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Abstract—In this work, we develop a novel keyframe-based
dense planar SLAM (KDP-SLAM) system, based on CPU only,
to reconstruct large indoor environments in real-time using
a hand-held RGB-D sensor. Our keyframe-based approach
applies a fast dense method to estimate odometry, fuses depth
measurements from small baseline images, extracts planes
from the fused depth map, and optimizes the poses of the
keyframes and landmark planes in a global factor graph using
incremental smoothing and mapping (iSAM). Using the fast
odometry estimation, correct plane correspondences may be
found projectively, and the pose of each frame can be estimated
accurately even without sufficient planes to fully constrain the
6 degree-of-freedom transformation. The depth map gener-
ated from the local fusion process generates higher quality
reconstructions and plane segmentations by eliminating noise.
Moreover, explicitly modeling plane landmarks in the fully
probabilistic global optimization significantly reduces the drift
that plagues other dense SLAM algorithms. We test our system
on standard RGB-D benchmarks as well as additional indoor
environments, demonstrating its state-of-the-art performance as
a real-time dense 3D SLAM algorithm, without the use of GPU.

I. INTRODUCTION

The capabilities of visual SLAM algorithms have greatly
expanded in recent years. Sparse or semi-dense 3D recon-
structions and accurate trajectories may be generated over
large-scale scenes using monocular cameras—although they
can only be accurate up to a scale factor [20, 7]. Dense
3D reconstructions may also be generated using RGB-D
sensors by fusing data from every frame into the model,
a process that must be accelerated by a GPU in order to
achieve real-time performance [21, 15, 28, 29]. Both of
these approaches suffer from drift accumulation, which may
be partially compensated for by introducing explicit loop
closure constraints, which is a common practice in practically
all modern SLAM systems. However, when mapping indoor
scenes or other highly planar environments, planes may be
directly modeled as landmarks in order to further constrain
the camera motion and significantly reduce drift. Although
a planar SLAM solution might not be able to preserve the
details of non-planar regions very well compared to un-
structured dense SLAM methods, [5, 17, 28, 29], the planar
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Fig. 1: Our KDP-SLAM system can reconstruct large indoor environments
with loops. Top: An example of dense pointcloud map. Bottom: Dense map
with false-colored planes.

regions can still preserve the general geometric structure of
indoor environments in a much cheaper dense representation.

While various algorithms have been proposed recently
for performing planar SLAM with monocular or RGB-D
data (to be discussed in detail in section II), there remain
key shortcomings which limit their applicability. All known
dense planar SLAM algorithms in the literature require
GPU acceleration for real-time (30 fps) performance, which
generally prohibits the use of such systems on mobile de-
vices or robots. In real-world environments, there are often
insufficient planar features to fully constrain the camera
motion, which can cause large amounts of drift. Lastly,
recent planar SLAM work has demonstrated reconstructions
only on a small scale (room-size rather than building-size).
In this paper, we propose a keyframe-based dense planar
SLAM system that addresses all of these problems in a
computationally efficient manner.

First of all, we apply a keyframe-based framework in our
planar SLAM solution to achieve real-time operation on a
CPU. This structure eliminates the need to extract planes
and perform factor graph optimization at every frame, which
are the most expensive components of this system.

Obtaining accurate pose estimates at every frame is essen-
tial to our mapping algorithm. Feature point-based odometry
methods such as Fovis [12] perform poorly in scenes absent



of rich texture, which are commonly encountered in indoor
environments with large planar structures. On the other hand,
dense methods, such as iterative closest point (ICP) [4] and
dense RGB-D odometry [24, 16], can be more robust given
that they take the entire image and 3D structure into account.
However, because of the expensive calculations over all the
points and pixels, dense methods usually require parallel
computing using GPU for real-time applications [28, 29]. To
achieve higher efficiency, we develop an odometry algorithm
that combines (1) an original geometric alignment method in
the vein of ICP that utilizes planar regions and (2) concepts
from the semi-dense and dense visual odometry literature
[6, 16, 24]. Our algorithm runs faster than real-time on CPU
only and is suitable for our keyframe-based planar SLAM
approach.

Using the pose estimates from our odometry algorithm,
depth information from small baseline images is fused in
a local map to reconstruct dense 3D structure and extract
accurate plane models. Additionally, we develop a novel
plane association algorithm with a point-to-model matching
criteria, which considerably improves the accuracy of plane
matches. A loop closing method is also integrated into our
system, which conducts place recognition first and then
closes the loop with both keyframe-to-keyframe and plane-
to-plane constraints.

In summary, there are four key contributions in this work:

1) We develop a fast dense RGB-D odometry algorithm
based on planar structure and concepts from existing
visual odometry methods.

2) We generate a local depth map to improve the quality
of the 3D reconstruction and plane extraction.

3) We introduce a novel projective data association algo-
rithm for matching planes.

4) Our system is the first known dense planar SLAM
algorithm capable of real-time (30 fps) CPU only
execution.

In the following section we discuss related work. In
section III we present the multi-threaded structure of our
planar SLAM system. In section IV we introduce the fast
dense odometry method and its details in implementation.
Section V describes the local dense fusion algorithm and
explains how it benefits plane extraction. In section VI we
highlight the key components for planar SLAM with factor
graph, including mathematical representation, optimization,
data association and loop closing. Section VII shows exper-
imental results and comparisons. Finally we summarize the
contributions and discuss future work in section VIIIL.

II. RELATED WORK

The idea of using planar features to solve SLAM problems
has been studied often in recent years. Some earlier works
[22, 27, 18] extract planes from range sensors for mapping
tasks. Though these do not utilize hand-held RGB-D sen-
sors, they demonstrate the feasibility of SLAM with planar
structures.

In our previous work [13], a quaternion-based minimal
plane representation is utilized to update the planes during

optimization without encountering singularities. However, it
assumes the plane measurements fully constrain the camera
motion, which is often not the case in real-world envi-
ronments. Point-plane SLAM [26] used the combination
of three point/plane primitives to fully constrain camera
poses and generate a plane-based 3D model. In contrast
to only using one or two feature points to constrain the
unconstrained directions from insufficient plane associations,
we make use of a dense odometry method to fully constrain
the poses first and later add in planar constraints among
keyframes to further enhance the robustness of the system.
Dense planar SLAM [23] uses a dense ICP method to
estimate sensor poses which requires GPU for real-time
computation. Although it extracts planes from a global dense
map generated by point-based fusion [15], the planes are not
used as landmarks to optimize the camera poses globally.

CPA-SLAM [19] also requires GPU for tracking towards
both keyframes and plane models. Although it applies a soft
labeling technique to reduce the effect of incorrect plane
segmentation on the pose estimate, the plane model can
still be wrong in the global optimization. While our method
hard labels segmented planes, the planes extracted from the
smoothed depth map are noticeably more accurate than those
extracted from the raw data.

A variety of general-purpose dense SLAM algorithms
have been presented in the literature which do not explic-
itly model planes. In this domain, ElasticFusion [29] and
Kintinuous [28] are several state-of-the-art GPU-accelerated
methods. However, ElasticFusion is designed for integrating
many images of the same small-scale scene from different
viewpoints, rather than for large-scale mapping. And even
though Kintinuous has successfully run on some of the
largest environments found in the literature, we can do better
by exploiting the structure of indoor environments, as shown
in the results. More recently, the Matterport [1] scanner has
been developed to generate very accurate 3D reconstructions,
but it uses an offline algorithm to align multiple 360° point-
clouds and usually takes hours for processing. In contrast,
our proposed system is a fully online, CPU-based SLAM
system which provides accurate camera trajectories and 3D
models of indoor environments.

III. SYSTEM STRUCTURE

Our KDP-SLAM system consists of three concurrent
threads (see Fig. 2): (1) the fast dense RGB-D odometry
method and frame labeling process, (2) the selective local
depth fusion algorithm, and (3) global planar mapping.

The fast dense odometry method estimates the pose of
every frame relative to that of the most recent reference frame
R;. Precise transformations (solid black lines in Fig. 2-a) are
estimated for specially selected frames: keyframes, reference
frames, and fusion frames. Rough transformations (dotted
black lines in Fig. 2-a) are estimated for all other frames. If
the new frame’s estimated pose is too far away from that of
R;, it is set as the next reference frame R; ;.

Each local interval L;, which extends from keyframe K;
through the last frame before keyframe K,,;, maintains
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Fig. 2: The KDP-SLAM system consists of three concurrent threads: (a) fast dense RGB-D odometry algorithm and frame labeling process, (b) selective
local depth fusion algorithm, and (c) global planar mapping. Note that for the set of all keyframes /C, all reference frames R, and all fusion frames U,
K C R C U holds. Also, the loop closure constraint factors between keyframes are not shown in the figure for readability.

a distinct depth map which is initialized with the depth
image of K;. Depth measurements from selected fusion
frames within L; are projected into and fused with the depth
map using the frame’s precisely estimated pose. A frame is
selected as a fusion frame if its pose is too far from that of
the previous fusion frame. In principle, every frame could
be selected as a fusion frame, but in practice they must be
sparsely selected in order to achieve real-time performance.

Selection of a new keyframe K,;,; (based on the pose
relative to K;) launches the global planar mapping thread.
This processes the previous local map L; in order to: segment
planes, fit planes to point clusters, perform data associa-
tion, update the factor graph, perform global optimization,
and find loop closures. The pose z; of K; and the states
Tp, ..., T Of the relevant landmark planes IIL,,...,II,, are
added into a factor graph as variable nodes and linked with
each other by factors. The factors between keyframes encode
odometry constraints o1, ..., 04, and those between keyframes
and planes encode plane observations cy, ..., cq (see Fig. 2-
¢). By accumulating the relative pose estimations along the
references frames in the local interval, we can calculate the
relative transformation between consecutive keyframes (the
gray arrows from Fig. 2-a to 2-c) and add it into the graph
as an odometry constraint. The system applies iSAM [14]
to update the graph incrementally whenever a pose node
of a new keyframe is added into the factor graph with its
corresponding factor nodes. When a loop is detected, the
entire graph is batch optimized.

IV. FAST DENSE RGB-D ODOMETRY

At every new frame F; we estimate the camera pose
relative to the most recent reference frame R,. Each frame’s
pose is initialized using the previous frame’s pose. For fusion
frames (and therefore also reference frames and keyframes),
we estimate poses using a precise method, and for all

other frames we estimate rough transformations for the sake
of computational efficiency. For both rough and precise
odometry estimation we integrate one geometric method
and one photometric method into a combined optimization
problem as in [28, 29], since these two kinds of methods
are complementary and can achieve better accuracy and
robustness together:

Lol = Egeo + /\Epho- (D

We combine our novel iterative projected plane (IPP)
method (as the geometric component) and a pyramid dense
RGB-D odometry method [24, 16] using Laplacian images
(as the photometric component) to estimate the rough
odometry. Similarly, we combine IPP with our semi-dense
RGB-D odometry (SRO) method, as the geometric and
photometric components, respectively, to estimate the
precise odometry. The weighting A is used to adjust
the relative importance of the two error terms in the
optimization. The remainder of this section describes these
three methods in detail.

A. Iterative Projected Plane (IPP)

The basic idea of IPP algorithm is to only use the planar
regions for 3D registration, which allows a much faster pose
estimation if sufficient planar regions are observed in both
frames, F,, and R,. First, planes are fitted to small regions
from all over the depth image of each frame. Then, camera
projection is applied to find associations between the planes
in the two frames. By minimizing the distances between the
associated plane pairs, the relative transformation between
the two frames can be updated iteratively until convergence.
However, it is hard to extract accurate and robust small
planar regions efficiently from the noisy raw depth data.



Therefore we preprocess the depth image to reduce noise in
the potentially planar regions before extracting the planes.

In general indoor scenes, if a region is smooth in intensity
(color) it is likely to be smooth in depth as well. As a
result, we iteratively smooth the depth image in areas with
low intensity gradient with a three-pixel kernel. Note that
we do not smooth the entire depth image so that the non-
planar regions with strong geometric features (e.g. edges and
corners) will not be averaged out and mistaken as planar
regions.

After the depth smoothing, we extract planes from small
regions in the partially-smoothed depth image. First, we uni-
formly divide the depth image into small grids (10X 10 pixels
in our implementation). In each grid, we uniformly sample
several points and calculate the local normal directions of
those points. If more than a threshold of normal vectors are
close to parallel, we use these points and normal vectors to
generate a plane model, find inlier points in the same grid,
and refine the ?lane model using all the inliers (see Flg 3-
a). A plane 7Tn in F, is corresponded to a plane 7rr in R,

. . . T
if the projection of the center point el = [zr[f] y,[f] Y }
of 7r1[f] onto R, is within the grid that contains m[i] given
the current estimation of the relative transformation between
these two frames. With m plane correspondences found in
any iteration, the relative transformation between the two

frames can be found by minimizing the geometric error:
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(B 7 atyty tZ]T is the minimal representation of the
desired 6 DoF relative transformation with three rotations
(B, v, ) and three translations (¢, t,, t.). R(§) and t(§)
are the corresponding rotation matrix and translation vector
of &. cn] is approximated as the intersection of 77,[1} and the
projection ray that goes through the center pixel of the grid

, _ AT
that contains 7%, nl = {arm bl c[z]} is the unit normal
vector and dr[ 1 is the distance parameter of the plane 7r[ ],

allz 4+ by 4 iz + d = 0, 4)
that corresponds with 7TI[12]. Note that Eq. 3 is an approxima-
tion of Eq. 2 when the transformation is small, which is a
valid assumption for most 30 fps hand-held SLAM problems.
IPP can run at about 100 fps on a single thread of a CPU due
to the projective plane association and the relatively small
number of planes compared to the number of points in the
raw image.

Since IPP relies on planar surfaces only, it cannot find
accurate pose estimations alone if sufficient planes are not
observed and matched in the scene (e.g. cluttered scene

(a) Small planar regions in IPP  (b) Downsampled Laplacian image

(c) Selected pixels in SRO

(d) Final alignment

Fig. 3: A rough odometry transformation is estimated by combining IPP
(a) and pyramid odometry with Laplace images (b). Using this pose as an
initialization point, we can combine IPP (a) and SRO (c) to estimate a more
precise transformation (d).

without enough planar surfaces). As a result, we integrate
other photometric methods with IPP to solve this problem.

B. Pyramid Dense RGB-D Odometry

Our pyramid dense RGB-D odometry method mostly
follows [24, 16] except that we utilize the Laplacian of
the downsampled images. We use Laplacian (see Fig. 3-b)
instead of grayscale images to alleviate the effect of illumina-
tion variation. In each iteration of optimization, our pyramid
RGB-D odometry method minimizes the photometric error:

Fpo =3 | — rt
=1

where Jr[i] is the Jacobian of the i-th valid pixel in the
downsampled Laplacian image of R, with respect to a
6 DoF perturbation (3 rotations and 3 translations), and
rlil is the residual between each valid pixel pair in the
downsampled Laplacian image of R, and the reprojection
of the downsampled Laplacian image of F},. n is the number
of valid pixel pairs that are used in each iteration. Note that
we start at the 5th pyramid level (coarsest) and stop at the 3rd
for computational efficiency, only estimating rotation at the
5th level. In addition to efficiency, this coarse-to-fine scheme
helps handle larger motion and avoids the optimization
getting stuck in wrong local minimum.

C. Semi-dense RGB-D Odometry (SRO)

Inspired by [6], our SRO algorithm only uses few pixels
with high intensity gradients in the residual minimization
process instead of the entire image [24, 16] for better
efficiency. This simplification is based on the fact that many
of the calculations on the regions with low intensity gradients
do not contribute much to optimizing odometry and therefore
can be discarded without losing much robustness.

S
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Fig. 4: (a) Color image from a keyframe shows a whiteboard offset from
a wall by approximately lcm. (b) The segmentation algorithm cannot
discriminate between the wall and the whiteboard when performed on the
raw depth map. (c) The fused depth map allows the algorithm to correctly
segment the wall and whiteboard as separate planes.

Ideally we can directly select those pixels with large
gradients only and ignore all others. However, if a high
intensity gradient region corresponds to a discontinuous
structure in the real world, the depth measurements of these
pixels are often missing, and their reprojection cannot be
calculated. As a result, we first choose some interest pixels
with large gradients, and then select all the pixels with valid
depth data within a small patch around each interest pixel
(see Fig. 3-c) for calculation. Again, with the semi-dense
pixels selected from the patches in both R, and F, the
relative transformation between the two frames can be found
by minimizing the photometric error in Eq. 5. er is now the
Jacobian of the i-th selected pixel in the grayscale image
of R, with respect to the same 6 DoF perturbation, and
rli = p!i] — pr[fq is the residual between each selected pixel
py] in R, and corresponding selected pixel p,[f/] in F;,, with
correspondences found projectively. n is again the number
of valid pixel pairs that are used in each iteration.

D. Reference Frame Sharing

Because we share reference frames and warp input pixels
toward the reference frame in each iteration of the optimiza-
tion, the Jacobians of the image pyramid and the semi-dense
patches in SRO are calculated only when a new reference
frame is defined, which saves significant computation time
compared to calculating the Jacobians in each frame. Another
advantage of reference frame sharing is that there might
be less drift accumulation compared to a frame-to-frame
formulation. The overall dense RGB-D odometry method can
operate faster than real-time (more than 50 fps) on a single
CPU, which leaves plenty of time for data fusion and planar
mapping in our keyframe structure.

V. LocAL DEPTH FUSION

The fast odometry provides a camera pose estimate at
every frame, enabling data fusion and more precise planar
mapping than would be possible without such pose estimates.
The depth map M; of a keyframe K is initialized simply
with the depth image of K. Utilizing the same camera-
motion criteria used to select keyframes, but with smaller
thresholds, fusion frames are regularly selected to fuse depth
data into the current local map M;. The depth measurements
from these fusion frames are projected into the depth image
of K; based on the odometry estimation and then fused
into M; using a running average method for each pixel.

To avoid fusing incorrectly associated depth measurements,
only measurements that are within a small threshold of the
keyframe’s corresponding depth measurement are fused.

With reasonably accurate pose estimates, the local fusion
process produces a significantly smoothed model after fusing
as few as 3-4 frames. The frequency of fusion frame selection
may be adjusted to allow for real-time performance of the
overall planar SLAM system. Fusion frames will continue to
be selected and fused with M; until a new keyframe K, is
selected, at which point planes will be segmented from M;
and a new local map M;; will be initialized.

We use the clustering algorithm described in [11] for plane
segmentation. As shown in Fig. 4, the fused local maps
enable more precise plane segmentations than are possible
using just a single frame.

VI. GLOBAL MAPPING WITH PLANES

Although the odometry method described in section IV
provides pose estimates at every frame, it is not as accurate
or robust as state-of-the-art methods such as [16] due to the
real-time and CPU only restrictions. Thus, the algorithm for
finding plane correspondences must be robust to uncertainty
in the pose estimate. Both our novel data association method
for plane features and a procedure for performing global loop
closure help to generate a globally consistent map. These
methods are detailed in this section along with the plane
extraction and representation.

A. Plane Representation

An infinite plane landmark is represented as a unit length
homogeneous vector w = [nT d ]T € P3 in projective
space in our global optimization, where n is the normal
vector of the plane and d is its distance from the origin.
By enforcing ||| = 1 we parametrize planes on S3. We
deal with over-parametrization by using the same minimal
representation w € R3 as for quaternions, exploiting the
exponential map

exp (w) = ( 3sine (% [w]) w ) €53 (6)
cos (5 [lw|)
for updating the plane during optimization, as discussed in
more detail in [13].

B. Plane Fitting and Uncertainty Estimation

Following segmentation, a plane model is fitted to each
point cluster using the linear model described in [8]: §[!l =
aul? + bl + ¢, where 617 is the disparity measurement,
ulll and vl? are the pixel coordinates, and a, b, and ¢ are
the unknown parameters that depend on both the (known)
camera intrinsics as well as the parameters of the underlying
plane 7. Our noise model assumes additive Gaussian noise
on disparity, which leads to the standard least squares model
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The optimal parameters are solved for as 3* =
(XTX) ~' X Ty which may be used to compute the optimal
plane parameters w* = T (3*). The explicit form of T is
omitted for brevitly. The covariance of the parameters 3 is
Y3 = (XTX) . Xp is transformed to the space of the
plane parameters 7 using the Jacobian of 7' computed nu-
merically: ¥ = JrXz.J}. However, since global optimiza-
tion utilizes the minimal parametrization to update planes,
the covariance matrix must match the dimensionality of the
minimal parametrization (three). Therefore, we compute the
3 x 3 covariance matrix 3/ = JlZ,rJlT using the Jacobian
of the log map, which is described in [13]. This is the final
covariance matrix that is used in the global optimization.

C. Data Association

We implement a novel projective data association algo-
rithm for matching planes between keyframes. Once planes
are extracted from keyframe K;_i, all of the landmarks seen
in the previous 10 keyframes are considered candidates for
data association and are projected into the frame of K;_;
using the globally optimized pose estimates. An exhaustive
search across measurement-landmark pairs is used to find the
best correspondences. Three criteria must be met in order to
match a new plane measurement with a previously existing
landmark. The first two criteria are commonly used in the
literature: the normals must be within a small threshold of
each other as well as the distances of the planes from the
origin (we use 10° and 0.2m). The last criterion computes
the residual of the landmark’s plane model using the points
from the plane measurement, normalized for the number of
points. That is, for landmark 1I,, and measurement c,, we
compute the cost

Iy = %o,

C =
rq n

®)
where y, and X, are the corresponding data from mea-
surement ¢, as defined in Eq. 7, n is the number of
points observed in measurement c,, and 3, is the vector of
regression parameters corresponding to landmark 11,,. We use
a threshold of 10 for C),,, which was empirically determined
to minimize the number of false positive correspondences
while allowing for some uncertainty in the odometry mo-
tion estimate. Plane measurements from K;_; that are not
matched with previously observed landmarks are added to
the graph as new landmarks.

D. Loop Closure

Although explicitly mapping planar features significantly
helps reduce drift, the optimized trajectory is still prone
to some amount of drift. Therefore, a global loop closure
algorithm is necessary to correct for the drift that inevitably
accumulates. Plane features are generally not descriptive
enough to form the basis of either a place recognition or
loop closure algorithm. We therefore utilize a bag-of-words
approach to place recognition in order to register loop closure
candidates [9]. Grayscale images from each keyframe are

cached in a database which is queried to find matches
whenever a new keyframe is added.

Upon receiving a loop closure candidate, we implement
a least squares method for finding a transformation between
two sets of 3-D points [2]. SURF [3] keypoints are extracted
from the two keyframes in consideration, matches are found
efficiently using an approximate nearest neighbor algorithm,
and 3D point locations are generated by projecting the points
according to the corresponding depth measurements. We
utilize RANSAC to find a robust transformation between
the two sets of 3D keypoints and add it to the graph as a
constraint between the two keyframes. Finally, after solving
the graph with the new loop closure constraint, we attempt
to merge planes viewed in the two involved keyframes using
the data association method presented in section VI-C. This
further constrains the solution and reduces the duplication of
plane landmarks.

VII. EXPERIMENTAL RESULTS

A. Experimental Settings

We implement KDP-SLLAM on a desktop computer with
an Intel Core 17-4790 processor, and GPU being used only
for visualization, not computation. There are four separate
threads in the system: fast odometry estimation, local dense
fusion, planar mapping (including plane extraction, asso-
ciation, factor graph optimization, and loop closure), and
visualization. The grid size for extracting planes in IPP
algorithm is 20 x 20, and the patch size around an interest
pixel in SRO algorithm is 4 x 4. Our implementation, which
has not been optimized yet, runs at about 30 fps in general.

We compare our KDP-SLAM to other dense RGB-D
SLAM and planar SLAM methods on the synthetic ICL-
NUIM datasets [10] and the real-world TUM RGB-D
datasets [25] quantitatively. Additionally, we use an ASUS
Xtion Pro Live to collect our own larger-scale RGB-D
datasets with 30 fps and 640 x 480 resolution in both color
and depth images. Since ground truth trajectories and maps
are not available for our own sequences, we provide the 3D
reconstructions generated by KDP-SLAM and Kintinuous
[28] (a state-of-the-art, large-scale dense SLAM algorithm)
for qualitative evaluation. ElasticFusion, which is another
state-of-the-art dense SLAM system, fails catastrophically
on our large-scale datasets since it is not designed for such
large-scale environments.

B. Results

Table I shows the absolute trajectory (ATE) [25] root-
mean-square error (RMSE) of the resulting trajectories of
the living room sequences with noise in the ICL-NUIM
synthetic dataset. See Fig. 5-a for sample 3D reconstruction
using KDP-SLAM. The trajectory error of our method is
comparable to the state-of-the-art, with KDP-SLAM outper-
forming each of the alternative methods on at least one of
the sequences. Note that KDP-SLAM consistently outper-
forms the only other CPU-only algorithm, and occasionally
outperforms the GPU-accelerated systems.



TABLE I: Comparison of ATE RMSE (unit: m) on the synthetic ICL-NUIM
datasets. The italicized methods require GPU for computation. The errors
that are smaller than ours are underlined.

[ System [ IrkeOn [ Irktln [ Irkt2n [ Ir ki3n |
DVO SLAM [17] 0.104 0.029 0.191 0.152
RGB-D SLAM [5] 0.026 0.008 0.018 0.433

Kintinuous [28] 0.072 0.005 0.010 0.355
ElasticFusion [29] 0.009 0.009 0.014 0.106
Dense planar SLAM [23] 0.246 0.016 - -
CPA-SLAM [19] 0.007 0.006 0.089 0.009
KDP-SLAM (Ours) 0.009 0.019 0.029 0.153

(b)

Fig. 5: KDP-SLAM reconstruction of (a) ICL-NUIM “Ir kt2n” sequence and
(b) TUM “freiburg3_long_office_household” sequence (10x downsampled
pointcloud).

Although our system can reconstruct the general structure
from the TUM datasets (see Fig. 5-b), its quantitative results
(ATE RMSE) are about 5 times worse than the results of
other state-of-the-art methods. This is entirely expected, as
KDP-SLAM utilizes a much cheaper and less robust odom-
etry method than those algorithms, which makes tracking
difficult in the presence of strong rotation, image blur, rolling
shutter effects, lighting changes or misalignment between
color and depth images (all of which are present in the TUM
sequences). Furthermore, many of the sequences from the
TUM dataset capture highly cluttered environments with few
distinguishable planes, whereas KDP-SLAM is specifically
designed for highly-planar environments.

Fig. 7 shows a sample dataset gathered using a hand-held
Asus Xtion Pro Live. The sequence traverses two corridors
on different floors and the connecting staircases before
finishing with a large loop closure. As we can observe from
the results, Kintinuous distorts the planes even with loop
closing, while KDP-SLAM maintains the planar structure
and significantly reduces the drift in the map. More results
are shown in Fig. 1 and 6 (10x downsampled pointcloud).

VIII. DISCUSSION AND CONCLUSION

We present a novel keyframe-based dense planar SLAM
(KDP-SLAM) approach to online 3D reconstruction of in-
door environments. The fast odometry method enables nav-
igation of environments with insufficient planar constraints
(such as corridors) as well as fusion of depth images into
a local map, which aids the process of plane segmentation.
Large-scale drift is reduced by accurately associating planes
using the novel projective plane association algorithm and
by incorporating explicit pose-to-pose and plane-to-plane
loop closure constraints. Through experiments, we demon-
strate the advantages of our system in large-scale mapping,
especially in keeping the shape of planar structures from

Fig. 6: Reconstruction of two rooms using our KDP-SLAM system (top)
and its corresponding false-colored planar map (bottom).

distortion, and its efficiency as a CPU-based dense RGB-D
SLAM system with real-time performance.

There are several crucial limitations of our current system.
The odometry estimates become particularly inaccurate in
scenes with one or two planes and little-to-no texture. This
is often encountered when turning corners in corridors with
blank walls. Although the odometry tracking rarely fails
catastrophically, the pose of the sensor cannot be relocalized
toward the existing map or keyframes in such a case. Also,
the number of keyframes can grow unbounded even if we
keep mapping within the same area.

In the future, this real-time SLAM system may be im-
proved by incorporating IMU data in the optimization in
a tightly-coupled manner for robust odometry estimation.
The adoption of a strategy to reuse keyframes would further
enhance the large-scale applicability and allow for redundant
mapping of small areas over long time-scales. The robustness
of the system could also be improved by incorporating struc-
tural models of other features typical to indoor environments
besides planes, such as staircases, pillars, etc. The visual
quality of the map could be improved with texture mapping.
Another future direction is to recover dense 3D for complex
structure locally anchored to planes so that they can be
optimized all together globally.
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