Implementing Dataflow Analyses for Pegasus in Datalog

Dan Licata

May 12, 2007

1 Introduction

Recent work by Lam et al. [Lam et al., 2005, Whaley et al., 2005, WhebelyLam, 2004] has investigated
the use of the logic-programming language Datalog to code program asiadygdoiting a fast implemen-
tation of Datalog using binary decision diagrams cabeidbddb . Analyses written in Datalog are more
compact and easier to reason about than hand-coded versions, vehB®Drbased implementation can
make their running time competitive with hand-coded versions. However,fbi®ach has not previously
been applied to the Pegasus intermediate representation [Budiu and Gol2@8@h In this report, | ex-
plore the use of Datalog to implement dataflow analyses for Pegasus.

In Datalog, programs are specified as sets of inference rules defired@ates, as in Prolog. Prolog
interprets inference rules by backward-chaining: for example, to shat(x) holds, find rules of the
form P(x) «— Q(z) and recursively show thap(z) holds; this terminates when we get to a rule with
no antecedent. Datalog, on the other hand, interprets rules by fookarding and saturation: starting
with some base set of facts, apply any rules for which the current dattsf proves all the antecedents;
iterate until saturation (no new facts can be discovered). Since datafkiysas are typically described via
iteration to a fixed point, it is very natural to implement them in Datalog.

Binary decision diagrams provide a compact and canonical representdti®oolean functions. A
Datalog propositionP(x) over a finite typeD can be represented by a Boolean function— Bool, and
therefore in turn by a BDD. The operations of forward-chaining logagpgmming can be viewed as rela-
tional projections and joins, which have natural and efficient implementatidesms of BDDs.

In this project, | have:

e Implemented two dataflow analyses for Pegasus, aggressive deadtlonihation and a bit-width
analysis.

e Implemented partial-redundancy elimination for a traditional intermediate pn. This im-
plementation required a technique for encoding some forms of univaraatification in Datalog.

e Benchmarked the implementation of dead-code elimination on some examplerpsogra

Overall, | found Datalog to be a very concise and elegant language fdermgnting some dataflow
analyses, but | found some analyses difficult or impossible to implement. Aclaliyol foundbddbddb
to be reasonably fast, butiva interfacing with it produced analyses whose running times were on the
order of seconds rather than the desired tenths of seconds. Thus remthinder of this report, | will both
describe my Datalog code and its performance and suggest extensiDasatiig and its implementation
that would overcome these shortcomings.

2 Implementing Analyses in Datalog

2.1 Aggressive Dead-code Elimination

In this section, | present a simple implementation of aggressive dead-limileagion (ADCE) as a means
of introducing Datalog programming. The core of ADCE is a graph realitygiroblem: compute the set
of nodes that are reachable from given a set of roots (c.f. markweesgarbage collection).

First, we define a finite type representing graph nodes, along with twogita@gns,root andedge :

Node 4
root(x:Node)
edge(x:Node, y:Node)

Here we inhabit the typblode with 4 inhabitants, notate@l 1,2, 3. The propositiorroot(x) is true
whenx is a root node; the propositi@dge(x,y) is true when there is an edge frontoy. In a Datalog
program, some propositions are part of &xéensional databag&DB), which means they are presented by
explicit lists of all true facts. The propositiongot andedge are examples: we define them by explicitly
listing the nodes on which they hold. For example, we can define a simple gsdphows:

root(1).

edge(0,1).
edge(2,3).
edge(1,3).
edge(3,0).

Next, we define an propositionfr(x) which is true when the node is reachable from some root
node. In a Datalog program, the propositions that are not in the EDB atdcshe in theintensional
databasgIDB), which means that they are defined by inference rules. Theogitpnrfr is an example:

rfr(x:Node)

rfr(x) :- root(x).
rfr(x) :- edge(y,x), rfr(y).

A rule conclusion :- premisel, premise2, ... means that the conclusion is true if all
the premises are true. The above two rules statafitfal is true ifx is a root node, and thafr(x) s
true if there exists & such that there is an edge frgnto x andy is reachable from a root node. Note that
a free variable in the premise of a rule (eygin the second rule) is implicitly existentially quantified.

These two rules constitute a complete Datalog implementation of reachabilibddimddb , compu-
tation occurs according to a forward-chaining operational semantiasingtérom the propositions in the
EDB, inference rules are repeatedly applied to derive new facts, vanehdded to the database; compu-
tation terminates when all true propositions are in the database (at whichwmisay that the database
is saturated. In this example, the initial database contains the root nodes, and compidatigates the
database withfr(x) for all nodesx that are reachable from the root set.

With Prolog-style backward-chaining logic programming, these rules mightenminate on a graph
with cycles (depending on the order in which the rules are applied). Wittefol-chaining logic program-
ming, these rules can be run effectively. Indeed, because computatipadds facts to the database, the

2

computation arising from any set of inference rules is guaranteed to teéenvih@n Datalog is restricted to
only finite types—there is an upper bound on the number of true faCtmsequently, any Datalog program
is automatically a decision procedure.

A simple interface for using the above Datalog program to perform ADCP&gasus requires only a
small bit of glue code:

e Before analysis, number the operations in the Pegasus graph andytrihe@dge relation and root
set (consisting of the return, store, etc. nodes).

e After analysis, read in the reachable nodes and remove the unreanbdbkfrom the graph.

Relative to a hand-coded version, there is no need to manually specifgttiks af a graph search algorithm
such as depth-first search, maintaining a visited list to account for cycles

2.2 Partial-Redundancy Elimination; Encoding Universal Quantification

Partial-redundancy elimination (PRE) is an optimization that consolidatesssxpne that occur redun-
dantly along some but not all paths in a program graph. For a traditionaliatkate representation, PRE is
implemented using four iterative dataflow analyses. However, these agalyes not necessary for Pegasus,
as PRE can be implemented by inspecting the Pegasus graph [Budiu and iGoR{K2].

In this section, | present a simple Datalog implementation of PRE for a traditihahs$ide from
a technical complication, this implementation is a straightforward transcriptioneofi¢finition of PRE
from a standard textbook [Muchnick, 1997], with the added benefititisan be run directly to investigate
examples. The implementation also illustrates a technical device for encoding al Iforite of universal
quantification in Datalog; this device may be useful for implementing analysé&®fyasus as well.

Partial redundancy elimination assumes that the program is represeatgthggh whose nodes are basic
blocks and whose edges represent control flow. Further, it asshiaiethe program has been labeled with
thelocally transparentandlocally anticipatableexpressions in each basic block. An expression is locally
transparent in a block if the block does not assign to the variables in thessipn; an expression is locally
anticipatable in a block if there is a computation of the expression in the blockhanekpression can be
moved to the beginning of the block. In Datalog, we represent the progitmthe following EDB:

entry(b:BIk) % entry node
exit(b:BIK) % exit node
node(b:BIK) % real node

edge(b1:Blk, b2:BIk) % control edge from bl to b2
locAnt(b:BIk, e:Exp) % e is locally anticipatable in b
locTrans(b:Blk, e:Exp) % e is locally transparent in b

The typeBlk represents basic blocks; the tylggp represents expressions. The first two propositions
identify the entry and exit nodes of a procedure; the third identifies all ®fithabitants of typdlk
that actually represent basic blocks; this proposition is necessarydsardbddb rounds the number of
inhabitants of a type up to the next power of two. The proposiidge represents the edges of the graph.
The propositionsocAnt andlocTrans define the locally anticipatable and transparent expressions
in each block. In the textbook presentation of PREEANt maps a block to the set of expressions
that are locally anticipatable. Here, we have reformulatddcAnt as a relation on both a blodk and

1As we discuss below, the fact that all Datalog programs saturate alsadiepn a restriction on the use of negation.

3

an expressior, with the intention thatocAnt(b,e) iff e is in the set of expressions that are locally
anticipatable ab. The representation dbcTrans is analogous. Because our Datalog program can
manipulate only finite types, dealing directly with the set membership function isréhan representing
sets of expressions explicitly.

2.2.1 Globally Anticipatable Expressions, Take 1

PRE is implemented using a succession of dataflow analyses, the first df edncputes theglobally
anticipatableexpression in each block. An expression is globally anticipatable on enarybtock if (1)
every path from that point includes a computation of the expression amlde(2omputation may be placed
at any point along these paths. The following dataflow equations definarthigsis:

ant(exit) = 0
ant(i) = locAnt(i) U (locTrans(i) N (ﬂ ant(j)))

jE€suce(t)

As with locAnt andlocTrans above, we reformulatant as a relation between blocks and ex-
pressions, wherant(b,e) if e is in the set of expressions that are globally anticipatable. affhe
straightforward translation of the above dataflow equations is as follows:

ant(b,e) :- lexit(b),locAnt(b,e).
ant(bl,e) :- lexit(b),locTrans(bl,e),
(forall b2. succ(bl,b2) -> ant(b2,e)).

The syntax! negates a proposition. Theldbddb implementation permitstratified negation the
propositions in a program must be stratifiable in such a way that a rule foopogition only negates
propositions from a previous stratum. Operationally, this means that it isbpe$s first compute all true
instances of the negated proposition, and then determine the truth of a ndgatioecking that a particular
factis notin the database. In this example, all that is necessary is thddBipriBpositionexit be assigned
to a stratum previous to the IDB propositiant ; because the EDB propositions are defined explicitly, this
is clearly possible.

These two rules say that an expression is globally anticipatable at a bloek éithe block is not
the exit and the expression is locally anticipatable or if the block is not the egigxpression is locally
transparent in the block, and the expression is globally anticipatable atcakssors of the block. The
universal quantification in the premise of the second rule corresportis fact that the dataflow equations
use an intersection over all SUCCESSONSL e (s) ant(5))-

Logically, these two rules define the analysis. Unfortunately, Datalogmimtgsermit universal quantifi-
cation in the premise of a rule! Thus, we cannot use these rules direattynBtely, it is possible to encode
some uses of universal quantification, including this one.

2.2.2 Encoding Universal Quantification

When restricted to finite domains and stratified negation, every Datalog gitiomas decidable; this per-
mits even an intuitionist to use classical reasoning. Consequently, we cadeessome uses of universal
guantification using existential quantification and negation.

Specifically, rather than definirant(b,e) directly, we will inductively define its negation, which we
will call notant(b,e) . Then the original propositioant(b,e) can be defined binotant(b,e) :
which impliesant(b,e) (because classicallj!A4) > A). The result of applying this device to the defini-
tion ofant(b,e) s following Datalog code:

notant(b:Blk, e:Exp) % not globally anticipatable
notant(b,) :- exit(b).

notant(b,e) :- !locAnt(b,e), !llocTrans(b,e).
notant(bl,e) :- !llocAnt(bl,e), edge(bl,b2), notant(b2,e).
ant(b:Blk, e:Exp) % globally anticipatable

ant(b,e) :- !notant(b,e).

In this example, the one use of universal quantification in the definitiambfabove has been replaced
by an existential quantification in the definitionmétant (becauseévz.A = Jx.!A). Moreover, no uses
of universal quantification have been introduced, so the definitiorotsint is a valid Datalog program.
In general, this device will successfully eliminate uses of universal tfication when the proposition
uses universal quantification but not also existential quantificationnwithes the original existentials will
produce universals in the output. Because dataflow analyses typicaky eitket or join over adjacent
nodes, many of them satisfy this condition.

The negation of a proposition defined by inference rules can be darsiag the following algorithm:

1. Form thdff-completionof the proposition. The iff-completion of a proposition is one proposition that
summarizes all of the inference rules defining the proposition. In this exathplédf-completion is a
disjunction of the two rules:

ant(b,e) = (lexit(b) AlocAnt(b,e))V
(lexit(b) A locTrans(bl, e) A (Vb2.succ(bl,b2) D ant(b2,e)))

The iff-completion of a general Datalog program must also accountdiastcained variables in the
conclusion of a rule (e.g., if we had a rdet(0,e) that constrained the first argument to be a
particular constant) and implicit existential quantification in the premises of tbe ru

2. Negate the iff-completion and push the negation down to the leaves.

3. Put the resulting proposition into disjunctive normal form, recoveringrérice rules.
I manually ran this algorithm foant , producing the definition ofiotant above. We will use this device
several more times in the definition of PRE.
2.2.3 Implementation of PRE

Aside from the need to encode universal quantification, the definitiorR&f B a straightforward tran-
scription of the lectures notes, using the techniques | have described. abigure 1 presents a complete
implementation. Two of the three remaining analyses require the univesatification device, as they are
defined by intersecting the sets associated with adjacent nodes.

| have used this Datalog code to run the example from the textbook and lecties2

2By the way, on slide 27 of the PRE notd$§O Lout(entry) should be{a + 1}; this typo is in Muchnick, too.

5

notant(b:BIK, e:EXp) % not globally anticipatable
notant(b,) :- exit(b).

notant(b,e) :- !locAnt(b,e), !llocTrans(b,e).
notant(bl,e) :- !llocAnt(bl,e), edge(bl,b2), notant(b2,e

ant(b:Blk, e:Exp) % globally anticipatable (ANTIn)
ant(b,e) :- !notant(b,e).

earl(b:Blk, e:Exp) % earliest (EARLin)
earl(b,) :- entry(b).

earl(i,e) :- edge(,i), !locTrans(j,e).

earl(i,e) :- edge(j,i), 'ant(j,e), earl(j,e).

notdelay(i:Blk, e:Exp) % not delay

notdelay(i, e) :- entry(i), lant(i,e).

notdelay(i, e) :- entry(i), !earl(i,e).

notdelay(i, e) :- l'ant(i,e), edge(j,i), locAnt(j,e).
notdelay(i, e) :- lant(i,e), edge(j,i), notdelay(j,e).
notdelay(i, e) :- learl(i,e), edge(j,i), locAnt(j,e).
notdelay(i, e) :- learl(i,e), edge(j,i), notdelay(j,e).

delay(i:Blk, e:Exp) % delay (DELAYin)
delay(i,e) :- node(i), 'notdelay(i,e).

latest(i:Blk,e:Exp) % latest (LATE)
latest(i,e) :- delay(i,e), locAnt(i,e).
latest(i,e) :- delay(i,e), edge(i,j), 'delay(j,e).

notisol(i:Blk, e:Exp) % not isolated (not 1SOLout)
notisol(i,_) :- exit(i).

notisol(i,e) :- edge(i,j), !latest(j,e), locAnt(j,e).
notisol(i,e) :- edge(i,j), 'latest(j,e), notisol(j,e).

opt(i:Blk, e:Exp) % optimal (OPT)
opt(i,e) :- latest(i,e), notisol(i,e).

redn(i:BIk, e:Exp) % redundant (REDN)
redn(i,e) :- locAnt(i,e), !latest(i,e), notisol(i,e).

Figure 1: Implementation of PRE for Traditional IR

2.3 Bit-Width Analysis

Because Datalog provides no built-in support for arithmetic, it is difficult tdément analyses that require
much computation with numbers, such as constant propagation. Howéseoésible to code up arithmetic
explicitly by defining the necessary functions extensionally in the EDB. Thimigue becomes intractable
when large numbers are required, but it is usable when the numbersnalieesiough. In this section,
| present Datalog code for a simple bit-width analysis that determines how bitsgre necessary to
represent the values that flow on the wires of a Pegasus graph. Tdlisians feasible because only
number9), ..., 31 are necessary.

First, we define the necessary arithmetic operations. In this example, weeqiiire two arithmetic
operations: maximum and truncated addition (defineddayl(z,y) = min(x + y,31)). Thus, we will
define an EDB containing explicit definitions of these functions as relations:

Width 32

max(nl:Width, n2:Width, n3:Width)
tadd(nl:Width, n2:Width, n3:Width)
... 3272 rules for each ...

Next, we must consider how to represent the Pegasus graph. Forahjisiajwe require more detailed
information than for ADCE: we must model the flow of values along wires. 8edp so by defining a type
of wiresalong with propositions defining the relationships between them. Specificallysa/the following
propositions:

e const(w:Width, out:Wire) A constant of widthw flows along the output wire. This propo-
sition is used to represent constants and unknowns, which must catigelgvbe assumed to use all
32 bits. Unknowns include the arguments to a function, and, becauseewmiadoing a memory-
sensitive analysis, values loaded from memory.

e addOp(inl:Wire, in2:Wire, out:Wire) The (unsigned) sum of the inputs flows over the
outputs. This proposition is used to represent additions.

e mulOp(inl:Wire, in2:Wire, out:Wire) The (unsigned) multiplication of the inputs flows
over the outputs. This proposition is used to represent multiplication.

e copy(wl:Wire, w2:Wire) The input value is copied to the output. This proposition is used to
represent pass-through instructions such as eta, hold, noop,cand re

e merge2(inl:Wire, in2:Wire, out:Wire) One of the two inputs flows over the output.
This proposition is used to model join points such as mux and#wrary muxes and mus can be
expanded into a succession of merges).

Note that this representation omits token and crt wires—presumably a toksnndd need be repre-
sented at run-time, or, if it does, is known to require only 1 bit. Additionalli tBpresentation elides the
predicate inputs to a node, since these have no effect on the width ofltlethat flows from the node.
(A predicate wire is still declared to be the output of the node producing liie & that we determine the
number of bits necessary for it.)

Using this representation of the graph, we define a proposaidth(w:Wire, n:Width) , Which
means that the values flowing owemay use thé, . .., n'" bits of a 32-bit word.

7

width(w:Wire, n:Width)

width(_,0).

width(out,n) :- const(n, out).

width(out,n) :- addOp(inl, in2, out), width(in1,n1), widt h(in2, n2),
max(nl, n2, n3), tadd(n3, 1, n).

width(out,n) :- mulOp(inl, in2, out), width(inl,n1), widt h(in2, n2),

tadd(nl, n2, n).

width(out,n) :- copy(in, out), width(in,n).

width(out,n) :- merge2(inl, in2, out), width(inl, nl), wid th(in2, n2),
max(nl, n2, n).

Because we assume dead code elimination and constant propagation anesntptbas separate passes,
the first rule asserts that every wire uses the 0-bit (at least onearommmber flows over it). The next
rule asserts that a constant uses the bits it is declared to use. The nextasvdefine the width of addition
and multiplication: an addition may use one more bit than the maximum of the inputs; alivatiim may
use the sum of the inputs. The rule for copy propagates the input valdehe rule for merging takes the
maximum.

The propositionsnerge?2 , const , andcopy seem to be sufficient for all Pegasus operations besides
the primops; to handle all Pegasus primops, it may be necessary to implerdéianred arithmetic oper-
ations in Datalog. Thus, while we can implement this analysis without primitivestjigr arithmetic, it
would be more pleasant with such support.

Additionally, this Datalog program computes more facts than are necessarytié end of the day, we
only care about the maximumfor which width(w,n) . For example, this program may spend time and
space derivingvidth(w,23) when we already have deriveddth(w,31) . See below for speculation
about a more efficient solution.

3 Efficiency

| have collected a bit of data in order to evaluate whether the performdribese dataflow analyses is
reasonable. All of these runs were conducted on a Pentium 4 3GHzgsarovith 1GB memonrjddbddb

is implemented in Java and was run with the Sun JVM bisl0_06-b05 . These experiments used a
version ofbddbddb obtained from sourceforge on April 23, 2007.

| present data for the ADCE code presented above. | ran the codg thsge separate invocations of
the JVM: the first two read in text files containing the definitiongaft andedge as explicit lists of
tuples and output text files describing the BDD representations of thiasi@me The third invocation reads
in these BDD representations and performs the actual computation.

The tables in Figure 2 present the running time of these invocations, agedlBcthe Linux command
time , for five example programs of various sizes. The first four programBam theSample/ directories
of the CASH repository. The fifth is somewhat synthetic—it is the coduaatinult copied (and permuted
slightly) enough times to be 200 lines long. In addition to the running times, | alsthégprogram size
(number of nodes in the Pegasus graph) and the true instances ofeést@nr(forroot andrfr , this
number can be at most the number of nodesgefige , it can be at most that squared). In the final table,
the solve time column is an attempt to see what fraction of the time was spent doexjuheécomputation,
as opposed to reading and printing; it contains the wall-clock time betweetsaitiesd end of the actual
computation (collected usingurrentTimeMillis before and after).

Makeroot(x)

BDD (read in tuples, make BDD, print BDD):

program size

user time (s)| sys time (s)

true instances

D

ccp-exampled 150 .30 .04 4
adce-example 54 41 .03 4
matmult 231 .25 .06 8
adpcm 868 27 .04 11
matmult200 3080 .53 .01 63
Makeedge(x,y) BDD (read in tuples, make BDD, print BDD):
program size user time (s)| sys time (s)| true instances
ccp-exampled 150 57 .06 286
adce-example 54 51 .07 83
matmult 231 .59 .02 398
adpcm 868 1.1 .03 1797
matmult200 3080 4.94 .05 5418
Compute reachabilityfr(x) and print results:
program size user time (s)| sys time (s)| solve time (s)| true instances
ccp-exampled 150 0.74 0.08 150
adce-example 54 0.77 0.07 48
matmult 231 0.72 0.06 231
adpcm 868 0.74 0.07 0.232 868
matmult200 3080 1.15 0.10 0.539 2875

Running the empty Datalog program takes 0.250 to 0.350 seconds (user+sy

Figure 2: Running time of ADCE

Discussion. These numbers are promising but not yet satisfactory, if the goal fopamization is 0.1
seconds. However, there are many potential avenues for improvement:

e BDD algorithms are highly sensitive to the structure of the decision tree, vididdtermined by an
order on the variables. | have not yet attempted to find good variablespiuyond whabddbddb
does by default.

e These data were collected usihdgdbddb with a Java BDD implementatiorbddbddb seems to
be set up to run a highly-tuned C BDD implementation called BuDDy, but | wablernto get this
functionality to work (and the author diddbddb has not yet responded to my query about it).

e Interacting withbddbddb in the same process as the compiler would remove the 1/O and JVM startup

overhead. The solve time numbers in the final table show that, in these exaomiyes third to a half
of the running time was actual computation.

e Forlarge Pegasus graphs, the time to build the ladgee BDD dominates. (This trend was corrobo-
rated by other experiments on randomly generated graphs as well.) In additising a faster BDD
implementation and interfacing with the BDD library directly rather than going tiindext files, this
time could be brought down by exploiting the available information better. Spaityfibddbddb
currently “or”s each tuple in the relation with the previous BDD. Howevestdlis no need to build
the BDD using an online algorithm, and it may be more efficient to, e.g., incatpatl successors of
a given node at once.

4 Related Work and Conclusion

Lam et al. [2005], Whaley et al. [2005] and Whaley and Lam [2004jcdbe the implementation of
bddbddb , as well as Datalog pointer-analyses for Java and C and severaktdtieranalyses. See these
papers for citations of the vast amount of prior work on Datalog, logigrammming with BDDs, and other
applications of BDDs. Muchnick [1997] defines PRE and other datafloalyaes. Budiu and Goldstein
[2002] describe the semantics of the Pegasus internal representatiahe Best of my knowledge, the
application of a BDD-based implementation of Datalog to Pegasus is novel togbenp work. Addition-
ally, | at least independently re-invented the technique for encodingrgail quantification used in PRE (I
wouldn’t be surprised if others have used the same device), and Inuiv&en PRE implemented using
forward-chaining logic programming in the literature.

In summary, | claim that Datalog is a lovely language for writing dataflow aealyghen possible:
the iterative computation of forward-chaining logic programming implements traiiteraspects of these
algorithms automatically. In general, analyses that associate each bloteneant or node with either
true or false (e.g., ADCE) or with a set of abstract values (e.g., all thedalyses) seem to have natural
implementations. In part, this is because these analyses never need td tiesc¢imith of a proposition that
has already been deemed tfue.

The analyses that seem difficult to implement are those that make use of aigthwidgch Datalog
provides no native support for, and those that use other kinds of ltiesides the two mentioned above.
For example, our implementation of bit-width analysis computes redundantrafimm because it is not

3For set-based analyses, the set of values associated with a statessechaloge as the analysis runs. However, in the examples
in this report, we were able to decompose the set into the membership ailiralielements, which individually do not change
over time.

10

summarizing information using the proper lattice structure, and its definition islaatgnl by having to
define arithmetic explicitly. As another example, conditional constant pegmagsuffers from both of
these problems as well. For CCP, the lack of arithmetic seems deadly sincelenipers are required.
Additionally, implementing CCP in the inefficient style used for bit-width (i.e., nohswarizing multiple
constants as “unknown”, but computing all possible values) would regoimputing many more extra facts.

These limitations suggest useful avenues for future research. Firstyibe possible to design a con-
straint logic programming language based on Datalog, providing primitivesstifor arithmetic. Second,
it may be possible to design a linear logic programming language based ond)athich would permit
propositions whose truth changes over time. This could be used to implens@nseswhere the lattice
value associated with a statement changes over time, such as good vef€<i@i and bit-width analysis.
However, the meaning of saturation is less clear when knowledge is not nnanofbhe LolliMon lan-
guage [lopez et al., 2005] is an initial attempt at forward-chaining linear logic nogning, but its current
implementation is not nearly as fast as the implementation of Datalog using BDDs.

The present report suggests several other avenues for futukeasavell. First, it would be nice to
automate the encoding of universal quantification, so that the prognatvecaritten in the straightforward
syntax usingorall . More ambitiously, it may be possible to add stratified universal quantificatioin
implication to Datalog: because all types are finite, a “forall” can be thoulga$ generating one premise
for each element of the type; stratified implication would restrict attention to thleseents of the type
that satisfy a previously-computed proposition. Additionally, an extendi@atalog with first-order terms
could enable the implementation of dataflow-based transformations as wellgses.

While these extensions would be very useful for implementing dataflow asliggemains to be seen
whether they can be integrated with Datalog without losing the benefits of B&ed forward-chaining
logic programming.

Acknowledgments. | would like to thank Jake Donham for initial discussions about this projech R
Simmons for discussions about Datalog, and John Whaley for answergstions aboutddbddb .

References

Mihai Budiu and Seth Copen Goldstein. Pegasus: An efficient intermedjattiesentation. Technical Report
CMU-CS-02-107, Department of Computer Science, Carnegie Mellonelsity, 2002.

Monica A. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, DziatAvots, Michael Carbin,
and Christopher Unkel. Context-sensitive program analysis as datgjo@&sies. In24th SIGMOD-
SIGACT-SIGARTS Symposium on Principles of Database Sysiemnes2005.

Pablo Lopez, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadiceoant linear logic pro-
gramming. In Amy Felty, editorinternational Symposium on Principles and Practice of Declarative
Programming pages 35-46, Lisbon, Portugal, 2005. ACM Press.

Steven S. MuchnickAdvanced Compiler Design and Implementatiddorgan Kaufmann, 1997.

John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Usatgldg with binary decision
diagrams for program analysis. RProgramming Languages and Systems: Third Asian Sympgsium,
Tsukuba, Japan, November 2005.

11

John Whaley and Monica S. Lam. Cloning-based context-sensitive pairdsranalysis using binary deci-
sion diagrams. IMMCM SIGPLAN Conference on Programming Language Design and inepitation
June 2004.

12

