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Abstract

We study the Astrojax Pendulum and the N-body problem on the
sphere in the light of Lagrangian reduction theory, variational integrators,
and pattern evocation.

1 Introduction

The main intent of this research is to use a simple mechanical example to explore
the topics of variational integration, pattern evocation, and reduction theory.
This paper serves as preliminary work for future research into how structure
and symmetry of manifolds influence mechanical systems. In the first three
sections, foundation principles in Lagrangian reduction, variational integrators,
and pattern evocation are established. In the later sections, we apply these
principles to the mechanical examples of the Astrojax pendulum and the N -
body problem on the sphere.

2 Lagrangian Reduction

In this section, we outline the method of Lagrangian reduction generally. The
discussion follows the exposition given in [Marsden, Ratiu] and [Bloch]. Later,
we will apply the method presented here to the specific case of the Astrojax
Pendulum. An exactly similar and more well-known reduction can be performed
on the Hamiltonian side using Poisson structures and symplectic reduction, but
this approach is not presented here.

Let Q be a configuration manifold. Let G be a lie group with lie algebra
g. Suppose that G acts freely and properly on Q and that the metric 〈〈 , 〉〉
is invariant under the action of G. Let G act on TQ by a lift of the tangent
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mapping. Let the Lagrangian L : TQ → R, be a G-invariant Lagrangian. Then
we define the momentum map J : TQ → g∗ by

〈J(vq), ξ〉 = 〈FL(vq), ξQ(q)〉

where vq ∈ TQ, ξ ∈ g, and FL(vq) is the fiber derivative of L in the fiber
direction. Then, in this context, we have the celebrated Theorem of Noether:

Theorem 2.1 (Noether’s Theorem)
If L is a G-invariant Lagrangian on TQ, then for a solution of the Euler-
Lagrange equations, J is conserved.

Before proceeding to obtain the reduced Lagrangian on TQ/G, we need to
first introduce the infinitesimal generator of the group action as well as two
more mappings: the locked inertia tensor and the mechanical connection.

Recall that the infinitesimal generator of the action of G on Q corresponding
to ξ ∈ g is a vector field on Q defined by

ξQ(q) =
d

dt

∣∣∣∣
t=0

etξ(q) .

For each q ∈ Q, we define the locked inertia tensor to be the map I : g → g∗

defined by
〈Iη, ζ〉 = 〈〈ηQ(q) , ζQ(q)〉〉 .

We define the mechanical connection on the principal bundle Q → Q/G to be
the map A : TQ → g given by

A(q, v) = I(q)−1
(
J(q, v)

)
.

Heuristically, we can think of the locked inertia tensor as assigning to each
element of the configuration space an inertia tensor corresponding to the action
of G on Q. For example, the locked inertia tensor corresponding to the action
of rotation by the group S1 assigns to each q ∈ Q the moment of inertia about
the axis of rotation as though the configuration were locked or ”welded” fixed.
Then, for a fixed value of the momentum map J, the mechanical connection
A assigns to each (q, v) ∈ TQ the corresponding angular velocity of the locked
system.

Next we define the reduced Lagrangian for mechanical systems as given in
[Bloch] section 3.11. Let L : TQ → R be a G-invariant Lagrangian. The reduced
Lagrangian l : TQ/G → R is defined as

l(r, ξ, ṙ) = L(r, g−1g, ṙ, g−1ġ)

where ξ = (g−1ġ, r, ṙ) are local coordinates on TQ/G. In more familiar terms, we
say that the ξ are the body velocities with respect to the body frame, and ξs =
ġg−1 are the spatial velocities. Then, for a mechanical system with Lagrangian
of the form

L(q, vq) =
1
2
〈〈vq, vq〉〉 − V (q)

we have the following result proved in [Bloch]:
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Theorem 2.2 (Reduced Lagrangian)
For a G-invariant mechanical Lagrangian the reduced Lagrangian may be written
in the form

l(r, ṙ, ξ) =
1
2

(ξT , ṙT )
[

I IA
AT I m(r)

] [
ξ
ṙ

]
− V (r)

where I is the local form of the locked inertia tensor and A is the local form of
the mechanical connection.

3 Variational Integrators

Traditional numerical integration techniques begin with a discretization scheme
at the level of the equations of motion. In this section, we present the idea of
constructing discrete algorithms for approximating trajectories of a mechanical
system by discretizing the original variational principle from which the equations
of motion are derived. Employing a discrete variational principle is attractive
since the resulting algorithm respects the invariants of the original continuous
system and preserves the symplectic form.

First, we must state precisely what is meant by a discrete variational princi-
ple. The derivation given here follows that given by [Wendlandt, Marsden; 1997].
Let L : TQ → R be a Lagrangian for a mechanical system. In the continuous
setting, the variational principle of Hamilton states that the solution trajectory
through Q is the curve q(t) such that the

δ

∫ b

a

L(qi, q̇i, t) dt = 0 .

Variations of the action integral are taken over all curves in Q with the end points
held fixed. It is a standard exercise to show that this principle is equivalent to
the statement that q(t) satisfies the Euler-Lagrange equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1, · · · , n.

Now we place Hamilton’s principle in a discrete setting. Given the continuous
Lagrangian L : TQ → R, we introduce the discrete Lagrangian Ld : Q×Q → R.
The order to which Ld approximates L determines the order of accuracy of the
method. For example, for x, y ∈ Q we may choose

Ld(x, y) = L

(
x + y

2
,
y − x

h

)
where h ∈ R+ is the time step of the method and

(
x+y

2 , y−x
h

)
is a first order

approximation to vq ∈ TQ. In analogy to the action integral, we define the
action sum S : QN+1 → R by

S =
N−1∑
k=0

 Ld(qk, qk + 1)
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where qk ∈ Q and k ∈ Z is the discrete time. The discrete Hamilton’s principle
states that the trajectory of the system extremizes the action sum. That is, the
trajectory qk, k = 1 · · ·N , satisfies

δ
N−1∑
k=0

 Ld(qk, qk + 1) = 0

where variations are taken over points in Q with the end points held fixed.
Again, it is straight forward to show that this discrete principle is equivalent to
the implicit time-stepping algorithm defined by

D1Ld(qk + qk+1) + D2L(qk−1, qk) = 0 for all k ∈ {1, · · · , N − 1} .

This set of equations is called the Discrete Euler-Lagrange Equations. The
equations implicitly define a map (qk−1, qk) → (qk, qk+1) which is the time-
stepping algorithm. We call an algorithm derived in this way a variational
integrator.

In [Wendlandt, Marsden; 1997] it is shown that variational integrators pre-
serve both the symplectic form and the momentum map. Furthermore, a dis-
crete version of Noether’s theorem is derived and it is noted that a discrete
version of reduction theory may be applied in the discrete case.

4 Pattern Evocation

We have presented previously the concept of reduction. From
[Marsden, Scheurle, Wendlandt; 1995], we have the result that if the reduced
system exhibits a periodic orbit, then when viewed in a suitably chosen rotating
frame with constant angular velocity, the orbit in the original unreduced space
is also periodic. We now elaborate on this result using the notation we have
introduced thus far.

Let Q be a manifold. Let G be a lie group that acts freely and properly
on Q. Let π : Q → Q/G =: S be a principal G-bundle that projects from the
configuration manifold Q to the shape space (the reduced space) S. Let L be a
G−invariant Lagrangian on Q. Let J : T ∗Q → g∗ be the standard equivariant
cotangent bundle momentum map for the cotangent lifted action of G on T ∗Q.
Choose a momentum value µ ∈ g∗. Let the locked inertia tensor be the map
I(q) : g → g∗. Define the map α : TQ → g which assigns the angular velocity of
the locked system:

α(q, v) = I(q)−1J(q, v).

The map α is a mechanical connection on the principal bundle. Also, use α to
define αµ, a one-form on Q by

〈αµ(q), vq〉 = 〈µ, α(vq)〉 .

Define the ammended potential Vµ := V (q)+ 1
2 〈µ, I−1

q µ〉. Suppose that ze ∈ T ∗
qe

lies on J−1(µ). Then, ze is a relative equilibrium if and only if qe is a critical
point of Vµ, and ze is of the form αµ(qe).
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A specific example may help to elucidate the notation. Consider a simple
spherical pendulum. The Lagrangian is invariant under the action of S1 about
the z-axis. An equilibrium point in the reduced shape space corresponds to a
fixed shape which is rotated steadily about the z-axis under the action of the
group. In the reduced space, the potential is ammended to include not only the
gravitational potential but also the effective potential of the non-inertial forces
in the unreduced space. Therefore, the equilibrium point ze in shape space
corresponds to a critical point of the ammended potential. Precisely in this
sense, the so-called conical pendulum is an example of a relative equilibrium.
The motion of the conical pendulum is entirely described by

z(t) = etξze

for some ξ ∈ g, the Lie algebra of G.
With these ideas now in place, we can state the pattern evocation theorem

from [Marsden, Scheurle, Wendlandt; 1995] explicitly:

Theorem 4.1 (Pattern Evocation)
Assume that the exponential map exp : g → G is surjective. Assume that c(t)
is a relative periodic orbit and denote a period of the reduced orbit by T . Then
there is a Lie algebra element γ ∈ g such that exp(−γt)c(t) is also periodic with
period T .

5 The Astrojax Pendulum

An interesting toy problem is the Astrojax pendulum. The physical set up of
the Astrojax is essentially a double spherical pendulum in which the first bob is
allowed to slide freely on the tether. Players of the Astrojax can produce many
exciting and unexpected motions. Indeed, even without external forcing from
a player, the motion of the two bobs exhibits intricate and chaotic behavior.
More information about the Astrojax and movies of players performing tricks
with the Astrojax can be viewed online at www.astrojax.com

5.1 Mathematical Model

We model the Astrojax with a massless tether of fixed length l and two con-
strained point masses, m1 and m2, moving in a gravitational field. Figure 1
is a schematic illustration of the Astrojax pendulum. One end of the tether is
attached to a rigid support. The first mass, m1, is constrained implicitly by
the requirement that if m1 is a distance λ from the pivot, then m2 must be a
distance l−λ from m2. Thus, in contrast to the double spherical pendulum, this
system has only one constraint. Namely, the sum of the straight line distances
between the pivot and m1, and m1 and m2 (the tether length) remain constant.

The position of m1 on the tether defines a vertex at which the tether can
be bent. In this sense the tether is flexible. However, the two segments of the
tether defined by the vertex at m1 are treated as massless rigid rods. This
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Figure 1: The Astrojax Pendulum
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agrees with movies of real Astrojax players in which the tether segments always
remain taught.

The Astrojax exhibits 5 degrees of freedom. The configuration space is
Q = S2 × S2 × R. The distance from the support to m1 is λ ∈ R. Then,
the positions of m1 and m2 are uniquely specified by the spherical coordinates
(θ1, φ1) and (θ2, φ2) respectively.

A simplification of the Astrojax is to consider only motion in a vertical plane.
In this case, the system has three degrees of freedom. The configuration space
is Q = S1 × S1 × R with coordinates (λ, θ1, θ2).

It is important to realize at this point what is not specified by this model. In
particular, the constraint does not require that m1 remain between the support
and m2. Indeed, the distance from the pivot to m1, λ, is not restricted to
be in [0, l]. More to the point, the distance between m1 and m2, l − λ, need
not be positive! If we prefer to only consider distances as positive quantities,
then a better interpretation is that if λ > l, then the direction of gravity for
m2 is reversed. In summary, no additional constraints involving inequalities
or absolute values were used to make sure that m1 bounces off m2 instead of
flying off the tether. Moreover, this model has nothing to say about collisions
between the the two masses or the first mass and the support. The masses are
free to slide through each other. Nevertheless, it is remarkable how well this
model, despite its simplicity, is able to capture the dynamics of the collisions
and knows to keep m1 between the support and m2. This behavior will be seen
in the simulations, but the reader should be aware that these collision dynamics
were not explicitly incorporated into the equations.

A few sample simulations for the planar Astrojax pendulumare provided
below. The simulations were produced using an implicit differential equation
solver with adaptive time-stepping in Matlab

1. Initial condition: θ1 = π
4 and θ2 = π

4 . This simulation displays typical
motion of the Astrojax pendulumand demonstrates how the model incor-
porates collisions. Watch Movie

2. Initial condition: θ1 = 3π
4 and θ2 = 3π

4 . This simulation demonstrates more
energetic motion above the height of the pivot. Watch Movie

3. Initial condition: θ1 = π
4 and θ2 = π

4 but with m1 = 10m2. The whiplash
effect is accentuated in this movie because of the disparity in the masses.
Watch Movie

4. Initial condition: θ1 = 0.05 and θ2 = 0. This simulation demonstrates the
ability of the model to reproduce bouncing motion and collisions. Watch
Movie

7



5.2 Euler-Lagrange Equations

We initiate an analysis of the Astrojax pendulum by deriving the Lagrangian,
L = T − V . The potential energy term, V , is straightforward:

V = −m1gλ cos θ1 + m2g(λ cos θ1 + (l − λ) cos θ2 .

In order to determine the kinetic energy term,

K =
1
2
m1(q̇1 · q̇1) +

1
2
m2(q̇2 · q̇2) .

We first write the position vectors, q1 and q2, of both masses in terms of
the generalized coordinates. Then we differentiate these position vectors with
respect to time to obtain q̇1 and q̇2 from which K follows.

The Lagrangian for the three-dimensional Astrojax pendulum is given by

L =
1
2
m1

(
λ̇2 + λ2θ̇2

1 + λ2φ̇2
1 sin2 θ1

)
+

1
2
m2

(
λ̇2 + λ2θ̇2

1 + λ2φ̇2
1 sin2 θ1

)
+

1
2
m2

(
λ̇2 + (l − λ)2θ̇2

2 + (l − λ)2φ̇2
2 sin2 θ2

)
+m2

(
−λ̇2

[
cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2)

]
+λλ̇θ̇1

[
sin θ1 cos θ2 − cos θ1 sin θ2 cos(φ1 − φ2)

]
+(l − λ)λ̇θ̇2

[
sin θ1 cos θ2 cos(φ1 − φ2)− cos θ1 sin θ2

]
+λ(l − λ)θ̇1θ̇2

[
cos θ1 cos θ2 cos(φ1 − φ2) + sin θ1 sin θ2

]
+λ̇
(
λφ̇1 + (l − λ)φ̇2

)
sin θ1 sin θ2 sin(φ1 − φ2)

+λ(l − λ)θ̇1φ̇2 cos θ1 sin θ2 sin(φ1 − φ2)
−λ(l − λ)φ̇1θ̇2 sin θ1 cos θ2 sin(φ1 − φ2)

+λ(l − λ)φ̇1φ̇2 sin θ1 sin θ2 cos(φ1 − φ2)
)

+m1gλ cos θ1

+m2gλ cos θ1 + m2g(l − λ) cos θ2 .

From this point, it is a straightforward though lengthy exercise to calculate
the Euler-Lagrange equations. The five Euler-Lagrange equations are provided
in Appendix A.

5.3 Lagrangian Reduction on the Astrojax Pendulum
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Here, we pause to observe an elementary Lagrangian reduction of the Astrojax
pendulum. We begin by noticing that both the metric on Q and the potential
energy function V (q) are invariant under the action of S1 about the gravity
vector. Hence, the Lagrangian is invariant under rotations about the z-axis.
In particular, notice that the Lagrangian depends on φ1 and φ2 only in the
combination φ1−φ2. The Lagrangian depends only on the relative angular dis-
placement of the two bobs and not their absolute displacement. This motivates
the following invertible change of variables

α := φ1 + φ2

β := φ1 − φ2

so that

φ1 =
α + β

2

φ2 =
α− β

2
.
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Under this change of variables the Lagrangian becomes

L(λ, θ1, θ2, α, β, λ̇, θ̇1, θ̇2, α̇, β̇) =
1
2
m1

λ̇2 + λ2θ̇2
1 + λ2

(
α̇ + β̇

2

)2

sin2 θ1


+

1
2
m2

λ̇2 + λ2θ̇2
1 + λ2

(
α̇ + β̇

2

)2

sin2 θ1


+

1
2
m2

λ̇2 + (l − λ)2θ̇2
2 + (l − λ)2

(
α̇− β̇

2

)2

sin2 θ2


+m2

(
−λ̇2

[
cos θ1 cos θ2 + sin θ1 sin θ2 cos β

]
+λλ̇θ̇1

[
sin θ1 cos θ2 − cos θ1 sin θ2 cos β

]
+(l − λ)λ̇θ̇2

[
sin θ1 cos θ2 cos β − cos θ1 sin θ2

]
+λ(l − λ)θ̇1θ̇2

[
cos θ1 cos θ2 cos β + sin θ1 sin θ2

]
+λ̇

(
λ

(
α̇ + β̇

2

)
+ (l − λ)

(
α̇− β̇

2

))
sin θ1 sin θ2 sin β

+λ(l − λ)θ̇1

(
α̇− β̇

2

)
cos θ1 sin θ2 sin β

−λ(l − λ)

(
α̇ + β̇

2

)
θ̇2 sin θ1 cos θ2 sin β

+λ(l − λ)

(
α̇ + β̇

2

)(
α̇− β̇

2

)
sin θ1 sin θ2 cos β

)
+m1gλ cos θ1

+m2gλ cos θ1 + m2g(l − λ) cos θ2 .

Notice that in these new coordinates α is a cyclic variable. The Euler-Lagrange
equation in α immediately yields a conservation law corresponding to the S1

symmetry. The invariant momentum map is given by

J(vq) =
∂L

∂α̇
.

We can develop this result in terms of the notation and theory given earlier in
section 2.

We have seen that L : TQ → R is a S1-invariant Lagrangian. The lie algebra
of S1 is just R. The infinitesimal generator for the action of the group on Q is
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given by

ξQ =
d

dt

∣∣∣∣
t=0

etξ.z =
d

dt

∣∣∣∣
t=0


λ
θ1

θ2

φ1 + tξ + φ2 + tξ
φ1 + tξ − φ2 − tξ

 =


0
0
0
2ξ
0


Recalling the definition of the momentum map, we see that

〈J(vq), ξ〉 = 〈FL(vq), ξQ(q)〉

ξJ(vq) =
[

∂L
∂λ̇

∂L
∂θ̇1

∂L
∂θ̇2

∂L
∂α̇

∂L
∂β̇

]


0
0
0
2ξ
0


J(vq) = 2

∂L

∂α̇
.

The presence of the cyclic coordinate has effectively reduced the Lagrangian. By
restricting to a level set of J, we may consider the Lagrangian as a function on
(λ, θ1, θ2, β) only, and compute the Euler-Lagrange equations in these reduced
coordinates.

We have seen how the invariance of the Lagrangian under the action of the
group leads to reduction of the Lagrangian. We now proceed to the simulation
of the Astrojax pendulum using a variational integrator.

5.4 Simulation using a variational integrator

The procedure for constructing a variational integrator presented here is based
on the method described in [Wendlandt, Marsden; 1997]. We use the con-
strained Lagrangian approach.

First, we consider the system of two unconstrained particles moving in a
uniform gravitational field. The configuration manifold is U = R3 × R3 with
dim U = 6. Coordinates on U are denoted by [x1 y1 z1 x2 y2 z2] where (x1, y1, z1)
is the position of m1 and (x2, y2, z2) is the position of m2. The unconstrained
Lagrangian L : TU → R is the elementary Lagrangian of two free particles
moving in a gravitational field:

L =
1
2
q̇Mq̇ − V (q)

where M = diag(m1,m1,m1,m2,m2,m2) is the mass matrix and

V (q) = g(m1z1 + m2z2)

is the potential energy.
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Next, we introduce the constraints imposed by the tether. The constrained
configuration manifold is Q = R × S2 × S2 so that Q ⊂ U . The constrained
Lagrangian, Lc is defined as the restriction of L to the tangent bundle of Q:

L

∣∣∣∣
TQ

=: Lc : TQ → R .

The constraint is written as

g : U → R such that g−1(0) = Q

where 0 is regular value of G. The constraint for the Astrojax pendulum is
simply that the length of the tether must remain constant. Explicitly, we write
this as

g(q) =
√

x2
1 + y2

1 + z2
1 +

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 = 0 .

We enforce the constraint using a Lagrange multiplier µ ∈ R. The (seven)
Discrete Euler-Lagrange equations are

M

(
vk+1 − 2vk + vk−1

h2

)
+

1
2

(
∂V

∂q

(
vk+1 + vk

2

)
+

∂V

∂q

(
vk + vk−1

2

))
−DT g(vk)α = 0

g(vk+1) = 0 .

This time-stepping algorithm for numerical integration of the motion of the as-
trojax pendulum has been implemented in Matlab. The algorithm requires the
use of the Newton-Raphson method on a seven dimensional system (6 coordi-
nates and one lagrange multiplier) at each time step to solve for the updated
configuration variables and the Lagrange multiplier µ. The exact calculations
involved are included in Appendix B. Several simulations for various initial con-
ditions follow.

1. Low Angular Momentum: This simulation is for a low value of µ, the angular
momentum about the z-axis. The motion appears chaotic. Watch Movie.

2. High Angular Momentum: This simulation is for a high value of µ, the
angular momentum about the z-axis. The motion appears more regular.
Watch Movie

3. Intermediate Angular Momentum: This simulation is for an intermediate
value of µ, the angular momentum about the z-axis. Watch Movie

Figure 2(a) shows the value of momentum at each time step during the
intermediate angular momentum simulation listed above. Clearly, the algorithm
preserves the invariant momentum to machine precision as guaranteed by the
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Figure 2: Energy and Momentum Analysis of the Variational Integrator for the
Astrojax Pendulum.
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theory in Section 3. The theory admits no statement of energy preservation of
the variational integrator algorithm; however, we see in Figure 2(b) that the
energy value oscillates about its initial value with only a small relative error
with even a modest choice of time step h. This property of the energy is typical
of variational integrators. Indeed, it is a hallmark of variational integrators
that the energy value oscillates about the true value in contrast to traditional
Runga-Kutta type methods which generally exhibit decay in the energy value.
In the literature, the percentage error in the energy value provides a convenient
check on the validity of the simulation.

To provide further corroboration of the results obtained by the variational in-
tegrator, we simulate a known relative equilibrium solution of the double spher-
ical pendulum. The solution is the ”stretched out” relative equilibrium with
initial conditions provided in [Jalnapurkar, Marsden; 1998]. The results of the
simulation can be viewed in movie format. Watch Movie

5.4.1 The controlled Astrojax Pendulum

We mention here that a variational integrator for the controlled Astrojax pen-
dulum has been developed. In an attempt to mimic actual Astrojax players, we
model the control as a constraint on the position of the support. The imple-
mentation of the variational integrator for the controlled Astrojax pendulum is
summarized in Appendix C.

The theory for optimal control or stabilization of relative equilibrium in the
Astrojax pendulum is not presented here, but will be the topic of a future paper
that will build upon the theory of control of the double spherical pendulum
presented in [Jalnapurkar, Marsden; 1998]. Observation of the tricks performed
by Astrojax players indicates that both the ”cowboy” and the ”stretched out”
relative equilibrium exist in the controlled Astrojax. Of interest is the role
of forcing and dissipation in the stabilization (or destabilization) of relative
equilibria in the controlled Astrojax pendulum.

5.5 Pattern Evocation in the Astrojax Pendulum

We now perform an empirical search for pattern evocation in the Astrojax pen-
dulum as outlined in [Marsden, Scheurle, Wendlandt; 1995]. For this study, we
choose the trajectory given in the High Angular Momentum simulation in Sec-
tion 5.4 as a test trajectory. The program in this search involves viewing the
complete trajectory from a frame rotating about the z-axis for a range of rota-
tion frequencies. Practically, we implement the search by plotting the trajectory
in the following transformed coordinates:[

q̃1(t)
q̃2(t)

]
= e−ξ̂t

[
q1(t)
q2(t)

]
where

ξ̂ =

0 −ξ 0
ξ 0 0
0 0 0


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for a range of ξ values.
As the scan through the rotation frequencies proceeds, several ”resonant fre-

quencies” become evident at which simple patterns and their harmonics emerge
from the apparently chaotic trajectory. A full movie depicting an animated scan
through the rotation frequencies is provided here. Watch Movie. The rotation
frequency at which the trajectory, extended both forward and backward in time,
does not encircle the z-axis is termed the critical frequency. We can think of
the critical frequency as the group frequency, or the frequency with which both
bobs as a group rotate about the z-axis. This frequency is clearly evident in the
movie scan. Notice that the resonant frequencies are characteristically different
from the critical frequency which highlights the subtlety that pattern evocation
is not merely an artifact of moving to a rotating frame with angular frequency
equal to that of the group.

6 The N-body Problem on the Sphere

We move now to a different problem in which we can investigate further the
role of symmetry and curved manifolds in mechanics. We propose studying
the restriction of the N -body problem to the sphere. The N-body problem
is a celebrated problem with prodigious history. Indeed, much of modern-day
dynamical systems theory finds its roots in this problem. The 2-body problem
on the sphere was investigated in a recent paper by Borisov, Mamaev, and Kilin.

Classically, the N -body problem refers to the mechanical system describing
the motion of N point masses moving under mutual gravitational attraction
according to Newton’s law of gravity. Recall that Newton’s law of gravity states
that the force between two masses is inversely proportional to the square of the
distances between them. For the present study, we propose a slightly different,
but more general, problem. Consider N charged particles moving under their
mutual electrostatic attraction or repulsion. This system also exhibits a force
law that is inversely proportional to the square of the distance between the
masses, but allows for both attractive and repulsive forces.

In summary, the problem we study in this section is the motion of N charged
particles moving on a sphere. Later, in order to produce simulations, we study
the specific case of the motion of 3 electrons on the sphere.

6.1 Mathematical Model

We begin with a conducting spherical shell with unit radius. On this sphere we
place N charged particles. We denote the mass and charge of the ith particle
by mi and ei respectively. The configuration manifold is Q = S2 × · · · × S2 (N
times) where the position of a particle is specified by an element of S2. The
Lagrangian for the system is given by

L =
1
2
q̇T Mq̇ − V (q)
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where q ∈ S2, M is the mass matrix, and V (q) is the potential energy given by

V (q) = −1
2

∑
j 6=i

eiej

‖qj − qi‖
.

Notice that we ignore gravitational and magnetic effects.

6.2 Reduction

Due to the spherical symmetry of Q, we see that the Lagrangian is invariant
under the action of SO(3). The invariance of L under the action of SO(3) gives
rise to the invariance of the angular momentum vector. This calculation can be
found explicitly in Section 11.4 of [Marsden, Ratiu]. Briefly, we find that the
infinitesimal generator corresponding to ξ = ω̂ ∈ so(3) is

ω̂P (q,p) = (ω × q, ω × p) .

Solving for the momentum map in the standard fashion yields

J(q,p) = q× p

which is the usual angular momentum vector. Therefore, for the N -body prob-
lem on the sphere, we expect all three components of the angular momentum
vector to be conserved. The Lagrangian can then be reduced from Q to the
quotient space Q/SO(3).

We move now to applying variational integrator techniques to simulate the
motion of 3 electrons on the sphere.

6.3 Simulation using a variational integrator

We construct a variational integrator for the 3-electron problem using precisely
the same techniques as used in the case of the Astrojax pendulum. The config-
uration manifold is Q = S2×S2×S2. We embed the configuration manifold in
U = R3 × R3 × R3 so that Q ⊂ U . For coordinates in U , we choose

q =
[
q1
1 q2

1 q3
1 q1

2 q2
2 q3

2 q1
3 q2

3 q3
3

]T
.

Notice that dim U = 9. Next, we define the unconstrained Lagrangian L : U →
R by

L =
1
2
q̇T Mq̇ − V (q)

where q ∈ U , M = diag[m1,m1,m1,m2,m2,m2,m3,m3,m3] is the mass matrix,
and V (q) is the potential energy given by

V (q) = −1
2

∑
j 6=i

eiej

‖qj − qi‖
.
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L is the Lagrangian for three electrons free to move in space. Now we define
the constrained Lagrangian by restricting L to TQ as follows:

L

∣∣∣∣
TQ

= Lc : TQ → R .

We impose this restriction by introducing the constraint equation g : U → R3

such that g−1(0) = Q where 0 is a regular value of g. Explicitly, we write the
constraint equation as

g(q) =

(q1 · q1)− 1
(q2 · q2)− 1
(q3 · q3)− 1

 = 0 .

Notice that since the constraint is 3-dimensional,

dim Q = 9− 3 = 6

which agrees with our original formulation. To enforce the constraint numeri-
cally we introduce the Lagrange multiplier µ ∈ R3. We use the same Discrete
Euler-Lagrange Equations as before:

M

(
vk+1 − 2vk + vk−1

h2

)
+

1
2

(
∂V

∂q

(
vk+1 + vk

2

)
+

∂V

∂q

(
vk + vk−1

2

))
−DT g(vk)α = 0

g(vk+1) = 0

where
∂V

∂ql
k

=
∑
j 6=k

ejek

(ql
k − ql

j)
‖qk − qj‖3

The execution of the algorithm proceeded exactly as for the Astrojax Pendu-
lum only that a Newton-Raphson method was employed involving the iterated
solution of a 12-dimensional linear system (9 coordinates and 3 Lagrange mul-
tipliers) at each time-step.

The system exhibits interesting dependence on the symmetry of the initial
conditions. The initial condition is characterized by the shape of the triangle in
the plane formed by the three electrons.

1. The trajectory seen in Figure 3(a) is for an initial condition forming an
equilateral triangle on a great circle of the sphere. This configuration is a
fixed point of the motion as evidenced by the accompanying movie. Watch
Movie.

2. The trajectory in Figure 3(b) is for an initial condition forming an equilateral
triangle not on a great circle of the sphere. The symmetry of the initial
condition is preserved and the resultant motion is simple ”breathing” mo-
tion. Watch Movie.
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(a) Initial Condition: Equilateral triangle
on a great circle.

(b) Initial Condition: Equilateral triangle
not on a great circle.

(c) Initial Condition: Isosceles triangle. (d) Initial Condition: Scalene triangle.

Figure 3: Trajectories for three electrons on the sphere with various degrees of
symmetry in the initial condition.
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3. We can break the symmetry of the initial condition above by placing the
initial condition in an isosceles triangle formation. Figure 3(c) shows the
resulting trajectories. The remaining symmetry is still respected. The red
and green trajectories appear chaotic yet exactly mirror one another. The
blue trajectory appears to be chaotic also but remains on a great circle.
Watch Movie.

4. Finally, we break the symmetry of the initial condition even further by plac-
ing the initial condition in a scalene triangle formation. In Figure 3(d),
all three particle trajectories appear chaotic on the entire sphere. Watch
Movie.

7 Conclusions

We have presented the basic theory in Lagrangian reduction, variational inte-
grators, and pattern evocation. We have applied this theory to two mechanical
systems, namely the Astrojax pendulum, and to the motion of three electrons
on a conducting sphere. We have demonstrated interesting dynamics and de-
pendence on initial conditions in both cases. Further research will investigate
the stability and control of relative equilibria in the Astrojax pendulum as well
as the existence and properties of periodic solutions in the N -body problem on
the sphere. Generalizations of the N -body problem on the sphere could involve
introducing non-Newtonian potentials and more generalized curved manifolds
of constraint.
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A Euler-Lagrange Equations for the Astrojax
Pendulum

λ equation:

0 = gm2 cos θ2

+2m2λ
′
(

(cos θ2 sin θ1 − cos θ1 cos(φ1 − φ2) sin θ2)θ′1

+(− cos θ2 cos(φ1 − φ2) sin θ1 + cos θ1 sin θ2)θ′2

+ sin θ1 sin θ2 sin(φ1 − φ2)(φ′1 − φ′2)
)

+m1λ
′′

+λ

(
− (m1 + m2 −m2(cos θ1 cos θ2 + cos(φ1 − φ2) sin θ1 sin θ2))θ′1

2

+m2(−1 + cos θ1 cos θ2 + cos(φ1 − φ2) sin θ1 sin θ2)θ′2
2

+2m2 cos θ1 sin θ2 sin(φ1 − φ2)θ′1φ
′
1 −m1sin θ1

2φ′1
2 −m2 sin θ2

1φ
′
1
2

+m2 cos(φ1 − φ2) sin θ1 sin θ2φ
′
1
2 − 2m2 cos θ2 sin θ1 sin(φ1 − φ2)θ′2φ

′
2

+m2 cos(φ1 − φ2) sin θ1 sin θ2φ
′
2
2 −m2sin θ2

2φ′2
2

+m2 cos θ2 sin θ1θ
′′
1 −m2 cos θ1 cos(φ1 − φ2) sin θ2θ

′′
1

−m2 cos θ2 cos(φ1 − φ2) sin θ1θ
′′
2 + m2 cos θ1 sin θ2θ

′′
2

+m2 sin θ1 sin θ2 sin(φ1 − φ2)φ′′1 −m2 sin θ1 sin θ2 sin(φ1 − φ2)φ′′2

)
+m2(2λ′′ + l(θ′2

2 + 2 cos θ2 sin θ1 sin(φ1 − φ2)θ′2φ
′
2 + sin θ2

2φ′2
2

+ sin θ1(cos θ2 cos(φ1 − φ2)θ′′2 + sin θ2 sin(φ1 − φ2)φ′′2)))− g(m1 + m2) cos θ1

−m2

(
l(cos θ1 cos θ2 + cos(φ1 − φ2) sin θ1 sin θ2)θ′2

2 + 2 cos θ1 cos θ2λ
′′

+ sin θ2(cos(φ1 − φ2) sin θ1(lφ′2
2 + 2λ′′) + l cos θ1θ

′′
2 )
)
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θ1 Equation:

0 = λ(g(m1 + m2) sin θ1 + m2(l − λ)(cos θ2 sin θ1 − cos θ1 cos(φ1 − φ2) sin θ2)θ′2
2

−m1 cos θ1λ sin θ1φ
′
1
2 −m2 cos θ1λ sin θ1φ

′
1
2

+2m2 cos θ1 cos θ2(l − λ) sin φ1 − φ2θ
′
2φ

′
2

−lm2 cos θ1 cos(φ1 − φ2) sin θ2φ
′
2
2 + m2 cos θ1 cos(φ1 − φ2)λ sin θ2φ

′
2
2

−2λ′(−(m1 + m2)θ′1 + m2(cos θ1 cos θ2 cos(φ1 − φ2) + sin θ1 sin θ2)θ′2
+m2 cos θ1 sin θ2 sin(φ1 − φ2)φ′2) + m2 cos θ2 sin θ1λ

′′

−m2 cos θ1 cos(φ1 − φ2) sin θ2λ
′′ + m1λθ′′1 + m2λθ′′1

+lm2 cos θ1 cos θ2 cos(φ1 − φ2)θ′′2 −m2 cos θ1 cos θ2 cos(φ1 − φ2)λθ′′2

+lm2 sin θ1 sin θ2θ
′′
2 −m2λ sin θ1 sin θ2θ

′′
2 +

−m2 cos θ1(l − λ) sin θ2 sin(φ1 − φ2)φ′′2)
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φ1 Equation:

0 = λ sin θ1(m2(l − λ) sin θ2 sin(φ1 − φ2)θ′2
2 + 2m1 cos θ1λθ′1φ

′
1

+2m2 cos θ1λθ′1φ
′
1 + 2m2 cos θ2 cos(φ1 − φ2)(l − λ)θ′2φ

′
2

+lm2 sin θ2 sin(φ1 − φ2)φ′2
2 −m2λ sin θ2 sin(φ1 − φ2)φ′2

2

+2λ′(m2 cos θ2 sin(φ1 − φ2)θ′2 + (m1 + m2) sin θ1φ
′
1 −m2 cos(φ1 − φ2) sin θ2φ

′
2)

+m2 sin θ2 sin(φ1 − φ2)λ′′ − lm2 cos θ2 sin(φ1 − φ2)θ′′2
+m2 cos θ2λ sin(φ1 − φ2)θ′′2 + m1λ sin θ1φ

′′
1

+m2λ sin θ1φ
′′
1 + m2 cos(φ1 − φ2)(l − λ) sin θ2φ

′′
2)

θ2 Equation:

0 = m2(l − λ)(−g sin θ2 + 2λ′(−(cos θ1 cos θ2 cos(φ1 − φ2) + sin θ1 sin θ2)θ′1
+θ′2 + cos θ2 sin θ1 sin(φ1 − φ2)φ′1) + l cos θ2 sin θ2φ

′
2
2

− cos θ2 cos(φ1 − φ2) sin θ1λ
′′ + cos θ1 sin θ2λ

′′ − lθ′′2

+λ((cos θ2 cos(φ1 − φ2) sin θ1 − cos θ1 sin θ2)θ′1
2

+2 cos θ1 cos θ2 sin(φ1 − φ2)θ′1φ
′
1 + cos θ2 cos(φ1 − φ2) sin θ1φ

′
1
2

− cos θ2 sin θ2φ
′
2
2 − cos θ1 cos θ2 cos(φ1 − φ2)θ′′1

− sin θ1 sin θ2θ
′′
1 + θ′′2 + cos θ2 sin θ1 sin(φ1 − φ2)φ′′1))

φ2 equation:

0 = m2(l − λ) sin θ2(2l cos θ2θ
′
2φ

′
2

+2λ′(cos θ1 sin(φ1 − φ2)θ′1 + cos(φ1 − φ2) sin θ1φ
′
1 − sin θ2φ

′
2)

+ sin θ1 sin(φ1 − φ2)λ′′ + l sin θ2φ
′′
2

−λ(sin θ1 sin(φ1 − φ2)θ′1
2 − 2 cos θ1 cos(φ1 − φ2)θ′1φ

′
1

+2 cos θ2θ
′
2φ

′
2 + sin(φ1 − φ2)(sin θ1φ

′
1
2 − cos θ1θ

′′
1 )

− cos(φ1 − φ2) sin θ1φ
′′
1 + sin θ2φ

′′
2))
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B Variational Integrator for the Astrojax Pen-
dulum

Discrete Euler-Lagrange Equations:

1
h2

M
(
qk+1 − 2qk + qk−1

)
+

1
2

(
∂V

∂q

(
qk+1 + qk

2

)
+

∂V

∂q

(
qk + qk−1

2

))
−DT g(qk)µk+1 = 0

g(qk+1) = 0

∂V

∂q
=


0
0

m1g
0
0

m2g



αk :=
1√

(xk
1)2 + (yk

1 )2 + (zk
1 )2

βk :=
1√

(xk
2 − xk

1)2 + (yk
2 − yk

1 )2 + (zk
2 − zk

1 )2

DT g(qk) =


αkxk

1 − βk(xk
2 − xk

1)
αkyk

1 − βk(yk
2 − yk

1 )
αkzk

1 − βk(zk
2 − zk

1 )
β(xk

2 − xk
1)

β(yk
2 − yk

1 )
β(zk

2 − zk
1 )




m1(xk+1
1 − 2xk

1 + xk−1
1 )

m1(yk+1
1 − 2yk

1 + yk−1
1 )

m1(zk+1
1 − 2zk

1 + zk−1
1 )

m2(xk+1
2 − 2xk

2 + xk−1
2 )

m2(yk+1
2 − 2yk

2 + yk−1
2 )

m2(zk+1
2 − 2zk

2 + zk−1
2 )

+ h2


0
0

m1g
0
0

m2g

− h2µk+1


αkxk

1 − βk(xk
2 − xk

1)
αkyk

1 − βk(yk
2 − yk

1 )
αkzk

1 − βk(zk
2 − zk

1 )
β(xk

2 − xk
1)

β(yk
2 − yk

1 )
β(zk

2 − zk
1 )

 = 0

1
αk+1

+
1

βk+1
− l = 0
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So, finally, the Discrete Euler-Lagrange equations are encoded as

G(qk+1, µk+1) =



xk+1
1 − 2xk

1 + xk−1
1 − h2 µk+1

m1

(
αkxk

1 − βk(xk
2 − xk

1)
)

yk+1
1 − 2yk

1 + yk−1
1 − h2 µk+1

m1

(
αkyk

1 − βk(yk
2 − yk

1 )
)

zk+1
1 − 2zk

1 + zk−1
1 − h2 µk+1

m1

(
αkzk

1 − βk(zk
2 − zk

1 )
)

+ h2g

xk+1
2 − 2xk

2 + xk−1
2 − h2 µk+1βk

m2
(xk

2 − xk
1)

yk+1
2 − 2yk

2 + yk−1
2 − h2 µk+1βk

m2
(yk

2 − yk
1 )

zk+1
2 − 2zk

2 + zk−1
2 − h2 µk+1βk

m2
(zk

2 − zk
1 ) + h2g

1
αk+1 + 1

βk+1 − l


= 0

The Jacobian matrix, Jk ∈ R7×7, for this non-linear map is given by

Jk := G′(qk, µk) =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

αkxk
1 − βk(xk

2 − xk
1) αkyk

1 − βk(yk
2 − yk

1 ) αkzk
1 − βk(zk

2 − zk
1 )

0 0 0 − h2

m1

(
αkxk

1 − βk(xk
2 − xk

1)
)

0 0 0 − h2

m1

(
αkyk

1 − βk(yk
2 − yk

1 )
)

0 0 0 − h2

m1

(
αkzk

1 − βk(zk
2 − xk

1)
)

1 0 0 −h2βk

m2
(xk

2 − xk
1)

0 1 0 −h2βk

m2
(yk

2 − yk
1 )

0 0 1 −h2βk

m2
(zk

2 − zk
1 )

βk(xk
2 − xk

1) βk(yk
2 − yk

1 ) βk(zk
2 − zk

1 ) 0


Newtons Method gives the update scheme:

(qk+1, µk+1) = (qk, µk) + δk

where δk solves the linear system

Jkδk = −G(qk) .
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C Driven Astrojax Pendulum

Physical Constants:

l is the length of the tether.
m1 mass of bob 1
m2 mass of bob 2

g is acceleration due to gravity.

Configuration Manifold:

Q = R× S2 × S2

U = R3 × R3

Q ⊂ U

dim U = n = 6

Coordinates:
q = [x1 y1 z1 x2 y2 z2]

Lagrangian:

L : TU → R

L =
1
2
q̇T Mq̇ − V (q)

Mass matrix:

M =


m1 0 0 0 0 0
0 m1 0 0 0 0
0 0 m1 0 0 0
0 0 0 m2 0 0
0 0 0 0 m2 0
0 0 0 0 0 m2


Potential:

V (q) = g(m1z1 + m2z2)

Constrained Lagrangian:

L

∣∣∣∣
TQ

= Lc : TQ → R

Driver:
A(t) = Axi + Ayj + Azk

Constraint:
g : U → R such that g−1(0) = Q

where we assume 0 is a regular value of g.

g(q) =
√

x2
1 + y2

1 + z2
1 + A2

x + A2
y + A2

z − 2(x1Ax + y1Ay + z1Az)+
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2−l
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dim Q = n− 1 = 5

Lagrange Multiplier:

µ ∈ R is a Lagrange Multiplier to enforce the constraint.

Discrete Euler-Lagrange Equations:

1
h2

M
(
qk+1 − 2qk + qk−1

)
+

1
2

(
∂V

∂q

(
qk+1 + qk

2

)
+

∂V

∂q

(
qk + qk−1

2

))
−DT g(qk)µk+1 = 0

g(qk+1) = 0

∂V

∂q
=


0
0

m1g
0
0

m2g



αk =
1√

(xk
1)2 + (yk

1 )2 + (zk
1 )2 + (Ak

x)2 + (Ak
y)2 + (Ak

z)2 − 2(xk
1Ak

x + yk
1Ak

y + zk
1Ak

z)

βk =
1√

(xk
2 − xk

1)2 + (yk
2 − yk

1 )2 + (zk
2 − zk

1 )2

DT g(qk) =


αk(xk

1 −Ak
x)− βk(xk

2 − xk
1)

αk(yk
1 −Ak

y)− βk(yk
2 − yk

1 )
αk(zk

1 −Ak
z)− βk(zk

2 − zk
1 )

β(xk
2 − xk

1)
β(yk

2 − yk
1 )

β(zk
2 − zk

1 )




m1(xk+1
1 − 2xk

1 + xk−1
1 )

m1(yk+1
1 − 2yk

1 + yk−1
1 )

m1(zk+1
1 − 2zk

1 + zk−1
1 )

m2(xk+1
2 − 2xk

2 + xk−1
2 )

m2(yk+1
2 − 2yk

2 + yk−1
2 )

m2(zk+1
2 − 2zk

2 + zk−1
2 )

+ h2


0
0

m1g
0
0

m2g

− h2µk+1


αk(xk

1 −Ak
x)− βk(xk

2 − xk
1)

αk(yk
1 −Ak

y)− βk(yk
2 − yk

1 )
αk(zk

1 −Ak
z)− βk(zk

2 − zk
1 )

β(xk
2 − xk

1)
β(yk

2 − yk
1 )

β(zk
2 − zk

1 )

 = 0

1
αk+1

+
1

βk+1
− l = 0
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So, finally, the Discrete Euler-Lagrange equations are encoded as

G(qk+1, µk+1) =



xk+1
1 − 2xk

1 + xk−1
1 − h2 µk+1

m1

(
αk(xk

1 −Ak
x)− βk(xk

2 − xk
1)
)

yk+1
1 − 2yk

1 + yk−1
1 − h2 µk+1

m1

(
αk(yk

1 −Ak
y)− βk(yk

2 − yk
1 )
)

zk+1
1 − 2zk

1 + zk−1
1 − h2 µk+1

m1

(
αk(zk

1 −Ak
z)− βk(zk

2 − zk
1 )
)

+ h2g

xk+1
2 − 2xk

2 + xk−1
2 − h2 µk+1βk

m2
(xk

2 − xk
1)

yk+1
2 − 2yk

2 + yk−1
2 − h2 µk+1βk

m2
(yk

2 − yk
1 )

zk+1
2 − 2zk

2 + zk−1
2 − h2 µk+1βk

m2
(zk

2 − zk
1 ) + h2g

1
αk+1 + 1

βk+1 − l


= 0

The Jacobian matrix, Jk ∈ R7×7, for this non-linear map is given by

Jk := G′(qk, µk) =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

αk(xk
1 −Ak

x)− βk(xk
2 − xk

1) αk(yk
1 −Ak

y)− βk(yk
2 − yk

1 ) αk(zk
1 −Ak

z)− βk(zk
2 − zk

1 )

0 0 0 − h2

m1

(
αk(xk

1 −Ak
x)− βk(xk

2 − xk
1)
)

0 0 0 − h2

m1

(
αk(yk

1 −Ak
y)− βk(yk

2 − yk
1 )
)

0 0 0 − h2

m1

(
αk(zk

1 −Ak
z)− βk(zk

2 − xk
1)
)

1 0 0 −h2βk

m2
(xk

2 − xk
1)

0 1 0 −h2βk

m2
(yk

2 − yk
1 )

0 0 1 −h2βk

m2
(zk

2 − zk
1 )

βk(xk
2 − xk

1) βk(yk
2 − yk

1 ) βk(zk
2 − zk

1 ) 0


Newtons Method gives the update scheme:

(qk+1, µk+1) = (qk, µk) + δk

where
δk = −(Jk)−1 G(qk) .
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