

FreePascal
From Square One

Volume 1:
The Fundamental Ideas of Programming

Installing and Configuring FreePascal and Lazarus
The Core of the Pascal Language

by Jeff Duntemann

Copperwood Press ● Scottsdale, Arizona

Repeat...
Until...

Revision of 6/4/2024

FreePascal from Square One
By Jeff Duntemann

This work is licensed under the Creative Commons Attribution-Share alike 3.0
United States License. To view a copy of this license, visit this Web link:

 http://creativecommons.org/licenses/by-sa/3.0/us/

or send a letter to:
Creative Commons

171 Second Street, Suite 300
San Francisco CA 94105 USA

So that no one misunderstands the above:

This is a free ebook.

And I really mean that. Like FreePascal itself, you are free to give it to your friends,
post it on your Web or FTP site or Usenet, include it on CDs or DVDs with your
software or your own books, and just get it out there to anybody who needs or
wants it. You are free to print it out at home to punch and put in a binder, or have a
print-on-demand site create a book out of it for you.

I would like to reserve rights to “publisher-style” printed editions sold at retail. If
you’re a publisher and wish to create and sell such an edition, contact me.

I post updated and corrected editions periodically. If you spot errors or see
something that could be improved somehow, please send me an email so that I can
fold those changes into the master copy. Use “jeff” “at” “duntemann” “dot” “com”
and it’ll reach me.



Note that although I consider this book to be (almost) complete, there may be typos
and other little glitches yet to be fixed. I work on it as time allows, and upload revi-
sions as they happen. Check back now and then to see if there’s a newer revision.
What’s missing is Chapter 14, on files and file handling, which I will add as soon as
practical.

Copperwood Media, LLC

Scottsdale, Arizona

Table of Contents

Introduction: How This Book Came About. 5
Part 1: The Fundamental Ideas of Programming 11
Part 2: Installing and Using FreePascal 89
Part 3: The Core of the Pascal Language. 117

FreePascal from Square One, Volume 1�

�

Introduction:
How This Book Came to Be,
and
What I’m Trying to Do

Yessir, the book you’re reading has been around the block a few times since I
began writing it in November of 1983—which I boggle to think was almost

forty years ago at this revision. It’s been through four print editions and on paper
sold over 125,000 copies. It’s been translated into five languages.

Now it’s time set it free.

Pascal was not my first programming language. That honor belongs to FORTH,
though I don’t admit it very often. FORTH struck a spark in my imagination, but
it burned like a pile of shredded rubber tires, leaving a stink and a greasy residue
behind that took years to get rid of. BASIC came next, and burned like dry pine;
with fury and small explosions of insight, but there was more light than heat, and
it burned out quickly. BASIC taught me a lot, but it didn’t take me far enough, and
left me cold halfway into the night.

Pascal, when I found it, caught and burned like well-seasoned ash: Slow, deep,
hot; I learned it with a measured cadence by which one fact built on all those before
it. 1981 is a long time gone, and the fire’s still burning. I’ve learned a lot of other
languages in the meantime, including C, which burns like sticks of dynamite: It
either digs your ditch or blows you to Kingdom Come. Or both. But when something
needs doing, I always come back to Pascal.

When I began writing Pascal From Square One in the fall of 1983, I had no particular
compiler in mind. There were several, and they were all (by today’s standards)
agonizingly bad. The best of the bunch was the long-extinct Pascal/MT+, and I used
that as the host compiler for all of my example code. The book, however, was about
Pascal the language: How to get started using it; how to think in Pascal; how to see
the language from a height and then learn its component parts one by one.

When I turned the book in at the end of summer 1984, my editor at Scott,
Foresman had a radical suggestion: Rewrite the book to focus not on Pascal the
language but on Turbo Pascal the product. The maverick compiler from Scotts
Valley was rapidly plowing all the other Pascals into the soil, and he smelled a new
and ravenous audience. I took the manuscript back, and by January of 1985 I had

FreePascal from Square One, Volume 1�

rewritten it heavily to take into account the numerous extensions and peccadilloes
of Borland’s Turbo Pascal compiler, version 2.0.

The book was delayed getting into print for several months, and as it happened,
Complete Turbo Pascal was not quite the first book on the shelves focusing on Turbo
Pascal. It was certainly the second, however, and it sold over 125,000 copies in the
four print editions that were published between 1985 and 1993. The Second Edition
of Complete Turbo Pascal (“2E”, as we publishing insiders called it) came out in 1986,
and addressed Turbo Pascal V3.0.

By March 1987 I had moved to Scotts Valley, California and was working for
Borland itself, creating a programmer’s magazine that eventually appeared in the fall
of 1987 as Turbo Technix. Doing the magazine was a handful, and I gladly let others
write the books for Turbo Pascal 4.0. I had the insider’s knowledge that V5.0 would
come soon enough, and change plenty, so I worked a little bit ahead, and Complete
Turbo Pascal, Third Edition was published in early 1989.

It’s tough to stay ahead in this business. Turbo Pascal 5.5 appeared in May of 1989,
largely as a response to Microsoft’s totally unexpected (but now long-forgotten)
QuickPascal. V5.5 brought with it the new dazzle of object-oriented programming,
and while I did write the V5.5 OOP Guide manual that Borland published with the V5.5
product I chose to pass on updating Complete Turbo Pascal for either V5.5 or V6.0.

The magazine Turbo Technix folded after only a year, and I left Borland at the end of
1988, wrote documentation for them until the end of 1989, and moved to Arizona
in February of 1990 to start my own publishing company. This included my own
programmers’ magazine, PC Techniques, which became Visual Developer in 1996 and
ran until early 2000.

The early 1990s saw some turbulence in the Pascal business. Borland retired
the “Turbo Pascal” brand and renamed their flagship product Borland Pascal.
The computer books division of my publisher, Scott Foresman, was engulfed and
devoured by some other publisher. Complete Turbo Pascal was put out of print, and I
got the rights back. An inquiry from Bantam Books in 1992 led to my expanding
Complete Turbo Pascal into a new book focused on Borland Pascal 7. I was able to re-
title the book Borland Pascal 7 From Square One (the title Complete Turbo Pascal had been
imposed by Scott, Foresman) and bring it up to date. That edition didn’t sell well
because by 1994, Borland had created Delphi, and most of us considered the DOS
era closed. I began writing books about Delphi and never looked back.

And so it was for almost 25 years. I considered just posting the word-processor
files from Borland Pascal from Square One back in the 90s, but figured that no one was
using Pascal all by itself anymore. Not so. I first saw FreePascal in 1998 and tried it
from time to time, but it wasn’t until January 2008 that Anthony Henry emailed me

�How This Book Came to Be

to suggest that FreePascal could use a good tutorial, and it shouldn’t be too hard to
update Borland Pascal 7 from Square One to that role. He was right—and the project
has been a lot of fun.

I mention all this history because I want people to understand where FreePascal
from Square One came from, emphasizing that it’s been a work in progress for
thirty-five years. Why stop now? I don’t have to cater to publishers, paper costs,
print runs, or release schedules anymore. The book can evolve with the compiler,
and every so often you can download the latest update. My publishing company
Copperwood Press (will soon) offer a print-on-demand paper edition if you’d like
one, but you can print it yourself if you prefer. That’s how technical publishing
ought to be, and someday will be.

What I’m Trying to Do Here
I wrote this book for ordinary people who had the itch to try programming, and
with some dedication get good at it over time. You don’t have to know anything at
all about Pascal, or programming generally, to read it. Anyone who lives a tolerably
comfortable life in this frenetic twenty-first century can program. Most of us (as I’ll
show a little later) engage the skills of programming to organize our daily lives. If
you want to program, you can.

It’s that simple.

And this book begins at what I call Square One: The absolute beginning. I will
explain the concepts behind programming, how to install FreePascal and the Lazarus
IDE, and how to craft simple text-based programs in the Pascal language. I will not
cover programming GUI apps using the Lazarus GUI builder, which deserves an
entire book—one that I’m working on. You do need to know your way around your
own computer and its operating system, but that’s for housekeeping more than
programming. This first volume will not get into operating system specific issues
except with respect to installation. Part of FreePascal’s magic is its portability: A simple
program written under Windows can be recompiled without changes under Linux—
or, for that matter, under any operating system to which FreePascal has been ported.

Rather than try to cover all of FreePascal in one book and do justice to none of it,
I’m going to take my time to help you get the basics down cold. It’s tough to build
a fancy house when half the bricks are missing from your foundation. This whole
book is about foundations, and getting familiar with all the skills that you will be
using for the rest of your programming career, even (or especially) once you’ve
forgotten how utterly fundamental they are.

That’s why I call it Square One.

FreePascal from Square One, Volume 110

‘80s Programming Style?
Some early readers objected to the coding style in this book’s examples. To them
it feels very 1980s. Yes, it does. That was a deliberate choice: Until windowed
environments (Windows, Mac, modern Linux) became universal, that’s how we
programmed. GUI programming is a complicated business, and I can’t even begin
to discuss it in this first introductory volume. So the simplest way to show Pascal
code in action is the fully textual command-line style, using read/readln and write/
writeln. I’m scoping out a brand new book that will begin with object-oriented
programming (OOP) and jump from there into GUIs. Please bear with me. This is,
I repeat, a book for absolute beginners. For their sake, I have to take it slow.

Why This Book Is Laid Out the Way It Is
I’ve been working on this book for a long time. I wanted it to serve equally well in
two formats: print and ebook. This was a lot harder to do than I expected. Print, no
problem. I used to lay out technical books for a living. Ebooks were a problem. People
read ebooks on devices from the size of smartphones up to huge 32” monitors on
their PCs. Today’s ebooks finesse the problem by being “reflowable.” Change the
screen size, and the text resizes and reflows to match the screen.

I experimented with the major reflowable formats, and to be honest, they all
looked awful. Books that are primarily text (fiction, or mostly textual nonfiction)
look fine, and reflowing them works well. Once you introduce screenshots, tables,
and code listings into the mix, the book descends into chaos if you reflow it away
from the format in which it was originally laid out. And if reflowing it makes it
unreadable, I figured it would be better to simply leave it in the standard page-image
PDF format. This required using a larger font than most technical books use, as a
compromise between paper and smaller displays like the IPad and Galaxy Tabs. I
chose the A4 page size in part because I thought that most people who would be
interested in the book lived outside the US, and in part because it maps a little more
closely to the typical non-iPad wide-format 9:16 tablet display.

As always, I welcome suggestions and ideas, as well as feedback on typos, errors
and obsolete information.

11

Begin . . . End

If...Then...Else...

Part I:
The Fundamental Ideas

of Programming

1. The Box That Follows a Plan. 13
2. The Nature of Software Developmement 41
3. The Secret Word Is “Structure” 67

FreePascal from Square One, Volume 112

13

Chapter 1.
The Box
that Follows a Plan

There is a rare class of human being with a gift for aphorism, which is the ability
to capture the essence of a thing in only a few words. My old man was one; he

could speak volumes in saying things like, “Kick ass. Just don’t miss.” Lacking the
gene for aphorism, I write books—but I envy the ability all the same.

The patron aphorist of computing is Ted Nelson, the eccentric wizard who
created the perpetually almost-there Xanadu database system, and who wrote the
seminal book Computer Lib/Dream Machines. It’s a scary, wonderful work, in and out
of print for thirty years but worth hunting down if you can find it. In six words, Ted
Nelson defined “computer” better than anyone else probably ever will:

A computer is a box that follows a plan.

We’ll come back to the box. For now, let’s think about plans, where they come
from, and what we do with them.

1.1. Another Scottsdale Saturday morning
Don’t be fooled. The world is virtually swimming in petroleum. What we need more
of is...Saturdays.

It’s 5:30 AM on the start of a Scottsdale weekend: The neighborhood woodpecker
hammers on our tin chimney cap, loud enough to wake the dead, but just long
enough to wake the sleeping. QBit stretches and climbs on my chest, wagging
furiously as though to say, Hey, guy, time waits for no man. Shake it!

Over coffee and scrambled eggs, I sit down at the kitchen table with a quadrille
pad and try to figure out how to cram thirty hours’ worth of doing into a sixteen-
hour day. The toughest part comes first: Simply remembering what needs to be
done. (This grows harder once you get into your sixties. Trust me.) I brainstorm a
list in pure stream-of-consciousness fashion, jotting things down in no particular
order other than how they occur to me, hoping that when I’m done it’s all there:

FreePascal from Square One, Volume 114

Read email.
Pay bills.
Put money into checking account if necessary.
Get cash at ATM.
Go to Home Depot.
	 Get Thompson’s Water Seal.
	 Get 2 4’ flourescent bulbs.
	 Get more steel wool if we’re out.
	 Get more #120 sandpaper if we’re out.
Get birthday present for Brian. Old West Books? He likes ghost towns.
Put together grocery list. Go to Safeway for groceries.
Sand rough spots on the deck.
Water seal the deck.
See if my back-ordered water filter cartridge is in at Sears; call first.
Replace refrigerator water filter cartridge if they have it.
Take the empty grill propane tank in and get a full one.
Do what laundry needs doing.
Go home and swim fifty laps.

That’s a lot to ask of one day. If it’s going to be done, it’s going to have to be done
smart, which is to say, in an efficient order so that as little time and energy gets lost
in the process as possible. In other words, to get the most out of a day, you’d better
have a plan.

Time and space priorities
In lining things up for the merciless sprint through a too-short day, you have to be
mindful of both time and space. Time is (as always) crucial. Some things have to
happen before other things. Some things have to happen before a certain time of
the day, or within a time “window”—such as the business hours of a store you need
to get to.

And on any mad dash through a metropolitan area the size of Phoenix and its
many suburbs, space becomes an overwhelming consideration. You can’t just go
to one place, come home, then go to the next place, then come home, and go to
another place, then come home again; not if each destination lies ten or twelve
miles or more from home. You have to think about where everything is, and visit

15The Box That Follows a Plan

all destinations in an order that minimizes needless travel—especially with gas
prices at historical highs. Home Depot is on the way to Old West Books, so it makes
sense to visit one on the way to the other. Hard decisions sometimes happen: Desert
Flower Appliances is a long way off, and not along any convenient connect-the-dots
path. Do you need to go there at all? If so, make sure you have to go—call first—and
consider that the water tastes awful, yet you’ve been avoiding the trip for a couple
of months.

Furthermore, there are always hard-to-define necessities that influence how and
in what order you do things. In an Arizona summer, you simply must do grocery
shopping dead last, and preferably at a store close to home, if you expect to keep
the ice cream solid and the Tater Tots frozen. Faced with the 45°C summer highs we
generally have for three months here in Scottsdale, most car air conditioners would
at best keep you alive.

Finally, when pressed, most of us will admit that we rarely manage to get
everything done on the day we intend to do it. Some things end up squeezed out
of a too-tight day like watermelon seeds from between greasy fingers. Whether we
realize it or not, we often schedule the least necessary things last, so that if we don’t
get to them it’s no disaster. After all, tomorrow is another day, and the undone
items will just head up tomorrow’s (or next Saturday’s) errands list.

One way or another, mostly on instinct but with some rational thought, we put
together a plan. After mulling it for a few minutes, I took my earlier stream-of-
consciousness errands list and drafted my actual plan as shown below:

Pay bills.
Call and add money to checking account if required based on balance.
Check in the garage for steel wool and #120 sandpaper.
Put together grocery list.
Call Desert Flower Appliances to see if the filters are in.
Check oil in the Durango. Add if necessary.
Run errands:
	 Go out Shea Boulevard to hit Home Depot first.
		 Get Thompson’s Water Seal.
		 Get 2 4’ flourescent bulbs.
		 Get more steel wool if we’re out.
		 Get more #120 sandpaper if we’re out.
		 Swap out empty propane tank.

FreePascal from Square One, Volume 116

Head west out Mountain View to Old West Books.
Buy Arizona ghost-towns book for Brian.
If water filters are in, go across town on Shea to Tatum Blvd. then north
to Desert Flower Appliances. Buy water filters.
Go down Tatum Safeway for groceries.
Get cash at ATM.
Come home.
Replace water filter cartridge behind refrigerator. (Finally!)
Sand rough spots on the deck.
Water seal the deck.
Do whatever laundry needs doing.
Read EMAIL.
Swim fifty laps.
Collapse!

From a height and in detail
The plan (for it is a plan) just outlined was executed pretty much the way I wrote
it. I added a few things I hadn’t thought of the first time, like checking the oil in the
Durango. The discipline of drafting a plan will often bring out details and issues
that didn’t come through the first time.

Much of the actual detail of the plan acted simply as a memory jogger. In the heat
of the moment (or in the heat of a summer afternoon, desperate to get someplace—
anyplace—air conditioned!) details often get forgotten. I knew, for example, why
I wanted to go to Old West Books—to buy a book for my nephew’s birthday. I
was unlikely to forget that. But in bad traffic, or if the Durango had acted up, well,
forgetfulness happens...

To be safe, I wrote the plan in more detail than I might have needed. I’ve lived
here for years and know my way around the area pretty well, but there are those
60s moments sometimes when you forget that it’s a long haul across on Shea to the
appliances store.

A plan can exist, however, at various levels of detail. Had I more faith in my memory
(or if I’d been stuck with a smaller piece of paper) I might have condensed some
of the items above into summaries that identify them without actually describing
them in detail. A less verbose but no less complete form of the plan might look like
this:

17The Box That Follows a Plan

Pay bills.
Replenish checking account from savings.
Put together grocery list.
Put together a Home Depot list.
Call Desert Flower Appliances to see if the filters are in.
Check in the garage for steel wool and #120 sandpaper.
Check oil in the Durango. Add if necessary.
Run errands:
Home Depot.
Old West Books.
Desert Flower Appliances.
Safeway.
Sand and water seal the deck.
If I get it, replace water filter cartridge behind refrigerator.
Do what laundry needs doing.
Read EMAIL.
Swim fifty laps.
Collapse!

Look carefully at the differences between this list and the previous list. Mostly
I’ve condensed obvious, common-sense things that I was unlikely to forget. I’ve
been to the various stores so often that I could do it asleep, so there’s really little
point in giving myself driving directions. I have an intuitive grasp of where all the
stores are located, and I can plot a minimal course among them all without really
thinking about it. At best, the order in which the stores are written down jogs my
memory in the direction of that optimal course.

I combined items that always go together. Paying bills and adding money back
into my checking account are things I always do together; to do otherwise risks
disorder and insufficient funds.

I pulled details out of the “Home Depot” item and instead added an item further
up the plan, reminding me to “Make a Home Depot list.” If I was already going to put
together a grocery list, I figured I might as well flip it over and put a hardware‑store
list on the other side. There’s a lesson here: Plan‑making is something that gets
better with practice. Every time you draft a plan, you’ll probably see some way of
improving it.

FreePascal from Square One, Volume 118

On the other hand, sooner or later you have to stop fooling around and execute
the plan.

I’m saying all this to get you in the habit of looking at a plan as something that
works at different levels. A good plan can be reduced to an “at-a-glance” form that
tells you the general shape of the things you want to do today, without confusing
the issue with reams of details. On the other hand, to be complete, the plan must
at some level contain all necessary details. Suppose I had sprained an ankle out in
the garage and had to have someone else run errands in my place? In that case, the
detailed plan would have been required, down to and perhaps including detailed
driving directions to the various stores.

Had Carol been the one to take over errand-running for me, I might not have had
to add a lot of detail to my list. When you live with a woman for forty-five years, you
share a lot of context and assumptions with her. But had my long-lost cousin Tony
from Wisconsin been charged with dashing around Phoenix Metro doing my day’s
errands, I would have had to write pages and pages to make sure he had enough
information to do it right.

Or if my very distant relative Heinz Duntemann from Dusseldorf were visiting, I
would have had to do all that, and write the plan in German as well.

Or...if my friend Sandron from Tau Ceti V (who neither knows nor cares what a
wood deck is, and might consider Thompson’s Water Seal a species of sports drink)
volunteered to run errands for me, I would have had to explain even the minutest
detail (over and above the English language and alphabet), including what stop lights
mean, how to drive, our decimal currency (Sandron has sixteen fingers and counts
in hex) and that cats are pets, not hors d’oerves.

To summarize: The shape of the plan—and the level of detail in the plan—
depends on who’s reading the plan, and who has to follow it. Remember this. We’ll
come back to it a little later.

1.2. Computer Programs as Plans of Action
If you’re coming into this book completely green, the conclusion may not be obvious,
so here it is: A computer program is very much a “do-it” list for a computer, written by you. The
process of creating a computer program, in fact, is very similar conceptually to the
process of creating a do-it list, as we’ll discover over the course of Part 1.

Ted Nelson’s description of a computer as a box that follows a plan is almost
literally true. You load a computer program—the plan—into the computer’s
memory, and the computer will follow that plan, step-by-step, with a tireless
persistance and absolute literal adherence to the letter of the plan.

19The Box That Follows a Plan

I’m not going to go into a tremendous amount of detail here as to the electrical
internals of computers. For that, you might pick up my book Assembly Language Step
By Step (John Wiley & Sons, 2009; available on Amazon) and read its first several
chapters, which explain the Intel CPU family and computer memory in simple terms.
In 2014 I wrote the basic chapters in Learning Computer Architecture with Raspberry Pi,
which explain the electrical reality of ARM-based computers, and go into much
more detail. You can run FreePascal and Lazarus on the Raspberry Pi, and if you like
Pascal (or don’t feel like learning C or Python) I recommend giving them a try.

The notion of an “instruction set”
I had a very hard time catching onto the general concept of computing at first.
Everybody who tried to explain it to me danced all around the issue of what a
computer actually was. Yes, I knew you loaded a program into the computer and the
program ran. I understood that one program could control the execution of other
programs, and a host of other very high-level details. But I hungered to know what
was underneath it all.

What I think was bothering me was the very important question: How does the
computer understand the steps that comprise the plan?

The answer, like a plan, can be understood on several levels. At the highest
level, you can think of it this way: The computer understands a very limited set of
commands. These commands are the instructions that you write down, in order,
when you sit at your desk and ponder the way to get the computer to do the things
you want it to do. Taken together, the commands that the computer understands are
called its instruction set. The instruction set is summarized in a book that describes
the computer in detail. Programmers study the instruction set, and they write a
program as a sequence of instructions chosen from that set.

Emily, the robot with a one-track mind
Let’s consider a very simple thought-experiment describing a gadget that has actually
been built (although many years ago) at a major American university. The gadget is,
in fact, a crude sort of robot. Let’s call the robot Emily. (The name is a tribute to a
robotics project that appeared in Popular Electronics for March, 1962. I built Emily for
my eighth grade science fair, and won an award.)

Picture Emily as a round metal can roughly the size and shape of a low footstool
or a dishpan. Inside Emily are motors and batteries to power them, plus relays that
switch the motors on and off, allowing the motors to run forward or backward, or to
make right and left turns by running one motor or the other alone. On Emily’s top
surface are a slot into which a card can be inserted, and a button marked “GO.”

FreePascal from Square One, Volume 120

	

Figure 1.1. Emily the Robot

Left to her own devices, Emily does nothing but sit in one place. However, if you
take a card full of instructions and insert the card into the slot on Emily’s lid and
press the “GO” button, Emily zips off on her own, stopping and going and turning
and reversing. She’s following the instructions on the card. Eventually she reaches
and obeys the last instruction on the card, and simply stops where she is, waiting
for another card and another press of the “GO” button.

Figure 1.2 shows one of Emily’s instruction cards. The card contains thirteen
rows of eight holes. In the figure, the black rectangles represent holes punched
through the card, and the white rectangles are places where holes could be
punched, but are not. Underneath the slot in Emily’s lid is a mechanism for
detecting holes by shining eight small beams of light at the card. Where the light
goes through and strikes a photocell on the other side, there is a hole. Where the
light is blocked, there is no hole.

The holes can be punched in numerous patterns. Some of the patterns “mean
something” to Emily, in that they cause her machinery to react in a predictable
way. When Emily’s internal photocells detect the pattern that stands for “Go
forward 1 foot” her motors come on and move her forward a distance of one foot,
then stop. Similarly, when Emily detects the pattern that means “Turn right,” she
pivots on one motor, turning to the right. Patterns that don’t correspond to some
sort of action are ignored.

21The Box That Follows a Plan

	 Figure 1.2. A program card for Emily the Robot

The card shown in Figure 1.2 describes a plan for Emily. It is literally a list of things
that she must do, arranged in order from top to bottom. The arrow shows which end
of the card must be inserted into Emily’s card slot, with the cut corner on the left.
Once the card is inserted into the slot in her lid, a press on her “GO” button sets her in
motion, following the plan as surely as I followed mine by jumping into the 4Runner
and heading off down Nevada Street to do my Saturday morning errands.

When Emily follows the plan outlined on the card, she moves in the pattern
shown in Figure 1.3. It’s not an especially sophisticated or useful plan—but then
again, there’s only room for thirteen instructions on the card. With a bigger
card—or more slots to put cards into—Emily could execute much longer and
more complex programs.

FreePascal from Square One, Volume 122

Figure 1.3. How Emily follows her instructions.

Emily’s instruction set
It’s interesting to look at the plan-card in Figure 1.2 and dope out how many
different instructions are present on the card. The answer may surprise you: four.
It looks more complex than that, somehow. But all that Emily is doing is executing
sequences of the following instructions:

Go forward 1 foot
Go forward 10 feet
Turn left
Turn right

23The Box That Follows a Plan

There’s no instruction to stop; when Emily runs out of instructions, she stops
automatically.

Now, Emily is a little more sophisticated than this one simple card might
indicate. Over and above the four instructions shown above, Emily “understands”
four more:

Go backward 1 foot
Go backward 10 feet
Rotate 180°
Sound buzzer

I’ve summarized Emily’s full instruction set in Figure 1.4.

Figure 1.4. The Emily Mark I Instruction Set.

When you want to punch up a new card for Emily to follow, you must choose
from among the eight instructions in Emily’s instruction set. That’s all she knows,
and there’s no way to make her do something that isn’t part of the instruction set.
However, it isn’t always completely plain when something is or isn’t part of the
instruction set. Suppose you want Emily to move forward seven feet. There’s no
single instruction in Emily’s instruction set called “Go forward seven feet.” However,
you could put seven of the “Go forward 1 foot” instructions in a row, and Emily

FreePascal from Square One, Volume 124

would go forward seven feet.

But that would take seven positions on the card, which only has thirteen positions
altogether. Is there a way to make Emily move forward seven feet without taking so
many instructions?

Consider the full instruction set, and then consider this sequence of
instructions:

Go forward 10 feet
Go backward 1 foot
Go backward 1 foot
Go backward 1 foot

It’s the long way around, in a sense, but the end result is indeed getting Emily to a
position seven feet ahead of her starting point. It takes a little longer, timewise, but
it only uses up four positions on the card.

This is a lot of what the skill of programming involves: Looking at the computer’s
instruction set and choosing sequences of instructions that get the job done. There
is usually more than one way to do any job you could name—and sometimes an
infinite number of ways, each with its own set of pluses and minuses. You will find,
as you develop your skills as a programmer, that it’s relatively easy to get a program
to work—and a whole lot harder to get it to work well.

Different instructions sets
There is something I need to make clear: An instruction set is not the same thing
as a program. A computer’s instruction set is baked into the silicon of its CPU
(Central Processing Unit) chip. (There have been computers—big ones—created
with alterable instruction sets, but they are not the sorts of things we are ever
likely to work on.) Once the chip is designed, the instruction set is almost literally
set in stone.

However, as years pass, computer designers create new CPU chips with new
instruction sets. The new instruction sets are sometimes massively different
from the old ones, but in many cases, a new instruction set comes about simply
by adding new instructions to an existing instruction set while designing a new
CPU chip or family of CPU chips.

This was done when Intel designed the 80286 CPU chip in the early ‘80s. The
dominent PC-compatible CPU chip up to that time was Intel’s 8088, an 8-bit
version of Intel’s original 16-bit 8086. The 8088 was used by IBM in its original

25The Box That Follows a Plan

PC and XT machines. Intel added a lot of computing muscle to the 8088 when it
created the 80286, but the remarkable thing was that it only added capabilities—
Intel took nothing away. The 80286’s instruction set is larger than the 8088’s, but it
also contains the 8088’s. That being the case, anything that runs on an 8088 also
runs on an 80286. This has been the case as Intel’s product line has evolved down
the years through the 80386, 80486, the Pentium, and the more recent Core. All the
instructions available in Intel’s original 8086/8088 instruction set are still there in
the latest Core CPUs. (Whether programs written for the 8088 will run on a Core
i7 really depends more on the operating system than the CPU chip.)

Emily Mark II
We can return to Emily for a more concrete example. Once we’ve played with Emily
for a few months, let’s say we dismantle her and rebuild her with more complex
circuitry to do different things. We add more sophisticated motor controls that
allow Emily to make half-turns (45°) instead of just full 90° left and right turns. This
alone allows tremendously more complex paths to be taken.

But the most intriguing addition to Emily is an electrically operated “tail” that
can be raised or lowered under program control. Attached to this tail is a felt-tip
reservoir brush, much like the ones sign painters use for large paper signs. One new
instruction in Emily’s enlarged instruction set lowers the brush so that it contacts
the ground. Another instruction raises it off the ground so that it remains an inch
or so in the air.

If we then put down large sheets of paper in the room where we test Emily, she can
draw things on the paper by lowering the brush, moving around, and then raising the
brush. Emily can draw a 1-foot square by executing the following set of instructions:

Lower brush
Go forward 1 foot
Turn right
Go forward 1 foot
Turn right
Go forward 1 foot
Turn right
Go forward 1 foot
Raise brush

The full Emily Mark II instruction set is shown in Figure 1.5.

FreePascal from Square One, Volume 126

Figure 1.5. The Emily Mark II Instruction Set.

The whole point I’m making here is that a computer program is a plan for action,
and the individual actions must be chosen from a limited set that the computer
understands. If the computer doesn’t understand a particular instruction, that
instruction can’t be used. Sometimes you can emulate a missing instruction by
combining existing instructions to accomplish the same results. We did this earlier
by using several instructions to make Emily act as though she had a “Move forward
seven feet” instruction. Often, however, that is difficult or impossible. How, for
example, might you make Emily perform a half-left turn by combining sequences
of her original eight instructions? Easy. You can’t.

This is one way to understand the limitations of computers. A computer has a
fundamental instruction set. This instruction set is fairly limited, and the individual
instructions are very tiny in their impact. An instruction, for example, might simply
add 1 to a location in memory. Through a great deal of cleverness, this elemental
instruction set can be expanded enormously by combining a multitude of tiny,
limited instructions into larger, more complex instructions. One such mechanism
is the subject of this book: FreePascal, as I’ll explain in the next chapter.

27The Box That Follows a Plan

1.3. Changing course inside the plan
Back in the DOS era (basically 1981-1995) if you used a PC for any amount of time, you
probably wrote small “batch” files to execute sequences of DOS commands or utility
programs. Virtually everyone back then periodically tinkered with AUTOEXEC.
BAT, which was the batch file in charge of setting up your machine at boot-time by
loading resident programs, changing video modes, checking remaining hard disk
space, and things like that.

A DOS batch file was very much what we’ve been talking about: a “do-it” list for
your computer. I had a whole lot of them, most created to take the three or four
small steps necessary to invoke some application. When I wanted to work with
my address book file using the Paradox database application, I used to use this little
batch file:

D:

CD \PARADOX3\PERSONAL

VHR MDS /N

PARADOX3

It’s not much, but it saved me having to type these four lines every time I wanted
to update someone’s phone number in my address book database. (We forget
sometimes what tremendous time savers Windows and Mac OS have been by
handling things like that for us, and retaining applications in memory for quick use
at any time.) The first command shown above moves me to the D: hard disk drive.
The second command moves me into the subdirectory containing my address book
database. The third command invokes a special utility program that resets and
clears the unusual monitor and video board that I used for years in the DOS era.
The fourth and last line invokes the Paradox 3.0 database program.

Yes, DOS batch files are ancient and little-used these days, but they perfectly
illustrate my point: Like most people’s “do-it” lists, DOS batch files run straight
through from top to bottom, in one path only.

Departing from the straight and narrow
Well, how else would it run? Well, a batch program (for they truly were computer
programs) might contain a loop or a branch, which alters the course of the plan
based on what happens while the plan is underway. (Branching was possible with
DOS batch, but only deep geeks ever did much of it.)

You do that sort of thing all the time in daily life, mostly without thinking.
Suppose, for example, you go grocery shopping with the item “poppy-seed rolls”

FreePascal from Square One, Volume 128

on your grocery list. Now when you get to Safeway, suppose it’s late in the day and
the poppy‑seed rolls are long gone. You’re faced with a decision: What to buy? If
you’re having hamburgers for supper, you need something to put them on. So you
buy Mother Ersatz’ Genuine Bread-Flavored Imitation Hamburger Buns. You didn’t
write it down this way and may not even think of it this way, but your “do-it” list
contains this assumed entry:

If the bakery poppy-seed rolls are gone,
	 buy Mother Ersatz’ Buns.

Then again, if Mother Ersatz’ products make you feel, well...ersatz, you might
change your whole supper strategy, leave the frozen hamburg in the freezer, and
gather materials for stir-fry chicken instead:

If the bakery poppy-seed rolls are gone, then do this:
	 Buy package of boneless chicken breasts;
	 Buy bottle of teriyaki sauce
	 Buy fresh mushrooms
	 Buy can of water chestnuts

Most of the time we perform such last-minute decision-making “on the fly,”
hence we rarely write such detailed decisions down in our original and carefully
crafted “do-it” lists. Most of the time, Safeway will have the poppy-seed rolls and we
operate under the assumption that they will always be there. We think of “Plan B”
decisions as things that happens only when the world goes ballistic on us and acts
in an unexpected fashion.

In computer programming, such decisions happen all the time, and programming
would be impossible without them. In a computer program, little or nothing can be
assumed. There’s no “usual situation” to rely on. Everything has to be explained
in full. It’s rather like the situation that would occur if I sent Sandron the alien out
shopping for me. I’d have to spell the full decision out in great detail:

If the store bakery poppy-seed rolls are still available,
	 then buy one package,
	 otherwise buy one package of Mother Ersatz’ Buns.

29The Box That Follows a Plan

This is an absolutely fundamental programming concept that we call the IF..
THEN..ELSE branch statement. (The word “otherwise” stands in well for the Pascal
term ELSE.) It’s a fork in the plan; a choice of two paths based on the state of things
as they exist at that point in the plan. You can’t know when you head out the door
on your way to Safeway whether everything you want will be there...so you go in
prepared to make decisions based on what you find when you get to the bakery
department. In Pascal programming you’ll come to use branches like this so often it
will almost be done without thinking.

Doing part of the plan more than once
Changing the course of a plan doesn’t necessarily mean branching off on a whole
new trajectory. It can also mean going back a few steps and repeating something
that may need to be done more than once.

A simple example of a loop to get a job done comes up often in something as
simple as a recipe. When you’re making a cake from scratch and the recipe book
calls for four cups of flour, what do you do? You take the 1-cup measuring cup, dip
it into the flour canister, fill it brim-full, and then dump the flour it contains into the
big glass bowl.

Then you do exactly the same thing a second time...

...and a third time...

...and a fourth time.

The plan (here, a cake recipe) calls for flour. Measuring flour is done in one-
cup increments, because you don’t have a four-cup measuring cup. It’s a little like
the situation with Emily the Robot, when she has to move three feet forward. The
instruction set doesn’t allow you to measure out four cups of flour in one swoop, so
you have to fake it by measuring out one cup four times.

In the larger view, you’ve entered a loop in the plan. You go through the component
motions of measuring out a cup of flour. Then, you ratchet back just far enough in
the plan to go through the same motions again. You do this as often as you must to
correctly accomplish the recipe.

Counting passes through the loop
You’ve probably been in the situation where you begin daydreaming after the second
cup, and by the time you shake the clutter out of your head, you can’t remember how
many times you’ve already run through the loop, and either go one too many or one
too few. Counting helps, and being as how I’m a champion daydreamer, I’m not
afraid to admit that when the count goes more than three or four, I start making tick

FreePascal from Square One, Volume 130

marks on a piece of scratch paper for each however much of whatever I throw into
the bowl. This makes for much better cakes. (Or at least more predictable ones.)

You might write out (for cousin Heinz or perhaps Sandron the alien) this part of
the plan like so:

Do this exactly four times (and count them!):
	 Dip the measuring cup into the flour canister;
	 Fill the cup to the line with flour;
	 Dump the flour into the mixing bowl.

This is another element that you’ll see very frequently in Pascal programming.
It’s called a FOR..DO loop, and we’ll return to it later in this book.

Doing part of the plan until it’s finished
There are other circumstances when you need to repeat a portion of a plan until...
well, until what must be done is done. You do it as often as necessary.

It’s something like the way Mary Jo Mankiewicz measures out jelly beans at
Candy’N’Stuff. You ask her for a quarter-pound of the broccoli-flavored ones. She
takes the big scoop, holds her nose, and plunges it deep into that rich green bin.
With a scoop full of jelly beans, she stands over the scale, and repeatedly shakes a
dribble of jelly beans into the scale’s measuring bowl until the digital display reads
a little more than .25.

Written out for Sandron the Alien, the plan might read this way:

Dig the scoop into the jelly beans and fill it.
Take the full scoop over to the digital scale.
Repeat the following:
	 Shake a few jelly beans from the scoop into the scale’s bowl;
Until the scale’s digital readout reads 0.25 pounds.

Exactly how many times Mary Jo has to shake the scoop over the scale depends
on what kind of a shaker she is. If she’s new on the job and cautious because she
doesn’t want to go too far, she’ll just shake one or two jelly beans at a time onto the
scale. Once she wises up, she’ll realize that going over the requested weight doesn’t
matter so much, and she’ll shake a little harder so that more jelly beans drop out of
the scoop with each shake. This way, she’ll shake a lot fewer times, and when she

31The Box That Follows a Plan

ends up handing you half a pound of jelly beans, that’s OK—since one can’t ever
have enough broccoli-flavored jelly beans, now, can one?

Computers, of course, do mind when they go over the established weight limit,
and they don’t mind making small shakes if that’s what it takes to get the final
weight bang-on. A computer, in fact, is a tireless creature, and would probably
shake out only one bean at a time, testing the total weight after each bean falls
into the bowl.

This sort of loop is called a REPEAT..UNTIL loop, and it’s also common in
Pascal programming, as I’ll demonstrate later on in this book.

The shape of the plan
The whole point I’m trying to make in this section is that a plan doesn’t have to
be shaped like one straight line. It can fork, once or many times. Portions of the
plan can be repeated, either a set number of times, or as many times as it takes
to get the job done. This is nothing new to any of us—we do this sort of thing
every day in muddling through our somewhat overstuffed lives. In fact, if you’ve
taken any effort at all to live an organized life, you’ll probably make a dynamite
programmer, since success in life or in programming cooks down to creating a
reasonable plan and then seeing it through from start to finish without making
any (serious) mistakes.

1.4 Information and Action
Actually, we’ve only talked about half of what a plan (in computer terms) actually is.
The other half, which some people say is by far the more important half, has been
waiting in the wings for its place in this discussion.

 That other half is the stuff that is acted upon when the computer works through
the plan you devise for it. When we spoke of Mary Jo Mankeiwicz measuring out jelly
beans, we focused on the way she ladled them out. Just as important to the process
are the jelly beans themselves. And so it is, whether you characterize the plan as
shopping for groceries, measuring out flour for a recipe, or building a birdhouse.
The shopping, the measuring, and the building are crucial—but they mean nothing
without the groceries, the flour, and those little pieces of plywood that always split
when you try to get a nail through them.

In computer terms, the stuff that a program acts on is information, by which I
mean symbols that have some meaning in a human context.

FreePascal from Square One, Volume 132

Code vs. data
When you create a computer program, the plan portion of the program is a series
of steps, written in a programming language of some sort. In this book, that’s going
to mean FreePascal, but there are plenty of programming languages in the world
(too many by half—or maybe three quarters, I think) and they all work pretty
much the same way. Taken together, these steps are called program code, or simply
code. Collectively, the information acted on by the program code is called data. The
program as a whole contains both code and data.

My friend Tom Swan (who has written some terrific books on the Pascal
programming language himself) says that code is what a computer program
does, and data is what a computer program knows. This is a very elegant way of
characterizing the difference between program code and data, and I hesitate in
using it mostly because too many people have swallowed the Hollywood notion
of mysteriously intelligent computers a little too fully. A program doesn’t “know”
anything—it’s not alive, and a consensus is beginning to form that computers can
never truly be made to think in the sense that human beings think. Roger Penrose
has written a truly excellent book on the subject, The Emperor’s New Mind, which is
difficult reading in places but really nails the whole notion of “artificial intelligence”
to the wall. The subject is a big one, and an important one, and I recommend the
book powerfully.

Figure 1.6. Computer, Code, and Data.

33The Box That Follows a Plan

But there’s another reason: Thinking of code and data as “doing” and “knowing”
leaves out an essential component: The gizmo that does the doing and the knowing;
that is, the computer itself. I recommend that you always keep the computer in the
picture, and think of the computer, code, and data as an unbreakable love triangle.
No single corner is worth a damn without both of the other two. Between any two
corners you’ll read what those two corners, working together, create. See Figure
1.6. In summary: The program code is a series of steps. The computer takes these
steps, and in doing so manipulates the program’s data.

Let’s talk a little about the nature of data.	

Let X be...
A lot of people shy away from computer programming due to math anxiety. Drop
an “X” in front of them and they panic. In truth, there’s very little math involved
in most programming, and what math there is very rarely goes beyond the high-
school level. In virtually all programs you’re likely to write for data processing
purposes (as opposed to scientific or engineering work) you’ll be doing nothing
more complex than adding, subtracting, multiplying, or (maybe) dividing—and
very rarely taking square roots.

What programming does involve is symbolic thinking. A program is a series of
steps that acts upon a group of symbols. These symbols represent some reality
existing apart from the computer program itself. It’s a little like explaining a point
in astronomy by saying, “Let this tennis ball represent the Earth, and this marble
represent the Moon...” Using the tennis ball and the marble as symbols, you can
show someone how the moon moves around the earth. Add a third symbol (a
soccer ball, perhaps) to represent the Sun, and you can explain solar eclipses and
the phases of the Moon. The tennis ball, marble, and soccer ball are placeholders
for their real-life rock-and-hot-gas counterparts. They allow us to think about the
Earth, Sun, and Moon without getting boggled by the massiveness of scale on which
the solar system operates. They’re symbols.

A bucket, a label, and a mask
Using a couple of balls to represent bodies in the solar system is a good example
of an interesting process called modeling, which is a common thing to do with
computer programs, and we’ll come back to it at intervals throughout this book.
But data is simpler even than that. A good conceptual start for thinking about
data is to imagine a bucket.

Actually, imagine a group of buckets. (Your programs won’t be especially useful
if they only contain one item of data.) Since the buckets all look pretty much alike,

FreePascal from Square One, Volume 134

you’d better also imagine that you can slap a label on each bucket and write a name
on each label.

The buckets start out empty. You can, at will, put things in the buckets, or
take things out again. You might place ten marbles in a bucket labeled “Ralph,” or
removed five marbles from a bucket labeled “George.” You can look at the buckets
and compare them: Bucket Ralph now contains the same number of marbles as
bucket George—but bucket Sara contains more marbles than either of them. This
is pretty simple, and maps perfectly onto the programming notion of defining a
variable—which is nothing more than a bucket for data—and giving that variable
a name. The variable has a value, meaning only that it contains something. The
subtlety comes in when you build a set of assumptions about what data in a
variable means.

You might, for example, create a system of assumptions by which you’ll indicate
truth or falsehood. You make the following assumption: A bucket with one marble
in it represents the logical value True, whereas an empty bucket (that is, one with
no marbles in it) represents the logical value False. Note that this does not mean you
write the word “True” on one bucket’s label or “False” on another’s. You’re simply
treating the buckets as symbols of a pair of more abstract ideas.

With the above assumptions in mind, suppose you take a bucket and write
“Mike Is At Home” on its label. Then you call Mike on the phone. If Mike picks
up the phone, you drop one marble into the labeled bucket. If Mike’s phone
simply rings (or if his answering machine message greets you) you leave the
labeled bucket empty.

With the bucket labeled “Mike Is At Home” you’ve stored a little bit of
information. If you or someone else understands the fact that one marble in a bucket
indicates True, and an empty bucket indicates False, then the bucket labeled “Mike
Is At Home” can tell you something useful: That it is true that Mike is at home. Just
look in the bucket—and save yourself a phone call.

What’s important here is that we’ve put a sort of mask on that bucket. It’s not
simply a bucket for holding marbles anymore. It’s a way of representing a simple
fact in the real world that may have nothing whatsoever to do with either marbles
or buckets.

Much of the real “thinking” work of programming consists of devising these
sets of assumptions that govern the use of a group of symbols. You’ll be thinking
things like this:

Let’s create a variable called BeanCount. It will represent the
number of jelly beans left in the jelly bean jar. Let’s also create a

35The Box That Follows a Plan

variable called ScoopCapacity, which will represent the number
of jelly beans that the standard scoop contains when filled.

In both instances, the variable itself is simply a place somewhere inside the
computer where you can store a number. What’s important is the mask of meaning
that you place in front of that variable. The variable contains a number—and that
number represents something. This is the fundamental idea that underlies all computer
data items. They’re all buckets with names—for which you provide a meaning.

1.5. The Craftsman, His Pockets, His Workbench, and His
Shelves
Let’s turn our attention again to Ted Nelson’s aphorism that a computer is a box that
follows a plan. So far I’ve spoken about the plan itself—how it runs from top to
bottom, perhaps branching or looping along the way. I’ve talked a little bit about
data—the stuff that the program works on when it does its work. However, only
half of the essence of computing is the plan and its data, and the other half is the
nature of the box that follows the plan.

It’s time to talk about the box.

Divided into three parts
Your PC (and virtually all other kinds of computers that have ever been designed)
is divided into three general areas: The Central Processing Unit (CPU), storage, and
input/output (I/O).

The CPU is the boss of the machine. It’s the part of the machine that contains
the instruction set we spoke of earlier. The instruction set, if you recall, is that
fundamental list of abilities that the computer has. All programs, no matter how
big or how small, and regardless of how simple or how complex, are composed of
some sequence of those fundamental instructions.

Storage is another term for memory, although it actually includes what we call
Random Access Memory (RAM) and disk storage as well. Storage is where program
code and data lives most of the time. RAM is storage that exists right next to and
around the CPU, on silicon chips. The CPU can get into RAM very quickly. The
disadvantage to RAM is that it’s expensive, and, (worse) it goes blank when you turn
power to the computer off. Disk storage, by contrast, is “farther away” from the
CPU and is much slower to read from and write to. Balancing that disadvantage is
the fact that disk storage is cheap and (better still) once something is written onto a
disk, it stays there until you erase it or write something over it.

FreePascal from Square One, Volume 136

Input and output are similar, and differ mainly in the direction that information
moves. Your keyboard is an input device, in that it sends data to the CPU when you
press a key. Your screen is an output device, in that it puts up on display information
sent to it by the CPU. The parallel port to which you connect your printer is another
output device, and your Ethernet network port swings both ways: It both sends and
receives data, and thus is both and input and an output device at once.

What happens when a program runs
Programs are stored on disk for the long haul. When you execute a program, the
CPU brings the program from disk storage into RAM. That done, the CPU begins at
the top of the program in RAM and begins “fetching” instructions from the program
in RAM into itself. One by one, it fetches instructions from RAM and then executes
them. It’s a process much like reading a step from a recipe and then performing that
step. You first need to know (by reading the receipe) that you must throw four cups
of flour into the bowl, and then you have to go ahead and actually measure out the
flour and put it into the bowl.

During a program’s execution, the CPU may display information on the screen
or ask for information from the keyboard. There’s nothing special about input or
output like this; there are instructions in the CPU’s instruction set that take care of
moving numbers and characters in from the keyboard or out to the screen.

What is more intriguing is the notion that the plan—that is, the sequence of
instructions being executed by the CPU—may change based on data that you type
at the keyboard. There are forks in the road (usually a multitude of them) and which
road the CPU actually follows depends on what you type into data entry fields or
answer to questions the CPU asks you.

You may see a question displayed on the screen something like this:

Do you want to exit the program now? (Y/N:)

If you press the “Y” key, one road at the fork will be taken, and that fork leads to
the end of the program. If you press the “N” key, the other road at the fork will be
taken, back into the program to do some more work.

Programs like this are said to be interactive, since there’s a constant conversation
going on between the program and you, the user. Inside the computer, the program
is threading its way among a great many possible paths, choosing a path at each fork
in the road depending on questions it asks you, or else depending on the results of
the work it is doing.

37The Box That Follows a Plan

Sooner or later, the program either finishes its work or is told by you to pack
up for the day, and it “exits,” which means that it returns control to the operating
system, whatever the operating system might be.

Inside the box
That’s how things appear to you, outside the box, sitting at the keyboard supervising.
Understanding in detail what happens inside the box is the labor of a lifetime (or at
least often seems to be) and is the subject of this entire book—and hundreds of
others, including all the other books that I’ve ever written.

But a good place to start is with a simple metaphor. The CPU is a craftsman,
trained in a set of skills that involves the manipulation of data. Just as a skilled
machinist manipulates metal, and a carpenter manipulates wood, the CPU
manipulates numbers, characters, and symbols. We can think of the CPU’s skills as
those instructions in its instruction set. The carpenter knows how to plane a board
smooth—and the CPU knows how to add two numbers together to produce a sum.
The carpenter knows how to nail two boards together—and the CPU knows how to
compare two numbers to see if they are equal.

The CPU has a workbench in our metaphor: The computer’s RAM. RAM is
memory inside the computer, close to the CPU and easily accessible to the CPU.
The CPU can reach anywhere into RAM it needs to at any time. It can choose a
place in RAM “at random,” and this is why we call it Random Access Memory. As
the CPU stands in front of its workbench, it can reach anywhere on the workbench
and grab anything there. It can move things around on the workbench. It can pick
up two parts, put them together, and then place the joined parts back down on the
workbench before picking up something else.

But before beginning an entirely different project, the CPU, being a good
craftsman, will tidy up its workbench, put its tools away, and sweep the shavings
into the trashbin, leaving a clean workbench for the next project.

Disk storage is a little different. In our metaphor, you should think of disk storage
as the set of shelves in the far corner of the workshop, where the craftsman keeps
tools, raw materials, and incomplete projects-in-progress. It takes a few steps to go
over to the shelves, and the craftsman may have to get up on a stepstool to reach
something on the highest shelves. To avoid running itself ragged (and wasting a lot
of time) going back and forth to the shelves constantly, the CPU tries to take as much
as it can from the shelves to its workbench, and stay and work at the workbench.

It would be like buying a birdhouse kit, opening the package, leaving the opened
package on the shelves, and then traipsing over the to shelves to pull each piece out
of the birdhouse kit as you need it while assembling the birdhouse.

FreePascal from Square One, Volume 138

That’s dumb. The CPU would instead take the entire kit to the workbench and
assemble it there, only going back to the shelves for something too big to fit on the
workbench, or to find something it hadn’t anticipated needing.

One final note on our metaphor: The CPU has a number of storage locations that
are actually inside itself, closer even than RAM. These are called registers, and they
are like the pockets in a craftsmen’s apron. Rather than placing something back on
the workbench, the craftsman can tuck a small tool or part conveniently in a pocket
for very quick retrieval a moment later. The CPU has a few such pockets, and can
use them to tuck away a number or a character for a moment.

So there are actually three different types of storage in a computer: Disk storage,
RAM, and registers. Disk storage is very large (these days, trillions of bytes is not
uncommon in hard drives) and quite cheap—but the CPU has to spend considerable
time and effort getting at it. RAM is much closer to the CPU, but it is a lot more
expensive and rarely anything near as large. Few computers have more than 4 or
8 gigabytes of RAM these days. Finally, registers are the closest storage to the CPU,
and are in fact inside the CPU—but there are only a half dozen or so of them, and you
can’t just buy more and plug them in.

Summary: Truth or metaphor?
The electrical reality of a computer is complicated in the extreme, and getting
moreso all the time. I’ve discussed it to a much greater depth in my books Assembly
Language Step By Step and Learning Computer Architecture with Raspberry Pi than I can
possibly discuss it here, and if you’re curious about what RAM “really” is, those
would be good books to read.

I’m not going to that depth in this book because FreePascal shields you from
having to know as much about the computer’s electrical structure and deepest
darkest corners. I’m sticking with metaphor because a computer program is a
metaphor. A program is a symbolic metaphor for a frighteningly obscure torrent
of electrical switching activity ultimately occurring in something about the size of
your thumbnail.

When we declare a variable in FreePascal (as I’ll be explaining shortly) we’re
doing nothing different from saying, “Let’s say that these eight transistor storage
cells represent a letter of the alphabet, and we’ll give it the name DiskUnit.”

FreePascal, in fact, is a tool entirely devoted to the creation and perfection of such
metaphors. You could create a simple program that modeled a shopping trip taken
by Sandron the alien to Safeway, just as I described earlier in this chapter. There was,
in fact, an intriguing software product available years ago called “Karel the Robot”
which was a simulation of a robot on the computer screen. Karel could be given

39The Box That Follows a Plan

commands and would follow them obediently, and the net effect was a very good
education on the nature of computers.

This chapter has been groundwork, basically, for people who have had absolutely
no experience in programming. All I’ve wanted to do is present some of the
fundamental ideas of both computing and programming, so that we can now dive
in and get on with the process of creating our program metaphors in earnest.

FreePascal from Square One, Volume 140

41

As I hinted in the last chapter, a computer program is a plan, written by you, that
the computer follows in order to get something done. The plan consists of a

series of steps that must be taken, and some number of decisions to be made along
the way when a fork in the road turns up.

That’s programming in the abstract, as simply put as possible. There are a lot of
ways of actually writing a program, each way focusing on a different programming
language. In this book, I’ll be talking about only one programming language, the
one called Pascal. Furthermore, I’ll be focusing on only one single “dialect” of that
language, FreePascal. FreePascal is itself very similar to the venerable Turbo Pascal
from Borland, which has been with us since 1983. Nearly all program code written
for Turbo Pascal (including Turbo Pascal’s big brother Borland Pascal) will compile
and run correctly under FreePascal.

This is not a limitation. Borland’s Pascal implementations pretty much plowed
all other Pascal dialects under the soil by 1990. If you’re going to learn Pascal
programming at all, you might as well learn the dialect comprising probably 95%
of all Pascal compilers ever sold.

Look no further. You won’t find anything better.

2.1. Languages and dialects
In Star Trek IV: The Voyage Home, the crew of the Enterprise travel back in time to
1987 San Francisco. When Engineer Scotty needs to use a computer, he is shown
a Macintosh and immediately picks up the mouse as though it were a microphone
and begins addressing the poor machine directly:

“Computer: We’re going to design a molecular structure for transparent
aluminum!”

The Mac had very little to say in reply. Computers didn’t understand the English
language very well back in 1987, and they don’t understand it much better today. So
what do computers understand? What is their native language?

Chapter 2.
The Nature of
Software development

FreePascal from Square One, Volume 142

Assembly language
The fast answer is that computers understand something called “assembly language,”
in which each step in the plan is one of those fundamental machine instructions I
described conceptually in Chapter 1. Machine instructions are incredibly minute in
what they do; for example, a single instruction may do nothing more than fetch a
byte of data from a location in RAM and store it in a location inside the CPU called
register AX. It takes an enormous number of such instructions to do anything useful;
hundreds or thousands for small programs, and many hundreds of thousands or
even millions for major application programs like Microsoft Excel or AutoCAD.

The instructions themselves are terse, cryptic, and look more like something
copied out of a mad scientist’s notebook than anything you or I would call a
language:

MOV 	 EAX,[EBX]

SUB 	 EAX,EDX

AND 	 EAX,0FF0DH

DEC 	 ECX

LOOPNZ MSK13

Actually, the frightening truth is that even these cryptic statements are themselves
“masks” for the true machine instructions, which are nothing more than sequences
of 0’s and 1’s:

0110101000110010

0000000101110011

1110111110011011

0110110110001010

It’s possible to program computers by writing down sequences of 0’s and 1’s and
somehow cramming them into a computer through toggle switches, with an “up”
switch for a “1” and a “down” switch for a “0”. I used to do this in 1976 (for my
home-made computer called the COSMAC ELF) and thought it was great good fun,
because back then it was the best that my machine and I could do.

Is it really fun?

Mmmmm...no. In truth, it gets old in a big hurry. Doing something as simple as
making the PC’s speaker beep requires fifteen or twenty machine instructions, all
laid out precisely the right way. Even writing assembly language in almost-words like
MOV EAX,[EBX] is tiresome and done today only by the most curious and the most
dedicated among us. But the computer only understands machine instructions.

What to do?

43The Nature of Software Development

High-level computer languages
The answer dates back almost to the dawn of computing. (As I said, writing and
debugging machine instructions gets old in a big, big hurry...) Early on, people
defined what we call high-level computer languages to do much of that meticulous
machine‑instruction arranging automatically.

In a high-level language, we define words and phrases that mean something to
us and perform some simple task on the computer. A good example is beeping the
PC’s speaker. We might decide that the word BEEP will be used to indicate that the
computer’s speaker is to be sounded. That done, we write down the sequence of
machine instructions that actually causes sound to be generated on the speaker,
and we associate those machine instructions with the recognizable term BEEP.

This sequence of instructions remains consistent and never changes. So we create
a program for ourselves that, when it sees the word BEEP, substitutes the sequence
of twenty machine instructions that actually does the speaker-beeping. We only
need to remember that the word BEEP does the beeping. Our clever program,
called a compiler, remembers the twenty-instruction sequence that accomplishes the
beep, so that we don’t have to. (Perhaps our program isn’t especially clever. But it
remembers things very well...)

We go on from there and define other easily-readable words and phrases that stand
for sequences of dozens or even hundreds of machine instructions. This allows us to
write down easily readable commands like the following in only a few seconds:

Remainder := Remainder - 1;

IF Remainder = 0 THEN

 BEGIN

 BEEP;

 Write(‘Warning! Your time has run out!’);

 END;

Once you have a feeling for the high-level language, you can look at sequences
like this and know exactly what they’ll do without stretching your brain too
much. The reality is that it may take hundreds of machine instructions for the
CPU to do the work involved in what we have written, but for our eyes, it’s only a
few short lines.

Programs that write other programs
This clever compiler program understands a great many English‑like words and
phrases. We create a disk file, like a word processor file, containing sequences of
English-like words and phrases. The compiler program reads in the file of English-

FreePascal from Square One, Volume 144

like words and phrases, and writes out an equivalent file of machine instructions.
This file of machine instructions can be loaded and executed by the CPU. But even
though this program file consists of thousands or tens of thousands of machine
instructions, we never had to know even a single machine instruction to write it. All we had
to do was understand how the English-like commands of the high-level language
affect the machine. The compiler takes care of the “ugly” stuff like remembering
which sequence of twenty machine instructions beeps the speaker. All we have to
remember is what BEEP does.

Much better!

A compiler program is thus a program that writes other programs, with some
direction from us. It does its job so well that we can actually forget all about what
happens with the machine instructions (most of the time, anyway) and concentrate
on the logic of how the English-like words and phrases go together.

Different languages
A host of high-level languages exists for the PC. Pascal, C, C++, C#, Python, Javascript,
and BASIC are the most common, but there are hundreds of others with obscure or
puckish names like COBOL, Perl, Java, Forth, APL, Smalltalk, Eiffel, PHP, PL/1, Rexx,
FORTRAN, Lisp, Scheme, and on and on and on. As different as they may seem on
the surface, they all do the same thing underneath: Arrange machine instructions to
accomplish the work that we encode in English-like words and phrases.

Pascal, for example, uses the word Write to display information on the screen.
BASIC, by contrast, uses the word PRINT. The C and C++ languages use the word
printf. Forth uses the word TYPE. Others use words like SAY, OUTPUT, or
Show. Those words were chosen by the people who designed each language for
reasons they considered good ones. However, what those different words do is all
pretty much the same.

A high-level language is defined as a set of commands, plus a set of rules as to
how these commands are used alone and combined. These rules are called the syntax
of the language, and they correspond roughly to the syntax and grammar of spoken
human languages like English and German. Computer languages are not as rich in
expression as human languages, but they are much more precise—and needless to
say, they “speak” only of things that a computer can actually accomplish.

Dialects of a single language
Having a mob of hundreds of dissimilar languages to choose from might seem
confusing enough. Unfortunately, even within a single language, there are variations

45The Nature of Software Development

on a theme called dialects. Each person or company who creates a compiler that
understands a given computer language might construct the compiler to understand
things a little differently from other compilers written earlier for the same language.
Thus not all Pascal compilers agree on what certain program commands mean.
Nor do all BASIC compilers agree on the syntax and command set of BASIC. If you
write a program in Drs. Kemeny & Kurtz’s TrueBasic it won’t necessarily compile
correctly if you hand that same program to Microsoft’s Visual BASIC.

Dialects usually happen when companies who write compilers add new features
and abilities to languages, in order to produce a more powerful language or (at least)
one perceived as different from the compilers already on the market.

FreePascal is a dialect of the Pascal language. Pascal has been around for almost
fifty years now (since 1971) and it’s done some serious growing in the process.
Pascal predates PCs; in fact, it predates all microcomputers of any design and was
originally created to run on massive mainframe computers, those famous for
being kept behind locked doors in air-conditioned rooms with raised floors. The
man who designed Pascal, Niklaus Wirth, was trying to prove a point in computer
science when he designed Pascal, and really didn’t intend to write an exhaustive
and generally useful language. Other companies added features to Pascal over the
years, and little by little the language broke into mutually-exclusive dialects that
were about 90% common. Alas, in computer languages as in horseshoes, “almost”
just doesn’t count.

For example, Wirth’s original Pascal wrote information to disk files with the Put
command. Borland’s Turbo Pascal broke with this concept in the early 1980s by using
the Write command to write data to disk, and omitted the Put command completely.
FreePascal does things the Turbo/Borland Pascal way. If you take a program written
in the original version of Pascal and try to compile it using FreePascal, the compiler
will display an error message if it encounters a Put command, since it doesn’t know
what sequence of machine instructions Put is supposed to represent.

This problem of dialects is worse in most languages other than Pascal, because
FreePascal’s progenitor Turbo Pascal has dominated the Pascal world for so long that
most of the earlier dialects have simply disappeared. If you ever attempt to program
in different versions of BASIC, on the other hand, the dialects problem will appear
in spades, and you will have a great deal of work to do making programs written for
one BASIC compile correctly using another BASIC.

In general, this book will be speaking of the FreePascal dialect of Pascal. (FreePascal
speaks several, as I’ll describe later on.) Here and there, I’ll be pointing out differences
between FreePascal and other Pascals, but as I’ve said before, the differences are
becoming less and less important as time goes on.

FreePascal from Square One, Volume 146

2.2. Operating Systems and User Interfaces
When I wrote the first version of this book, way back toward the end of 1983,
computing was a much, much simpler field. Most people who had personal
computers had IBM PCs. Fewer people (but still a lot of them) had Apple IIs. Some
further number had an odd assortment of machines from many manufacturers that
had little in common but an operating system called CP/M. The Macintosh did not
yet exist, nor did Microsoft Windows.

Things are different now, let’s say.

The operating system called DOS was not an “operating system” as the industry
defined it in the 1980s. At best it was a sophisticated file manager, and most of what
it did was write files to disk drives (generally floppies until the midlate 1980s) and
read files from disk drives. “Running a program” was just another file operation:
DOS read a program file from a disk drive and stored it in RAM, and then stepped
back and gave control of the CPU to the program that it had recently placed in RAM.
When the user exited the program, DOS would regain control of the machine—
with some luck. My 1979 CP/M machine would literally reboot itself each time a
program exited, so that CP/M could again regain control. (“Rebooting” was a far
simpler process with those ancient machines, and took only a second or two.)

What was true of DOS was also true of CP/M and the Apple II operating system.
Only one program could run at a time. There was no networking without a great
deal of added complication. The user interface was a “command line” on a text-only
screen that could at best display 80 characters wide by 24 characters high. To run
a program you had to type a command at the command prompt and then press
Enter. “Graphics mode,” where it existed at all, was a slow and limited special case.
There were no windows, no task bar, no mouse, nor any drop-down menus except
as provided by the occasional forward-looking program.

The text-mode command-line user interface was the default until the late 1980s,
when personal computers finally became fast enough to manage images on a
graphical screen. The Macintosh was the first successful graphical user interface
(GUI) machine, but I remember sitting in front of Bruce Schneier’s brand-new
Macintosh in late 1984 and feeling like the poor little thing was struggling terribly.
Microsoft Windows was virtually unusable—and generally ignored—until 1990.

Although I adopted Windows NT when it was released in 1993, Windows itself
did not become generally accepted until Windows 95 appeared in 1995. The DOS
command-line interface was widely used until Windows 98. It wasn’t until 2000 or
so that most people had come to depend on graphical user interfaces, and about
that time the whole idea of a command line and text screens was mostly forgotten,
except by mainframe programmers and Unix users.

47The Nature of Software Development

A fifth grader once wrote on an exam: “Now that dinosaurs are safely dead, we
can call them clumsy and stupid.” It’s easy to dismiss the DOS-style command-
line interface as clumsy, awkward, and time consuming, but it has the virtue of
simplicity. (We also forget that dinosaurs ruled the Earth for 100 million years. They
must have been doing something right.) It’s also far from extinct.

Text mode and console windows
Command-line interfaces are still used, as are text-mode displays. Although non-
technical people rarely use it, Windows contains something called the “Command
Prompt,” (look in the Accessories group) which is basically a DOS prompt in a black
window that displays only text characters. Much ancient DOS software will still run
if executed from the Windows command prompt. More to the point, some crucial
Windows utilities only run from the command prompt, and only accept textual
commands and output only text lines.

Figure 2.1. A console window under Windows 2000

The window in which the command prompt appears is generally called a console
window. Figure 2.1 is a typical console window as displayed by Windows 2000 and
after. The desktop versions of Linux and Unix also have console windows. Mac
OS/X has a console window called Terminal. All console windows on whatever
operating systems work and look pretty much the same. (The group of commands
that each understands is different, of course.)

The existence of console windows make certain things easier for people creating
computer language compilers like FreePascal. If a compiler only communicates
with its users through simple text screens, it can work pretty much the same way

FreePascal from Square One, Volume 148

no matter what operating system is in control of the computer. So it was done with
FreePascal: By default, it works in a console window. This means that you can open
a console window and type textual commands to FreePascal, which responds by
displaying textual information in the same window on the next line or lines. Figure
2.2 is a console window “conversation” with FreePascal, as it would occur during
the compilation of a very simple pascal program.

Figure 2.2. A FreePascal compilation operation in a console window

All the major FreePascal implementations look pretty much the same when run
in console windows, whether you’re using Windows, Linux, OS/X, or anything else.
Of course, once you begin writing programs that work specifically with a graphical
user interface belonging to a particular operating system, the explanations begin to
diverge. I won’t, however, be going that far in this introductory volume.

Text-mode user interfaces
Output in a console window is generally line-by-line: A program displays a line of
text and then moves the cursor down to the next line below it. However, that’s not all
that can be done. With a little bit of additional software behind it, a console window
can be treated as a grid of character locations, and addressed by X,Y coordinates.
Text can be displayed anywhere on a console window, at random, under program
control, by specifying an X,Y location at which to begin text display. Text can
be displayed in different colors. Boxes and frames may be created using special
characters. (IBM pioneered text-mode “graphics” this way with their original 1981
IBM PC.) Furthermore, the console window text cursor may be directed around the
window by the computer’s mouse.

49The Nature of Software Development

Abilities like these allow us to create simple editing and compiling environments
entirely in text mode, to run in a console window. Many of the concepts we’re
used to in graphical operating environments like Gnome, KDE, and Windows
can be emulated, albeit on a character basis and with far less resolution. Such an
environment (whether implemented in text-mode or graphics mode) is called an
Integrated Development Environment (IDE), and one is included with and installed with
FreePascal on most operating systems for which the compiler is available. The
FreePascal console window IDE is shown in Figure 2.3, with a simple Pascal program
loaded and displayed, ready to be compiled and run.

Figure 2.3. The FreePascal Text-Mode IDE in a Console Window

Graphical IDEs for FreePascal programming
FreePascal’s text-mode IDE is simple and can be very handy, but the software is a little
fluky and doesn’t always work correctly on all operating systems. Fortunately, you
aren’t limited to the text-mode IDE that comes with the compiler. Graphical IDEs exist
for FreePascal, and there’s no reason not to use one if one is available for your OS .

The best of these is Lazarus, which at this writing (2021) is available for Windows,
Linux (including the Raspberry Pi OS), FreeBSD, Mac OS/X, and others. Lazarus
is an ambitious Rapid Application Development (RAD) system very much in the
mold of Borland’s (now Embarcadero’s) Delphi. Figure 2.4 shows the Lazarus RAD
environment in its full glory, ready to create windowed GUI applications.

Lazarus is a complicated system and was created specifically to develop fully
event-driven windowed GUI applications like the one shown above, but it’s
perfectly at home managing very simple Pascal programs that communicate
through console windows. It may seem like overkill for the sort of teaching

FreePascal from Square One, Volume 150

programs I’ll be presenting in this book, but when you’ve learned enough Pascal
to move up to object-oriented programming and the creation of windowed
graphical applications, you’ll find that Lazarus makes the process hugely easier.
That’s why I want to use Lazarus as the teaching IDE from the very beginning.
The skills you develop now by using Lazarus to write simple programs will make
learning the rest of it a snap later on when you need it.

Figure 2.4. The Full Lazarus RAD Environment in Action

51The Nature of Software Development

Lazarus is itself a multi-window application, and the good news is that we can
make Lazarus a lot simpler to understand by closing the windows that you don’t
need for the time being. Figure 2.5 shows Lazarus as it appears while you’re writing
a simple Pascal program. The program code is edited from a GUI window (here,
under Windows XP) but the program’s output is displayed in a console window.

Figure 2.5. Lazarus Used to Edit and Run a Simple Pascal Program

There are four Lazarus windows shown: The control window is the narrow one
at the top. It’s the “boss” window that controls all the rest of the Lazarus system.
The larger window in the center is the editor window, where you write your
Pascal code and fix your inevitable errors. The slim window at the bottom is the
messages window, which tells you what the system is doing and points out your
errors. The black window is a console window, and is not itself a part of Lazarus.
Lazarus launches a console window when your program runs, to provide a separate
“blackboard” (literally!) on which your program can write its output, and display
the input that you enter through the keyboard.

FreePascal from Square One, Volume 152

2.3. The FreePascal Process
FreePascal is itself a program, and needs to be installed on your hard disk
before you can begin to learn how to use it. Later on, I’ve devoted an entire
chapter to the installation of FreePascal and Lazarus so as not to get bogged
down in installation details right here. Later in this chapter I’m going to run
through the compilation of a short, simple program. You don’t necessarily
have to run FreePascal to benefit from that run-through. Reading it carefully
will be sufficient. I’m simply trying to get you familiar with the shape of the
process of creating programs with FreePascal. However, if you’re a practical,
hands-on kind of person, you might want to stop here, jump to Chapter 4, and
install FreePascal and Lazarus on your machine if you haven’t already. That
way, you can come back to this section and follow along with a real program
while I’m explaining what’s going on. You don’t need to go through the rest of
this chapter to install the software. Now or later: It’s your choice.

Note well that I’m going to go into the mechanics of using the FreePascal
compiler and the Lazarus Environment in much more detail later on in this book.
The overview in this section will be very brief.

Source files, object files, resource files, and project files
Two words you may have heard before and will certainly hear in the future are source
code and object code. Source code files are the “human readable” form of a program.
A source code file is an ordinary text file that you create by typing into a text editor
like the one built into Lazarus. (You can edit source code files in any text editor;
people have used Windows Notepad, Wordpad, or even Microsoft Word; and there
are a multitude of text editors available for Linux.) Object code files, on the other
hand, contain the individual machine instructions that the CPU knows how to
execute. These are those endless runs of 0’s and 1’s that I described in the previous
section. The whole purpose of the FreePascal compiler is to take source code files
that you write, and use them to generate object code files that may be executed on
a computer.

Source code files for FreePascal usually have a file extension of .PAS. Object code
files come in several types. Unit files contain bits and pieces of programs that can
be used again and again, but are not in themselves complete programs. They’re
basically libraries of precompiled code. Executable files are real programs that you
can run from your operating system.

For decades, programming was simple enough so that source code files and
object code files were all there were. Today, the demands of GUI programming have
given birth to yet another class of files: Resource files contain things like icons and

53The Nature of Software Development

images that must be “baked into” an executable program file. Finally, there are files
associated with a programming project that summarize the details of the project
for the benefit of the programming environment itself. In our case, that would be
Lazarus, but all of the ambitious RAD environments used today generate project files
to manage the mountain of details inherent in advanced programming projects.
You may not have to pay details attention to resource and project files while writing
simple programs in FreePascal, but at least understand that they’re necessary. For
the most part they are generated and maintained by the RAD environment, and
while they must be understood, you don’t often have to explicitly edit them.

In your early explorations of FreePascal, you’ll be creating simple, standalone
.PAS files and compiling them to executable files. (I’ll explain about creating unit
files for maintaining reusable code libraries later on.) You’ll then run the executable
files in a console window to see how well they work. The executable files may be run
from a console window prompt without any help from the FreePascal compiler or
the Lazarus IDE. However, for the example programs in this book you’ll generally
be able to test your executable files from inside console windows created by the
Lazarus IDE itself.

Cross-platform programming
This is a slightly advanced topic, but it’s worth noting as part of the big picture:
FreePascal can handle cross-platform programming. What this means is that you
create a program on one operating system running on one type of computer
hardware, but generate programs that can run on other, different operating systems
or hardware. For example, if your main machine is Microsoft Windows running on
Intel x86 hardware (a very common combo that we often call the “Wintel” platform)
you can still write programs that will run under Linux, Unix, Mac OS/X, and a long
list of other operating systems that you may not have even heard of.

There are often limitations on what such programs can do. For example, there
are whole classes of operating systems that don’t have a graphical user interface.
Everything that they do is done in a purely textual environment much like a console
window. If you load a graphical windowed program intended for the Linux GNOME
windowing environment on such a system, the machine will throw up its hands
in despair because it won’t know how to deal with requests to create windows or
accept mouse clicks to buttons.

The issues that come into play during cross-platform programming are many
and they are subtle. You need to become fluent in FreePascal long before you should
attempt to create code on one platform to run on another.

FreePascal from Square One, Volume 154

The program development cycle
Creating programs with FreePascal works like this: You begin by conceptualizing a
design of some sort for your program. This might involve some study, some notes,
and some drawn diagrams indicating how the program is to work. With your design
(that is, your notes and diagrams) close at hand, you bring up a text editor window
and begin writing program code based on your design into the code editor window.
For the tutorials in this book, that editor window will be part of the Lazarus IDE.
(You can use other text editors if you want to, and many people do.) Every so often
during this process, you must save your program source code file or files to disk. For
the Lazarus IDE that’s as easy as pressing the Ctrl-S key combination.

Once you’ve completely typed your program’s source code file into the text
editor window, you invoke the FreePascal compiler. This, like most of the commonly
used commands, can be done by pulling down a menu option or by pressing a key
combination. (In this case, it’s just a single key, F9.) The compiler reads the source
code that you’ve typed into the text editor window and generates the appropriate
object code files., plus a single executable file.

Once the compiler begins running, one of two things happens: The compiler
either finds an error, or it doesn’t. If the compiler does not find an error, you have
what is called a correct compilation. This doesn’t mean you have a bug-free program
yet by any means—but we’ll get to that little matter in a moment.

Most of the time (especially while you’re still a Pascal newcomer) the compiler will
“complain” about something in your source code. You may have typed something
incorrectly, or else misunderstood some element of Pascal and written something
incomplete or nonsensical. No object code files will be created in this case. You’ll
have to stare at your code a little more, read the online help (or this book!), correct
what’s wrong, and try the compilation again.

Sooner or later, your program will compile correctly. At that point, you’ll have
object code, including an executable file, and you can try running it from within the
Lazarus IDE.

As with compilation, when you try running your program, one of two things
happens: Either it works perfectly, or else it doesn’t. And when it doesn’t work
perfectly, that’s when we say that your program has those legendary bugs.

Getting rid of bugs is a lot tougher than just getting rid of compiler errors. The
compiler will usually give you strong hints about where a compiler error lies and
what’s causing it. Bugs, by contrast, range from some simple, innocuous action that
you didn’t ask for (or one you asked for that didn’t occur) all the way to provoking the
operating system to abort execution of your program and throw it out of memory.
The compiler doesn’t spot bugs. You do.

55The Nature of Software Development

FreePascal and Lazarus contain a number of built-in tools to help you flush out
the inevitable bugs you’ll find in your programs. Using these tools and your own
good sense, you gradually find and fix the causes of whatever bugs come to light.
This process can take awhile. Getting rid of disastrous and obvious bugs happens
early in the cycle, because you’re pretty motivated to find them and fix them. Getting
rid of minor or subtler bugs that don’t necessarily make your program worthless
could be a long process—and for programs of a useful size may be an endless one.
People say that there’s always one more bug, and you can devote as much time and
energy as you care to rooting that last bug out.

But even when you root the “last” bug out, there’s always one more bug. Trust me.

The process, summarized
At this point, let’s run down a list of the major steps in the FreePascal program
development process:

1.	You design the program on paper. This does not mean simply writing out
program statements with a pencil. It usually means charts, diagrams, and
high-level notes we call specifications.

2.	Working from your design, you type program source code into a text
editor window. (This will generally be within the Lazarus IDE.) Save your
code early and often!

3.	Once you consider the source code complete, try to compile it.

4.	Fix any compiler errors that come up in the text editor window, saved the
edited file, and then recompile to see if you’ve fixed any errors. Repeat the
process until there are no more compiler errors.

5.	Once the program compiles correctly, try running it. Take note of any
bugs that appear, where a bug is anything a program does that it isn’t
supposed to, or something it doesn’t do that it should.

6.	Fix all identified bugs, and run the program some more, to see if you can
identify any further bugs. This stage is called testing. It takes a long time.

7.	When you can’t find any more bugs, the program can be considered
finished. This doesn’t mean that the program doesn’t contain any more
bugs. It generally means that you’ve simply run out of patience with
bug‑chasing, and will be content with what you have. Days, weeks, or
months later, you may become sufficiently irritated by one bug or another
to begin the debugging process all over again, starting with Step 5.

I’ve summarized this process in Figure 2.6.

FreePascal from Square One, Volume 156

Figure 2.6. The FreePascal Programming Process

2.4. Let’s try it!

With all that under your belt, it’s time to see the actual compilation process in action.
I’d like you to type in a simple program, save it, compile it, debug it, and run it. I’m
skipping the design phase for the time being, since I’ve found it’s difficult to explain
the design process to a person who isn’t yet comfortable with the programming
language itself. This doesn’t mean that you should skip the design phase later on,
or dive into writing code before giving your design the attention it deserves. It’s
just that for the purpose of learning the software development process, you need to
know a little about coding first.

To actually follow along with me, you’ll obviously have to install FreePascal and
the Lazarus RAD environment first. I describe the installation process in detail in
Chapter 4. I encourage you to turn to Chapter 4, find the installer files, download
them, and install them on your system.

57The Nature of Software Development

Before you launch Lazarus, create a working directory somewhere on your
machine. How this is done varies by operating system, but it doesn’t matter where it
is as long as your filesystem allows you to create and change files there. The directory
you create here will be used to store the programs that you enter and compile.

Now run Lazarus itself, however that’s done on your particular machine. For
Windows this means you double-click on the Lazarus icon, assuming that the
installer created a desktop icon. You can also run Lazarus by navigating to it in the
Start menu. How software is launched under the Linux shells depends on the shell
and how you’ve set up launchers and panels and so on.

Once Lazarus is running, create a new project by selecting Project | New Project
from the Lazarus main menu, and selecting Simple Program from the Create a
New Project dialog that appears. (The dialog lists all the various sorts of projects
you can create with Lazarus.) Assuming that you’ve configured it as I describe in
Chapter 4, what you’ll see will look a great deal like the screen shown in Figure 2.7.
(Much of that configuration involves hiding the parts of Lazarus that you don’t yet
need.) The label “project1.lpr” is the default name for a new project that you have
not yet given a name to. We’ll give it a proper name shortly.

Figure 2.7. The initial Lazarus IDE screen

FreePascal from Square One, Volume 158

Entering a program to an edit window
An edit window is already open and ready to go—it’s the mostly-white window
labeled “Source Editor.” However, something’s already there. In creating a brand-
new project, Lazarus has created a sort of skeleton program for you. The program
is technically “empty” in that it contains no Pascal statements that do anything
useful or even visible. It is, however, a complete framework for a Pascal program.
All you need to do is add the Pascal text that define the program’s action.

The test program is shown below in its entirety. Some of it was already “typed
in” by Lazarus when it created the new skeleton program. The words PROGRAM,
BEGIN, and END are all there in black, albeit in lower case. (I’ll talk about the
character case issue shortly.) Your job right now is to enter all of the text in the test
program that is not already present in the editor window.

	PROGRAM EatAtJoes;

USES Crt;

	BEGIN

	 ClrScr

	 GotoXY(10,5);

	 Writeln(‘Eat at Joe’’s!’);

	 GotoXY(10,7);

	 Writeln(‘Ten Million Flies Can’’t ALL Be Wrong!’);

	 Readln;

	END.

Here’s how to proceed:

1. Highlight the default project name after “program” and replace it with
“EatAtJoes”.

2. Add the line USES Crt; including the semicolon. The USES clause
contains a list of code libraries, and Crt is the only one this particular
program requires. More complex programs will require more.

3. Enter the text I show between the words BEGIN and END into the editor
window, between begin and end. precisely as shown.

The character case issue
Before we go any further, I must emphasize that, in Pascal, character case does not matter
to the compiler. In other words, FreePascal sees BEGIN, Begin, and begin (or, for that
matter, bEGin) as precisely the same thing. Unfortunately, Lazarus’s defaults and I
differ on a key formatting issue: I feel very strongly that Pascal’s reserved words

59The Nature of Software Development

like BEGIN and END should be in uppercase only. The default in Lazarus is all
lowercase. So in any code that Lazarus generates automatically (like the skeleton
program here, and much else in more complex programs) reserved words will be
in lower case. This is a bad idea. Although you can do it whichever way you like,
keep this in mind: Reserved words are different. They have “super powers” and must be
treated specially. It pays to set them off somehow from ordinary program identifiers
like constants and variables, to make your program code more readable and less
vulnerable to certain types of completely avoidable errors.

Some people will try to tell you in a weirdly excitable tone: “But...but...uppercase
letters mean that you’re...shouting!”

Maybe somewhere in the world they do, somewhere ancient and obsolete but
alas, not yet dead. In Pascal, reserved words are the framing members of your
programs. They must stand out. If you put them in lowercase, you will miss them now
and then and make stupid mistakes, and spend more time and energy fixing things
than you otherwise would.

Fortunately, there’s a way to configure Lazarus to keep reserved words in
uppercase. Go to Tools|Options|Codetools|Words. Under Keyword Policies you
can select one from several radio buttons. Click UPPERCASE and then OK. Now,
when Lazarus uses a reserved word it will be in uppercase.

I’ll speak in more detail of reserved words in a later chapter.

Giving a name to your new project
At this point, you’ve entered the text for the test program, but you’re still using the
default name that Lazarus gave to the project on its creation. Giving a descriptive
name to the project is our next step.

To name the new project, select Project | Save Project As. (There’s no hotkey.)
A dialog will appear allowing you to enter a new name for the project. Leave the
default file extension as it is. In this case, call the project “EatAtJoes” and click
Save. Correctly entered and properly renamed, your project will look like what’s
shown in Figure 2.8.

Saving your work to disk
It’s hard to overemphasize the importance of saving your work to disk frequently.
For a certain period of time, what you’ve just typed into the open edit window exists
only in RAM memory and nowhere else. If your machine failed for some reason, or
if lightning hit a power pig and knocked out the electricity to your neighborhood,
what you just typed would be gone for good. Such irritations are never necessary.

FreePascal from Square One, Volume 160

Get it down on disk regularly by saving the project.

In Lazarus, this is almost trivial. Just click the Save icon (which looks like a
diskette) in the main menu bar (fourth icon from the left) or press Ctrl-S. Lazarus
will save your project into your working directory. If you haven’t already given
your project a name, Lazarus will pop up the Save Project As... dialog, and
allow you to specify a directory and a name for the project. Thereafter, saving
the project will be done without a dialog, and it will be saved to the directory and
name you specified the first time you saved the project.

There’s more to a project than just one file. If you look at your working directory
after naming and saving your project, you’ll see several files with your project
name and different extensions; for example, EatAtJoes.lpr, EatAtJoes.
lpi, EatAtJoes.lps, and so on. The file EatAtJoes.lpr contains the
Pascal source code you just typed in. Once you build the project there will be even
more. Don’t worry about what all the files are nor what they do right now. I’ll have
more to say about the various files that make up a project in Chapter 5.

Figure 2.8. The project entered and renamed.

61The Nature of Software Development

Compiling and building your program
You’ve now got a new program typed in and saved on disk as a Lazarus project. It’s
time to turn the FreePascal compiler loose on it. This step will discover any errors
you might have made while typing, and if the program is correct, it will create
(among others) an executable code file that can be run and observed.

At this point I have to refine the jargon a little: Compiling a source code file, as I
explained earlier, generates an object code file from the source code file. However,
creating an executable file that you can actually run isn’t always done as part of
the compile step. In years past, when computing was simpler, Pascal compilers
did generate an executable file when compiling a program. Today, however, things
have gotten complicated enough that executable files are not generated in one pass.
Even fairly simple programs may consist of more than one Pascal source file. Each
of these files must be compiled, and then the several object code files then linked
into a single executable file. The whole process taken together—compiling all the
various Pascal source code files that are part of the project and then linking them
into a single executable file—is called building. We use the term even for the simplest
projects that have only one single Pascal source code file. We can compile a single
Pascal file, but we build a Lazarus project.

Building your project is done from the Run menu. Pull down the Run menu and
select the Build option. Lazarus will launch the FreePascal compiler behind the scenes,
and do whatever else needs to be done (which varies among different computing
platforms) to generate an executable file. On such a small program file as this first
example, FreePascal does its work very quickly.

And you’ll have to forgive me, but I slipped a minor error into the Pascal file as I
printed it on page 58. If you typed the code into the editor window exactly as shown,
FreePascal will post an error message in the Lazarus Messages window. Of course, if you
know a little about Pascal, you might have assumed it was a typo and fixed it yourself. If
so, “unfix” it and select Build again. Your screen will then look like Figure 2.9.

Spotting and fixing compile-time errors
This is what we call a compile-time error, because it turns up during the compilation
process that occurs doing a project build. It’s a very common one, not only for
newcomers to Pascal but for us old-timers as well. Missing semicolons will just
happen now and then, no matter how much of an expert you are. There’s a science
to semicolon placement, which I’ll take up in detail later on in Section 9.8. Trust me
this time: I should have placed a semicolon at the end of the line ClrScr.

Notice from the error message that the compiler is giving you a hint, but also that
it’s not telling you exactly where the semicolon is supposed to go. The compiler is

FreePascal from Square One, Volume 162

smart, but it has limitations. One of these is that it will point out an error not where
the error actually is, but where the compiler first noticed that there was an error.

It’s a little like the situation you find yourself in when you go out after supper to
fill your gas tank and forget your wallet. You made a mistake when you failed to put
your wallet back in your pocket when you changed pants after work. But you only
notice the mistake when you’ve pumped a tank full of gas and reach for your credit
cards. Whoops...

I make the point here because a lot of people assume that FreePascal not only
discovers errors but points out where those errors are. Not true—it can only tell you
where it first noticed that something was wrong. Keep that in mind as you struggle
through your first few error-rich sessions with FreePascal!

Repairing this particular error is easy. Place the text cursor at the end of the
ClrScr line, and type a semicolon there. Click the Save icon (the diskette) to save
the change. Then select Run | Build again.

Figure 2.9. A FreePascal compiler error message.

63The Nature of Software Development

Or, if you think there may be still more compile-time errors lurking in your
Pascal code, select Run | Quick Compile. This option is different from Build in
that it only compiles the source code file currently loaded in the Source Editor
window. When you’re working on a large, multi-file project, Build will take
more time. If you’re simply checking the current source code file for errors, Run
|Quick Compile will do the job faster. (For small files like this you won’t see
much difference.)

Lazarus doesn’t blow a trumpet or pop up a special window when a build
completes successfully. All you’ll see is the following message in the Messages
window, in very small type:

Project “EatAtJoes” successfully built

There will be one more line displayed in the Messages window:

Options changed, recompiling clean with -B

All this means is that Lazarus used with “-B” command-line option when it
invoked FreePascal to build your project. The -B (Build) option creates a “clean”
compile in which all Pascal files in the project are compiled fresh, and no object-code
files generated earlier are used. There’s only one Pascal file in this very simple project,
but in more complex projects you have the option of compiling only those Pascal
files that have changed since the last time you compiled them. This can save you a
considerable amount of time on very large projects with many source code files.

Running your program
When you see the message above, the compile pass was correct, the build was
accomplished, and you’ve now got an executable code file out there somewhere,
waiting to be run. You don’t technically have to know where it is, or even what its
name is. The name is easy, though: EatAtJoes.exe. The executable version of
a Pascal program created with Lazarus and FreePascal is the same as the project
name, but with .exe as the file extension rather than .lpr.

Executing your programs is also simple: Click the right-pointing green arrowhead
in the second row of icons in the main Lazarus menu bar. Your program will be
executed, and our backhanded advertising slogan will be displayed in a console
window. The slogan will remain on the screen as long as you choose to leave it there.
To end program execution and return to Lazarus, press the Enter key.

The arrowhead icon in the main menu bar isn’t the only way to execute your
program. You can also select Run | Run, or simply press the F9 shortcut key. Note
also that to run, your program does not require Lazarus or FreePascal at all. In your

FreePascal from Square One, Volume 164

working directory (or wherever you saved the EatAtJoes project) you’ll find a file
called EatAtJoes.exe. This is a complete and independent executable file, and
you can run it by naming it on a console window command line, or by double-
clicking on it in Windows Explorer. (Other graphical environments may have their
own ways of executing standalone executable files.)

An interesting point to be made here is that FreePascal, Lazarus, and the EatAtJoes
program you’ve just successfully run are all native-code programs, conceptually
identical and pretty much equal in the eyes of the computer itself. The programs
you’re writing are not “toy” programs by nature nor are they crippled in any way.
(They’re just small—for now.) You could theoretically write something as complex
as—or even more complex than—FreePascal itself. This is definitely big-time
programming. Don’t let anyone ever tell you otherwise.

When the program that you ran finishes its execution, it immediately hands the
baton back to the Lazarus environment. You can then continue the development
cycle of write code, save, build, and run.

2.5. Recapping development basics
As you might imagine, what you’ve just seen barely scratches the surface of what
FreePascal and Lazarus can do. But for the first few small programs you’ll write with
FreePascal, that’s just about all you really need to know about it. The mechanics of
elementary FreePascal development come down to this:

1. Create a new project. Enter your source code into the Source Editor
window, expanding the skeleton file that Lazarus creates when it creates a
new project.

2. Save your project (which saves your source code) under a new,
meaningful name by selecting the Project | Save Project As... menu
option. It’s a good idea to save a new project before you’ve typed more
than a screen full of source code—and save it often (by using the Ctrl-S
shortcut key or clicking the Save icon) after you’ve saved it that first time.

3. Build the project using the Run | Build menu option. The build process
identifies any compile-time errors in your source code files. If no errors
appear during a compile, your program is compilable and correct. (This
doesn’t mean it has no bugs!) You can also build the project using the Ctrl-
F9 shortcut key.

4. Test your new program by clicking on the green arrowhead Run icon, or
by selecting the Run | Run menu option. You can also run your program
using shortcut key F9.

65The Nature of Software Development

 Here are a few other points worth remembering:

• As much as you might be tempted to do otherwise, spend some time
designing your program before you begin to write actual program code in
the FreePascal IDE editor. We’ll talk more about program design later on.

• Character case does not matter. BEGIN and begin are exactly the same!

• Text shown in bright red in the Source Editor window are instructions
to the compiler, not Pascal code! Lazarus generates some of these
instructions automatically, and as you become more of an expert and
write more complicated programs, you may find it necessary to add some
to the project yourself.

• When a problem comes up during compilation, it’s called an error. When
a problem comes up during your actual testing of a program that has
compiled correctly, it’s called a bug. The compiler will give you some
hints when it discovers an error. But you’re pretty much on your own to
identify and correct bugs.

Finally, this would be a good time to go back and take one more look at
EatAtJoes.lpr. It’s a series of steps bracketed between the two words BEGIN
and END. In this simple program, these steps should be close to self-explanatory,
even thought you may never have looked at a single line of Pascal code before.

The line USES Crt simply tells FreePascal to use a code library named Crt. We’ll
talk about using code libraries later on in this book. The only other line that might
have you (as a beginner) squinting hard is the last program step: Readln. That’s the
step that waits for you to press the Enter key so that the program can terminate its
execution and give control of the console window back to FreePascal. As with all of
the fundamental elements of FreePascal code, we’ll return to Readln in more detail
later in this book.

FreePascal from Square One, Volume 166

67

Chapter 3.
The Secret Word
Is “Structure”

OK. Do you want to build a shed? Or do you want to build a cathedral? With
FreePascal (or with most any programming language, actually), the choice is

yours. And the difference (far more than simply scale, since there can be mighty big
shacks and mighty small cathedrals) is solely a matter of structure.

You may have heard this before. It’s been said many times, and (far too often) said
badly. People often lose track of the difference between small-scale knowledge and
big-picture knowledge, and the corollary difference between small-scale quality and
big-time mess. You can perfectly memorize the usage of every single reserved word,
operator, and predefined identifier in FreePascal, and still not have the least clue as
to how to write a program with any hint of quality. Smearing individual statements
around on the screen can be fun, and such smearings can actually compile and
(sometimes) run, but hey, how much fingerpainting hangs in the Louvre?

In this chapter, I’m going to provide a sort of “view from a height” of FreePascal
program structure. Along the way, you’ll pick up some of the fundamentals of
defining and using variables, as well as some of the simpler operators and standard
functions. It’s tough to explain structure when you haven’t yet explained the boards,
bolts and girders from which the structure is made!

Note also that almost everything I explain in this chapter is true of almost any
dialect of Pascal you’ll ever see. What we’re exploring is the fundamental nature of
the language itself, quite apart from any individual implementation. Pascal is about
organizing complexity into comprehensible form. Keep that in mind. If you don’t, you
might as well work in mud-pie languages like C and C++.

3.1. Taking it subsystem by subsystem
Way, way, way back in 1974, I walked out of university into the thick of a recession,
having a degree in English, a rusting Chevelle, and little else. English majors rarely
get any respect (you have to be an English lieutenant colonel for that) so to keep the
blood pumping and the gas tank full I got a job as a Xerox machine repairman.

FreePascal from Square One, Volume 168

And I’ll never forget the horrible sinking feeling in my guts the first time I saw
a Xerox copier with its panels off, merrily making copies. There were gears and
drums turning, cams flipping, relays clicking, little claws grabbing a document and
dragging it through a maze of harsh green fluorescent lights, past crackling high-
voltage corotron wires, under a grimy, grinding developer housing, and ultimately
dropping it into a stainless-steel paper chute.

The instructor must have seen the expression on my face. He snorted through
his bushy mustache and said, “Hey, Jeff, don’t panic! It’s only a copier. Just take it
subsystem by subsystem.”

He was right, of course. It’s easy to fall into despair the first time you try to make
sense of a programming language. There’s five times the complexity of that gross
little Model 660 electromechanical copier, and each and every detail must be exactly
right, or nothing is accomplished but the wholesale tearing of hair.

So do what I did, and take it subsystem by subsystem.

The way to wrestle with complexity
I learned how to fix Xerox machines in record time, and spent the next couple of
years wandering around downtown Chicago, keeping the paper pumping. But in
learning how to fix Xerox machines, I learned something far more important: How
to deal with complexity.

Inside almost any complicated concept (assuming that the concept makes any
sense at all) there is something vitally important: Structure. The way to understand
anything complicated is to develop an eye that sees the structure in complexity, and
then to develop a set of selective blinders that allows you to focus in on one element
of that structure at a time.

Structure exists in layers, like an onion, and beneath one layer of structure may
exist several more, each (in its turn) composed of still more layers.

Start at the very top. Examine one layer at a time. Understand the “big picture” of
that one layer only, looking neither higher, to the larger principles, nor smaller, to
the component details. Only when you have that layer under your belt do you delve
into its component layers, and so on.

You’ll find that the Pascal language is wonderfully structured, which makes it
easy to grasp once you have your “structure eyes.”

Pascal (like Gaul) is divided into three parts
Every Pascal program can be seen as having no more than three separate parts (I
won’t call them subsystems; parts is parts!) that can be studied separately:

69The Secret Word Is "Structure"

•	Constant and data definitions;

•	Procedure and function definitions; and

•	The main block

Very tiny programs may get away without any procedures or functions
(EatAtJoes.pas from the last chapter had none) and totally trivial programs
may not define any data. All programs, however, must have a main block, and all
genuinely useful programs will have all three parts.

Let’s take a look at them, one by one.

3.2. The main block
The little demo program EatAtJoes.pas we compiled in the last chapter
has a main block. It’s all main block, in fact. The main block is the portion of the
program delimited between the words BEGIN and END. Here’s the main block
from EatAtJoes.pas:

BEGIN

 ClrScr;

 GotoXY(15,11);

 Writeln(‘Eat at Joe’’s!’);

 GotoXY(15,12);

 Writeln(‘Ten Million Flies Can’’t ALL Be Wrong!’);

 Readln;

END.

BEGIN and END are what we call reserved words. They have special meanings to
the FreePascal compiler and you can’t use them for anything else. I’ll have more
to say about reserved words a little later, when we get into the detailed view of the
Pascal language. They are the “framing members” of a Pascal program—the logical
2 X 4s that give a program its structure. They define its shape, and control the way
execution flows within a program.

In this book, reserved words will always be printed entirely in upper-case
characters, as BEGIN, END, WHILE, RECORD, and so on. (Additionally, all
program identifiers of any kind will be printed in bold in the body text of the book.) In
Pascal, character case is not significant for reserved words and other identifiers like the
names of variables, so some people write them in lower case. That works; FreePascal
considers BEGIN and begin to be precisely the same. I like to place reserved words
in capital letters so that they stand out—it helps you take in the overall structure of a
program quickly and easily. Reserved words and variables are not the same thing—
not even close, in fact—so making them look different is actually very useful.

FreePascal from Square One, Volume 170

Statements
Between BEGIN and END are six lines, each of which is a step in the program’s
execution. When a program begins running, the first step in the main block executes,
(here, ClrScr) and then the second, and then the third, and so on, until the last step
in the main block is executed. Program execution is then finished, and the program
stops running.

 Each one of those steps is called a statement. The single word ClrScr is a statement,
as is the more complicated line Writeln('Eat at Joe''s!').

Note carefully here that statements and lines are very different things. (Beginners often
confuse them, with predictably bad results.) A statement may exist all by itself on a
single line. A statement may occupy more than one line. More than one statement
may exist on a single line. The key is that statements are separated by semicolons.
Semicolons don’t end lines. They separate statements. This means that you can have
a perfectly legal line like the following:

ClrScr; GotoXY(15,11);

Here there are two statements on one line, with a semicolon after the first to act as a
separator. There is a semicolon after the second statement as well, but that semicolon
separates the statement GotoXY(15,11) from whatever statement begins the next
line. Whether you should place multiple statements on the same line is a question of
readability, not of program correctness. The FreePascal compiler does not recognize lines.
In other words, multiple statements on the same source code line compile to the
very same object code as do multiple statements each on its own source code line.
More on this a little later.

The statements in EatAtJoes.pas are simple and easy to dope out by reading
them and by watching what the program does. ClrScr clears the screen. GotoXY
moves the cursor to an X,Y position on the screen. Think of your CRT screen as a
Cartesian grid like the ones you worked with in high school math. The X (across)
value comes first, followed by the Y (down) value. The upper left corner of the
screen is the origin, 1,1. Saying GotoXY(15,11) moves the cursor 15 positions
across, and 11 positions down. Writeln writes a line of text to the screen, starting
at the cursor position.

There is always a period after the END of the main block of a Pascal program.
The period indicates that the fat lady has indeed sung, and that the program is over.
Control leaves the Pascal program and returns to the operating system.

71The Secret Word Is "Structure"

Compound statements
I’ll have a great deal more to say about statements later on in this book. It’s
important to note that, in a Pascal sense, the whole main block of the program is
itself a compound statement. In most cases, a compound statement is some number of
statements delimited by a BEGIN and END reserved word. There are a couple of
instances where a compound statement may be framed by other reserved words,
like REPEAT and UNTIL rather than BEGIN and END. We’ll deal with these
special cases later on.

It might help to characterize the main block by considering it to be a collective
statement that indicates the larger, single purpose that the program as a whole was
designed to accomplish. Just as a sentence in the English language is a statement
made of words followed by a period, so the main block in Pascal is a compound
statement made of statements followed by a period. This compound statement
summarizes the program’s larger purpose, and by reading the main block of a Pascal
program first, you should be able to work out the big picture of what the program
is supposed to do.

Compound statements appear in many other parts of the Pascal language.
You’ll be tripping over them wherever you go. When you see one in a program,
ask yourself what the unifying purpose of the compound statement is. It’ll help
you refine your “structure vision” and help you focus on just that one part of the
program as a whole.

3.3. Variable definitions
EatAtJoes.pas has no data at all. It’s a dumb billboard, and not especially
interesting as a program. Real programs do significant work for us by storing and
manipulating data. Another major component of any program, therefore, is a set
of definitions that dictate how much data we’re using in a program and how we
can use it.

Since EatAtJoes.pas lacks data, we’re going to have to come up with a new
program to demonstrate some data-bashing. One begins on the following page.
Read it over, and see if you can work out the general sense of what it does based on
what you’ve already learned about the Pascal language. Pascal, for the most part,
“talks straight” and tries not to be cryptic. That said, comments—explanatory text
enclosed in curly brackets—are essential and something that you as a programmer
should use to clarify what each individual line of code is intended to do.

FreePascal from Square One, Volume 172

	 1	 {--}

	 2	 { Aliens }

	 3	 { }

	 4	 { by Jeff Duntemann }

	 5	 { FreePascal V2.2.0 }

	 6	 { Last update 2/8/2008 }

	 7	 { }

	 8	 { From: FREEPASCAL FROM SQUARE ONE by Jeff Duntemann }

	 9	 {--}

	 10	

	 11	 PROGRAM Aliens;

	 12	

	 13	 USES Crt; { For ClrScr, Random, and Randomize }

	 14	

	 15	 CONST

	 16	 MaxLength = 9; { The longest name we’ll try to generate }

	 17	 MinLength = 2; { The shortest name we’ll try to generate }

	 18	 LastLetter = 122; { Lower-case ‘z’ in the ASCII symbol set }

	 19	

	 20	 TYPE

	 21	 NameString = STRING[MaxLength]; { Waste no space in our strings! }

	 22

	 23	 VAR

	 24	 Printables : SET OF Char; { Holds the set of printable letters }

	 25	 I,J : Integer; { General-purpose counter variables }

	 26	 NameLength : Integer; { Holds the length of each name }

	 27	 NameChar : Char; { Holds a randomly-selected character }

	 28	 NamesWanted : Integer; { Holds the number of names we want }

	 29	 CurrentName : NameString; { Holds the name we’re working on }

	 30	

	 31	 BEGIN

	 32	 Randomize; { Seed the random number generator }

	 33	 Printables := [‘A’..’Z’,’a’..’z’]; { Only printable letters! }

	 34	 ClrScr;

	 35	 Write(‘How many alien names do you want? (1-10): ‘);

	 36	 Readln(NamesWanted); { Answer the question }

	 37	

	 38	 FOR I := 1 TO NamesWanted DO

	 39	 BEGIN

	 40	 CurrentName := ‘’; { Start with an empty name }

	 41	

	 42	 REPEAT

	 43	 NameLength := Random(MaxLength); { Pick length for this name }

	 44	 UNTIL NameLength > MinLength;

	 45	

	 46	 FOR J := 1 TO NameLength DO { Pick a letter: }

	 47	 BEGIN

	 48	 REPEAT { Keep picking letters until one is printable: }

	 49	 NameChar := Chr(Random(LastLetter));

73The Secret Word Is "Structure"

	 50	 UNTIL NameChar IN Printables;

	 51	 CurrentName := CurrentName + NameChar; { Add to the name }

	 52	 END;

	 53	 Writeln(CurrentName); { Finally, display the completed name }

	 54	 END;

	 55	 Readln; { Pause until Enter hit so you can see the names }

	 56	 END.

Don’t panic!
I mean that. You’re not going to be tested on the full details of how the Aliens
program works at this point, so don’t worry about digesting it whole and in every
last little detail. It’s a complete Pascal program that even does something interesting.
I’ll be talking about it for a while in this chapter, explaining most of its workings as
I do. So follow along as we go, and don’t fret not knowing the details of character
sets or the REPEAT..UNTIL statement right now. All in good time. Remember,
we’re going for the big picture here. The details will crystallize out in the chapters
to come.

Solving an SF writer’s problem
The Aliens program does a job for SF writers like myself who are too lazy to come
up with imaginative names for the seventeen-eyed wonders who haunt the starlanes
in bad space wars novels. It’s a very simple program; if you have the listing typed in
already or have obtained the listings archive for this book, I’d suggest that you load,
compile, and run Aliens.pas right now.

Aliens asks you a question: How many alien names do you want? It then waits
for you to type in a number from 1 to 10 and then press Enter. At that point, it will
produce the exact number of names you asked for by almost literally pulling letters
out of a hat and stringing them together. As each name is completed, Aliens will
display that name on the screen. This happens so quickly that all the names will
seem to appear instantly.

Zeroing in on data definitions
That’s what Aliens does. Now let’s take a look at some of its machinery. We’re
currently focusing on the data definitions part of a Pascal program. Although there
is some flexibility about where the data definition part of a program goes, most of
the time you’ll have to place your definitions at the very beginning of a program.
The data definitions in Aliens.pas are shown by themselves on the next page:

FreePascal from Square One, Volume 174

CONST

 MaxLength = 9; { The longest name we’ll try to generate }

 MinLength = 2; { The shortest name we’ll try to generate }

 LastLetter = 122; { Lower-case ‘z’ in the ASCII symbol set }

TYPE

 NameString = STRING[MaxLength]; { Waste no space in our strings! }

VAR

 Printables : SET of Char;	{ Holds the set of printable letters }

 I,J : Integer; { General-purpose counter variables }

 NameLength : Integer; { Holds the length of each name }

 NameChar : Char; { Holds a randomly-selected character }

 NamesWanted : Integer; { Holds the number of names we want }

 CurrentName : NameString; { Holds the name we’re working on }

The data definition part of a Pascal program is almost literally a set of blueprints
for whatever data the program will be using during its execution. The Pascal compiler
reads the definitions and sets up a little reference table for itself that it uses while it
converts your source code file to an object code file. This reference table allows the
FreePascal compiler to tell you when something you’re trying to write as part of a
program is bad practice or nonsensical.

Variables as buckets
Variables are defined after the VAR reserved word. Think of variables as buckets
into which data values may be placed. In variable definitions, you declare the name
of a variable followed by its type. The name and the type are separated by a colon.

Variables—like buckets—come in a great many shapes and sizes. The type of a
variable indicates how large the bucket is and what sorts of stuff you can safely put
in it. A plastic water bucket will carry water handily—but don’t try to lug molten
lead in it. A colander can be thought of as a bucket suitable for carrying meatballs—
but don’t expect to use it to hold flour or tomato juice without making a mess.

The notion of types in Pascal exists precisely to keep you from making certain
kinds of messes.

In Aliens, there’s a variable called NameLength. Its type is Integer, which is
a signed whole number from -32,678 to 32,767. NameLength is thus a bucket
for carrying numeric values falling in that range that don’t have a decimal part.
Similarly, NameChar is a Char variable, meaning it is intended to hold character
values like ‘A’ or ‘*’.

	

75The Secret Word Is "Structure"

Types as blueprints for buckets
So what happens if you try to place a number like 17,234 in a Char variable? You
can’t—the FreePascal compiler won’t let you. The two types aren’t compatible, so
you’ll get an error at compile time if you try to load an Integer value into a Char
variable, or vise versa.

Where do types come from? Some of them are built right into FreePascal and
are always available. Integer and Char are two such types, and there are numerous
others. On the other hand, Pascal allows you define your own types, and then create
variables with those new, programmer-defined types.

Aliens.pas contains an example. Notice the statement immediately after the
TYPE reserved word:

NameString = STRING[MaxLength]; { Waste no space in our strings! }

This is a type definition. It defines a type called NameString. This type is a string type—
meaning that it’s designed to contain data in alphanumeric strings of characters like
‘I am an American, Chicago‑born’ or ‘THX1138’. FreePascal strings may be from 1
character to 255 characters long and you can create a string type in any size within
that range. That’s what the type definition statement in Aliens does: It creates a
string type with a length given by a constant named MaxLength. (We’ll get back to
MaxLength and what it is shortly. For now, just assume it’s a number—or look a
few lines back to see how it’s defined!)

NameString is a very simple type. You can create much, much more complex
types in FreePascal, as I’ll explain later in this book. It’s easy to see how a type is in
fact a blueprint for making buckets, in that it defines what sort of data some new
kind of bucket is meant to contain.

Then, when you actually need a bucket of this new type, you can make one in the
VAR section:

CurrentName : NameString; { Holds the name we’re working on }

This statement gives you a variable in memory that contains string data. The name
of the variable is CurrentName. The length of the string is given by the MaxLength
constant.

Remember: A type is not a variable and holds no data. It’s simply a spec or
template that allows you to create variables with a specified size and set of attributes
and uses. Use the TYPE reserved word to create blueprints for buckets—and then
use VAR to create the buckets themselves.

FreePascal from Square One, Volume 176

Constants as names for data values
So what, then, is MaxLength? It’s a constant, which in Pascal is simply a way of
giving a name to a data value. Long before you ever knew what programming was,
you were using constants. You learned that the number 3.14159 (approximately) is
called “Pi.” If you took a little more math, you learned that a constant named “e” (the
base of the natural logarithms) was equal to about 2.71828.

The actual values of constants are hard to remember unless you use them all
day, every day. I had to look up the value of e just now, even though I know what
it is and have used it many times in my life. I just haven’t used it often enough to
remember it.

Constants serve a very similar purpose in programming: They allow you to give
a descriptive name to a data value that might otherwise be hard to recall accurately.
Constants have an even more important job, however: They allow you to specify
a value once, at the top of your program, and then use that value any number of
times anywhere else in the program. Later on, if you want to change that value for
some reason, you change it in one place only—in the statement where you defined
it—rather than having to hunt down dozens or hundreds of uses of the literal value
in what might be a very big source code file.

MaxLength is defined in Aliens as being 9, which is a nice maximum length for
an unpronounceable name. (Sandron has no trouble pronouncing his name, but we
both might stumble on jhuuTDplb.) We could have defined MaxLength as 20, and
gotten much longer alien names, or 5, and gotten much shorter ones.

Because we use MaxLength only once in Aliens, it’s not as obvious how useful
constants are as centrally-located definitions for widely-used values. But there is
a predefined constant in FreePascal called Pi, which you can use anywhere you
want instead of the literal value 3.14159. Later on, you can pretend to be an Indiana
politician and declare Pi equal to 3.0. None of your math will work out, but it’s a
great insight into the minds (if one could call them that) of politicians.

Be careful not to confuse constants and variables. A variable is a bucket; that is,
a container for values. A constant is a value with a name. You can call the numeric
value 42 “Ralph” and then put “Ralph” in a bucket. But what the bucket then contains
is the number 42. The name “Ralph” is used only to drop the value 42 into the bucket.
This will become more clear once you do it a few times.

Loading up your buckets
A variable, once defined, is an empty bucket. It contains no value until you give it
one, though it may acquire a value by accident, as I’ll explain later on. Accidental

77The Secret Word Is "Structure"

values are not predictable, and can cause many kinds of trouble. Better by far to give
every variable a value early on, before it comes upon one by accident!

You can give a variable a value in several ways, but the most straightforward way
is through an assignment statement. An assignment statement takes a value and assigns
that value to a variable. In effect, it takes the value and “loads it into” that variable, as
though dropping something into a bucket. Here’s a simple assignment statement:

Repetitions := 141;

What we’ve done here is taken the numeric value 141 and dropped it into the
variable Repetitions. The two character sequence := is called the assignment operator.
When FreePascal sees the assignment operator, it takes whatever is on the right side
of the operator and drops it into whatever is on the left side.

Here’s an assignment statement from Aliens.pas:

CurrentName := '';

What it does is drop an empty string (that is, a string containing no characters) into
the variable CurrentName. (A string with something in it would look like this:
‘Jeff’) It may seem odd to think of dropping an empty value into a bucket, so you
might consider this a way of emptying the bucket of anything else that might have
already been there.

3.4. Procedures and functions
Compared to EatAtJoes.pas, Aliens.pas is a considerably larger program.
The main block in Aliens.pas is 26 lines long. Still manageable—but what
happens when you want to write a program that does something genuinely useful? It
might take hundreds of lines to write even a fairly simple utility, or easily thousands
or tens of thousands of lines to write something like a custom database program to
handle sales leads or invoice mail-order sales.

The secret, again, is structure. And without question, the most powerful tools
for structuring your programs are procedures and the slightly special-purpose
procedures called functions.

The whole idea in creating a procedure or a function is to gather together a sequence
of related statements, and give that sequence a new, descriptive name. Then later on,
when you need to execute that sequence of statements, you need only execute the
name of the procedure, as though it were a single statement that did everything you
wanted done by the group of statements hiding “inside” the procedure.

FreePascal from Square One, Volume 178

As easy as brushing your teeth
This sounds hairier than it is. Consider this business of brushing your teeth. You get
up in the morning, and as you shake the cobwebs out of one ear or the other, you
remind yourself that you can’t go to work this time without brushing your teeth.

So brushing your teeth is one single activity. Or is it? Watch yourself as you do it,
and take note of the steps involved:

	 Pick up the toothpaste tube.
	 Twist off the cap.
	 Pick up your toothbrush in your other hand.
	 Squeeze some toothpaste onto your toothbrush.
	 Sprinkle a little water on the toothbrush.
	 Put the toothbrush into your mouth.
	 Repeat:
	 	 Work the toothbrush up and down
	 ...until your mind starts to wander.
	 Rinse off your toothbrush.
	 Pick up your Flintstones cup.
	 Fill it with water.
	 Take a mouthful of water.
	 Swill it around.
	 Spit it out.
	
Taken as the sum of its individual steps, brushing your teeth is a real mouthful.

When you actually get down and do it, you run faithfully through each of those
steps, and if you ever had to tell somebody how to do it, you could. But when you’re
trying to impose some order on your morning, the whole shebang shows up in your
mind under the single descriptive term, “brushing your teeth.”

Statements inside statements inside compound statements
Inside the term “brushing your teeth” are thus some number of other terms, in a
certain order. You think of the single term “brushing you teeth” to avoid cluttering
your mind with a multitude of piddly little details.

A procedure is the same thing, for the same reasons, and works much the same
way. You gather together some number of Pascal statements, and then hide them

79The Secret Word Is "Structure"

behind a single identifier of your own choosing. You can execute the new identifier
as though it were a single statement, masking the complexity represented by the
original sequence of Pascal statements.

Suppose you have these three statements in a Pascal program:

DoThis;

DoThat;

DoTOther;

Taken together, these three statements accomplish something. Let’s call that
something “grobbling.” (It’s a made-up word.) We could say that the following
compound statement represents what must be done in order to grobble:

BEGIN

 DoThis;

 DoThat;

 DoTOther;

END;

We can hide this compound statement behind a single statement, which we’ll
call Grobble, so that any time we need to execute those three statements together,
we only have to execute this single statement:

Grobble;

Doing it is fairly easy. We mostly need to give a name to the compound statement
shown above:

PROCEDURE Grobble;

BEGIN

 DoThis;

 DoThat;

 DoTOther;

END;

What we have here are statements within a compound statement, within a
procedure—which itself may be used as a statement.

An adventure in structuring
To make it all click, let’s do it, right now, to Aliens.pas. This is a slightly advanced
exercise, and if you’ve never written a line of program code before, some of it may
puzzle you. Bear with me—and have faith that all will be explained in good time.

FreePascal from Square One, Volume 180

One of the things that Aliens has to do is choose a length for any given alien name.
It does this by “pulling” random numbers repeatedly until it pulls a random number
within a specified range. This range is the range from MinLength to MaxLength,
both of which are defined as constants, and in this case are equivalent to the range
2 through 9.

The code that pulls a random length within those two boundaries is this:

REPEAT

 NameLength := Random(MaxLength); { Pick a length for this name }

UNTIL NameLength > MinLength;

FreePascal contains a built-in library function called Random that returns a
random number less than the number contained in the parameter that you pass to
it. The parameter is the literal value or variable enclosed in parentheses immediately
after the name Random. That is, calling the function Random(9) will return a
random number value between 0 and 9. This value can then be assigned to some
other variable (in our case, NameLength) for safekeeping. (A function, in case you’re
not yet familiar with the term, is a procedure that returns a value, which may then
be assigned to a variable or used in other ways. More on this very shortly.)

The three lines shown above repeatedly get a random number and test it, to make
sure it’s greater than MinLength. The Random function itself guarantees that the
value it returns will be no larger than its parameter; that is, the constant MaxLength
that the Random function holds within its parentheses.

Creating a function
Random numbers are useful things, and it’s even more useful to be able to specify
a range of values within which a random number is to be pulled. It would be nice
to have a procedure of some sort that would pull a random number for us without
our having to remember all the precise details of how it was done. We could call the
procedure Pull, and it would be a sort of number-generating machine. We would
pass it a minimum value and a maximum value, and Pull would somehow return a
value for us that fell within those two bounds.

As I said a little earlier: In Pascal, a function is a procedure that returns a value.
I’ll have much more to say about functions and how they’re used later in this book,
but it cooks down to that. To illustrate, suppose we had a numeric variable called
NumberBucket. We could define a function called Pull, and it would be Pull’s job
to generate a random number. To fill NumberBucket with a brand-new random
number, we would use this statement:

81The Secret Word Is "Structure"

NumberBucket := Pull;

Although it may look like one, Pull is neither a constant nor a variable. It’s actually a
compound statement masquerading as a single value. The value is computed within
the compound statement, and then returned “through” the name of the function.

With that in mind, let’s create the Pull function from the three lines in Aliens
that pull a random length for alien names:

FUNCTION Pull(MinValue,MaxValue : Integer) : Integer;

VAR I : Integer;

BEGIN

 REPEAT

 I := Random(MaxValue); { Pick a length for this name }

 UNTIL I >= MinValue;

 Pull := I;

END;

Things have changed a little—but for a reason, as I’ll explain. The central portion of
Pull does the same thing that the three lines we lifted from the Aliens program did.
What we’ve mostly added is framework; a body for the lines to exist in.

But we’ve also added a strong measure of generality. The lines that pull a random
name length within Aliens can be used only to pull a random name length. The new
Pull function can be used to pull random numbers within a specified range for any
reason. We could use it just as easily in a dice game as in an alien name generator—
and that’s a big, big advantage.

We can use Pull in Aliens.pas. Just insert the definition for Pull in the
program file just before the beginning of the main block, and then replace the three
lines that pull a random name length with the following single line:

NameLength := Pull(MinLength,MaxLength);

The two items named MinLength and MaxLength are called parameters. They’re
special-purpose variables belonging to the function. They work as pipelines,
allowing you to drop values into the function. Drop a “7” value into MaxLength,
and the Pull function’s internal machinery will receive the value 7 as the maximum
allowable value for the random number it’s been told to generate.

The altered copy of Aliens.pas (let’s call it Aliens2.pas) is shown on
the next page, with the Pull function replacing the three lines used to pull random
numbers in the original Aliens.pas.

FreePascal from Square One, Volume 182

	 1	 {--}

	 2	 { Aliens2 }

	 3	 { }

	 4	 { by Jeff Duntemann }

	 5	 { FreePascal V2.2.0 }

	 6	 { Last update 2/8/2008 }

	 7	 { }

	 8	 { From: FREEPASCAL FROM SQUARE ONE by Jeff Duntemann }

	 9	 {--}

	 10	

	 11	

	 12	 PROGRAM Aliens2;

	 13

	 14	 USES Crt; { For ClrScr, Random, and Randomize }

	 15

	 16	 CONST

	 17	 MaxLength = 9; { The longest name we’ll try to generate }

	 18	 MinLength = 2; { The shortest name we’ll try to generate }

	 19	 LastLetter = 122; { Lower-case ‘z’ in the ASCII symbol set }

	 20	

	 21	 TYPE

	 22	 NameString = STRING[MaxLength]; { Waste no space in our strings! }

	 23

	 24	 VAR

	 25	 Printables : SET OF Char; { Holds the set of printable letters }

	 26	 I,J : Integer; { General-purpose counter variables }

	 27	 NameLength : Integer; { Holds the length of each name }

	 28	 NameChar : Char; { Holds a randomly-selected character }

	 29	 NamesWanted : Integer; { Holds the number of names we want }

	 30	 CurrentName : NameString; { Holds the name we’re working on }

	 31	

	 32	 FUNCTION Pull(MinValue,MaxValue : Integer) : Integer;

	 33	

	 34	 VAR I : Integer;

	 35

	 36	 BEGIN

	 37	 REPEAT

	 38	 I := Random(MaxValue); { Pick a length for this name }

	 39	 UNTIL I >= MinValue;

	 40	 Pull := I;

	 41	 END;

	 42	

	 43	

	 44	 BEGIN

	 45	 Printables := [‘A’..’Z’,’a’..’z’];

	 46	 Randomize; { Seed the random number generator }

	 47	 ClrScr;

	 48	

	 49	 Write(‘How many alien names do you want? (1-10): ‘);

	 50	 Readln(NamesWanted); { Answer the question }

83The Secret Word Is "Structure"

	 51	

	 52	 FOR I := 1 TO NamesWanted DO

	 53	 BEGIN

	 54	 CurrentName := ‘’; { Start with an empty name }

	 55	

	 56	 NameLength := Pull(MinLength,MaxLength); { Pull random length }

	 57	

	 58	 FOR J := 1 TO NameLength DO { Pick a letter: }

	 59	 BEGIN

	 60	 REPEAT { Keep picking letters until one is printable: }

	 61	 NameChar := Chr(Random(LastLetter));

	 62	 UNTIL NameChar IN Printables;

	 63	 CurrentName := CurrentName + NameChar; { Add to the name }

	 64	 END;

	 65	

	 66	 Writeln(CurrentName); { Finally, print the completed name }

	 67	 END;

	 68	 Readln; { Pause until Enter hit so you can see the names }

	 69	 END.

Hiding complexity
The details of having to pull a number again and again until one appears that falls
within a specified range are masked now. We only see the “front door” of the random
number factory. The machinery that actually builds the random numbers is hidden
away behind the door somewhere. And that’s good, because most of the time we
really don’t care how random numbers are made; we only care that they do get made,
and made according to our specifications.

It’s true that creating the Pull function added a few lines to the program. Later
on, we’ll see how we can remove Pull from Aliens2.pas and place it in a library
of functions and procedures called a unit. This library is available to any of your
programs that need it. If ten of your programs need a random-number puller, you
can give a random number puller to all ten of them—and yet have only one copy
of Pull’s ten lines of code. If you yank enough general-purpose procedures and
functions out of your programs into libraries, you can actually cut the source code
bulk of your programs considerably.

Organizing programs with procedures
Hiding details is the fundamental purpose of procedures and functions. The little
example given here is not an especially good one, since there aren’t a lot of details
to be hidden in a random-number puller.

FreePascal from Square One, Volume 184

Now, consider a simple accounting program. A good one (even a simple one,
as accounting programs go) might have 10,000 lines of code. You could write all
10,000 lines of code in one enormous main block. But how would you read and
understand those 10,000 lines of code? You’d probably have to do what was done
in the ancient days of programming, and literally cut a long program listing up into
chunks with a scissors, and only look at the chunk you needed to concentrate on at
the moment.

Even War and Peace is divided into chapters. Procedures are often used as “chapters”
in a larger program. In our accounting program example, you would have several
accounting tasks like Payroll, Accounts Payable, Accounts Receivable, General Ledger,
and so on. It’s possible to make each of these accounting tasks a procedure:

PROCEDURE AccountsPayable;

BEGIN

 <about 2000 lines>

END;

PROCEDURE AccountsReceivable;

BEGIN

 <about 3000 lines>

END;

PROCEDURE Payroll;

BEGIN

 <about 2000 lines>

END;

PROCEDURE GeneralLedger;

BEGIN

 <about 2200 lines>

END;

Now at least you have a fighting chance. When you need to work on the payroll
portion of your accounting program, you can print out the Payroll procedure and
ignore the rest. All the “payroll‑ness” of the accounting program is concentrated
right there in one procedure, so you don’t have to go searching for payroll details
across the entire program. Better still, details that you don’t have to pay attention to
right now remain hidden, inside their respective procedures.

85The Secret Word Is "Structure"

With your payroll blinders on, you’ll have a much easier time focusing on the
payroll part of the program. The main block becomes quite small then, and is
mostly a little menu manager that lets you choose which of the four big procedures
you want to run.

Procedures within procedures
If you’re perceptive, you may have noticed something else about procedures and
functions: They look like little programs. They are little programs, in fact. Procedures
and functions share the same general structure with the “big” Pascal programs that
contain them. This resemblance between Pascal programs and procedures and
functions is reflected in a generic term that encompasses both procedures and
functions: subprograms.

If Pascal programs are divided into three parts, then so are procedures and
functions: They too have constant and data definitions, procedure and function
definitions, and a main block. You may have noticed that the Pull function had a
variable definition in it, for an integer variable named I. The variable I is what we call
a local variable, by which we mean one that belongs inside Pull and never ventures
outside Pull’s “city limits.” Only Pull can see or use the variable I. Procedures and
functions can define any number of local variables and constants for their use, just
as programs can.

But most interestingly, procedures and functions can define and contain their
own local procedures and functions. Just as Pull was inside and thus local to Aliens2.
PAS, you could place a procedure or a function (or several of them) inside Pull as
well. These local procedures and functions would be for Pull’s private use only; no
subprogram outside of Pull could make use of them.

This nesting can go on and on almost without limit: You can place subprograms
within subprograms within subprograms, like those little barrel-shaped Russian
dolls that fit one inside the other.

3.5. Program structure recap
This chapter has been an overview of program structure, to get you started on
your road to Pascal mastery in the right frame of mind, and with a general method
for finding your way. I’ve touched on a great many topics without going into any
of them especially deeply. In the rest of this book, I’ll begin describing the Pascal
language in detail.

But before getting into a hurricane of details, I wanted to lay the big picture out
in front of you. Let’s recap the big picture.

FreePascal from Square One, Volume 186

Pascal programs are divided into three parts
These three parts are data definitions, procedure and function (subprogram)
definitions, and the main block.

Data definitions include constant definitions, type definitions, and variable
definitions. Constant definitions give descriptive names to unchanging values.
The value 3.14159, for example, is often made a constant with the name Pi. Type
definitions define a particular kind of data, and act as blueprints for creating
variables of that kind of data. A type definition defines how large a data type is, and
what sorts of ways it can be used. A variable definition creates a little storage bucket
somewhere for a particular type of data. Think of type definitions as blueprints
for data buckets, and variable definitions as the way the buckets themselves (the
variables) are actually made. Constants, in turn, are one (but only one) method by
which those buckets may be filled with data.

The main block is a compound statement, which is a sequence of Pascal statements
between the reserved words BEGIN and END.

Procedures and functions allow groups of Pascal statements to be grouped
together and “hidden” behind a single descriptive name. Using that single name
has the same effect as using each of the individual statements within the procedure
or function. Functions are specialized procedures that return values that may be
assigned to variables in assignment statements. Apart from that, they are identical
to procedures.

Procedures and functions are the primary means of masking complexity in a Pascal
program. The details of a larger program task may be hidden within a procedure
or function, so that your attention to that larger function will not be distracted by
the details. When you need to be concerned with the details, you can examine the
definition of the procedure or function to see how it operates internally.

When you need to see the details, you can. When you don’t, you won’t. Much of
structuring a program is the artful hiding of details.

Procedures and functions (subprograms) are miniature programs
The essential structure of a Pascal program is echoed in the structure of subprograms,
which is in fact why procedures and functions are called subprograms.

Procedures and functions have data definitions and a main block, and furthermore,
they can contain their own local (that is, private) procedures and functions. This
nesting of procedures within procedures has no explicit limits, and may continue as
far as needed. (There is a “too far,” and moderation is a virtue in Pascal programming
as anywhere else.)

87The Secret Word Is "Structure"

Programs are organized by dividing them up into subprograms
A single monstrous program can be made conceptually manageable by dividing it
up into subprograms. Large subprograms can themselves be made manageable by
dividing them internally into separate, smaller subprograms. By creating a program
in layers in this way, you can focus your attention only on the layer that you need to
see, without distraction either from the big picture at a higher level, or from details
at a lower level.

Take it one subsystem at a time!
Most of all, I want you to remember the lesson of the technical trainer back at Xerox
in 1974: Take it one subsystem at a time. Being boggled gets you nowhere. Develop your
structure-eyes, and learn to look selectively at a program to see the structure in it,
and then either work to understand that structure (if the program was written by
someone else) or to create that structure (if the program doesn’t exist yet) using the
structuring tools available in FreePascal.

FreePascal from Square One, Volume 188

89

Begin . . . End

If...Then...Else...

Part II:
Installing, Learning,
and Using FreePascal

and Lazarus

4. Installing FreePascal and Lazarus 91
5. Configuring and Using the Lazarus Environment. . . 105

I should note here that “using” Lazarus in this book does not
include using its GUI builder. Explaining that will require a full
treatment of object-oriented programming and software com-
ponents, which is outside the scope of this introductory book.

FreePascal from Square One, Volume 190

91

Chapter 4.
Installing FreePascal
and Lazarus

One of the (few) downsides to free and open-source software is that you can’t
cover installation by saying, “Order the product, open the box, and follow the

manufacturer’s instructions.” It’s a little more complex than that, especially when the
product (like FreePascal) can be run on a surprising number of different operating
systems and CPU types. So in this chapter, I’ll explain how to find the downloadable
install suites for FreePascal, how to be sure you have the right one, and then how to
install it for Windows and Linux.

4.1. Platforms and targets
Most of us are used to either buying a software product in a box at a local store, or
else ordering a product (or at least a product install CD) online. FreePascal is different
from a lot of software products in that it exists for a number of different platforms.
A platform is an operating system running on a particular type of hardware. For
example, Microsoft Windows running on 32-bit Intel hardware like the Pentium
is a platform. (It’s probably the commonest platform in the world, and often called
“Wintel.”) Ubuntu Linux running on a 32-bit Intel CPU is considered a separate
platform. Similarly, the PowerPC CPU is the hardware in many older Apple Mac
machines. The OS X operating system running on a PowerPC CPU is considered
still another platform. And OS X running on an Intel CPU is considered yet another
platform.

This is all made trickier by the fact that some operating systems run on multiple
hardware types, and most CPUs can run multiple operating system. So you must be
aware of both the CPU type in your machine, and the operating system you intend
to install FreePascal under.

At this writing (June 2019) the list of installable binary files for the various
supported platforms is provided on Sourceforge:

https://sourceforge.net/projects/freepascal/files/

FreePascal from Square One, Volume 192

4.2. The Relationship Between FreePascal and Lazarus
As I explained earlier in this book, FreePascal is a compiler, and Lazarus is an
integrated development environment (IDE). It’s true that Lazarus is more than just
an IDE—it contains a world-class “GUI builder,” as I’ll explain in the next chapter—
but while you’re first learning FreePascal, the IDE features of Lazarus are all you’re
going to need. (I intend to cover the GUI builder portion in its own book.)

Just keep this in mind: FreePascal and Lazarus are two separate software projects
with separate teams of programmers writing, testing, and debugging them.
FreePascal and Lazarus “cooperate” in many ways, at several levels, so it makes
sense to use them together. The relationship between the two can be summed up
this way:

• 	Lazarus is a program written in FreePascal.

•	 Lazarus executes the FreePascal compiler “behind the scenes” to generate
executable code from source code managed from within Lazarus.

Basically, FreePascal can function without Lazarus, but Lazarus cannot function
without FreePascal. You can edit and manage FreePascal source code from other
editors if you want (including the text-mode IDE included with the compiler)
but none have the power of Lazarus, simply because Lazarus “knows” the Pascal
language, and knows it better than any other free program I’ve yet tested. However,
you cannot use other compilers from within Lazarus. (Yet; it’s been discussed and
may happen someday.)

Stable versions vs. development versions
Because FreePascal and Lazarus are two separate software projects, they each have
a separate and independent version number. At this writing (November 2019)
FreePascal is at version 3.0.4. Lazarus is at version 2.0.6. These are the “stable”
releases; that is, releases that have been tested extensively and are known to be
mostly functional and largely bug-free. (No software is ever entirely bug-free!)

Both products are open-source, and are maintained by volunteers scattered all
over the world. Because FreePascal and Lazarus are not developed in secret at a
single large software house, intermediate releases are publicly available to anyone
who wants them. These are “development” releases, issued by the programming
teams for testing and debugging purposes, and are really intended for installation
by programmers interested in working on the FreePascal and Lazarus programs
themselves. Development releases are not guaranteed to be stable. They may contain
partially completed features and outright bugs, but that’s what they’re out there for:
to broaden the base of testers who can bring bugs to light and fix them.

93Installing FreePascal and Lazarus

Until you’re well-versed in compiler internals, stick to the stable releases.

The stable releases of both products may be obtained from the FreePascal and
Lazarus Web sites. I generally install each new stable version as it appears, because
both products (especially Lazarus) are evolving quickly. If you register as a user on the
Lazarus Web forum, you’ll be sent an email when a new release is ready to download.
Or you can just check the Lazarus announcements page every so often:

https://www.lazarus-ide.org/

What comes with what
Because Lazarus requires FreePascal to do its work, the downloadable installers for
Lazarus also contain the FreePascal compiler, and when you install Lazarus you
install both. However, the release schedules for FreePascal and Lazarus are not
synchronized. The downloadable installer for the newest stable release of Lazarus
does not necessarily contain the newest stable release of FreePascal.

This is almost never a problem, especially while you’re still learning the Pascal
language. The features of Pascal that I’ll be teaching in this book haven’t changed
much in a while and probably won’t change much in the near future. In general,
you’re better off with the current stable version of Lazarus irrespective of which
stable version of FreePascal is installed with it.

The text-mode IDE
By default, when you install FreePascal by itself (without Lazarus) the FreePascal
install wizard will install a program called fp.exe, which is the text-mode IDE
that runs in a console window. You can see what it looks like by turning back to
Figure 2.3. There’s a quirk here: The Lazarus installer installs FreePascal, but it does
not install fp.exe. The logic there is that if you’re going to install Lazarus, you’re
probably not going to use the text-mode IDE.

I deliberately chose not to use the text-mode IDE for the examples in this book
because I’ve had a some bad experience with it, especially when run in a console window
under Windows. On other platforms it has worked well for me. However, if fp.exe
crashes or displays poorly, I don’t have a great deal of advice other than to use another
standalone editor and invoke the compiler from the command line. Lazarus is a great
deal more stable, especially under Windows, and if you’re just learning the language
and are working in Windows or Linux under GNOME or KDE, it’s probably the easiest
way to proceed. Furthermore, if you intend to do full-bore object-oriented GUI app
programming later on, you might as well start learning Lazarus now.

FreePascal from Square One, Volume 194

FreePascal’s Documentation
FreePascal has a substantial set of manuals distributed as electronic files. The manuals
may be downloaded as individual files, or they are available online in HTML format,
where you can read them with an ordinary Web browser.

The available manuals for FreePascal are these:

•	 The FreePascal User’s Guide (user.pdf) is a concise description of the Pascal
language as implemented by the FreePascal compiler, including “railroad”
syntax diagrams. The descriptions are terse and should not be considered
tutorials in any sense of the word.

•	The FreePascal Programmer’s Guide (prog.pdf) explains programming issues
that go beyond the fundamentals of Standard Pascal. This includes
language extensions, compiler directives, low-level issues like assembly
language interface and external calling conventions.

•	The FreePascal Language Reference Guide (ref.pdf) explains how to install
and configure the compiler and how to invoke it. This includes compiler
modes, compiler error messages, debugging using gdb, and a list of the
standard units installed with the compiler. (The units are not described in
detail; for that see the Runtime Library Reference Guide.) A large part of the file
explains how to use FreePascal’s text-mode IDE fp.exe, which I won’t be
discussing in detail in this book.

•	 The Runtime Library (RTL) Units Reference Manual (rtl.pdf) describes all of
FreePascal’s standard units in detail, procedure by procedure. If you want
to know how to call the GotoXY procedure, this is where to look, keeping
mind that the descriptions of individual procedures and functions are
necessarily brief and technical. Note: The file is 2,034 pages long.

•	 The Free Component Library Units Reference Manual (fcl.pdf) is a reference for
the FCL object-oriented library that is used for writing component-based
programs in Pascal. (Note that the FCL is not the same as the Lazarus
Component Library, or LCL.) The FCL is an advanced topic that I won’t be
covering in this book, so this file won’t be of much use to you in your first
steps as a Pascal programmer.

•	 The Compiler Switch Summary Chart (chart.pdf) is a two-page document with
a summary of global compiler switches on one page, and local compiler
switches on the other. Don’t worry if this isn’t meaningful right now;
most compiler switches aren’t used in tutorial examples.

There are HTML versions of all documentation volumes listed here except for the
compiler switch summary chart.

95Installing FreePascal and Lazarus

All of the manuals mentioned above may be downloaded in either HTML or PDF
format from the FreePascal Web site:

https://www.freepascal.org/docs.var

The documentation for the version current at this writing (June 2019; v3.0.4) may
also be downloaded from SourceForge. The URL below will probably change when
new releases happen and the version number changes. Searching for “freepascal
documentation” will find the current documentation without difficulty.

https://sourceforge.net/projects/freepascal/files/Documentation/3.0.4

Paper Documentation
You can view the documentation in a Web browser, or download the doc files from
the Web, but having a paper copy of the manuals can be useful. All the documentation
files are available in PDF format, and if you’ve got a printer capable of duplexing, it
can be useful to print the files and place them in 3-ring or duo-tang binders. The
page size is A4, widely used in Europe, but the pages will print well if scaled to fit
American letter-size sheets.

Not all of it needs to be printed. The Runtime Library Reference Guide is an immense
file, but a lot of the material in the libraries is relatively arcane and won’t be anything
you’ll need to understand as a beginner. For your initial learning exercises, make sure
you have a PDF reader with a search function—and learn how to use it! I had a local
print shop print print several documentation volumes for me with a spiral binding
that lies flat on the desktop or propped on a copy frame beside your monitor. Be
aware that some print shops may be hesitant to print copies of files that you obviously
didn’t create. In such cases it may help to point out that these are the manuals for free
software, and that there are no copyright notices in the files.

4.3 Installing FreePascal and Lazarus for Windows
How you install FreePascal depends heavily on what you intend to use for your
working IDE. FreePascal’s text-mode IDE fp.exe is installed by default when
you install FreePascal by itself. When you install Lazarus, FreePascal is installed
automatically, because Lazarus uses FreePascal to compile all of its code in the
background. However, when you install Lazarus, you will not get fp.exe as part
of the install.

FreePascal from Square One, Volume 196

Installing FreePascal by itself
If you’re not interested in using Lazarus as your IDE, you can install FreePascal by
itself. Select a version from the Downloads page for FreePascal:

https://www.freepascal.org/download.var

If you’re reading this book a long time after I posted the file (currently, June 2019)
the latest stable version of FreePascal may not be the one I call out here. The current
version number will be shown on the page. Links to all the available platforms will
be there.

Clicking on a version will take you to a brief page allowing you to select a
download mirror. (I always use SourceForge.) Once the FreePascal Web site hands
you off to SourceForge, look first for a big green button reading “Download Latest
Version!” Click the button, and the installer file will begin coming down. If for some
reason the download doesn’t begin immediately, click on the direct link just under
the title reading, “Your FreePascal Compiler download will start shortly...”

This book shows examples running in a console window under Windows.
The installer for Windows is an ordinary Windows executable file. Close all open
Windows applications and run it, either from the Run window or by navigating to
the installer file and double-clicking on it. The installer will open a conventional
Windows install wizard. All of the wizard’s fields provide useful default values, so
you can accept all the default values in each one of the wizard’s dialogs. When the
wizard has completed its series of dialogs and terminated, you’ll see a new icon on
your desktop, for the FreePascal IDE.

Watch out for spaces in pathnames!
By default, the FPC wizard installs FreePascal at C:\FPC. This may seem strange at first.
Most people are used to installing Windows apps in the Program Files directory tree,
but remember that even though FreePascal can be run from Windows, FreePascal
is not a Windows GUI app. It’s a console app. I’d recommend leaving FreePascal at
C:\FPC, or perhaps D:\FPC. The reason for this is a little odd: FreePascal may not
deal perfectly with spaces in pathnames. The safest way is to install FreePascal in the
root directory of one of your fixed (not removable) hard drives.

This caution against spaces in pathnames applies more generally, to any
circumstance where FreePascal has to deal with a directory path; say, when you save
projects to a directory. Use dashes or internal capitalization if you must, but don’t
create paths containing space characters if the path will have to be used by FreePascal. There
may be technical reasons why this is the case, but it’s something I consider a bug
and hope will be fixed someday.

97Installing FreePascal and Lazarus

Figure 4.1. The Lazarus downloads page.

FreePascal from Square One, Volume 198

Downloading Lazarus
If you install the Lazarus environment, FreePascal comes in right along with it. You
do not need to install FreePascal before you install Lazarus. As with FreePascal, there is a
Windows installer file for Lazarus. In short, you download the installer and run it,
accepting or tweaking the values presented by the install wizard as appropriate.
Note well that the Lazarus installer does not install FreePascal at C:\FPC, but instead
as a subdirectory beneath the Lazarus install directory.

The Lazarus Web site may be found here:

http://www.lazarus-ide.org/

This is the Lazarus “home page” and a good starting point when looking for the
latest on Lazarus. There’s a link to the Windows installer, and another link to the
Downloads section at the right margin, linked from the word “Other,” which will
take you to the Lazarus download page. (See Figure 4.1.) Click the link for the version
you want, which will take you to the file’s page on Sourceforge.

While you’re there, you might want to download the Lazarus documentation.
The Lazarus manuals do not exist as PDF files at this writing (June 2019) but rather
as .chm files. Given that .chm files are compiled HTML, you can open them with
(almost) any Web browser. The documentation folder may be found here:

https://sourceforge.net/projects/lazarus/files/Lazarus Documentation/

I generally read them online, starting at this link:

http://wiki.freepascal.org/Lazarus_Documentation

Installing Lazarus and (along with it) FreePascal
As I mentioned earlier, installing Lazarus under Windows is easy. You run the .exe
installer, and answer the wizard’s questions. You can specify the language used by
the product and where it is to be installed. The caution I mentioned earlier about
spaces in pathnames applies to Lazarus as well as Freepascal, so I recommend
letting it install at the default location, which is C:\lazarus. You’re allowed to specify
the file associations recorded by Windows for Lazarus, and unless you have another
compiler or IDE associated with the .pas extension, accept all the defaults.

When the wizard runs its course and exits, you’ll have a new directory, C:\lazarus
by default, and (if you checked the box specifying the creation of a desktop icon) the
blue Lazarus icon on your Windows desktop. FreePascal will be present in its own
directory under C:\lazarus, but it will not get a separate desktop icon, because it is
not a Windows GUI app.

99Installing FreePascal and Lazarus

To run Lazarus, just double-click the desktop icon, as with any Windows app.

Note that when you install FreePascal as part of the Lazarus installation, the text-
mode IDE fp.exe will not be installed. If you want to experiment with fp.exe after
installing Lazarus, I suggest installing FreePascal separately. There’s nothing wrong
or hazardous about having two copies of FreePascal installed on a single hard drive,
though the second copy will cost you about 150 MB in disk space.

Installing FreePascal separately under Windows will create a desktop icon for
the text-mode IDE, and you run the IDE by double-clicking on the icon. Keep in
mind that the operation of the text-mode IDE can be erratic under Windows, so if
it crashes or looks peculiar, there may not be much you can do about it. It’s much
better to install and use Lazarus, which has a far superior IDE for Pascal.

Again, there is much more to Lazarus than you need in order to learn the
fundamentals of the Pascal language, and much more than I’ll be covering in this first
book. I recommend configuring Lazarus to hide the IDE windows that you won’t
need, to keep the clutter down and make the product easier to grasp. I’ll explain how
to do this in Chapter 5.

4.4 Installing FreePascal and Lazarus Under Linux
I’ll have to be honest here: Installing Lazarus under some distributions of Linux
is not as easy as it is under Windows. FreePascal and Lazarus are available from
Open Source software repositories, and most Linux desktop distributions
have mechanisms built into their graphical user interfaces to download and
install all necessary files pretty much automatically. (For example, the Ubuntu
Software Store.)

This sounds great, but there can be problems. There are several different package
formats in common use for Linux, and the Lazarus package for each one is different,
with each maintained by a different team. So if you download and install Lazarus
and FreePascal through a distro package manager, you may not get the same versions
from all repositories in all formats.

At this writing, packages are available in the RPM and Debian formats. Linux
distributions that don’t support either of these formats (and I can’t think of any
off the top of my head) will need to build Lazarus and FreePascal from source.
Explaining that is beyond the scope of this book, and may change from version
to version as the software evolves. Long-time Linux programmers will probably
know how to do it, and Linux newcomers who want to learn should sniff around
the online forums, particularly the Lazarus forum on the FreePascal Website:

http://www.lazarus.freepascal.org/index.php?action=forum

FreePascal from Square One, Volume 1100

Installing under Fedora 13
Obtaining and installing Lazarus and FreePascal under Fedora 13 is about as easy
as it gets. Fedora uses the RPM package format, and the FreePascal/Lazarus RPM is
well maintained. Installing it is best done with the YUM package manager. If you’re
logged in as root, open a console window and enter this command:

yum install lazarus

If you don’t work as root (and that’s generally a wise policy) you’ll need to use su
to launch yum:

su -c ‘yum install lazarus’

You’ll be asked for your root password. After that, yum takes off and begins
downloading packages and checking dependencies. Once it determines what it
needs to download, it’ll check with you:

Total download size: 85 M

Is this ok [y/n]:

Type “y” to continue. The number of bytes to download will vary based on the
version and what you already have installed. 80-100 MB is typical. How long it takes
to come down will vary depending on the quality of your broadband connection.
On my cable modem system, the whole yum process took about 25 minutes.

Installing under OpenSuse
The OpenSuSE Web site has a marvelous technology called the OpenSuSE Build
Service (OBS), which makes installing Lazarus on OpenSuSE extremely easy. The
search/install page can be found at this URL:

http://software.opensuse.org/search

The OBS is a platform for distribution and installation of open source software.
It uses the YaST installation/configuration manager, and provides “1-click install”
buttons on the search page. Calling it “1-click” is a bit of an exaggeration, but the
big win is that you don’t have to type in the names of any packages or repositories,
enter any scripts, or do any manual unpacking or building. One click kicks off the
process, which launches an installation wizard. Run through the wizard, answer its
questions (which does require a few additional clicks) and YaST will begin installing
the selected package.

Here’s a step-by-step:

101Installing FreePascal and Lazarus

1. Go to the OBS search page. (See Figure 4.2.)

2. Type “lazarus” into the search field.

3. Select your distribution from the drop-down list box.

4. Click the Search button.

5. Several search hits will appear. Any of them should work (I haven’t
tried them all) but in my view the best is likely to come from the devel:
languages repository. The repository is shown in the upper right corner of
each search hit summary.

6. Find the one from devel:languages. Click on the “1-Click Install” button.

7. An installation wizard will appear. Run through the wizard, changing
anything that needs changing. I was able to keep all the default options.

8. When you’ve reached the last pane of the wizard, click Finish. YaST will
then begin downloading files, checking dependencies, and doing whatever
might be necessary to install Lazarus and FreePascal on your OpenSuSE
system. This will take a while (perhaps 20-25 minutes at most, assuming a
broadband Internet connection) but when it’s done, you’ve got it!

Installing under Ubuntu
As easy as it is to use, Ubuntu’s Software Store (in place since Karmic Koala 9.10) has
some issues with respect to Lazarus. Ubuntu and most other Debian-based distros
use the Debian Package Manager format for software installation. Debian Packages
for a given product install easily through the Store, but they have to be correctly
built and maintained as new releases of the product appear. The Debian package

Figure 4.2. The OpenSuSE Build Service search page.

FreePascal from Square One, Volume 1102

for Lazarus has not been well-maintained over the last several years. The version of
Lazarus and FPC installed are not the latest, and (peculiarly) the FreePascal source
is not included in the package, even though Lazarus requires it. So if you install
Lazarus from one of the Debian packages downloadable at this writing (late 2017),
Lazarus will complain when you launch it that the FreePascal source code is not
available, and that some of its features (not stated) will not work completely.

This is not the fault of the people who wrote and maintain FreePascal and Lazarus,
because they do not have complete control over how the Debian package for the
product is maintained, which is a separate issue from maintaining the product itself.

So even if you find FreePascal and Lazarus in the Store, don’t install from it.
Instead, follow the instructions on this page in the FreePascal wiki:

http://wiki.freepascal.org/Lazarus_release_version_for_Ubuntu

The wiki page will provide a “canned” script that you can save and run to execute all
the server commands that the install requires. It also provides instructions step by
step, and you should read those simply to understand what the script is about and
how it works.

There are some specific instructions to be followed if you intend to run Lazarus
under Canonical’s Unity interface. I don’t like Unity and have not tried this, but I’m
guessing that it works just fine.

Installing on the Raspberry Pi board
I was surprised but delighted to find that the low-cost Raspberry Pi computer board
can run Lazarus and FreePascal. The early boards were severely short of RAM, but
V3 has a full gigabyte, and the V4 board has versions with up to 4 GB. If you’re going
to program on the RPi, I’d powerfully suggest buying the V4 board with 4 GB.

Unfortunately, the installation methods you’ll find posted online—even on the
Lazarus Web site itself—sometimes don’t work, and sometimes install an older
version of the product. The best install instructions I’ve seen can be found at this
Web site:

https://www.getlazarus.org/setup/

As with a lot of software under active and rapid development, things can change,
and the installation script available at getlazarus.org may not work on future
versions of the Raspberry Pi board or of FreePascal and Lazarus. You may have to
dig a little deeper on Google or ask questions on the Lazarus forums, as I describe
on the next page.

103Installing FreePascal and Lazarus

4.5. Miscellaneous Install Notes
Software installation is an untidy business, because both software and the machinery
that installs it change over time. There was a time when we did not have either the
Ubuntu Software Store nor the OpenSuSE Build Service, and the descriptions in
this chapter would have been different had this book appeared in that era. So in
the last section of this chapter, I’ll include whatever odd notes I have on installing
Lazarus and Freepascal that didn’t fit any of the earlier sections.

Obtaining the text-mode IDE for Ubuntu with apt-get
As with Windows, when you install Lazarus for Linux, the FreePascal text mode
IDE is not installed with it . Nor does the IDE have a record in the Ubuntu Software
Store. To install the IDE, you have to open a terminal window and manually request
the IDE program through apt-get, using this command:

sudo apt-get fp-ide

After you enter your account admin password, the apt-get mechanism will
download, unpack, and install the IDE for you. Once installed, you run the IDE by
opening a terminal window and typing the command fp. The IDE that appears runs
in text mode, but it uses color.

Now, depending on what version of FreePascal and Linux you’re using (and
recognizing that bugs are fixed regularly in the Open Source world) you may see a
peculiar error message when you run FreePascal’s text-mode IDE, warning against
(possible) problems with Debian bug # 412927. This bug involves mouse and mouse-
wheel support under Debian-based distros, but in my own work in Ubuntu I have
had no trouble at all. By the time you read this, that bug may have been addressed
and you may not see the message, but if you do, there’s no reason to panic. Try the
text-mode IDE and see if mouse support works. If not, you also have the option of
creating FreePascal text-mode programs in the Lazarus IDE. That’s the approach I
will be assuming in this book.

Getting installation help on the Lazarus forums
Especially under Linux, installing Lazarus can be a complicated business. Although
debugging the process and seeing it through is good discipline and an excellent
learning experience, you may at some point get stuck. Don’t despair: Others have
been there before you, and there is a lot of good advice to be had on the Lazarus
Web forums:

http://www.lazarus.freepascal.org/index.php?action=forum

FreePascal from Square One, Volume 1104

You have to register to post questions. Don’t hesitate to join and register; it’s
worthwhile. You will not get emails from them trying to sell you things, as so many
modern online forums do.

Do remember that others may have solved the same problems you’re having, possibly
a long time ago. Read over any posts regarding installation before posting what may be a
redundant question. In fact, plan to spend a day scanning the many threads to see what’s
there. You will learn a great deal, especially as a newcomer.

105

Chapter 5.
Configuring and Using
the Lazarus Environment

“Give me a lever long enough, and a place to stand, and I will move the Earth.”
In perhaps his best-known statement, Archimedes was speaking literally

about the power of mechanical levers, but behind his words there is a larger truth
about work in general: To get something done, you need a place to work, with access
to tools. My radio bench down in my workshop is set up that way: A large, flat space
to lay ailing transmitters down, and a shelf above where my oscilloscope, VTVM,
frequency counter, signal generator, and dip meter are within easy reach.

Much of the initial success of Turbo Pascal thirty-odd years ago was grounded in
that simple but compelling truth. For the first time, a compiler vendor had assembled
the most important tools of software development and put them together in an
intuitive fashion so that the various tasks involved in creating software flowed
easily and quickly from one step to the next.

5.1. Meet Lazarus, FreePascal’s RAD Environment
Turbo Pascal versions 1 through 3 were pretty effective in this way. Later versions
were even moreso, reaching a sort of optimum for text-mode DOS programming
with Borland Pascal 7 in 1991. Back in early 1995, Borland shook the development
world with the first release of Delphi. Delphi was more than just an IDE for Pascal,
and certainly more than the Borland Pascal 7 IDE rewritten to run under Windows.
Three major things set Delphi apart from earlier versions of Turbo/Borland
Pascal:

•	Delphi contained a whole new mechanism for creating user interfaces
by dragging and dropping components like buttons and scroll bars from
a component pallette onto initially blank windows. We now call such
mechanisms “GUI builders” in the generic.

•	Delphi became object-oriented from top to bottom. Precisely what this
means is hard to explain before explaining the fundamentals of the Pascal

FreePascal from Square One, Volume 1106

language. For now, just take it on faith. Think of object-orientation as a
new, higher level of program structure that defines relationships between
code and data in a hierarchical way.

•	Delphi actually wrote parts of the code for new applications, especially
applications crafted with the help of the GUI builder. Delphi basically
generated a sort of generic program skeleton that programmers would
“flesh out” to make it perform specific tasks. Object-orientation was
essential to this code-generation mechanism.

Delphi was a roaring success for many reasons, primarily that it made the process
of writing programs to run using Windows GUI elements easier to understand and
hugely faster. The improvement in programmer productivity was such that Delphi
became known as a rapid application development (RAD) environment.

Delphi is still being actively developed and is widely used by corporate developers,
especially outside the US. It is, however, very expensive compared to the original
$50 Turbo Pascal. Even the entry-level version of Delphi costs over $1000. This
puts it beyond the means of newcomers and hobby programmers who don’t have a
corporation with an IT budget behind them.

Back when Delphi was released, a company called SpeedSoft offered a product
called SpeedPascal, written to run under IBM’s ill-fated OS/2 operating system.
Speedsoft created a RAD environment for OS/2, using SpeedPascal as the “back
end” compiler. The RAD environment was called Sibyl. Sibyl was very compatible
with Delphi, and allowed programmers to port Delphi apps to OS/2 without
rewriting all their code from scratch. OS/2’s success began to wane in the shadow of
Windows 95’s success, and Sibyl’s fate was tied to OS/2. In 1998, SpeedSoft released
the source code for Sibyl and made it an open-source product before the company
finally closed its doors.

With the Sibyl source code as a model, a group of Israeli programmers began a
project in 1998 that they called Megido. The idea behind Megido was to create an
open-source Windows-based RAD environment like Borland’s Delphi. The project
vanished after about a year for reasons that never became fully known. Later in
1999 several programmers resurrected the idea of Megido as the Lazarus Project.
(Lazarus, some of you may recall from Sunday School, was the man whom Jesus
brought back from the dead.)

The Sibyl source code was less useful than originally thought, largely because
so much of it was in 32-bit x86 assembly and thus not easily portable to platforms
based on other CPUs. So in recent years, Lazarus has been written entirely in
FreePascal, thus making it at least potentially portable to any platform where
FreePascal exists.

107Using the Lazarus Environment

At this writing (November 2019) Lazarus is still very actively in development.
Now that it has reached version 2.0.6, it is definitely mature enough to develop
commercial applications with.

Lazarus’ major elements
Lazarus consists of a number of interdependent subsystems. Most of these will not
come into play in this book, but you should be aware that they exist:

•	A Pascal syntax-aware windowed source code editor.

•	The FreePascal compiler.

•	An interface to the Gdb debugger.

•	The Lazarus Component Library, a code library roughly equivalent to the
Delphi VCL.

•	Interfaces to major GUI toolits and widget sets, including the Win32 and
Win64 GDI, Gtk+ 1.2 and 2.6, and Max OS X Carbon. (“Widgets” are GUI
controls like check boxes, pull-down menus, radio buttons, etc.) Others
are in development, including Qt4.2 and Cocoa.

•	The Code Explorer, which lets you quickly view the names of things in
your programs without having to look at all the code. It creates a sort of
“structure summary” of a program, allowing you to “take in” many details
at once.

•	The Object Inspector, which is a window providing a view of the
sometimes subtle relationships among properties and methods within
FreePascal objects.

•	The Restriction Browser, which provides quick access to the restrictions
implemented in the objects used in a program.

One thing to be aware of is that a lot of the way Lazarus is designed caters to
the needs of object-oriented programming (OOP) and you’ll need to learn the
fundamentals of Pascal before confronting OOP at all. The Object Inspector and
the Restriction Browser, in particular, make little sense until you “get” the object-
oriented idea. The Lazarus Component Library is completely object-oriented and is
not something that may be called from within very simple Pascal programs.

In fact, simple Pascal programs of the sort used in teaching can be created,
compiled, and debugged under Lazarus using just three windows: The main window
(which is a sort of expanded menu bar), the Source Editor window, and the Messages
window, where status reports and errors from the compiler are displayed.

FreePascal from Square One, Volume 1108

A project-oriented IDE
Through most of the history of Pascal programming, a “project” in Pascal was
simply a Pascal program, or perhaps a program and a number of Pascal library files
named within the program and linked with the program to create the executable
program file. As Pascal programming has gotten more complex, and especially
with the advent of object orientation and GUI apps for Windows and the Linux
graphical shells, Pascal projects include more than simple Pascal code. You need
icon files, form files, and many other things in the general category called resources.
For this reason, when you want to write a program in FreePascal using Lazarus, you
don’t simply create a new Pascal source code file. You create a project.

A Lazarus project includes the main program’s source code file, obviously. It also
includes code libraries and other resources. Giving a project a single name (which
does not have to be the name of any source code file) gives you a sort of umbrella
beneath which you can tinker the various elements of an ambitious Pascal project
without losing track of what parts belong to what project.

After creating a project, you can add new files to the project whenever you need
to, and being able to treat the collection of files as a single named entity helps a lot in
managing the complexity of a sophisticated project. I recommend that you give each
project its own directory on disk to keep its files separate from those of other projects’.

Software conversations “beneath the surface”
Beginners sometimes wonder, after installing and looking at Lazarus and its many
windows, where the window for the FreePascal compiler is. The truth is, the compiler
does not need a window, and does not have one.

The Lazarus graphical environment can be thought of as a sophisticated “remote
control” system for FreePascal. You type source code into the source code window,
and select options in several of the other windows. When you have your project set
up the way you want it (or at least the way you think you want it) you basically tell
Lazarus to turn the FreePascal compiler loose on the project.

Lazarus runs the FreePascal compiler invisibly, passing to the compiler the
necessary names and locations of pertinent files in your project, along with certain
terse instructions as to how the project should be compiled and linked. The compiler
does what it’s told, and it passes back to Lazarus various messages indicating success
or (failing complete success) error conditions. Lazarus digests these messages, and
relays some of them up to you through the Messages window.

This process happens down where you can’t watch it, and that’s OK. Whatever
messages coming back from FreePascal that you might find remotely useful will

109Using the Lazarus Environment

appear in the Messages window. Note that not all messages appearing in the Messages
window indicate that something is wrong. Many simply tell you what FreePascal is
doing at that moment, and by displaying indicate that it succeeded.

5.2. Configuring Lazarus for Pascal Programming
Lazarus was designed to help you write GUI apps for Windows and other
graphical user interface shells like GNOME and KDE under Linux. For learning
the fundamentals of Pascal when you’re first starting out, Lazarus may seem like
overkill. It’s possible to simplify Lazarus somewhat, to make it easier to grasp while
you’re learning it, and to keep unneeded portions of the system from distracting
you while you’re working.

Closing unneeded windows
Lazarus differs from most Windows and Linux GUI applications in that it
consists of a varying number of disconnected windows distributed across the
display. Some of its complexity lies in the sheer number of windows that open
up when the Lazarus environment is in full roar. The first step in simplifying
Lazarus is to close the windows that you won’t need. To open, compile, and
debug the example programs presented in this book, you need the following
windows to be open:

• The Main Window, which contains the main menu and the component
palette. It’s the wide but narrow window at the top of your screen. (This
cannot be closed without closing Lazarus as a whole.)

• The Source Editor window. This is where you enter and edit your Pascal
source code.

• The Messages window. This is where the FreePascal compiler will post
status and error messages you compile your programs.

Bringing one of Lazarus’ windows into visibility is done from the menu bar in
the main window. Pull down the View menu, and you’ll see a list of items. Each item
in the first group is a separate window. You make a window visible by selecting its
item in the View menu.

Items in the View menu are not toggles. That is, you don’t select an item once to
show and then select it a second time to hide. To “put a window away” so that it’s
no longer visible, you click on the small “x” in the upper right corner of the window.
Closing a window in that fashion changes nothing in the window itself; the window
can be made visible again simply be selecting it from the View menu.

FreePascal from Square One, Volume 1110

Configuring line numbering
By default, Lazarus does not display line numbers on every source window line.
It can be configured to display numbers every n lines, where n can be any number
from 1 to 100. When reading enormous source code files, having line numbers only
once in ten might be useful, but when you’re just learning, having a number on each
line is better, especially since I will be referring to individual listing lines by number
in this book.

Setting line numbering so that every line is numbered is easy. Do this:

1. From the Lazarus main menu, select Tools | Options... This brings up
the IDE Options dialog.

2. From the treeview on the left side of the dialog, find the Editor option, and
under Editor, select Display.

3. At the top of the pane labeled “Margin and Gutter” find the spinner
control labeled “Every n-th line number.”

4. Select the default value (which in Lazarus 1.2.0 is 5) and type 1. This
means that every “1th” line will be numbered, which of course means all
of them.

5. Click OK.

If you don’t see any line numbers at all when you have the Source Editor open,
make sure that the Show line numbers check box is checked. The check box is in the
same pane as the “Every n-th line number” spinner control.

Changing the IDE language
If your first language isn’t English, Lazarus will allow you to change the language in
which some of the text in the IDE and most error messages are displayed. Please note
that this feature is partial—and in my experience, a little buggy. The text in the main
menus remains in English. In my tests (using Dutch and Spanish, two languages
with which I’m a little familiar) the Spanish support was more complete. To change
the IDE language, select Tools | Options... and click on the General item under the
Environment header in the treeview. Under Language you’ll see a drop-down list
of all supported languages. Select the one you want and click OK.

I’ve had some trouble with language changes taking effect. The best way to make
sure is to change the IDE language, and then close and reopen Lazarus. This seems
to happen most often when you change a language away from the default (English)
and then attempt to change it back again.

111Using the Lazarus Environment

Setting up a project(s) directory
One thing I recommend before even starting Lazarus for the first time is to decide
where your Pascal projects are going to “live” on your hard drive. I suggest creating
a separate directory for them somewhere. To simplify backup, many people use the
Windows My Documents tree for things that change frequently and need regular
backup. The Linux Home directory serves the same purpose.

Here’s a system that should work, at least while you’re learning and your projects
are relatively simple: Create a folder under My Documents (or under Home if you
use Linux) called Lazarus Projects. Then, when you create a new Lazarus project,
create a subdirectory under Lazarus Projects to hold a specific project. This can be
done through the Create New Folder button on the Save As... dialog.

5.3. Creating a FreePascal Project in Lazarus
In this book I’ll be talking about simple Pascal projects only. As I said earlier, these will
be console applications, not Windows or Linux GUI apps. The FreePascal/Lazarus
partnership can create several different sorts of projects, all of which may be written
from within Lazarus and maintained by its project management machinery.

To create a new Pascal project in Lazarus, first close the default project that
appears when you launch Lazarus. Next, select Project | New Project... in the
main menu. The Create a new project dialog will appear. It displays the different
kinds of projects that may be created in the left pane of the dialog.

Highlight Simple Program and click Ok. You may notice that there’s another
option in the left pane called Console Application. Simple FreePascal programs
are also console applications. The Console Application option creates a more
complex kind of program that is intended to be run in a system console but is based
on an object-oriented framework. That’s a far more complex business, and I can’t
cover it in this book. (I’m planning other books that will cover objects in detail.)

After you click Ok, Lazarus will display the Source Editor window, and place a
“skeleton” program in it. For a brand-new project, it will look like Figure 5.1. Note
that if you already had a project open in Lazarus, it will ask you if you want to save
changes before displaying the new project. If you were just poking around Lazarus
and weren’t working on anything, you can discard changes.

Naming and saving your new project
Lazarus gives newly created projects a generic name: Project1, or Project2 (etc.) if a
Project1 already exists. Even before you add a single line to the skeleton program of
a new project, you should give it a “real” name and save it to disk.

FreePascal from Square One, Volume 1112

This is done with the Save As... item under the File menu. If you intend to create a
directory for the project at the same time that you save it to disk, it’s a 2-step process:

1. Navigate to the parent directory (something like Lazarus Projects) and
click the Create New Folder icon. Enter a descriptive name for the new
folder that appears in the treeview and then click Enter.

2. Make sure that the name of the new folder is highlighted, and click Open.
Lazarus will then “move” to the new folder.

3. Enter a name for your project and click Save. Done!

5.4. Using the Source Editor window
The main purpose of the Source Editor window is to allow you to enter and
change your Pascal source code. Think of it as a simple word processor with some
additional Pascal-specific machinery. It recognizes certain Pascal elements like
constants and compiler directives, and puts them in distinctive colors. It knows
(unless you confuse it!) which BEGIN reserved word goes with which END. It
recognizes predefined identifiers and displays them in bold. It tells you which line
of a file your cursor is on, and at which text column. It tells you whether it’s in
insert mode or overrwrite mode.

Figure 5.1. A simple Pascal program skeleton created by Lazarus.

113Using the Lazarus Environment

Source Editor syntax display
Figure 5.1 shows the Source Editor opened. Note that the reserved words program,
begin, and end are highlighted in boxes. This tells you the three reserved words
are related: The begin and end define the block for the program reserved word.
At any point in a program, you can click on any instance of BEGIN or END, and
Lazarus will highlight what it thinks is the matching reserved word, which define a
compound statement between them. (Remember that character case doesn’t matter
in Pascal, and that BEGIN and begin are the exact same thing!)

Note that this only works if your syntax is correct. It’s possible to have extraneous
or unmatched BEGINs or ENDs in a source code file, which will confuse Lazarus
and you as well. Compile the file to be sure there are no syntax errors before assuming
the highlighting is correct.

Source Editor shortcuts
Navigating within the Source Editor window is done the same way it’s done in
most editing windows. Below is a summary of the Source Editor key commands for
various tasks. Note that these are the shortcuts for Windows. Linux shortcuts will
be similar, but may depend on the shell that you’re using.

Arrow keys: Move one position for each keypress.

PgUp and PgDn: Move the cursor a number of lines that is roughly half the
number of lines currently visible. In other words, if you have the Source
Editor window open showing twenty lines, the PgUp and PgDn keys will
move nine or ten lines up or down with each keypress.

Home: Move to the beginning of the current line.

End: Move to the end of the current line.

Ctrl-Home: Move to the beginning of the displayed file.

Ctrl-End: Move to the end of the displayed file.

Ctrl-Right arrow: Move one word right.

Ctrl-Left arrow: Move one word left.

Ctrl-T: Delete from the cursor position to the end of the current line.

Ctrl-Y: Delete the current line entirely.

Ctrl-Z: Undo the last command.

Ctrl-Shift-Z: Redo the last command.

FreePascal from Square One, Volume 1114

If you have a mouse with a scroll wheel, the wheel will scroll the Source Editor
window up or down with one line per wheel click. The cursor does not follow the
scroll. This is useful to look up or down beyond the limits of the current screen
without moving your cursor away from the point in the source code where you’re
currently working.

5.5. FreePascal Modes
Once you’ve gotten your Pascal legs and go beyond simple programs, you may
discover that FreePascal doesn’t like something you’ve written. One thing to
investigate is whether you’re using a feature not covered by the mode in which
FreePascal is operating. FreePascal supports several different modes. All of them
are basically compatibility modes, and dictate compatibility with other, often older
versions of Pascal.

To use a specific mode, include the appropriate MODE compiler switch at the
beginning of a program. The full text of each compiler switch is given after the name
of the mode below:

FreePascal mode					 {MODE fpc}

This is the default. If you don’t tell FreePascal to operate in some other mode, this is
the mode that it will use. Because it’s the default mode, you don’t have to include the
MODE fpc directive to use FreePascal mode.

GNU Pascal mode				 {MODE gpc}

This mode duplicates the dialect of Pascal understood by GNU Pascal.

Macintosh Pascal mode				 {MODE macpas}

This mode provides compatibility with Macintosh Pascal dialects.

Turbo Pascal / Borland Pascal 7 mode	 {MODE tp}

This mode provides compatibility with pre-Delphi Pascal dialects from Borland,
especially Borland Pascal 7.

Lazarus mode					 {MODE objfpc}

This is the mode that Lazarus uses when it compiles a GUI app created within the
Lazarus environment. (I will not be covering GUI apps in this book.) It’s somewhere
between FreePascal mode and Delphi mode, and corrects some ambiguities in the
dialect of Pascal used by Delphi.

115Using the Lazarus Environment

Delphi mode					 {MODE delphi}

This mode tries to be as compatible as possible with the latest release of
Embarcadero’s Delphi dialect of Pascal. The details of this mode change as
Embarcadero evolves Delphi and the Delphi dialect changes. If you’re bringing
projects over from Delphi (something I won’t be covering at all in this book) this
is the mode you should use.

FreePascal from Square One, Volume 1116

117

Begin . . . End

If...Then...Else...

Part III:
The Core of the

Pascal Language

6. Pascal Atoms. . 119
7. Data and Data Types. 145
8. Derived Types and Data Structures. 175
9. Structuring Code. 215
10. Procedures and Functions. 245
11. Standard Functions . . 273
12. String Functions . . 291
13. Locality and Scope. 305
14. Units and Separate Compilation 315

FreePascal from Square One, Volume 1118

Having gotten a feeling for both programming and the “big picture” of Pascal
itself, it’s now time to after the details of both the Pascal language and the

programming process. And therein lies a snag for me.

I’d like to be able to say, “Read this book from cover to cover and you’ll learn
Pascal.” That’s how I think books of this kind work best. The problem with teaching
Pascal in a strictly linear fashion is that it’s a continuous, linear narrative that weaves
all of Pascal’s ideas together in a single stream. There would be no “chapter” on
simple data types, because you have to introduce simple data types right alongside
reserved words, identifiers, operators, and so on. This reads well in the fashion of
a novel, but it doesn’t re-read very well. By that I mean that once you’ve read it, you
may feel that your understanding of derived types is fuzzy, and you may want to go
back and reread a discussion of derived types. But in a strictly linear exposition of
Pascal, derived types are discussed in no one place, but here, there, and in several
other places. Like all the other topics, they weave in now and again in the one big
story.

Once I’ve laid the groundwork it’ll be a lot easier. But in laying the groundwork
I’ve had to make a number of seemingly arbitrary decisions: Do I explain first what
reserved words and identifiers are, and then explain what data is? Or do I explain
data types first, so that I can explain how reserved words and identifiers come
together to make statements? Maybe it’s a silly thing to worry about. But I’m trying
hard to make this book accessible to total newcomers to the idea of programming,
and putting across the foundations of any idea is absolutely critical.

So you’ll have to cut me a little slack here. I’ve chosen to begin with Pascal’s
fundamental atoms like letters and symbols. In keeping with Pascal’s idea of
structure, I’ll go from there to reserved words and identifiers, and from there to
data types. After data types I’ll cover operators, expressions, and statements. That’s
mostly a linear, bottom-up approach, and it will help things come back to mind
when you return to these early chapters for review. Some might prefer that I cover
operators before the apparently more complex topic of data types, but trust me:
Data types without operators make more sense than operators without data types.

It will help a great deal if you’ve already read Chapter 3, which presents an
overview of most of the fundamental ideas of Pascal. If you haven’t, you ought to go
back and read Chapter 3 now. The overview material will definitely help bridge the
occasional chicken-and-egg dependencies you’ll find in the next several chapters.
And once you’ve got the core of the language under your belt, the problem goes
away.

Really!

119

Chapter 6.
Pascal Atoms

Pascal, by design, is a structured language. Unlike certain “freeform” languages
like APL and Perl, as well as older versions of BASIC and FORTRAN, it imposes a

very clear structure on its programs. Pascal will not let you string statements together
haphazardly, even if every statement, taken alone, is syntactically correct. There is
a detailed master plan that every Pascal program must follow and the compiler is
pretty strict about enforcing the rules. A program must be coded in certain parts.
Some parts must go here, and others must go there. Everything must be in a certain
order. Some things cannot work together. Other things must work together.

Aside from some concessions to compiler designers (the Pascal language
specification makes their task easier in some respects) Pascal’s structure exists solely
to reinforce a certain way of thinking about programming. This way of thinking
represents language creator Niklaus Wirth’s emphasis on developing programs that
are comprehensible without scores of pages of flowcharts and thousands of lines of
explication. As I described in Part I, this way of thinking championed by Wirth and
others is called “structured programming.” Although structured programming can
be accomplished in any computer language (even BASIC, though I have my doubts
about APL) Pascal is one of a growing family of computer languages that absolutely
requires it.

A structure must be made of something. A crystal is a structure of atoms in a
particular orderly arrangement. A Pascal program is made of “atoms” that are formed
from the ASCII character set, and “molecules” formed from ASCII characters. These
program atoms and molecules fall into several categories. There are numbers and
symbols. There is a fairly small group of reserved words, an even smaller number of
modifiers, and then the unlimited multitude of ordinary identifiers created by you,
the programmer, as names for your data items, procedures, and functions. In this
chapter we’ll discuss the different kinds of Pascal atoms and how they’re used to
create structured programs.

FreePascal from Square One, Volume 1120

6.1. Symbols, Digits, and ASCII Characters
The most “atomic” of Pascal’s atoms (and perhaps “subatomic”) are the individual
members of the ASCII character set. The American Standard Code for Information
Interchange (ASCII) is a set of 128 values based on the English character set. Of the
128 ASCII characters, 94 are visible when displayed. 33 are not visible.

Of those 33 “invisible” characters, several are called whitespace characters, which
do not have associated glyphs (symbols) but which give structure to visible text on
the page or screen by dividing text into lines and aligning text within lines vertically
into structures. Whitespace characters include the space character, the tab character,
the carriage return character, and the line feed character. Whitespace characters do
divide your Pascal programs into words and lines, but they are mostly there for your
benefit: Without them, your programs would be one long line of symbols and words
spanning many pages, and would be virtually impossible to read. The FreePascal
compiler strips all whitespace out except for the space characters that separate the
visible elements of the program from one another.

When you write program code, it looks like this on your display and printouts:

FOR I := 1 TO 17 DO

 BEGIN

 Shr(J);

 Inc(J)

 END;

However, after it removes excess whitespace, the compiler “sees” a continuous and
unformattted stream like this:

FOR I := 1 TO 17 DO BEGIN Shr(J); Inc(J) END;

The point here is that how you arrange the lines of code in your program is not
important to the FreePascal compiler. You can indent lines by two spaces per level (as
is my custom) or six or eight spaces. You can place two lines in between procedures
and functions, or three, or whatever you prefer. You can, if you like, place short
compound statements (that is, code falling between BEGIN and END reserved
words) on a single line. Pascal reserved words and identifiers must be separated
from one another by spaces. Beyond that, well, it’s up to you.

Some of the invisible 33 ASCII characters are “control characters” that were originally
designed to control the operation of mechanical teletype printers and later on, CRT
terminals. These are almost all obsolete nowadays and rarely used. Interestingly, one
such control character, the BEL character, was originally used to ring a small mechanical
bell in teletype machines, and later on caused CRT terminals to beep.

121Pascal Atoms

Numeric Digits
Individually and together, the digits 0-9 are used by Pascal as you would expect: to
express literal numeric values:

8

71

29784

Pascal does not separate large values into groups of thousands with commas, as we
often do when writing ordinary text; for example, 29,784. Placing a comma within
a number will trigger a compiler error.

In addition to expressing literal numeric values, the digits 0-9 can also be part of
the identifiers you create as variable and procedure names; for example, Area51.
More on this a little later.

Alphabetic characters
The alphabetic characters A-Z and a-z are used individually and in combination
to create the names of compiler commands, reserved words, constants, variables,
procedures, and functions. Note well that unlike some other programming
languages (the C familiar, particularly) character case is not significant. For example,
the FreePascal compiler considers A and a to be the same character except when
present in quoted string literals. As I’ll explain later, within a string literal, case is
significant; ‘Jeff’ and ‘JEFF’ are considered different by the compiler.

Symbols
The ASCII character set includes a number of visible symbols that are neither
numeric digits nor letters of the English alphabet. These include punctuation marks
like ! and ?, arithmetic symbols like + and -, straight and curly brackets [] { }, slashes,
and a few others. Most such symbols have very specific meanings to the FreePascal
compiler. Some symbols can mean more than one thing; for example, the period
character, which expresses decimal parts of numeric literals, and also references to
fields within records. Sometimes two symbols are combined into a single symbol.
For example, the two symbols <> together mean “not equal to” and the symbols (*
begin a comment.

For the most part, symbols are not allowed within identifiers. That is, you cannot
create a variable named Ham&Cheese. The exception is the underscore character;
Ham_and_Cheese is perfectly legal. More on this later as well.

FreePascal from Square One, Volume 1122

6.2: Reserved Words: Pascal’s Framing Members
Reserved words are words that have special meanings within the Pascal language. They
cannot be used by the programmer except to stand for those particular meanings.
The compiler will immediately error-flag any use of a reserved word that is not
rigidly in line with that word’s meaning. Examples would include BEGIN, END,
PROCEDURE, FUNCTION, ARRAY, and that old devil GOTO.

Which words the FreePascal compiler considers reserved words depends on
what mode you have the compiler operating in. As I explained a little earlier in
Chapter 5, FreePascal can work in several modes. In each mode, FreePascal “works
like” a different Pascal compiler. Those modes are controlled by the $MODE
switch. The two modes you’re likely to use as a beginning programmer are Turbo
Pascal mode and FreePascal mode. If you begin using the Lazarus GUI Builder
to create graphical apps (which I will not be covering in this book) you will then
be operating in Delphi mode. FreePascal mode is the default. To work in Turbo
Pascal mode you must set the $MODE TP switch. Table 6.1 lists all the reserved
words defined in Turbo Pascal mode.

Table 6.1. Reserved Words enforced in Turbo Pascal 7.0 mode

ABSOLUTE ELSE NIL SET

AND END NOT SHL

ARRAY FILE OBJECT SHR

ASM FOR OF STRING

BEGIN FUNCTION ON THEN

BREAK GOTO OPERATOR TO

CASE IF OR TYPE

CONST IMPLEMENTATION PACKED UNIT

CONSTRUCTOR IN PROCEDURE UNTIL

CONTINUE INHERITED PROGRAM USES

DESTRUCTOR INLINE RECORD VAR

DIV INTERFACE REINTRODUCE WHILE

DO LABEL REPEAT WITH

DOWNTO MOD SELF XOR

	
Table 6.2 lists the additional reserved words recognized by FreePascal when

operating in Delphi mode, using the $MODE DELPHI switch. Note well that these
are in addition to the reserved words in Table 6.1. When operating in Delphi mode,
FreePascal recognizes all of the reserved words in Table 6.1 as well as all the reserved
words in Table 6.2.

123Pascal Atoms

Table 6.2. Additional reserved words enforced in Delphi mode.
AS FINALIZATION LIBRARY RAISE

CLASS FINALLY ON THREADVAR

EXCEPT INITIALIZATION OUT TRY

EXPORTS IS PROPERTY

When FreePascal is operating in its default FreePascal mode (or has been set to
FreePascal mode using the $MODE FPC switch) it enforces a few more reserved
words in addition to all of those enforced in Turbo Pascal 7 mode and Delphi mode.
These are listed in Table 6.3. Again, keep in mind that when operating in FreePascal
mode, the compiler enforces all reserved words listed in Tables 6.1 through 6.3.

Table 6.3. Additional reserved words enforced in FreePascal mode.
DISPOSE FALSE TRUE

EXIT NEW

In addition to the reserved words shown in Tables 6.1-6.3, there is another list of
predefined words that you should be aware of. These are called modifiers, and they
work in conjunction with certain reserved words to modify what those reserved
words mean to the compiler, hence their name. For the most part, you will have no
call to use them while you’re just learning FreePascal. However, it is important that
you not use them for anything else in your own programs.

Table 6.4. Modifiers understood by FreePascal
ABSOLUTE EXTERNAL NOSTACKFRAME READ

ABSTRACT FAR OLDFPCCALL REGISTER

ALIAS FAR16 OVERRIDE SAFECALL

ASSEMBLER FORWARD PASCAL SOFTFLOAT

CDECL INDEX PRIVATE STDCALL

CPPDECL LOCAL PROTECTED VIRTUAL

DEFAULT NAME PUBLIC WRITE

EXPORT NEAR PUBLISHED

The compiler has its own somewhat arcane uses for them, but it will also allow
you to use them if you choose to, as the names of variables, constants, procedures,
or functions. That, however, is a bad idea. I recommend treating the list of modifiers
in Table 6.4 as though they were additional reserved words, especially when you’re
just starting out. To avoid confusion, especially as you advance in your skills, use

FreePascal from Square One, Volume 1124

them only where and how they were designed to be used by FreePascal’s authors. All
of them are considered advanced to very advanced topics, and I will be discussing
few if any of them in this first book. For now, treat them as a list of words to be
avoided as you define named elements in your own programs.

Put your reserved words in uppercase!
In the Ancient Days of Pascal, standard practice was always to place reserved words
in upper case, and I’ll do so throughout this book. Pascal is not case-sensitive, so you
can place reserved words in lower or mixed case if you wish. BEGIN is treated the
same way by the compiler as begin or Begin or (for that matter) BeGIn. In recent
years, a strange aversion to upper case characters has appeared among programmers,
and in most other books about Pascal and Delphi you will see reserved words and
nearly everything else in lower case.

That’s a mistake. Uppercase helps reserved words stand out like beacons when
you read your own code listings or those of others. Because reserved words are the
framing members of your Pascal programs and govern the very shape that your
programs take, I think it pays to be able to see them clearly, at a glance. This is important,
and although I’m considered “old-school” (and a bit of a crank) for insisting on it, I
make no apologies and will no longer discuss the issue. Putting everything in your
program in lower case makes it hard to read, and from my perspective, readability is
the #1 feature of correct Pascal code. Basically, even if your Pascal code is bug-free,
if it’s hard to read, it’s worthless.

6.3. Identifiers
Your computer creates programs for your use. Programs are collections of things
(data) and steps to be taken in storing, changing, and displaying those things
(statements). The computer knows such things by their addresses in its memory.
The readable, English-language names of data, of programs, of functions and
procedures, are for your benefit. We call such names, taken as a group, identifiers.
They exist in the source code only. Identifiers do not exist in the final executable code file.

Any name that you invent and apply to an entity in a program is an identifier.
The names of variables, of data types, of named constants, of procedures and
functions, and of the program itself are identifiers. An identifier you create can
mean whatever you want it to mean (within Pascal’s own rules and limits) as
long as it is unique within its scope. There are also identifiers that the compiler
predefines, and there are identifiers defined in code libraries that FreePascal allows
you to use.

125Pascal Atoms

The notion of scope is a subtle and important concept that I will explain at length
later on, but broadly put, it indicates what portion of your program the compiler
can “see” at any given point in your code. The compiler will complain if it can “see”
more than one item with the same identifier. That is, if you have a variable named
Counter you cannot have a procedure named Counter within the same scope. Nor
can you have another variable (or anything else) named Counter within that scope.
Understanding scope requires that you understand more about program structure
than I’ve explained so far; hold on until we get there.

FreePascal identifiers are sequences of characters of any length up to 255
characters that obey these few rules:

• Legal characters include letters, digits, and underscores. Spaces and
symbols like &,!,*, or % (or any symbol not a letter or digit) are not
allowed.

• Digits (0-9) may not be used as the first character in an identifier. All
identifiers must begin with a letter from A-Z (or lowercase a-z) or an
underscore.

• Identifiers may not identical to any reserved word.

• Case differences are ignored. The letter A is the same as a to the compiler.

• Underscores are legal and significant. Note that this differs from
most older, non-Borland Pascal compilers, in which underscores are
legal but ignored. You may use underscores to “spread out” a long
identifier and make it more readable: Sort_On_ZIP_Code rather than
SORTONZIPCODE. (A better method that has become the custom is to
use “camel case” to accomplish the same thing: SortOnZIPCode.)

• All characters are significant in a FreePascal identifier, up to 255
characters. Some ancient Pascal compilers allowed identifiers of arbitrary
length but ignored any character after the eighth character.

The following are all invalid identifiers that will generate errors:

	 Fox&Hound Contains an invalid character, “&”, that may not be in an identifier
	 FOO BAR Contains a space
	 7Eleven Begins with a number
	 RECORD RECORD is a reserved word and can’t be used as an identifier

Here’s a point that Pascal beginners sometimes misunderstand: There is no
penalty at all for using a long identifier over a short identifier. In other words,
the identifier I and the identifier StatusOfPrimaryKeyUpdateOperation take
up precisely the same amount of space in the compiled program that FreePascal

FreePascal from Square One, Volume 1126

generates. And that amount of space is…none! Identifiers do not exist in your executable
binary program. They are used by FreePascal to build a “symbol table” of memory
addresses that allow it to generate the executable code file, but identifiers are left
behind when the work is done.

With that in mind, create identifiers that help you read your source code. That’s what
they’re for. An identifier can be too long, of course, but that’s rarely the problem.

A quick look ahead by looking back: Variable definition
I’m going to do something here that in programming is called a “forward reference”:
I’m going to briefly explain how identifiers become variables. There’s a chicken-
and-egg problem in describing Pascal fundamentals, in that you need variables to
demonstrate operators, and you need operators to define variables. I’ll explain in
a great more detail how data items are defined in the next chapter, but for now,
think back to what you learned in Section 3.3. In fact, re-reading that section now
wouldn’t be a bad idea.

To recap: In Pascal, variables must be defined before they’re used. Defining a variable in
Pascal is done using the VAR reserved word, up toward the top of your program.
The VAR reserved word associates an identifier with a data type. For example:

VAR

 I : Integer;

This is a complete Pascal statement. It creates a variable by associating a valid
identifier (here, the letter “I”) with a standard Pascal data type, Integer. Your program
will now treat variable I as an integer, and allow I to be used in certain kinds of
numeric operations expressed in Pascal statements. If you attempt to use I in ways
outside the powers of the Integer type, FreePascal will call foul, and you’ll get a
type conflict error at compile time. Variable definition in Pascal is an important and
subtle business, I’ll have much more to say on it in Chapter 7.

6.4. Operator Basics
In Pascal, an operator is a symbol or short group of symbols that specifies either a
relationship between two data items, or else some kind of operation to be done on
one or more values, hence the name. Some Pascal operators are single characters,
like “=”, but because there are only so many characters in the ASCII character set,
most operators are short groups of two or three characters, like “>=” and “NOT”.
An operator operates on one or more variables or constants. These variables and
constants are called the operator’s operands.

127Pascal Atoms

A good place to start is the with assignment operator. A variable is a container in
memory laid out by the compiler. It has a particular size and shape defined by its
type. You load an item of data into a variable, being certain that it conforms to the
size and shape of the variable. This data is the variable’s value.

You’re probably already familiar with the assignment operator, which is perhaps
the most fundamental operator in Pascal: “:=” The assignment operator is (usually)
how values are placed into variables. Consider this simple assignment statement:

I := 17;

A value on the right side of the assignment operator is assigned to the variable on
the left side of the assignment operator. In an assignment statement, there is always
a variable on the left side of the assignment operator. On the right side may be a
constant, a variable, or an expression.

Expressions
An expression in Pascal is a combination of data items and operators that eventually
“cook down” to a single value. Data items are constants and variables. The best way
to understand expressions is to think back to your grade-school arithmetic, and
how you used arithmetic operations to combine two or more values into a single
result. This is an expression, both in basic arithmetic and in Pascal:

17 + 3

The addition operator + performs an add operation on its two operands, 17 and 3.
The value of the expression is 20.

An expression like “17 + 3”, while valid in Pascal, would not be used in a real
program, where the literal value “20” would suffice. It’s a lot more useful to create
expressions that involve variables. For example:

Pi * Radius * Radius	 { Pi is a predefined constant in FreePascal }

This expression’s value is recognizable as the area of the circle defined by whatever
value is contained in the variable Radius. Note here that a Pascal expression is not
the same thing as a Pascal statement, and expressions do not stand alone. To pass
the compiler’s picky standards, an expression must always be part of a statement.

Standard Pascal includes a good many different operators for building expressions,
and FreePascal enhances Standard Pascal with a few additional operators. They
fall into a number of related groups depending on what sort of result they return:
Relational, arithmetic, set, string, and logical (also called “bitwise”) operators.

FreePascal from Square One, Volume 1128

6.5. Relational operators
The relational operators are used to build Boolean expressions, that is, expressions
that evaluate down to a Boolean value of True or False. Boolean expressions are
the most widely used of all expressions in Pascal. All of the looping and branching
statements in Pascal depend on Boolean expressions. More on this in Chapter 7.

A relational operator causes the compiler to compare its two operands for some
sort of relationship. The Boolean value that results is calculated according to a set of
well-defined rules as to how data items of various sorts relate to one another.

Table 6.5 summarizes the relational operators implemented in FreePascal. All
return Boolean results:

Table 6.5. Relational Operators

Operator Symbol Operand types Precedence

Equality = scalar, set, string, 5
pointer, record, object

Inequality <> scalar, set, string, 5
pointer, record, object

Less than < scalar, string 5
Greater than > scalar, string 5
Less than or equal <= scalar, string 5
Greater than or equal >= scalar, string 5
Set membership IN set, set members 5
Set inclusion, left in right <= set 5
Set inclusion, right in left >= set 5
Negation NOT Boolean 2
Conjunction AND Boolean 3
Disjunction OR Boolean 4
Exclusive OR XOR Boolean 4

The column labeled “Precedence” has to do with order of evaluation, which I’ll
return to later on in this book.

The set operators fall into two separate worlds; they’re set operators, obviously,
but they also express certain relationships between sets and set members that return
Boolean values. (I’ll come back to sets later on.) The convention is that any operator
that returns a Boolean value is relational, since Boolean values express the “truth or
falsehood” of some stated relation. The three relational operators that involve sets,
set membership and the two set inclusion operators, will be discussed along with the

129Pascal Atoms

operators that return set values, in Section 8.3. Note that the set inclusion operators
share symbols with the greater than or equal to/less than or equal to operators, but
the sense of these two types of operations is radically different.

Some of the types mentioned briefly in this section are types I haven’t yet
explained in detail. Most of these will be covered in the next chapter except for
pointers, which will have to wait until considerably later on. The mentions are here
not so much for you to read on your first linear pass through this book, but on those
occasions when you return to this section for a brushup.

Equality
If two values compared for equality are the same, the expression will evaluate as
True. In general, for two values to be considered equal by FreePascal’s runtime code,
they must be identical on a bit-by-bit basis. This is true for comparisons between like
types. Most comparisons must be done between values of the same type.

The exceptions are comparisons done between numeric values expressed as
different types. FreePascal allows comparisons rather freely among integer types
and real number types, but this sort of type-crossing must be done with great care.
In particular, do not compare calculated reals (real number results of a real number
arithmetic operation) for equality, either to other reals or to numeric values of other
types. Rounding effects may cause real numbers to appear unequal to compiled
code even though the mathematical sense of the calculation would seem to make
them equal.

Integer types Byte, ShortInt, Word, Integer, and LongInt may be freely
compared among themselves.

Two sets are considered equal if they both contain exactly the same members.
(The two sets must, of course, be of the same base type to be compared at all.) Two
pointers are considered equal if they both point to the same dynamic variable. Two
pointers are also considered equal if they both contain the predefined value NIL.

Two records are considered equal if they are of the same type (you cannot
compare records of different types) and each field in one record is bit-by-bit identical
to its corresponding field in the other record. Remember that you cannot compare
records, even of the same type, using the greater than/less than operators >, <, >=,
or <=.

Two strings are considered equal if they both have the same logical length (see
Section X.X) and contain the same characters. This makes them bit-by-bit identical
out as far as the logical length, which is the touchstone for all like-type equality
comparisons under Turbo Pascal. Remember that this makes leading and trailing
blanks significant:

FreePascal from Square One, Volume 1130

‘ Eriador’ <> ‘Eriador’ { True }

‘Eriador ‘ <> ‘Eriador’ { True }

Inequality
The rules for testing for inequality are exactly the same as the rules for equality. The
only difference is that the Boolean state of the result is reversed:

17 = 17 { True }

17 <> 17 { False }

42 = 17 { False }

42 <> 16 { True }

In general, you can use the inequality operator anywhere you can use the equality
operator.

Pointers are considered unequal when they point to different dynamic variables,
or when one contains the value NIL and the other does not. The bit-by-bit rule is
again applied: Even one bit’s difference found during a like-type comparison means
the two compared operands are unequal. The warning applied to rounding errors
produced in calculated reals applies to inequality comparisons as well.

Greater Than/Less Than
The four operators greater than, less than, greater than or equal to, and less than or equal
to, add a new dimension to the notion of comparison. They assume that their operands
always exist in some well-defined order by which the comparison can be made.

This immediately disqualifies pointers, sets, and records. Saying one pointer is
greater than another simply makes no sense, given the way pointers are defined.
You could argue that since pointers are physical addresses, one pointer will always
be greater or less than another non-equal pointer. This may be true, but in the spirit
of the Pascal language, details about how pointers are implemented are hidden from
the programmer at the purely Pascal level. Messing around with pointers beneath
the surface can get you into various kinds of trouble, and shouldn’t be attempted
until you’re aware of the issues—and even then, perhaps not at all.

The same applies to sets and records. Ordering them makes no logical sense, so
operators involving an implied order cannot be used with them.

With scalar types (see Section 7.X) a definite order is part of the type definition.
For integer and cardinal types (that is, types that express whole numbers) the order
is obvious from our experience with arithmetic; integers and cardinals model whole
numbers between specific bounds.

131Pascal Atoms

The Char and Byte types are both limited to 256 possible values, and both have
an order implied by the sequence of binary numbers from 0 to 255. The Char type is
ordered by the ASCII character set, which makes the following expressions evaluate
to True:

‘A’ < ‘B’

‘a’ > ‘A’

‘Z’ < ‘a’

‘@’ < ‘[‘

The higher 128 values assignable to Char variables have no truly standard character
glyphs outside of the PC world, but they still exist in fixed order and are numbered
from 128 to 255.

Enumerated types are limited to no more than 255 different values, and usually
have fewer than ten or twelve. Their fixed order is the order the values were given in
the definition of the enumerated type:

TYPE

 Colors = (Red,Orange,Yellow,Green,Blue,Indigo,Violet);

This order makes the following expressions evaluate to True:

Red < Green

Blue > Yellow

Orange > Red

Indigo < Violet

The ordering of string values involves two components: The length of the string
and the ASCII values of the characters present in the string. Essentially, FreePascal
begins by comparing the first characters in the two strings being compared. If those
two characters are different, the test stops there, and the ordering of the two strings
is based upon the relation of those two first characters. If the two characters are the
same, the second characters in each string are compared. If they turn out to be the
same, then the third characters in both strings are compared.

This process continues until the code finds two characters that differ, or until
one string runs out of characters. In that case, the longer of the two is considered to
be greater than the shorter. All of the following expressions evaluate to True:

‘AAAAA’ > ‘AAA’

‘B’ > ‘AAAAAAAAAAAAA’

‘AAAAB’ > ‘AAAAAAAAAA’

FreePascal from Square One, Volume 1132

NOT, AND, OR, and XOR
There are four operators that operate on Boolean operands: NOT, AND, OR and
XOR. These operators are sometimes set apart as a separate group called Boolean
operators. In some ways, they have more in common with the arithmetic operators
than with the relational operators. They do not test a relationship which already exists
between two operands. Rather, they combine their operands according to the rules of
Boolean algebra to produce a new value that becomes the value of the expression.

The simplest of the four is NOT, which takes only one Boolean operand. The
operand must be placed after the NOT reserved word. NOT negates the Boolean
value of its operand:

NOT False { Expression is True }

NOT True { Expression is False }

Some slightly less simplistic examples:

NOT (6 > I) { True for I < 6 }

NOT (J = K) { True for J <> K }

The parentheses indicate that the expression within the parentheses is evaluated
first, and only then is the resultant value acted upon by NOT. This expression is an
instance where “order of evaluation” becomes important. I’ll discuss this in detail in
Section 6.7.

AND (also known as “conjunction”) requires two operands, and follows this
rule: If both operands are True, the expression returns True; else the expression returns False.
If either operand or both operands have the value False, the value of the expression
as a whole will be False. Some examples:

True AND True { Expression is True }

True AND False { Expression is False }

False AND True { Expression is False }

False AND False { Expression is False }

(7 > 4) AND (5 <> 3) { Expression is True }

(16 = (4 * 4)) AND (2 <> 2) { Expression is False }

All of these example expressions use constants, and thus are not realistic uses of
AND within a program. We present them this way so the logic of the statement is
obvious without having to remember what value is currently in a variable present
in an expression. We’ll be presenting some real-life coding examples of the use of
NOT, AND, and OR in connection with the discussion of order of evaluation in
Section 6.7.

133Pascal Atoms

OR (also known as “disjunction”) requires two operands, and follows this rule:
If either (or both) operands is True, the expression returns True; only if both operands are False
will the expression return False.

Some examples, again using constants:

True OR True { Expression is True }

True OR False { Expression is True }

False OR True { Expression is True }

False OR False { Expression is False }

(7 > 4) OR (5 = 3) { Expression is True }

(2 < 1) OR (6 <> 6) { Expression is False }

Finally, there is XOR, which also requires two operands, and follows this rule: If
both operands are the same Boolean value, XOR returns False; only if the operands have unlike
Boolean values will XOR return True. Some examples:

True XOR True { Expression is False }

True XOR False { Expression is True }

False XOR True { Expression is True }

False XOR False { Expression is False }

Greater Than or Equal To/Less Than or Equal To
These two operators are each combinations of two operators. These combinations
are so convenient and so frequently used that they were welded together to form
two single operators with unique symbols: >= (read, “greater than or equal to”,) and
<= (read, “less than or equal to.”)

When you wish to say:

X >= Y

you are in fact saying

(X > Y) OR (X = Y)

and when you wish to say

X <= Y

you are in fact saying

(X < Y) OR (X = Y)

FreePascal from Square One, Volume 1134

The rules for applying >= and <= are exactly the same as those for < and >. They
may take only scalars or strings as operands.

6.6: Arithmetic operators
Manipulating numbers is done with arithmetic operators, which along with
numeric variables, form arithmetic expressions. About the only common arithmetic
operator not found in Standard Pascal is the exponentiation operator, that is, the
raising of one number to a given power. FreePascal has one, however, and we’ll build
a function that raises one number to the power of another in Section 11.4.) Table 6.6
summarizes the arithmetic operators implemented in FreePascal.

Table 6.6. Arithmetic Operators

Operator Symbol Operand Types Result Type Precedence

Addition + Integer, real, cardinal same 3
Sign Inversion - Integer, real same 1
Subtraction - Integer, real, cardinal same 3
Multiplication * Integer, real cardinal same 2
Integer Division DIV Integer, cardinal same 2
Real Division / Integer, real, cardinal real 2
Modulus MOD Integer, cardinal same 2
Exponentiation ** Integer, cardinal same 1

Note that for the purposes of the table, “Integer” types include Integer, LongInt,
ShortInt, and SmallInt. “Cardinal” types include Word, Byte, LongWord,
Cardinal. “Real” types include Real, Single, Double, Extended, and Currency.
The old Comp type inherited from Borland Pascal is also considered a real type, but
it is not implemented on all platforms and I recommend that you not use it. It was
necessary at the time (back in the 1980s!) but there are better and more standard
real number types to use today.

There are a lot of numeric types, and there are “gotchas” connected with some of
them. I’ll explain numeric types in a great deal more detail in the next chapter.

The Table 6.6 “operands” column lists those data types that a given operator may
take as operands. The compiler is fairly free about allowing you to mix types of
numeric variables within an expression. In other words, you may multiply bytes by
integers, add reals to bytes, multiply integers by bytes, and so on. For example, these
are all legal expressions in FreePascal:

135Pascal Atoms

VAR

 I,J,K : Integer;

 R,S,T : Real;

 A,B,C : Byte;

 U,V : Single;

 W,X : Double;

 Q	 : ShortInt;

 L : LongInt;

I * B { Integer multiplied by byte }

R + J { Integer added to real }

L * Q { LongInt multiplied by ShortInt }

C + (R * I) { Etc. }

J * (A / S)

The “result type” column in the table indicates the data type that the value of an
expression incorporating that operator may take on. Pascal is ordinarily very picky
about the assignment of different types to one another in assignment statements.
This “strict type checking” is relaxed to some extent in simple arithmetic expressions.
Numeric types may, in fact, be mixed fairly freely within expressions as long as a
few rules are obeyed:

	 1. Any expression including a floating point value may only be assigned
to a floating-point variable.

	 2. Expressions containing floating point division (/) may only be assigned
to a floating point variable even if the operands are integer types.

Failure to follow these rules will generate a type mismatch error. However, outside of the
two restrictions above, a numeric expression may be assigned to any numeric variable,
assuming the variable has sufficient range to contain the value of the expression. (More
on range in the next chapter.) For example, if an expression evaluates to 14,000, you
should not assign the expression to a variable of type Byte, which can only contain
values from 0 to 255. Program behavior in cases like that is unpredictable. If range
checking is on, such an assignment will generate a range error.

Addition, subtraction, and multiplication are handled the same way ordinary
arithmetic is handled with pencil or calculator. Division is a little trickier.

Division
There are three distinct division operators in Pascal. One supports floating point
division, and the other two support division for integer and cardinal types. Floating
point division (/) may take operands of any numeric type, but it always produces a

FreePascal from Square One, Volume 1136

floating point value, complete with decimal part. Attempting to assign a floating
point division expression to an integer type will generate error a type mismatch
error, even if all numeric variables involved are integers.

VAR

 I,J,K : Integer;

I := J / K; { Won’t compile!!! }

Why? Dividing two integers can generate a decimal part, and type Integer cannot
express a decimal part.

Division for numbers that cannot hold decimal parts is handled much the same
way division is first taught to grade schoolers: When one number is divided by
another, two numbers result. One is a whole number quotient; the other a whole
number remainder.

In Pascal, integer division is actually two separate operations that do not depend
upon one another. One operator, DIV, produces the quotient of its operands:

J := 17;

K := 3;

I := J DIV K; { I is assigned the value 5 }

No remainder is generated at all by DIV, and the operation should not be considered
incomplete. If you wish to compute the remainder, the modulus operator MOD is
used:

I := J MOD K; { I is assigned the value 2 }

Assuming the same values given above for J and K, the remainder of dividing J by K
is computed as 2. The quotient is not calculated at all (or calculated internally and
thrown away); only the remainder is returned.

Sign inversion
Sign inversion is a “unary” operator; that is, it takes a single operand. What it does is
reverse the sign of its operand. It will make a positive quantity negative, or a negative
quantity positive. It does not affect the absolute value (distance from zero) of the
operand. Sign inversion can only be used with signed numeric types, which include
the real number types plus ShortInt, SmallInt, Integer, LongInt, and Int64.

Note that sign inversion cannot be used with cardinal types like Cardinal,
Byte, Word, or LongWord. Cardinal types are “unsigned”; that is, they are never
considered negative, and so changing the sign of the value is impossible. I’ll have a

137Pascal Atoms

whole lot more to say about FreePascal’s numeric types in Chapter 7.

6.7. Bitwise Operators
There is a whole class of FreePascal operators that won’t be of much use to you as
a beginner, but for completeness’ sake they’re worth describing here. These are the
bitwise operators. The bitwise operators were not originally present in the Standard
Pascal language. Borland’s Turbo Pascal introduced them in the early 1980s.

In some uses data is “bit-mapped”; that is, certain bits have certain meanings
apart from all other bits and must be examined, set, and interpreted individually;
that is, one single bit at a time. The way to do this is is through the bitwise logical
operators. Associated with the bitwise logical operators are the shift operators,
SHL and SHR. We will speak of these shortly.

We have previously spoken of the AND, OR, XOR, and NOT operators, which
work on Boolean operands and return Boolean values. The bitwise logical operators
are another flavor of NOT, AND, OR, and XOR. They work with operands of
all integer types (Integer, Word, LongInt, ShortInt, and Byte) and they apply a
logical operation upon their operands, done one bit at a time. Table 6.7 summarizes
the bitwise logical operators and the shift operators:

Table 6.7. The bitwise logical and shift operators

Operator	 Symbol		 Operand Types Result Type Precedence

Bitwise NOT	 NOT		 All integer types	 same		 2
Bitwise AND		 AND		 All integer types	 same		 3
Bitwise OR			 OR		 All integer types	 same		 4
Bitwise XOR	 XOR		 All integer types	 same		 4
Shift Right			 SHR		 All integer types	 same		 3
Shift Left			 SHL		 All integer types	 same		 3

The best way to approach all bitwise operators is to work in true binary notation,
where all numbers are expressed in base two, and the only digits are 1 and 0. The
bitwise operators work on one binary digit at a time. The result of the various
operations on 0 and 1 values is best summarized by four “truth tables”:

 NOT AND OR XOR

 NOT 1 = 0 0 AND 0 = 0 0 OR 0 = 0 0 XOR 0 = 0

 NOT 0 = 1 0 AND 1 = 0 0 OR 1 = 1 0 XOR 1 = 1

FreePascal from Square One, Volume 1138

 1 AND 0 = 0 1 OR 0 = 1 1 XOR 0 = 1

 1 AND 1 = 1 1 OR 1 = 1 1 XOR 1 = 0

When you apply bitwise operators to two 8-bit or two 16-bit data items, it is the
same as applying the operator between each corresponding bit of the two items.
For example, the following expression evaluates to True:

$80 = ($83 AND $90) { All in hexadecimal }

Why? Think of the operation $83 & $90 this way:

Hex Binary

$83 = 1 0 0 0 0 0 1 1

 AND

$90 = 1 0 0 1 0 0 0 0

 =

$80 = 1 0 0 0 0 0 0 0

Read down from the top of each column in the binary number, and compare the
little equation to the truth table for bitwise AND. If you apply bitwise AND to each
column, you will find the bit pattern for the number $80 to be the total result.

Now, what good is this? Suppose you only wanted to examine four out of the
eight bits in a variable of type Byte. The bits are numbered 0-7 from the right. The
bits you need are bits 2 through 5. The way to do it is to use bitwise AND and what
we call a “mask:”

VAR

 GoodBits, AllBits : Byte;

GoodBits := AllBits AND $3C;

To see how this works, let’s again “spread it out” into a set of binary numbers:

AllBits = X X X X X X X X

 AND

$3E (mask) = 0 0 1 1 1 1 0 0

 =

GoodBits = 0 0 X X X X 0 0

Here, “X” means “either 1 or 0.” Again, follow the eight little operations down from
the top of each column to the bottom. The zero bits present in four of the eight
columns of the mask, $3C, force those columns to evaluate to zero in GoodBits,
regardless of the state of the corresponding bits in AllBits. Go back to the truth
table if this is not clear: If either of the two bits in a bitwise AND expression is zero, the result
will be zero.

139Pascal Atoms

This way, we can assume that bits 0,1,7 and 8 in GoodBits will always be zero
and we can ignore them while we test the others.

Shift operators
We’ve looked at bit patterns as stored in integer types, and how we can alter those
patterns by logically combining bit patterns with bitmasks. Another way to alter
bit patterns in integer types is with the shift operators, SHR and SHL. SHR stands
for SHift Right; SHL for SHift Left.

Both operators are best understood by looking at a bit pattern before and after
the operator acts upon it. Start with the value $CB (203 decimal) and shift it two
bits to the right as the SHR operator would do:

 1 1 0 0 1 0 1 1 -->

 \ \ \ \ \ \

 \ \ \ \ \ \

--> 0 0 1 1 0 0 1 0

The result byte is $32 (50 decimal). The two 1-bits on the right end of the original
$CB value are shifted off the end of the byte (into the “bit bucket,” some say) and are
lost. To take their place, two 0-bits are fed into the byte on the left end.

SHL works identically, but in the other direction. Let’s shift $CB to the left with
SHL and see what we get:

<-- 1 1 0 0 1 0 1 1

 / / / / / /

 / / / / / /

 0 0 1 0 1 1 0 0 <--

Again, we lose two bits off the end of the original value, but this time they drop off
the left end, and two 0-bits are added in on the right end. What was $CB is now $2C
(44 decimal.)

Syntactically, SHL and SHR are like the arithmetic operators. They act with the
number of bits to be shifted to form an expression, the resulting value of which you
assign to another variable:

Result := Operand <SHL/SHR> <number of bits to shift>;

Some examples:

VAR

 B,C : Byte;

 I,J : Integer;

FreePascal from Square One, Volume 1140

I := 17;

J := I SHL 3; { J now contains 136 } B := $FF;

C := B SHR 4; { C now contains $0F }

It would be a good exercise to work out these two examples shifts shown above on
paper, expressing each value as a binary pattern of bits and then shifting them.

An interesting note on the shift operators is that they are extremely fast ways to
multiply and divide a number by a power of two. Shifting a number one bit to the
left multiplies it by two. Shifting it two bits to the left multiplies it by four, and so
on. In the example above, we shifted 17 by three bits, which multiplies it by 8. Sure
enough, 17 X 8 = 136.

It works the other way as well. Shifting a number one bit to the right divides
it by two; shifting two bits to the right divides by four, and so on. The only thing
to watch is that there is no remainder on divide and nothing to notify you if you
overflow on a multiply. It is a somewhat limited form of arithmetic, but in time-
critical applications you’ll find it is much faster than the more generalized multiply
and divide operators.

6.7. Order of Evaluation
Mixing several operators within a single expression can lead to problems for the
compiler. Eventually the expression must be evaluated down to a single value, but in
what order are the various operators to be applied? Consider the ambiguity in this
expression:

7 + 6 * 9

How will the compiler interpret this? Which operator is applied first? As you
might expect, there are rules that dictate how expressions containing more than
one operator are to be evaluated. These rules define what we call order of evaluation.

To determine the order of evaluation of an expression, the compiler must consider
three factors: Precedence of operators, left to right evaluation, and parentheses.

Precedence
All operators in Pascal have a property called precedence. Precedence is a sort of
evaluation prioritizing system. If two operators have different precedences, the one
with higher precedence is evaluated first. There are five degrees of precedence: 1 is
the highest and 5 the lowest.

When we summarized the various operators in tables, the rightmost column contained
each operator’s precedence. The sign inversion operator has a precedence of one. No other

141Pascal Atoms

operator has a precedence of one. Sign inversion operations are always performed before
any other operations, assuming parentheses are not present. (We’ll get to that shortly.)
Logical and bitwise NOT operators have a precedence of two. For example:

VAR

 OK,FileOpen : Boolean;

IF NOT OK AND FileOpen THEN CloseFileWithError;

How is the expression, “NOT OK AND FileOpen” evaluated? NOT OK is evaluated
first, because NOT has a precedence of 2, whereas AND has a precedence of 3. (See
Table 6.1 for the precedence of these and other relational operators.) The Boolean
result is then ANDed with the Boolean value in FileOpen, to yield the final Boolean
result for the expression. If that value is True, the procedure CloseFileWithError
is executed.

Left to Right Evaluation
The previous example was clear-cut since NOT has a higher precedence than AND.
But as you can see from the tables, many operators have the same precedence value;
addition, subtraction, and set intersection are only a few of the operators with a
precedence of 4, and most relational operators have a precedence of 5.

When the compiler is evaluating an expression and it confronts a choice between
two operators of equal precedence, it evaluates them in order from left to right. For
example:

VAR

 I,J,K : Integer;

J := I * 17 DIV K;

The * and DIV operators both have a precedence of 3. To evaluate the expression
I * 17 DIV K, the compiler must first evaluate I * 17 to an integer value, and then
integer divide that value by K. The multiplication operator * is to the left of DIV,
and so it is evaluated before DIV.

Note that left to right evaluation happens only when it is not clear from precedence
(or parentheses, see below) which of two operators must be evaluated first.

Setting Order of Evaluation with Parentheses
There are situations in which the previous two rules break down. How would the
compiler establish order of evaluation for this expression:

FreePascal from Square One, Volume 1142

I > J AND K <= L

The idea here is to test the Boolean values of two relational expressions. The
precedence of AND is greater than the precedence of any relational operator like
> and <=. So the compiler would attempt to evaluate the subexpression J AND K
first.

Actually, this particular expression does not even compile; FreePascal will flag
an error as soon as it finishes compiling J AND K and sees another operator ahead
of it.

The only way out of this one is to use parentheses. Just as in the rules of algebra,
in the rules of Pascal, parentheses override all other order of evaluation rules. To
make the offending expression pass muster, you must rework it this way:

(I > J) AND (K <= L)

Now the compiler first evaluates (I > J) to a Boolean value, then (K <= L) to another
Boolean value, then submits those two Boolean values as operands to AND. AND
happily generates a final Boolean value for the entire expression.

This is one case (and a fairly common one) in which parentheses are required in
order to compile the expression without errors. However, there are many occasions
when parentheses will make an expression more readable, even though, strictly
speaking, the parentheses are not required:

(Pi * Radius) + 7

Here, not only does * have a higher precedence than +, * is to the left of + as well.
So in any case, the compiler would evaluate Pi * Radius before adding 7 to the
result. The parentheses make it immediately obvious what operation is to be done
first, without having to think back to precedence tables and consider left to right
evaluation.

I’m a bit of a fanatic about program readability. Which of these (identical)
expressions is easier to dope out:

R + 2 * Pi - 6

R + (2 * Pi) - 6

You have to think a little about the first. You don’t have to think about the second
at all. I powerfully recommend using parentheses in all but the most completely
simpleminded expressions to indicate to all persons (including those not especially
familiar with Pascal) the order of evaluation of the operations making up the
expression. Parentheses cost you nothing in code size or code speed. Nothing at all.

To add to your program readability, that’s dirt cheap.

143Pascal Atoms

6.8. Statements
Put as simply as possible, a Pascal program is a series of statements. Each statement
is an instruction to do something: to define data, to alter data, to execute a function
or procedure, to change the direction of the program’s flow of control.

Perhaps the simplest of all statements is an invocation of a procedure or function.
FreePascal includes a library containing several screen-control procedures for use
in text program in console windows. These procedures enable your programs to
move the text cursor around, clear the screen, and so on. Procedures in Pascal are
generally used by naming them, and naming one constitutes a statement:

ClrScr;

This statement tells the computer to do something; in this case, to clear the screen.
The computer executes the statement; the screen is cleared, and control passes to
the next statement, whatever that may be.

We have been using assignment statements, type definition statements, and variable
declaration statements all along. By now you should understand them reasonably well.
Type definition statements must exist in the type definition part of a program, procedure,
or function. They associate a type name with a description of a programmer-defined
type. Enumerated types (see Section 8.2) are an excellent example:

TYPE

 Spectrum = (Red,Orange,Yellow,Green,Blue,Indigo,Violet);

 LongColors = Red..Yellow;

 ColorSet = SET OF Spectrum;

Each of these three definitions is a statement. The semicolons separate the statements
rather than terminate them. This is a critical distinction that frequently escapes
beginning Pascal programmers. I’ll take the vexing matter of semicolons up again
in Section 9.8.

Variable declaration statements are found only in the variable declaration part
of a program, function, or procedure. They associate a variable name with the data
type the variable is to have. The colon symbol (:) is used rather than the equal sign:

VAR

 I,J,K : Integer;

 Ch : Char;

 R : Real;

Assignment statements are used in the body of the program, function, or
procedure. They copy data from the identifier on the right side of the assignment

FreePascal from Square One, Volume 1144

operator to the variable on the left. Only a variable can be to the left of the assignment
operator. Constants, literals, and expressions must be on the right side. Other
variables, of course, can also be to the right of the assignment operator:

I := 17; { ‘17’ is a numeric Literal }

R := Pi; { Pi was defined earlier as a constant }

J := (17*K) + Ord(Ch); { J is assigned from an expression }

K := J; { The value of one variable assigned to another }

This is only a quick description of the simplest statement types. We’ll return
in detail to the topic of statements in Chapter 9, when we confront Pascal’s “flow
control” machinery: Loops and conditional statements.

Recap: Pascal atoms, Pascal molecules, and Pascal organisms
As with everything in Pascal, there’s structure going on here: Digits, letters, and
symbols might be thought of as Pascal’s “subatomic particles.” Combined according
to Pascal’s rules, you get reserved words, modifiers, identifiers, and operators, which
might be considered Pascal’s atoms.

Combining reserved words, operators, and identifiers gives you statements.
If you like the metaphor, statements might be considered Pascal’s molecules. For
example, IF and THEN and are reserved words. The equal sign = is a symbol, and
in nearly all cases in Pascal also acts as an operator. GotoXY is the identifier of a
library function. Counter, Limit, and NextProg are programmer-defined (that is,
defined by you) identifiers.

This little snippet of Pascal code is a statement:

IF Counter = Limit THEN GotoXY(5,7);

Statements intuitively come across as “molecules of action,” much as English-
language sentences are. The statement above is almost sentence-like: “If Counter
equals Limit, then GotoXY to position 5,7.” Combining multiple statements in a
fashion that respects Pascal’s structure gives you programs, which can be thought
of (stretching the metaphor perhaps a little beyond usefulness) as Pascal “machines”
or even “organisms.” The idea you need to take away from the metaphor is that in
Pascal, big things are made from smaller things, which in turn may be made from
even smaller things, according to rules that the compiler enforces. The atoms, for
the most part, are givens, but you make up the molecules, and from the molecules
create even larger and more complex things. Obviously, we’ll be talking about this
in more detail throughout the book. But for our next step, we need to talk about
data, and how Pascal defines data and structures it into data types.

145

Chapter 7.
Data and Data Types

Data is the raw material of computing. We sometimes seem obsessed by the
coding details of the programs that manipulates our data, but the data itself

is what we buy or sell and ultimately live by. The machinery of programming lies
empty without it. Good programs coalesce around a solid, detailed vision of what
data should be, both coming into a process and leaving it. So let’s look at the idea of
data, and the way that the Pascal language defines and manipulates it.

7.1. The notion of types and type conflicts
Data are chunks of information that your program manipulates. There are different
types of data, depending on what the data is intended to represent. How your
program handles your variables depends completely on what type you decide they
are. Every variable used in a Pascal program must be declared to be of some type,
with a notation like this:

CreditHours : Integer;

The variable’s identifier comes first, followed by a colon and then the name of the
type that you choose to define that variable by. The definition shown above allows
you to manipulate integer values in a variable called CreditHours, subject to Pascal’s
explicit limitations on what can be done with Integer data types.

I didn’t show it explicitly in the above definition, but variable definitions must
reside in the variable definition section of a Pascal program. The reserved word VAR
begins the variable definition section, and it runs until another program section
(say, a procedure or a function, or the main program) begins. The variable definition
section of a program (and there may be more than one in FreePascal) is where you
give names to variables and assign them types. We’ll speak more of the several
sections of a Pascal program when we dig deep into program structure later on.
In the meantime, you can refer back to a complete Pascal program with a variable
definition section on Page 72.

FreePascal from Square One, Volume 1146

The nature of types
At the lowest level, all data of any type in a Pascal program (or in any program, really)
is stored as one or more binary numbers somewhere in your computer’s memory.
The data type of a data item to some extent dictates the way those binary numbers
are arranged in memory, and to a greater extent dictates how you as a human being
will use that data. In Pascal, the type of a data item is actually a set of rules governing
the storage and use of that data item. Data takes up space in memory. The type of
a data item dictates how much space is needed and how the data is represented in
that space. A signed integer, for example, occupies two bytes of memory. The most
significant bit of an integer carries the sign (that is, whether the value is positive or
negative) of the number that the integer represents.

The data type also governs how a data item may be used. The simplest example:
What is the letter “A” plus 17? That’s a meaningless question, since a letter is not
the same sort of a thing as a number. They’re used in different ways and “mean” in
different ways when we think about them. In Pascal, a letter is of type Char (short for
“character,” obviously) and 17 is type Integer, from the technical term for a number
(either positive or negative) with no decimal part. Pascal’s rules of typing prevent
you from adding two incompatible types like Char and Integer. The compiler will
not compile any such attempt, and will give you a type conflict error for trying.

Char and Integer are of different sizes in memory, so there is a sort of natural
incompatibility between them. However, the size of a type has very little to do with
the rules that govern it. Type Char and type Byte are both stored as single 8-bit bytes
in memory, but you can add or multiply two variables of type Byte. Attempting
to use variables of type Char in an arithmetic expression will generate an error at
compile time.

The Pascal language incorporates strong typing, which means that there are strict
limitations on how individual types may be used, and especially on how variables of
one type may be assigned to variables of another type. In most cases, a variable of
one type may not be assigned to a variable of a different type. (The major exception
is with numeric types, which have a broad compatibility with one another. We’ll
discuss that issue in more detail a little later.) Transferring information between
variables across type boundaries is usually done with “transfer functions” that
depend upon well-defined relationships between types. Transfer functions will be
described in Chapter 11.

Simple types (which include all the types described in this chapter) are
“unstructured;” that is, they are data atoms that cannot be broken down into simpler
data types.
	

147Data and Data Types

Pascal’s fundamental data types
All Pascal compilers implementing the standard Pascal language share certain
fundamental data types. These types express some of the most basic concepts of
computing: text, numbers, and logical truth and falsehood. From these fundamental
types you can build data structures to model practically any data “idea” you can think
of, as I’ll discuss in more detail in Chapter 8. Here are those fundamental types:

•	Integers are numbers (including negative numbers) that cannot have
decimal points, like 1, -17, and 4529. The category as I mean it here
includes types representing both signed and unsigned numbers.
FreePascal has a lot more numeric types than Standard Pascal. I’ll describe
them individually below.

•	Characters (indicated by predefined identifier Char) consist of the ASCII
character codes from 0 to 127. These include all the common letters,
numbers, and symbols used by all modern computers. FreePascal extends
the definition of type Char to include those first 128 ASCII characters plus
an additional 128 characters containing non-English language characters,
mathematical symbols, and the “line-draw” characters used to make text-
mode boxes on the screen back when text displays were all we had. Don’t
be confused by the fact that the ASCII character codes are numbered.
Char is not a numeric type; just because Box #3 has a number doesn’t
make it a number rather than a box!

• Boolean types have only two possible values, True and False. They
represent the notion of truth and falsehood in logic, and are sometimes
called “flags”. Pascal uses them in conditional statements like IF/THEN/
ELSE and REPEAT/UNTIL to determine whether to take some action or
not. Boolean types will become very important in Chapter X, where I’ll
explain how you can use Boolean values and Pascal’s control statements
to produce structured programs.

• Real type variables are used to express “real numbers”; that is, numbers
that may include a decimal part. 1.16, -3240, 6.338 and -74.0457 are all
real numbers.

FreePascal’s whole-number data types
In addition to these elementary data types understood by all Pascal compilers,
FreePascal adds several of its own. Most of these are numeric types. They’re
numerous enough (and similar enough) to require a little discussion:

• Byte is a numeric type that can contain values from 0 to 255. Byte is an
example of an unsigned or cardinal numeric type, meaning that it cannot

FreePascal from Square One, Volume 1148

take on a negative value. That is, it can have neither a positive nor a
negative sign in front of it, as can most of the standard numeric types.
Byte values are always assumed to be positive. Byte gets its name from
the fact that it occupies one single byte in memory. (The Word type
occupies two bytes, and some of FreePascal’s more esoteric numeric types
occupy as many as ten.)

•	ShortInt is a numeric type that resembles Byte in that it occupies one
byte of memory. Unlike Byte, it can represent signed values, in the range
-128..127. Type ShortInt is, in fact, a “signed byte.”

•	SmallInt is “small integer” and serves as a signed numeric type that can
represent values in the range -32768..32767. It occupies two bytes in
memory.

•	Word is like Byte in that it is unsigned and cannot hold negative values.
Like SmallInt it occupies two bytes of memory. Word may express values
in the range 0..65535.

•	LongInt is what its name implies: A “long integer.” It occupies four bytes
in memory rather than two, as the Word and SmallInt types do. Its range
is hugely greater, however, and can express values from -2147483648 to
2147483647. Sidenote: You cannot use commas to break up the expression
of large numbers in Pascal, as we often do in ordinary day-to-day
correspondence. So while spitting out a number like 2147483647 seems
awkward without the commas, do get used to it: it’s simply the way we do
things in programming.

•	LongWord is related to LongInt, in that it occupies four bytes in
memory. It is unsigned, and may express positive values in the range
0..4294967295.

•	Int64 is a signed type and can hold both negative and positive values. It
occupies eight bytes in memory, or 64 bits, hence its name. Take a deep
breath: Its range is -9223372036854775808 on the low side (negative nine
quintillion!) to 9223372036854775807 on the high side.

•	QWord is an unsigned type that occupies eight bytes in memory. It’s the
unsigned partner of Int64. Its range is 0..18446744073709551615. At
some point naming huge numbers becomes numbing and meaningless,
but just for fun, that’s zero to eighteen quintillion.

This list does not include the real number types in FreePascal. In programming,
real numbers are those containing a decimal part, like 3.14159. There are several real
number types in FreePascal , and I’ll address them in detail later, in Section 7.7.

149Data and Data Types

How big is a FreePascal integer?
People with some experience in Pascal may notice that the fundamental type
Integer is not given on the previous list of whole number types. Nor is the type
Cardinal, which Delphi programmers may recall from their work with Borland’s
environment. The reason is this: Depending on the underlying processor (and to
some extent, the operating system) the Pascal Integer type may be defined as either
SmallInt (16 bits) or LongInt (32 bits).

In other words, when you define a variable of type Integer in a program, the
range of the variable, and the number of bytes it occupies in memory, may not
always be the same. This sounds crazy, but it’s necessary. FreePascal was designed to
allow compilation of programs to run on all kinds of different CPUs, including those
designed for embedded systems work, which may not have the internal machinery
to process 32-bit integer values quickly.

This presumably includes Intel legacy processors like the 8086 and 8088, which
are 16-bits in size at the register level. I would test them except that I haven’t had a
machine that old around the house in many years!

All that said, at this writing (2014) FreePascal treats definitions of type Integer as
32-bit LongInt on both 32-bit and 64-bit Intel x86 CPUs. If you’re generating code
for a different CPU (perhaps for embedded systems work) you’ll probably be aware
of the CPU’s register width. If not, well, you’d better look it up.

The Cardinal type is included in FreePascal for compatibility with Delphi code,
and in FreePascal is always treated as type LongWord.

With great range come problems
As so often happens in technical work, there are gotchas. The two types Int64
and QWord are not ordinal types. They’re perfectly at home with bogglingly large
numeric values, but certain Pascal built-in functions will not work with them.
The two functions Pred and Succ are the ones you’re most likely to encounter
as a newcomer. (I discuss these in Section 11.6; look ahead if you’re interested.)
In short, whole number values have a successor value (i.e., the “next” value up) or
a predecessor value (the next value “down”) and these can be tested by the Pred
and Succ functions...unless the value was defined as Int64 or QWord. Then, the
compiler will hand you an error.

In 64-bit CPUs, memory pointers are 64 bits in size. In 32-bit CPUs, pointers are
32 bits in size. If you’re doing pointer math, your pointers and your integers must be
the same size. This is a perilous business but sometimes must be done. If so, use the
numeric types PtrInt (signed) and PtrUInt (unsigned) on the numeric side.

FreePascal from Square One, Volume 1150

7.2. Simple Constants
Constants are data values that are “baked into” your source code and do not change
during the execution of a program. There are two kinds of simple constants in
Standard Pascal: literal and named. FreePascal adds a third kind of constant that is
not really a constant: typed constants, that is, constants that have a specified type and
can be data structures like arrays and records. I’ll discuss typed constants in Section
8.7, after I’ve had a chance to explain data structures, .

Literal versus named constants
A literal constant is a value of some sort that is stated as a value where it is used in your
code. For example:

SphereVolume := (4/3)*Pi*(Radius*Radius*Radius);

In this line of code, “4” and “3” are literal constants, representing the numeric values
of 4 and 3.

There is another constant in that statement: The identifier Pi was previously
declared a constant in the constant declaration part of the program. The constant
declaration part begins with the reserved word CONST and runs until some other
part of the program begins. The constant declaration part is typically very early in a
program, and is often the very first part of a program after the program name:

PROGRAM AreaCalc;

CONST

 Pi = 3.14159;

Here, Pi denotes a named constant. We could as well have used the literal constant
3.14159 in the statement, but “Pi” is shorter and makes the expression less cluttered
and more readable. Especially where numbers are concerned, named constants
almost always make a program more readable.

Another use for constants is in the setting of program parameters that need
changing only very rarely. They still might be changed someday, and if you use a
named constant, changing the constant anywhere in the program is only a matter of
changing the constant’s declaration once in the constant declaration part of the
program and then recompiling.

The alternative is to hunt through hundreds or thousands of lines of source code
to find every instance of a literal constant to change it. You will almost certainly
miss at least one, and the resultant bug explosion may cost you dearly in time and
torn hair.

151Data and Data Types

In short, don’t use literal constants anywhere you will ever anticipate needing
changes. In mathematical formulae literal constants are usually OK; but keep in
mind that using a named constant in place of a literal constant allows you to control
the precision of the constant everywhere in the program, by the use of a single
constant definition. You may want to use pi to eight decimal places initially, but
later on, to improve program performance, you may decide that five decimal places
is plenty. If you define the mathematical constant pi in a named constant at the
front of your program, you can change the precision instantly just by changing the
definition—and not have to worry about forgetting one or two places where you
had hard-coded a specific value of pi into an expression.

Constants and their types
In Standard Pascal, constants may be simple types, strings, and sets only. (I’ll be
covering sets in detail in Section 8.3.) That group includes real numbers, integers,
characters, strings, sets, and Booleans. Individual enumerated types may also be
considered constants, although they are not declared the same way other constants
are. (Like sets, enumerated types are derived types that I’ll cover in Section 8.2.)
Structured types like records, pointers and arrays may not be constants in Standard
Pascal. FreePascal also supports data structure constants, (see Section 8.7) but I
must explain data structures first before going into those.

Here are some example named constants of various types:

CONST

 Pi = 3.14159; { Floating point real }

 Threshold = -71.47; { Negative FP real }

 PenIOAddress = $06; { Hexadecimal value }

 Using8087 = True; { Boolean }

 DriveUnit = ‘A’; { Character }

 Revision = ‘V2.61B’; { String }

 Answer = 42; { Integer }

 NotAnswer = -42; { Negative integer }

 YesSet = [‘Y’,’y’]; { Set; See Chapter 8 }

 NullString = ‘’; { Null (empty) string }

 BigNumber = 6117834	 { Long integer or real }

I haven’t said much about strings yet (and will cover them in detail in Chapter
8) but string literals are easy to understand: You enclose some sequence of ASCII
characters between single-quote marks:

‘Call me Ishmael. In fact, call me anything but late for dinner.’

Literal string constants like this may be assigned to string variables later on in
the program.

FreePascal from Square One, Volume 1152

Constants versus variables
How is a constant different from a variable? The obvious difference is that the value
of a constant is set at compile time. You cannot assign a value to a simple constant
in an assignment statement. Given the list of example constants shown above, you
could not legally code:

Answer := 47;

because Answer has been defined as a constant that already has a value of 42.

There is an important difference between constants and variables. In FreePascal,
simple constants are written into the code by the compiler as what we call immediate
data. This is difficult to explain if you don’t have some grasp of how computers work
down at the silicon level, but think of it this way: The value represented by a simple
constant is written into your program every place you use it. If you were to define the
Answer constant as shown above and reference it twelve times in your program,
the compiler would store Answer’s equivalent binary value (here, 42) twelve times
in your program code.

Variables, by contrast, are kept separate from the code portion of a program, and
each variable is stored in only one place. Your program has a data segment in memory
where it stores its variables, and a named variable is present in the data segment
only once. To access the value stored in a variable, your program must use a memory
reference into the data segment to the place where the variable’s value is stored.
This isn’t something you need to know a lot about, and (especially while you’re a
beginner) where a variable is stored in memory and how the variable is represented
in memory aren’t terribly important. The important thing to remember is this:

•	A constant is defined at compile time and cannot be changed while your
program is running.

•	A variable is not given a value until your program gives it one at runtime,
and that value may be changed by your program at any point while the
program runs.

The type of a constant depends, to some extent, on its context. Consider:

PROGRAM AllTheAnswers;

CONST

 Answer = 42;

VAR

 Tiny : Byte; { One byte }

 Little : ShortInt { A short integer (1 byte) }

 Small : Integer; { An integer (2 bytes) }

153Data and Data Types

 Big : LongInt { A long integer (4 bytes) }

 Huge : Real; { A real number (8 bytes) }

BEGIN

 Tiny := Answer;

 Little := Answer;

 Small := Answer;

 Big := Answer;

 Huge := Answer;

END.

In the code snippet given above, Answer’s value is defined as 42. But it is perfectly
legal to assign the value of Answer to type Byte, type Integer, type ShortInt, type
LongInt, or type Real. The code the compiler generates to do the assignment in each
case is a little different, and that code is smart enough to translate the numeric value
“42” into a binary number that will be properly expressed as type Byte, Integer,
ShortInt, LongInt, or Real, or any other numeric type supported by the compiler.
But the end result is that all five variables of five different types will each express a
numeric value of 42 in its own fashion.

Notes on literal constants
A dollar sign ($) in front of a numeric literal means that the compiler will interpret
the literal as a hexadecimal number—that is, a number written in base 16. The
numeric literal may not have a decimal point if it is to be considered hexadecimal.
Hexadecimal digits, in case you’re not familiar with the concept, run from 0
through 15, but the values 10 through 15 are expressed as the letters A (10) B (11)
C (12) D (13) E (14) and F (15.) So a hexadecimal number may include both letters
and digits:

$47

$5A

$B62F

$ECF6AA

I cover the hexadecimal system and hex numbers in great detail in my print book,
Assembly Language Step By Step, Third Edition (John Wiley & Sons, 2009).

Inside string literals, lower case and upper case characters are distinct. If you
wish to include a single quote mark as a character inside a string literal, you must
use two single quotes together:

Writeln(‘>>You haven’’t gotten it right yet...’);

This line of code will display the following line:

>>You haven’t gotten it right yet...

FreePascal from Square One, Volume 1154

7.3. Constant expressions
Turbo Pascal 5.0 introduced the concept of constant expressions to the Pascal language,
and FreePascal inherited that idea. Prior to Turbo Pascal 5, a named constant could
be defined in only one way: By stating its name and equating it to a single literal
value with the “=” symbol. For example:

FudgeFactor = 17;		 { Simple named constant definition}

A constant expression allows you to give a value to a named constant in terms
of an expression that is evaluated at compile time. Note that only simple constants
may be given values from constant expressions. Typed constants may not be assigned
values from constant expressions. Typed constants are a slightly odd concept, and I’ll
discuss them in Section 8.7.

An expression, briefly, is a combination of identifiers, values, and operators that
“cooks down” to a single value. Expressions resemble portions of equations from
physics, into which you plug necessary values and finally evaluate to a single value:

Kinetic energy = Mass * Velocity2

Here, “Mass * Velocity2” is an expression, albeit not one written in Pascal. Once you
know the mass and velocity in the current context, you can plug those values into
the equation and “do the math” to come up with a value for the kinetic energy.

It’s much the same way with constant expressions. In a constant expression,
a constant is given a value in terms of a combination of operators, values, and
constants that were defined earlier in the program:

DropletDiameterInMM = 3;

DropletRadiusInMM = DropletDiameterInMM / 2;

DropletAreaInSqMM = 4 * Pi * DropletRadiusInMM * DropletRadiusInMM;

Here, DropletDiameterInMM is a simple named constant. Both of the constants
that follow it are defined by constant expressions. When the compiler encounters
a constant expression during its compilation of the program, it “does the math”
and assigns the resulting value to the constant itself. A constant expression may
make use of constants defined by earlier constant expressions. In the example above,
DropletRadiusInMM is calculated from DropletDiameterInMM. On the next
line, DropletAreaInSqMM is calculated from DropletRadiusInMM. The identifier
Pi here is a named constant that is predefined by FreePascal and is always available to
your programs.

As with simple constants, a value is calculated for a constant expression at compile
time, and the constant may not be given a different value at runtime.

155Data and Data Types

Limitations of constant expressions
If you’re familiar with expressions as they occur in normal Pascal statements, you
may be wondering if any legal expression may be assigned to a constant. The answer
is emphatically no; the permissible expressions used in constant expressions are
much more limited. Legal elements of a constant expression are these:

•	Literal constants. These include numeric literals like 42 and 17.00576, the
Boolean literals True and False, and quoted string and character literals
like ‘Z’ and ‘Snark’.

•	Previously defined constants. In other words, a constant expression may
make use of named constants defined earlier in the program, like
DropletDiameterInMM in the example above.

•	Pascal operators. These are the basic arithmetic operators like addition
and subtraction, the logical operators like AND and OR, and the
bitwise operators like AND, OR, SHR, SHL, and so on. For a complete
discussion of FreePascal’s operators, see Chapter X.

•	Certain built-in functions. A very few of FreePascal’s built-in functions may
take part in constant expressions. These include Ord, Chr, Odd, Hi,
Lo, Length, Abs, Pred, Succ, and Swap. All other functions, including
those you write yourself and those built into the compiler (including Sqr
and Cos) are illegal. For those of you who can appreciate the differences
at this point in your understanding of Pascal, FreePascal generates code
for “functions” like Abs in-line (in the fashion of an assembly language
macro) while other functions like Sqrt and Cos are true Pascal functions
that must be called like any other functions from the FreePascal runtime
library. Abs and its kin are more properly macros than functions, and can
be evaluated in-line by the compiler during compilation.

Although it might be obvious to veteran Pascal programmers, it’s worth stating
clearly that variables cannot be part of constant expressions. FreePascal allows constants
to be defined after variables are declared (as Standard Pascal does not) but not
after variables are assigned values. This means that a variable would introduce an
undefined quantity into a constant expression, which can cause a lot of trouble at
runtime.

Some examples of constant expressions
The best way to show what’s possible with constant expressions is to put a few in
front of you. The following examples are all legal in Pascal, if not necessarily useful
in every case:

FreePascal from Square One, Volume 1156

CONST

 Platter = 1;

 FirstSide = Odd(Platter); { Boolean }

 FlipSide = NOT FirstSide; { Boolean}

 Yesses = [‘Y’,’y’]; { Character set; See Chapter 8 }

 Noes = [‘N’,’n’];	 { Character set; See Chapter 8 }

 Answers = Yesses + Noes; { Union of 2 sets }

 USHoller = ‘ATTENTION!! ‘; { String }

 USGasMsg = ‘Fuel level is low!’; { String }

 USGasWarn = USHoller + USGasMsg; { String concatenation }

 USWarnSiz = Length(USGasWarn); { String length }

 LongSide = 17;

 ShortSide = 6;

 TankDepth = 8;

 Volume = LongSide * ShortSide * TankDepth; { Constant expression }

Why use constant expressions?
There are two excellent reasons to use constant expressions: Reconfiguration and
documentation. Both relate to the use of what I call “magic numbers” in program
development.

Many programs use values that may be defined once in a program and are
never modified. These include mathematical constants, and I/O port numbers and
bit numbers for low-level control of embedded systems hardware. These “magic
numbers” aren’t expected to change, but to be safe, they should always be defined
as constants rather written out separately as dozens or hundreds of numeric literals
shotgunned throughout what may be a very large program.

An excellent example of reconfiguration through constant expressions involves
directly programming the communications port on the original PC. This used to
be fairly common in the DOS era, when direct control of PC hardware was easy
and virtually unrestricted. Windows and Linux now forbid such application-level
tinkering, but direct access to hardware like serial ports is still done in embedded
systems work. FreePascal is sometimes used to develop embedded systems code,
although I won’t be covering that use in this book.

Whether or not you ever get a chance to work on serial port driver code, as an
example it’s still instructive: Two serial ports, COM1: and COM2:, are supported
by the PC hardware. They are accessed through different sets of I/O ports, and the
differences in the port addresses follows an unchanging relationship. By defining a
single constant specifying either COM1: or COM2:, the control port addresses may
be recalculated in constant expressions based on that single port number definition.
This is what the following code does:

157Data and Data Types

CONST

 ComPort = 1; { 1 = COM1: 2 = COM2: }

 ComBase = $2F8; { Build on this “magic number” }

 { Base I/O port is $3F8 for COM1: and $2F8 for COM2: }

 PortBase = ComBase OR (ComPort SHL 8);

 { Transmit Holding Register is write-only at the base port: }

 THR = PortBase;

 { Receive Buffer Register is read-only at the base port: }

 RBR = PortBase;

 IER = PortBase + 1; { Interrupt Enable register }

 IIR = PortBase + 2; { Interrupt identification register }

 LCR = PortBase + 3; { Line control register }

 MCR = PortBase + 4; { Modem control register }

 LSR = PortBase + 5; { Line status register }

 Don’t panic if most of this doesn’t make immediate sense to you! What matters
here is knowing how each of the identifiers in the example above is given a value.

Every one of the constants defined in the example code fragment has a different
value depending on whether the COM1: or COM2: serial ports is to be used. By
changing the value of the constant ComPort from 1 to 2, all the other constants
change accordingly to the values that apply to serial port COM2:. The program does
not need to be peppered with magic numbers like $2FC and $3FA. Also, your program
does not need to spend time initializing all these port numbers as variables, because
the compiler does all the calculation at compile time, and the resulting values are
inserted as immediate data into the code generated from your source file.

The other use for constant expressions helps your programs document themselves.
You may need some sort of mathematical “fudge factor” in a complicated program.
You can define it as a simple named real-number constant:

FudgeFactor = 8.8059;

No one, looking at the literal numeric value, would have any idea of its derivation.
If the value is in fact the result of an established formula, it can help readability to
make the formula part of a constant expression:

ZincOxideDensity = 5.606;

FudgeFactor = ZincOxideDensity * (Pi / 2);

This will help others (or maybe even you) keep in mind that you had to fudge things
by multiplying the density of zinc oxide by pi over 2. (Note: I’ve deliberately made this
“fudge factor” ridiculous. Many are.) The idea should never be far from your mind that

FreePascal from Square One, Volume 1158

Pascal programs are meant to be read. If you can’t read them, you can’t change them
(or fix them) and then you might as well throw them away and start from scratch. Do
whatever you can to make your programs readable. You (or whoever will someday
inherit and have to work with your code) will be glad you did.

7.4. FreePascal’s Non-Numeric Ordinal Types
Many of Pascal’s most useful types fall into a category we call ordinal types. An ordinal
type has a limited number of discrete values that exist in one completely-defined and
ordered series. There is a “first” value and a “last” value, and there are Pascal functions
to allow you to move from one value in an ordinal type to the next value, or to the
previous value. Pascal’s ordinal types include Char and Boolean. The whole-number
numeric types like Integer, Byte, SmallInt, ShortInt, LongInt and LongWord are
ordinal types, but the 64-bit numeric types Int64 and QWord are not. Enumerated
types are also considered ordinal, but I’ll treat them separately in Section 8.2.

Characters
The best way to explain Pascal’s ordinal types is through a close look at the most
common such type: Char. Type Char (character) is a Standard Pascal type, present
in all implementations of Pascal. Type Char includes the familiar ASCII character set:
Letters, numbers, common symbols, and the control characters like carriage return,
backspace, tab, etc. There are 128 characters in the ASCII character set. But type Char
actually includes 256 different values, since a character is expressed as an eight-bit
byte. (Eight bits may encode 256 different values.) The “other” 128 characters have
no standard names or meanings in the ASCII character set. When displayed on a
device that supports their glyphs, the “high” 128 characters show up as non-English
characters, fractions, segments of boxes, or mathematical and other symbols.

How, then, to represent such characters in your program? The key lies in the
concept of ordinality. There are 256 different characters included in type Char. These
characters exist in a specific ordered sequence numbered 0,1,2,3 and onward up to
255. The 65th character (counting from 0, remember) is always capital A. The 32rd
character is always a space, and so on.

An ordinal number is a number indicating a position in an ordered series. A
character’s position in the sequence of type Char is its ordinality. The ordinality of
capital A is 65. The ordinality of capital B is 66, and so on. Any character in type
Char can be expressed by its ordinality, using the standard “transfer function”
Chr. A capital A may be expressed as the character literal ‘A’, or as Chr(65). The
expression Chr(65) may be used anywhere you would use the character literal ‘A’.

159Data and Data Types

Beyond the limits of the displayable ASCII character set, the Chr function is the
only reasonable way to express a character. The character expressed as Chr(234) will
display on the PC-compatible screen as the Greek capital letter omega (Ω) but may
be displayed as some other glyph on another computer that is not PC-compatible. It
is best to express such characters using the function Chr.

What will Pascal allow you to do with variables of type Char?

1. You can write them to the console display or printer using Write and
Writeln:

		 Writeln(‘A’);

		 Write(Chr(234));

		 Write(UnitChar); { UnitChar is a variable of type Char }

2. You can concatenate them with string variables using the string
concatenation operator (+) or the Concat built-in function. (See Section
12.2):

		 ErrorString := Concat(‘Disk error on drive ‘,UnitChar);

		 DriveSpec := UnitChar + ‘:’ + FileName;

3. You can derive the ordinality of characters with the Ord transfer function:

		 BounceValue := 31+Ord(UnitChar);

	 Ord returns a numeric value giving the ordinality of the character
parameter. Ord allows you to perform arithmetic operations on the
ordinality of a character. I’ll discuss Ord (and its opposite number, Chr)
in more detail in Section 11.5.

4. You can compare characters to one another with relational operators like
=, >, <, >=, <=, and <>. (See Chapter 6.) This is due to the way characters
are ordered in a series. What you are actually comparing is the ordinality
of the two characters in their series when you use relational operators.
For example, when you see this expression:

		 ‘a’ > ‘A’

	 (which evaluates to a boolean value of True) the computer is actually
performing a comparison of the ordinalities of ‘a’ and ‘A’:

		 97 > 65

	 Since lower-case ‘a’ is positioned after upper-case ‘A’ in the series of
characters, its ordinality is larger, and therefore ‘a’ is in fact “greater than”
‘A’, as peculiar as it may sound at first.

FreePascal from Square One, Volume 1160

7.5. Booleans
Type Boolean is part of ISO Standard Pascal. A Boolean variable has only two
possible values, True and False. Like type Char, type Boolean is an ordinal type,
which means it has a fixed number of possible values that exist in a definite order. In
this order, False comes before True. By using the transfer function Ord you would
find that:

Ord(False) returns the value 0.

Ord(True) returns the value 1.

The status of the words True and False is a little tricky. In older versions of Pascal,
including both the Borland Pascals and Delphi, True and False are predefined identifiers
with no special status beyond that. The compiler predefines them as constants of
type Boolean. This means that if you really want to, you can give True and False
some other definition in your programs, as constants or variables. (This is a very
bad idea and I don’t recommend it!) When FreePascal is operating in Turbo mode
($MODE TP) or Delphi mode ($MODE DELPHI) this remains the case. However, in
FreePascal’s native mode ($MODE FPC) True and False are reserved words and may
not be redefined. Unless you explicitly specify one of the other modes, FreePascal
operates in FreePascal mode, so by default True and False are reserved words.
(Because True and False have not always been reserved words in Pascal, I’m not
placing them in uppercase as I do with other reserved words in this book.)

A Boolean variable occupies only a single byte in memory. The actual words
True and False are not physically present in a Boolean variable. When a Boolean
variable contains the value True, it actually contains the binary number 01. When
a Boolean variable contains the value False, it actually contains the binary number
00. If you write a Boolean variable to a disk file, the binary values 00 or 01 will be
physically written to the disk. However, when you print or display a Boolean variable
using Write or Writeln, the binary values are recognized by program code and the
words “TRUE” or “FALSE” (in uppercase ASCII characters) will be substituted for
the binary values 00 and 01.

Boolean variables are used to store the results of expressions using the relational
operators =, >, <, <>, >=, and <=, and the set operators +, *, -. Operators and
expressions will be discussed more fully in Section X.) An expression such as “2 <
3” is easy enough to evaluate; logically you would say that the statement “two is less
than three” is “true.” If this were put as an expression in Pascal, the expression would
return a Boolean value of True, which could be assigned to a Boolean variable and
saved for later processing:

OK := 2 < 3;

161Data and Data Types

This assignment statement stores a Boolean value of True into the Boolean variable
OK. The value of OK can later be tested with an IF..THEN..ELSE statement, with
different actions taken by the code depending on the value assigned to Ok:

Ok := 2 < 3;

IF Ok THEN

 Writeln(‘>>Two comes before three, not after!’)

ELSE

 Writeln(‘>>We are all in very serious trouble...’);

Boolean variables are also used to alter the flow of program control in the
WHILE..DO statement and the REPEAT..UNTIL statement. (See Sections 9.5 and
9.6.)

7.6. Integer Types in Detail
FreePascal adds considerable richness to the Standard Pascal suite of numeric types.
Integer types Byte, ShortInt, SmallInt, Word, LongInt, LongWord, Int64, and
QWord, and real types Single, Double, Extended, Currency, and Comp have
come down to us via Turbo Pascal and Delphi, and did not exist in the original
Pascal definition. With all that power come a few problems, and certainly a lot more
details to remember as you design, write, and debug your FreePascal code.

Byte
Numeric type Byte is not present in Standard Pascal, although most microcomputer
implementations of Pascal now include it. Type Byte may be thought of as an
unsigned “half-precision” integer. It may express numeric values from 0 to 255.
Like Char, Byte is stored in memory as an eight-bit byte. On the lowest machine
level, therefore, Byte and Char are exactly the same. They only differ in what the
compiler will allow you to do with them.

Byte variables may not share an assignment statement with any type that is not
an integer type. Assigning a variable of type Byte with a variable or constant of
any of the real number types, or with Boolean, Char, or any other non-numeric
type will be flagged with a compile-time error. Type Byte may be freely included in
expressions with the other numeric types described in this section. Type Byte may
not, however, be assigned a numeric value of type Real, Single, Double, Extended,
Currency, or Comp.

FreePascal from Square One, Volume 1162

Range errors
There is machinery inside FreePascal’s runtime library code to check whether the value
assigned to a variable is suitable for that variable. With numeric values, this is known as
range checking. If you attempt to assign a value to a numeric value and the value is out of
range for that variable, FreePascal’s runtime code can pop up an error message.

Range checking is possible both at compile time and at runtime. While the
compiler is building your executable program, it can spot certain obvious range
errors. For example:

VAR

 ByteItem : Byte

ByteItem := -17

Variables of type Byte may not taken on negative values. If you try to assign a
negative constant to a variable of type Byte, you will get this message during the
compile process:

Warning: range check error while evaluating constants

This is not a runtime error, because FreePascal can tell during compilation that the
constant is negative, and it knows that type Byte cannot take a negative value. under
any circumstances. Now, assigning a “signed” variable (like Integer, ShortInt, or
LongInt) to Byte is perfectly safe unless (a) the signed variable contains a negative
value, or (b) the value in the signed variable is too large to fit in a value of type Byte.

The sorts of things that the compiler can spot at compile time tend to be few and
obvious. The truly gnarly problems will occur at runtime. Once your program hits
the silicon and begins to crunch, runtime range checking becomes important.

Note well: Runtime range checking is off by default. You have to explicitly turn it on to use
it. This is done by placing a compiler directive at the beginning of your program. The
compiler directive looks like a comment, and actually is a comment of a special sort:

{$ RANGECHECKS ON}

The dollar symbol tells the compiler that this particular comment is intended
for the compiler and not human programmers. Compiler directives are not actual
Pascal code and do not need to be followed by a semicolon. They’re instructions to the
compiler telling it how to generate the code for your program. There are a fair number
of them, though only a few will be useful to you while you’re learning Pascal.

Below is a short program that commits a runtime range error. The
$RANGECHECKS compiler directive is on. Read the program and see if you can
tell what’s wrong before continuing with the text:

163Data and Data Types

 1 PROGRAM runtimetest1;

 2

 3 {$RANGECHECKS ON}

 4

 5 VAR

 6 I : Integer;

 7 ByteItem : Byte;

 8

 9 BEGIN

 10 I := -17;

 11 ByteItem := I;

 12 Writeln(ByteItem);

 13 Readln;

 14 END.

This time the FreePascal compiler will not detect the problem when you compile
your program. Difficulties will appear at runtime; that is, when you actually run the
program. Two things may happen, depending on whether you have enabled range
checking during the compilation of the program. If you ran the program from
within the Lazarus environment and range checking was on, a message box will
pop up that looks something like Figure 7.1.

If range checking was not on when you compiled the program, the program, in
essence, will punt. It will do its best to pour a signed value into an unsigned variable,
and what ends up in the variable depends on the physical bit-pattern of the negative
value. To put it mildly, such errors are unpredictable, and because they happen in
statements that work perfectly well most of the time, they can take a great deal of
time and head scratching to locate and fix.

In general, each numeric type has a defined range, and if you enable range
checking by using the {$RANGECHECKSON} compiler directive, assigning a
value outside that range to a variable will generate a runtime error. This applies to
the other numeric types discussed below as well as for type Byte.

Figure 7.1. A runtime range error message box

FreePascal from Square One, Volume 1164

Figure 7.2. Memory Representation of Integer Types

165Data and Data Types

Short integers
First cousin to type Byte is type ShortInt, a signed version of Byte. It may express
values between -128 and 127. The problems of range errors exist for ShortInt just
as they do for type Byte. ShortInt exists to provide a little bit of storage efficiency to
programs that use a lot of small, signed values. If you use a lot of numeric variables,
or (especially) large arrays of numeric variables, and can be sure the values will never
wander out of the range ‑128..127, you can save a lot of space by using ShortInt
variables instead of type Integer.

Bit 7 of a ShortInt is the sign bit. (See Figure 7.2.) If this bit is set to 1, the value is
considered to be negative.

There is no significant speed improvement to be had by using ShortInt over
larger numeric types, however. You might intuitively think physically small variables
would be operated on more quickly than larger ones, but this is not necessarily
the case. In fact, it takes post-8088 x86 CPU chips longer to process single-byte
quantities in Byte and ShortInt variables than it does to process 16-bit or even 32-
bit quantities. This is because Intel CPUs from the 286 back fetch and process data
in 16-bit chunks, while chips from the 386 on fetch and process data in 32-bit and
even (on 64-bit CPUs) 64-bit chunks. The newer CPUs must “stoop and grab” much
more often when data exists in 8-bit chunks, and hence take longer to do repetitive
operations. Use Byte and ShortInt to save space, not time!

Integer, LongInt, and SmallInt
Type Integer is a part of Standard Pascal. As a general rule, Pascal compilers make
type Integer the size of the CPU accumulator register, since that is where whole-
number math is done. In 8- and 16-bit CPUs, the accumulator register is 16 bits in
size. In the 8-bit and 16-bit CPU era, type Integer was therefore two bytes in size
and expressed a range of values from -32768..32767. With the advent of the 386,
CPU register size jumped to 32 bits. Type Integer grew along with the accumulator
register, and may now express values in the range -2147483648..2147483647.

Alas, even with 64-bit CPUs, type Integer remains 32 bits in size. This may
change in the future. It’s still true at this writing, in 2014.

Turbo Pascal 4.0 introduced the LongInt type to the Pascal language. LongInt
was 32 bits in size, and allowed work on much larger whole-number values back
when Integer was only 16 bits in size. Today, 16-bit CPUs are all but extinct in
mainstream personal computing. Except for compiler versions targeting some
very old or odd CPUs, types Integer and LongInt are now precisely the same
thing. I recommend using Integer instead of LongInt whenever you can. If
there’s a reason for explicitly using LongInt, I suspect you’ll know it.

FreePascal from Square One, Volume 1166

Now, there are times when a 16-bit integer type is useful, especially when dealing
with legacy code that makes assumptions about the underlying sizes of numeric
types. This is a bad idea, but it was done a great deal in the past. (I wince a little when
I remember doing it myself.) To serve this need, FreePascal offers the SmallInt type,
which is a signed, 16-bit integer that can express values in the range -32768..32767.
Be careful not to confuse the ShortInt and SmallInt types, which is easy enough
to do when you’re just starting out.

Sign bits and representation of integer types in memory
All Pascal data types are basically mapped to regions of machine memory. What
parts of a data type correspond to what bits in memory is interesting to know, if
not essential when you’re a beginner. Later on it can be important, especially when
you’re writing programs that import and process data from some outside source,
especially older data files.

The highest-order bit of the byte highest in memory is the sign bit. which indicates
whether the value expressed by the integer is positive or negative. If this high bit
is a binary 1, then the integer has a negative sign. If the high bit is a binary 0, the
integer is positive. This is shown in Figure 7.2, where the dark bars represent sign
bits. Where you don’t see a dark bar, it means that the type shown is unsigned and
does not have a sign bit.

Let me reiterate: I drew this figure for reference. You do not need to know which
bit in a signed value is the sign bit except in very uncommon (and pretty advanced)
coding circumstances.

Unsigned integer types
As you can see in Figure 7.2, half of FreePascal’s integer types have no sign bit at
all. Types Byte, Word, LongWord, and QWord are unsigned, and cannot express
negative numbers. I’ll give you a broad rule-of-thumb that reflects my 35+ years as
a programmer: You will need signed integer values perhaps 20% of the time. Much
depends on the sorts of programming you do. Scientific programming abounds
in negative values. System programming and database programming generally do
not. If you know your application will never encounter a negative value in certain
parts of your code, you can buy additional positive range by using an unsigned
integer type.

Of course, if you’re wrong and your program attempts to assign a negative value
to a variable of an unsigned integer type, your code will throw a runtime error.

167Data and Data Types

Hi and Lo
There are circumstances where you may need to “pull apart” an integer type
and inspect portions of it individually. This is done using a pair of built-in
functions: Hi and Lo. The two functions essentially cut the memory space
of a numeric value in half, and return either the high or the low half. “High”
and “low” here refer to memory addresses, not values. As you might expect,
Hi returns the higher half of a value’s bytes as they reside in memory, and Lo
returns the lower.

Don’t confuse this with “cutting a value in half” in the sense of dividing it by
two. Look back to Figure 7.2. If you call the Hi function on a variable of type
Word, the function will return the higher of the value’s two bytes in memory.
If you call Hi on a variable of type LongWord, the function will return the
variable’s two bytes that are highest in memory. If you call Hi on a variable of
type QWord, the function will return the value’s four bytes that lie the highest
in memory. The Lo function does the same thing, only returning the half of a
value that lies lowest in memory.

A quick example: Given the 16-bit integer value 17,353 (hexadecimal equivalent
$43C9), Hi(17353) will return 67 (hex $43) and Lo(17353) will return 201 (hex
$C9). I include the hexadecimal equivalents because Hi and Lo are most typically
used in system programming, much of which is documented and discussed using
hexadecimal values.

Note that in using Hi and Lo on signed values, the sign bit is treated as just
another bit in the high byte returned by Hi, and will not cause the value returned by
either Hi or Lo to be returned as a negative quantity. For example, given the negative
integer constant -21,244 (hex $AD04), Hi(-21244) will return 173 (hex $AD), and
Lo(-21244) will return 4 (hex $04). Hi and Lo never return negative values.

If you’re a newcomer and still a little fuzzy on the notion of Pascal functions, I’ll
be covering them in detail in Section 10.1.

7.7. Real Number Values and Types
All the data types described up to this point have been ordinal types. Ordinal types
are types with a limited number of possible values, existing in a definite order. Type
Char is an ordinal type, as is Boolean, and all enumerated types. (See Section 8.2
for more on enumerated types.)

If an ordinal type directly expresses a numeric value, it is called a scalar type.
Here’s an example: Type SmallInt is an ordinal type, since it can express exactly
65,536 integer values. They are ordered and sharply defined: After 6 comes 7, after

FreePascal from Square One, Volume 1168

7 comes 8, and so on, with no possible values in between. SmallInt is also a scalar
type, since its values are numeric values, and not some other symbolic constants
encoded internally as numeric values, as are Boolean’s True and False. All scalars
are ordinals, but only ordinal types expressing numeric values are scalars.

Scalar types have absolute precision; that is, the value of the integer 6 is exactly
six. (I have a marvelously ironic button reading, “2+2 = 5...for large values of 2.”)

Computing with values obtained from the real world demands a way to
deal with fractions. So Standard Pascal supports type Real, which can express
numbers with fractions and exponents. Numbers like this are known as rational
numbers in mathematics. In computing they are more often called real numbers,
and are directly expressed in type Real. Real numbers, especially very large ones
or very small ones, do not have absolute precision. For example, the scientific
notation value 1.625 X 1010 is expressed in Pascal as 1.6125E10. The value is
a real number having an exponent. You might expand the exponent and write
it as 16,125,000,000. This notation implies that we know the value precisely.
However, we do not. A real number offers a fixed number of significant figures
and an exponent giving us an order of magnitude, but there is a certain amount
of “fuzz” in the actual value. The digits after the 5 in 16,125,000,000 are zeroes
because we don’t know what they really are. The measurements that produced the
number were not precise enough to pin down the last six digits—so they are left
as zeroes to express the order of magnitude that is expressed by the exponential
in the form 1.6125E10.

Real number types cannot be scalar types due to this lack of absolute precision.
They are “real” in that they are usually used in the scientific and engineering
community to represent physical measurements made of things in the real world.
Integer types, by contrast, are largely mathematical in nature, and express abstract
values usually generated by logic or calculation and not by physical measurement
out here in the real world.

Real numbers may be expressed two ways in FreePascal. One way, as we’ve seen,
is with an adaptation of scientific notation: a mantissa (in the example above, 1.6125)
giving the significant figures, and an exponent (E10) giving the order of magnitude.
This form is used for very large and very small numbers. For very small numbers,
the exponent would be negative: 1.6125E-10. You would read this number as “One
point six one two five times ten to the negative tenth.”

The second and more familiar way to express a real number is with a decimal
point: 121.402, 3.14159, 0.0056, -16.6, and so on. Because using long strings of zeroes
is inconvenient and an invitation to error (Count the zeroes!) decimal notation like
this is best used for relatively small numbers.

169Data and Data Types

You’ll see the term “floating point” a lot in programming work, and it refers
to the fact that the decimal point in a real number is not required to be at any
particular place within however many significant figures a real number might have.
For example, in a floating-point value with the six significant figures of accuracy
123456, the decimal point can be anywhere: 1.23456, 12.3456, 123.456, 1234.56, or
12345.6.

If this still isn’t completely clear, compare these floating point examples to the
Currency type, which is a “fixed-point” real, in which the decimal point is always
placed four significant figures from the low end. This allows the expression of
financial values accurate to a tenth of a mill. (A mill is one thousandth of a cent, and
not often mentioned outside of financial circles.) More on Currency later.

FreePascal’s real number types in detail
The original Turbo Pascal defined its own idiosyncratic type Real, consisting of a
six-byte value having the range 10-38..1038 with eleven significant figures. This was
a reasonable thing to do in 1983, when math coprocessors barely existed and the
CPUs of the time were not powerful enough to crunch the vast numeric ranges that
we take for granted today.

This six-byte type Real is no longer used in FreePascal. Instead, FreePascal
implements a suite of real-number types that conform to the IEEE floating-point
specification, a well-established standard way of expressing floating-point values
in computer memory. There was a time when using the IEEE real number types
required the presence of a separate math coprocessor chip like the venerable 8087,
and programs had to test for the presence of the chip. Beginning with the 486 family
of Intel CPUs, a math coprocessor was integrated with the main CPU logic, so the
IEEE real number types were always there, baked right into the silicon. On other
CPUs for which FreePascal has been implemented, the IEEE floating-point types are
absent and must be emulated, and special compile-time considerations may apply.
I’m assuming Intel CPUs in this book, and will not discuss IEEE emulation any
further. You’ll find more about this arcane topic in FreePascal’s documentation.

The IEEE real-number types are Single, Double, Extended, Comp, and
Currency. They differ considerably in size and range:

•	Single is a “single-precision” real number type. It is implemented in four
bytes, and has a range of 10-38 to 1038. This is the same range as the six-byte
Real type, but because Single is implemented as only four bytes instead
of six, it has less precision and will only yield 6 or 7 significant figures.

•	Double is a “double precision” real number type. Double has a range of
10-307 to 10307, with 16 significant figures of accuracy.

FreePascal from Square One, Volume 1170

•	Extended implements a “temporary real.” It is expressed as ten bytes
in memory and has the astonishing range of 10-4932 to 104932 with 19
significant figures of accuracy.

•	Comp is something of an outlier. It’s lumped in with the real-number
types, and yet it cannot take a decimal point and thus express a rational
number. It’s used as a signed integer with the range -9.2 X 1018..9.2
X 1018. In fact, Comp is bit-for-bit identical to the newer type Int64.
However, for various peculiar historical reasons, Comp is treated
differently by the FreePascal runtime library. (More on this a little later.)
It’s an obsolete type now and I suggest not using it at all. Use Int64
(which is a true integer) or the Currency type for money values, keeping
in mind Currency’s limitations.

•	Currency is a type created to express money values with precision to
one ten-thousandth of a cent. It can hold values up to a very respectable
$922,337,203,685,477.5807 (nine-hundred twenty-two trillion dollars!)
with complete precision down to a tenth of a mill. Currency shares some
of Comp’s problems: On Intel x86 or x64 CPUs, both are considered
floating-point types that are handled by the floating-point unit (FPU) and
in consequence, there are some peculiar problems with rounding errors.
On CPUs without an Intel FPU, Currency, like Comp, is mapped to
Int64. Currency gets some special handling by the FreePascal runtime in
terms of display and conversion to other types.

I should emphasize, of course, that nothing in the FreePascal compiler or the
runtime libraries ties the Currency type to American dollars. Any decimal currency
can be represented in variables of type Currency.

Extended’s reason for existence
Extended is the most accurate and widest-ranging of any numeric type understood
by the IEEE standard as implemented in Intel CPUs, and there are subtle dangers
involved in using it. The term “temporary” as used in Intel’s doc is quite apt: Whether
or not you explicitly use type Extended in your programs, the math machinery has
the type available to temporarily store intermediate values that might not be fully
expressible in type Double. If you do a lot of calculations using enormous values in
variables of type Extended, the math subsystem no longer has a larger type to use to tuck
away intermediate values. In other words, if during a calculation an intermediate result
appears that is larger that 104932, the math coprocessor simply doesn’t have any way
to express it, and a numeric overflow occurs. Your calculation will be inaccurate in
both range or precision or both, and may trigger a runtime error. Where your value
is over 1.0 X 104932, an overflow error occurs.

171Data and Data Types

It strikes newcomers as odd sometimes, but you can generate an error by
attempting to express a value in a floating point format that is too small. There are
only so many orders of magnitudes to be had, even in the Extended type, and if
your calculations yield a value that is smaller than 1.0 X 10-4932, an underflow error
will occur.

Intermediate results and subexpression promotion
This may be further understood in terms of what happens “behind the scenes” during
calculations of very involved mathematical expressions. The FreePascal compiler
evaluates expressions from left to right, “promoting” the type of the intermediate
result to a larger numeric type as it goes. For example, consider this code snippet:

VAR
 RS : Single;
 RD : Double;

RS := 9.144E35; RD := 8.66543E255;
RS := ((RS*RS)*RD)/9.95E306;

The first portion of the expression to be evaluated is the subexpression (RS*RS).
Since the intermediate result generated by evaluating this subexpression has a
magnitude 1070, it is well beyond the range of type Single, which has a maximum
positive magnitude of 1038. Even though both variables in the subexpression are
of type Single, the compiler “promotes” the intermediate value to type Double,
whose maximum positive range of 10308 can comfortably handle it.

Having evaluated the subexpression (RS*RS), the compiler moves to the right,
and multiples that intermediate result by the value of Double variable RD, which at
this point has a magnitude of 10255. The new intermediate result has a magnitude of
10326. This is beyond the 10308 expressible by type Double, so the compiler promotes
the intermediate result to type Extended. Finally, the intermediate result is divided
by a literal constant with a magnitude of 10306. This reduces the magnitude of the
intermediate result to 1020, which is comfortably within the range of type Single.

Now, what would have happened had there not been a type Extended for the
intermediate result to be promoted to during the evaluation of this expression?
The code generated by FreePascal would have assigned the pseudo-value INF
to the expression, and this pseudo-value would have carried through the
evaluation and been assigned to Single variable RS, even though RS had
enough range to accommodate the final result. And while INF is a defined and
legal IEEE floating point value, it is a difficult thing to respond to in ordinary
arithmetical calculations.

FreePascal from Square One, Volume 1172

Note that the general principles of promoting intermediate results as required
applies to integer as well as floating point expressions. The lesson in the previous
example is that in expressions containing variables of type Extended, there is
nothing larger to store intermediate results in case of an overflow to IEEE infinity.
Use Extended with extreme care, not only in writing expression so as to minimize
the “explosion” of intermediate results, but also in keeping an eye on the values
taken on by Extended variables at runtime.

The challenge of dealing with enormous numbers in the thick of calculations is a
longstanding issue in programming. FreePascal does a very good job, but you have
to be aware of the practical limitations of today’s CPUs.

The odd case of Comp
FreePascal’s suite of IEEE-compatible types contains two types that are functionally
integer types but are almost always lumped in with the various IEEE real number
types as “computational reals.” One is type Comp. It has a range of -9.2 X 1018 to 9.2
X 1018. Its distinctive feature is that it has absolute precision throughout its range.
Comp trades range for precision. It has far less range than Single, but there is no
value at which it “fuzzes out” as conventional real-number values do.

Comp thus hovers between two worlds. While it’s true that Comp doesn’t take
a decimal part as true floating point numbers do, it acts more like a floating point
type than an integer type in several important ways. First of all, it does not work
with integer division operators MOD and DIV. You must use the / operator to
perform division on a variable of type Comp. Second, its default display format is
the exponential format used by all other floating-point numbers. To display a Comp
variable with neither exponential notation nor unused and unusable decimal places
you must format it as you would a real number. For example:

VAR
 BigNum : Comp;

TestComp := 17284;
Writeln(TestComp); { Displays as 1.72840000000000E+0004 }
Writeln(TestComp:7); { Displays as 1.7E+0004 }
Writeln(TestComp:7:2); { Displays as 17284.00 }
Writeln(TestComp:7:0); { Displays as 17284 }

Currency, the money type
Type Comp goes back a long way. It was a response to the need for doing money
math on very large figures, with accuracy to a thousandth of a cent or more. In
1995, Delphi introduced a new and better—if not perfect—solution to the problem
of money math. This is the Currency type.

173Data and Data Types

Currency is related to Comp, and the two types both occupy 8 bytes in memory.
Currency has the same precision as Comp, but its range is less, because Currency
values are assumed to have a decimal point and four places of precision after the
decimal. In a sense, Currency is a “fixed-point” real number with complete precision
throughout its range, which needs a whole line to state completely:

-$922,337,203,685,477.5808 to $922,337,203,685,477.5807

This is just short of a quadrillion dollars, which should keep financial analysts happy
for at least a little while. We hope.

Currency’s issues
As good as Currency sounds, there are some issues in using it. As with Comp, on
CPUs containing an Intel x87 FPU Currency is handled by the FPU. (On CPUs without
an x87 FPU, Currency cooks down to type Int64.) It’s hard to explain in detail in
an introductory book like this, but there are conversion problems when converting
values stored in a Currency variable to a value stored in one of the floating-point
types. It’s best to keep values in the Currency type as much as possible during your
calculations. In particular, do not attempt to use the absolute value function Abs
with Currency. Behind the scenes, Abs converts the Currency value to Extended
and then back again, with rounding errors as an unintended consequence. (This
occurs only on CPUs containing an x87 FPU.)

The other issue is a difference in rounding methods between Delphi and
FreePascal. There are two types of rounding in financial calculation. One is the
method most of us learned in grade school, in which a value like 65.285 would
be rounded up to 65.29. The other is “bankers’ rounding,” in which numbers like
65.285 would be rounded to the closest even number, which in this example would
be 65.28. (Thanks to Mike Riley for pointing this out to me.)

The Delphi runtime library uses bankers’ rounding for Currency values, whereas
FreePascal’s implementation of Currency uses conventional rounding. If you’re
bringing Delphi code over to Lazarus/FreePascal, this may become a problem.

Currency, like Comp, has special issues with conversion to text for display. I’ll
deal with that matter later in this book.

FreePascal from Square One, Volume 1174

175

Chapter 8.
Derived Types and
Data Structures

All the types we’ve discussed up to this point have been simple types, predefined
by FreePascal and ready to use. Much of the power of Pascal lies in its ability to

create more complex structures of data out of these simple types. Derived types and
data structures can make your programs both easier to write and, later on, easier to
read as well.

We touched on this earlier in the book. Recapping: Creating custom data types is
easy to do. The reserved word TYPE begins the type definition part of your program,
and that’s where you lay out the plan of your data structures:

TYPE

 YourType = ItsDefinition;

In general terms, a type definition consists of the name of the type, followed by an
equal sign, followed by the definition of the type. From now on, many of the types
we’re going to discuss must be declared and defined in the type definition part of
your program. Once defined, you can declare a variable of your “custom” type in
the variable declaration section of your program:

VAR

 ANewVariable : YourType;

A custom type of this sort is often called a derived type in Pascal circles.

A type definition does not, by itself, occupy space in your executable program
file’s data area, as variables do. What a type definition provides are instructions to the
compiler telling it how to deal with variables of type YourType when it encounters
them further down in your program source file.

With some few exceptions, (strings and subranges, for example) you cannot write
derived or structured types to your display or printer with Write or Writeln. If you
want to display derived or structured types somehow, you must write procedures
specifically to display some representation of the type on your display or printer.

FreePascal from Square One, Volume 1176

8.1. Overview: Types as Bricks to Build With
Virtually any task can be accomplished using Pascal’s fundamental data types
alone. However, creating structures of data by using these fundamental data types
as building blocks can help you develop a program design, and help you code the
program once the design is complete. Using its basic data types, a Pascal programmer
can build special-purpose types that are valid only within the program in which
they are defined.

One way to build new special-purpose data types is by defining subranges. A
subrange is a Pascal type that may have as its values only certain values in a range
taken from the legal range of the fundamental data type. For example, academic
grades are usually expressed as letters. Not all letters are grades, however. (Did you
ever get a “W” in history?) You might define a subrange of the basic type Char that
can have as values only the letters from ‘A’ through ‘F’. Such a subrange type would
be defined this way:

Grade = A..F;

Now, to create a variable to hold grades, you would declare a variable this way:

History : Grade;

Subranges provide a modicum of protection against certain coding mistakes. For
example, if you tried to assign a grade of “W” to the variable History, the compiler
would tell you during compilation that “W” is not a legal value of the subrange
Grade. At runtime, the compiler would not be available for comment. However, if
you tried to assign a Char variable containing “W” to a Grade variable at runtime,
you would generate a runtime error—if range checking were enabled.

Subranges are derived types. They’re subsets of existing types, either those built
into Pascal or those you define yourself. Building the other way happens when
you create data structures, the most familiar of which is called a record. A record
is a grouping of existing types into a larger structure that is given a name as a new
type. Variables can be declared to be of this type. Those variables can be assigned,
compared, and written to files just as integers or characters can.

For example, if you were writing a program that keeps track of student grades
and test results, you would first define separate variables for all the various data
items that express a student’s individual grades for a given semester. Some of these
variables might be basic Pascal types like Integer, and others might be derived
data types, like the Grade type we defined earlier. You might then group together
the separate variables as a record type, to express a student’s status for an entire
semester. Such a record type might look like this:

177Derived Types and Data Structures

TYPE

 SemesterGrades = RECORD

 StudentID : String[9];

 SemesterID : String[6];

 Math : Grade;

 English : Grade;

 Drafting : Grade;

 History : Grade;

 Spanish : Grade;

 Gym : Grade;

 SemesterGPA : Real

 END;

Now you can define a Pascal variable as having the type SemesterGrades:

VAR

 ThisSemester : SemesterGrades;

By a single variable name you now can control nine separate data chunks (which,
when part of a record type, are called fields) that you would otherwise have to deal
with separately. This can make certain programming tasks a great deal simpler. But
even more important, it allows you to treat logically-connected data as a single unit
to clarify your program’s design and foster clear thinking about its function.

For example, when you need to write the semester’s grades out to a disk file, you
needn’t fuss with individual subjects separately. The whole record goes out to disk
at once, as though it were a single variable, without any reference to the individual
fields from which the record is built. The alternative is a series of statements that
write the student ID to disk, followed by the semester ID, followed by the math
grade, followed by the English grade, and so on.

One caution about this particular example: If you’ve ever worked with a database
manager, storing Pascal records in a Pascal file is very close to what a database manager
does when it writes individual database records to a database table. FreePascal can
work very effectively with external database engines like MySQL or SQLite, so writing
records out as simple files is not done much anymore. You simply need to be aware
that it can be done. Data management these days requires a “real” database engine.
You don’t have to write an application-specific database manager yourself!

Pascal records really aren’t about writing groups of variables to disk. It’s about
how you think about the problem at hand: When you need to think of all of a
student’s grades taken together, you can think of them as a unit, in the form of a
record. When you need to deal with them separately, Pascal has a simple way of
picking out any individual field within the record for individual attention. Selecting
one field out of a record is done this way:

FreePascal from Square One, Volume 1178

MyMath := ThisSemester.Math;

You simply specify the record name followed by the field name, separated by a period
character. ThisSemester.Math is in a sense an expression that “cooks down” to a
single value of type Grade. Informally, this is sometimes called “dotting.”

How you think of the data now depends on how you need to think of the data.
Pascal encourages you to structure your data in ways like this that encourage clear
thinking about your problem at a high level (all grades taken together) or at a low
level (each grade a separate data item.)

Much of the skill of programming in Pascal is learning how to structure your
data so that details are hidden by the structure until they are needed. It’s much like
being able to step back and see your data as a forest without being distracted by the
individual trees.

Like most tools, the structuring of data is an edge that cuts two ways. It is all
too easy to create data structures of Byzantine complexity that add nothing to a
program’s usefulness while obscuring its ultimate purpose. If the data structure
you create for your program makes the program harder to understand from “three
steps back,” you’ve either done it the wrong way, or done it too much.

The rule of thumb I use is this: Don’t create data structures for data structure’s sake.
Unless there’s a reason for it, resist. Simplicity doesn’t necessarily sacrifice power
or flexibility.

Subranges in Detail
If you choose any two legal values in an ordinal type, those two values plus all values
that lie between them define a subrange of that ordinal type. For example, these are
subranges of type Char:

TYPE

 Uppercase = ‘A’..’Z’;

 Lowercase = ‘a’..’z’;

 Digits = ‘0’..’9’;

Uppercase is the range of characters A,B,C,D,E,F and so on to Z. Digits includes
the numeral characters 0,1,2,3,4 on to 9. The quotes are important. They tell the
compiler that the values in the subrange are of type Char. If you were to leave off
the quote marks from the type definition for type Digits:

Digits = 0..9;

you would have, instead, a subrange of type Integer. ‘7’ is not the same as 7!

179Derived Types and Data Structures

An expression in the form ‘A’..’Z’ or 3..6 is called a closed interval. A closed interval
is a range of ordinal values including the two stated boundary values and all values
falling between them. We’ll return to closed intervals later on in this chapter while
discussing sets.

8.2. Enumerated types
Newcomers to Pascal frequently find the notion of enumerated types hard to grasp.
An enumerated type is an ordinal type defined by the programmer. It consists of an
ordered list of values, where each value has a unique name. One of the best ways to
approach enumerated types is through comparison with type Boolean.

Type Boolean is, in fact, an enumerated type that is predefined by the FreePascal
compiler and used in special ways. Type Boolean is an ordered list of two values with
unique names: False, True. It is not a pair of ASCII strings containing the English
words “False” and “True.” As we mentioned earlier, a Boolean value is actually a
binary number with a value of either 00 or 01. We “name” the binary code 00 within
type Boolean as False, and name the binary code 01 within type Boolean as True.
It’s a process similar in spirit to naming constants.

Consider another list of values with unique names: the colors of the spectrum.
Let’s create an enumerated type in which the list of values includes the colors of the
spectrum, in order:

TYPE

 Spectrum = (Red, Orange, Yellow, Green, Blue, Indigo, Violet);

The values list of an enumerated type definition is always given within parentheses.
The order you place the values within the parentheses defines their ordinal value,
which you can test using the Ord(X) function. For example, Ord(Yellow) would
return a value of 2. Ord(Red) would return the value 0. Ord(Indigo) would return
the value 5.

You can compare values of an enumerated type with other values of that same
type. It may be helpful to substitute the ordinal value of enumerated constants for
the words that name them when thinking about such comparisons. The statement
Yellow > Red (think: 2 > 0) would return a Boolean value of True. Green > Violet or
Blue < Orange would both return Boolean values of False. Comparisons between
enumerated types is about their position in a number line, not their names!

Individually, the values of type Spectrum are all considered named constants.
They may be assigned to variables of type Spectrum. For example:

FreePascal from Square One, Volume 1180

VAR

 Color1, Color2 : Spectrum;

Color1 := Yellow;

Color2 := Indigo;

You cannot, however, assign just anything to one of the values of type Spectrum.
Statements like Red := 2 or Red := Yellow make no sense and will not be accepted
by the compiler.

Enumerated types may index arrays. (I’ll be discussing arrays in detail a little
later in this chapter.) For example, each color of the spectrum has a frequency and
wavelength associated with it. These frequencies could be stored in an array, indexed
by the enumerated type Spectrum:

Wavelength : ARRAY[Red..Violet] OF Real;

Frequency : ARRAY[Red..Violet] OF Real;

Color : Spectrum;

Lightspeed : Real;

Wavelength[Red] := 6.2E-7; { All in meters }

Wavelength[Orange] := 5.9E-7;

Wavelength[Yellow] := 5.6E-7;

Wavelength[Green] := 5.4E-7;

Wavelength[Blue] := 5.15E-7;

Wavelength[Indigo] := 4.8E-7;

Wavelength[Violet] := 4.5E-7;

The functions Ord and Odd work with enumerated types, as do the Succ and
Pred functions. This is due to an enumerated type’s having a fixed number of
elements in a definite order that does not change. Succ(Green) will always return
the value Blue. Pred(Yellow) always returns the value Orange. Be aware that
Pred(Red) and Succ(Violet) are undefined. There is no value before Red or after
Violet. You should test for the two ends of the Spectrum type while using Succ
and Pred to avoid assigning an undefined value to a variable.

Enumerated types may also be control variables in FOR/NEXT loops. (These
will be discussed in detail in the next chapter.) In continuing with the example
begun above, we might calculate the frequencies of light for each of the colors of
type Spectrum this way:

Lightspeed := 3.0E08; { Meters/second }

FOR Color := Red TO Violet DO

 Frequency[Color] := Lightspeed / Wavelength[Color];

181Derived Types and Data Structures

Displaying or printing enumerated type values	
FreePascal differs from most earlier Pascal compilers in that it will display individual
values from an enumerated type, when when those values are not, strictly speaking,
text strings.

For example, if you write the value Orange (from type Spectrum) to the console
like this:

Writeln(Orange);

your program will display the ASCII word “Orange” in the console window. This has
not always been the case. Turbo Pascal used to flag this with the following error:

Error 64: Cannot Read or Write variables of this type

FreePascal, by contrast, is more than happy to display or print the enumerated type
values as you defined them. There’s some potential for confusion here, however:
Internally, the values of enumerated types are maintained as binary numbers, not
ASCII strings like “Green.”

8.3. Sets and Set Operators
Sets are collections of elements picked from simple types. An element is either in a
set, or it is not in the set. The letters “A”, “Q”, “W”, and “Z” may be taken together as
a set of characters. “Q” is in the set, and “L” is not.

Expressed in Pascal’s notation:

VAR

 CharSet : SET OF Char;

CharSet := [‘A’,’Q’,’W’,’Z’];

A pair of square brackets when used to define a set (as shown above) is called a set
constructor.

Pascal sets are very useful, often in non-obvious ways. For example, sets provide
an easy way to sift valid user responses from invalid ones. In answering even a
simple, yes/no question, a user may in fact type two equally valid single characters
for yes, and two for no: Y/y and N/n. Ordinarily, you would have to test for each one
individually:

IF (Ch=’Y’) OR (Ch=’y’) THEN DoSomething;

With sets, you could replace this notation with:

FreePascal from Square One, Volume 1182

IF Ch IN [‘Y’,’y’] THEN DoSomething;

The operator IN tests whether the value stored by Ch is present in the set. IN returns
True if an element is present in a set, or False if an element is not in the set.

Base types and closed intervals
In FreePascal, a set type may be defined for (almost) any simple type having 256
or fewer individual values. The type from which sets elements are derived is called
that set’s base type. Type Char qualifies as a base type, as does Byte. The enumerated
type Spectrum we created in the last section also qualifies, since it has only seven
separate values. A set of Spectrum might contain some but not all the colors defined
as Spectrum’s values:

VAR

 LowColors : SET OF Spectrum;

LowColors := [Red,Orange,Yellow];

Only one numeric type may be a set base type: Byte. The types ShortInt and
larger numeric types do not qualify. Subranges may be the answer: If you define
a numeric subrange spanning 256 or fewer values, you may define a set with that
subrange type as the set’s base type:

TYPE

 ShoeSizes = 5..17;

VAR

 SizesInStock : SET OF ShoeSizes;

In addition to establishing the elements present in a set in the VAR and TYPE
sections of your program, you may also assign a range of elements to a set in an
assignment statement, assuming that the elements assigned are of an acceptable
base type:

VAR

 Uppercase, Lowercase, Whitespace, Controls : SET OF Char;

Uppercase := [‘A’..’Z’];

Lowercase := [‘a’..’z’];

Controls := [Chr(1)..Chr(31)];

Whitespace := [Chr(9),Chr(10),Chr(12),Chr(13),Chr(32)];

This is certainly easier than explicitly naming all the characters from A to Z to assign
them to a set. A range of elements containing no gaps (like ‘A’..’Z’) is called a closed

183Derived Types and Data Structures

interval. The list of members within the set constructor can include single elements,
closed intervals, and expressions that yield an element of the base type of the set. These
must all be separated by commas, but they do not have to be in any particular order:

X : Byte;

X := 77;

GradeSet := [‘A’..’F’,’a’..’f’];

BadChars := [Chr(1)..Chr(8),Chr(11),Chr(X+4),’Q’,’x’..’z’];

You should take care that expressions do not yield a value that is outside the range
of the set’s base type. If X in the BadChars type defined above grows to 252 or
higher, the result of the expression Chr(X+4) will no longer be a legal character.
The results of such an expression will be unpredictable, other than to say they won’t
do you very much good.

Sets like Uppercase, Lowercase, and Whitespace defined above can be very useful
when manipulating characters typed at the keyboard or from another unpredictable
source. Here are some simple functions making use of these character sets:

FUNCTION CapsLock(Ch : Char) : Char;

BEGIN

 IF Ch IN Lowercase THEN CapsLock := Chr(Ord(Ch)-32)

 ELSE CapsLock := Ch

END;

FUNCTION DownCase(Ch : Char) : Char;

BEGIN

 IF Ch IN Uppercase THEN DownCase := Chr(Ord(Ch)+32)

 ELSE DownCase := Ch

END;

FUNCTION IsWhite(Ch : Char) : Boolean;

BEGIN

 IsWhite := Ch IN WhiteSpace

END;

All three of these functions assume that Uppercase, Lowercase, and
Whitespace have already been declared and filled with the proper values. Actually,
the way to ensure that this is done is to do it inside each routine by the use of set
constants, as I’ll explain toward the end of this chapter.

FreePascal from Square One, Volume 1184

CapsLock returns all characters passed to it in uppercase. DownCase returns all
characters passed to it as lowercase. IsWhite returns a True value if the character
passed to it is “whitespace”, that is, a tab, carriage return, linefeed, or space character.

A set may be defined as having no elements at all. This is called a null set. When
you declare a set variable, that variable is initially a null (empty) set. If it is to contain
any elements, you must add those elements in a separate statement. You can also
assign a null set to a set variable that may have elements in it. This “empties out” the
set, which is a useful operation all by itself:

VAR

 NullSet = SET OF Spectrum;

NullSet := [Green, Blue];

NullSet := [];		 { ‘Empty out’ NullSet by assigning it a null set. }

Set operators
The IN operator we used above is not the only operator available for use with sets.
There are two whole classes of set operators in FreePascal: Operators that build
sets from other sets, and operators that test relationships between sets and return a
Boolean result.

Pascal allows you to create new sets from existing sets using several operators. To
a great extent the operators follow the rules of set arithmetic you may have learned
in grade school. Table 8.1 summarizes the set operators implemented in FreePascal.
All of them take set operands and return set values. Note that Include and Exclude
are implemented as functions in FreePascal, so although they act like operators,
they look like functions that return set types.

Table 8.1. Set-builder operators and functions

Operator					 Symbol	 Logic equivalence 		 Precedence
Set union					 +		 OR				 4	
Set intersection			 *		 AND				 4
Set difference			 -						 4
Set symmetric difference		 ><		 XOR				 4
Set include (function)		 Include	 Union with 1 element
Set exclude (function)		 Exclude	 Subtraction with 1 element

185Derived Types and Data Structures

Set union
The union of two sets is the set that contains all members contained in both sets. In
simpler terms, it means combining the two sets into a single set. The symbol for the
set union operator is the plus sign (+), just as for arithmetic addition. An example:

VAR

 SetA, SetB, SetX, SetY, SetZ : SET OF Char;

SetX := [‘Y’,’y’,’M’,’m’]; SetY := [‘N’,’n’,’M’,’m’];

SetZ := SetX + SetY;

After the set union operation, SetZ contains ‘Y’, ‘y’, ‘N’, ‘n’, ‘M’, and ‘m’. Note that
although ‘M’ and ‘m’ exist in both SetX amd SetY, each appears only once in the
union of the two sets. A set merely says whether or not a member is present in the
set; it is meaningless to speak of how many times a member is present in a set. By
definition, each member is present only once, or not present at all.

Set difference
The “difference” of two sets is conceptually related to arithmetic subtraction. Given
two sets SetA and SetB, the difference between them (expressed as SetA - SetB) is
the set consisting of the elements of SetA that remain once all the elements of SetB
have been removed from it. For example:

SetA := [‘Y’,’y’,’M’,’m’];

SetB := [‘N’,’n’,’M’,’m’];

SetX := SetA - SetB;

SetX now contains ‘Y’, ‘y’. Conceptually, set difference “pulls out” whatever SetB
contains that is also present in SetA. SetB does not have to be a subset of SetA. In
other words, SetB may contain elements that are not present in SetA.

Set intersection
The intersection of two sets is the set that contains as members only those members
contained in both sets. The symbol for set intersection is the asterisk (*), just as for
arithmetic multiplication. For example:

SetX := [‘Y’,’y’,’M’,’m’];

SetY := [‘N’,’n’,’M’,’m’];

SetZ := SetX * SetY;

SetZ now contains ‘M’ and ‘m’, which are the only two members that are contained
in both sets.

FreePascal from Square One, Volume 1186

Set symmetric difference
FreePascal adds a set operator that, to my knowledge, does not exist in any version
of Borland’s Pascal products. This is the symmetric difference operator, and as with the
others I’ve just described, it comes to us from set logic. The symbol for set symmetric
difference is ><. The symmetric difference between two sets is whatever remains
when the intersection of the two sets has been removed from the union of the two
sets.

SetX := [‘Y’,’y’,’M’,’m’,’C’,’c’];

SetY := [‘N’,’n’,’C’,’c’];

SetZ := SetX >< SetY;

Here, the intersection of SetX and SetY is the set [‘C’,’c’]. The union of the two
sets is [‘Y’,’y’,’M’,’m’,’N’,’n’,’C’,’c’]. If you remove the intersection of the two
sets from the union of the two sets, what you have left (the symmetric difference) is
[‘Y’,’y’,’M’,’m’,’N’,’n’].

Include and Exclude for sets
FreePascal has another bit of set machinery that was not present in any of Borland’s
Pascal compilers: set include and set exclude. The idea here is to add or remove a single
element at a time. The two operations are implemented as Pascal functions rather
than operators. This is simple enough, but it shows better than it tells. So let’s return
to the example of an enumerated type containing a sequence of color values. The
MyColors set variable is assigned the list of legal colors in the Spectrum type:

TYPE

 Spectrum = (Red, Orange, Yellow, Green, Blue, Indigo, Violet);

VAR

 MyColors : SET of Spectrum; { MyColors is created as a null set! }

MyColors := [Red, Orange, Yellow, Green, Blue, Indigo, Violet];

Exclude(MyColors,Green);	 { Pulls Green out of the set MyColors }

A quick reminder for beginners: Declaring a variable as a set of an enumerated
type does not give the set any values from the enumerated type! When you declare a
set variable, that variable is a null set until you put something in it. Any values have
to be assigned to the new set in a separate statement.

Here, the Exclude function pulls the value Green out of a set called MyColors.
The result is the same as though you had created a null set and then added Green to
it, followed by set subtraction:

187Derived Types and Data Structures

VAR

 ColorToBeRemoved : SET of Spectrum;

ColorToBeRemoved := [Green];

Colors := Colors – ColorToBeRemoved;

Similarly, the Include function adds a single element to a set, assuming the
element isn’t in the set already:

VAR

 CharSet,JustR : SET OF Char;

CharSet := [‘A’,’Q’,’W’,’Z’];

Include(Charset,’R’);

After the Include function executes, Charset contains [‘A’,’Q’,’R’,’W’,’Z’]. The
results would be the same if you created a set with ‘R’ in it, and then performed set
addition on the two sets:

JustR := [‘R’];

Charset := Charset + JustR;

Table 8.2. Set relational operators.

Operator			 		 Symbol	 Precedence
Set equality					 =		 4
Set inequality			 <>		 4
Element inclusion			 IN		 4
Set inclusion, left in right		 <=		 4
Set inclusion, right in left		 =>		 4

The set relational operators
The set operators just described work with set operands to produce new set values.
I’ve briefly mentioned the relational operators that test relationships between sets
and return Boolean values depending on those relationships. In this section we’ll
take a more detailed look. The set relational operators are summarized in Table 8.2.

Sets can be compared in various ways. For example, sets can be equal to one
another, if they both have the same base type and both contain the same elements.
Two sets that are not of the same base type will generate an “incompatible types”
error at compile time if you try to compare them:

FreePascal from Square One, Volume 1188

VAR

 SetX : SET OF Char;

 SetQ : SET OF Spectrum;

 OK : Boolean;

OK := SetX = SetQ; { Will trigger “incompatible types” error! }

This holds true for all set relational operators, not just equality as demonstrated
above.

The single most important set relational operator is the element inclusion
operator IN. IN tests whether a value of a set’s base type is a member of that set.

VAR

 Ch : Char;

Read(Ch); { From the keyboard }

IF Ch IN [‘Y’,’y’] THEN

 Write(‘Yes indeed!’);

As described earlier, this example provides a clean and easy way to tell whether
a user has typed the letter Y (upper or lower case) in response to a prompt. The
IN operator tests whether the typed-in character is a member of the set constant
[‘Y’,’y’]. (IN works just as well with set variables.)

The greater than (>) and less than (<) operators make no sense when applied
to sets, because sets have no implied order to their values. However, there are two
additional set relational operators that make use of the same symbols as used by the
greater than or equal to (>=) and less than or equal to (<=) operators. These are the
set inclusion operators.

Inclusion of left in right (<=) tests whether all members of the set on the left
are included in the set on the right. Inclusion of right in left (>=) tests whether all
members of the set on the right are included in the set on the left. The action these
two operators take is identical except for the orientation of the two operands with
respect to the operator symbol. Given two sets, Set1 and Set2, this expression:

(Set1 <= Set2) = (Set2 >= Set1)

will always evaluate to True.

This may seem a little arcane. It may be better to think of set inclusion as a way
to test whether one set is a subset of another. This is very handy for testing and
manipulating characters in a text stream. For example:

189Derived Types and Data Structures

VAR

 Vowels,Alphabet,Samples : SET OF Char;

Vowels:=[‘A’,’E’,’I’,’O’,’U’];

Alphabet:=[‘A’..’Z’]; { Set of all UC letters }

Samples:=[‘A’,’D’,’I’,’Q’,’Z’];

IF Samples <= Vowels THEN Write(‘All samples are vowels.’);

IF NOT(Samples <= Vowels) AND (Samples <= Alphabet) THEN

 Write(‘Some or all samples are uppercase letters.’);

IF NOT(Alphabet >= Samples) THEN

 Write(‘Some samples are not uppercase letters.’);

In addition to demonstrating the set inclusion operators, these examples also show
some uses of the AND and NOT logical operators in IF statements, which I’ll
explain in detail in the next chapter. Given the elements assigned to Samples in the
above example, this output will be displayed:

Some or all samples are uppercase letters.

Now, as practice before going on, jot down two sets of characters that would
trigger the other two messages in the above example.

Avoid set inclusion confusion
Don’t get the set inclusion operators <= and >= mixed up with element inclusion
operator IN. When you use IN, you’re testing whether one single value of a set’s base
type is present in the set. The set inclusion operators test whether all the elements
of one set are present in another set. The following expression may seem to make
sense, but FreePascal won’t allow it:

Vowels IN Alphabet

Both Vowels and Alphabet are sets of characters. To test whether Vowels is a
subset of Alphabet, you need the left-in-right set inclusion operator:

Vowels >= Alphabet

This will compile, and simply tests whether everything in the Vowels set is also
present in Alphabet. With the values given earlier, the expression evaluates to
True.

Note: For space reasons I have chosen not to discuss the binary representation of
sets in this book.

FreePascal from Square One, Volume 1190

8.4. Arrays
Sometimes it’s not enough to work on a single data item, whatever its type.
Sometimes you need to work on a whole row of them. If all the data items in the row
are all of the same type, you can refer to them by number, just as you might choose
photograph #6 from an old roll of film, or the legendary Love Potion #9. Pascal can
do that, using data structures called arrays.

An array is a data structure consisting of a fixed number of elements of the same
type, with the whole data structure given a single identifier as its name. The program
keeps track of individual elements by number. Sometimes you name the entire
array to work with it as a unified whole. Most of the time you identify one of the
individual elements, by number, and work with that element alone. The number
identifying an array element is called an index. In Pascal, an index need not always
be a traditional number. Enumerated types, characters, and subranges may also act
as array indices.

It may be helpful to think of an array as a row of identical empty boxes in
memory, side by side. The program allocates space for the boxes and, but it is your
job as programmer to fill them and manipulate their contents. The elements in
an array are, in fact, set side-by-side in order in memory. (You don’t need to know
how arrays are laid out in memory in order to use them during ordinary Pascal
programming.)

An array element may be of any data type except a file. Arrays may consist of
data structures; that is, you may have arrays of records and arrays of arrays. An
array index must be a member or a subrange of an ordinal type, or a programmer-
defined enumerated type. Floating point numbers may not act as array indices, nor
may LongInt or Comp. Type Integer, ShortInt, Byte, Word, Char, and Boolean
may all index arrays.

Below are some valid array declarations, just to give you a flavor of what’s possible.
(If you don’t understand for now what records or strings are, bear with me for the
time being. They’re up next!)

CONST

 Districts = 14;

TYPE

 String80 = String[80];

 Grades = ‘A’..’F’; { Subrange }

 Percentile = 1..99; { Ditto }

 { Enum. type }

 Levels = (K,G1,G2,G3,G4,G5,G6,G7,G8,G9,G10,G11,G12);

 { Ditto }

191Derived Types and Data Structures

 Subjects = (English,Math,Spelling,Reading,Art,Gym);

 Profile = RECORD

 Name : String80;

 SSID : String80;

 IQ : Integer;

 Standing : Percentile;

 Finals : ARRAY[Subjects] OF Grades

 END;

 GradeDef = ARRAY[Grades] OF String80;

VAR

 K12Profile : ARRAY[Levels] OF Profile;

 Passed : ARRAY[Levels] OF Boolean;

 Subtotals : ARRAY[1..24] OF Integer;

 AreaPerc : ARRAY[1..Districts] OF Percentile;

 AreaLevels : ARRAY[1..Districts] OF ARRAY[Levels] OF Percentile;

 RoomGrid : ARRAY[1..3,Levels] OF Integer;

The declarations shown above are part of an imaginary school district records
manager program written in Pascal. Note that Passed is an array whose index is an
enumerated type. Passed[G5] would contain a Boolean value (TRUE or FALSE)
indicating whether a student had passed or failed the fifth grade. Remember, the
identifier G5 is not a variable; it is a constant value, one value of the enumerated
type Levels.

The low limit and high limit of an array’s index are called its bounds. The bounds
of a static array in Pascal must be fixed at compile time. The FreePascal compiler
must know, when it compiles the program, exactly how large all data items are
going to be. FreePascal supports a separate type of array called a dynamic array,
which gives you more flexibility when defining arrays. I’ll talk about dynamic arrays
a little later.

With this in mind, the variable AreaPerc deserves a closer look. At first glance,
you might think it has a variable for a high bound, but actually, Districts is a constant
with a value of 14. Writing [1..Districts] is no different from writing [1..14], but
within the context of the program it assists your understanding of what the array
actually represents.

FreePascal from Square One, Volume 1192

Multidimensional arrays
Most of the arrays shown in the earlier example are one-dimensional. A one-
dimensional array has only one index. A two-dimensional array has two indices. A
three-dimensional array has three, and so on. (See Figure 8.1.) An array may have
any number of dimensions, but it edges toward bad practice to define an array with
more than two or (on the outside) three. Also, the more dimensions an array has,
the larger it tends to be and the more memory it uses—and the more likely that
parts of it are empty or full of duplicate or rarely-accessed information that does
nothing for you but waste memory. There are better, less memory-wasteful ways to

Figure 8.1. Multidimensional Arrays

193Derived Types and Data Structures

handle large, complicated data structures, like linked lists, as I’ll demonstrate later
on in Chapter X. Dynamic arrays are another solution to that problem, and I’ll cover
those in the next section.

When FreePascal allocates an array in memory, it does not zero the elements of
the array, as BASIC would. In general, Pascal does not initialize data items of any
type for you. If there was garbage in RAM where the compiler went out to set up
an array, the array elements will contain the garbage when the array is allocated. If
you wish to zero out or otherwise initialize the elements of an array, you must do
it yourself, in your program, before you use the array. This is not difficult, using a
FOR loop (see Section 9.4 for more on FOR loops):

FOR I := 1 TO 24 DO Subtotals[I] := 0;

Good examples of arrays used effectively can be found in the ShellSort procedure
in Section 10.3 and the QuickSort procedure in Section 10.6.

FreePascal’s dynamic arrays
As I mentioned briefly a little earlier, there’s a problem with conventional static
Pascal arrays: Static arrays are fixed in size, according to their declarations. The
compiler must allocate them enough memory to hold all the elements specified in
the declaration. That memory is used whether or not you ever actually write data
into all of the elements. Perhaps worse, if during a program run your program needs
more elements than an array’s declaration provides, you’re out of luck. What an
array gets at compile time is all it will ever have.

FreePascal provides a solution to this problem: Dynamic arrays are arrays
allocated and maintained in dynamic memory, which is informally called the
heap. Dynamic arrays were not supported in Turbo Pascal or Borland Pascal, but
were added to the language with Delphi and later added to FreePascal. Dynamic
memory and pointers (which are how we use dynamic memory) are important
but advanced topics that I can’t address in this book. Once we move on to Object
Oriented Programming (OOP) dynamic memory is crucial, and I’m planning a
book that takes up both objects and dynamic memory in detail.

A dynamic array is declared without explicit sizes on any of its dimensions.
When a program that uses dynamic arrays begins running, the arrays are not
only empty, they occupy no space in memory. To use a dynamic array, you must
first call a built-in procedure that allocates memory for as many elements as your
program requires. For example, declaring a dynamic array of integers would be
done this way:

FreePascal from Square One, Volume 1194

VAR

 LuminanceReadings : ARRAY of Integer;

FreePascal understands that this is a dynamic array because no bounds are declared
for it. Until your code specifies how many elements are in the array, the array occupies
no space in memory and cannot be used. You specify the number of elements in the
array with a predefined procedure SetLength:

SetLength(LuminanceReadings, 1000);

This procedure call allocates dynamic memory for 1000 integers and associates
that block of memory with the variable name LuminanceReadings. Once you’ve
allocated memory with SetLength, you can use the dynamic array as you would
use any array of 1,000 integers. There are some restrictions, the most important
of which is this: The array index begins at 0. The first element of any dynamic array
is always element 0. There’s no way for you to set the index of the first element to
1 or any other value.

Dynamic arrays are managed by the runtime code that FreePascal links into your
program. When the array goes out of scope (see Chapter 13 for more on scope,
which I haven’t covered yet) the runtime code automatically deallocates the array’s
memory on the heap.

There’s another, subtler restriction that won’t make complete sense until you
learn more about dynamic memory and the heap. If you declare the names of two
dynamic arrays and allocate one, you can assign the second identifier to the first,
like this:

VAR

 CrateWeights1, CrateWeights2 = ARRAY of Integer;

SetLength(CrateWeights1, 50);

{ Code here to store values into CrateWeights1 the usual way }

{ Assign the second dynamic array to the first one: }

CreateWeights2 := CrateWeights1;

As you would expect, the two arrays now contain exactly the same elements. But
there’s a very serious catch: Both identifiers now refer to the same array in dynamic memory.
You only allocated memory for one array, and one is all there is. By assigning a
second array to the first, in effect you’re giving the allocated array a second name. If
you change elements in CrateWeights2, those changes will be made to the elements
of CrateWeights1 as well, and vise versa.

195Derived Types and Data Structures

This may seem bizarre until you understand the concept of Pascal pointers,
as I’ll explain in Chapter X. CrateWeights1 and CrateWeights2 are in reality
two pointers that point to the same area of memory allocated by the call to
SetLength.

If you want two identical but independent arrays containing the same
elements, you should use the Copy function to make an independent copy of
CrateWeights1:

CrateWeights2 := Copy(CrateWeights1);

This allocates an entirely new duplicate array on the heap, and once that happens,
changes made to CrateWeights1 will not affect CrateWeights2 and vise versa.

Likewise, if you call SetLength a second time with CrateWeights2 as the first
parameter, you will allocate a second, independent dynamic array somewhere
else in memory. This time, the elements of CrateWeights1 will not be duplicated,
and CrateWeights2 will contain “zero-filled” data until you assign data to it. and
making changes to one will have no effect on the other. (Note: It’s not a good idea to
assume that a new dynamic array (or any other new data item) will be automatically
zero-filled by the runtime code. If you need to rely on having an array full of zeroes,
assign zeroes to all the elements before you begin using it!

Dynamic arrays can be resized by making a call to SetLength with a different
number of elements. Do not assume that the array will contain the same values after
a second call to SetLength. Always assume that SetLength hands you a brand new
array containing undefined values.

You can deallocate a dynamic array at any time by assigning the predefined value
NIL to the array:

LuminanceReadings := NIL;

The runtime code will return the space formerly occupied by the array to the heap,
so it can be used again for other dynamic variables.

There’s one final weirdness about dynamic arrays: In a dynamic array having
100 elements, for example, you should not access element 100. There is no element
100. Because dynamic array indexes are always 0-based, the indexes in a 100-
element array run from 0-99. If you attempt to read a value at index 100, you will
get either a garbage value or a value belonging to some other dynamic variable
entirely.

FreePascal from Square One, Volume 1196

8.5. Records
An array is a data structure composed of a number of identical data items all in
a row and referenced by number. This sort of data structure is handy for dealing
with large numbers of the same type of data; for example, values returned from an
experiment of some sort. You might have a collection of five hundred temperature
readings and need to average them and perform analysis of variance on them. The
easiest way to do that is load them into an array and work with the temperature
readings as elements of the array.

There is a data structure composed of data items that are not of the same type.
It’s called a record, and it gets its name from its origins as one line of data in a data
file.

A record is a structure composed of several data items of different types grouped
together. These data items are called the fields of the record.

Let’s work out a short and much-simplified conceptual example. An auto-repair
shop might keep a file on its spare parts inventory. For each part they keep in stock,
they need to record its part number, its description, its wholesale cost, retail price,
customary stock level and current stock level. All these items are intimately linked
to a single physical gadget, (a car part) so to simplify their programming the shop
puts the fields together to form a record:

TYPE

 PartRec = RECORD

 PartNum, Class : Integer;

 PartDescription : String;

 OurCost : LongInt;

 ListPrice : LongInt;

 StockLevel : Integer;

 OnHand : Integer;

 END

VAR

 CurrentPart, NextPart : PartRec;

 PartFile : FILE OF PartRec;

 CurrentStock : Integer;

 MustOrder : Boolean;

The entire structure becomes a new type with its own name. Data items of the
record type can then be assigned, written to files, and otherwise worked with as a
single entity without having to explicitly mention all the various fields within the
record.

197Derived Types and Data Structures

CurrentPart := NextPart; { Assign part record to another }

Read(PartFile,NextPart); { Read next record from file }

When you need to work with the individual fields within a record, the notation
consists of the record identifier followed by a period (“.”) followed by the field
identifier:

CurrentStock := CurrentPart.OnHand;

IF CurrentStock < CurrentPart.StockLevel

 THEN MustOrder := True;

Accessing individual fields within a record this way is informally called “dotting.”

Relational operators may not be used on records. To say that one record is “greater
than” or “less than” another cannot be defined since there are an infinite number of
possible record structures with no well-defined and unambiguous order for them
to follow. In the example above we are comparing the fields of two records, not the
records themselves. The fields are both integers and can therefore be compared by
the “<” operator.

The WITH Statement
As I just explained, fields within a record are accessed by dotting:

CurrentPart.OurCost := 1075; { In pennies! }

CurrentPart.ListPrice := 4185; { “ }

CurrentPart.OnHand := 4;

Note the repetition of the record name before the field name. That’s logically
unnecessary, if we know we’re just going to be accessing several fields from the
same record in quick succession here. If you have to go down a list of fields within
the same record and work with each field, you can avoid specifying the identifier
of the record each and every time by using a special statement called the WITH
statement.

We could simplify assigning values to several fields of the same record by writing
the above snippet of code this way:

WITH CurrentPart DO

 BEGIN

 OurCost := 1075;

 ListPrice := 4185;

 OnHand := 4;

 END;

FreePascal from Square One, Volume 1198

The space between the BEGIN and END is the “scope” of the WITH statement.
Within that scope, the record identifier need not be given to work with the fields
of the record named in the WITH statement. (If you are very new to Pascal, you
might return to this section after reading the general discussion on statements in
Section X.X. WITH statements are subject to the same rules that all types of Pascal
statements obey.)

WITH statements need not have a BEGIN/END unless they contain more than
a single statement. A WITH statement may include only a single statement to work
with a record if that single statement contains several references to fields within a
single record:

WITH CurrentPart DO VerifyCost(OurCost,ListPrice,Check);

In this example, VerifyCost is a procedure that takes as input two price figures
and returns a value in Check. Without the WITH statement, calling VerifyCost
would have to be done this way:

VerifyCost(CurrentPart.OurCost,CurrentPart.ListPrice,Check);

The WITH statement makes the statement crisper and much easier to understand.
By using WITH, we can hide the unnecessary details of what larger record we’re
working with during the time that we’re working on a small-scale with the fields of
that record. There’s no need to “see” the name of the embracing record every time
we access a field, so the smart thing to do is put the name of the record off to one
side so it doesn’t get in the way. That’s the spirit in which WITH was created.

Nested Records
A record is a group of data items taken together as a named data structure. A record is
itself a data item, and so records may themselves be fields of larger records. Suppose
the repair shop we’ve been speaking of expands its parts inventory so much that
finding a part bin by memory gets to be difficult. There are ten aisles with letters
from A through J, with the bins in each aisle numbered from 1 up. To specify a
location for a part requires an aisle character and a bin number. The best way to do
it is by defining a new record type:

TYPE

 PartLocation = RECORD

 Aisle : ‘A’..’J’;

 Bin : Integer

 END;

 Since each part has a location, type PartRec needs a new field:

199Derived Types and Data Structures

TYPE

 PartRec = RECORD

 PartNum, Class : Integer;

 PartDescription : String;

 OurCost : LongInt;

 ListPrice : LongInt;

 StockLevel : Integer;

 OnHand : Integer;

 Location : PartLocation { A record! }

 END;

Location is “nested” within the larger record. To access the fields of Location you
need two periods:

LookAisle := CurrentPart.Location.Aisle

If the outermost record is specified by a WITH statement you might have an
equivalent statement like this:

WITH CurrentPart DO LookAisle := Location.Aisle;

WITH statements are fully capable of handling many levels of record nesting.
You may, first of all, nest WITH statements one within another. The following
compound statement is equivalent to the previous statement:

WITH CurrentPart DO

 WITH Location DO LookAisle := Aisle;

The WITH statement also allows a slightly terser form to express the same
thing:

WITH CurrentPart, Location DO LookAisle := Aisle;

For this syntax you must place the record identifiers after the WITH reserved
word, separated by commas, in nesting order. That is, the name of the outermost
record is on the left, and the names of records nested within it are placed to its right,
with the “innermost” nested record placed last.

Records were originally essential in their use as “slices” of a disk file. This is much
less useful than it once was, with simple databases like SQLite shipped free with
FreePascal and Lazarus. I won’t be discussing file I/O in this book for that reason: It’s
been largely subsumed by database technology.

Records lost even more of their usefulness when objects were added to Pascal
with Turbo Pascal 5.5. Objects resemble records, but may contain procedures and
functions as well as data. (Objects have other, subtler tricks too, and I really can’t
cover them in this introductory book.)

FreePascal from Square One, Volume 1200

One final note on records: from its original definition Pascal has supported
“variant records,” a feature that allows a record to have two or more different
structures depending on the value of a field in the record. I’ve dropped the description
of variant records from this book because almost no one uses them anymore. An
advanced Pascal feature called variants broadens the concept beyond records, as
does a feature of object-oriented programming called polymorphism. Both of these
are advanced topics that I hope to cover in a brand new book at some point.

If you find you need a solid explanation of variant records, copies of my 1993
print book Borland Pascal 7 from Square One treats them at length and can be had on
the used book markets.

8.6. Strings
Manipulating words and lines of text is a fundamental function of a computer
program. At minimum, a program must display messages like “Press RETURN to
continue:” and “Processing completed.” In Pascal, as in most computer languages, a
line of characters to be taken together as a single entity is called a string.

Standard Pascal PAOC strings (fixed length)
The original ISO Standard Pascal had very little power to manipulate strings. In
Standard Pascal, there is nothing formally referred to as type STRING, as in Turbo
Pascal and FreePascal. To hold text strings, Standard Pascal uses a packed array of
characters, sometimes abbreviated as PAOC:

TYPE

 PAOC25 = PACKED ARRAY[1..25] OF Char;

This is a typical definition of a PAOC type. Of course, it doen’t have to be 25
characters in size; within the constraints of available memory it can be as large
as you like. The reserved word PACKED is a holdover from ancient mainframe
computers; on 8 and 16-bit personal computers it served no purpose. In mainframe
computers with 32 and 64-bit words, the word PACKED instructs the compiler
to store as many characters as will fit in one machine word, rather than using one
machine word per character. Using PACKED on a mainframe could reduce the size
of a string by a factor of four to eight times. Modern Pascal compilers always store a
Char value in one byte no matter what the word size of the computer it runs on. The
word PACKED is still necessary, however, to define a Standard Pascal string.

What can be done with a PAOC-type string? Not much. A string constant can be
assigned to it, if the constant is exactly the same size as the definition of the PAOC:

201Derived Types and Data Structures

VAR

 ErrorMsg : PAOC25;

ErrorMsg := ‘Warning! Bracket missing!’; { This is OK }

ErrorMsg := ‘Warning! Comma missing!’; { Illegal! }

The second string constant is two characters short of 25 long, so the compiler
will display an error message.

The second string constant could not be considered a PAOC25 because it is
only 23 characters long; hence the type mismatch error. Of course, you could have
padded out the second constant with spaces, and the padded constant would have
been acceptable.

You can compare two PAOC-type strings with the relational operators, read and
write them from files, and print them to the screen. And that’s where it ends. All
other manipulations have to be done on a character-by-character basis, as though
the string were just another array of any simple type.

Note well: PAOC-type strings are now decades obsolete. The only time to use them
is in situations where you are forced to deal with code in extremely old programs
and have to add features or fix bugs.

Short strings
All modern Pascal implementors, including those who wrote Turbo Pascal and
FreePascal, have implemented character strings as what are called variable-length
strings. Like PAOC-type strings, variable-length strings are arrays of characters, but
they are treated by the compiler in a special way. There are several distinct varieties
of variable-length strings in FreePascal, including some that cater to Unicode code
points, which are characters that require two (or sometimes four) bytes to express
them.

The original variable-length strings defined by Turbo Pascal are limited to 255
characters, and are called short strings. Short strings have a logical length that varies
depending on what you put into the string. Strings of different logical lengths may
be assigned to one another as long as the real, physical lengths of the strings are not
exceeded.

A short string has two lengths: a physical length and a logical length. The physical
length is the amount of static memory that the string actually occupies. This length is
set at compile time and never changes. The logical length is the number of characters
currently considered to be stored in the string. This can change as you work with
the string. The logical length (which from now on we will simply call the length) is a
numeric value stored as part of the string itself and can be read by your code.

FreePascal from Square One, Volume 1202

A string variable is defined using the reserved word STRING. The default
physical length for a string defined as STRING in FreePascal is 255 characters.
(This differs from Turbo Pascal V3.0 and earlier, in which the STRING type had
no default length, and derived string types of some given size had to be explicitly
declared in the TYPE section of your programs.) You may not always need a string
that physically large (for example, a telephone number fits comfortably in less than
20 characters) and you may define smaller string types to save memory by placing
the physical size after the reserved word STRING in brackets:

VAR

 Message : String[80]; { Physical size = 80 }

 Name : String[30]; { Physical size = 30 }

 Address : String[30]; { Physical size = 30 }

 State : String[2]; { Physical size = 2 }

The legal range of physical lengths for variable-length strings is 1 to 255
characters.

You may also define separate string types as strings of different physical lengths.
This is a much better way to deal with strings shorter than 255 characters:

TYPE

 String80 = String[80];

 String30 = String[30];

 Buffer = String[255];

Once you have defined these types, declare all string variables that are to have
a physical length of 30 characters as type String30. This way, all such strings will
have identical types and not simply compatible types.

So what is a short string, physically? A string is an array of characters indexed
from 0 to the physical length. Character 0 is special, however: It is the length byte and
it holds the logical length of the string at any given time. The length byte is set by the
runtime code when you perform an operation on a string that changes its logical
length. Assignment and string concatenation using the “+” operator are two ways
to do this. The Concat function is another that I’ll discuss later.

MyString := ‘’; { MyString[0] = 0 }

MyString := ‘Frodo’; { MyString[0] = 5 }

MyString := ‘Alfred E. ‘ + ‘Newmann’; { MyString[0] = 17 }

Strings may be accessed as though they were in fact arrays of characters. You can
reference any character in the string, including the length byte, with a normal array
reference:

203Derived Types and Data Structures

VAR

 MyString : String[15];

 CharS : Integer;

 OUTChar : Char;

MyString := ‘Galadriel’;

CharS := ORD(MyString[0]); { CharS now equals 9 }

OUTChar := MyString[6]; { OUTChar now holds ‘r’ }

Even though the runtime code treats the length byte as a number, it is still an
element in an array of Char and thus cannot be assigned directly to type Byte or
Integer. To assign the length byte to a numeric variable, you must use the ORD
transfer function, which is Pascal’s orderly way of transferring a character value to a
numeric value. (See Section 11.5.)

Having told you that this is possible, let me warn you: Don’t do it. It was common
enough in the Turbo Pascal era, because short strings were more or less all there
were in the string department. String handling in modern Pascal compilers has
gradually moved away from short strings toward (much) longer strings allocated
dynamically, as dynamic arrays are. I’ll explain dynamic strings in the next section.
The warning is that dynamic strings don’t have a length counter at element 0, so
accessing element 0 won’t accomplish anything useful, and (depending on how the
compiler is configured) may generate an error.

No. Use the predefined string-handling functions and procedures built into
FreePascal instead. The Length function is a good example, and makes directly
accessing a short string’s length counter unnecessary. It returns the current logical
length of a string variable of any type:

CharCount := Length(MyString); { CharCount now equals 9 }

I’ll discuss Length, Concat, and all the other built-in string handling functions and
procedures in detail in Chapter 12.

Characters and short strings are compatible in some limited ways. You can assign
a character value (stored either in constant form or as a Char variable) to a string
variable. The string variable then has a logical length of one:

VAR

 OUTChar : Char;

MyString := ‘A’ { Logical length = 1 }

MyString := OUTChar; { Ditto }

FreePascal from Square One, Volume 1204

The reverese, however, isn’t true: A string (even one having a length of zero or
one) cannot be assigned to a variable of type Char.

You can compare a string variable to a character literal:

IF MyString = ‘A’ THEN StartProcess;

In any string comparison , the two strings must be identical in both length and
content for a TRUE value to be generated by the expression.

It’s possible to assign a string to another string with a shorter physical length. This
will cause neither a compile time nor a run time error. What it will do is truncate the
data from the larger string to the maximum physical length of the smaller string.

You can concatenate a character literal or variable to a string variable, using
either the Concat function or (more commonly) the “+” operator. Concat (which I’ll
describe briefly in section 12.2) is a holdover from ancient times, and I recommend
using the “+” operator instead. Be aware of it if you have to deal with older Pascal
code. For new code, use “+”.

ANSI Strings
Short strings were first developed for UCSD Pascal in 1978, and have been
supported by nearly all Pascal compilers since then. As I explained earlier, short
strings may be at most only 255 characters long. That’s useful, but still limiting.
FreePascal’s ANSIString type (introduced with Delphi 2.0) eliminates any
practical length limitations. ANSIString variables can be as long as 4,294,967,295
characters, which is plenty, and in fact represent more memory than a lot of low-
end computers actually provide. You can load entire text documents into a single
ANSIString variable for word counting or other document-wide operations.
Four gigabytes is a lot of room; this entire book will fit in a single ANSIString
variable fifty times over.

Internally, however, the two string types are vastly different. An ANSIString
variable is a slightly enhanced dynamic array of characters. It’s stored in dynamic
memory on the heap, just as dynamic arrays are. An ANSIString variable is really
a pointer to the string data on the heap. Ahead of the string data is a 32-bit length
counter, plus a reference counter. (More on this at the end of this section.) Also,
every ANSIString is guaranteed to be terminated by a null character. Any string
operation that changes the number of characters in the variable will move the null
appropriately. Null termination is there primarily to make ANSIString variables
compatible with PChar strings (see below) which are generally used when Pascal
code needs to interface with code from other languages that use PChar as their
primary string type, like C and C++.

205Derived Types and Data Structures

You can use all of the standard string functions with ANSIString, including
Length. In fact, if you stick to standard functions (rather than attempting to inspect
and manipulate the data on the heap by other means) and respect the 255-character
limitation on short strings, there is no significant difference in how the two string
types are used.

Short string or ANSIString?
At this writing (2016) short strings are used only rarely in new code. By default,
when you declare a variable as type STRING, FreePascal will treat the variable as an
ANSIString. In order to force the compiler to treat a STRING as type ShortString,
you need to use the $H compiler directive. By default, the state of $H is plus, that is,
$H+. When $H is plus, the compiler treats STRING as ANSIString. When $H is
minus, the compiler treats STRING as ShortString. You can change the state of
$H at will in the VAR section of a program:

VAR

 GreatBigString : STRING; {Will compile as ANSIString }

{$H-}

 AncientString : STRING; {Will compile as ShortString }

{$H+}

 AnotherBigString : STRING; {Will compile as ANSIString }

There’s one exception to this rule: When you include a length value in the string
variable definition, FreePascal will treat the variable as a short string, irrespective of
the current state of the $H directive. The string definition below will always compile
StreetName as ShortString:

VAR

 StreetName : STRING[80]; {Will always compile as ShortString }

Of course, if you turn $H to minus, make sure you turn it back to plus, or all
STRING definitions from then on will be compiled as ShortString.

ANSIString references
An ANSIString variable is a dynamic variable, existing entirely on the heap. The
variable is in fact a pointer to the string’s data, preceded by two 32-bit values: a
length counter, and a reference counter. The reference counter is part of FreePascal’s
machinery supporting something called lifetime management. Lifetime management
applies to several data types that reside on the heap, especially dynamic string types
(there are several) and dynamic arrays.The idea is that data blocks on the heap that

FreePascal from Square One, Volume 1206

are no longer being pointed to (referenced) by a pointer of some sort should not
be allowed to take up memory forever. If you’ve never dealt with Pascal pointers
before, this section may be difficult to follow. I’ll deal with them at length in a future
book; do the best you can here, or come back after learning more about the heap.

When a program is executed, the runtime code sets up variables in memory. A
dynamic variable of type ANSIString begins life as a null pointer. (A null pointer
is a pointer with all bits set to 0.) No heap memory is initially involved. Only when
some value is assigned to an ANSIString variable is memory allocated on the heap
to hold the value. At that point, the variable’s reference counter on the heap is set to
1. If a second ANSIString variable is assigned the value of the first ANSIString, a
second memory block is not created. Instead, the second ANSIString is pointed to
the same memory block owned by the first. You do not have two copies of the string
data. You have two pointers pointing to the same copy of the string data. With two
pointers pointing at the same data, the reference counter preceding the data on the
heap is given the value 2. See how this works in he code below:

VAR

 GreenString, RedString : ANSIString;

 . . .

 { GreenString and RedString begin life as null pointers. }

GreenString := ‘Green’;

 { GreenString is now allocated on the heap. Ref counter = 1 }

 RedString := GreenString;

 { RedString now points to GreenString’s data. Ref counter = 2 }

 RedString := ‘Red’;

 { RedString now has its own heap data block. GreenString’s }

 { ref counter is now back to 1. RedString’s ref counter is 1. }

 GreenString := ‘’;

 { GreenString is now empty. Ref count is 0. The “garbage }

 { collection” code releases GreenString’s data block. Now }

 { GreenString has no heap data and is again a null pointer. }

The key point is that when an ANSIString becomes empty, the data block it once
had on the heap becomes useless, and its memory wasted. Lifetime management
uses its “garbage collector” function to de-allocate that memory so that the memory
may be used by other dynamic variables in the program.

If this sounds scary, relax. It’s all handled automatically by the runtime code, and
(especially while you’re still a beginner) you don’t need to be aware of it. Once you
learn about Pascal pointers, I guarantee that it will all make a great deal more sense!

207Derived Types and Data Structures

C-style PChar null-terminated string support
To support easier programming of Microsoft Windows applications in Pascal back in
the 1990s, Borland added a unit to the product that supports C-style null-terminated
strings. The Strings unit contains a number of short procedures that manipulate C-
style strings, and if you wish to use C-style strings you must include the Strings unit
in your USES statement. (More about units and USES in Chapter X.) FreePascal
includes the Strings unit. The C-style string type is PChar. It’s basically a pointer
to a sequence of characters set out in static memory at compile time. PChar strings
are not stored in dynamic memory on the heap, as are ANSIString strings. Using
various string functions and operators in the Strings unit, characters are stored in
the area of memory allocated to the PChar, and after the last character containing
real data (not after the last byte allocated for the string!) there is a null character,
which is a binary 0. The null character moves up and down the string as characters
are written to the string. There is no length counter and no reference counter. To
determine the length of a PChar string at any given time, you must literally scan the
string, counting characters until you hit the null. The Strings unit has functions that
perform this and many other services.

Using C-style strings requires that you be proficient in the use of pointers, which
is a great deal to ask of beginning Pascal programmers, especially when the use
case for C-style strings is so narrow. I recommend not bothering with them unless
you are forced to deal with Microsoft Windows API calls or other code libraries
that were designed to be called from the C language. You can find more about them
online, and I will not be discussing them further in this book.

“Wide” strings
One other category of string types needs to be mentioned, even though I’m not going
to cover them in detail in this book. (I may add a more detailed description in a future
update.) Those are the “wide” strings, which are strings of Unicode characters.

Unicode is an industry standard laying out a character format for characters
beyond the 255 characters present in the ASCII character set used in English and
Western European software. Each Unicode character is defined in two bytes rather
than one. This allows many other alphabets (such as Cyrillic or Arabic) to be used
in software.

Type UnicodeString is much like ANSIString, except that two adjacent bytes
are used to represent each character, and the string as a whole is terminated with
two null characters.

There is a great deal more to Unicode than this, and for the time being I must
refer you online (for the big picture) and to the FreePascal doc for details.

FreePascal from Square One, Volume 1208

8.7. Typed constants
Standard Pascal only allows simple constants: Integers, characters, reals, Booleans,
and strings. Turbo Pascal introduced typed constants, meaning constants with an
explicit type that are initialized to some specific value. FreePascal continues and
expands that support.

Calling typed constants “constants” is not entirely fair. Real constants are
hardcoded “in-line” into the machine code produced by the compiler, with an
actual physical copy of the constant dropped in everywhere it is named. The
constant thus exists at no single address. Turbo Pascal’s typed constants are
actually static variables that are initialized at runtime to values taken from the
source code. They exist at one single address, which is referenced anytime the
typed constant is used.

Typed constants also violate the most fundamental proscription of constants in
all languages: They may be changed during the course of a program run. Of course,
you are not obligated to alter typed constants at runtime, but the compiler will not
stop you if you try.

With that in mind, it might be better to think of typed constants as a means
of forcing the compiler to initialize complicated data structures. Standard Pascal
has no means of initializing variables automatically. If values are to be placed into
variables, you must place them there somehow, either from assignment statements
or by reading values in from a file. For example, you could initialize an array of
fifteen integers this way:

VAR

 Weights : ARRAY[1..15] OF Integer;

Weights[1] := 17;

Weights[2] := 5;

Weights[3] := 91;

Weights[4] := 111;

Weights[5] := 0;

Weights[6] := 44;

Weights[7] := 16;

Weights[8] := 3;

Weights[9] := 472;

Weights[10] := 66;

Weights[11] := 14;

Weights[12] := 38;

Weights[13] := 57;

Weights[14] := 8;

Weights[15] := 10;

209Derived Types and Data Structures

For fifteen values this may seem manageable. But suppose you had fifty values?
Or a hundred? At that point typed constants become very attractive. This same
array could be initialized as a structured constant like so:

CONST

 Weights : ARRAY[1..15] OF Integer =

 (17,5,91,111,0,44,16,3,472,66,14,38,57,8,10);

The form of a typed constant definition is this:

<identifier> : <type> = <values>

Constant definitions, by convention, represent the first section of a Pascal
program, coming before type and variable definitions. Because FreePascal allows
multiple CONST keywords within a single program, you may have a separate
CONST declaration section for typed constants after the type declaration section.
This allows you to declare your own custom type definitions first, and then create
constants having your custom types.

Array constants
The numeric array example above is a simple, one-dimensional array constant.
Its values are placed, in order, between parentheses, with commas separating the
values. You must give one value for each element of the array constant. The compiler will not
allow you to initialize some values of an array and leave the rest “blank.” You must
do all of them or none at all. If the number of values you give does not match the
number of elements in the array, the compiler will display an error message.

If you only need to initialize a few values out of a large array, (leaving the others
undefined) it makes more sense to go back to individual assignment statements.

You may also define multidimensional array constants. The trick here is to enclose
each dimension in parentheses, with commas separating both the dimensions and the
items. A single pair of parentheses must enclose the entire constant. The innermost
nesting level represents the rightmost dimension from the array declaration. An
example will help:

CONST

 Grid : ARRAY[0..4,0..3] OF Integer =

 ((4,6,2,1),

 (3,9,8,3),

 (1,7,7,5),

 (4,1,7,7),

 (3,1,3,1));

FreePascal from Square One, Volume 1210

This is a two-dimensional array of integer constants, arranged as five rows of
four columns, and might represent game pieces on a game grid. Adding a third
dimension to the game (and the grid) would be done this way:

CONST

 Space : ARRAY[0..7,0..4,0..3] OF Integer =

(((4,6,2,1),(3,9,8,3),(1,7,7,5),(4,1,7,7),(3,1,3,1)),

 ((1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1)),

 ((2,2,2,2),(2,2,2,2),(2,2,2,2),(2,2,2,2),(2,2,2,2)),

 ((3,3,3,3),(3,3,3,3),(3,3,3,3),(3,3,3,3),(3,3,3,3)),

 ((4,4,4,4),(4,4,4,4),(4,4,4,4),(4,4,4,4),(4,4,4,4)),

 ((5,5,5,5),(5,5,5,5),(5,5,5,5),(5,5,5,5),(5,5,5,5)),

 ((6,6,6,6),(6,6,6,6),(6,6,6,6),(6,6,6,6),(6,6,6,6)),

 ((7,7,7,7),(7,7,7,7),(7,7,7,7),(7,7,7,7),(7,7,7,7)));

The values given for the two-dimensional array have been retained here to see
how the array has been extended by one dimension. Note that the list of values in
an array constant must begin with the same number of left parentheses as the array
has dimensions. Remember, also, that every element in the array must have a value
in the array constant declaration.

Notice that this mechanism allows you to initialize 160 different integer values
in a relatively small space. Imagine what it would have taken to initialize this array
with a separate assignment statements for each array element!

Record constants
Record constants are handled a little bit differently. You must first declare a record
type and then a constant containing values for each field in the record. The list of
values must include the name of each field, followed by a colon, and then the value
for that field. Items in the list are separated by semicolons. As an example, consider
a record containing configuration values for a serial terminal program:

TYPE

 BPS = (B110,B300,B1200,B2400,B4800,B9600);

 ParityType = (EvenParity,OddParity,NoParity);

 TermCFG = RECORD

 LocalAreaCode : String[3];

 UseTouchtones : Boolean;

 DialOneFirst : Boolean;

 BaudRate : BPS;

 BitsPerChar : Integer;

 Parity : ParityType

 END;

211Derived Types and Data Structures

CONST

 Config : TermCFG =

 (LocalAreaCode : ‘716’;

 UseTouchtones : True;

 DialOneFirst : True;

 BaudRate : B1200;

 BitsPerChar : 7;

 Parity : EVEN_PARITY);

The structured constant declaration for Config must come after the type definition
for TermCFG, otherwise the compiler would not know what a TermCFG was.
Note that FreePascal allows multiple CONST sections, and will allow you to place
a CONST section after a TYPE section. This would not be allowed under Standard
Pascal. Also, note that there is no BEGIN/END bracketing in the declaration of
Config. The parentheses serve to set off the list of field values from the rest of your
source code.

Set constants
Declaring a set constant is not very different from assigning a set value to a set
variable:

CONST

 Uppercase : SET OF Char = [‘A’..’Z’];

The major difference is the notation used to represent non-printable characters
in a SET OF Char. Characters that do not have a printable symbol associated with
them may ordinarily be represented in a set builder by the Chr transfer function:

MySet := [Chr(7),Chr(10),Chr(13)];

Important: The Chr notation shown above will not work when declaring set
constants. You have two alternatives:

1) Express the character as a control character by placing a caret symbol (^) in
front of the appropriate character. The bell character, Chr(7), would be expressed
as ^G.

2) Express the character as its ordinal value preceded by a pound sign (#). The
bell character would be expressed as #7. This notation is more useful for expressing
characters falling in the “high” 128 bytes of type Char, corresponding to the line-
drawing, mathematical, and foreign language characters on PCs.

For example, the set of whitespace characters is a useful set constant:

FreePascal from Square One, Volume 1212

CONST

 Whitespace : SET OF Char = [#8,#10,#12,#13,’ ‘];

or, alternatively:

CONST

 Whitespace : SET OF Char = [^H,^J,^L,^M,’ ‘];

The following three routines show you how to use set constants in simple
character-manipulation tools. If you do a lot of character manipulation and find a
great deal of use for these three set constants, you might also declare them at the
global program level so that any part of the program can use them. Remember that,
declared as it is here locally to the individual functions, the Whitespace constant
cannot be accessed from outside the function! This is a consequence of the scoping
rules of procedures and functions, while I’ll cover in detail in Chapter X.

FUNCTION CapsLock(Ch : Char) : Char;

CONST

 Lowercase : SET OF Char = [‘a’..’z’];

BEGIN

 IF Ch IN Lowercase THEN CapsLock := Chr(Ord(Ch)-32)

 ELSE CapsLock := Ch

END;

FUNCTION DownCase(Ch : Char) : Char;

CONST

 Uppercase : SET OF Char = [‘A’..’Z’];

BEGIN

 IF Ch IN Uppercase THEN DownCase := Chr(Ord(Ch)+32)

 ELSE DownCase := Ch

END;

FUNCTION IsWhite(Ch : Char) : Boolean;

CONST

 Whitespace : SET OF Char = [#8,#10,#12,#13,’ ‘];

BEGIN

 IsWhite := Ch IN WhiteSpace

END;

213Derived Types and Data Structures

FreePascal from Square One, Volume 1214

215

Controlling the flow of program logic is one of the most important facets of any
programming language. Conditional statements that change the direction of

the flow of control, looping statements that repeat some action a number of times,
switch statements that pick one course out of many based on some controlling
value, all make useful programs possible.

Pascal, furthermore, would like you the programmer to direct the flow of control
in a structured, rational manner, so the programs you write are easy to read and
easy to change when they need changing. For this reason, wild-eyed zipping around
inside a program is difficult in Pascal.

The language syntax itself suggests with some force that programs begin at
the top of the page and progress generally downward, exiting at the bottom when
the work is done. Multiple entry and exit points and unconditional branching via
GOTO are more trouble to set up--which is just as well, because they can be a lot
more trouble to understand and debug when they don’t go quite where you want
them to, when you want them to, and therefore do what you want them to.

And making things go where you want them to is the fundamental purpose of
this admittedly large chapter.

9.1. BEGIN, END, and Compound Statements
We have already looked at several simple types of statements like assignment
statements and data definition statements. In Pascal you frequently need to group
a number of statements together and treat them as though they were a single
statement. The means to do this is the pair of reserved words BEGIN and END.
A group of statements between a BEGIN and END pair becomes a compound
statement. The bodies of procedures and functions, and of programs themselves,
are compound statements:

Chapter 9.
Structuring Code

FreePascal from Square One, Volume 1216

PROGRAM Rooter;

VAR

 R,S : Real;

BEGIN

 Writeln(‘>>Square root calculator<<’);

 Writeln;

 Write(‘>>Enter the number: ‘);

 Readln(R);

 S := Sqrt(R);

 Writeln(‘ The square root of ‘,R:7:7,’ is ‘,S:7:7,’.’)

END.

The statements bracketed by BEGIN and END in the above example are all
simple statements, but that need not be the case. Compound statements may also
be parts of larger compound statements:

PROGRAM BetterRooter;

VAR

 R,S : Real;

BEGIN

 Writeln(‘>>Better square root calculator<<’);

 Writeln;

 R:=1;

 WHILE R<>0 DO

 BEGIN

 Writeln(‘>>Enter the number (0 to exit): ‘);

 Readln(R);

 IF R<>0 THEN

 BEGIN

 S := Sqrt(R);

 Writeln(‘ The square root of ‘,R:7:7,’ is ‘,S:7:7,’.’);

 Writeln

 END

 END;

 Writeln(‘>>Square root calculator signing off...’)

END.

This program contains one compound statement nested inside another, and both
nested within a third compound statement that is the body of the program itself.

This is a good place to point out the “prettyprinting” convention that is virtually
always used when writing Pascal code. The rule on prettyprinting turns on
compound statements: Each compound statement is indented two spaces to the
right of the rest of the statement in which it is nested.

217Structuring Code

It’s also crucial to remember that prettyprinting is ignored by the compiler. It is strictly
a typographical convention to help you sort out nested compound statements by
“eyeballing” rather than counting BEGINs and ENDs. You could as well (as some
do) indent by three or more spaces instead of two. You could also (as some do) not
indent at all. The compiler doesn’t care. But the readability of your program will
suffer if you don’t use prettyprinting.

There is one other thing about compound statements that might seem obvious to
some but very un-obvious to others: Compound statements can be used anywhere a
simple statement can. Anything between a BEGIN/END pair is treated syntactically
by the compiler just as single simple statement would be.

Compound statements may also be bounded by the reserved words REPEAT
and UNTIL, as I’ll show a little later in this chapter.

9.2. IF/THEN/ELSE
A conditional statement is one that directs program flow in one of two directions
based on a Boolean value. In Pascal the conditional statement is the IF/THEN/ELSE
statement. The ELSE clause is optional, but every IF reserved word must have a
THEN reserved word associated with it. In its simplest form, such a statement is
constructed this way:

IF <Boolean expression> THEN <statement>

The way this statement works is almost self-explanatory from the logic of the
English language: If the Boolean expression evaluates to True, then <statement> is
executed. If the Boolean expression evaluates to False, control “falls through” to the
next statement in the program.

Adding an ELSE clause makes the statement look like this:

IF <Boolean expression> THEN <statement1>

 ELSE <statement2>

Here, if the expression evaluates to True then <statement 1> is executed. If the
expression evaluates to False, then <statement 2> is executed. If an ELSE clause
exists, you can be sure that one or the other of the two statements will be executed.

Either or both of the statements associated with IF/THEN/ELSE may be
compound statements. Remember that a compound statement may be used
anywhere a simple statement may. For example:

FreePascal from Square One, Volume 1218

IF I < 0 THEN

 BEGIN

 Negative := True; { Set negative flag }

 I := Abs(I) { Take abs. value of I }

 END { Never semicolon here! }

ELSE Negative := False; { Clear negative flag }

An important point to remember: There is no semicolon after the BEGIN/END
compound statement. The entire code fragment above is considered a single IF
statement. A crucial corollary: There is never a semicolon immediately before the
ELSE reserved word in an IF/THEN/ELSE statement. Adding one will give you a
“freestanding ELSE,” which is meaningless in Pascal and will trigger a syntax error.
The only place you’ll ever find a semicolon immediately before an ELSE word is inside
a CASE statement, as I’ll explain a little later in connection with CASE statements.

Nested IF Statements
Since an IF statement is itself a perfectly valid statement, it may be one or both of
the statements contained in an IF/THEN/ELSE statement. IFs may be nested as
deeply as you like--but remember that if someone reading your code must dive
too deeply after the bottommost IF, he or she may lose track of things and drown
before coming up again. If the sole purpose of multiply-nested IFs is to choose one
alternative of many, it is far better to use the CASE statement, which will be covered
in Section 9.3. Structurally, such a construction looks like this:

IF <Boolean expression1> THEN

 IF <Boolean expression2> THEN

 IF <Boolean expression3> THEN

 IF <Boolean expression4> THEN

 IF <Boolean expression5> THEN

 <statement>;

The bottom line here is that all Boolean expressions must evaluate to True before
<statement> is executed.

Such a downward escalator of IFs is often hard to follow. Sharp readers may
already be objecting that this same result could be done with AND operators:

IF <Boolean1> AND <Boolean2> AND <Boolean3>

 AND <Boolean4> AND <Boolean5> THEN

 <statement>;

This is entirely equivalent to the earlier nested IF with one sneaky catch: Here, all
the Boolean expressions are evaluated before a decision is reached on whether or

219Structuring Code

not to execute <statement>. With the nested IF, the compiler will stop testing as
soon as it encounters a Boolean expression that turns up False. In other words, in
a nested IF, if <Boolean3> is found to be False, the compiler never even evaluates
<Boolean4> or <Boolean5>.

Nitpicking? No! There are times when in fact the reason for <Boolean3> might
be to make sure <Boolean4> is not tested in certain cases. Divide by zero is one of
those cases. Consider this:

IF AllOK THEN

 IF R > PI THEN

 IF S <> 1 THEN

 IF (R / ((S*S)-1) < PI) THEN

 CalculateRightAscension;

Here, a value of S = 1 will cause a divide-by-zero error if the code attempts to
evaluate the next expression. So the code must stop testing if S > 1 turns up False or
risk crashing the program with a runtime divide-by-zero error.

With nested IFs you can determine the sequential order in which a series of tests
is done. A string of AND operators between Boolean expressions may evaluate
those expressions in any order dictated by the code generator’s optimization logic.
If one of your tests carries the hazard of a run-time error, use nested IFs.

Nested ELSE/IFs
The previous discussion of nested IFs did not include any ELSE clauses. Nesting IF’s
does not preclude ELSEs, though the use and meaning of the statement changes
radically. Our previous example executed a series of tests to determine whether
or not a single statement was to be executed. By using nested ELSE/IFs you can
determine which of many statements is to be executed:

IF <Boolean1> THEN <statement1>

 ELSE

 IF <Boolean2> THEN <statement2>

 ELSE

 IF <Boolean3> THEN <statement3>

 ELSE

 IF <Boolean4> then <statement4>

 ELSE <statement5>;

The code will descend the escalator, and as soon as it finds a Boolean with a
value of True, it will execute the statement associated with that Boolean. The tests
are performed in order, and even if <Boolean4> is True, it will not be executed (or
<Boolean4> even evaluated) if <Boolean2> is found to be True first.

FreePascal from Square One, Volume 1220

The final ELSE clause is not necessary; it provides a “none of the above” choice,
in case none of the preceding Boolean expressions turned out to be true. You
could simply omit it and control would fall through to the next statement without
executing any of the statements contained in the larger IF statement.

As with nested IFs described above, nested ELSE/IFs allow you to set the order
of the tests performed, so that if one of them carries the danger of a run-time error,
you can defuse the danger with an earlier test for the dangerous values.

The CASE statement is a shorthand form of nested ELSE/IFs in which all of the
Boolean expressions are of this form: <value> = <value> and the type of all <value>s
is identical. We’ll look at the CASE statement in detail in Section 9.3.

Short-circuit Boolean evaluation
Apart from nesting IF statements, there is another, considerably less portable
means of dictating the order in which the compiler evaluates Boolean expressions.
It involves a compiler optimization technique introduced with Turbo Pascal 4.0
called “short circuit Boolean evaluation.”

A few paragraphs back we looked at a nested IF construction that avoided the
possibility of a divide-by-zero error by testing for a divide-by-zero condition before
performing the actual divide operation. Consider that nested IF expressed as a single
Boolean expression:

IF AllOK AND

 (R > PI) AND

 (S <> 1) AND

 (R / ((S*S)-1) < PI) { Could trigger divide-by-zero! }

THEN CalculateRightAscension;

In most cases, the compiler will evaluate all four of the Boolean subexpressions
before combining them into a single Boolean value as the result of the entire, larger
expression. As we mentioned earlier, if S ever takes on a value of 1, the fourth
subexpression will trigger a divide-by-zero error, since when S equals 1, R is divided
by ((S*S)-1) which equals zero.

By turning on short-circuit Boolean evaluation, the compiler is forced to evaluate
Boolean expressions from left to right, and it will stop evaluation as soon as it is
sure that testing further will not change the ultimate value of the expression.

How can it be sure that further testing won’t change things? Think about the
meaning of the AND operator. If any number of Boolean subexpressions are
ANDed together, a single False value will force the whole expression to False. So once
that first False turns up in evaluating an expression from left to right, the whole

221Structuring Code

expression will be False no matter what else waits to be evaluated further to the
right.

This technique is called “short circuit,” because it quits when possible before
evaluating an entire expression. The primary reason for it is that it can make your
programs run more quickly if there are many Boolean expressions to be evaluated.
Any time you can perform the same job by executing less code, the job will go more
quickly.

However, the side benefit of allowing you to arrange your Boolean expressions
so that “dangerous” subexpressions are to the right of “sentinel” subexpressions that
guard against the dangerous condition is perhaps more generally useful. Returning
to the example above: If short-circuit Boolean evaluation is enabled, the compiler
will evaluate the subexpression (S <> 1). If S is equal to 1, evaluation stops there, and
the dangerous expression (R / ((S*S)-1) < PI) will never be evaluated, eliminating
the possibility of a divide-by-zero runtime error bringing the program to a halt.

Short-circuit evaluation doesn’t only apply to the AND operator. A string
of expressions ORed together will be evaluated only until the first True value is
encountered. More complicated expressions are simply ground through until the
compiler is certain that nothing further can change the ultimate Boolean value.
Then it will stop.

Using short-circuit Boolean evaluation is made easier by the fact that the compiler
assumes it by default. What is called “complete” Boolean expression evaluation
must be explicitly chosen if you want to use it. Forcing complete Boolean expression
evaluation is done through the /B+ switch when using the command-line version of
the compiler.

You can also force complete Boolean expression evaluation by inserting a {$B+}
compiler command in your source code. By bracketing a region of code between
a {$B+} command and a {$B-} command, you can force complete evaluation only
between the two commands, and use short-circuit evaluation throughout the rest
of your program.

Why would you ever want to use complete Boolean expression evaluation?
Just as you sometimes need to ensure that a certain subexpression will never be
evaluated (as we saw above), you must sometimes ensure that every subexpression
is always evaluated.

Almost all such cases involve Pascal functions that return Boolean values after
doing some sort of necessary work that must be completed regardless of which
value the function returns. (For those of you reading this book serially who may not
yet understand Pascal functions and how they return values, look ahead to Chapter
10, especially Section 10.1.)

FreePascal from Square One, Volume 1222

IF AllocateBigBuffer(BigBuffPtr) AND

 AllocateLittleBuffer(LittleBuffPtr)

 THEN LoadBothBuffers ELSE

 BEGIN

 IF BuffPtr1 <> NIL THEN LoadBuffer1

 ELSE IF BuffPtr2 <> NIL THEN LoadBuffer2

	 ELSE UseDiskSwap := True

 END;

This example comes from a program that needs a lot of memory for buffers. It
attempts to allocate both its large and its small buffers if possible. If only the large
buffer can be allocated without leaving enough RAM for the small buffer, so be it.
Or, if the large buffer cannot be allocated but the small buffer can, the small buffer
will be allocated and used. Finally, if the program can’t find enough memory to
allocate either RAM-based buffer, it will use a disk-swapping system to make disk
space serve as (slower) memory space for buffer operations. BuffPtr1 and BuffPtr2
are pointers that are initialized to point to their buffers when those buffers are
allocated. If there isn’t enough memory to allocate a buffer, its pointer is returned
with a value of NIL to indicate that its buffer could not be created.

Whether or not both buffers can be created in memory, both pointers must be
initialized to some value, either a legitimate pointer value to an allocated buffer, or else
NIL. Later on in the program, the logic will need to test those pointers to see if a given
buffer exists. Having either pointer in an uninitialized state could be disastrous.

If we allowed short-circuit Boolean expression evaluation here, function
AllocateLittleBuffer would never be executed if AllocateBigBuffer failed to
find enough memory to allocate the large buffer. LittleBuffPtr would be left in an
uninitialized state, and later on, the program could malfunction if it tried to test the
uninitialized LittleBuffPtr.

In this situation, the entire Boolean expression

IF AllocateBigBuffer(BigBuffPtr) AND

 AllocateLittleBuffer(LittleBuffPtr)

must be evaluated, regardless of the outcome of executing function AllocateBigBuffer.
The only way to guarantee this is to force complete Boolean expression evaluation,
either by issuing a command to the IDE or to the command-line compiler, or by
bracketing this area of code between {$B+} and {$B-} commands.

As the somewhat specialized and arcane nature of this example suggests, short-
circuit Boolean evaluation will be your method of choice in the vast majority of
instances.

223Structuring Code

9.3. CASE
Choosing between one of several alternative control paths is critical to computer
programming. We’ve seen how IF/THEN/ELSE in its simplest form can choose
between two alternatives based on a Boolean expression. By nesting IF/THEN/
ELSE statements one within another, we can choose among many different control
paths, as we saw in the previous section.

The problem of readability appears when we nest IF statements more than two
or three deep. Nested IF/THEN/ELSE gets awkward and non-intuitive in a great
hurry when more than three levels exist. Consider the problem of flashing a message
on a display screen based on some input code number. A problem reporting system
on a display-equipped car computer system might include a statement sequence
like this:

Beep;

Writeln(‘*****WARNING*****’);

IF ProblemCode = 1 THEN

 Writeln(‘[001] Fuel supply has fallen below 10%’)

ELSE IF ProblemCode = 2 THEN

 Writeln(‘[002] Oil pressure has fallen below min spec’)

ELSE IF ProblemCode = 3 THEN

 Writeln(‘[003] Engine temperature is too high’)

ELSE IF ProblemCode = 4 THEN

 Writeln(‘[004] Battery voltage has fallen below min spec’)

ELSE IF ProblemCode = 5 THEN

 Writeln(‘[005] Brake fluid level has fallen below min spec’)

ELSE IF ProblemCode = 6 THEN

 Writeln(‘[006] Transmission fluid level has fallen below min spec’)

ELSE IF ProblemCode = 7 THEN

 Writeln(‘[007] Radiator water level has fallen below min spec’)

ELSE

 Writeln(‘[***] Logic failure in problem reporting system’);

This will work well enough, but it takes some picking through to follow it clear
to the bottom. This sort of selection of one statement from many based on a single
selection value is what the CASE statement was created for. Rewriting the above
statement with CASE gives us this:

Beep;

Writeln(‘*****WARNING*****’);

CASE ProblemCode OF

 1 : Writeln(‘[001] Fuel supply has fallen below 10%’);

 2 : Writeln(‘[002] Oil pressure has fallen below min spec’);

 3 : Writeln(‘[003] Engine temperature is too high’);

 4 : Writeln(‘[004] Battery voltage has fallen below min spec’);

FreePascal from Square One, Volume 1224

 5 : Writeln(‘[005] Brake fluid level has fallen below min spec’);

 6 : Writeln(‘[006] Transmission fluid level is below min spec’);

 7 : Writeln(‘[007] Radiator water level has fallen below min spec’)

ELSE

 Writeln(‘[***] Logic failure in problem reporting system’)

END; { CASE }

Here, ProblemCode is called the case selector. The case selector may be an expression
or a variable. It holds the value upon which the choice among statements will be made.
The numbers in a line beneath the word CASE are called case labels. Each case label is
followed by a colon and a statement. The statement may be simple or compound.

When the CASE statement is executed, the case selector is evaluated and its
value is compared, one by one, against each of the case labels. If a case label is found
equal to the value of a case selector, the statement associated with that case label is
executed. Once the statement chosen for execution has completed executing, the
work of the CASE statement is done and control passes to the rest of the program.
Only one (or none, see below) of the several statements is executed for each pass
through the CASE statement.

Although my examples here show only single statements associated with case
labels, compound statements are perfectly legal.

If no case label matches the value of the case selector, the statement following the
ELSE is executed. ELSE is optional, by the way; if no ELSE is found, control falls
through to the next statement in the program.

The general form of a CASE statement is this:

CASE <case selector> OF

 <constant list 1> : <statement 1>;

 <constant list 2> : <statement 2>;

 <constant list 3> : <statement 3>;

 <constant list n> : <statement n>

 ELSE <statement>

END;

There may be as many case labels as you like, up to 256. You may be puzzling over
the fact that what we pointed out as case labels are called constant lists in the general
form. In our first example, each case label was only a single numeric constant. A
case label may also be a list of constants separated by commas. Remember that the
case label is the list of constants associated with a statement; each statement can
only have one case label. And do not forget that a case label may never be a variable!

For another example, let’s look at some code for a mail-in survey analysis system.
The responses must be grouped by geographical regions of the country. State is an

225Structuring Code

enumerated type including all the standard two-letter state name abbreviations, in
alphabetical order. This particular code fragment tallies the number of responses
from each geographical region:
TYPE

 {II = Indiana; OG = Oregon to avoid reserved word conflict}

 State = (AK,AL,AR,AZ,CA,CO,CT,DE,DC,FL,GA,HI,ID,IL,II,

 IA,KS,KY,LA,MA,MD,ME,MI,MN,MO,MS,MT,NE,NV,NH,

 NJ,NM,NY,NC,ND,OH,OK,OG,PA,RI,SC,SD,TN,TX,UT,

 VA,VT,WA,WI,WV,WY)

VAR

 FromState : State;

CASE FromState OF

CT,MA,ME,NH,

RI,VT : CountNewEngland := CountNewEngland + 1;

DC,DE,MD,NJ,

NY,PA : CountMidAtlantic := CountMidAtlantic + 1;

FL,GA,NC,SC : CountSoutheast := CountSoutheast + 1;

IA,IL,II,MI,

MN,OH,WI,WV : CountMidwest := CountMidwest + 1;

AL,AR,KY,LA,

MO,MS,TN,VA : CountSouth := CountSouth + 1;

KS,ND,NE,SD,

WY : CountPlains := CountPlains + 1;

AK,CA,CO,HI,

ID,MT,OG,UT,

WA : CountWest := CountWest + 1;

AZ,NM,NV,OK,

TX : CountSouthwest := CountSouthwest + 1;

END; { CASE }

Here you can see that a case label can indeed be a list of constants. Also note that
there is no ELSE clause here because every one of the possible values of type State
is present in one of the case labels.

CASE cautions
The most important thing to remember about case labels is that they must be
constants or lists of constants. A particular value may appear only once in a CASE
statement. In other words, the value IL (from the last example) could not appear
in both the CountMidwest and the CountSouth case labels. The reason for this
should be obvious; if a value is associated with more than one statement, the CASE
logic will not know which statement to execute for that case label value.

You should be careful when using a case selector of type Integer. Case selectors
may only have values between 0 and 255. An integer case selector may have a value

FreePascal from Square One, Volume 1226

much larger than 255, and when it does the results of executing the CASE statement are
undefined. If you work a lot with numeric codes (and intend to use CASE structures to
interpret those codes) it’s a good idea to define those codes as subranges of Integer:

TYPE

 Keypress = 0..255;

 Problem = 0..32;

 Priority = 0..7;

Any of these named subrange types may act as case selectors. FreePascal and
Delphi also provide type Byte, which is an unsigned 8-bit integer that can only
take values from 0-255. For that reason, Byte makes the perfect case selector for
numeric values.

ISO Standard Pascal lacks ELSE in CASE
I should point out an important variance between Turbo Pascal and ISO Standard
Pascal here: One of the puzzling lapses of logic in ISO Standard Pascal is the lack of
an ELSE clause in its definition of CASE. In Standard Pascal, a case selector value for
which no case label exists is supposed to cause a run-time error. The programmer
is supposed to ensure, with range testing, that each value submitted to a CASE
statement is in fact legal for that CASE statement. No good explanation for why
this should be necessary has ever crossed my desk.

It isn’t surprising that every single commercial implementation of Pascal
that I’ve ever tested includes an ELSE clause of some sort in its definition, to
cover that “none of the above” possibility. Turbo Pascal uses the reserved word
ELSE for this purpose. FreePascal supports the reserved word OTHERWISE
as a synonym for ELSE in CASE statements, as did a number of other Pascal
compilers (such as UCSD Pascal and the old Turbo Pascal for the Macintosh) but
the meaning and function are exactly the same. Note well that OTHERWISE
may only be used as a synonym for ELSE in CASE statements; don’t try it in
IF/THEN/ELSE statements.

9.4. FOR Loops
There are many occasions when you must perform the same operation or operations
on a whole range of values. The most-used example would be the generation of a
square roots table for all the numbers from 1 to 100. Pascal provides a tidy way
to loop through the same code for each value, then drop through to the next
statement in the program when all the loops have been performed. It’s called the
FOR statement, and it is one of three ways to perform program loops in Pascal.

227Structuring Code

Printing the table of square roots becomes easy:

FOR I := 1 TO 100 DO

 BEGIN

 J := Sqrt(I);

 Writeln(‘The square root of ‘,I,’ is ‘,J)

 END;

There are better ways to lay out a square roots table, obviously, but this gets
the feeling of a FOR loop across very well. I is an integer. J is a real number. The
compound statement between the BEGIN/END pair is executed 100 times. The
first time through, I has the value 1. Each time the compound statement is executed,
the value of I is increased by 1. Finally, after the compound statement has been
executed with the value of I as 100, the FOR statement has done its job and control
passes on to the next statement in the program.

The preceding example is only a particular case of a FOR statement. The general
form of a FOR statement is this:

FOR <control variable> :=

 <start value> TO <end value> DO <statement>

<start value> and <end value> may be expressions. <control variable> is any
ordinal type, including enumerated types. When a FOR statement is executed, the
following things happen: If <start value> and <end value> are expressions, they are
evaluated and tucked away for reference. Then the control variable is assigned <start
value>. Next, <statement> is executed. After <statement> is executed, the successor
value to the value already in the control variable is placed in the control variable.
The control variable is now tested. If it exceeds <end value>, execution of the FOR
statement ceases. Otherwise <statement> is executed.

The loop repeats until the control variable is incremented past <end value.>

Note that the general definition of a FOR statement does not speak of “adding
one to” the control variable. The control variable is incremented by assigning the
successor value of the current value to the control variable. “Adding” is not really
done at all, not even with integers. To obtain the successor value, the statement
evaluates the expression

Succ(<control variable>)

The function Succ is discussed in more detail later on in Section 11.6. If you
recall our enumerated type Spectrum:

FreePascal from Square One, Volume 1228

TYPE

 Spectrum = (Red, Orange, Yellow, Green, Blue,

 Indigo, Violet);

the successor value to Orange is Yellow. The successor value to Green is Blue, and
so on.

A variable of type Spectrum makes a perfectly good control variable in a FOR
loop:

LightSpeed := 3.0E06;

FOR Color := Red TO Violet DO

 Frequency[Color] := Wavelength[Color] / LightSpeed;

So do characters:

FOR Ch := ‘a’ to ‘z’ DO

 IF Ch IN CharSet DO Writeln(‘CharSet contains ‘,Ch);

If <start value> and <end value> are the same, the loop is executed once. If <start
value> is higher than <end value>, the loop is not executed at all. That is, <statement>
is not executed, and control immediately falls through to the next statement in the
program.

Control Variable Cautions
A control variable must be an ordinal type or a subrange of an ordinal types. Real
numbers cannot be used as control variables. There is no distinct successor value to a
number like 3.141592, after all. For similar reasons you cannot use sets or structured
types of any kind.

Also, an error message will appear if the control variable is a formal parameter
passed by reference (see Section 10.3), that is, a VAR parameter in the function or
procedure’s parameter line. For example, you cannot do this:

PROCEDURE Runnerup(Hi,Lo : Integer;

 VAR Limit : Integer);

VAR

 Foo : Integer;

BEGIN

 <statements>;

 FOR Limit := Lo TO Hi DO <statement>;

 Foo:=Limit;

 <statements>

END;

229Structuring Code

 FreePascal will respond here with an error message. Standard Pascal requires that
control variables be local and non-formal. FreePascal is somewhat more lenient, and
allows control variables to be non-local (this is, not declared in the current block;
see Chapter X for more on this) and also allows formal parameters to be control
variables as long as they are passed by value, that is, if the procedure is given its own
copy of the parameter to play with.

As with most of Pascal’s rules and restrictions, this one was designed to keep
you out of certain kinds of trouble. Understanding what kind of trouble requires a
little further poking at the notion of control variables in FOR loops: To make fault
procedure Runnerup shown above work, some sort of local control variable would
have to be declared in the data declaration section of the procedure, like this:

PROCEDURE Runnerup(Hi,Lo : Integer;

 VAR Limit : Integer);

VAR

 Foo,I : Integer;

BEGIN

 <statements>;

 FOR I := Lo TO Hi DO <statement>;

 Foo := I;

 <statements>

END;

Now the FOR loop will compile correctly. But there is still something wrong
with this procedure. What it’s trying to do is make use of the control variable
immediately after the loop has executed by assigning its value to Foo. This is also
illegal. Immediately after a FOR statement, the value of the control variable becomes undefined.
This is not a problem, since the end value is accessible in Hi. To make use of the final
value of the control variable, assign Hi to Foo instead of I. The end result will be the
same:

PROCEDURE Runnerup(Hi,Lo : Integer;

 VAR Limit : Integer);

VAR

 Foo,I : Integer;

BEGIN

 <statements>;

 FOR I := Lo TO Hi DO <statement>;

 Foo := Hi;

 <statements>

END;

FreePascal from Square One, Volume 1230

There is a good reason for the control variable becoming undefined after its loop
has run its course. After each pass through <statement> the successor value to the
current value in the control variable is computed. In the process, that successor
value may in fact become undefined if the ordinal type being used runs out of values.
Going back to our type Spectrum, what is the successor value to Violet? There is
none; Succ(Violet) is undefined. Consider:

FOR Color := Red TO Violet DO <statement>;

After the loop runs through its seven iterations, Color would hold an undefined
value. If you were allowed to “pick up” the control variable’s value after the run
of a FOR loop, you might in fact be picking up an undefined, nonsense value and
have no way of knowing that it were so. This is why the Standard Pascal definition
declares that control variables are always undefined after a FOR loop to remove
the temptation to “save” the final value of a control variable for later use.

In Borland Pascal V7, a Break statement was added to the language. Break
interrupts execution of a FOR, WHILE, or REPEAT loop before the loop has run
through all the iterations called for. With Break now an option, you cannot always
be sure that the <end value> will match the control variable’s value at the end of the
loop, so you must use a separate variable if you want to keep track of the value in the
control variable and use it after the loop exits.

Within the FOR loop (that is, within <statement>) the control variable must
be treated as a “read-only” value. You can change the value of the control variable
within the FOR loop, but you should do so with extreme hesitation. The REPEAT/
UNTIL and WHILE/DO statements are designed to support this kind of “moving
target” loop, which will execute as often as required to make a control variable
equal to some final value. FOR loops, by contrast, were designed to execute a fixed
number of times, and while executing, the value of the control variable should be
solely under the control of the FOR loop itself.

	 Now (finally!) you may understand why Pascal forbids using VAR parameters
as control variables. Pascal reserves the right to force a control variable into an
undefined state after its loop is done. Using a VAR parameter as a control variable
might “reach up” out of the procedure and force the VAR parameter into some
unexpected and possibly undefined state. Allowing a procedure to “undefine” a
parameter passed to it is asking for trouble, since it may not be obvious to the calling
logic that its parameter may come back undefined.

Preserve sanity in your programs. Keep your FOR loop control variables local.

231Structuring Code

FOR with DOWNTO
The FOR statement as we’ve seen it so far always increments its control variable
“upward”; that is, it uses the successor value of the control variable for the next
pass through <statement>. It is sometimes useful to go the other way: To begin
with a “high” value and count down to a lower value. In this case, the predecessor
value of the value in the control variable becomes the new control variable value
for the next pass through <statement>. This predecessor value is calculated with
the predefined function Pred(<control variable>); see Section 9.X. Otherwise, its
operation is identical to that of FOR with TO:

FOR I := 17 DOWNTO 7 DO <statement>;

FOR Color := Indigo DOWNTO Orange DO <statement>;

FOR Ch := ‘Z’ DOWNTO ‘X’ DO <statement>;

When using DOWNTO, keep in mind that if <start value> is lower than <end
value>, <statement> will not be executed at all. This is the reverse of the case for
FOR/TO loops.

There’s no STEP in FreePascal!
One thing to keep in mind when learning to use FOR loops: The loop can only
“step through” the range the control variable must take one value at a time. Some
languages (including some implementations of BASIC) allow a STEP parameter
to specify that the loop is to “count by five” or some other value. Pascal does not
allow you to do this. If you want the loop to count up or down by some value other
than one, you need to either skip the “in-between” values while counting (the MOD
operator can be handy for this) or else take the gutsy road and jigger the value of the
control variable on each pass. This can be done, but be careful!

9.5. WHILE/DO loops
As we’ve seen, a FOR loop executes a specific number of times, no more, no less,
unless you use the Break or Continue procedures, as I’ll describe in Section 9.X.
The control variable should not be altered during the loop. There are many cases
in which a loop must run until some condition occurs that stops it. The control
variable must be altered during the loop, or the loop will just run forever. Pascal
offers two ways to build such loops: WHILE/DO and REPEAT/UNTIL.

FreePascal from Square One, Volume 1232

The general form of a WHILE/DO loop is this:

WHILE <Boolean expression> DO <statement.>

The <Boolean expression> can be an expression that evaluates to a Boolean
value, such as I > 17, or it can simply be a Boolean variable. As with FOR loops,
<statement> can be any statement, including a compound statement framed
between BEGIN and END.

WHILE/DO loops work like this: The code first evaluates <Boolean expression>.
If the value of the expression is True, then <statement> is executed. If the value is
False, <statement> is not executed even once, and control falls through to the next
statement in the program. (Don’t forget that the WHILE/DO loop as a whole is
considered a statement.)

Assuming that <Boolean expression> came out True the first time, then after
executing <statement> the code goes back and evaluates <Boolean expression>
again. If the expression is still True, <statement> is executed again. If it evaluates
to False, the WHILE/DO loop ends and control passes on to the next statement
in the program.

In short, as long as <Boolean expression> is True, <statement> will be executed
repeatedly. Only when the expression comes up False will the loop end.

For example:

VAR

 pH : Real;

FillTank; { Fill tank with raw water }

Take(pH); { Take initial PH reading }

WHILE pH < 7.2 DO

 BEGIN

 AddAlkali; { Drop 1 soda pellet in tank }

 AgitateTank; { Stir }

 Take(pH); { Read the PH sensor }

 END;

This snippet of code is a part of a control system for some sort of chemical
processing apparatus. All it must do is fill a tank with water, ensuring that the pH
of the water is at least 7.2. If the water from the water supply comes in as too acidic
(water quality varies widely in some parts of the country) its pH must be brought up
to 7.2 before the water is considered useable.

First the tank is filled. Then the initial pH reading is taken. The water may in fact
be useable from the start, in which case the loop is never executed. But if the water
comes up acidic, the loop is executed. A small quantity of an alkali is added, the

233Structuring Code

tank is stirred for a while, and then the pH is taken again. If the pH has risen to 7.2,
the loop terminates. If the pH remains too low, the loop is executed again, more
alkali is added, and the pH is tested once more. This will continue until the pH test
returns a value in the variable pH that is higher than 7.2.

It’s crucial to note that an initial pH test was performed. If the variable pH were
not used before, its value is undefined, and testing it for True or False will not have
any real-world meaning. Make sure the Boolean expression is defined before the WHILE/
DO loop is executed! Every variable in the expression must be initialized somehow
before the expression can be “trusted.”

The most important property of a WHILE/DO loop is that its Boolean expression
is tested before <statement> is executed. A corollary to this is that there are cases
when <statement> will never be executed at all. Keep this in mind while we discuss
REPEAT/UNTIL next.

9.6. REPEAT/UNTIL Loops
REPEAT/UNTIL loops are very similar to WHILE/DO loops. As with WHILE/
DO, REPEAT/UNTIL executes a statement until a Boolean expression becomes
True. The general form is this:

REPEAT <statement> UNTIL <Boolean expression>;

It works this way: First, <statement> is executed. Then <Boolean expression>
is evaluated. If it comes up True, the loop terminates, and control passes on to
the next statement in the program. If <Boolean expression> evaluates to False,
<statement> is executed again. This continues until <Boolean expression>
becomes True.

The important fact to notice here is that <statement> is always executed at
least once. So unlike WHILE/DO, you needn’t initialize all variables in <Boolean
expression> before the loop begins. It’s quite all right to assign all values as part of
executing the loop.

For an example, let’s return to the chemical process controller and consider a
snippet of code to handle a simple titration. Titration means adding small, carefully
measured amounts of one chemical to another while watching for some chemical
reaction to go to completion. Usually, when the reaction is complete, the mixture
will begin changing color, or will become electrically conductive, or give some other
measurable signal.

In Pascal, it might be handled this way:

FreePascal from Square One, Volume 1234

VAR

 Drops : Integer;

 Complete : Boolean;

Drops := 0;

REPEAT

 AddADrop; { Opens valve for 1 drop }

 Drops := Drops + 1; { Increment counter }

 Signal(Complete) { Read the reaction sensor }

UNTIL Complete;

Note that the drops counter is initialized before the loop begins. A drop is added
to the test vessel, and the drop counter is incremented by one. Then the reaction
sensor is read. If it senses that the reaction has gone to completion, the Boolean
variable Complete is set to True.

Since it takes it least one drop to complete the reaction, (without any drops
of the chemical, the reaction can’t even begin) this series of events must be done
at least once. If the first drop completes the reaction, the loop is performed only
once. Most likely, the loop will have to execute many times before the chemical
reaction goes to completion and Complete becomes True. When this happens,
Drops will contain the number of drops required to complete the reaction. The
value of Drops might then be displayed on a display of some kind attached to the
chemical apparatus.

One interesting thing about REPEAT/UNTIL is that the two keywords do
double duty if <statement> is compound. Instead of bracketing the component
statements between BEGIN and END, REPEAT and UNTIL perform the
bracketing function themselves.

WHILE/DO or REPEAT/UNTIL?
These two types of loops are very similar, and it is sensible to ask why both are
necessary. Actually, WHILE/DO can accomplish anything REPEAT/UNTIL can,
with a little extra effort and occasional rearranging of the order of the statements
contained in the loop. The titration code could be written this way:

Drops := 0;

Complete := False;

WHILE NOT Complete DO

 BEGIN

 AddADrop;

 Drops := Drops +1;

 Signal(Complete)

 END;

235Structuring Code

This method requires that Complete be set to False initially to ensure that it
will be defined when the loop first tests it. If Complete were left undefined and it
happened to contain garbage data that could be interpreted as the value True, (if bit
0 is binary 1, for example) the loop might never be executed, and the code would
report that the titration had been accomplished with zero drops of reagent—which
is chemically impossible.

Using REPEAT/UNTIL would prevent that sort of error in logic. Quite simply:
Use REPEAT/UNTIL in those cases where the loop must be executed at least once. Whenever
you write code with loops, always consider what might happen if the loop were
never executed at all—and if anything unsavory might come of it, make sure the
loop is coded as REPEAT/UNTIL rather than WHILE/DO.

9.7. Labels, GOTO, BREAK, and CONTINUE
The bane of ancient unstructured languages like BASIC, FORTRAN, and COBOL is
freeform GOTO branching all over the program body without any sort of plan or
structure. Such programs are very nearly impossible to read. The problem with such
programs, however, is not the GOTOs themselves but bad use of them. GOTOs fill
a certain (exceedingly rare) need in Pascal, but they have a seductive power and on
the surface are eminently easy to understand. Just say

GOTO 150;

and wham! you’re at the location marked by label 150. This straightforwardness leads
inexperienced programmers (especially those first schooled in BASIC) to use them
to get out of any programming spot that they do not fully understand how to deal
with in a Pascal-style structured manner.

I will not caution you, as some people do, never to use a GOTO no matter what.
What I will tell you to do is never use a GOTO when something else will get the job
done as well or better.

Labels
In order to use GOTO, GOTO must have somewhere to go, and in Pascal that
somewhere must be marked by something called a label. Labels, like most everything
else in Pascal, must be predeclared before they are used. Declaring labels is done
in the label declaration section of a program, immediately following the reserved
word LABEL:

FreePascal from Square One, Volume 1236

LABEL

 100,150,200,250,300;

This example LABEL definition statement conforms to ISO Standard Pascal. The
labels themselves must be numeric for Standard Pascal, in the range 0-9999. A label
may mark only one point in a program. That is, you may not mark two different
locations in a single program with the same label.

Most modern Pascal implementations, including FreePascal, extend the label
syntax and allows labels to be ordinary identifiers just like those you use for constants
and variables. You can mix numeric and identifier labels in the same label definition
statement:

LABEL

 100,ShutDown,PowerGlitch,200,300,HardwareFailure;

When you mark a statement with a label, you must put a colon after the label.
Look to the code a few paragraphs down for an example.

Numeric and identifier labels are used identically in GOTO statements:

GOTO ShutDown;

GOTO 200;

The effect is the same in either case: Execution continues at the statement in the
program marked by the label.

GOTO limitations in FreePascal
Use of GOTOs with FreePascal carries a few limitations. You may GOTO a label
within the current block. This means that you may not GOTO a label inside another
procedure or function, or from within a procedure or function out into the main
program block. You should not GOTO a label within a structured statement. In
other words, given this WHILE/DO statement:

WHILE NOT Finished DO

 BEGIN

 Read(MyFile,ALine);

 IF EOF(MyFile) THEN GOTO 300;

 IF ALine = ‘Do not write this...’ THEN GOTO 250;

 Write(YourFile,ALine);

 LineCounter := LineCounter + 1;

 250:

 END

300: Close(MyFile);

237Structuring Code

you could not, from some other part of the block, GOTO label 250. However,
assuming that this snippet of code is not part of some larger structured statement,
you could in fact GOTO label 300 from some other part of the current block.
Whether or not that would perform any useful function is a good question.

This example is very bad practice, but we include it here only to indicate that
you cannot branch into the middle of a WHILE/DO statement from somewhere
outside the statement. Label 250 is accessible only from somewhere between the
BEGIN and END pair.

In general, GOTOs are used to get out of somewhere, not to get in. Standard
Pascal and versions of Borland’s Pascal compilers prior to V7.0 lack two general
looping features that most Pascals now have: BREAK and CONTINUE. BREAK
leaves the middle of a loop and sends control to the first statement after the loop.
CONTINUE stops executing the loop and begins the loop at the top, with the next
value of the control variable.

Without BREAK and CONTINUE, GOTO provides the only reasonably clean
way to get out from inside certain very complicated loops in which a lot is going on
and more than one condition value affects exiting from the loop. Logically speaking,
you can always get out of a loop safely by using the facilities provided by the loop
(exiting at the top with WHILE/DO and at the bottom with REPEAT/UNTIL) but
there are cases when to do so involves tortuous combinations of IF/THEN/ELSE
that might in fact be harder to read than simply jumping out with GOTO. But for
clarity’s sake, always GOTO the statement immediately following the loop you’re
exiting. (This is precisely what the BREAK statement does.)

BREAK and CONTINUE are now in the Pascal language definition, as I’ll
describe below in more detail. That being the case, the possible situations requiring
GOTO have dwindled down to practically nothing.

Such situations are rare enough that FreePascal forbids the use of GOTO by
default. In order to use GOTO, you’ll have to place the {$GOTO ON} compiler
switch in your source code before you use a GOTO statement. The {GOTO OFF}
switch turns off GOTO permissions, and is assumed when you run the compiler
until a {$GOTO ON} is encountered.

With BREAK and CONTINUE in hand, what remains is the very rare need to get
somewhere else right now, especially when the code you need to get to is code to handle
some impending failure or emergency situation that requires immediate attention to
accomplish an orderly shutdown of the equipment, or something of similar seriousness.
This would tend to come up in embedded-system type software that has direct control
over some rather complicated hardware. In thirty-five years of working with Pascal I
have never had to do this. I suspect that if you ever do, you’ll know it.

FreePascal from Square One, Volume 1238

Break and Continue
As I mentioned earlier, modern Pascal compilers provide the BREAK and
CONTINUE statements. Both statements may only be used in connection with
looping statements FOR, WHILE/DO, and REPEAT/UNTIL. BREAK may also
be used in CASE statements, but CONTINUE may not.

BREAK amounts to a GOTO that takes execution to the statement that
immediately follows the loop statement. Consider:

Total := 0;

TotalAveraged := 0;

FOR I := 1 TO DataTally DO

 BEGIN

 IF (Total+DataPoints[I]) >= MaxLongInt THEN Break;

 Total := Total + DataPoints[I];

 Inc(TotalAveraged);

 END;

WriteDataToFile;

Here, a FOR loop is totalling data values stored in an array, for averaging. A
statement has been added to prevent the total from overflowing a long integer
variable. If the total plus the next data value is greater than MaxLongInt (a built-
in constant containing the largest legal LongInt value) the BREAK statement is
executed. BREAK takes execution to the first statement after the end of the FOR
loop’s compound statement; in this example, to the WriteDataFile procedure call.
It’s an “early exit” from the FOR loop, and that’s about all to be said for it.

One caution: Don’t count on the value of the FOR loop’s control variable being
available and meaningful once you leave the loop via BREAK. In my example, I’m
keeping a separate count of the number of items successfully tallied, in the variable
TotalAveraged. That’s always a good idea, even if it seems to complicate the logic.

The use of BREAK within CASE is simple to describe: BREAK ends execution
of the statements of an individual case before that case finishes. Remember that a
statement associated with a case label may be a compound statement containing
several simple statements. Sometimes you may want to just call a case done and exit the
CASE statement as a whole. BREAK will do that, and in some cases may be simpler to
understand than wrapping statements inside multiple IF/THEN/ELSE constructs.

CONTINUE is a little subtler. It’s a “restart” procedure that allows you to “short
circuit” the remaining logic in a loop, and start again at the first statement inside
the loop. If the loop is a FOR loop, the control variable is bumped to its next value
before the loop is restarted. If the loop is a WHILE/DO or REPEAT/UNTIL loop,
the loop is restarted at the top, but no variables are affected in any way.

239Structuring Code

The following example isn’t the best possible coding practice, but it’s simple and
shows what the CONTINUE statement actually does. The example reads a line
from a text file and tests to see if there’s anything in the line. That is, is tests to see
if the length of the line read from the file is 0. If the line contains data and has a
nonzero length, the AddLineToList procedure adds the line to a linked list.

WHILE NOT EOF(InFile) DO

BEGIN

 Readln(InFile,InLine);

 IF Length(InLine) <=0 THEN Continue ELSE

 AddLineToList(InLine);

END;

On the other hand, if the length of the line read from the text file is zero, there’s
really no more work to be done with that line anyway. Restart the loop from the
top, which reads the next line from the file. Yes, again: This is an unnecessary
complication, but it illustrates what CONTINUE does.

The real situations where CONTINUE is likely to be useful are complex loops
that do a lot of things and test a lot of different conditions. Such loops make poor
examples in tutorial books like this because their complexity confuses what they’re
really trying to demonstrate.

There can be multiple BREAK or CONTINUE statements inside the same loop. Be
careful, however, that you don’t find yourself using the two statements carelessly, as an
excuse not to think through a loop’s logic. BREAK and CONTINUE are used more
often than GOTO—but not so often that you’ll have them in every loop you write.

9.8. Semicolons and Where They Go
Nothing makes newcomers to Pascal cry out in frustration quite so consistently as
the question of semicolons and where they go. There are places where semicolons
must go, places where it seems not to matter whether they go or not, and places
where they cannot go without triggering an error. Worse, it seems at first to have
no sensible method to it.

Of course, like everything else in Pascal, placing semicolons does have a method
to it. Why the confusion? Two reasons:

1. Pascal is a “freeform” language that does not take line structure of the source
file into account. Unfortunately, a lot of new Pascal programmers graduate into
Pascal from BASIC, which is about as line-oriented a language as ever existed. Also,
one of the most popular modern programming languages, Python, is not freeform.
What BASIC no longer impresses on new programmers, Python often does.

FreePascal from Square One, Volume 1240

2. Semicolons in Pascal are statement separators, not statement terminators. The
difference is crucial, and made worse by the fact that the C language family and its
antecedents like PL/1 use semicolons as statement terminators.

Clarifying these two issues should make Pascal semicolon placement second
nature.

Freeform vs. line-structured source code
Pascal source code is “freeform;” that is, the boundaries of individual lines and
the positioning of keywords and variables on those lines matter not at all. The
prettyprinting customary to Pascal source code baffled me in my earliest learning
days until I realized that the compiler completely ignored it. The compiler, in fact,
sucks the program up from disk storage as though through a drinking straw, in
one long line. The following two program listings are utterly identical as far as a
Pascal compiler is concerned:

PROGRAM Squares;

VAR

 I,J : Integer;

BEGIN

 Writeln(‘Number Its square’);

 FOR I := 1 TO 10 DO

 BEGIN

 J := I * I;

 Writeln(‘ ‘,I:2,’ ‘,J:3)

 END;

 Writeln;

 Writeln(‘Processing completed!’)

END.

PROGRAM Squares;VAR I,J : Integer;BEGIN Writeln

(‘Number It’’s square’);FOR I:=1 TO 10 DO

BEGIN J:=I*I;Writeln(‘ ‘,I:2,’ ‘,J:3)

END;Writeln;Writeln(‘Processing completed!’) END.

Although the second listing appears to exist in four lines, this is only for the
convenience of the printed page; the intent was to express the program as one
continuous line without any line breaks at all.

The second listing above is the compiler’s eye view of your program source code.
You must remember that although you see your program listing “from a height”
as it were, the compiler scans it one character at a time, beginning with the ‘P’ in

241Structuring Code

PROGRAM and reading through to the “.” after END. All unnecessary “whitespace”
characters (spaces, tabs, carriage returns, linefeeds) have been removed as the
compiler would remove them. Whitespace serves only to delineate the beginnings
and endings of reserved words and identifiers, and as far as the compiler is concerned,
one whitespace character of any kind is as good as one of any other kind. Once the
compiler “grabs” a word or identifier, literal or operator, it tosses out any following
whitespace until it finds a non-whitespace character indicating that a program
element is beginning again.

Semicolons as statement separators
Note the compound statement executed as part of the FOR loop:

BEGIN J:=I*I;Writeln(‘ ‘,I:2,’ ‘,J:3) END

There are two statements here, framed between BEGIN and END. Smart as the
FreePascal compiler may seem to you, it has no way to know where statements start
and end unless you tell it somehow. If the ‘;’ between I and Writeln were not there,
the compiler would not know for sure if the statement that it sees (so far!) as J:=I*I
ends there or must somehow continue on with Writeln.

Note that there is no semicolon after the second statement. There doesn’t have
to be; the compiler has scanned a BEGIN word and knows that an END should
be coming up eventually. The END word tells the compiler unambiguously that
the previous statement is over and done with. BEGIN and END are not statements.
They are reserved words, acting as delimiters, and only serve to tell the compiler
that the group of statements between them is a compound statement.

It’s useful to think of a long line of statements as a line of boxcars on a rail siding.
Separating each car from the next is a pair of linked couplers. Anywhere two couplers
connect is where, (if boxcars were program statements) you would need a semicolon.
You don’t need one at the front of the first car, or at the end of the last car because the
last car doesn’t need to be separated from anything; behind it is just empty air.

The null statement
Why, then, is it legal to have a semicolon after the last statement in a compound
statement? This is perfectly all right (and adds to the confusion):

BEGIN

 J := J + 5;

 IF J > 100 THEN PageEject;

 DoPage; { ; legal but not needed here }

END

FreePascal from Square One, Volume 1242

The answer, of course, is that there is a statement after statement DoPage;
and that statement is the null statement. This might be clearer with the example
rewritten this way:

BEGIN

 J := J + 5;

 IF J > 100 THEN PageEject;

 DoPage;

 { Null statement here! }

END

There is a semicolon between DoPage and the null statement, but none between
the null statement and the END word.

The null statement is in truth a theoretical abstraction. It doesn’t really exist the
same way an IF statement exists. It does no work and generates no code, not even a
NOP (No-Op) assembly language instruction. It serves very little purpose other than to
make certain conditional statements a little more intuitive and readable. For example:

IF TapeIsMounted THEN { NULL } ELSE RequestMount;

I find this more readable than the alternative:

IF NOT TapeIsMounted THEN RequestMount;

but I suspect it’s a matter of taste. Note my convention (which I’ve seen elsewhere)
of inserting the comment { NULL } wherever you use a null statement. It’s like the
bandages around the Invisible Man; they make the guy easier to see and thus keep
him out of trouble.

Another use of the null statement is in CASE statements in which nothing needs
to be done for a specific selector value:

CASE Color OF

 Red : { NULL }; { No filter needed }

 Orange : InsertFilter(1); { Density 1 }

 Yellow : InsertFilter(5); { Density 5 }

 Green : InsertFilter(11); { Density 11 }

 ELSE InsertFilter(99) { Opaque (99) }

END; { CASE }

In some sort of optical apparatus there is a mechanism for rotating a filter in front
of an optical path. The density of the filter depends on the color of light being used.
No filter is needed for red, and for blue, indigo, or violet the test will not function and
an opaque barrier is moved into the optical path instead of a filter. A null statement
is used for the Red case label.

243Structuring Code

Semicolons with IF/THEN/ELSE statements
More errors are made placing semicolons within IF/THEN/ELSE statements than
any other kind, I suspect. This sort of thing is fairly common and oh, so easy to do
when you’re a beginner:

IF TankIsEmpty THEN FillTank(Reagent,FlowRate);

 ELSE Titrate(SensorNum,Temp,Drops);

The temptation to put a semicolon at the end of a line is strong. Furthermore, in
most dialects of BASIC you must put a colon between an IF clause and its associated
ELSE clause.

But semicolons are statement separators, and the example above is one single
statement. There is nothing to separate. Remember this rule with regard to placing
semicolons in IF/THEN/ELSE statements: Never place a semicolon immediately
before an ELSE word in an IF statement! With that in mind you will avoid 90% of
all semicolon placement errors.

To make things slightly more confusing, it is legal (and sometimes necessary) to
place a semicolon before an ELSE word in a CASE statement. Given that FreePascal
allows the use of the OTHERWISE reserved word as an alias for ELSE within a
CASE statement, it becomes possible to simply say, never place a semicolon
immediately before ELSE. In the meantime, keep the null statement in mind and
semicolon placement won’t seem quite so arbitrary.

Forward reference: EXIT, Error, and exception handling
I’m ending this chapter without including a discussion of the EXIT statement. It’s
about getting out of functions and procedures before they’ve finished executing, just
as BREAK is about getting out of loops before they’ve finished executing. The next
chapter discusses procedures and functions in detail; EXIT will be there as well.

There is one additional topic related to structuring code: error and exception
handling. It’s possible to write code in FreePascal that gracefully recovers from
various sorts of runtime errors. Key to exception handling are the TRY/FINALLY
and TRY/EXCEPT statements. Because I need to cover a lot more ground before
I can reasonably cover exception handling, I’ll beg your patience until Chapter X.
Keep going!

FreePascal from Square One, Volume 1244

245

Some people think that conditional and looping statements like those we studied
in the previous chapter are the touchstone of structured programming. Not so:

At the bottom of it all, structured programming is the artful hiding of details. The human
mind’s ability to grasp complexity breaks down quickly unless some structure or
pattern can be found in the complexity. I recall (with some embarrassment) writing
a 600-line APL program in 1979, and by the time I wrote the last of it (this being
done over a six week period) I no longer remembered how the first part worked.
The entire program was a mass of unstructured, undifferentiated detail. Those who
have dabbled in APL may lay a little of the blame on APL; most of it I lay on myself.

How does one hide details in computer programs? By identifying sequences of
code that do discrete tasks, and setting each sequence off somewhere, replacing it by
a single word describing (or at least hinting at) the task it does. Such code sequences
are properly called “subprograms.”

10.1. Procedures vs. Functions
In Pascal, there are two types of subprograms: procedures and functions. Both are
sequences of Pascal statements set off from the main body of program code. Both are
invoked, and their statements executed, simply by naming them. The only difference
between functions and procedures is this: The identifier naming a function has a
type and takes on a value when it is executed. The name of a procedure has no type
and takes on no value.

Two simple examples: The procedure ClrScr, when executed, clears the screen
of a console text window. The very simple console programs I presented in the first
part of this book, like Aliens.pas, used it:

ClrScr;

ClrScr is a complete statement.Although ClrScr has no parameters, a procedure
may have any number of parameters if it needs them. More on this shortly.

Chapter 10.
Procedures and
Functions

FreePascal from Square One, Volume 1246

Functions
A function, by contrast, is not a complete statement. It is more like an expression,
which returns a value that must be used somehow:

VAR

 Space,Radius : Real;

Radius := 4.66;

Space := Area(Radius);

The Area function calculates the area for the value Radius, which is passed to it as
a parameter. After it calculates the area, the area value is taken on by the identifier
Area, as though Area were a variable.

Functions in Pascal may return values of just about any predefined or custom
type. This is a huge difference from earlier Pascal compilers, most of which could
return only simple types and strings.

Using the Area function hides the details of calculating areas. There aren’t many
details involved in calculating areas, but for other calculations (matrix inversion
comes to mind) a function can hide thirty or forty lines of complicated code, or
(often) a lot more. So when you’re reading the program and come to a function
invocation, you can think, “Ah, here’s where we invert the matrix” without being
concerned about how the matrix is actually inverted. At that level in reading the
program, the how is not important, so those details are best kept out of sight.

“Throwing away” function results with extended syntax
FreePascal supports an extension to Pascal syntax, allowing you to “throw away”
the value returned by a function, thus invoking the function as though it were a
procedure. The function result is always calculated inside the function body, but the
function does not have to deliver the result by residing within an expression or on
the right side of an assignment statement.

This doesn’t make sense for most functions that you write, since in most cases, the
return value is the whole purpose for writing the function to begin with. However, as your
functions grow more complex, you might on occasion wish to invoke a function simply
for its “side effects”—that is, the things it does that don’t involve the return value.

This happens most often when you create a function that does something significant
like file access, and returns a code as its function return value that tells whether or not
the action was a success. In most cases, you’ll want to check the function result to see
how it went. There may, however, be an occasion where you simply want to do the
deed regardless of the status value. So instead of coding it this way:

247Procedures and Functions

FileActionStatus := CloseTheFile;

you could simply code it this way:

CloseTheFile;

FreePascal allows functions to be invoked this way by default. If you’re a function
purist, you can turn off this “extended syntax” by placing a {$X-} command
somewhere in your source code file before you call the function. This can be useful
for spotting “naked” function invocations while you’re porting Pascal code to a
compiler that doesn’t support extended syntax.

The Exit Statement
FreePascal, like Turbo Pascal, offers the Exit statement. Exit jumps out of the
current block into the next highest block. In other words, if you execute an Exit
within a function or procedure, execution of that function or procedure will cease,
and control returns to the statement immediately following the invocation of the
function or procedure. If Exit is encountered in the main program, FreePascal will
end the program and return to the IDE or the command line. With FreePascal it’s
possible for Exit to take a parameter. This allows a function to return a value to its
caller even if Exit ends the function in the middle somewhere.

Use Exit with care. One of the strengths of the Pascal structure is the assurance
that a block of code begins at the top and ends at the bottom. Sprinkling a block
with Exit statements makes code much harder to read and debug.

The structure of functions and procedures
Procedures and functions are, in effect, miniature programs. They can have their own
label declarations, constant declarations, type declarations, variable declarations,
and procedure and function declarations, as well as all the expected code statements.
Consider these two entities:

PROGRAM HiThere; PROCEDURE HiThere;

BEGIN BEGIN

 Writeln(‘Hi there!’) Writeln(‘Hi there!’)

END. END;

The only essential differences between a program and a procedure are the reserved
word PROGRAM and the punctuation after the final END.

Functions are a little different. A function has a type and takes on a value that it
returns to the program logic that invokes it:

FreePascal from Square One, Volume 1248

FUNCTION Area(R : Real) : Real;

CONST

 PI = 3.14159;

BEGIN

 Area := PI * R * R;

END;

The type of function Area is Real. Inside the function, an expression computing
area for the given radius R is evaluated, and the value is assigned to the function’s
name. Aside from these two distinctions, functions are identical to procedures and
are also miniature programs.

10.2. Formal and actual parameters
Passing data to procedures and functions can be done two ways: By using global
variables that any procedure or function can read from or write to, and through
each procedure or function’s parameter list. The first method (sometimes called
“common,” from an old FORTRAN scheme) is generally a bad idea. It’s far better
practice to hand a procedure or function everything it needs through its parameter
list.

The following program contains a procedure to draw boxes in the text console
window with characters, as opposed to true pixel graphics. In this age of ubiquitous
GUIs in our operating systems, this may seem less than useful, but it’s a good
example of procedures and functions in action.

{--}

{ BoxTest }

{ }

{ Character box-draw demo program; demos concept of procedures }

{ }

{ by Jeff Duntemann }

{ FreePascal 3.0 }

{ Last update 10/29/2016 }

{ }

{ From: FREEPASCAL 7 FROM SQUARE ONE by Jeff Duntemann }

{--}

PROGRAM BoxTest;

USES Crt;

249Procedures and Functions

TYPE

 LineRec = RECORD

 ULCorner,

 URCorner,

 LLCorner,

 LRCorner,

 HBar,

 VBar,

 LineCross,

 TDown,

 TUp,

 TRight,

 TLeft : String[4]

 END;

CONST

 PCLineChars : LineRec =

 (ULCorner : #201;

 URCorner : #187;

 LLCorner : #200;

 LRCorner : #188;

 HBar : #205;

 VBar : #186;

 LineCross: #206;

 TDown : #203;

 TUp : #202;

 TRight : #185;

 TLeft : #204);

VAR

 X,Y : Integer;

 Width,Height : Integer;

PROCEDURE MakeBox(X,Y,Width,Height : Integer;

 LineChars : LineRec);

VAR

 I : Integer;

BEGIN

 IF X < 0 THEN X := (80-Width) DIV 2; { Negative X centers box }

 WITH LineChars DO

 BEGIN { Draw top line }

 GotoXY(X,Y); Write(ULCorner);

 FOR I := 3 TO Width DO Write(HBar);

 Write(URCorner);

 { Draw bottom line }

FreePascal from Square One, Volume 1250

 GotoXY(X,(Y+Height)-1); Write(LLCorner);

 FOR I := 3 TO Width DO Write(HBar);

 Write(LRCorner);

 { Draw sides }

 FOR I := 1 TO Height-2 DO

 BEGIN

 GotoXY(X,Y+I); Write(VBar);

 GotoXY((X+Width)-1,Y+I); Write(VBar)

 END

 END

END;

BEGIN

 Randomize; { Seed the pseudorandom number generator }

 ClrScr; { Clear the entire text window }

 WHILE NOT KeyPressed DO { Draw boxes until any key is pressed }

 BEGIN

 X := Random(72); { Get a Random X/Y for UL Corner of box }

 Y := Random(21);

 REPEAT Width := Random(80-72) UNTIL Width > 1; { Get Random Height &}

 REPEAT Height := Random(25-Y) UNTIL Height > 1; { Width to fit on the }

 MakeBox(X,Y,Width,Height,PCLineChars); { display & draw it! }

 Delay(25);

 END

END.

The PCLineChars typed constant is an excellent example of the use of record
constants, as I described them in the last chapter. But what I wanted this little
program to demonstrate is the use of a procedure to hide some program details.

Procedure MakeBox has a parameter list with five parameters in it. In the parameter
list of the procedure’s declaration they are named: X, Y, Width, Height, and LineChars.
Notice that the types of these parameters are given in the procedure declaration. X, Y,
Width, and Height are all identical types, so they may be given as a list separated by
commas. You could also have defined each of the four separately, like this:

PROCEDURE MakeBox(X : Integer;

 Y : Integer;

 Width : Integer;

 Height : Integer;

 LineChars : LineRec);

The parameters defined in a procedure’s declaration are called formal parameters
and must always be given a type, separated from the formal parameter by a colon.
In the example, X, Y, Width, Height, and LineChars are all formal parameters.

When a procedure is invoked, values are passed to the procedure through its

251Procedures and Functions

parameters. The compiler understands the parameter types from reading the
procedure declaration. Types are not given in the invocation:

MakeBox(25,BoxNum+2,30,3,PCLineChars);

Furthermore, in this example, the values may be values stored in variables, or
values expressed as constants or expressions. The parameters that are present
in the parameter list of a particular invocation of a procedure are called actual
parameters. (All parameters passed to MakeBox are passed by value. If they were
passed by reference, the actual parameters would have to be variables of identical
type to the formal parameters. This will be fully explained in the next section.)

Identifiers used as formal parameters are local to their procedure or function.
As such, their names may be identical to identifiers defined in other procedures or
functions, or in the main program, without any conflict. (This is about scope, and I’ll
explain scope at the end of this chapter.) The X and Y formal parameters in MakeBox
have no relation at all to an X or Y identifier used elsewhere in the program. Of
course, the flipside of this is also true: If you are using an X or Y variable global to
the entire program they will not be accessible from within MakeBox. If you try to
access a global X or Y variable from within MakeBox, you will access the formal
parameters X and Y instead.

Also remember that formal VAR parameters may not act as control variables
in FOR loops. Local variables (such as I in MakeBox) should be declared for this
purpose. Non-VAR formal parameters may be used freely as control variables in
FOR loops.

10.3. Passing Parameters By Value Or By Reference
When a function or a procedure is invoked, the actual parameters are “meshed”
with the formal parameters, and then the function or procedure does its work. The
meshing of actual parameters with formal parameters is done two ways: by value,
and by reference.

Passing parameters by value
A parameter passed by value is just that: a value is copied from the actual parameter
into the formal parameter. The movement of the value to the procedure is a one-way
street. Nothing can come back out again and be used by the calling program. This
applies whether the actual parameter is a constant, an expression, or a variable.

There are powerful advantages to one-way data movement into a procedure. The
procedure can fold, spindle, and mutilate the parameter any way it needs to, and not

FreePascal from Square One, Volume 1252

fear any side effects outside of the procedure. The copy of the actual parameter it
gets is a truly private copy, strictly local to the procedure itself.

If a variable is passed to a procedure by value the type of the variable must be
compatible with the type of the formal parameter.

Passing parameters by reference
There are many occasions when the whole point of passing a parameter to a
function or procedure is to have it modified and returned for further use. To have
a procedure or function modify a parameter and return it, the parameter must be
passed by reference.

Unlike parameters passed by value, a parameter passed by reference (often
called a VAR parameter) cannot be a literal, a constant or an expression. The
values of constants and literals by definition cannot be changed, and the notion
of changing the value of an expression and stuffing it back into the expression
makes no logical sense.

To be passed by reference, an actual parameter must be a variable of the identical
type as the formal parameter. Compatible types will not do; the types must evaluate
down to the same type definition statement.

The one exception to this rule in FreePascal involves short strings. Short strings,
if you recall from Section 8.6, may be defined in any physical length from 1 to 255,
with the default length being 255 unless you specify some other length. Under
strict type checking a VAR string parameter passed to a procedure must be of the
identical type declared in the procedure’s header:

VAR

 String1 : String80;

 String2 : String30;

PROCEDURE DoSomething(VAR WorkString : String255);

In this example, strict type checking would prohibit passing either String1 or
String2 as a parameter to procedure DoSomething.

However, FreePascal supports relaxed type checking, which would allow a
ShortString of any length to be passed in the WorkString parameter. Relaxed
type checking is the default. Strict vs. relaxed type checking is controlled with the
{$V} compiler command. The long form is {$VARSTRINGCHECKS}. You must
explicitly use the {$V+} command to impose strict type checking if desired. To used
relaxed type checking and allow strings of any physical length to be passed as VAR
parameters regardless of the formal VAR parameter’s physical length, use {$V-}.

253Procedures and Functions

The draconian nature of strict type checking for VAR parameters makes a little
more sense when you realize that the variable itself is not copied into the formal
parameter (as with parameters passed by value). What is passed is actually a pointer
to the variable itself. Data is not being moved from one variable to another. Data is
being read from one variable and written back into the same variable. To protect
other data items that may exist to either side of the variable passed by reference, the
compiler insists on a perfect match between formal and actual parameters.

There is a cost to relaxed type checking: A string actual parameter that is too
long to fit into its VAR formal parameter will be truncated to the length of the VAR
formal parameter. No warning will appear, and doing so will lose any character data
beyond the length of the formal parameter.

The {$V} compiler switch is provided mostly as for compatibility with older
versions of Turbo Pascal. Borland Pascal V7 provided a new feature, open string
parameters, that does the same thing a lot more safely. FreePascal supports open
string parameters as well. I’ll discuss them a little later in this chapter.

To illustrate parameter passing, let’s look at a more sophisticated procedure
than we’ve seen so far. The MakeBox procedure I described earlier had several
parameters, all passed by value. For an example of a parameter passed by reference,
consider the shell sort procedure below. Note that this is a procedure, not a complete
program. I’ll present a complete sort demonstration program that incorporates this
procedure a little later in this chapter.

{->>>>ShellSort<<<<--}

{ }

{ Filename : SHELSORT.SRC -- Last Modified 10/30/2016 }

{ }

{ This is your textbook Shell sort on an array of key records, }

{ defined as the type shown below: }

{ }

{ KeyRec = RECORD }

{ Ref : Integer; }

{ KeyData : String30 }

{ END; }

{ }

{ From: FREEPASCAL FROM SQUARE ONE by Jeff Duntemann }

{--}

PROCEDURE ShellSort(VAR SortBuf : KeyArray; Recs : Integer);

VAR

 I,J,K : Integer;

 Spread : Integer;

FreePascal from Square One, Volume 1254

PROCEDURE KeySwap(VAR RR,SS : KeyRec);

VAR

 T : KeyRec;

BEGIN

 T := RR;

 RR := SS;

 SS := T

END;

BEGIN

 Spread := Recs DIV 2; { First Spread is half record count }

 WHILE Spread > 0 DO { Do until Spread goes to zero: }

 BEGIN

 FOR I := Spread + 1 TO Recs DO

 BEGIN

 J := I - Spread;

 WHILE J > 0 DO

 BEGIN { Test & swap across the array }

 K := J + Spread;

 IF SortBuf[J].KeyData <= SortBuf[K].KeyData THEN J := 0 ELSE

 KeySwap(SortBuf[J],SortBuf[K]);

 J := J - Spread

 END

 END;

 Spread := Spread DIV 2 { Halve Spread for next pass }

 END

END;

This procedure sorts an array of sort keys. A sort key is a record type that consists of
a piece of data and a pointer to a file entry from which the data came. The fastest and
safest way to sort a file is not to sort the file at all, but to build an array of sort keys from
information in the file and sort the array of sort keys instead. The array can then be
written out to a file. Since the data in the array is in sorted (usually alphabetical) order,
it can be searched using a fast binary search function. Once a match to a desired string
is found (in the Key field of a KeyRec record) the RecNum field contains the physical
record number of the record in the file where the rest of the information is stored.

I should point out here that although this was the traditional way to construct
simple databases in Pascal, modern compilers like FreePascal and environments
like Lazarus provide direct access to real database engines like MySQL and SQLite,
so constructing your own databases and sorting key files is no longer necessary for
writing useful data handling software.

255Procedures and Functions

Now, look at the parameter line for ShellSort:

PROCEDURE ShellSort(VAR SortBuf : KeyArray; Recs : Integer);

The first parameter, SortBuf, is passed by reference. The second parameter,
Recs, is passed by value. The difference is that SortBuf is preceded by the keyword
VAR. VAR indicates that the parameter following it is passed by reference.

The reason for passing SortBuf by reference should be obvious: We want to
rearrange the sort keys in SortBuf and put them in a certain order. ShellSort does
this rearranging. The code calling ShellSort will need to get SortBuf “back” when
the rearranging is done. Had we passed SortBuf to ShellSort by value, ShellSort
would have received its own private copy of SortBuf, would have sorted the copy, and
then would have had no way to return the sorted copy to the rest of the program.

Recs contains a count of the number of sort keys loaded into the array SortBuf.
While knowing the value stored in Recs is essential to sorting SortBuf correctly, it
need not be changed, and thus Recs can be passed by value. Only the value of Recs
is needed.

Summing up:
An actual parameter passed by value is copied into the formal parameter.
The copy is local to the procedure or function and changes made to the
copy do not “leak out” into the rest of the program.
Passing a parameter to a procedure by reference actually gives the
procedure a pointer to the physical variable being passed. Changes made
to the parameter within the procedure are actually made to the physical
variable outside the procedure.
To pass a parameter by reference, precede the parameter by the keyword
VAR. When passed by reference, actual parameters must be variables of
identical type to the formal parameter.

10.4. Open Array and String Parameters
One of the hassles of working with Pascal arrays is that Pascal will not allow you
to pass an array to a procedure in a formal array parameter that does not match
the actual array parameter in every respect, including element type, upper bound,
and lower bound. This makes it difficult to create a general-purpose array-sorting
procedure, for example, since you must define in the array formal parameter exactly
how many elements will be in the array passed into the procedure.

Borland Pascal v7 added open array parameters to address this problem, and
FreePascal implements the feature in the current day. Veterans of programming
language theory and other Pascal compilers will recognize this feature as what

•

•

•

FreePascal from Square One, Volume 1256

Niklaus Wirth calls conformant arrays.

In the header of your procedure or function, a formal array parameter is declared
with the type of the elements in the array, but without any declared bounds. We
might declare a new version of the ShellSort procedure presented earlier in this
chapter this way:

PROCEDURE ShellSort(VAR SortBuf : ARRAY of KeyRec; Recs : Integer);

The new SortBuf parameter is an open array parameter. We are told that it is an
array of KeyRec, but not how large an array SortBuf is. FreePascal is flexible enough
to be able to handle the meshing of the formal array parameter SortBuf with an
actual array of KeyRec at runtime. Either of the array variables below can be passed
to the new ShellSort procedure in the SortBuf open array parameter:

VAR

 BigBuffer : ARRAY[0..500] OF KeyRec;

 LilBuffer : ARRAY[0..100] OF KeyRec;

No other changes need to be made to ShellSort to allow it work perfectly well
with any size array of KeyRec passed to it, assuming that the Recs value accurately
reflects the number of significant elements in the array passed. If Recs is larger than
the upper bound of the array passed in the open array parameter, a range error will
be triggered.

Now, inside of the new ShellSort, how does the procedure know what it’s dealing
with? To manipulate the arrays passed to it, the procedure must know what any
array’s upper and lower bounds are. The answer lies in two predefined functions
High and Low. (Make sure before using open array parameters that you have not
defined your own identifiers with the names High and Low.) Inside of a procedure
or function having an open array parameter, High(<open array>) returns contains
the value of the upper array bound of the actual array parameter, and Low(<open
array>) returns the value of the lower bound of the actual array parameter.

High and Low are only valid within the procedure having the parameter they
refer to. Don’t try to refer to them globally, or from within some other procedure or
function that does not itself have an open array parameter.

The Recs parameter of the ShellSort procedure exists to allow a partially-filled
array of records to be sorted—Recs simply tells ShellSort how many elements of
the SortBuf array really contain data.	We can build some safety into ShellSort
by using High to check whether Recs accidentally contains a larger number than
the upper bound of the SortBuf array. In that case, we can set Recs equal to the

257Procedures and Functions

high bound of SortBuf, so that ShellSort will find itself passed an array that might
be partly full, or full, but not over-full. (In an over-full array, records in excess of
High(SortBuf) are ignored.) It only takes one simple statement, the first in the
revised ShellSort shown below.

{ ShellSort implemented with open arrays.}

PROCEDURE ShellSort(VAR SortBuf : ARRAY OF KeyRec; Recs : Integer);

VAR

 I,J,K,L : Integer;

 Spread : Integer;

PROCEDURE KeySwap(VAR RR,SS : KeyRec);

VAR

 T : KeyRec;

BEGIN

 T := RR;

 RR := SS;

 SS := T

END;

BEGIN

 { First we make sure Recs isn’t higher than the upper bound: }

 IF Recs > High(SortBuf) THEN Recs := High(SortBuf);

 Spread := Recs DIV 2; { First Spread is half record count }

 WHILE Spread > 0 DO { Do until Spread goes to zero: }

 BEGIN

 FOR I := Spread + 1 TO Recs DO

 BEGIN

 J := I - Spread;

 WHILE J > 0 DO

 BEGIN { Test & swap across the array }

 L := J + Spread;

 IF SortBuf[J].KeyData <= SortBuf[L].KeyData THEN J := 0 ELSE

 KeySwap(SortBuf[J],SortBuf[L]);

 J := J - Spread

 END

 END;

 Spread := Spread DIV 2 { Halve Spread for next pass }

 END

END;

There are some restrictions on open array parameters. You cannot assign to an

FreePascal from Square One, Volume 1258

open array parameter in its entirety; that is, you cannot treat the array as a whole
in any way. You can only work with an open array parameter on an element-by-
element basis. Open array parameters passed by value (that is, without the VAR
reserved word) are allocated on the stack, and can crash your machine if they take
more stack than you’ve allocated for stack use.

Open string parameters
Open string parameters use the same machinery as open array parameters to allow
you to pass strings of different sizes through a formal parameter without a specified
string size. A string, after all, is simply an array of Char that receives special treatment
from the runtime library in a few limited ways.

You declare an open string parameter using the predefined identifier OpenString.
Here’s a simple procedure that forces the case of its open string parameter to upper.
You can pass a string value of any legal ShortString length (that is, up to 255
characters) in Target without running afoul of strong type checking:

PROCEDURE UCString(VAR Target : OpenString);

VAR

 I : Integer;

BEGIN

 FOR I := 1 TO Length(Target) DO

 Target[I] := UpCase(Target[I]);

END;

Inside the procedure, the standard Length string function works the way it does
on any sort of string. High(Target) would return the defined length of the actual
parameter passed in Target. Low(Target) will always return 0, since strings are
always zero-based arrays.

Somewhat oddly, the identifier OpenString will not act this way when it is
used to declare a value parameter (that is, without VAR.) As a value parameter,
OpenString yields a string parameter that is always of type STRING, that is, the
maximum string length of 255, and the High function will always return 255. You
should only use OpenString as a VAR parameter!

Open short strings with $P+
Borland Pascal v7 introduced a new compiler command, {$P+}, as an alternate way
to declare open string parameters, and FreePascal supports it. If you place the {$P+}
command toward the top of your source code file, VAR parameters declared using

259Procedures and Functions

the STRING reserved word act as open string parameters, and not simply as strings
with a maximum length of 255. However, value parameters of type STRING remain
type STRING and do not become open array parameters. As with OpenString,
the VAR has to be there! This was done to provide backward compatibility to older
Turbo Pascal code that used STRING as a way of safely passing strings of any size
to a procedure or function. If you’re writing new code, the advised method is to use
the OpenString predefined type instead.

Or not: Note well that the {$P} switch works only for short strings. It has no effect
on code making use of ANSIStrings. The better path today is to use old-style short
strings for compatibility with old code only, and use ANSIStrings for all new work.

10.5. Recursion
Recursion is one of those peculiar concepts that seems to defy understanding
totally, and depend completely on mystery for its operation, until eventually some
small spark of understanding happens, and then, wham! It becomes simple or even
obvious. A great many people have trouble understanding recursion at first glance,
so if you do too, don’t think less of yourself for it. For the beginner recursion is
simple. But it is not obvious.

Recursion is what we call it when a function or procedure invokes itself. It
seems somehow intuitive to beginners that having a procedure call itself is either
impossible or else an invitation to disaster. Both of these fears are unfounded, of
course. Let’s look at them both.

Recursion is indeed possible. In fact, having a procedure call itself is no different
from a coding perspective as having a procedure call any other procedure. What
happens when a procedure calls another procedure? Only this: First, the called
procedure is “instantiated;” that is, its formal parameters and local variables are
allocated on the system stack. Next, the return address (the location in the code from
which the procedure was called and to which it must return control) is “pushed”
onto the system stack. Finally, control is passed to the called procedure’s code.

When the called procedure is finished executing, it retrieves the return address
from the system stack and then clears its variables and formal parameters off the
stack by a process we call “popping.” Then it returns control to the code that called
it by branching to the return address.

None of this changes when a procedure calls itself. Upon a recursive call to itself,
new copies of the procedure’s formal parameters and local variables are instantiated
on the stack. Then control is passed to the start of the procedure again.

The problem shows up when execution reaches the point in the procedure

FreePascal from Square One, Volume 1260

where it calls itself. A third instance of the procedure is allocated on the stack, and
the procedure begins running again. A fourth instance, and a fifth...and after a few
hundred recursive calls the stack has grown so large that it collides with something
important in memory, and the system crashes. If you had this kind of procedure,
such a thing would happen very quickly:

PROCEDURE Fatal;

BEGIN

 Fatal

END;

Such a situation is a sort of unlimited software feedback loop. It’s this possibility
that makes newcomers feel uneasy about recursion.

Obviously, the important part of recursion is knowing when to stop.

A recursive procedure must test some condition before it calls itself, to see
if still needs to call itself in order to complete its work. This condition could be
a comparison of a counter against a predetermined number of recursive calls, or
some Boolean condition that becomes true (or false) when the time is right to stop
recursing and go home. When controlled in this way, recursion becomes a very
powerful and elegant way to solve certain programming problems.

Let’s go through a simpleminded example of a controlled recursive procedure.
Read through this program’s code very carefully:

PROGRAM PushPop;

CONST

 Levels = 5;

VAR

 Depth : Integer;

PROCEDURE Dive(VAR Depth : Integer);

BEGIN

 Writeln(‘Push!’);

 Writeln(‘Our depth is now: ‘,Depth);

 Depth := Depth +1;

 IF Depth <= Levels THEN Dive(Depth);

 Writeln(‘Pop!’);

END;

261Procedures and Functions

BEGIN

 Depth := 1;

 Dive(Depth);

 Write(‘Press any key to exit: ‘);

 Readln;

END.

The program itself is nothing more than setting a counter to one and calling the
recursive procedure Dive. Note the constant named Levels. Dive displays the word
“Push!” when it begins executing, and the word “Pop!” when it ceases executing. In
between, it displays the value of the variable Depth and then increments it.

If, at this point, the value of Depth is less than the constant Levels, Dive calls
itself. Each call to Dive increments Depth by one, until at last Depth is greater than
Levels. Then recursion stops.

Running program PushPop produces the output below. Can you tell yourself
exactly why? (Note that the keypress prompt is not included on this page for
simplicity’s sake.)

Push!

Our depth is now 1

Push!

Our depth is now 2

Push!

Our depth is now 3

Push!

Our depth is now 4

Push!

Our depth is now 5

Pop!

Pop!

Pop!

Pop!

Pop!

Follow the execution of PushPop through, with a pencil to touch each keyword,
if necessary, until the output makes sense to you.

10.6. Appplications of Recursion
Certain workaday programming problems simply cry out for recursive solutions.
Perhaps the simplest and best-known is the matter of calculating factorials. A
factorial is the product of a digit and all the digits less than it, down to one:

5! = 5 * 4 * 3 * 2 * 1

FreePascal from Square One, Volume 1262

A little scrutiny here will show that 5! is the same as 5 * 4!, and 4! is the same as 4 *
3!, and so on. In the general case, N! = N * (N-1)! Whether you see it immediately or
not, we have already expressed the factorial algorithm recursively by defining it in
terms of a factorial. This will become a little clearer when we express it in Pascal:

FUNCTION Factorial(N : LongInt) : LongInt;

BEGIN

 IF N > 1 THEN Factorial := N * Factorial(N-1)

 ELSE Factorial := 1

END;

And that’s it. We express it as a conditional statement because there must always
be something to tell the code when to stop recursing. Without the N > 1 test the
function would merrily decrement N down past zero and recurse away until the
system crashed.

The way to understand this function is to work it out for N=1, then N=2, N=3,
and so on. For N=1 the N > 1 test returns False, so is assigned the value 1. No
recursion involved. 1! = 1. For N=2 a recursive call to Factorial is made: Factorial
is assigned the value 2 * Factorial(1). As we saw above, Factorial(1) = 1. So 2! = 2
* 1, or 2. For N=3, two recursive calls are made: Factorial is assigned the value 3 *
Factorial(2). Factorial(2) is computed (as we just saw) by evaluating (recursively)
2 * Factorial(1). And Factorial(1) is simply = 1. Catching on? One interesting thing
to do is add (temporarily) a Writeln statement to Factorial that displays the value
of N at the beginning of each invocation.

A sidenote on the power of factorials: Calculating anything over 7! will overflow
a two-byte integer. This is why the Factorial function returns a LongInt parameter.
Here’s an interesting exercise for you: How high a value can you pass in N without
overflowing a long integer?

A recursive quicksort procedure
A considerably more useful application of recursion lies in the “quicksort” method
of sorting arrays, invented by C.A.R. Hoare. Quicksort procedures can be written in
a number of different ways, but the simplest way is by using recursion.

The quicksort procedure below does the same job that the procedure ShellSort
did in the last section. QuickSort is passed an array of KeyRec and a count of the
number of records to be sorted in the array. It rearranges the records until they are
in ascending sort order in the array:

263Procedures and Functions

{->>>>QuickSort<<<<--}

{ }

{ Filename : QUIKSORT.SRC -- Last Modified 10/30/2016 }

{ }

{ This is your textbook recursive quicksort on an array of key }

{ records, which are defined as the type show below: }

{ }

{ KeyRec = RECORD }

{ Ref : Integer; }

{ KeyData : String30 }

{ END; }

{ }

{ From: FREEPASCAL FROM SQUARE ONE by Jeff Duntemann }

{--}

PROCEDURE QuickSort(VAR SortBuf : KeyARRAY;

 Recs : Integer);

PROCEDURE KeySwap(VAR RR,SS : KeyRec);

VAR

 T : KeyRec;

BEGIN

 T := RR;

 RR := SS;

 SS := T

END;

PROCEDURE DoSort(Low, High : Integer);

VAR

 I,J : Integer;

 Pivot : KeyRec;

BEGIN

 { Can’t sort if Low is greater than or equal to High... }

 IF Low < High THEN

 BEGIN

 I := Low;

 J := High;

 Pivot := SortBuf[J];

 REPEAT

 WHILE (I < J) AND (SortBuf[I].KeyData <= Pivot.KeyData)

	 DO I := I + 1;

 WHILE (J > I) AND (SortBuf[J].KeyData >= Pivot.KeyData)

 DO J := J - 1;

 IF I < J THEN KeySwap(SortBuf[I],SortBuf[J]);

FreePascal from Square One, Volume 1264

 UNTIL I >= J;

 KeySwap(SortBuf[I],SortBuf[High]);

 IF (I - Low < High - I) THEN

 BEGIN

 DoSort(Low,I-1); { Recursive calls to DoSort! }

 DoSort(I+1,High)

 END

 ELSE

 BEGIN

 DoSort(I+1,High); { Recursive calls to DoSort! }

 DoSort(Low,I-1)

 END

 END

END;

BEGIN

 DoSort(1,Recs);

END; { QuickSort }

QuickSort’s modus operandi is summarized in Figure 10.1. One of the elements
is chosen arbitrarily (here it is the last element in the array) to be the “pivot value.”
The idea is to divide the array into two partitions such that all elements on one side
of the partition are greater than the pivot value, and all elements on the other side
of the partition are less than the pivot value.

Figure 10.1. A QuickSort Scan

265Procedures and Functions

This is done by scanning the array from both ends toward the middle by counters
I and J. I scans from the low end upward; J from the high end downward. The I
counter samples each element, and stops when it finds an element whose value is
higher than the pivot value. Then the scan begins from the top end down, with the
J counter looking for a value that is less than the pivot value. When it finds one, the
two found elements are swapped, thus putting them on the proper side of the pivot
value.

When I and J collide in the middle somewhere (not necessarily in the center!) the
array has been partitioned into two groups of elements: One that is larger than the
pivot value, and one that is smaller than the pivot value. These two groups are not
necessarily equal in size. In fact, they usually will not be. The only thing that is certain
is that all the elements in one group are less than the value of the pivot element, and
all of the elements of the other group are greater than the pivot element. The two
groups are sorted with respect to one another: All elements of the low group are less
than all elements of the high group.

Enter recursion: This same process is now applied to each of the two groups by
calling DoSort recursively for each group. A new pivot value is chosen for each
group, and each group is partitioned around its pivot value, just as the entire array
was originally. When this is done, there are four groups. A little thought will show
you that low-valued elements of the array are being driven toward the low end of the
array, and high-valued elements are being driven toward the high end of the array.
Within each group there is no guarantee that the elements are in sorted order. What
you must understand is that the groups themselves are in sort order. In other words, all
the elements of one group are greater than all the elements of the group below it.

Pressing on: Each of the four groups is partitioned again by more recursive calls
to DoSort. The groups are smaller. Each group taken as one is sorted with respect to
all other groups. With each recursive call, the groups have fewer and fewer members.
In time, each group will contain only one element. Since groups are always in sort
order, if each group is a single element, then all elements of the array are in sorted
order, and QuickSort’s job is finished.

How does QuickSort know when to stop recursing? The first conditional test in
DoSort does it: If Low is greater than or equal to High, the sort is finished. Why?
Because Low and High are the bounds of the group being partitioned. If Low =
High, each of the two groups has only one member. When the groups have only
one member, the array is in sort order and the work is done.

If this makes your head spin, you’re in good company. Follow it through a few
times until it makes sense. Once you can follow QuickSort’s internal logic, you
will have a very good grasp of the uses of recursion.

FreePascal from Square One, Volume 1266

This particular Quicksort algorithm works best when the original order of the
elements in the array is random or nearly so. It works least well when the original
order is close to fully sorted. For an array of random elements, it is one of the
fastest of all sorting methods. For sorting arrays that are close to being in order, the
ShellSort procedure given earlier will be consistently faster.

The following program puts the two sort procedures to the test. It generates a file
of random keys, and allows you to display the random keys so that you can see how
random they are. Finally, it will sort the file by whichever of the two methods you
choose. Once the file has been sorted, you can display the keys once more to be sure
that they have in fact been sorted.

The SortTest program uses a lot of concepts that I haven’t introduced in the
book yet, and calls routines that I haven’t described so far. It is, however, a very
straightforward program, and it would be an interesting exercise to see just how
much of it you can understand based on what you’ve learned about Pascal so far.

{--}

{ SortTest }

{ }

{ Data sort demonstration program }

{ }

{ by Jeff Duntemann }

{ FreePascal V3.0 }

{ Last update 10/30/2016 }

{ }

{ From: FREEPASCAL FROM SQUARE ONE by Jeff Duntemann }

{--}

PROGRAM SortTest;

USES CRT,DOS, { Standard Borland units }

 BoxStuff; { Unit for drawing boxes; see Chapter 13 }

CONST

 Highlite = True; { These first 4 constants are used by WriteAt }

 NoHighlite = False;

 NoCR = False;

 Shell = True; { Which sort procedure will we be using? }

 Quick = False;

TYPE

 String30 = STRING[30];

 KeyRec = RECORD

 Ref : Integer;

 KeyData : String30

267Procedures and Functions

 END;

 KeyArray = ARRAY[0..500] OF KeyRec;

 KeyFile = FILE OF KeyRec;

VAR

 IVal : Integer; { Holds integer value for user’s response }

 WorkArray : KeyArray;

 Randoms : KeyFile; { Files should generally be declared global }

{$I PULL.SRC } { Described in Section 16.12 }

{$I CLREGION.SRC} { Described in Section 18.1 }

{$I WRITEAT.SRC} { Described in Section 18.3 }

{$I SHELSORT.SRC} { Described in Section 14.2 }

{$I QUIKSORT.SRC} { Described in Section 14.4 }

PROCEDURE GenerateRandomKeyFile(KeyQuantity : Integer);

VAR WorkKey : KeyRec;

 I,J : Word;

BEGIN

 Assign(Randoms,’randoms.key’);

 Rewrite(Randoms);

 FOR I := 1 TO KeyQuantity DO

 BEGIN

 FillChar(WorkKey,SizeOf(WorkKey),0);

 FOR J := 1 TO SizeOf(WorkKey.KeyData)-1 DO

 WorkKey.KeyData[J] := Chr(Pull(65,90));

 WorkKey.KeyData[0] := Chr(30);

 Write(Randoms,WorkKey);

 END;

 Close(Randoms)

END;

PROCEDURE DisplayKeys;

VAR WorkKey : KeyRec;

BEGIN

 Assign(Randoms,’randoms.key’);

 Reset(Randoms);

 Window(25,13,70,22);

 GotoXY(1,1);

 WHILE NOT EOF(Randoms) DO

 BEGIN

 Read(Randoms,WorkKey);

FreePascal from Square One, Volume 1268

 IF NOT EOF(Randoms) THEN Writeln(WorkKey.KeyData)

 END;

 Close(Randoms);

 Writeln;

 Writeln(‘ >>Press (CR)<<’);

 Readln;

 ClrScr;

 Window(1,1,80,25)

END;

PROCEDURE DoSort(Shell : Boolean);

VAR I,Counter : Word;

BEGIN

 Assign(Randoms,’randoms.key’);

 Reset(Randoms);

 Counter := 1;

 WriteAt(20,15,NoHighlite,NoCR,’Loading...’);

 WHILE NOT EOF(Randoms) DO

 BEGIN

 Read(Randoms,WorkArray[Counter]);

 Counter := Succ(Counter)

 END;

 Close(Randoms);

 Write(‘...sorting...’);

 IF Shell THEN ShellSort(WorkArray,Counter-1)

 ELSE QuickSort(WorkArray,Counter-1);

 Write(‘...writing...’);

 Rewrite(Randoms);

 FOR I := 1 TO Counter-1 DO Write(Randoms,WorkArray[I]);

 Close(Randoms);

 Writeln(‘...done!’);

 WriteAt(-1,21,NoHighlite,NoCR,’>>Press (CR)<<’);

 Readln;

 ClearRegion(2,15,77,22)

END;

BEGIN

 ClrScr;

 MakeBox(1,1,80,24,PCLineChars);

 WriteAt(18,3,HighLite,NoCR,’FreePascal From Square One Sort Demo’);

 REPEAT

 WriteAt(25,5,NoHighlite,NoCR,’[1] Generate file of random keys’);

 WriteAt(25,6,NoHighlite,NoCR,’[2] Display file of random keys’);

 WriteAt(25,7,NoHighlite,NoCR,’[3] Sort file via Shell sort’);

 WriteAt(25,8,NoHighlite,NoCR,’[4] Sort file via Quicksort’);

 WriteAt(18,10,NoHighlite,NoCR,’Enter 1-4, or 0 to quit, and press Enter:

‘);

269Procedures and Functions

 IVal := 0;

 Readln(IVal);

 CASE IVal OF

 0 :; { Null statement here; note semicolon }

 1 : GenerateRandomKeyFile(500); { 500 is as high as you can go...}

 2 : DisplayKeys;

 3 : DoSort(Shell);

 4 : DoSort(Quick);

 ELSE IVal := 0;

 END; {CASE}

 UNTIL (IVal = 0);

END.

10.7. Forward Declarations
In almost all cases, you must declare a type in the type declaration section of your
program before you can declare a variable of that type. There’s one well-known
exception to this rule that I’ll be demonstrating later on in this book, when we take
up the difficult issue of pointers: You can use an identifier in a pointer definition
before that identifier is defined. In other words, this pair of type definitions is
completely legal:

TYPE

 RecPtr = ^DynaRec;

 DynaRec = RECORD

	 DataPart : String;

	 Next : RecPtr

 END;

Ignore for now what ^DynaRec means if you haven’t been exposed to pointer
notation before. What’s significant here is that the FreePascal compiler “takes our
word” that we will, in fact, define DynaRec before the program ends, and thus allows
the definition of RecPtr before the definition of DynaRec—even though DynaRec
is an integral part of the definition of RecPtr. Using an undefined identifier before
its declaration is called a forward reference.

The context of defining pointer types is just about the only context in which
Pascal will accept a forward reference to a type. (It’s also true of object classes, which
I won’t be covering in this introductory volume.) In certain circumstances, however,
Pascal can be persuaded to accept a procedure or function identifier before that
procedure or function has been defined. In a sense, we must promise the compiler
that we will, in fact, define the identifier. Or, if you prefer, we have to declare that we
will declare such an identifier somewhere down the source code trail.

FreePascal from Square One, Volume 1270

This promise is called a forward declaration. It is accomplished with a Pascal reserved
word, FORWARD, and it is done this way:

PROCEDURE NotThereYet(Foo,Bar : Integer); FORWARD;

What we have here is the procedure header all by itself, without any procedure
body or local declarations of constants, types, or variables. People who understand
units (See Chapter X) will think that this resembles the declarations in the interface
section of a unit, and they are right.

Later on in the program, sometime before the BEGIN that marks the start of the
main program block, procedure NotThereYet must be declared in its entirety. If it
isn’t, the compiler will hand us an error.

The eventual declaration of the procedure is perfectly ordinary. No special syntax
indicates that the procedure had earlier been declared as FORWARD.

You do have the option of not re-declaring the forward declared procedure’s
parameter list. In other words, you could in fact define an (empty) procedure
NotThereYet without parameters:

PROCEDURE NotThereYet;

BEGIN

END;

This shorthand, also, will be familiar to people who understand units. I consider
it bad practice, however. The compiler allows you to re-declare the parameters,
and re-declaring parameters contributes to the clarity of the program to have the
parameter list in both places: The forward declaration, (where they are essential)
and the full definition.

At last we come to the question: What good is all of this? The answer is: Not much.
The only situation that genuinely requires forward declaration is circular (also called
mutual) recursion. Consider these two procedure definitions:

PROCEDURE Egg;

BEGIN

 .

 .

 Chicken;

 .

 .

END;

271Procedures and Functions

PROCEDURE Chicken;

BEGIN

 .

 .

 Egg;

 .

 .

END;

Which comes first? You can’t declare Chicken without calling Egg, and you
can’t declare Egg without calling Chicken. Pascal will call foul on the whole thing
unless you forward declare one or the other. Adding the forward declaration makes
everything work:

PROCEDURE Chicken; FORWARD;

PROCEDURE Egg;

BEGIN

 . { Other program logic keeps this from }

 . { being an infinite loop. }

 Chicken; { Without the FORWARD, we get an error here. }

 .

 .

END;

PROCEDURE Chicken;

BEGIN

 .

 .

 Egg;

 .

 .

END;

That’s what circular recursion is, but what it’s good for has thus far escaped
me. My hunch is that any program that appears to require circular recursion can
probably be rewritten a different way without it.

I look upon the reserved word FORWARD much as I do the spokeshave sitting
in the bottom drawer of my tool cabinet. I have never yet used it, but by golly, if I
ever need to shave some spokes, I know just where it is.

FreePascal from Square One, Volume 1272

273

Chapter 11.
Standard Functions

The ISO Standard Pascal definition includes a number of “standard functions”
that are built into the language and need not be declared and coded into your

program. These functions fall into two basic groups: Mathematical functions,
which provide fundamental operations such as square and square root, absolute
value, natural logarithms, and trig functions; and transfer functions, which define
relationships between otherwise incompatible data types like Integer and Char.

Some books on Pascal refer to the parameter passed to a standard function as
its “argument.” This borrows jargon from the world of mathematics and may be
confusing, since some people end up wondering what the difference is between an
argument and a parameter. There is no difference in a Pascal language context. To
lessen the confusion, I will use the term “parameter”, which we have been using
with respect to functions all along.

All of the standard functions described in this chapter may accept expressions
as parameters, as long as those expressions evaluate to a value of the correct type.
In other words, you may say Sqrt(Sqr(X)+Sqr(Y)) as well as Sqrt(16). Just make
sure you don’t try to extract the square root of a Boolean value, or of an enumerated
type, and so on.

FreePascal implements all the standard functions from ISO Pascal, and quite a
few of its own. In this chapter we’ll discuss them in detail.

11.1. Round and Trunc
Round and Trunc are fence-sitters. They are both mathematical functions, in the
sense that they provide a mathematical service, and they are also transfer functions,
in that they provide a bridge between the partly-incompatible types Real and
Integer.

We have already seen, in Chapter 7, that any integer value may be assigned to a
variable of type Real. (This assumes that Real has sufficient range to express the

FreePascal from Square One, Volume 1274

integer value.) But the reverse is not true, since a Real value may have a decimal
part, and there is no way to express a decimal part in type Integer. Round and
Trunc give us our choice of two ways to “transfer” a Real value into an Integer
value. Round and Trunc both accept parameters of type Real and return values
that may be assigned to either type Integer or Real.

Round
In mathematics, rounding a number means moving its value to the nearest integer.
This is the job done by Round. Round(X) returns an integer value that is the integer
closest to X. The direction in which a real number with a fractional part is rounded
is usually given as “up” or “down”. This can be confusing when you start dealing
with negative real numbers. I prefer to visualize a number line and speak of “toward
zero” or “away from zero.”

•	 For X greater than 0: Rounds away from zero (up) for fractional parts
greater than or equal to .5. Rounds toward zero (down) for fractional parts
less than .5.
•	 For X less than 0: Rounds away from zero (down) for fractional parts
greater than or equal to .5. Rounds toward zero (up) for fractional parts less
than .5.

Some examples:

Round(4.449) { Returns 4 }

Round(-6.12) { Returns -6 }

Round(0.6) { Returns 1 }

Round(-3.5) { Returns -4 }

Round(17.5) { Returns 18 }

Because the way rounding works with Round is symmetric with respect to zero,
Round(-X) is equal to -Round(X).

When Round is used with a parameter that is precisely halfway between two
consecutive integers (for example, 3.5) the function uses banker’s rounding, which
rounds to the nearest even number. Round would take the parameter 3.5 and return
4; it would take the value 4.5 and also return 4.

Note that using Round(X) for a real value X that cannot be expressed as a long
integer will generate a range check runtime error. This will occur if range checking
is enabled; if range checking is not enabled, your program will continue executing,
but the value actually assigned to the integer will be unpredictable, but predictably
meaningless.

•

•

275Standard Functions

Trunc
Truncating a real number simply means removing its fractional part and dealing
with what’s left. Trunc(X) returns the closest integer value toward zero—and if you
ponder that for a moment you’ll see that it is equivalent to removing the fractional
part and calling the whole number part an integer. Examples:

Trunc(17.667) { Returns 17 }

Trunc(-3.14) { Returns -3 }

Trunc(6.5) { Returns 6 }

Trunc(-229.00884) { Returns -229 }

Trunc returns a value of type LongInt. There were various range issues connected
with Trunc in early versions of Turbo Pascal, relating to the lack of a LongInt type
in Turbo Pascal 3.0 and earlier. (Long integers first appeared in Turbo Pascal 4.0.)
Assuming the type to which you assign the value returned by Round or Trunc has
the range to contain the value, there will be no problems with FreePascal.

11.2. Sqr and Sqrt
Nothing complicated here. Sqr(X) squares X. It is completely equivalent to X * X,
and Pascal includes it because squaring is done so frequently in mathematics, and
also because (as we will discuss later) there is no exponentiation operator in Standard
Pascal and hence no clean notation for X raised to a power of two. FreePascal does
have an exponentiation operator, as I’ll explain shortly, and so with FreePascal, Sqr
is unnecessary.

Sqr may operate on both integers and reals. If you square an integer with Sqr,
the returned value is an integer. If you square a real with Sqr, the returned value is
real. Like Sqr, Sqrt(X) may operate on either an integer or real X. However (and this
is important!) the value returned is always type Real.

A few examples:

CONST

 PI = 3.14159;

VAR

 I : Integer;

 R : Real;

I := 64;

R := 6.077;

Sqrt(16) { Returns 4.0; a real number! }

FreePascal from Square One, Volume 1276

Sqrt(PI) { Returns 1.77245 }

Sqrt(I) { Returns 64; real number }

Sqr(2.4) { Returns 4.8; again, real }

Sqr(7) { Returns 49; integer or real }

Sqr(I) { Returns 4096; integer }

Sqr(R) { Returns 36.92993; real }

The following procedure calculates the length of the hypotenuse of a right
triangle, given the other two sides:

FUNCTION Hypotenuse(Side1,Side2 : Real) : Real;

BEGIN

 Hypotenuse := Sqrt(Sqr(Side1) + Sqr(Side2))

END;

The algorithm here, of course, is the Pythagorean Theorem.

11.3. Trigonometric functions
There are three trigonometric functions among the standard functions of Standard
Pascal: Sin, Cos, and ArcTan. (The other trigonometric functions reside in the
Math unit, as explained below.) Sin(X), Cos(X), and ArcTan(X) all return results of
type Real. X may, however, be an integer or a real number. Note well that for these
functions X represents radians, not degrees. A radian equals 57.29578 degrees.
Radians, however, are usually thought of in terms of pi (3.14159) and fractions of pi.
360 degrees = 2pi radians; 180 degrees = pi radians, and so on. There is a standard
function Pi that returns the value of pi. Pascal’s trigonometric functions behave as
you would expect them to behave from textbook discussions of trigonometry.

Trigonometric functions in the Math unit
Although all the other trig functions can be derived programmatically using the Sin,
Cos, and Arctan functions, FreePascal provides a number of other precompiled
trig functions in the Math unit.

ArcCos(X) 	 Computes the arc cosine of an angle

ArCosH(X) 	 Computes the hyperbolic arc cosine of an angle

ArcSin(X) 	 Computes the arc sine of an angle

ArcSinH(X) 	 Computes the hyperbolic arc sine of an angle

ArcTan2(X,Y) 	Computes the arc tangent of two numbers

ArcTanH(X) 	 Computes the hyperbolic arc tangent of an angle

277Standard Functions

Cosecant(X) 	 Calculate cosecant (secant complement)

CosH(X) 	 Computes the hyperbolic cosine of an angle

Cotan(X) 	 Return cotangent (tangent complement)

Secant (X)	 Calculate secant

SinH(X) 		 Computes the hyperbolic sine of an angle

Tan(X) 			 Computes the tangent of an angle

TanH(X) 		 Computes the hyperbolic tangent of an angle

All of these additional trig functions reside in the Math unit, and to use them you
must place Math in your USES statement.

Note that even though the X and Y parameters passed to FreePascal’s trig
functions are declared as type Real, the compiler will allow you to pass an integer-
type literal or variable in X without error, and will treat the value as a real number
without a fractional part during the calculations.

11.4. Absolute Value, Natural Logs, and Exponents

Absolute value
Absolute value in mathematics is the distance of a number from zero. In practical
terms, this means stripping the negative sign from a negative number and leaving a
positive number alone. The Pascal function Abs(X) returns the absolute value of X.
The parameter X may be type Real or Integer. The type of the returned value is the
same as the type of X. For example:

Abs(-61) { Returns 61; type Integer }

Abs(484) { Returns 484; also Integer }

Abs(3.87) { Returns 3.87; type Real }

Abs(-61.558) { Returns 61.558; also Real }

The Abs function is actually a shorthand form of the following statement:

IF X < 0 THEN X := - X;

Natural logarithms
There are two Pascal standard functions that deal with natural logarithms. Natural
logarithms are mathematical functions that turn on a remarkable irrational number
named e, which, to six decimal places, is 2.718282. Explaining where e comes from,

FreePascal from Square One, Volume 1278

or explaining natural logarithms in detail, is outside the scope of this book. Do read
up on them (in any senior high math text) if the concept is strange to you.

Exp(X) returns the exponential function for X. The parameter may be a real
number or an integer, but the returned value is always real. The exponential
function raises e to the X power. Therefore, when you evaluate Exp(X), what
you are actually evaluating is eX .

Ln(X) returns the natural logarithm (logarithm to the base e) of X. The
parameter may be type Integer or Real, and the returned value, again, is always
type Real. The sense of the Ln(X) function is the reverse of Exp(X): Evaluating
Ln(X) yields the exponent to which e must be raised to give X.

Exponentiation
Natural logarithms are the most arcane of Pascal’s mathematical standard
functions. They are most used in mathematics that many of us would consider
“heavy.” However, there is one use for which natural logarithms fill an enormous
hole in Standard Pascal’s definition: Exponentiation. Unlike nearly all other
programming languages, Pascal contains no general function for raising X
to the Yth power. (In FORTRAN the exponentiation operator is the double
asterisk: X**Y raises X to the Yth power.) Exp and Ln allow us to create a
Standard Pascal function that raises one number to a given power:

FUNCTION Power(Mantissa, Exponent : Real) : Real;

BEGIN

 Power := Exp(Ln(Mantissa)*Exponent)

END;

This almost certainly looks like magic unless you really understand how natural
logarithms work. Two cautions: The result returned is type Real, not Integer. Also,
do not pass a zero or negative value in Mantissa. A runtime error will be triggered.
Reason: Ln(X) for a negative X is undefined!

But that’s Standard Pascal. Starting with version 4, Delphi added a new function
to its Math unit: Power. FreePascal also includes Power in its Math unit:

FUNCTION Power(Mantissa, Exponent: Real) : Real

This is basically a precompiled version of the function shown above. Remember
that it’s located in the Math unit, and to use it you must place Math in your USES
statement.

279Standard Functions

And that’s not the end of it. FreePascal implements an exponention operator as
well as an exponentiation function. The operator is the double asterisk, the same
one used by FORTRAN. As with the Power function, the exponentiation operator
is stored in the Math unit, and you must include Math in your program to use it.
(Math is not included in USES by default.) With the exponentiation operator, you
raise a value to a power this way:

I := J**4;

This statement raises the value in J to the fourth power, and stores the result in I. As
you might imagine, if you raise a real number value to a power, the result must be
returned to a variable of type Real.

As far as I know, the double asterisk operator for exponentiation is used in no
other Pascal implementation but FreePascal.

11.5. Ord & Chr
The functions Ord and Chr are true transfer functions, providing you with a well-
documented, “legal” pathway between the otherwise incompatible types Integer
and Char. Ord actually provides the pathway between integers and any ordinal
type—hence the name.

Ord
As its name suggests, Ord(X) deals with ordinal types. Ordinal types are those
types that can be “enumerated;” that is, types with a fixed number of values in a
well-defined order. Ord(X) returns the ordinal position (an integer) of the value
X in its ordinal type. The sixty-sixth character in the ASCII character set is the
capital letter ‘A’. Ord(‘A’) returns 65. The third color in our old friend type
Spectrum is Yellow. Ord(Yellow) returns 2—remember (for both examples)
that we start counting at 0!

Chr
Chr goes in the opposite direction from Ord: Chr(X) returns a character value
corresponding to the Xth character in the ASCII character set. (X here is an integer.)
Chr(65) returns the capital ‘A’. Chr(66) returns capital letter ‘B’, and so on. Don’t
try to pass Chr an integer value higher than 255. The results will be undefined, and
probably garbage.

The most important use of Chr(X) is generating character values that are not
expressed by any symbol that you can place between single quote marks. How do

FreePascal from Square One, Volume 1280

you put a line feed in quotes? Or worse yet, a bell character? You don’t—you express
them with Chr :

Chr(13) { Returns ASCII carriage return (CR) }

Chr(7) { Returns ASCII bell (BEL) }

Chr(127) { Returns ASCII delete (DEL) }

Chr(8) { Returns ASCII backspace (BS) }

Chr allows you to return a character based on an integer expression. The
procedure CapsLock, for example, uses Ord and Chr to translate a character
into an integer, manipulate the integer, and then translate the integer back into
a character:

PROCEDURE CapsLock(VAR Target : String);

VAR Lowercase : SET OF Char;

 I : Integer;

BEGIN

 Lowercase := [‘a’..’z’];

 FOR I := 1 TO Length(Target) DO

 IF Target[I] IN Lowercase THEN

 Target[I] := Chr(Ord(Target[I]) - 32)

END;

FreePascal has a built-in procedure, UpCase, which will accomplish the same
thing as the expression

Chr(Ord(Target[I]) - 32)

in the procedure above. However, the expression is a good example of the use of
Chr and Ord, one right beside the other!

11.6. Pred & Succ
We discussed these two standard functions informally in Section 9.4, in connection
with FOR loops. Now it’s time for a closer look.

One of the properties of an ordinal type is that its values exist in a fixed and well-
defined order. In other words, for type Integer, 3 comes after 2, not before. For type
Char, ‘Q’ follows ‘P’ which follows ‘O’, and so on. The order is always the same.

This order is called the collating sequence or collating order of an ordinal type. Given
a value of an ordinal type, Ord tells you which position that value occupies in its
collating sequence. Given a value of an ordinal type, Pred and Succ return the next
value before that value or after that value, respectively.

281Standard Functions

Pred(‘Z’) { Returns ‘Y’ }

Succ(‘w’) { Returns ‘x’ }

Pred(43) { Returns 42 }

Succ(19210) { Returns 19211 }

Pred(Orange) { Returns Red }

Succ(Green) { Returns Blue }

Pred(Red) { Undefined! }

This last example bears a closer look. The predecessor value of Red is undefined.
Recall the definition of our enumerated type Spectrum:

Spectrum = (Red,Orange,Yellow,Green,Blue,Indigo,Violet);

Red is the very first value in the type. There is nothing before it, so Pred(Red) makes
no sense in the context of type Spectrum. Similarly, Succ(Violet) makes no sense,
since there is no value in Spectrum after Violet.

Pred(<value>) of the first value of an ordinal type is undefined. Succ(<value>)
of the last value of an ordinal type is undefined.

Pred and Succ provide a means of “stepping through” an ordinal type to do some
repetitive manipulation on a range of the values in that ordinal type. For example,
in printing out the names on a telephone/address list, we might want to put a little
header before the list of names beginning with ‘A’, and then before the list of names
beginning with ‘B’, and so on. Assuming that the names are stored in sorted order
in an array, we might work it this way:

VAR

 Names : ARRAY[1..200] OF String[35];

 NameCount : Integer;

PROCEDURE Header(Ch : Char);

BEGIN

 Write(LST,Chr(13),Chr(10));

 Writeln(LST,’[‘,Ch,’]-------------------------------’)

END;

PROCEDURE PrintBook(NameCount : Integer);

VAR I : Integer;

 Ch : Char;

 AName : String[35];

FreePascal from Square One, Volume 1282

BEGIN

 Ch := ‘A’;

 Header(Ch);

 FOR I := 1 TO NameCount DO

 BEGIN

 AName := Names[I];

 IF AName[1] <> CH THEN

 REPEAT

 CH := Succ(CH);

 Header(Ch)

 UNTIL AName[1] = CH;

 Writeln(LST,AName)

 END

END;

Assume that the array Names has been filled somehow with names, and that the
number of names has been placed in NameCount. The names must be in sorted
order, last name first. When PrintBook is invoked, the list of names in Names is
printed on the system printer, with a header for each letter of the alphabet:

[A]-------------------------------

Albert*Eddie

Aldiss*Brian

Anthony*Piers

[B]-------------------------------

Brooks*Bobbie

Bentley*Mike

[C]-------------------------------

Chan*Charlie

Charles*Ray

Cabell*James Branch

[D]-------------------------------

[E]-------------------------------

[F]-------------------------------

Farmer*Philip Jose

Flor*Donna

and so on. Letters for which no names exist in the list will still have a printed header
on the list. The printed listing, if cut into memo-book sized sheets, would make the
core of a “little black book” for names and addresses.

Look at the listing of PrintBook. Ch is given an intial value of A. As the names
are printed, the first letter of the each name is compared to the letter stored in Ch. If

283Standard Functions

they don’t match, the loop

REPEAT

 Ch := Succ(Ch);

 Header(Ch)

UNTIL AName[1] = Ch;

is executed. The letter in Ch is “stepped” along the alphabet until it “catches up” to
the first letter in AName. For each step along the alphabet, a header is printed.

We might have written Ch := Chr(Ord(Ch)+1) instead of Ch := Succ(Ch).
Succ provides a much crisper notation. And because Chr does not work with
enumerated types, Succ is the only way to step along the values of a programmer-
defined enumerated type like Spectrum.

11.7. Odd
The last of the standard functions from ISO Standard Pascal that we’ll talk about is
a transfer function: Odd(X). Here, X is an integer value. If X is an odd value Odd(X)
returns the Boolean value True. If X is an even value, Odd(X) returns False.

Odd is thus a way of expressing an integer value as a value of type Boolean.
Any even number can express the value False, and any odd number can express
the value True. Although it doesn’t fit the classic definition of “even” as “divisible by
two,” 0 is considered an even number by virtue of lying between two odd numbers,
1 and -1.

11.8. Frac & Int
FreePascal includes a pair of functions originally introduced by Turbo Pascal: Frac
and Int. With these two functions you can “take apart” a real number into its whole
number part and its fractional part.

•	 Frac(R) returns the fractional part of real number R . In other words,
Frac(24.44789) would return 0.44789.
•	 Int(R) returns the whole number part of real number R. In other
words, Int(241.003) would return 241.0.

Both Frac and Int return values of type Real. You cannot directly assign the return
values from either of these functions to an integer type. This seems counterintuitive
for a function named Int; however, it’s true: Int returns a real number type. For
returning the whole number part of a real number to an integer variable, use the
function Trunc instead.

•

•

FreePascal from Square One, Volume 1284

11.9. Pi
FreePascal includes a standard function Pi that returns the value of pi to as many
significant figures as the variable to which it returns the value may express. The
value returned is a real number type and so may not be assigned to any integer type,
but (as with any real number type) may be assigned to the IEEE math coprocessor
types Single, Double, Extended and Comp. Pi is one of the functions in the Math
unit.

You should keep in mind that differences in precision in the type receiving a
value from Pi will affect the exact decimal values returned, although for all but the
most exacting requirements these differences can be ignored.

To illustrate this issue, the following code displays the actual values returned by
function Pi to the various real number types:

VAR

 RS : Single;

 RR : Real;

 RD : Double;

 RE : Extended;

 RC : Comp;

 RS := Pi; RR := Pi; RD := Pi; RE := Pi; RC := Pi;

 Writeln(‘Type Single: ‘,RS:4:25);

 Writeln(‘Type Real: ‘,RR:4:25);

 Writeln(‘Type Double: ‘,RD:4:25);

 Writeln(‘Type Extended: ‘,RE:4:25);

 Writeln(‘Type Comp: ‘,RC:4:25);

And here is the screen output you’ll see:

Type Single: 3.141592741012573240

Type Real: 3.141592653588304530

Type Double: 3.141592653589793120

Type Extended: 3.141592653589793240

Type Comp: 3.000000000000000000

Note that type Comp can accept a value from Pi without triggering an error, but
will not store the fractional part!

11.10. Inc & Dec
Turbo Pascal 4.0 added two new standard procedures to its already considerable
toolkit: Inc and Dec. They both operate only on ordinal types. Their function is

285Standard Functions

simple: Inc increments an ordinal value, and Dec decrements an ordinal value.
Functionally, they are equivalent to Pred and Succ except that Pred and Succ are
functions rather than procedures.

In other words, Inc and Dec may stand alone as statements:

VAR

 I : Integer;

 Ch : Char;

I := 17;

Ch := ‘A’;

Inc(I); { I now contains 18 }

Dec(Ch); { Ch now contains ‘@’ }

Pred and Succ, by contrast, need to be placed on the right side of an assignment
statement, either alone or inside of an expression:

I := 17;

Ch := ‘A’;

I := Succ(I); { I now contains 18 }

Ch := Pred(Ch); { Ch now contains ‘@’ }

Why use Inc and Dec if the standard and much more portable Pred and Succ
are available? Only one reason: speed. In most FreePascal platforms, Inc and
Dec generate faster code than Pred and Succ. Why this is so lies in the details
of compiler code generation, and so is beyond the scope of this book. In truth,
on modern CPUs the difference won’t become apparent unless you’re making a
lot more use of the functions than any ordinary program is ever likely to. Only if
your code may need to be compiled with a different compiler will Pred and Succ
have a distinct advantage.

11.11. Random number functions
Built into FreePascal are two functions that return pseudorandom numbers,
Random and Random(I). Random returns a real number, and Random(I) returns
an integer.

Random returns a pseudorandom number of type Real that is greater than or
equal to zero and less than one. This statement:

FOR I := 1 TO 5 DO Writeln(Random);

might display:

FreePascal from Square One, Volume 1286

7.0172090270E-01

7.3332131305E-01

8.0977424840E-01

6.7220290820E-01

9.2550002318E-01

The E-01 exponent makes all these numbers fall in the range 0.0 - 0.9999999999.
All random numbers returned by the function Random fall within this range, but
of course if you need random real numbers in another range, you need only shift
the decimal point the required number of places to the right.

Random returns random integers. The parameter is an integer that sets an upper
bound for the random numbers returned by the function. Random(I) will return a
number greater than or equal to zero and less than I. I may be any integer up to the
maximum value that the integer type used for I can express. Although you can pass
a negative number to Random without triggering an error, the returned value will
always be the maximum value expressible in that integer type. There is no way to
make Random(I) return negative random numbers.

There is frequently a need for a random number in a particular range, say between
15 and 50 or between 100 and 500. The procedure Pull shown below meets this
need by extracting random integers until one falls in the range specified by Low
and High.

{<<<< Pull >>>>}

{ From: FREEPASCAL FROM SQUARE ONE }

{ by Jeff Duntemann -- Last mod 2/24/2018 }

FUNCTION Pull(Low,High : Integer) : Integer;

VAR

 I : Integer;

BEGIN

 REPEAT { Keep requesting random integers until }

 I := Random(High + 1); { one falls between Low and High }

 UNTIL I >= Low;

 Pull := I

END;

287Standard Functions

Randomize
The Randomize procedure exists because FreePascal’s random numbers, like all
random numbers generated in software, are not truly random but only pseudorandom,
which means that a series of such numbers approximates randomness. The real
issue is that a series of pseudorandom numbers may well repeat itself each time the
program is run, unless the random number generator is “reseeded” with a new seed
value. This is the job of Randomize.

Internally, what Randomize does is calculate a seed value from the computer’s
system clock, and place it in a predefined system variable called RandSeed. You
don’t have to access RandSeed at all. Each time you call Randomize, RandSeed
gets a new seed value based on the current value in the system clock, which changes
constantly.

Randomize should be called at least once in every program that makes use of
random numbers, and to make your pseudorandom numbers more nearly random,
might be called each time you want a new random number or series of random
numbers.

A dice game
The following program shows one use of random numbers in a game situation.
Rollem simulates the roll of one or more dice--up to as many as will fit across the
screen. Procedure Roll may be placed in your function/procedure library and used
in any game program that must roll dice in a visual manner. It will display a number
of text-mode dice at location X,Y on the screen, where X,Y are the coordinates of
the upper left corner of the first die. The NumberOfDice parameter tells Roll how
many dice to roll; there is built-in protection against attempting to display more
dice than space to the right of X will allow.

Rollem is also a good exercise in REPEAT/UNTIL loops. The MakeBox
procedure was described in Section 10.2, as part of the BoxTest program..

{--}

{ Rollem }

{ }

{ A dice game to demonstrate random numbers and box draws }

{ }

{ by Jeff Duntemann }

{ FreePascal 3.0.4 }

{ Last update 2/24/2018 }

{ }

{ From: FREEPASCAL FROM SQUARE ONE by Jeff Duntemann }

{--}

FreePascal from Square One, Volume 1288

PROGRAM Rollem;

USES Crt,BoxStuff;

CONST

 DiceFaces : ARRAY[0..5,0..2] OF STRING[5] =

 ((‘ ‘,’ o ‘,’ ‘), { 1 }

 (‘o ‘,’ ‘,’ o’), { 2 }

 (‘ o’,’ o ‘,’o ‘), { 3 }

 (‘o o’,’ ‘,’o o’), { 4 }

 (‘o o’,’ o ‘,’o o’), { 5 }

 (‘o o o’,’ ‘,’o o o’)); { 6 }

TYPE

 String80 = String[80];

VAR

 I : Integer;

 Quit : Boolean;

 Dice : Integer;

 DiceX : Integer;

 Ch : Char;

 Banner : String80;

PROCEDURE Roll(X,Y : Integer;

 NumberOfDice : Integer);

VAR I,J,Throw,XOffset : Integer;

BEGIN

 IF (NumberOfDice * 9)+X >= 80 THEN { Too many dice horizontally }

 NumberOfDice := (80-X) DIV 9; { will scramble the CRT display! }

 FOR I := 1 TO NumberOfDice DO

 BEGIN

 XOffset := (I-1)*9; { Nine space offset for each die }

 MakeBox(X+XOffset,Y,7,5,PCLineChars); { Draw a die }

 Throw := Random(6); { “Toss” it }

 FOR J := 0 TO 2 DO { and fill it with dots }

 BEGIN

 GotoXY(X+1+XOffset,Y+1+J);

 Write(DiceFaces[Throw,J])

 END

 END

 END;

289Standard Functions

BEGIN

 Randomize; { Seed the pseudorandom number generator }

 ClrScr; { Clear the entire screen }

 Quit := False; { Initialize the quit flag }

 Banner := ‘GONNA Roll THE BONES!’;

 MakeBox(-1,1,Length(Banner)+4,3,PCLineChars); { Draw Banner box }

 GotoXY((80-Length(Banner)) DIV 2,2); Write(Banner); { Put Banner in it }

 REPEAT

 REPEAT

 FOR I := 6 TO 18 DO { Clear the game portion of screen }

 BEGIN

 GotoXY(1,I);

 ClrEol

 END;

 GotoXY(1,6);

 Write(‘>>How many dice will we Roll this game? (1-5, or 0 to exit):

‘);

 Readln(Dice);

 IF Dice = 0 THEN Quit := True ELSE { Zero dice sets Quit flag }

 IF (Dice < 1) OR (Dice > 5) THEN { Show error for dice out of range }

 BEGIN

 GotoXY(1,23);

 Write(‘>>The legal range is 1-5 Dice!’)

 END

 UNTIL (Dice >= 0) AND (Dice <= 5);

 GotoXY(1,23); ClrEol; { Get rid of any leftover error messages }

 IF NOT Quit THEN { Play the game! }

 BEGIN

 DiceX := (80-(9*Dice)) DIV 2; { Calculate centered X for dice }

 REPEAT

 GotoXY(1,16); ClrEol;

 Roll(DiceX,9,Dice); { Roll & draw dice }

 GotoXY(1,16); Write(‘>>Roll again? (Y/N): ‘);

 Readln(Ch);

 UNTIL NOT (Ch IN [‘Y’,’y’]);

 GotoXY(1,18); Write(‘>>Play another game? (Y/N): ‘);

 Readln(Ch);

 IF NOT (Ch IN [‘Y’,’y’]) THEN Quit := True

 END

 UNTIL Quit { Quit flag set ends the game }

END.

FreePascal from Square One, Volume 1290

291

Chapter 12.
String Functions

The earliest versions of Pascal, including ISO Standard Pascal, had no clean and
easy way to deal with text in a program. Virtually all Pascal compilers since then

have implemented strings that go well beyond the crude Packed Array of Characters
(PAOC) string type that was all Standard Pascal had to offer. The primary method
of string representation in FreePascal goes all the way back to UCSD Pascal in 1978,
and has evolved through the several versions of Turbo Pascal and Delphi.

We looked at FreePascal’s string data types in some detail in Section 8.6. I’ll
only provide a quick recap here: A variable of type STRING is actually an array
of characters with a counter attached at the beginning to keep tabs on how many
characters have been loaded into the array. The original Turbo Pascal type STRING
had a physical length of 255 characters. In FreePascal, there are two major string
types: ShortString (which is basically Turbo Pascal’s original STRING type) and
ANSIString, which can be as long as 4,294,967,295 characters. ANSIString is the
default string type. In other words, when you define a variable as type STRING, it
will be created as an ANSIString variable. If you want to use the older ShortString
type, you have to explicitly declare a variable as type ShortString.

The $H compiler directive changes the default: $H+ makes the default string type
ANSIString, and $H- makes the default ShortString.

12.1. Length
The length counter of a string variable is accessed with the predefined string function
Length, which is defined this way:

FUNCTION Length(Target : STRING) : Integer;

Length returns the value of the length counter as type Integer, which indicates the
logical length of string Target at any given time. Note that the length of an empty
string is 0.

FreePascal from Square One, Volume 1292

VAR Counter : Integer;

Counter := Length(MyText);

In the old days, many people read the length counter of a short string by
examining element 0 of the string:

Counter := Ord(MyText[0]);

The transfer function Ord is necessary here, because a string is an array of characters,
including the ShortString length counter. Ord converts the length counter from
type Char to type Integer.

Don’t do this! In the old days there was only one string type, and all strings
treated character 0 as the length counter. FreePascal defaults to the ANSIString
type, which is not as simple as ShortString. There is no “easy” way to read the
length counter of an ANSIString by examining it. Use the Length function only.

The following procedure CapsLock accepts a string parameter and returns it
with all lower-case letters changed to their corresponding upper-case letters. Note
the use of the Length function:

PROCEDURE CapsLock(VAR MyString : OpenString);

VAR

 I : Integer;

BEGIN

 FOR I := 1 TO Length(MyString) DO

 MyString[I] := UpCase(MyString[I]);

END;

CapsLock makes use of a convenient built-in function, UpCase. UpCase
accepts a character value as a parameter and returns the uppercase equivalent of
that character, if the parameter is lowercase. If the parameter is not a lowercase
character, it is returned unchanged.

Keep in mind that to compile CapsLock, you must be using Turbo Pascal
7.0, which supports open string parameter types through the predefined type
OpenString. In earlier versions of the compiler, to pass strings physically shorter
than 255 characters to CapsLock (or any subprogram with a string VAR parameter)
you need to relax strict type checking with the {$V-} compiler command.

12.2.String Concatenation
Concatenation is the process of taking two or more strings and combining them into
a single string. FreePascal gives you two separate ways to perform this operation.

293String Functions

The easiest way to concatenate two or more strings is to use FreePascal’s string
concatenation operator (+). Many BASIC interpreters also use the plus symbol to
concatenate strings. Simply place the string variables in order, separated by the
string concatenation operator:

BigString := String1 + String2 + String3 + String4;

Variable BigString should, of course, be large enough to hold all the variables you
intend to concatenate into it. If the total length of all the source strings is greater
than the physical length of the destination string, all data that will not fit into the
destination string is truncated off the end and ignored.

The built-in function Concat performs the same function as the string
concatenation operator. It’s considered a “legacy feature” because several older
compilers, including UCSD Pascal, included it. Unless you’re porting (very) old code
to FreePascal, you’re unlikely to need it, and the + operator is a great deal simpler
and more intuitive. The following example shows how both string concatenation
methods work:

VAR

 Subject,Predicate,Sentence : String[80];

Subject := ‘Kevin the hacker’;

Predicate := ‘crashed the system’;

Sentence := Subject + Predicate;

Sentence := Concat(Sentence,’, but brought it up again.’;

Writeln(Sentence);

Here, two string variables and a string literal are concatenated into a single string
variable. The output of the Writeln statement would be the single string “built”
from the smaller strings via concatenation:

Kevin the hacker crashed the system, but brought it up again.

12.3. Delete
Removing one or more characters from a string is the job done by the built-in
Delete procedure, predefined this way:

PROCEDURE Delete(Target : STRING; Pos,Num : Integer);

Delete removes Num characters from the string Target beginning at the character
number passed in Pos. The length counter of Target is updated to reflect the deleted
characters.

FreePascal from Square One, Volume 1294

VAR

 Magic : STRING;

Magic := ‘Watch me make an elephant disappear...’;

Delete(Magic,15,11);

Writeln(Magic);

Before the Delete operation, the string Magic has a length of 38 characters. When
run, this example will display:

Watch me make disappear...

The new length of Magic is set to 27.

One use of Delete is to remove “leading whitespace” from a string variable.
Whitespace is a set of characters that includes space, tab, carriage return, and
linefeed. Whitespace is used to format text files for readability by human beings.
However, when that text file is read by a computer, the whitespace must be removed,
as it tells the computer nothing.

The following procedure strips leading whitespace from a string variable:
PROCEDURE StripWhite(VAR Target : OpenString);

CONST

 Whitespace : SET OF Char = [#8,#10,#12,#13,’ ‘];

BEGIN

 WHILE (Length(Target) > 0) AND (Target[1] IN Whitespace) DO

 Delete(Target,1,1)

END;

Whitespace is a set constant (see Section 8.7) containing the whitespace
characters. Delete(Target,1,1) deletes one character from the beginning of string
Target. The second character is then moved up to take its place. If it, too, is a
whitespace character it is also deleted, and so on until a non-whitespace character
becomes the first character in Target, or until Target is emptied of characters
completely.

12.4. Pos
Locating a substring within a larger string is handled by the built-in function Pos.
Pos is predefined this way:

FUNCTION Pos(Pattern : <string or char>; Source : STRING) : Integer;

Pos returns an integer that is the location of the first occurrence of Pattern in Source.
Pattern may be a string variable, a Char variable, or a string or character literal.

295String Functions

For example:
VAR

 ChX,ChY : Char;

 Little,Big : STRING;

Big := ‘I am an American, Chicago-born. Chicago, that somber city.’

Little := ‘Chicago’;

ChX := ‘g’;

ChY := ‘G’;

Writeln(‘The position of ‘,Little,’ in “Big” is ‘,Pos(Little,Big));

Writeln(‘The position of ‘,ChX,’ in “Big” is ‘,Pos(ChX,Big));

Writeln(‘The position of ‘,ChY,’ in “Big” is ‘,Pos(ChY,Big));

Writeln(‘The position of somber in “Big” is ‘,Pos(‘somber’,Big));

Writeln(‘The position of r in “Big” is ‘,Pos(‘r’,Big));

When executed, this example code will display the following:

The position of Chicago in “Big” is 19

The position of g in “Big” is 24

The position of G in “Big” is 0

The position of somber in “Big” is 48

The position of r in “Big” is 12

Pos does distinguish between upper and lower case letters. If Pos cannot locate
Pattern in Source, it returns a value of 0.

12.5. Copy
Extracting a substring from within a string is accomplished with the Copy built-in
function. Copy is predefined this way:

FUNCTION Copy(Source : STRING; Pos,Num : Integer) : STRING;

Copy returns a string that contains Size characters from Source, beginning at
character #Index within Source:

VAR

 Roland,Tower : STRING;

Roland := ‘Childe Roland to the Dark Tower came!’;

Tower := Copy(Roland,22,10);

Writeln(Tower);

When run, this example will print:

Dark Tower

FreePascal from Square One, Volume 1296

In this example, Index and Size are passed to Copy as constants. They can also
be passed as integer variables or expressions. The following function accepts a string
containing a file name, and returns a string value containing the file extension. (The
extension is the part of a file name from the period to the end; in “sample.txt” the
extension is “.txt”.)

FUNCTION GetExt(FileName : STRING) : STRING;

VAR

 DotPos : Integer;

BEGIN

 DotPos := Pos(‘.’,FileName);

 IF DotPos = 0 THEN GetExt := ‘’ ELSE

 GetExt := Copy(FileName,DotPos,(Length(FileName)-DotPos)+1);

END;

GetExt first tests to see if there is, in fact, a period in FileName at all. (File
extensions are optional.) If there is no period, there is no extension, and GetExt
is assigned the null string. If a period is there, Copy is used to assign to GetExt all
characters from the period to the end of the string.

Since the length of a file extension may be 2, 3, or 4 characters, the expression
(Length(FileName)-DotPos)+1 is needed to calculate just how long the extension
is in each particular case. If Index plus Size is greater than the logical length of
Source, Copy truncates the returned string value to whatever characters lie
between Index and the end of the string.

12.6.Insert
A string can be added to the end of another string by using the Concat function.
Copying a string into the middle of another string (and not simply tacking it on at
the end, as with concatenation) is done with the Insert procedure.

Insert is predefined this way:

PROCEDURE Insert(Source : STRING;

 VAR Target : STRING;

 Position : Integer);

When invoked, Insert copies Source into Target starting at position Position
within Target. All characters in Target starting at position Position are moved
forward to make room for the inserted string, and Target’s length counter is updated
to reflect the addition of the inserted characters.

297String Functions

VAR

 Sentence,Ozzie : STRING;

Sentence := ‘I am King of Kings.’;

Ozzie := ‘Ozymandias, ‘;

Insert(Ozzie,Sentence,6);

Writeln(Sentence);

The output from this example would be:

I am Ozymandias, King of Kings.

If inserting text into Target gives Target more characters than it can physically
contain, Target is truncated to its maximum physical length. Characters that would
fall beyond the physical lenth are lost.

Here’s an example. The $H- compiler switch means that the string variables
Fickle and GOP will be declared as short strings.
$H-

VAR

 Fickle,GOP : STRING[18];

Fickle := ‘I am a Democrat.’;

GOP := ‘Republican.’;

Insert(GOP,Fickle,8);

Writeln(Fickle);

This prints:

I am a Republican.

Note in this example that the string “Democrat.” was not overwritten; it was pushed
off the end of string Fickle into nothingness. After the insert, Fickle should have
contained

I am a Republican.Democrat.

however, Fickle, defined as STRING[18], is only 18 physical characters long. “I am
a Republican.” fills it completely. “Democrat.” was lost to truncation.

12.7. Str
It is important to remember that a number and its string equivalent are not
interchangeable. In other words, the integer 37 and its string representation, the
two ASCII characters ‘3’ and ‘7’ look the same on your screen but are completely
incompatible in all ways but that.

FreePascal from Square One, Volume 1298

FreePascal provides a pair of procedures for translating numeric values into their
string equivalents, and vise versa. Translating a numeric value to its string equivalent
is done with the procedure Str. Str is predefined this way:

PROCEDURE Str(<formatted numeric value>; VAR ST : STRING);

The formatted numeric value can be either an integer or a real number. It is given as
a write parameter. (See Section X.X for a complete discussion of write parameters
as they apply to all simple data types, numeric and non-numeric.) Briefly, a write
parameter is an expression that gives a value and a format to express it in. The write
parameter I:7 (assuming I was previously declared an integer) right-justifies the
value of I in a field seven characters wide. R:9:3 (assuming R was declared Real
previously) right-justifies the value of R in a field 9 characters wide with three figures
to the right of the decimal place.

The use of Str is best shown by a few examples:

CONST

 Bar = ‘|’;

VAR

 R : Real;

 I : Integer;

 TX : STRING[30];

R := 45612.338;

I := 21244;

Str(I:8,TX);

Writeln(Bar,TX,Bar); { Displays: | 21244| }

Str(I:3,TX);

Writeln(Bar,TX,Bar); { Displays: |21244| }

Str(R,TX);

Writeln(Bar,TX,Bar); { Displays: | 4.5612338000E+04| }

Str(R:13:4,TX);

Writeln(Bar,TX,Bar); { Displays: | 45612.3380| }

Note from the third example that if you do not specify any format for a real number,
the default format will be scientific notation in a field eighteen characters wide.

299String Functions

12.8. Val
Going in the other direction, from string representation to numeric value, is
accomplished by the Val procedure. Val is predeclared this way:

PROCEDURE Val(ST : STRING; VAR <numeric variable>; VAR Code : Integer);

Val’s task is somewhat more complicated than Str’s. For every numeric value there
is a string representation that may be constructed from it. The reverse is not true;
there are many string constructions that cannot be evaluated as numbers. So Val
must have a means of returning an error code to signal an input string that cannot
be evaluated as a number. This is the purpose of the Code parameter.

If the string is evaluated without any problem, Code’s value is 0 and the numeric
equivalent of the string is returned in the numeric variable. If FreePascal finds that
it cannot evaluate the string to a number, Code returns the character position of
the first character that violates the evaluation scheme. The numeric variable in that
case is undefined:

PROGRAM Evaluator;

VAR

 SST : STRING;

 R : Real;

 Result : Integer;

BEGIN

 REPEAT

 Write(‘>>Enter a number in string form: ‘);

 Readln(SST);

 IF Length(SST) > 0 THEN

 BEGIN

 Val(SST,R,Result);

 IF Result <> 0 THEN

 Writeln

 (‘>>Cannot evaluate that string. Check character #’,Result)

 ELSE

 Writeln

 (‘>>The numeric equivalent of that string is ‘,R:18:10)

 END

 UNTIL Length(SST) = 0

END.

This little program will allow you to experiment with Val and see what it
will accept and what it will reject. One unfortunate shortcoming of Val is that
it considers commas an error. A string like ‘5,462,445.3’ will generate an error
on character #2.

FreePascal from Square One, Volume 1300

Table 10.1 contains a summary of FreePascal’s built-in string-handling
routines.

Table 10.1. Built-in string-handling routines

FUNCTION Concat(Source1,Source2...SourceN : STRING) : STRING

FUNCTION Copy(Source : STRING; Index,Size : Integer) : STRING

PROCEDURE Delete(Target : STRING; Index,Size : Integer)

PROCEDURE Insert(Source : STRING;

 VAR Target : STRING;

 Index : Integer)

FUNCTION Length(Source : STRING) : Integer

FUNCTION Pos(Pattern : STRING or Char;

 Source : STRING) : Integer

PROCEDURE Str(Num : <write parameter>, VAR StrEquiv : STRING)

PROCEDURE Val(Source : STRING;

 VAR NumEquiv : <Integer or Real>;

 VAR Code : Integer)

10.4. More examples of string manipulation
Perhaps the first ambitious program most beginning programmers attempt is a
name/address/phone number manager. Sooner or later, in designing such a program,
the problem comes up: How to sort the list on the name field, when names are
stored first name first and sorted last name first?

Storing the first name in a separate field is no answer—suppose you want to
store The First National Bank of East Rochester? What is its first name?

The best solution I have found is to store the name last name first, with an
asterisk (*) separating the last and first names. For example, Jeff Duntemann would
be stored as Duntemann*Jeff. Clive Staples Lewis would be stored as Lewis*Clive
Staples. Names maintained in this order are easily sorted by last name. All we need
is a routine to turn the inside-out name rightside-in again.

The following routine does just that—and demonstrates Pos, Copy, Delete, and
Concat, all in four lines!

301String Functions

{<<<< RvrsName >>>>}

{ From: FreePascal From Square One }

{ by Jeff Duntemann -- Last mod 6/10/2018 }

PROCEDURE RvrsName(VAR Name : OpenString);

VAR

 TName : String;

BEGIN

 IF Pos(‘*’,Name) <> 0 THEN

 BEGIN

 TName := Copy(Name,1,(Pos(‘*’,Name)-1));

 Delete(Name,1,Pos(‘*’,Name));

 Name := Concat(Name,’ ‘,TName)

 END

END;

The theory is simple: If there is no asterisk in the name, it’s something like “Granny
Maria’s Pizza Palace” and needs no reversal. Hence the first test. If an asterisk is
found, the last name up to (but not including) the asterisk is copied from Name
into TName, a temporary string. Then the last name is deleted from Name, up to
and including the asterisk. What remains in Name is thus the first name. Finally,
concatenate TName (containing the last name) to Name with a space to separate
them. The name is now in its proper, first-name-first form.

Obviously, if you try to store and sort on a name of some sort that rightfully
contains an asterisk, the name is going to be mangled by RvrsName.

A case adjuster function for strings
FreePascal provides a built-in character function called UpCase, predeclared this
way:

FUNCTION UpCase(Ch : Char) : Char;

UpCase accepts a character Ch and returns its upper-case equivalent as the
function return value. If Ch is already upper-case, or a character with no upper-case
equivalent, (numerals, symbols, and so on) the character is returned unchanged.

UpCase is a character function, but it suggests that a string function could be
built that accepts an arbitrary string value and returns that value converted to upper
case. And although no “down-case” function exists in FreePascal, an equivalent is
not hard to put together. A two-way case adjuster function looks like this:

FreePascal from Square One, Volume 1302

{<<<< ForceCase >>>>}

{ From: FreePascal From Square One }

{ by Jeff Duntemann -- Last mod 6/10/2018 }

FUNCTION ForceCase(Up : BOOLEAN; Target : STRING) : STRING;

CONST

 Uppercase : SET OF Char = [‘A’..’Z’];

 Lowercase : SET OF Char = [‘a’..’z’];

VAR

 I : INTEGER;

BEGIN

 IF Up THEN FOR I := 1 TO Length(Target) DO

 IF Target[I] IN Lowercase THEN

 Target[I] := UpCase(Target[I])

 ELSE { NULL }

 ELSE FOR I := 1 TO Length(Target) DO

 IF Target[I] IN Uppercase THEN

 Target[I] := Chr(Ord(Target[I])+32);

 ForceCase := Target

END;

In FreePascal, functions may return string values the same as any other values.
However, the string type must either be the default type STRING or have been
declared before the declaration of your string function. In other words, if you wish
your function to return a string with a physical length of 80 you must have declared
a string type with that physical length:

TYPE

 String80 = STRING[80];

You cannot use the bracketed string-length notation on a string function return
value. That is, you could not have declared ForceCase this way:

FUNCTION ForceCase(Up : Boolean;

 Target : String80) : String[80];	

 {^Invalid!}

ForceCase will convert all uppercase characters in a string to lowercase, or all
lowercase characters in a string to uppercase, depending on the Boolean value of
parameter Up. If Up is true, lower case is forced to uppercase. Otherwise, uppercase
is forced to lowercase. The string Target is scanned from character 1 to its last
character, and any necessary conversion of character case is done character-by
character. The “down-case” function is done by taking advantage of the ordering of
the ASCII character set, in that lowercase characters have an ASCII value 32 higher

303String Functions

than their uppercase counterparts. Add 32 to the ordinal value of an uppercase
character, and you have the ordinal value of its lowercase equivalent.

Also note that although the parameter string Target is modified during the
scan, the modifications are not made to the actual parameter itself, since Target
was passed by value, not by reference. ForceCase received its own private copy of
Target, which it could safely change without altering the “real” Target. See Section
10.3 for more on the passing of parameters by value or by reference.

Accessing command-line strings
Most operating systems allow some sort of program access to the command line tail;
that is, the optional text that may be typed after the program name when invoking
a program from the operating system command prompt:

CASE DOWN B:FOOFILE.TXT

In this example, the characters typed after the program name “CASE” constitute
the command line tail:

DOWN B:FOOFILE.TXT

FreePascal provides a very convenient method of getting access to the command
line tail. Two predefined functions are connected with the command line tail:
ParamCount and ParamStr. They are predeclared this way:

FUNCTION ParamCount : Integer;

FUNCTION ParamStr(ParameterNumber : Integer) : STRING;

The function ParamCount returns the number of parameters typed after the
command on the operating system command line. Parameters must have been
separated by spaces or tab characters to be considered separate parameters.
Commas, slashes, and other symbols on will not delimit separate parameters!

ParamStr returns a string value that is one of the parameters. The number of
the parameter is specified by ParameterNumber, starting from 1. If you typed
several parameters on the command line, for example:

ParamStr(2)

will return the second parameter. Note that ParamStr[0] is the name of the program
executed with the parameters starting at ParamStr[1].

Keep this in mind: Always read the command line tail before opening your first
disk file! The same area use to store the tail is also used in buffering disk accesses
in some cases using some operating systems. The best way to avoid this sort of

FreePascal from Square One, Volume 1304

trouble is to keep an array of strings large enough to hold the maximum number of
parameters your program needs, and read the parameters into the array as soon as
your program begins running. This is easy enough to do:

VAR

 I : Integer;

 ParmArray : ARRAY[1..8] OF STRING[80];

FOR I := 1 TO ParamCount DO

 ParmArray[I] := ParamStr(I);

Now you have the parameters safely in ParmArray and can examine and use them
at your leisure.

Don’t Become Too Fond of Text Mode…
To keep this book shorter than Borland Pascal 7 From Square One, I cut out quite a bit
of material, including about half of this chapter. Specifically, I cut out some longish
code examples showing how to use Pascal’s string functions to create text-mode
edit fields and data-entry screens. Text mode isn’t used much anymore, especially
for data-entry screens. Once you begin writing GUI applications for Windows or
Linux, you’ll find that Lazarus has a palette full of components providing data entry
fields and even whole text editors. In my next book, Lazarus From Square One, I’ll
show how data entry screens and dialogs may be assembled from the components
included with the Lazarus product.

305

Chapter 13.
Locality and Scope

At the heart of structured programming is that old saw about the artful hiding
of details. You want to be able to focus in on the level of detail where you’re

currently working, and not be excessively concerned with either the details down
lower, or the larger view from above. On a purely structural level, the best way
of hiding details is to divide a program into subprograms (that is, procedures and
functions) and by grouping data into data structures like arrays, records, and
(once you’ve had some experience) objects. When you need to think of the task
that a subprogram does, you simply think of it as a little black box that does one
or two well-defined things. You don’t worry about what’s inside the box—unless
you’re actually going to tinker with what’s inside the box. That’s when you open
the box and take a look.

This sounds simple enough on the surface, but there are some subtle issues
surrounding it that I found very confusing when I was first learning the Pascal
language, back in the late 1970’s. There’s not a lot to discuss (which is why this
chapter is so short) but what there is happens to be extremely important, especially
if you expect to become a truly world-class programmer.

13.1. The Innards of a Subprogram
Functions and procedures aren’t called subprograms for nothing. Their structure is
almost identical to that of your Pascal main program: They have a name, they have
definitions, and they have a body consisting of a compound statement bounded
by reserved words BEGIN and END. They can even have their own subprograms,
nested inside them like Chinese boxes.

Here’s a subprogram we’ve seen before. I removed the comment header to save
space:

FreePascal from Square One, Volume 1306

PROCEDURE ShellSort(VAR SortBuf : KeyArray; Recs : Integer);

VAR

 I,J,K,L : Integer;

 Spread : Integer;

PROCEDURE KeySwap(VAR RR,SS : KeyRec);

VAR

 T : KeyRec;

BEGIN

 T := RR;

 RR := SS;

 SS := T

END;

BEGIN

 Spread := Recs DIV 2; { First Spread is half record count }

 WHILE Spread > 0 DO { Do until Spread goes to zero: }

 BEGIN

 FOR I := Spread + 1 TO Recs DO

 BEGIN

 J := I - Spread;

 WHILE J > 0 DO

 BEGIN { Test & swap across the array }

 L := J + Spread;

 IF SortBuf[J].KeyData <= SortBuf[L].KeyData THEN

 J := 0 ELSE

 KeySwap(SortBuf[J],SortBuf[L]);

 J := J - Spread

 END

 END;

 Spread := Spread DIV 2 { Halve Spread for next pass }

 END

END;

The ShellSort procedure defines five of its own variables, and has a subprogram
of its own, KeySwap. The KeySwap procedure, moreover, defines its own variable,
T. The KeySwap procedure is only called from one place inside ShellSort. Its
whole job is to hide the details of swapping two keys so that those details don’t
get in the way while you’re reading ShellSort. At the time the swap happens,
precisely how the swap happens is unimportant. You simply need to know that
the two parameters are exchanged.The ShellSort procedure itself exists to hide the

307Locality and Scope

details of sorting an array of keys. When you’re writing a data manager program
that keeps a data file and a sorted key file, you don’t necessarily want to be bothered
with the details of how the sort happens. That’s why you only need to see this much
of ShellSort when you actually want to use it to perform a sort:

ShellSort(MySortBuf,KeyCount);

All you need to know at this point is that you’re going to sort the key array MySortBuf,
which contains KeyCount key records. The details of how the sort happens are
irrelevant. Later on, if you want to tinker with the sort routine a little bit, you can go
to the source code file that contains the ShellSort procedure and work on it. But
when you’re simply building a sort call into a program you’re writing, the call itself
is all you need.

13.2. Global vs. Local
When one subprogram is defined inside another, we say that the inner subprogram
is local to the outer one. The same term applies to variables and other definitions that
exist inside a subprogram. The variables I,J,K,L, and Spread are local to ShellSort.
Variable T is local to KeySwap.

A different term is applied to definitions that you place in the main program
itself. These are called global definitions. The difference between local and global
follows the sense of the terms themselves: Global definitions are “known” (we say,
visible) throughout the entire program and everything within it. Local definitions
are visible only from inside their containing entity.

The term “visible” is a technical one here, and it amounts to an ability to make
a reference to an identifier; that is, to read it or write a new value to it. If you can
reference an identifier from some place in a program, the identifier is visible from
that place in the program.

The local variable T defined by KeySwap is an excellent example. KeySwap
uses T as a temporary bucket to hold a key record during the swap process. Inside
KeySwap, T is obviously visible, because KeySwap’s internal logic uses it.

Now, how about from inside ShellSort? Could a statement in ShellSort’s body
reference T? No! T is local to the KeySwap procedure, and is only visible from
within KeySwap. If you tried to read from or write to T from ShellSort’s body, the
compiler would issue an unknown identifier error. And that’s the truth: From within
ShellSort’s procedure body, variable T really is unknown. It’s local to KeySwap,
and unknown anywhere outside KeySwap’s procedure body. The same would be
true from the main program block: You could not reference T at all.

FreePascal from Square One, Volume 1308

Scope
This “visibility” property of a Pascal identifier is called its scope. The scope of an
identifier is that area of the program from which the identifier can be referenced. As
we saw in the last section, the scope of T is limited to the KeySwap procedure alone.
The scope of the KeySwap procedure is limited to ShellSort. The main program
cannot directly call KeySwap. (Nor could some other procedure, like QuickSort,
call KeySwap.) Only ShellSort can call KeySwap.

In general (and more technical) terms, the scope of an identifier is limited to the
block in which it is defined, and to all blocks defined inside that block.

What this means is that scope extends “down” the nesting hierarchy, but not “up.”
That is, the scope of variable Spread in ShellSort extends down into KeySwap,
but the scope of T in KeySwap does not extend up into ShellSort. If it needed to,
KeySwap could read the current value in Spread, but nothing in ShellSort could
read the current value of T.

13.3. Identifier conflicts and scope
There’s an interesting consequence of Pascal’s scoping rules: You can have more
than one identifier in a given program with the exactly the same name, and nobody
will complain. You might complain, if you don’t understand the rules—which is the
purpose of this chapter!

Let’s take a look at a short and highly contrived Pascal program to try and get a
more precise handle on this:

PROGRAM Hollow;

VAR

 Z : Integer;

 Ch, Q : Char;

 Gonk : String[80];

PROCEDURE LITTLE1;

VAR

 Z : Integer;

BEGIN

END;

309Locality and Scope

PROCEDURE LITTLE2;

VAR

 Z : Integer;

 Q : Char;

BEGIN

END;

BEGIN { Main for Hollow }

 Little1;

 Writeln(‘>>We are the hollow programs,’);

 Little2;

 Writeln(‘>>We are the stuffed programs.’)

END.

Program Hollow is nothing more than the merest skeleton of a program,
constructed solely to illustrate the concept of identifier scope. If you’re sharp and
have looked closely at Hollow, you may be objecting to the fact that there are three
instances of a variable named “Z”—and I already told you that Pascal does not
tolerate duplicate identifiers. Well, due to Pascal’s scoping rules, the three Z’s are
not in fact duplicates at all.

Up near the top of the source code file, in program Hollow’s own variable
list, is a variable named Z. In Little1 is a variable named Z, but this Z is local to
Little1. Little2 also has an Z that is local to Little2. Each Z is “known” only in its
own neighborhood, and the extent of that neighborhood is its scope. The scope
of Little1’s Z is only within Little1. Likewise, Little2’s Z is known only within
Little2. You cannot access the value of Little2’s Z (or, for that matter, any variable
declared within Little2) from within Little1. Furthermore, while you’re in the
main program, you cannot access either of the two Z’s that are local to Little1 and
Little2. They might as well not exist until you enter one of the two procedures in
which those local Z’s are declared. (In fact, in reality they don’t. Stay tuned.)

This get a little slipperier when you consider the Z belonging to program Hollow
itself. That Z’s neighborhood encompasses the entire program, which includes both
Little1 and Little2. So while we’re within Little1 or Little2, which Z is the real Z?
Plainly, we need a rule here, and the rule is called precedence. It’s just this: When the
scopes of two identical identifiers overlap, the most local identifier takes precedence. In other
words, while you’re within Little1, Little1’s own local Z is the only Z you can
“see.” The Z belonging to Hollow is hidden from you while you’re within the scope
of a more local Z. Hollow’s Z doesn’t go away and doesn’t change; you simply can’t
look at it nor change it while Little1’s Z takes precedence.

FreePascal from Square One, Volume 1310

The Mike Smith Metaphor
Think of it this way: There are way too many Mike Smiths in the world. A large
national liquor company based in New York City has a vice president named Mike
Smith. The company also has two regional salesmen named Mike Smith, one in
Chicago and one in Geneseo, New York. When you’re at corporate headquarters in
New York and mention Mike Smith, everyone assumes you mean the Vice President
of Whisky Keg Procurement. However, if you’re in Chicago and mention Mike
Smith to a liquor store owner, he thinks you mean the skinny chap who sells him
Rasputin Vodka. He’s probably never heard of the VP or the salesman in Geneseo.
Furthermore, if you’re in Geneseo and mention Mike Smith, the restaurant owners
think of the fellow with the red beard who distributes Old Tank Car wines. They
don’t know (and could not care less about) the VP of Whisky Keg Procurement or
the vodka salesman in Chicago.

Look back at Hollow for a moment and consider the variable Q. Hollow has
a Q. Little2 also has one. Little1 does not. Within Little2, Little2’s Q is king,
and Hollow’s Q is hidden away. However, Little1 can read and change Hollow’s
Q. There is no precedence conflict here because there is no Q in Little1. Since
the scope of Hollow’s Q is the entire program, any function or procedure within
Hollow can access Hollow’s Q as long as there is no conflict of precedence. We
say that Hollow’s Q is global to the entire program. In the absence of precedence
conflicts, Hollow’s Q is “known” throughout Hollow.

Hollow has a variable named Gonk that can be accessed from either Little1
or Little2 because it is the only Gonk anywhere within Hollow. With Gonk, the
question of precedence does not arise at all.

Unless you can’t possibly avoid it, don’t make your procedures and functions
read or change global variables (like Ch or Gonk) unless those variables are passed
to the procedure or function through the parameter line. This prevents data “sneak
paths” among your main program and procedures and functions. Such sneak paths
are easy to forget when you modify a program, and may mess up legitimate changes
to the program in (apparently) inexplicable ways.

To sum up:
An identifier is local to the block (procedure, function, module, or program)
in which it is defined. This block is the scope of that identifier.
You cannot access a local identifier unless you are within that block, or
contain that block.
Where a duplicate identifier conflict of scope exists, the more local of the
two is the identifier that you can access.

•

•

•

311Locality and Scope

Why?
This can be a lot of abstract logic and rules to swallow without some firm peg in the
real world to hang it on. I don’t know about you, but understanding the physical
reality of a program helps me understand its more abstract logic. So if you’re feeling
ambitious, I’ll spend a few words explaining why Pascal does things this way.

Identifiers defined within a subprogram are not visible from outside that
subprogram because until that subprogram is called, its identifiers literally do not
physically exist. We who see the whole program and all of its subprograms laid out on
the screen or on sheets of paper, all at once, sometimes forget the time-sequential
nature of a Pascal program.

Global variables are allocated in an area of memory called the data segment. They
are brought into existence when the program is loaded into memory, and remain in
existence until the program hands control back to the operating system, or to the
IDE. (The IDE can sometimes play games with a program such that the program
and the IDE can bounce back and forth during the debugging process, and the IDE
can “see” variables within the program. This is a separate issue, and involves some
magic you won’t be using in ordinary Pascal programming.) Local variables, by
contrast, do not exist until the very moment that their subprograms are called.

When a subprogram is called, it receives a little slice of an area of memory called
the stack. Inside that little slice of the stack are allocated its local variables. Now,
the stack is strictly temporary, reusable storage, and when a subprogram finishes
executing and returns control to its caller, the region of the stack that it had used is
freed up for some other subprogram to use. A subprogram’s local variables exist on the
stack only during the time that the subprogram is executing. When the subprogram returns,
its variables go poof! and are no longer anywhere to be seen.

We say that subprograms have a limited lifetime—the time that they are executing
and own their little slice of the stack containing their local variables. Before and
after that lifetime, a subprogram’s local variables simply do not exist.

So Pascal’s scoping rules are not simply the compiler being authoritarian. It can’t
allow you to reference something that doesn’t exist yet or no longer exists. Rules are
for reasons! Don’t gripe about the rules. Strive to know the reasons.

FreePascal from Square One, Volume 1312

313

Chapter 14.
Text On the Screen and
In Files

 A note to my readers: This chapter is blank because
I’m still trying to decide how to explain file
handling. There’s the old way, using Read/Readln
and Write/Writeln for text, and Read/Write for
binary files. The new way is using streams, which
are object-oriented. I do not cover OOP in this
book, so explaining streams isn’t practical in this
volume. I will probably explain the original Pascal
file mechanism in this chapter, with a strong
recommendation to use streams once you’ve
learned OOP. This book is a work in progress. Bear
with me.

FreePascal from Square One, Volume 1314

315

Chapter 15.
Units and Separate
Compilation

Why compile the whole thing when you only need to compile the piece
you’re working on? Time is money (even small slivers of time add up) and

compilation takes time. Why waste that time?

There’s no need to. Pascal naturally separates a program into logical chunks—at
least if you don’t fight the spirit of the language. Good program design calls for
relatively independent modules that may be compiled separately, and then linked
together in one quick, final step before testing the completed program.

This is called separate compilation. Separate compilation has never been part of the
official Pascal language definition, but time has shown that it’s very hard to manage
large projects without it. To provide for separate compilation, FreePascal and most
others (including the Borland Pascals) implement the units paradigm pioneered by
UCSD Pascal decades ago. This chapter introduces the mechanisms by which separate
compilation happens in FreePascal. It’s a surprisingly subtle business, and not all of
it can be covered in an introductory text such as this. I’ll have more to say about
separate compilation and units in future books on FreePascal and Lazarus.

14.1. The Packing List Metaphor

Let’s say the UPS man rolls up to your door one day and drops a cardboard box
from Lieutenant Kije’s Military Surplus in your porch. You know where it came

from, but your memory of what the order contains has gotten a little fuzzy.

So you rip open the little clear plastic slap-on pocket and pull out the sheet of
paper marked “packing list.” Right in a row is a summary of what’s in the box: 2 spur
gears, 96 tooth, brass. One pillow block ball bearing, 1/4”. One alarm clock, Navy
Surplus. (Original cost $900.) One tank prism; tank not included.

Without actually ripping open the box, you then know what’s in it. If, for example,
the packing list had read something like, “25 polyethelene shower curtains, mauve,” I
would start to suspect that the UPS man had dropped the wrong box on my porch.

FreePascal from Square One, Volume 1316

A Pascal unit is like a little like a sealed box with a packing list. Each unit has two
primary parts:

1) an interface part; and

2) an implementation part.

The interface part is a lot like a packing list. It is an orderly description of what is in
the unit, without the actual code details of the functions and procedures within the
unit. The interface part may includes constant, type, and variable definitions, along
with the parameter line portions of the functions and procedures within the unit.

This last item may seem a little strange. Consider the following line of code:

PROCEDURE FogCheck(InString : String; VAR FogFactor : Integer);

This isn’t all of the procedure, obviously—but like it or not, it’s all you really need
to see of FogCheck to be able to make use of the procedure in your own programs.
You still need to know the relationship between the input parameter InString and the
output parameter FogFactor, of course, but that’s a documentation issue. Knowing
what procedure FogCheck does is an entirely separate matter from knowing how
it does it. If you know that the foggier the input string is, the higher the value will
come back in FogFactor, well, that’s sufficient in most cases.

Where’s the rest of FogCheck? In the implementation part of the unit. In other
words, inside the sealed box. The box contains the substance of the order, the actual
goods. The packing list contains a description. That is the critical difference between
interface and implementation.

At this point the packing list metaphor begins to break down, because in order
to do anything with my brass gears and tank prism I have to rip open the box and
take the goods out. A separately-compiled unit may remain a sealed box in the sense
that you cannot read the details of what lies inside, but the interface part of the unit
allows your own programs to hook into and use the contents of the box.

14.2 Using Units
FreePascal comes with numerous precompiled units full of routines for use in your
own programs. This works to your advantage in many ways, not the least of which is
that the procedures and functions within those readymade units are already compiled,
and do not need to be compiled again every time you compile your own programs.
Without having to recompile the units that you use, compilation wastes a little less
time—and the longer your programs are, the less time compilation wastes.

How do you use these readymade units? Just like that—you USE them:

317Units and Separate Compilation

PROGRAM Caveat;

USES Crt;

BEGIN

 ClrScr; { In unit Crt }

 GoToXY(12,10);			 { ditto }

 Writeln(‘Better to light one single candle...’);

 Writeln(‘...than to trip on a rake while changing the fuse.’);

END.

Here, the program Caveat contains a new type of Pascal statement: The USES
statement. (USES is a reserved word.)

Caveat uses a unit called Crt that is included with FreePascal. Crt contains (as
you might imagine) routines that deal with screen handling for DOS-style text
windows. ClrScr and GotoXY are the most common examples. Such routines
were never really part of the Pascal language. Both are ordinary procedures that you
could have written yourself. They originated in UCSD Pascal and have appeared in
nearly all other Pascal implementations since then.

I have to point out something important here: The same isn’t true about those
other stalwarts of simple console-mode example programs, Read, Readln, Write,
and Writeln. These are not procedures in the strictest Pascal sense. If you’ve been
through the earlier parts of this book you’ll know why: They can take a variable
number of parameters of many different types in any order at all, which is a gross
violation of Pascal’s rules and regulations regarding procedures. This being the
case, they must be “special cases” built into the compiler, because the compiler
has to generate different object code to perform each separate call to Read or
Write depending on the number and types of the parameters used. So while many
beginners think of Writeln as a CRT-oriented procedure, it does not “live” in the
same unit with all the other CRT-oriented functions and procedures supplied with
FreePascal.

The USES statement can take (almost) any number of unit names, separated
by commas. (FreePascal programs are limited to 1,024 units.) The order you place
them in the USES statement is not important unless code inside one unit references
declarations made inside one of the other units. In that case, in keeping with Pascal’s
dictum of “define it before you reference it” the called identifier must be named before
the caller. Here’s a very simple example of how you can go wrong:

FreePascal from Square One, Volume 1318

PROGRAM DiceGame; { This won’t compile! }

USES Crt,DiceUnit,BoxUnit;

BEGIN

END.

The short code snippet above is the top-level structure of a simple dice game.
DiceUnit draws dice. BoxUnit draws boxes. Drawing dice requires drawing boxes.
The game draws a box, and then puts some number of “o” characters on the box to
draw the faces of typical 6-sided dice.

Clearly, the game has to draw a box before putting the spots on the box. DiceUnit
calls procedures inside BoxUnit. This means that FreePascal has to encounter
BoxUnit before it encounters DiceUnit—and the Crt unit before it encounters
either. (The procedure GotoXY lives in the Crt unit, and both of the other units call
GotoXY.) Rearranging the order in which the units appear in the USES statement
fixes the problem:

PROGRAM DiceGame; { This will compile! }

USES Crt,BoxUnit,DiceUnit;

BEGIN

END.

Don’t USE the System unit!
In every program compiled by FreePascal, there is an implicit use of a crucial library
called System. In other words, the code inside System is always linked into your
executable programs. Do not put System in a USES clause! FreePascal will post an
error message if you do.

Where units should be placed on your disk
Compiled units must exist where FreePascal can find them. This can be a complicated
business for reasons I can’t explain in a book for newcomers. When the compiler
encounters a unit in a USES clause, FreePascal will look in these places, in this
order:

1.	It will look in the current directory; that is, the directory shown when you
bring up a console window.

2.	It will look in the directory where the unit’s source code files exists; in
other words, in the project’s directory. As a beginner, this is generally the
best thing to do, and I’ll return to this point shortly.

319Units and Separate Compilation

3.	It will look in the directory where the FreePascal compiler’s executable file
is. This is not a good strategy for beginners!

4.	It will look in all directories in the unit search path.

Unfortunately, you can’t place a drive specifier or a path specifier in a USES
clause. In other words, these are not legal USES clauses:

USES Crt,DOS,C:RingBuf; { Won’t compile! }

USES Crt,D:\JIVETALK\RINGBUF; { Won’t compile! }

Unit locations are set on a per-project basis. Each project can have a file path of its
own to direct the compiler to the units that the project USES. This can be set from
the Project|Project Options|Compiler Options|Paths. However, remember that
when you create and save a new project, Lazarus will keep the directory in which
the new project was saved, and look there first for unit files.

Referencing identical identifiers in different units
It’s perfectly legal to have identical identifiers within two units and use both units
from the same program. In other words, you could have a unit called CustomCRT
that contained a procedure called ClrScr, which is the same name as the familiar
screen-clearing routine found in standard unit Crt:

USES Crt,CustomCrt;

A program could use both units as shown above and no error message would be
generated. But—which ClrScr would be actually incorporated into the program?

With no more information than the procedure name to go on, FreePascal will
link the last procedure named ClrScr that it finds in scanning the units named in the
USES statement. In the example above, it would scan CustomCrt after scanning
Crt, and thus it would link the custom-written ClrScr routine into the program.

You could exchange the unit names Crt and CustomCrt in the USES statement,
and the compiler would then link the standard ClrScr routine into your program:

USES DOS,CustomCrt,Crt;

However, if you arrange the USES statement like this, nothing in CustomCrt can
use any of the many useful routines in Crt. This may not always be an issue, but it
does limit your options.

There is a better way. You can specify the name of the unit that contains an
identifier when you use the identifier. The notation should be familiar to you from
working with Pascal record types, and works in a very similar fashion:

FreePascal from Square One, Volume 1320

PROGRAM WeirdTextStuff;

USES Crt,CustomCrt;

BEGIN

 Crt.ClrScr; { Clears the visible PC text screen }

 ClrScr; { Clears the other text screens too }

 . . .

END.

This is often called dotting. In the same way that you can have two different record
types with identical field names, you can have two or more units containing
identical identifiers, and there will be no conflict. You simply choose the one you
want by prefixing it with the unit name and a period character at each invocation.
The default identifier in cases where no unit name precedes the reference is the first
one found in scanning the units in the USES statement.

Note that the resemblance to record references ends there. FreePascal has no
WITH statement feature for specifying unit names.

15.2. Unit Syntax
In its simplest form, a unit source code file is very much like a Pascal program
source code file without a program body. Typically, units contain procedures and
functions, and often other declarations like constants, types, and variables.

A minimal unit with nothing inside it looks like this:

UNIT Skeleton;

INTERFACE

IMPLEMENTATION

END.

There are some immediate departures from the expected here. The reserved words
INTERFACE and IMPLEMENTATION are not statements, and therefore are not
followed by semicolons. Like the reserved words BEGIN and END, they serve to set
off groups of statements that belong together. Also, there is an END but no BEGIN.
Units do not have program bodies.

Fleshing out our unit a little bit will bring out the differences between the interface
and implementation parts:

321Units and Separate Compilation

UNIT Skeleton;

INTERFACE

USES DOS, Crt;

TYPE

 MyType = ItsDefinition;

VAR

 MyVar : MyType;

PROCEDURE MyProc(MyParm : MyType);

FUNCTION MyFunc(I,Y : Integer) : Char;

IMPLEMENTATION

VAR

 PrivateVar : MyType;

PROCEDURE MyProc(MyParm : MyType);

VAR Q,X : Integer;

BEGIN

END;

FUNCTION MyFunc(I,Y : Integer) : Char;

BEGIN

END;

END.

Note here that the INTERFACE reserved word must come before the USES
statement, if any. Nothing, in fact, may come between the unit name and the
INTERFACE reserved word.

One type and a variable of that type are defined in the interface section shown.
Both of these definitions are “visible” to any program or unit that uses Skeleton. A
function and a procedure are also defined in the interface part of Skeleton, and like
MyType and MyVar are visible to any unit or program that uses Skeleton.

FreePascal from Square One, Volume 1322

Now look down to the implementation section of the unit, where the bodies of
the function and procedure are given. Notice that a variable name PrivateVar is
declared in the implementation section. As its name implies, PrivateVar is known
only within the implementation section of the unit. No other program or unit can
reference the identifier PrivateVar or in any other way know that it exists or how it
is defined.

PrivateVar can, however, be accessed by any of the procedures or functions
defined within the unit. So, in a sense, the effects of PrivateVar can be “felt” by
outside programs or units that use the subprograms that have access to PrivateVar,
but the variable itself remains invisible to anything outside the unit in which it is
declared.

Why is this important? Like so many of Pascal’s structural limitations, it is done
to minimize the possibility of undeclared “sneak paths” occurring between routines
when those paths are not desired. Such sneak paths make possible bugs of a truly
insidious nature.

A useful unit example
A very simple example involves the MakeBox procedure that I presented in Section
10.2. BoxStuff is the unit used by the Rollem dice game I presented in Section 11.1.
I’ve gathered together the LineRec and PCLineChars definitions, along with the
MakeBox procedure itself, and created a short unit to “box it all up” and make it
all available simply by placing the name BoxStuff in your USES statement. Read it
carefully to make sure you understand all the details.

{--}

{ BoxStuff }

{ }

{ Unit to demonstrate separate compilation -- draws text boxes }

{ }

{ by Jeff Duntemann }

{ FreePascal 3.0.4 }

{ Last update 11/15/2019 }

{ }

{ From: FREEPASCAL FROM SQUARE ONE by Jeff Duntemann }

{--}

UNIT BOXSTUFF;

INTERFACE

USES Crt; { For GotoXY }

323Units and Separate Compilation

TYPE

 LineRec = RECORD

 ULCorner,

 URCorner,

 LLCorner,

 LRCorner,

 HBar,

 VBar,

 LineCross,

 TDown,

 TUp,

 TRight,

 TLeft : String[4]

 END;

{ PCLineChars: }

{ Contains box-drawing strings for MakeBox.}

{ Any program or unit that USES BoxStuff }

{ can access the PCLineChars constant just }

{ as though it had been defined within the }

{ USEing program or unit. }

CONST

 PCLineChars : LineRec =

 (ULCorner : #201;

 URCorner : #187;

 LLCorner : #200;

 LRCorner : #188;

 HBar : #205;

 VBar : #186;

 LineCross: #206;

 TDown : #203;

 TUp : #202;

 TRight : #185;

 TLeft : #204);

{<<<< MakeBox >>>>}

{ This is all that the “outside world” really needs to see of the }

{ MakeBox procedure. *How* it happens is irrelevant to using it. }

PROCEDURE MakeBox(X,Y,Width,Height : Integer;

 LineChars : LineRec);

FreePascal from Square One, Volume 1324

IMPLEMENTATION

{ <<<<MakeBox>>>> }

PROCEDURE MakeBox(X,Y,Width,Height : Integer;

 LineChars : LineRec);

VAR

 I : Integer;

BEGIN

 IF X < 0 THEN X := (80-Width) DIV 2; { Negative X centers box }

 WITH LineChars DO

 BEGIN { Draw top line }

 GotoXY(X,Y); Write(ULCorner);

 FOR I := 3 TO Width DO Write(HBar);

 Write(URCorner);

 { Draw bottom line }

 GotoXY(X,(Y+Height)-1); Write(LLCorner);

 FOR I := 3 TO Width DO Write(HBar);

 Write(LRCorner);

 { Draw sides }

 FOR I := 1 TO Height-2 DO

 BEGIN

 GotoXY(X,Y+I); Write(VBar);

 GotoXY((X+Width)-1,Y+I); Write(VBar)

 END

 END

END;

END.

13.3. Initialization and Finalization
Structurally, units are very much like Pascal programs without program bodies. The
important parts are the definitions of constants, types, variables, and subprograms.
Now, a unit may in fact have one or both of two additional things: the unit’s
initialization section, and its finalization section. In FreePascal, a unit may include
one, or the other, or both. This differs from Delphi, which will not compile a unit’s
finalization section if there is not also an initialization section. It’s easy to beef up a
version of our unit Skeleton to include both initialization and finalization:

325Units and Separate Compilation

UNIT Skeleton;

INTERFACE

IMPLEMENTATION

INITIALIZATION

 BEGIN

 END;

FINALIZATION

 BEGIN

 END

END.

One thing that may look odd is that the two words INITIALIZATION and
FINALIZATION are in uppercase. In this book at least (and in my tutorials
generally) reserved words are in all caps, and the two are reserved words in nearly
all implementations of Object Pascal, including Delphi. Neither is required for a
unit to compile. As you’ll notice, the example unit BoxStuff presented earlier has
neither.

The Skeleton unit as shown above will compile, even though it’s empty and
generates no code.

When initialization sections run
In a program that uses several units, the initialization section (if there is one) for each
one of those units will execute before the main program body begins executing.
The order in which the unit initialization sections run is the same order that the
units are named in the USES statement, from left to right. For example:

USES Crt,Mouse,BoxStuff;

When the program that contains this statement is run, the initialization section
for Crt executes first, followed by the initialization section for Mouse. There is no
initialization section for the unit BoxStuff, so as soon as the initialization section
of Mouse finishes executing, the main program body begins executing.

The finalization sections of the units used in a program will execute in reverse
order after execution of the program itself terminates. For example, in the USES
statement above, the units will be initialized in the order Crt,Mouse,BoxStuff.
When the program ends, the finalization sections of the three units will be executed
in the order BoxStuff,Mouse,Crt.

FreePascal from Square One, Volume 1326

Of what use are initialization sections and finalization sections? There are
several, although most of them are relatively advanced concepts that you may not
need to use until you have come up to speed in Pascal programming in general and
(especially) begin using objects.

Most simply, an initialization section can initialize global variables declared in the
unit to some desired initial value. This relieves the program itself of the responsibility,
and avoids the possibility that the programmer will forget to add initialization
code to the beginning of his program that uses the unit. Also, in situations where a
vendor sells a unit as a separate product, the initialization section guarantees that
any globals that need to be initialized will be initialized so that the unit (which may
not be sold with source, and hence not fully understood by the programmer who
works with it) will work correctly without depending on the programmer. Also, a
unit may need to allocate memory on the heap for data structures.

Finalization sections are used less often. Mostly they release memory that was
allocated by code somewhere in the unit. Again, this will make more sense (and
become more useful) once you begin using objects, pointers, and the heap. Alas, I
cannot cover those topics in this one introductory volume.

327Units and Separate Compilation

FreePascal from Square One, Volume 1328

What’s Next?

Many people who have downloaded this PDF since 2011 have written to ask
me how much it will cover once I consider it complete—and what my next

project involving FreePascal/Lazarus will be. Well, with the 11/23/2021 revision, I
consider this book complete. Let’s talk about that a little.

First of all, remember what I’m trying to do with this book: Create an introduction
to not only FreePascal but to the ideas of programming itself. It’s intended to be
accessible to people who have never coded before at all, in any language. This means
that the first 90-odd pages of the book will be unnecessary for people who are
already familiar with the general principles of programming and especially Pascal
programming. People who know programming but are new to Pascal can skip past
the first 60 pages or so.

I made a deliberate decision to limit this book to 350 pages. That’s a lot of paper
to print, punch, and bind if you want to make a paper copy for yourself. I intend to
post a spiral-bound paper copy on Amazon KDP soon, though that will obviously
not be a “free” book.

In other words, I want to keep to the mission of a book not only for newcomers
to Pascal, but even newcomers to programming itself.

Here’s a short list of things I will not cover:
Object-oriented programming (OOP)
Traditional pointers and linked lists (they’ve been subsumed by OOP Lists)
Traditional Pascal file handling (it’s been subsumed by OOP streams)
GUI building with Lazarus
Database programming

All of that depends on objects, and Lazarus components are objects. So the next
book, whatever its title, will begin with OOP and move from there to GUI building
with Lazarus and then everything else. I hope to keep my future books shorter, so I
may move database work off to an entirely separate book. I have no timetable at this
point. They’ll happen when they happen. Hang in there. Thanks for downloading,
and double thanks for being interested in Pascal!

—73—

Jeff Duntemann K7JPD

Scottsdale, Arizona, USA

•
•
•
•
•

