
Optimized CNF Encoding for Sudoku Puzzles ?

Gihwon Kwon1, Himanshu Jain2

1 Department of Computer Science, Kyonggi University
khkwon@kyonggi.ac.kr

2 Department of Computer Science, Carnegie Mellon University
hjain@cs.cmu.edu

Abstract. A Sudoku puzzle can be regarded as a propositional SAT
problem. Various encodings are known for encoding Sudoku as a Con-
junctive Normal Form(CNF) formula. Using these encodings for large
Sudoku puzzles, however, generates too many clauses, which impede the
performance of state-of-the-art SAT solvers. This paper presents an op-
timized CNF encoding in order to deal with large instances of Sudoku
puzzles. We use fixed cells in Sudoku to remove obvious redundancies
during the encoding phase. This results in reducing the number of clauses
in the CNF encoding and a significant speedup in the SAT solving time.

1 Introduction

Sudoku puzzle can be regarded as a propositional satisfiability (SAT) problem.
A given puzzle can be formulated as a SAT formula which is satisfiable if and
only if the puzzle has a solution. Subsequently, the formula can be checked for
satisfiability using state-of-the-art SAT solvers. A formula in CNF is represented
by a set of clauses. The standard input format for most SAT solvers is CNF.
Recently, various encodings - the minimal one [1], the efficient one [2], and the

extended one [1] - were proposed to formulate Sudoku into a set of clauses. The
number of clauses generated from these encodings for n × n Sudoku puzzle is
O(n4). These encodings allow us to solve small instances of Sudoku puzzle such as
9×9 efficiently. However, these encodings generates too many clauses for Sudoku
puzzles of large size such as 81×81. This in turn makes the satisfiability checking
of the generated encodings difficult. This paper presents a new Sudoku encoding
that reduces the number of clauses in order to deal with large puzzles. One way
of reducing the size of the formula is to work on sophisticated encoding which
removes redundant clauses and eases the burden of SAT solving. A fixed cell in
Sudoku has a pre-assigned number which is not changed. Using the knowledge
? This research was sponsored by the Gigascale Systems Research Center (GSRC), the

Semiconductor Research Corporation (SRC), the Office of Naval Research (ONR),
the Naval Research Laboratory (NRL) under contract no. N00014-01-1-0796, the
Army Research Office (ARO) under contract no. DAAD19-01-1-0485, and the Gen-
eral Motors Collaborative Research Lab at CMU. And this work also was supported
by grant No. R01-2005-000-11120-0 from the Basic Research Program of the Korea
Science & Engineering Foundation.



2 Lecture Notes in Computer Science: Authors’ Instructions

of fixed cells during the encoding of a puzzle can lead to the removal of obvious
redundancies. One advantage of removing such redundancy is that the size of
the CNF file produced can be significantly smaller. On some benchmarks we
observed a reduction of 79X in the size of the CNF encoding. This in turn leads
to dramatic improvements in the SAT solving time, which we suspect is due to
reduced cache and memory overheads. With the proposed encoding, all sizes of
the puzzles from 9× 9 to 81× 81 can be solved with less effort as compared to
previous encodings.

2 Previous Encodings

Sudoku is a number placement puzzle where one assigns a number to each cell.
Consider the 9 × 9 puzzle shown in Fig. 1. The aim is to assign a number
from 1 to 9 in each cell so that each row, column, and block contains only one
instance of each number. A Sudoku puzzle can be regarded as a SAT problem. A

Fig. 1. Sudoku puzzles and its solution

SAT problem is represented using propositional variables, which can be assigned
truth values 1(true) or 0(false). In an n×n Sudoku puzzle each cell can contain a
number from 1 to n. Thus, each cell is associated with n propositional variables.
Let a 3-tuple (r, c, v) denote a variable which is true if and only if the cell in
row r and column c is assigned a number v; i.e. [r, c] = v. The resulting set
of propositional variables is V = {(r, c, v)|1 ≤ r, c, v ≤ n}. Sudoku rules are
represented as a set of clauses to guarantee that each row, column and block
contains only one instance of each number from 1 to n. The following set of
clauses refers to each cell, each row, each column and each block having at least
one number from 1 to n (i.e. definedness) and at most one number from 1
to n (i.e. uniqueness). We use a subscript d to denote definedness constraints
and subscript u to denote the uniqueness constraints. We denote the modulo
operation by mod below.

Celld =
∧n

r=1

∧n
c=1

∨n
v=1(r, c, v)

Cellu =
∧n

r1

∧n
c=1

∧n−1
vi=1

∨n
vj=vi+1 ¬(r, c, vi) ∨ ¬(r, c, vj)

Rowd =
∧n

r=1

∧n
v=1

∨n
c=1(r, c, v)

Rowu =
∧n

r=1

∧n
v=1

∧n−1
ci=1

∧n
cj=ci+1 ¬(r, ci, v) ∨ ¬(r, cj , v)

Cold =
∧n

c=1

∧n
v=1

∨n
r=1(r, c, v)

Colu =
∧n

c=1

∧n
v=1

∧n−1
ri=1

∧n
rj=ri+1 ¬(rj , c, v) ∨ ¬(rj , c, v)

Blockd =
∧√n

roffs=1

∧√n
coffs=1

∧n
v=1

∨√n
r=1

∨√n
c=1(roffs∗

√
n+r, coffs∗

√
n+c, v)



Lecture Notes in Computer Science: Authors’ Instructions 3

Blocku =
∧√n

roffs=1

∧√n
coffs=1

∧n
v=1

∧n
r=1

∧n
c=r+1

¬(roffs ∗
√

n + (r mod
√

n), coffs ∗
√

n + (r mod
√

n), v)
∨¬(roffs

√
n + (r mod

√
n), coffs ∗

√
n(c mod

√
n), v)

In addition to these sets, one more set of clauses is needed to represent fixed
cells. A fixed cell contains a pre-assigned number; for example, if [1,3] = 6 in
the input puzzle, then the cell [1,3] is a fixed cell containing number 6. Let
V + = {(r, c, v) ∈ V |[r, c] is a fixed cell and has a pre-assigned value v} be a set
of variables representing fixed cells and k be the number of such fixed cells. The
fixed cells are naturally represented as unit clauses in the encoding of the puzzle

Assigned =
∧k

i=1(r, c, v), where (r, c, v) ∈ V +

A puzzle is encoded as a set of clauses which is satisfiable if and only if the puzzle
has a solution. Recently, three encodings were proposed to formulate Sudoku into
a set of clauses:

φminimal = Celld ∧Rowu ∧ Colu ∧Blocku ∧Assigned
φefficient = Celld ∧ Cellu ∧Rowu ∧ Colu ∧Blocku ∧Assigned
φextended = Celld ∧ Cellu ∧Rowd ∧Rowu ∧ Cold ∧ Colu

∧Blockd ∧Blocku ∧Assigned
We implemented these three encodings in Java and applied them to Sudoku
puzzles of different size. Eleven puzzles were randomly selected from an on-
line database [3], which has a huge set of Sudoku puzzles with diverse difficulties
(from easy to hard) and with different sizes (from 9×9 to 81×81). Table 1 shows
our experimental results using zChaff version 2004.5.13 [4]. The experiments were
performed on a 1.10GHz Intel Pentium M with 1.25 GB of memory running
Windows XP. It is easy to see that the extended encoding which adds redundant
clauses to the minimal encoding shows the best performance among the three
encodings. Using these encodings for large Sudoku such as 81 × 81, however,
generates huge CNF files which lead to stack overflow error during SAT solving.

Table 1. Test results of three encodings
(time means timeout; and stack denotes a stack overflow error)

3 Proposed Encoding

The runtime of a SAT solver is highly related to the input formula size, especially,
when the input formula size is in gigabytes. An optimized encoding removes
the obvious redundancies when encoding a given problem in CNF. Using an
optimized CNF encoding can speed up SAT solving significantly. A fixed cell in



4 Lecture Notes in Computer Science: Authors’ Instructions

Sudoku has a pre-assigned number which is not changed. It is easy to see that
a fixed cell implies obvious redundancies in the encodings presented above. For
instance, many facts can be derived from the single fixed cell [1,3] = 6 in Fig. 1:

• Variable(1,3,6) representing the call is true;
• Other variables {(1,3,1),(1,3,2),(1,3,3),(1,3,4),(1,3,5),(1,3,7),(1,3,8),(1,3,9)}

representing the cell are false;
• Clause {(1,3,1),(1,3,2),(1,3,3),(1,3,4),(1,3,5),(1,3,6),(1,3,7),(1,3,8),(1,3,9)}

representing the cell definedness is true;
• Clauses {{¬(1,3,1),¬(1,3,2)},{¬(1,3,1),¬(1,3,3)},{¬(1,3,1),¬(1,3,4)},...}

representing the cell uniqueness are true; etc

These variables and clauses can be derived from a Sudoku compilation phase
and can be eliminated in advance before executing a SAT solver. This reduction
can be formalized as follows. The set V of variables can be partitioned into three
subsets

V = V + ∪ V − ∪ V
′

As defined in the previous section V + is the set of true variables since each
variable in this set represents a fixed cell. V − is the set of false variables and
defined using V + as follows:

V − = {(r, c, v) ∈ V | ∃(r′ ,c′ ,v′ )∈V + · sameCell(r, c, v, r
′
, c

′
, v

′
)

∨ sameRow(r, c, v, r
′
, c

′
, v

′
) ∨ sameRow(r, c, v, r

′
, c

′
, v

′
)

∨ sameBlock(r, c, v, r
′
, c

′
, v

′
)}

Since an assigned number at a fixed cell is never changed, all variables repre-
senting other numbers associated with a fixed cell can be removed. In addition,
variables whose value is duplicated in the same row or column or block are elim-
inated because duplicated numbers are not allowed within the same region in
Sudoku. Related predicates are defined as follows

sameCell(r, c, v, r
′
, c

′
, v

′
) = (r = r

′
) ∧ (c = c

′
) ∧ (v 6= v

′
)

sameRow(r, c, v, r
′
, c

′
, v

′
) = (r = r

′
) ∧ (c 6= c

′
) ∧ (v = v

′
)

sameCol(r, c, v, r
′
, c

′
, v

′
) = (r 6= r

′
) ∧ (c = c

′
) ∧ (v = v

′
)

sameBlock(r, c, v, r
′
, c

′
, v

′
) = (r 6= r

′
) ∧ (c 6= c

′
) ∧ (v = v

′
)

∃lucRow,lucCol · (lucRow ≤ r, r
′ ≤ lucRow +

√
n)

∧(lucCol ≤ c, c
′ ≤ lucCol +

√
n)

, where a cell [lucRow, lucCol] is the starting cell in a block, located at the left-
upper corner, for a given cell [r,c]. And two variables are defined in the Java-like
syntax

lucRow = (r ≤
√

n)?1 : ((r − 1)/
√

n) ∗
√

n + 1
lucCol = (c ≤

√
n)?1 : ((c− 1)/

√
n) ∗

√
n + 1

And V
′

= V − (V + ∪ V −) is a set of unknown variables; i.e. its value is not
determined at the encoding phase. A SAT problem is to find a satisfying assign-
ment for a set of variables occurring in a formula. Having a partial satisfying
assignment for a set V + of true variables and a set V − of false ones, variables
in these sets and related clauses and literals can be reduced without affecting a
SAT problem. Reduction operators are defined

φ ⇓ V + = {C ∈ φ | ¬∃L∈C · (L = x ∧ x ∈ V +)}



Lecture Notes in Computer Science: Authors’ Instructions 5

φ ⇓ V − = {C ∈ φ | ¬∃L∈C · (L = ¬x ∧ x ∈ V −)}
C ↓ V + = {L ∈ C | ¬(L = ¬x ⇒ x ∈ V +}
C ↓ V − = {L ∈ C | ¬(L = x ⇒ x ∈ V −}

The operator ⇓ deletes clauses if they have a true value and the operator ↓ elim-
inates literals if they have a false value. In order to apply the operator ↓ to a
formula, it can be overloaded such as φ ↓ V − = {C ↓ V −} for all C ∈ φ . Let φ

′

be a reduced formula from φextended which is the CNF formula for the extended
encoding in the previous section

φ
′
= Assigned ⇓ V + ∪ (Cellu ∪Rowu ∪ Colu ∪Blocku) ⇓ V −

∪(Celld ∪Rowd ∪ Cold ∪Blockd) ↓ V −

Then a satisfiability equivalence relation holds between φextended and φ
′
with re-

spect to a satisfying assignment α; i.e, satisfies φextended if and only if α satisfies
φ

′
. Thus we can solve the Sudoku puzzle using the reduced formula φ

′
. And the

variable set to be considered restricts to V
′
since φ

′
is represented with variables

in V
′
. The same puzzles as used in previous section were used to evaluate the

new technique. Compared to the extended encoding, the number of variables
and clauses is reduced on average by 12 times and 79 times. For instance, the
proposed encoding generates 17,793 variables and 266,025 clauses for the largest
puzzle (81 × 81) in the database; however, the extended one generates 531,441
variables and 85,060,787 clauses. Since the number of variables and clauses are
reduced, zChaff solves the puzzle in 0.06 second. In our encoding, the number of
variables and clauses are strongly dependent on the number k of the fixed cells
shown in Table. 2. The larger the k is, the smaller is the number of variables
and clauses present in the CNF generated by our encoding.

Table 2. Result of proposed encoding and effect analysis of pre-assigned cells

References

1. I. Lynce and J. Ouaknine, Sudoku as a SAT problem, in The Proceedings of
AIMATH’06. 2006.

2. T. Webber, A SAT-based Sudoku Solver, in The Proceedings of LPAR’05, 2005.
3. http://www.menneske.no/sudoku
4. M.W.Moskewicz, et.al., Chaff: Engineering an efficient SAT solver, in the Proceed-

ings of DAC’01, 2001.


