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Abstract— A novel nonlinear incremental optimization algo-
rithm MH-iSAM2 is developed to handle ambiguity in simulta-
neous localization and mapping (SLAM) problems in a multi-
hypothesis fashion. It can output multiple possible solutions
for each variable according to the ambiguous inputs, which
is expected to greatly enhance the robustness of autonomous
systems as a whole. The algorithm consists of two data struc-
tures: an extension of the original Bayes tree that allows efficient
multi-hypothesis inference, and a Hypo-tree that is designed to
explicitly track and associate the hypotheses of each variable
as well as all the inference processes for optimization. With our
proposed hypothesis pruning strategy, MH-iSAM2 enables fast
optimization and avoids the exponential growth of hypotheses.
We evaluate MH-iSAM2 using both simulated datasets and
real-world experiments, demonstrating its improvements on the
robustness and accuracy of SLAM systems.

I. INTRODUCTION

The robustness of simultaneous localization and mapping
(SLAM) is crucial to mobile robots. However, it is hard to
achieve under common SLAM frameworks, which assume
that the back-end (optimizer) always get correct and unbiased
information from the front-end (data processing), and outputs
only one solution for each unknown variable. As a result,
when ambiguities occur (e.g. a feature point is detected to
be very similar to more than one landmark, or two loop
closure candidates are found but contradict one another), the
front-end might not be able to determine which information
is correct, and wrong information can be added into the back-
end optimization, which can pollute the SLAM system and
lead to the failure of the entire robotic system.

It would be desirable for the back-end solver to explicitly
account for the ambiguities that cannot be handled by the
front-end, and to output all the highly probable solutions.
This proposed framework allows the later modules in the
robotic system (e.g.: control or planning) to be aware of the
temporarily unsolvable ambiguities and therefore is expected
to greatly enhance the robustness of the entire robotic system.

Based on the incremental smoothing and mapping using
Bayes tree (iSAM2) [11] algorithm, we develop a novel
online nonlinear incremental optimizer called MH-iSAM2,
which takes multi-mode measurements that model the am-
biguities as inputs, and generates multi-hypothesis outputs
which are the exact solutions of the most possible results.
There are three main parts of the MH-iSAM2 algorithm. The
first part is a multi-hypothesis Bayes tree (MHBT) that allows
efficient inference among the multi-mode factors (MMF) and
multi-hypothesis variables (MHV), which is modified from
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(a) Type #1: ambiguity in odometry estimates with total 2173 complexity

(b) Type #2: ambiguity in data association with total 2412 complexity

(c) Type #3: ambiguity in loop closing with total 28000 complexity

Fig. 1: Examples of MH-iSAM2 tracking and solving various types of am-
biguities (see Sec. III-C) in SLAM problems online incrementally as more
observations are added into the system (left to right). Multiple most possible
solutions can be solved from (a) a pose graph with ambiguous odometry
measurements, (b) a SLAM problem with ambiguous data association of
2D feature points, and (c) a pose graph with ambiguous loop closures.

the original Bayes tree [11]. The second part is a novel
data structure called Hypo-tree, which tracks the modes of
factors together with the hypotheses of variables and other
components in the inference process in the MHBT, and
associates them for computations in the optimization. The
third part is a pruning algorithm that selects the unwanted
hypotheses and prune them in both Hypo-tree and MHBT.

The contributions of this work are:
1. Developing and open-sourcing the novel multi-

hypothesis nonlinear incremental SLAM solver MH-iSAM2
(available at: https://bitbucket.org/rpl_cmu/mh-isam2_lib),

2. Modeling different types of ambiguities in SLAM
problems in a multi-hypothesis factor graph,

3. Proposing the idea of local hypotheses and using the
Hypo-tree as a novel data structure to track all of them,

4. Extending Bayes tree and its inference algorithm to
solve the mutli-hypothesis SLAM problems efficiently,

5. Designing a pruning algorithm that removes the un-
wanted hypotheses to maintain efficiency, and

6. Evaluating MH-iSAM2 using simulated datasets as well
as demonstrating a real-world application for it.

https://bitbucket.org/rpl_cmu/mh-isam2_lib


II. RELATED WORK

Many previous studies focus on solving ambiguity prob-
lems either in the front-end, such as RANSAC [6] and
JCBB [16], or of a specific type only, such as loop closing
[13][2][21][3]. However, none of them can deal with general
ambiguities that are unsolvable by the front-end.

FastSLAM [14] can handle unknown data association
though sampling particles over all possibilities, and [15][7]
apply nonparametric methods to deal with ambiguities in
data association or loop closing. These approaches in theory
model all possibilities, but can only approximate the best
solution(s) instead of solving for the exact values. [9] tracks
multiple hypotheses of exact solutions as desired. However,
it requires additional batch steps for relinearization, and can
be improved for SLAM applications, such as tracking the
hypothesis of each variable more efficiently (see Sec. IV-A).

There are other back-end solutions that change the topol-
ogy of the underlying graph [19][20] or self-tuning the destri-
bution parameters [17] during optimization with ambiguity,
or add a step before conventional optimizers to choose the
best hypothesis [18]. However, none of them can model more
than one mode in the final output.

We develop MH-iSAM2 based on iSAM2 [11] instead of
other open source solvers [10][12][1] because it allows online
nonlinear incremental updates using Bayes tree for efficiency.
Most of the advantages of iSAM2 are still preserved in MH-
iSAM2, which is further discussed in Sec. V.

III. MULTI-HYPOTHESES MODELS OF AMBIGUITY

A. From Probability to Hypotheses

From the probabilistic point of view, SLAM can be mod-
eled as a maximum likelihood estimation (MLE) problem:

Θ̂ = arg max
Θ

P (Z|Θ) = arg max
Θ

∏
k

P (zk|Θk) , (1)

where Z is the set of all measurements zk that are inde-
pendent to each other. Θ is the set of all variables θl, while
Θk⊆Θ is the subset of variables that directly affect zk in the
conditional probability P (zk|Θk). Θ̂ is the set of solutions
of all variables that maximize P (Z|Θ).

Most existing SLAM back-ends assume that every mea-
surement zk is sampled from an single Gaussian distribu-
tion N (µk,Σk) with mean µk and covariance Σk, and the
resulting distribution of P (Z|Θ) is also a single Gaussian
N (µL,ΣL). However, this assumption no longer holds for
ambiguous measurements because a single Gaussian distri-
bution only has one peak and cannot model more than one
mode. A simple extension is to use a Gaussian mixture
model (GMM) to represent an ambiguous measurement zr
with multiple modes zr(i), which can be written as

PM(zr|Θr)=

mr∑
i=0

wr(i)N
(
µr(i),Σr(i)

)
=

mr∑
i=0

wr(i)P
(
zr(i)|Θr

)
,(2)

where mr is the number of modes in zr, and wr(i)

is a weighting for each N
(
µr(i),Σr(i)

)
which satisfies∑mr

i=0 wr(i) =1. The subscript “(i)” indicates each mode i of

zr. Assuming that every zr is independent to all others, we
can rewrite the MLE problem in Eq. 1 as

Θ̂ = arg max
Θ

[∏
s

P (zs|Θs)

][∏
r

PM (zr|Θr)

]
(3)

to represent SLAM problems with ambiguity, where each
index s corresponds to a single-mode measurement zs while
index r corresponds to a multi-mode measurement zr. Even
though we can still solve this MLE problem and get a single
estimation Θ̂ that corresponds to one of the highest peaks of
the resulting GMM, the information of all other peaks that
result from other combinations of modes is lost.

To preserve all the combinations of modes, we represent
the problem differently as a multi-hypothesis MLE problem
(MH-MLE):

Θ̂M =
{

Θ̂[i]|i ∈ Nt
}
, (4)

Θ̂[i] =arg max
Θ

[∏
s

P (zs|Θs)

][
t∏

r=1

wr(ir)P
(
zr(ir)|Θr

)]
, (5)

where t is the total number of multi-mode measurements
zr. Index i is a t dimensional vector whose r-th element ir
indicates the choice of mode of zr, and the entire i vector
represents one overall hypothesis h{t}j (j is a scalar index that
1-to-1 associates with i), which is one of the combinations
of all modes (we use “mode” for inputs and “hypothesis”
for outputs in this paper). Since only each Θ̂[i] instead of the
joint distribution is of interest, we can regard Eq. 5 as a MLE
problem and solve each of them individually. In other words,
a MH-MLE problem is actually a set of MLE problems with
each corresponds to one h{t}j and one Θ̂[i]. So, the entire set
Θ̂M covers all the combinations of all modes of all zr.

B. Multi-hypothesis Factor Graph (MHFG)

An MH-MLE problem can be represented in a multi-
hypothesis factor graph (MHFG), which is an extension of
the original factor graph [5] and can be converted into a
multi-hypothesis Bayes tree (MHBT) and solved efficiently
(see Sec. V). An MHFG consists of single-mode factors
(SMF), multi-mode factors (MMF), and Multi-hypothesis
variables (MHV). An SMF corresponds to one P (zs|Θs)
in Eq. 5, which is the same as a factor in the original factor
graph. An MMF models each mode of an ambiguous mea-
surement as a individual Gaussian distribution as described
in Eq. 5. Three types of MMFs are defined in Sec. III-C). An
MHV θp ∈ Θ̂M can represent its multiple values from each
hypothesis in an efficient way (see Sec. III-D and IV-A).

C. Multi-mode Factors (MMF)

We define three types of multi-mode factors (MMF) fM,
each with m modes (m>1), to model most kinds of discrete
ambiguities that cannot be solved by front-ends. Type #1 is
the multi-measurement factor, which consists of m various
measurements that are all connected among the same MHVs
(see Fig. 2-a). For example, two different visual odometry
(VO) estimates can be loosely-coupled in one pose graph for
better accuracy. However, when the two estimates are very
different, it is very likely that one of them is an outlier and



(a) Multi-measurement (b) Multi-association (c) Boolean

Fig. 2: The three types of MMFs fM. Red and blue show the two modes
(m=2). Purple and green nodes are poses and landmarks respectively.

should not be considered when computing the optimal result.
In this case, we can model them as a type #1 MMF with two
modes.

Type #2 is the multi-association factor, which contains
only one measurement but is connected among m MHVs
that are the same type and at least one other MHV (see Fig.
2-b). For example, when a newly observed feature point is
very similar to more than one landmark both geometrically
and in appearance, the front-end again cannot tell which is
the accurate association without any other information.

Type #3 is the Boolean factor, which represents whether a
factor should exist or not (m=2). One common application
is to model each loop closure candidate in a loop closing
ambiguity problem [13][2][21] (see Fig. 2-c).

D. Multi-hypothesis Variables (MHV)

A multi-hypothesis variable (MHV) θp contains multiple
estimates for one variable, each corresponds to one hy-
pothesis of θp. The hypotheses of θp are determined by
all the MMFs that affect it, which is hard to be tracked
since it depends on the topological structure of the MHFG.
Therefore, we introduce the Hypo-tree data structure in Sec.
IV to simplify the hypothesis tracking process.

Another challenge is that there can be causal relationship
among MMFs, e.g.: the previous choice of closing a loop
or not can affect a later data association, so the hypotheses
of the affected θp are even harder to track. However, we
can still assume that all of the MMFs are independent to
each other as defined in MH-MLE without losing generality.
Even though each θp might contain redundant hypotheses
from impossible combinations of modes, it at least preserves
all the possible hypotheses, and those redundancies can be
removed later through hypotheses pruning (see Sec. VI).

IV. HYPOTHESES TRACKING IN HYPO-TREE

A. Overall and Local Hypotheses

Because of the independence assumption (see Sec. III),
when multiple MMFs exists in one MHFG, the number nt
of the overall hypotheses h{t} =

{
h
{t}
j |0≤j<nt

}
of the

entire system is nt =
∏t

r=1mr, where mr is the number
of modes of each MMF fM

r , and t is the total number of
MMFs. Even though nt grows exponentially to t and has
to be pruned (see Sec. VI) to maintain a tractable size, the
number of local hypotheses h{r}=

{
h
{r}
j |0≤j<nr

}
of each

MHV θp can be less than nt (see Fig. 3). As a result, we
track h{r} of each θp instead of h{t} to improve efficiency.

However, h{r} of each θp can change as more measure-
ments (SMFs or MMFs) are added into the system. For
example, as shown in Fig. 4-a, if a loop closure is added into

(a)

(b) (c)
Fig. 3: An example of hypotheses growing. (a) A MHFG with two MMFs
(each with 2 modes: blue/red and orange/green) can be regarded as 4
individual factor graphs in (b). However, the value of some MHVs (θ0,
θ1, and θ2) are the same in different factor graphs (purple shadows), which
implies that only fewer hypotheses are needed to model these θp. (c) We can
associate each θp with a Hypo-layer Lr in Hypo–tree to track its hypotheses
(written as {·}). The number in each Hypo-node indicates its mode.

(a)

(b) (c)
Fig. 4: An example of hypotheses expansion. (a) Factors that link the current
variable with an earlier one can result in hypotheses expansion of MHV,
which can be observed by comparing θ2 in (b) and Fig. 3-b. (c) In this case,
we only have to update the association between Hypo-layers and MHVs
(move θ2 from L1 to L2) without changing the structure of Hypo-tree.

the MHFG in Fig. 3-a, some of the θp begin to be affected
by the MMFs that originally do not affect θp (see Fig. 4-b).
Therefore, those θp have to expand their h{r} accordingly.

B. Construction of Hypo-tree

To handle both the growing of h{t} and the expansion
of h{r} efficiently, we propose the Hypo-tree data structure
(see Fig. 3-c and 4-c). It consists of several Hypo-layers
Lr, each results from one MMF fM

r following the temporal
ordering r= 0, ..., t and contains several Hypo-nodes N{r}[j]

(j= 0, ..., nr) that represent local hypotheses h{r}[j] . Starting

from L0 that contains only one Hypo-node N{0}[0] , whenever
a new MMF fM

t+1 is observed, a new Hypo-layer Lt+1

will be created, and mt+1 new Hypo-nodes N
{t+1}
[j′] will

be generated in Lt+1 as the children of each N
{t}
[j] in Lt.

Therefore, the total number of Hypo-nodes in Lt+1 is nt+1 =
nt·mt+1. Due to this incremental construction procedure, the
topologies of previous layers L0, . . . , Lt never change.



(a) A MHFG with 21 poses, 20 odometry factors (14 SMFs and 6 type #1 MMFs), and 5 loop closures

(b) The associations between the MHBT (left) and the Hypo-tree (right), and finding the correspondences of local hypotheses
Fig. 5: An example of inference process in a MHBT with the help of Hypo-tree. (a) A SLAM problem with ambiguity is represented as a MHFG. (b) The
corresponding MHBT and Hypo-tree are constructed from the MHFG and associated with each other (the MHCD γ

{r}
q in each clique Cq is associated

with the Hypo-layer Lr that is colored the same as the shadow of Cq). Hypo-tree is used to not only find the correspondences among the modes of MMFs
fMr and the hypotheses of MHVs θ{r}p , MHJDs φ{r}q , MHCDs γ{r}q , and MHMDs ω{r}

q , but also determine the output hypotheses of θ{r}p , φ{r}q , and
γ
{r}
q . For example: i) Linearization of the SMF between θ4 and θ5. ii) Linearization of the MMF fM1 . iii) Forming the MHJDs φ{r}13 of clique C13. iv)

Retraction (denoted as ⊕) of θ17 in C4, assuming the loop closing factor between θ10 and θ20 is newly added in this iteration (expanding the hypotheses
of θ17). v) Retraction of θ4 in C13 (merging the hypotheses of δ4).

C. Association and Correspondence

Every new MHV θp is associated with the latest Hypo-
layer Lr once added into the system, which can be denoted as
θ
{r}
p . Also, each value of θ{r}p (denoted as θ{r}p[j]) is associated

with each Hypo-node N{r}[j] (or local hypothesis h{r}[j] ) in Lr,
for 0 ≤ j < nr. When the local hypotheses of θp have to
be expanded (e.g. the example in Sec. IV-A), we only have
to update the association of θ{r}p to a different Hypo-layer
Lr′ , which can be denoted as θ{r}p →θ

{r′}
p , and expand the

number of values in θ{r
′}

p accordingly.
Based on the association, searching for the corresponding

values of local hypotheses between variables is simple. The
h
{r∗}
[j∗] of a MHV θ

{r∗}
p∗ that is the ancestor of h{r}[j] of another

θ
{r}
p can be found through traversing from N

{r}
[j] towards the

root till reaching Lr∗ (r∗<r). Or, the set of local hypotheses{
h
{r′}
[j′] |0≤j

′<nr′

}
of θ{r

′}
p′ that are the descendants of h{r}[j]

of θ{r}p can be found through traversing from N
{r}
[j] towards

the leaves till reaching Lr′ (r′>r). Same method is applied
to search for the hypotheses correspondences among other
components in the inference process (see Sec. V).

V. INFERENCE IN MULTI-HYPOTHESIS BAYES TREE

A. Multi-hypothesis Bayes Tree (MHBT)

Multi-hypothesis Bayes tree (MHBT) is an extension of
the original Bayes tree [11] that conducts efficient inference
for a MHFG. A MHBT stores multi-hypothesis conditional

densities (MHCD) γ
{r}
q in each of its cliques Cq , and

applies a multi-hypothesis inference process throughout all
the cliques (see Fig. 5) to solve for all the MHVs.

A MHBT can be constructed from a MHFG based on an
ordering of MHVs. In each clique Cq , the relevant SMFs,
MMFs, and all of the multi-hypothesis marginal densities
(MHMD) ω{r

∗}
q∗ that are passed from the children cliques Cq∗

(if any) are combined into a multi-hypothesis joint density
(MHJD) φ{r}q . Then, φ{r}q is factorized into a MHCD γ

{r}
q

and a MHMD ω
{r}
q . Finally, ω{r}q are passed to the parent

clique Cq′ . Repeating this process from leaves to root com-
pletes one iteration of inference, and several iterations are
needed before convergence for a nonlinear SLAM problem.
Notice that each φ

{r}
q , γ{r}q , and ω

{r}
q is associated with a

Hypo-layer Lr for the search of hypotheses correspondences
among them (see Sec. IV-C).

B. Incremental Update and Reordering

Because of the causality property of the growth of hy-
potheses, constructing MHBT incrementally from a growing
MHFG can achieve better efficiency than batch. As new
factors being added into the corresponding MHFG, the top
part of the MHBT can be rebuilt without changing the
subtrees that are not directly linked with the new factors.
Also, the hypotheses of the MHVs in those subtrees can
stay changed except for the hypotheses expansion of MHVs
during backsubstitution. In our implementation, the updated
MHVs in each iteration are reordered based on the CCO-



LAMD algorithm [4] (also applied in [11]). Moreover, since
all hypotheses have to share the same ordering, all the edges
that represent a mode in each multi-association factor are
regarded as connected, and all Boolean factors are regarded
as true (connected) in the ordering process.

C. Linearization

Each nonlinear factor fs (a SMF) or fM
r (a MMF) is

linearized with respect to a linearization point of all the
relevant MHVs Θs or Θr (see Sec. III-A) if required
(fluid relinearization [11] is applied). Consequently, each
local hypothesis h{r

′}
[j] of a multi-hypothesis linearized factor

(MHLF) l{r
′}

s (from fs) or lM{r
′}

r (from fM
r ) is calculated

by finding the correspondences among the local hypotheses
of Θs or Θr, and also the corresponding modes of fM

r for
l
M{r′}
r only (see Fig. 5-b). Notice the associated Hypo-layer
Lr′ of lM{r

′}
r might not be the same as Lr that results from

fM
r since some of its relevant MHVs θp might be affected by

later MMFs (thus r′≥r). Based on the Gaussian assumption
in Eq. 5, each MHLF is a set of Jacobian matrices A{r

′}={
A
{r′}
[j] |0≤j<nr′

}
, and each A{r

′}
[j] contains the right-hand-

side (RHS) vector as an additional column in practice.

Then, their Hessian matrices Λ
{r′}
[j] =

(
A
{r′}
[j]

)>(
A
{r′}
[j]

)
that

represents the local densities are generated for the next step.

D. Clique-based Elimination

Based on the ordering of MHVs in Sec. V-B and the clique
formation algorithm in [11], each MHLF is grouped into
one of the cliques. Then, the MHJD φ

{r′}
q of each clique

Cq can be generated as a set of Hessian matrices Φ
{r′}
q ={

Φ
{r′}
q[j] |0≤j<nr′

}
by summing up the corresponding Λ

{r}
[j]

and input MHMDs ω{r
∗}

q∗ from its children Cq∗ , which is
also a set of Hessian matrices . Because of the incremental
update strategy (see Sec. V-B), the number of hypotheses
nr′ of φ{r

′}
q in clique Cq is no less than nr∗ of any of its

input MHMDs ω{r
∗}

q∗ (r′≥r∗⇒nr′>nr∗ ). As a result, one
matrix of an input ω{r

∗}
q∗ can be reused by more than one

Φ
{r′}
q[j] of φ{r

′}
q , which is more efficient than conducting the

same process in individual Bayes trees for each h{t}[j] .
Finally, we apply partial Cholesky factorization on each

Φ
{r′}
q[j] of Φ

{r′}
q based on the frontals ΘF

q and separators ΘS
q

in Cq (as defined in [11]) and eliminate the frontals ΘF
q

from the rest of the inference process. The outputs are a
MHCD γ

{r′}
q in the form of a set of factorized Jacobian

matrices and a MHMD ω
{r′}
q again in the form of a set of

Hessian matrices. In practice, we cache ω{r
′}

q as in [11] to
save computations in incremental updates (see Sec. V-B).

E. Backsubstitution and Retraction

Following the backsubstitution algorithm in [11], we can
solve the multi-hypothesis linear updates (MHLU) δp ={
δp[j]|0≤j<nr′′

}
of each frontal θF

p ∈ΘF
0 from the root to

all the leaves. However, since δp is calculated from γ
{r}
q and

(a) Before pruning in L4 (b) After pruning in L4

Fig. 6: An example of hypotheses pruning and DoF recording in Hypo-
tree, where fM1 and fM3 (associated to L1 and L3) are type #3 MMFs.
With pruning in L1~L3 done (dark gray nodes) in previous updates (a), we
apply pruning in L4 with backward pruning (dark red nodes) (b). The part
of DoF that results from type #3 MMFs (which can be different for each
h
{t}
[j]

) is stored in each h{t}
[j]

(small boxes) while the rest part of DoF that

results from all other factors is shared by all h{t}
[j]

. E.g.: the DoF of h{4}
[1]

is 18+6=24.

each δp′ of its corresponding separator θp′ ∈ΘS
q , the number

nr′′ of hypotheses of δp is determined by the largest number
of hypotheses among γ{r}q and all δp′ , which might be greater
than nr of θ

{r}
p and even contain redundant duplicated

values. Thus, we first try to merge numerically similar values
in δp based on their hypotheses correspondences. Then, if the
number nr′′′ of hypotheses of δp is still larger than that of
θ
{r}
p after merging, we expand the hypotheses of θ{r}p to

match with it (θ{r}p →θ
{r′′′}
p , see Fig. 5-b) for retraction.

VI. HYPOTHESES PRUNING

A. Pruning Criteria

The unwanted and unlikely hypotheses (see Sec. III-D and
IV-A) are pruned to maintain efficiency right after the elim-
ination step (see Sec. V-D). First, every overall hypothesis
h
{t}
[j] in the the latest Hypo-layer Lt with its corresponding

squared system error e2
[j] larger than its 95% chi-square

threshold χ2
[j] is pruned. If the number nR1

of remaining h{t}[j]
is greater than a threshold ndesire, we further prune those
h
{t}
[j] with fewer degrees of freedom (DoF) d{t}[j] (defined

as “dimension of all factors”−“dimension of all variables”,
which is also used to calculate χ2

[j]). Then, if the number nR2

of remaining h
{t}
[j] is greater than another threshold nlimit

(e.g. all d{t}[j] are the same), we prune those with lower
chi-square probabilities one-by-one until the number nR3 of
remaining h{t}[j] is smaller than nlimit (nlimit≥ndesire allows

tracking more h{t}[j] when too many of them all seem likely).
In practice we use the error e′[j] of the linearized system in
each iteration to approximate e[j], which is calculated in the
elimination step (see Sec. V-D) as the bottom right element
of the matrix Γ

{t}
0[j] of the MHCD γ

{t}
0 of the root clique C0.

Each DoF d
{t}
[j] is recorded in two parts as shown in Fig. 6.

B. Pruning in Both Trees

Once an overall hypothesis h{t}[j] is pruned, we flag the

corresponding Hypo-node N{t}[j] as pruned, and no children

will be created from N
{t}
[j] (see Fig. 6-a). Also, after finishing

flagging in the last Hypo-layer Lt, we check every unflagged



(a) Type #1: Multi-measurement factor (based on city10000 dataset)

(b) Type #2: Multi-association factor (based on Victoria Park dataset)

(c) Type #3: Boolean factor (based on city10000 dataset)

Fig. 7: Speed (left column) and accuracy (right column) analysis of each
type of MMF. Notice that in (b) we take the complete iSAM2 result as
groundtruth since the real groundtruth is unavailable.

(a) Type #1 and type #2 (b) Type #1 and type #3
Fig. 8: The example results of MH-iSAM2 with two types of ambiguities.

Hypo-node N
{r}
[j] from Lt−1 to L1 if all its children are

flagged (see Fig. 6-b). If so, we flag N{r}[j] as well. Then, the

associated values of those flagged N{r}[j] in each MHV θ
{r}
p

and MHCD γ
{r}
q of the MHBT are removed immediately.

Notice that we only remove the associated Ω
{r}
q[j] of a cached

MHMD ω
{r}
q when it is used in the incremental update step.

VII. EXPERIMENTAL RESULTS

A. Experimental Settings

We evaluate the accuracy and efficiency of MH-iSAM2
through simulations and a real-world experiment. The algo-
rithm is implemented in C++ and executed on a desktop with
an Intel Core i7-4790 processor. Whenever a new observation
is added into the system, we run one iteration of update and
calculate the most up-to-date estimates of all MHVs.

B. Simulation Results

All three types of ambiguities (see Sec. III-C) are sim-
ulated based on the city10000 or Victoria Park dataset
by randomly adding wrong measurements into them. The
example outputs are shown in Fig. 1. From Fig. 7, we can
tell that the speed of MH-iSAM2 is constant to the overall
complexity of ambiguity (defined as

∏t
r=1mr). Moreover,

MH-iSAM2 is efficient enough to track up to nlimit = 30
hypotheses within less than 30× of time of the original
iSAM2. However, the speed varies in each iteration due to
the extra computation for hypothesis handling. Also, since
each mode of every type #2 or #3 MMF affects the topology
and density of MHFG, it affects the speed as well.

Method RMSE
iSAM2 (o1) 0.140m
iSAM2 (o2) 0.359m

iSAM2 (joint) 0.132m
MH-iSAM2 0.129m

Fig. 9: The RMSE evaluations, trajectories, and output map of the hypothesis
with smallest error from MH-iSAM2 of a real-world dataset (left to right).

As for the accuracy analysis of the hypothesis with the
smallest root-mean-square error (RMSE) in Fig. 7, we can
tell that MH-iSAM2 can keep track of the “correct hypothe-
sis” with reasonable cost of time. Although some wrong loop
closures might be added into all remaining hypotheses (see
Fig. 1-c and 7-c), their pollution to the outputs are hardly
visible since they all pass the chi-square threshold.

C. Real-world Experiment

A pose graph is constructed by two odometry estimated
using two different settings of the fast dense RGB-D odom-
etry in [8] and loop closures detected and registered as in
[8]. Following the idea in Sec. III-C, each two VO estimates
between the same poses are modeled as a type #1 MMF
if their difference is too large (e.g. one gets bad estimate),
or loosely-coupled as two SMFs otherwise. From the results
in Fig. 9, we find that MH-iSAM2 (with 25 complexity)
outperforms the conventional single-mode framework that
takes either each VO individually or both of them as input.

D. Discussions

Even though each test case in the analysis only contains
one type of MMF, and each tested MMF only contains 2
modes, there is no constraint on the number of modes of
each MMF or combinations of their types in the current MH-
iSAM2 framework (see Fig. 8). However, MH-iSAM2 can
still be improved and extended in several other aspects. First,
the type #3 MMF can actually be combined with type #1 or
type #2 MMF to represent an additional possibility that all
the existed modes are invalid. Second, since the merging
of δp does not consider the entire numerical changes until
convergence, some of the θp might end up containing more
hypotheses than needed after being expanded (e.g.: θ1 in
Fig. 5). Third, ndesire and nlimit should be adjusted online
based on the current complexity of ambiguity to avoid losing
track of the correct hypotheses. Lastly, even though current
MH-iSAM2 framework deals with discrete ambiguity only,
modeling the degeneracy and continuous ambiguity in the
same framework seems possible yet requires more studies.

VIII. CONCLUSION

We present the novel online incremental nonlinear op-
timizer MH-iSAM2 to handle the ambiguities in SLAM.
Based on the Hypo-tree, MHBT, and the hypothesis pruning
algorithm, MH-iSAM2 can take multi-mode measurements
as inputs and output multi–hypothesis results efficiently,
therefore greatly enhance the robustness of SLAM systems.

In the near future, we plan to explore the possibility of
MH-iSAM2 as discussed in Sec. VII-D and combine MH-
iSAM2 with control or planning modules to improve the
overall robustness of real robotic systems.
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