
Implementing Dataflow Analyses for Pegasus in Datalog

Dan Licata

May 12, 2007

1 Introduction

Recent work by Lam et al. [Lam et al., 2005, Whaley et al., 2005, Whaleyand Lam, 2004] has investigated
the use of the logic-programming language Datalog to code program analyses, exploiting a fast implemen-
tation of Datalog using binary decision diagrams calledbddbddb . Analyses written in Datalog are more
compact and easier to reason about than hand-coded versions, while the BDD-based implementation can
make their running time competitive with hand-coded versions. However, this approach has not previously
been applied to the Pegasus intermediate representation [Budiu and Goldstein, 2002]. In this report, I ex-
plore the use of Datalog to implement dataflow analyses for Pegasus.

In Datalog, programs are specified as sets of inference rules defining predicates, as in Prolog. Prolog
interprets inference rules by backward-chaining: for example, to showthat P (x) holds, find rules of the
form P (x) ← Q(x) and recursively show thatQ(x) holds; this terminates when we get to a rule with
no antecedent. Datalog, on the other hand, interprets rules by forward-chaining and saturation: starting
with some base set of facts, apply any rules for which the current set offacts proves all the antecedents;
iterate until saturation (no new facts can be discovered). Since dataflow analyses are typically described via
iteration to a fixed point, it is very natural to implement them in Datalog.

Binary decision diagrams provide a compact and canonical representation of Boolean functions. A
Datalog propositionP (x) over a finite typeD can be represented by a Boolean functionD → Bool, and
therefore in turn by a BDD. The operations of forward-chaining logic programming can be viewed as rela-
tional projections and joins, which have natural and efficient implementationsin terms of BDDs.

In this project, I have:

• Implemented two dataflow analyses for Pegasus, aggressive dead-code elimination and a bit-width
analysis.

• Implemented partial-redundancy elimination for a traditional intermediate representation. This im-
plementation required a technique for encoding some forms of universal quantification in Datalog.

• Benchmarked the implementation of dead-code elimination on some example programs.

Overall, I found Datalog to be a very concise and elegant language for implementing some dataflow
analyses, but I found some analyses difficult or impossible to implement. Additionally, I foundbddbddb
to be reasonably fast, but naı̈ve interfacing with it produced analyses whose running times were on the
order of seconds rather than the desired tenths of seconds. Thus, in the remainder of this report, I will both
describe my Datalog code and its performance and suggest extensions ofDatalog and its implementation
that would overcome these shortcomings.

1

2 Implementing Analyses in Datalog

2.1 Aggressive Dead-code Elimination

In this section, I present a simple implementation of aggressive dead-code elimination (ADCE) as a means
of introducing Datalog programming. The core of ADCE is a graph reachability problem: compute the set
of nodes that are reachable from given a set of roots (c.f. mark and sweep garbage collection).

First, we define a finite type representing graph nodes, along with two propositions,root andedge :

Node 4
root(x:Node)
edge(x:Node, y:Node)

Here we inhabit the typeNode with 4 inhabitants, notated0, 1, 2, 3. The propositionroot(x) is true
whenx is a root node; the propositionedge(x,y) is true when there is an edge fromx to y . In a Datalog
program, some propositions are part of theextensional database(EDB), which means they are presented by
explicit lists of all true facts. The propositionsroot andedge are examples: we define them by explicitly
listing the nodes on which they hold. For example, we can define a simple graphas follows:

root(1).

edge(0,1).
edge(2,3).
edge(1,3).
edge(3,0).

Next, we define an propositionrfr(x) which is true when the nodex is reachable from some root
node. In a Datalog program, the propositions that are not in the EDB are said to be in theintensional
database(IDB), which means that they are defined by inference rules. The propositionrfr is an example:

rfr(x:Node)

rfr(x) :- root(x).
rfr(x) :- edge(y,x), rfr(y).

A rule conclusion :- premise1, premise2, ... means that the conclusion is true if all
the premises are true. The above two rules state thatrfr(x) is true ifx is a root node, and thatrfr(x) is
true if there exists ay such that there is an edge fromy to x andy is reachable from a root node. Note that
a free variable in the premise of a rule (e.g.,y in the second rule) is implicitly existentially quantified.

These two rules constitute a complete Datalog implementation of reachability. Inbddbddb , compu-
tation occurs according to a forward-chaining operational semantics: starting from the propositions in the
EDB, inference rules are repeatedly applied to derive new facts, whichare added to the database; compu-
tation terminates when all true propositions are in the database (at which pointwe say that the database
is saturated). In this example, the initial database contains the root nodes, and computation saturates the
database withrfr(x) for all nodesx that are reachable from the root set.

With Prolog-style backward-chaining logic programming, these rules might not terminate on a graph
with cycles (depending on the order in which the rules are applied). With forward-chaining logic program-
ming, these rules can be run effectively. Indeed, because computation only adds facts to the database, the

2

computation arising from any set of inference rules is guaranteed to terminate when Datalog is restricted to
only finite types—there is an upper bound on the number of true facts.1 Consequently, any Datalog program
is automatically a decision procedure.

A simple interface for using the above Datalog program to perform ADCE for Pegasus requires only a
small bit of glue code:

• Before analysis, number the operations in the Pegasus graph and print out the edge relation and root
set (consisting of the return, store, etc. nodes).

• After analysis, read in the reachable nodes and remove the unreachablenodes from the graph.

Relative to a hand-coded version, there is no need to manually specify the details of a graph search algorithm
such as depth-first search, maintaining a visited list to account for cycles.

2.2 Partial-Redundancy Elimination; Encoding Universal Quantification

Partial-redundancy elimination (PRE) is an optimization that consolidates expressions that occur redun-
dantly along some but not all paths in a program graph. For a traditional intermediate representation, PRE is
implemented using four iterative dataflow analyses. However, these analyses are not necessary for Pegasus,
as PRE can be implemented by inspecting the Pegasus graph [Budiu and Goldstein, 2002].

In this section, I present a simple Datalog implementation of PRE for a traditional IR. Aside from
a technical complication, this implementation is a straightforward transcription of the definition of PRE
from a standard textbook [Muchnick, 1997], with the added benefit thatit can be run directly to investigate
examples. The implementation also illustrates a technical device for encoding a limited form of universal
quantification in Datalog; this device may be useful for implementing analyses for Pegasus as well.

Partial redundancy elimination assumes that the program is represented asa graph whose nodes are basic
blocks and whose edges represent control flow. Further, it assumesthat the program has been labeled with
the locally transparentand locally anticipatableexpressions in each basic block. An expression is locally
transparent in a block if the block does not assign to the variables in the expression; an expression is locally
anticipatable in a block if there is a computation of the expression in the block andthe expression can be
moved to the beginning of the block. In Datalog, we represent the programwith the following EDB:

entry(b:Blk) % entry node
exit(b:Blk) % exit node
node(b:Blk) % real node
edge(b1:Blk, b2:Blk) % control edge from b1 to b2
locAnt(b:Blk, e:Exp) % e is locally anticipatable in b
locTrans(b:Blk, e:Exp) % e is locally transparent in b

The typeBlk represents basic blocks; the typeExp represents expressions. The first two propositions
identify the entry and exit nodes of a procedure; the third identifies all of the inhabitants of typeBlk
that actually represent basic blocks; this proposition is necessary becausebddbddb rounds the number of
inhabitants of a type up to the next power of two. The propositionedge represents the edges of the graph.

The propositionslocAnt andlocTrans define the locally anticipatable and transparent expressions
in each block. In the textbook presentation of PRE,locAnt maps a blockb to the set of expressions
that are locally anticipatableb. Here, we have reformulatedlocAnt as a relation on both a blockb and

1As we discuss below, the fact that all Datalog programs saturate also depends on a restriction on the use of negation.

3

an expressione, with the intention thatlocAnt(b,e) iff e is in the set of expressions that are locally
anticipatable atb. The representation oflocTrans is analogous. Because our Datalog program can
manipulate only finite types, dealing directly with the set membership function is easier than representing
sets of expressions explicitly.

2.2.1 Globally Anticipatable Expressions, Take 1

PRE is implemented using a succession of dataflow analyses, the first of which computes theglobally
anticipatableexpression in each block. An expression is globally anticipatable on entry toa block if (1)
every path from that point includes a computation of the expression and (2) the computation may be placed
at any point along these paths. The following dataflow equations define thisanalysis:

ant(exit) = ∅

ant(i) = locAnt(i) ∪ (locTrans(i) ∩ (
⋂

j∈succ(i)

ant(j)))

As with locAnt and locTrans above, we reformulateant as a relation between blocks and ex-
pressions, whereant(b,e) if e is in the set of expressions that are globally anticipatable atb. The
straightforward translation of the above dataflow equations is as follows:

ant(b,e) :- !exit(b),locAnt(b,e).
ant(b1,e) :- !exit(b),locTrans(b1,e),

(forall b2. succ(b1,b2) -> ant(b2,e)).

The syntax! negates a proposition. Thebddbddb implementation permitsstratified negation: the
propositions in a program must be stratifiable in such a way that a rule for a proposition only negates
propositions from a previous stratum. Operationally, this means that it is possible to first compute all true
instances of the negated proposition, and then determine the truth of a negation by checking that a particular
fact is not in the database. In this example, all that is necessary is that the EDB propositionexit be assigned
to a stratum previous to the IDB propositionant ; because the EDB propositions are defined explicitly, this
is clearly possible.

These two rules say that an expression is globally anticipatable at a block either if the block is not
the exit and the expression is locally anticipatable or if the block is not the exit, the expression is locally
transparent in the block, and the expression is globally anticipatable at all successors of the block. The
universal quantification in the premise of the second rule corresponds tothe fact that the dataflow equations
use an intersection over all successors (

⋂
j∈succ(i) ant(j)).

Logically, these two rules define the analysis. Unfortunately, Datalog doesnot permit universal quantifi-
cation in the premise of a rule! Thus, we cannot use these rules directly. Fortunately, it is possible to encode
some uses of universal quantification, including this one.

2.2.2 Encoding Universal Quantification

When restricted to finite domains and stratified negation, every Datalog proposition is decidable; this per-
mits even an intuitionist to use classical reasoning. Consequently, we can encode some uses of universal
quantification using existential quantification and negation.

4

Specifically, rather than definingant(b,e) directly, we will inductively define its negation, which we
will call notant(b,e) . Then the original propositionant(b,e) can be defined by!notant(b,e) ,
which impliesant(b,e) (because classically(!!A) ⊃ A). The result of applying this device to the defini-
tion of ant(b,e) is following Datalog code:

notant(b:Blk, e:Exp) % not globally anticipatable
notant(b,_) :- exit(b).
notant(b,e) :- !locAnt(b,e), !locTrans(b,e).
notant(b1,e) :- !locAnt(b1,e), edge(b1,b2), notant(b2,e).

ant(b:Blk, e:Exp) % globally anticipatable
ant(b,e) :- !notant(b,e).

In this example, the one use of universal quantification in the definition ofant above has been replaced
by an existential quantification in the definition ofnotant (because!∀x.A ≡ ∃x.!A). Moreover, no uses
of universal quantification have been introduced, so the definition ofnotant is a valid Datalog program.
In general, this device will successfully eliminate uses of universal quantification when the proposition
uses universal quantification but not also existential quantification; otherwise, the original existentials will
produce universals in the output. Because dataflow analyses typically either meet or join over adjacent
nodes, many of them satisfy this condition.

The negation of a proposition defined by inference rules can be derived using the following algorithm:

1. Form theiff-completionof the proposition. The iff-completion of a proposition is one proposition that
summarizes all of the inference rules defining the proposition. In this example, the iff-completion is a
disjunction of the two rules:

ant(b, e) ≡ (!exit(b) ∧ locAnt(b, e)) ∨

(!exit(b) ∧ locTrans(b1, e) ∧ (∀b2.succ(b1, b2) ⊃ ant(b2, e)))

The iff-completion of a general Datalog program must also account for constrained variables in the
conclusion of a rule (e.g., if we had a ruleant(0,e) that constrained the first argument to be a
particular constant) and implicit existential quantification in the premises of the rule.

2. Negate the iff-completion and push the negation down to the leaves.

3. Put the resulting proposition into disjunctive normal form, recovering inference rules.

I manually ran this algorithm forant , producing the definition ofnotant above. We will use this device
several more times in the definition of PRE.

2.2.3 Implementation of PRE

Aside from the need to encode universal quantification, the definition of PRE is a straightforward tran-
scription of the lectures notes, using the techniques I have described above. Figure 1 presents a complete
implementation. Two of the three remaining analyses require the universal quantification device, as they are
defined by intersecting the sets associated with adjacent nodes.

I have used this Datalog code to run the example from the textbook and lecturenotes.2

2By the way, on slide 27 of the PRE notes,ISOLout(entry) should be{a + 1}; this typo is in Muchnick, too.

5

notant(b:Blk, e:Exp) % not globally anticipatable
notant(b,_) :- exit(b).
notant(b,e) :- !locAnt(b,e), !locTrans(b,e).
notant(b1,e) :- !locAnt(b1,e), edge(b1,b2), notant(b2,e).

ant(b:Blk, e:Exp) % globally anticipatable (ANTin)
ant(b,e) :- !notant(b,e).

earl(b:Blk, e:Exp) % earliest (EARLin)
earl(b,_) :- entry(b).
earl(i,e) :- edge(j,i), !locTrans(j,e).
earl(i,e) :- edge(j,i), !ant(j,e), earl(j,e).

notdelay(i:Blk, e:Exp) % not delay
notdelay(i, e) :- entry(i), !ant(i,e).
notdelay(i, e) :- entry(i), !earl(i,e).
notdelay(i, e) :- !ant(i,e), edge(j,i), locAnt(j,e).
notdelay(i, e) :- !ant(i,e), edge(j,i), notdelay(j,e).
notdelay(i, e) :- !earl(i,e), edge(j,i), locAnt(j,e).
notdelay(i, e) :- !earl(i,e), edge(j,i), notdelay(j,e).

delay(i:Blk, e:Exp) % delay (DELAYin)
delay(i,e) :- node(i), !notdelay(i,e).

latest(i:Blk,e:Exp) % latest (LATE)
latest(i,e) :- delay(i,e), locAnt(i,e).
latest(i,e) :- delay(i,e), edge(i,j), !delay(j,e).

notisol(i:Blk, e:Exp) % not isolated (not ISOLout)
notisol(i,_) :- exit(i).
notisol(i,e) :- edge(i,j), !latest(j,e), locAnt(j,e).
notisol(i,e) :- edge(i,j), !latest(j,e), notisol(j,e).

opt(i:Blk, e:Exp) % optimal (OPT)
opt(i,e) :- latest(i,e), notisol(i,e).

redn(i:Blk, e:Exp) % redundant (REDN)
redn(i,e) :- locAnt(i,e), !latest(i,e), notisol(i,e).

Figure 1: Implementation of PRE for Traditional IR

6

2.3 Bit-Width Analysis

Because Datalog provides no built-in support for arithmetic, it is difficult to implement analyses that require
much computation with numbers, such as constant propagation. However, itis possible to code up arithmetic
explicitly by defining the necessary functions extensionally in the EDB. This technique becomes intractable
when large numbers are required, but it is usable when the numbers are small enough. In this section,
I present Datalog code for a simple bit-width analysis that determines how manybits are necessary to
represent the values that flow on the wires of a Pegasus graph. This analysis is feasible because only
numbers0, . . . , 31 are necessary.

First, we define the necessary arithmetic operations. In this example, we will require two arithmetic
operations: maximum and truncated addition (defined bytadd(x, y) = min(x + y, 31)). Thus, we will
define an EDB containing explicit definitions of these functions as relations:

Width 32

max(n1:Width, n2:Width, n3:Width)
tadd(n1:Width, n2:Width, n3:Width)
... 32ˆ2 rules for each ...

Next, we must consider how to represent the Pegasus graph. For this analysis, we require more detailed
information than for ADCE: we must model the flow of values along wires. We can do so by defining a type
of wiresalong with propositions defining the relationships between them. Specifically, we use the following
propositions:

• const(w:Width, out:Wire) A constant of widthw flows along the output wire. This propo-
sition is used to represent constants and unknowns, which must conservatively be assumed to use all
32 bits. Unknowns include the arguments to a function, and, because we are not doing a memory-
sensitive analysis, values loaded from memory.

• addOp(in1:Wire, in2:Wire, out:Wire) The (unsigned) sum of the inputs flows over the
outputs. This proposition is used to represent additions.

• mulOp(in1:Wire, in2:Wire, out:Wire) The (unsigned) multiplication of the inputs flows
over the outputs. This proposition is used to represent multiplication.

• copy(w1:Wire, w2:Wire) The input value is copied to the output. This proposition is used to
represent pass-through instructions such as eta, hold, noop, and reg.

• merge2(in1:Wire, in2:Wire, out:Wire) One of the two inputs flows over the output.
This proposition is used to model join points such as mux and mu (n-ary muxes and mus can be
expanded into a succession of merges).

Note that this representation omits token and crt wires—presumably a token does not need be repre-
sented at run-time, or, if it does, is known to require only 1 bit. Additionally, this representation elides the
predicate inputs to a node, since these have no effect on the width of the value that flows from the node.
(A predicate wire is still declared to be the output of the node producing its value so that we determine the
number of bits necessary for it.)

Using this representation of the graph, we define a propositionwidth(w:Wire, n:Width) , which
means that the values flowing overwmay use the0, . . . , nth bits of a 32-bit word.

7

width(w:Wire, n:Width)

width(_,0).
width(out,n) :- const(n, out).
width(out,n) :- addOp(in1, in2, out), width(in1,n1), widt h(in2, n2),

max(n1, n2, n3), tadd(n3, 1, n).
width(out,n) :- mulOp(in1, in2, out), width(in1,n1), widt h(in2, n2),

tadd(n1, n2, n).
width(out,n) :- copy(in, out), width(in,n).
width(out,n) :- merge2(in1, in2, out), width(in1, n1), wid th(in2, n2),

max(n1, n2, n).

Because we assume dead code elimination and constant propagation are implemented as separate passes,
the first rule asserts that every wire uses the 0-bit (at least one non-zero number flows over it). The next
rule asserts that a constant uses the bits it is declared to use. The next tworules define the width of addition
and multiplication: an addition may use one more bit than the maximum of the inputs; a multiplication may
use the sum of the inputs. The rule for copy propagates the input value, and the rule for merging takes the
maximum.

The propositionsmerge2 , const , andcopy seem to be sufficient for all Pegasus operations besides
the primops; to handle all Pegasus primops, it may be necessary to implement additional arithmetic oper-
ations in Datalog. Thus, while we can implement this analysis without primitive support for arithmetic, it
would be more pleasant with such support.

Additionally, this Datalog program computes more facts than are necessary if, at the end of the day, we
only care about the maximumn for which width(w,n) . For example, this program may spend time and
space derivingwidth(w,23) when we already have derivedwidth(w,31) . See below for speculation
about a more efficient solution.

3 Efficiency

I have collected a bit of data in order to evaluate whether the performance of these dataflow analyses is
reasonable. All of these runs were conducted on a Pentium 4 3GHz processor with 1GB memory.bddbddb
is implemented in Java and was run with the Sun JVM build1.5.0_06-b05 . These experiments used a
version ofbddbddb obtained from sourceforge on April 23, 2007.

I present data for the ADCE code presented above. I ran the code using three separate invocations of
the JVM: the first two read in text files containing the definitions ofroot andedge as explicit lists of
tuples and output text files describing the BDD representations of these relation. The third invocation reads
in these BDD representations and performs the actual computation.

The tables in Figure 2 present the running time of these invocations, as collected by the Linux command
time , for five example programs of various sizes. The first four programs are from theSample/ directories
of the CASH repository. The fifth is somewhat synthetic—it is the code ofmatmult copied (and permuted
slightly) enough times to be 200 lines long. In addition to the running times, I also listthe program size
(number of nodes in the Pegasus graph) and the true instances of each relation (for root and rfr , this
number can be at most the number of nodes; foredge , it can be at most that squared). In the final table,
the solve time column is an attempt to see what fraction of the time was spent doing theactual computation,
as opposed to reading and printing; it contains the wall-clock time between the start and end of the actual
computation (collected usingcurrentTimeMillis before and after).

8

Makeroot(x) BDD (read in tuples, make BDD, print BDD):
program size user time (s) sys time (s) true instances

ccp-example3 150 .30 .04 4
adce-example 54 .41 .03 4

matmult 231 .25 .06 8
adpcm 868 .27 .04 11

matmult200 3080 .53 .01 63

Makeedge(x,y) BDD (read in tuples, make BDD, print BDD):
program size user time (s) sys time (s) true instances

ccp-example3 150 .57 .06 286
adce-example 54 .51 .07 83

matmult 231 .59 .02 398
adpcm 868 1.1 .03 1797

matmult200 3080 4.94 .05 5418

Compute reachabilityrfr(x) and print results:
program size user time (s) sys time (s) solve time (s) true instances

ccp-example3 150 0.74 0.08 150
adce-example 54 0.77 0.07 48

matmult 231 0.72 0.06 231
adpcm 868 0.74 0.07 0.232 868

matmult200 3080 1.15 0.10 0.539 2875

Running the empty Datalog program takes 0.250 to 0.350 seconds (user+sys).

Figure 2: Running time of ADCE

9

Discussion. These numbers are promising but not yet satisfactory, if the goal for anoptimization is 0.1
seconds. However, there are many potential avenues for improvement:

• BDD algorithms are highly sensitive to the structure of the decision tree, whichis determined by an
order on the variables. I have not yet attempted to find good variable orders, beyond whatbddbddb
does by default.

• These data were collected usingbddbddb with a Java BDD implementation.bddbddb seems to
be set up to run a highly-tuned C BDD implementation called BuDDy, but I was unable to get this
functionality to work (and the author ofbddbddb has not yet responded to my query about it).

• Interacting withbddbddb in the same process as the compiler would remove the I/O and JVM startup
overhead. The solve time numbers in the final table show that, in these examples, only a third to a half
of the running time was actual computation.

• For large Pegasus graphs, the time to build the largeedge BDD dominates. (This trend was corrobo-
rated by other experiments on randomly generated graphs as well.) In addition to using a faster BDD
implementation and interfacing with the BDD library directly rather than going through text files, this
time could be brought down by exploiting the available information better. Specifically, bddbddb
currently “or”s each tuple in the relation with the previous BDD. However, there is no need to build
the BDD using an online algorithm, and it may be more efficient to, e.g., incorporate all successors of
a given node at once.

4 Related Work and Conclusion

Lam et al. [2005], Whaley et al. [2005] and Whaley and Lam [2004] describe the implementation of
bddbddb , as well as Datalog pointer-analyses for Java and C and several otherstatic analyses. See these
papers for citations of the vast amount of prior work on Datalog, logic programming with BDDs, and other
applications of BDDs. Muchnick [1997] defines PRE and other dataflow analyses. Budiu and Goldstein
[2002] describe the semantics of the Pegasus internal representation. To the best of my knowledge, the
application of a BDD-based implementation of Datalog to Pegasus is novel to the present work. Addition-
ally, I at least independently re-invented the technique for encoding universal quantification used in PRE (I
wouldn’t be surprised if others have used the same device), and I havenot seen PRE implemented using
forward-chaining logic programming in the literature.

In summary, I claim that Datalog is a lovely language for writing dataflow analyses when possible:
the iterative computation of forward-chaining logic programming implements the iterative aspects of these
algorithms automatically. In general, analyses that associate each block or statement or node with either
true or false (e.g., ADCE) or with a set of abstract values (e.g., all the PREanalyses) seem to have natural
implementations. In part, this is because these analyses never need to rescind the truth of a proposition that
has already been deemed true.3

The analyses that seem difficult to implement are those that make use of arithmetic, which Datalog
provides no native support for, and those that use other kinds of lattices besides the two mentioned above.
For example, our implementation of bit-width analysis computes redundant information because it is not

3For set-based analyses, the set of values associated with a statement does change as the analysis runs. However, in the examples
in this report, we were able to decompose the set into the membership of individual elements, which individually do not change
over time.

10

summarizing information using the proper lattice structure, and its definition is complicated by having to
define arithmetic explicitly. As another example, conditional constant propagation suffers from both of
these problems as well. For CCP, the lack of arithmetic seems deadly since largenumbers are required.
Additionally, implementing CCP in the inefficient style used for bit-width (i.e., not summarizing multiple
constants as “unknown”, but computing all possible values) would require computing many more extra facts.

These limitations suggest useful avenues for future research. First, itmay be possible to design a con-
straint logic programming language based on Datalog, providing primitive support for arithmetic. Second,
it may be possible to design a linear logic programming language based on Datalog, which would permit
propositions whose truth changes over time. This could be used to implement analyses where the lattice
value associated with a statement changes over time, such as good versionsof CCP and bit-width analysis.
However, the meaning of saturation is less clear when knowledge is not monotonic. The LolliMon lan-
guage [Ĺopez et al., 2005] is an initial attempt at forward-chaining linear logic programming, but its current
implementation is not nearly as fast as the implementation of Datalog using BDDs.

The present report suggests several other avenues for future work as well. First, it would be nice to
automate the encoding of universal quantification, so that the program can be written in the straightforward
syntax usingforall . More ambitiously, it may be possible to add stratified universal quantificationand
implication to Datalog: because all types are finite, a “forall” can be thought of as generating one premise
for each element of the type; stratified implication would restrict attention to thoseelements of the type
that satisfy a previously-computed proposition. Additionally, an extension of Datalog with first-order terms
could enable the implementation of dataflow-based transformations as well as analyses.

While these extensions would be very useful for implementing dataflow analyses, it remains to be seen
whether they can be integrated with Datalog without losing the benefits of BDD-based forward-chaining
logic programming.

Acknowledgments. I would like to thank Jake Donham for initial discussions about this project, Rob
Simmons for discussions about Datalog, and John Whaley for answering questions aboutbddbddb .

References

Mihai Budiu and Seth Copen Goldstein. Pegasus: An efficient intermediate representation. Technical Report
CMU-CS-02-107, Department of Computer Science, Carnegie Mellon University, 2002.

Monica A. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzintars Avots, Michael Carbin,
and Christopher Unkel. Context-sensitive program analysis as database queries. In24th SIGMOD-
SIGACT-SIGARTS Symposium on Principles of Database Systems, June 2005.

Pablo Ĺopez, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concurrent linear logic pro-
gramming. In Amy Felty, editor,International Symposium on Principles and Practice of Declarative
Programming, pages 35–46, Lisbon, Portugal, 2005. ACM Press.

Steven S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using datalog with binary decision
diagrams for program analysis. InProgramming Languages and Systems: Third Asian Symposium,,
Tsukuba, Japan, November 2005.

11

John Whaley and Monica S. Lam. Cloning-based context-sensitive pointeralias analysis using binary deci-
sion diagrams. InACM SIGPLAN Conference on Programming Language Design and Implementation,
June 2004.

12

