (4-7 Hz), alpha (8-11 Hz), beta (12-29 
Hz), and gamma (30-100 Hz). 

                                                           
1 http://open.163.com/ 



3 Can EEG detect confusion? 

3.1 Training classifiers 

We trained Gaussian Naïve Bayes classifiers to estimate, based on EEG data, the 
probability that a given session was confusing rather than not confusing. We chose 
this method (rather than, say, logistic regression) because it is generally best for prob-
lems with sparse (and noisy) training data [13]. 

We use two ways to label the mental states we wish to predict. One way is the pre-
defined confusion level according to the experiment design. Another way is the user-
defined confusion level according to each user’s subjective rating. 

The EEG device emits the various signals enumerated earlier, while the students 
watch the 2 minutes video. In case a student was not ready when the video started, we 
removed the leading 30 seconds and final 30 seconds of that video and only analyzed 
the EEG signal in the middle 60 seconds. To characterize their overall values, we 
computed their means over the interval of each utterance. To characterize the tem-
poral profile of the EEG signal, we computed several features, some of them typically 
used to measure the shape of statistical distributions rather than of time series: mini-
mum, maximum, variance, skewness, and kurtosis. However, due to the small number 
of data points (100 data points for 10 subjects, each watching 10 videos), inclusion of 
those features tends to overfit the training data and result in poor classifier perfor-
mance. As a result, we simply use the means as the classifier features. We did not 
search intensively for features because feature selection is not the focus of this work. 
Table 1 shows the classifier features. 

Table 1. Classifier features 

Features Sampling rate Statistic 
Attention (proprietary) 1 Hz Mean 
Meditation (proprietary) 1 Hz Mean 
Raw EEG signals 512 Hz Mean 
Delta frequency band 8 Hz Mean 
Theta frequency band 8 Hz Mean 
Alpha1 frequency band 8 Hz Mean 
Alpha 2 frequency band 8 Hz Mean 
Beta1 frequency band 8 Hz Mean 
Beta 2 frequency band 8 Hz Mean 
Gamma1 frequency band 8 Hz Mean 
Gamma2 frequency band 8 Hz Mean 

 
To avoid overfitting, we used cross validation to evaluate classifier performance. 

We trained student-specific classifiers on a single student’s data from all but one 
stimulus block (e.g. one video), tested on the held-out block (e.g., all other videos), 
performed this procedure for each block, and averaged the results to cross-validate 
accuracy within reader. We trained student-independent classifiers on the data from 



all but one student, tested on the held-out student, performed this procedure for each 
student, and averaged the resulting accuracies to cross-validate across students. 

3.2 Detect pre-defined confusion level 

We trained and tested classifiers for pre-defined confusion. Average accuracies of 
student-specific and student-independent classifiers were 67% and 57%, respectively. 
Both classifier performances were statistically significant better than a chance level of 
0.5 (p < 0.05). Fig. 1 plots the classifier accuracy for each student. White bars indi-
cate the accuracy of student-specific classifiers and black bars indicate the accuracy 
of student-independent classifiers. Fig. 1 shows that both student-specific classifiers 
and student-independent classifiers performed significantly above chance in 6 out of 9 
students. 

 
Fig. 1. Detect predefined confusion level 

3.3 Detect user-defined confusion level 

We also trained and tested classifiers for student-defined confusion. Since students 
have different sense of confusing, we mapped the seven scale self-rated confusion 
level into a binary label, with roughly equal number of cases in the two classes. A 
middle split is accomplished by mapping scores less than or equal to the median to 
“not confusing” and the scores greater than the median are mapped to “confusing”. 
Furthermore, we used random undersampling of the larger class(es) to balance the 
classes in the training data. We performed the sampling 10 times to limit the influence 
of particularly good or bad runs and obtain a stable measure of classifier performance. 

Average accuracies of student-specific and student-independent classifiers were 
56% and 51%, respectively. The student-specific classifier performance was statisti-
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cally significant better than a chance level of 0.5 (p < 0.05), but not the student-
independent classifier. Fig. 2 plots the accuracy for each student. Fig. 2 shows that 
student-specific classifier performed significantly above chance in 5 out of 9 students 
and student-independent classifier performed significantly above chance in 1 out of 9 
students.  

 
Fig. 2. Detect user-defined confusion level 

4 Can EEG detect confusion better than human observers? 

To determine if EEG can detect confusion better than human observers based on body 
language can, we compared the scores from the observer, the classifier, students’ own 
score and the label of videos. For each session of each student, we took the average 
score of observers as the ‘observer rating’. We used the classifier trained in Section 3 
to predict predefined confusion level and linearly mapped the classifier’s estimate of 
class probability (0-100%) to a scale of 1-7 and labeled it as the ‘classifier rating’. 

The score of classifier has a low, but positive correlation (0.17) with students’ own 
score, while the score of observer has a low, but positive correlation of (0.17) with 
students’ own score. This shows that classifier has comparable performance to human 
observers observing body language in predicting students’ confusion. 

5 Conclusions and Future Work 

In this paper, we described a pilot study, where we collected students’ EEG brain 
activity while they learn from MOOC video clips. We trained and tested classifiers to 
detect when a student was confused. We found weak but above-chance performance 
for using EEG to distinguish whether a student is confused. classifier has comparable 
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performance to human observers observing body language in predicting students’ 
confusion. 

Since the experiment was based on a project run by a group of graduate students, 
there were many limitations to the experiment. We now discuss the major limitations 
and how we plan to address them in the future work. 

One of the most critical limitations is the definition of experimental construct. 
Specifically, our pre-assigned “confusing” videos could be confounded. For example, 
a student may not find a video clip on Stem Cell to be confusing when the instructor 
clearly explains the topic. Also, the predefined confusion level may be confounded 
with increased mental effort / concentration. To explore this issue, we examined the 
relationship between the predefined confusion level and the subjective user-defined 
confusion level. The students’ subjective evaluation of the confusion level and our 
predefined label has a modest correlation of 0.30. Moreover, we performed a feature 
selection experiment among all combinations of 11 features; we used cross validation 
through all the experiments and sorted the combinations according to accuracy. Then 
we found that the user specific model THETA signal played an important role in all 
the leading combinations. THETA signal corresponds to errors, correct responses and 
feedback, suggesting what we are classifying is indeed confusion. 

Another limitation is due to the lack of psychological professionalism. For exam-
ple, the observers in our experiment were not formally trained. As a result, the current 
scheme allowed each observer to interpret a student’s confusion level based on his/her 
own observations. A precise labeling scheme would yield more details that could be 
compared among raters. We would like to improve our procedure for having observ-
ers rate a student’s confusion level. 

Another limitation is the scale of our experiment as we only performed the exper-
iments with 10 students, each student only watched 10 2-minute video. The limited 
amount of data points prevents us from drawing any strong claim about the study. We 
hope to scale up the experiment and collect more data. 

Finally, this pilot study shows positive, but weak classifier performance in detect-
ing confusion. The weak classifier performance may frustrate a student. Moreover, a 
student may not be willing to share their brain activity data due to privacy concerns. 
With that said, we are hopeful that the classifier accuracy can be improved once we 
conduct a more rigorous experiment, increasing the study size, and improve the clas-
sifier (e.g. better feature selection method and applying denoising techniques to im-
prove signal-to-noise ratio, etc.). Also, the classifiers are supposed to help the stu-
dents and the students can choose not to use EEG if they think the device is hindering. 
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