
A Taxonomy of Suffix Array Construction

Algorithms

SIMON J. PUGLISI

Curtin University of Technology

W. F. SMYTH

McMaster University and Curtin University of Technology

and

ANDREW H. TURPIN

RMIT University

In 1990 Manber & Myers proposed suffix arrays as a space-saving alternative to suffix trees and
described the first algorithms for suffix array construction and use. Since that time, and espe-
cially in the last few years, suffix array construction algorithms have proliferated in bewildering
abundance. This survey paper attempts to provide simple high-level descriptions of these nu-

merous algorithms that highlight both their distinctive features and their commonalities, while
avoiding as much as possible the complexities of implementation details. New hybrid algorithms
are also described. We provide comparisons of the algorithms’ worst-case time complexity and
use of additional space, together with results of recent experimental test runs on many of their
implementations.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms]: Nonnumerical Algorithms
and Problems; E.1 [Data Structures]: Arrays; H.3 [Information Storage and Retrieval]:
Information Search and Retrieval

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Suffix array, Suffix tree, Suffix sorting, Burrows-Wheeler
transform

1. INTRODUCTION

Suffix arrays were introduced in 1990 [Manber and Myers 1990; 1993], along with
algorithms for their construction and use as a space-saving alternative to suffix
trees. In the intervening fifteen years there have certainly been hundreds of research
articles published on the construction and use of suffix trees and their variants. Over

Authors’ addresses: Simon J. Puglisi, Department of Computing, Curtin University, GPO Box
U1987, Perth, WA 6845, Australia; email: sjp@cs.curtin.edu.au. W. F. Smyth, Algorithms
Research Group, Department of Computing & Software, McMaster University, Hamilton, ON

L8S 4K1, Canada; email: smyth@mcmaster.ca; url: www.cas.mcmaster.ca/cas/research/groups.
shtml. Andrew Turpin, School of Computer Science & Information Technology, RMIT University,
GPO Box 2476V, Melbourne V 3001, Australia; email: aht@cs.rmit.edu.au.
Corresponding author: Simon J. Puglisi sjp@cs.curtin.edu.au
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2005 ACM 0000-0000/2005/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, 08 2005, Pages 1–35.

2 · S. J. Puglisi et al.

that period, it has been shown that

—practical space-efficient suffix array construction algorithms (SACAs) exist that
require worst-case time linear in string length [Ko and Aluru 2003; Kärkkäinen
and Sanders 2003];

—SACAs exist that are even faster in practice, though with supralinear worst-
case construction time requirements [Larsson and Sadakane 1999; Burkhardt and
Kärkkäinen 2003; Manzini and Ferragina 2004; Maniscalco 2005];

—any problem whose solution can be computed using suffix trees is solvable with
the same asymptotic complexity using suffix arrays [Abouelhoda et al. 2004].

Thus suffix arrays have become the data structure of choice for many, if not all, of
the string processing problems to which suffix tree methodology is applicable.

In this survey paper we do not attempt to cover the entire suffix array literature.
Our more modest goal is to provide an overview of SACAs, in particular those
modeled on the efficient use of main memory — we exclude the substantial litera-
ture (for example, [Crauser and Ferragina 2002]) that discusses strategies based on
the use of secondary storage. Further, we deal with the construction of compressed
(“succinct”) suffix arrays only insofar as they relate to standard SACAs. For exam-
ple, algorithms and techniques such as those discussed in [Grossi and Vitter 2005;
Mäkinen and Navarro 2006] and references therein are not covered.

Section 2 provides an overview of the SACAs known to us, organized into a
“taxonomy” based primarily on the methodology used. As with all classification
schemes, there is room for argument: there are many cross-connections between
algorithms that occur in disjoint subtrees of the taxonomy, just as there may be
between species in a biological taxonomy. Our aim is to provide as comprehensive
and, at the same time, as accessible a description of SACAs as we can.

Also in Section 2 we present the vocabulary to be used for the structured descrip-
tion of each of the algorithms, including new hybrid algorithms, that will be given
in Section 3. Then in Section 4, we report on the results of experimental results
on many of the algorithms described and so draw conclusions about their relative
speed and space-efficiency.

2. OVERVIEW

We consider throughout a finite nonempty string x = x[1..n] of length n ≥ 1,
defined on an indexed alphabet Σ [Smyth 2003]; that is,

—the letters λj , j = 1, 2, . . . , σ of |Σ| are ordered: λ1 < λ2 < · · · < λσ;

—an array A[λ1..λσ] can be defined in which, for every j ∈ 1..σ, A[λj] is accessible
in constant time;

—λσ−λ1 ∈ O(n).

Essentially, we assume that Σ can be treated as a sequence of integers whose range
is not too large, an assumption almost universal for strings processed in a computer
and thus a requirement for most efficient string processing algorithms. Typically,
the λj may be represented by ASCII codes 0..255 (English alphabet) or binary
integers 00..11 (DNA) or simply bits, as the case may be. We shall generally assume

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 3

that a letter can be stored in a byte and that n can be stored in one computer word
(four bytes).

We are interested in computing the suffix array of x, which we write SAx or

just SA; that is, an array SA[1..n] in which SA[j] = i iff x[i..n] is the jth suffix of x

in (ascending) lexicographical order (lexorder). For simplicity we will frequently
refer to x[i..n] simply as “suffix i”; also, it will often be convenient for processing
to incorporate into x at position n an ending sentinel $ assumed to be less than
any λj .

Then, for example, on alphabet Σ = {$, a, b, c, d, e}:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA = 12 11 8 1 4 6 9 2 5 7 10 3

Thus SA tells us that x[12..12] = $ is the least suffix, x[11..12] = a$ the second
least, and so on (alphabetical ordering of the letters assumed). Note that SA is
always a permutation of 1..n.

Often used in conjunction with SAx is the lcp array lcp = lcp[1..n]: for every
j ∈ 2..n, lcp[j] is just the length of the longest common prefix of suffixes SA[j−1]
and SA[j]. In our example:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA = 12 11 8 1 4 6 9 2 5 7 10 3
lcp = − 0 1 4 1 1 0 3 0 0 0 2

Thus the longest common prefix of suffixes 11 and 8 is a of length 1, while that
of suffixes 8 and 1 is abca of length 4. Since lcp can be computed in linear time
from SAx [Kasai et al. 2001; Manzini 2004], also as a byproduct of some of the
SACAs discussed below, we do not consider its construction further in this paper.
However, the average lcp — that is, the average lcp of the n−1 integers in the
lcp array — is as we shall see a useful indicator of the relative efficiency of certain
SACAs, notably Algorithm S.

We remark that both SA and lcp can be computed in linear time by a preorder
traversal of a suffix tree.

Many of the SACAs also make use of the inverse suffix array, written ISAx

or ISA: an array ISA[1..n] in which

ISA[i] = j ⇐⇒ SA[j] = i.

ISA[i] = j therefore says that suffix i has rank j in lexorder. Continuing our
example:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
ISA = 4 8 12 5 9 6 10 3 7 11 2 1

Thus ISA tells us that suffix 1 has rank 4 in lexorder, suffix 2 rank 8, and so on.
Note that ISA is also a permutation of 1..n, and so SA and ISA are computable,
one from the other, in Θ(n) time:

ACM Journal Name, Vol. V, No. N, 08 2005.

4 · S. J. Puglisi et al.

for j ← 1 to n do

i← SA[j]
— Negative entries already processed

if i > 0 then

j0, j′ ← j
repeat

temp ← SA[i]; SA[i]← −j′

j′ ← i; i← temp
until i = j0
SA[i]← −j′

else

SA[j]← −i

Fig. 1. Algorithm for computing ISA from SA in place

for j ← 1 to n do

SA
[

ISA[j]
]

← j

As shown in Figure 1, this computation can if required also be done in place.
Many of the algorithms we shall be describing depend upon a partial sort of some

or all of the suffixes of x, partial because it is based on an ordering of the prefixes
of these suffixes that are of length h ≥ 1. We refer to this partial ordering as an
h-ordering of suffixes into h-order, and to the process itself as an h-sort. If two
or more suffixes are equal under h-order, we say that they have the same h-rank

and therefore fall into the same h-group ; they are accordingly said to be h-equal.
Usually an h-sort is stable, so that any previous ordering of the suffixes is retained
within each h-group.

The results of an h-sort are often stored in an approximate suffix array, written
SAh, and/or an approximate inverse suffix array, written ISAh. Here is the result
of a 1-sort on all the suffixes of our example string:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA1 = 12 (1 4 6 8 11) (2 9) 5 7 (3 10)
ISA1 = 2 7 11 2 9 2 10 2 7 11 2 1

or 6 8 12 6 9 6 10 6 8 12 6 1
or 2 3 6 2 4 2 5 2 3 6 2 1

The parentheses in SA1 enclose 1-groups not yet reduced to a single entry, thus not
yet in final sorted order. Note that SAh retains the property of being a permutation
of 1..n, while ISAh may not. Depending on the requirements of the particular
algorithm, ISAh may as shown express the h-rank of each h-group in various ways:

—the leftmost position j in SAh of a member of the h-group, also called the head

of the h-group;

—the rightmost position j in SAh of a member of the h-group, also called the tail

of the h-group;

—the ordinal left-to-right counter of the h-group in SAh.

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 5

Compare the result of a 3-sort:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA3 = 12 11 (1 8) 4 6 (2 9) 5 7 10 3
ISA3 = 3 7 12 5 9 6 10 3 7 11 2 1

or 4 8 12 5 9 6 10 4 8 11 2 1
or 3 6 10 4 7 5 8 3 6 9 2 1

Observe that an (h+1)-sort is a refinement of an h-sort: all members of an
(h+1)-group belong to a single h-group.

We now have available a vocabulary sufficient to characterize the main species of
SACA as follows.

(1) Prefix-Doubling. First a fast 1-sort is performed (since Σ is indexed, bucket
sort can be used); this yields SA1/ISA1. Then for every h = 1, 2, . . ., SA2h/ISA2h

are computed in Θ(n) time from SAh/ISAh until every 2h-group is a singleton.
Since there are at most log2 n iterations, the time required is therefore O(n log n).
There are two algorithms in this class: MM [Manber and Myers 1990; 1993] and
LS [Sadakane 1998; Larsson and Sadakane 1999].

(2) Recursive. Form strings x
′ and y from x, then show that if SA

x
′ is computed,

therefore SAy and finally SAx can be computed in O(n) time. Hence the problem
of computing SA

x
′ recursively replaces the computation of SAx. Since |x′| is

always chosen so as to be less than 2|x|/3, the overall time requirement of these
algorithms is Θ(n). There are three main algorithms in this class: KA [Ko and
Aluru 2003], KS [Kärkkäinen and Sanders 2003] and KJP [Kim et al. 2004].

(3) Induced Copying. The key insight here is the same as for the recursive algo-
rithms — a complete sort of a selected subset of suffixes can be used to “induce”
a complete sort of other subsets of suffixes. The approach however is nonrecursive:
an efficient string sorting technique (for example, [Bentley and McIlroy 1993; McIl-
roy et al. 1993; McIlroy 1997; Bentley and Sedgewick 1997; Sinha and Zobel 2004])
is invoked for the selected subset of suffixes. The general idea seems to have been
first proposed in [Burrows and Wheeler 1994], but it has been implemented in quite
different ways [Itoh and Tanaka 1999; Seward 2000; Manzini and Ferragina 2004;
Schürmann and Stoye 2005; Burkhardt and Kärkkäinen 2003; Maniscalco 2005].
In general, these methods are very efficient in practice, but may have worst-case
asymptotic complexity as high as O(n2 log n).

The goal is to design SACAs that

—have minimal asymptotic complexity Θ(n);

—are fast “in practice” (that is, on collections of large real-world data sets such as
[Hart 1997]);

—are lightweight — that is, use a small amount of working storage in addition to
the 5n bytes required by x and SAx.

To date none of the SACAs that has been proposed achieves all of these objectives.
Figure 2 presents our taxonomy of the fifteen main species of SACA that have

been recognized so far. Table I specifies a worst-case asymptotic time complexity

ACM Journal Name, Vol. V, No. N, 08 2005.

6 · S. J. Puglisi et al.

Fig. 2. Taxonomy of suffix array construction algorithms

for each of these algorithms, together with a few others that have been proposed in
the literature; the table also gives average time and space requirements over a range
of cases tested in our experiments (Section 4). The worst-case complexities given
are those claimed by the designers of the algorithms, though it is possible for some
of those that include the term n2 log n that a somewhat lower worst-case bound
holds. This could be a subject of future research. It should be remarked that in
practice the behaviour of all the algorithms is linear; in other words, over strings of
homogeneous data (that is, all English-language or all DNA), the execution time
of each algorithm increases linearly in string length.

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 7

Table I. Performance summary of the construction algorithms. Time is relative to MP, the
fastest in our experiments. Memory is given in bytes including space required for the suffix
array and input string and is the average space required in our experiments. Algorithms
HSS and N are included, even though to our knowledge they have not been implemented.
The time for algorithm MM is estimated from experiments in [Larsson and Sadakane 1999].

Algorithm Worst Case Time Memory

Prefix-Doubling
MM [Manber and Myers 1993] O(n log n) 30 8n
LS [Larsson and Sadakane 1999] O(n log n) 3 8n

Recursive
KA [Ko and Aluru 2003] O(n) 2.5 7− 10n
KS [Kärkkäinen and Sanders 2003] O(n) 4.7 10-13n
KSPP [Kim et al. 2003] O(n) − –
HSS [Hon et al. 2003] O(n) − –

KJP [Kim et al. 2004] O(n log log n) 3.5 13-16n
N [Na 2005] O(n) − –

Induced Copying
IT [Itoh and Tanaka 1999] O(n2 log n) 6.5 5n
S [Seward 2000] O(n2 log n) 3.5 5n
BK [Burkhardt and Kärkkäinen 2003] O(n log n) 3.5 5-6n
MF [Manzini and Ferragina 2004] O(n2 log n) 1.7 5n
SS [Schürmann and Stoye 2005] O(n2) 1.8 9-10n
BB [Baron and Bresler 2005] O(n

√
log n) 2.1 18n

M [Maniscalco and Puglisi 2006a] O(n2 log n) 1.3 5-6n
MP [Maniscalco and Puglisi 2006b] O(n2 log n) 1 5-6n

Hybrid
IT+KA O(n2 log n) 4.8 5n
BK+IT+KA O(n log n) 2.3 5-6n
BK+S O(n log n) 2.8 5-6n

Suffix Tree
K [Kurtz 1999] O(n log σ) 6.3 13-15n

3. THE ALGORITHMS

3.1 Prefix-Doubling Algorithms [Karp et al. 1972]

Here we consider algorithms that, given an h-order SAh of the suffixes of x, h ≥ 1,
compute a 2h-order in O(n) time. Thus prefix-doubling algorithms require at most
log2 n steps to complete the suffix sort and execute in O(n log n) time in the worst
case.

Normally prefix-doubling algorithms initialize SA1 for h = 1 using a linear-time
bucket sort. The main idea [Karp et al. 1972] is as follows:

Observation 1. Suppose that SAh and ISAh have been computed for some h >

0, where i = SAh[j] is the jth suffix in h-order and h-rank[i] = ISAh[i]. Then a
sort using the integer pairs

(

ISAh[i], ISAh[i+h]
)

as keys, i+h ≤ n, computes a 2h-order of the suffixes i. (Suffixes i > n−h are
necessarily already fully ordered.)

The two main prefix-doubling algorithms differ primarily in their application of
this observation:

—Algorithm MM does an implicit 2h-sort by performing a left-to-right scan of SAh

ACM Journal Name, Vol. V, No. N, 08 2005.

8 · S. J. Puglisi et al.

initialize SA1, ISA1

while some h-group not a singleton

for j ← 1 to n do

i← SAh[j]−h

if i > 0 then

q ← head
ˆ

h-group[i]
˜

SA2h[q]← i

head
ˆ

h-group[i]
˜

← q+1

compute ISA2h — update 2h-groups

h← 2h

Fig. 3. Algorithm MM

that induces the 2h-rank of SAh[j]−h, j = 1, 2, . . . , n;

—Algorithm LS explicitly sorts each h-group using the ternary-split quicksort
(TSQS) of [Bentley and McIlroy 1993].

MM [Manber and Myers 1990; 1993].

Algorithm MM employs Observation 1 as follows:

If SAh is scanned left to right (thus in h-order of the suffixes), j =
1, 2, . . . , n, then the suffixes

i−h = SAh[j]−h > 0

are necessarily scanned in 2h-order within their respective h-groups
in SAh.

After the bucket sort that forms SA1, MM computes ISA1 by specifying as the
h-rank of each suffix i in SA1 the leftmost position in SA1 (the head) of its group:

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA1 = 12 (1 4 6 8 11) (2 9) 5 7 (3 10)

ISA1 = 2 7 11 2 9 2 10 2 7 11 2 1

To form SA2, we consider positive values of i−1 = SA1[j]−h for j = 1, 2, . . . , n:

—for j = 1, 7, 8, 9, 10, identify in 2-order the suffixes 11, (1, 8), 4, 6 beginning with a;

—for j = 11, 12, identify in 2-order the 2-equal suffixes (2, 9) beginning with b;

—for j = 3, 6, identify in 2-order the 2-equal suffixes (3, 10) beginning with e.

Of course groups that are singletons in SA1 remain singletons in SA2, and so, after
relabeling the groups, we get

1 2 3 4 5 6 7 8 9 10 11 12

SA2 = 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)
ISA2 = 3 7 11 5 9 6 10 3 7 11 2 1

To form SA4, we consider positive values of i−2 = SA2[j]−h for j = 1, 2, . . . , n:

—for j = 11, 12, we identify in 4-order the 4-equal suffixes (1, 8) beginning with ab;

—for j = 2, 5, we identify in 4-order the 4-distinct suffixes 9, 2 beginning with be;

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 9

—for j = 1, 9, we identify in 4-order the 4-distinct suffixes 10, 3 beginning with ea.

Hence:

1 2 3 4 5 6 7 8 9 10 11 12

SA4 = 12 11 (1 8) 4 6 9 2 5 7 10 3
ISA4 = 3 8 12 5 9 6 10 3 7 11 2 1

The final SA = SA8 and ISA = ISA8 are achieved after one further doubling that
separates the abea’s (1, 8) into 8, 1.

Algorithm MM is complicated by the requirement to keep track of the head of
each h-group, but can nevertheless be implemented using as few as 4n bytes of
storage, in addition to that required for x and SA. In fact, if the contents of x

are not required after SA is computed, n bytes can be saved by initially storing
one character as an integer in ISA and then overwriting each character with its
corresponding 1-group value, available after a counting sort. If this is acceptable,
then MM requires 8n bytes total. The algorithm can be represented conceptually
as shown in Figure 3. A time and space-efficient implementation of MM is available
at [McIlroy 1997].

LS [Sadakane 1998; Larsson and Sadakane 1999].

After using TSQS to form SA1, Algorithm LS computes ISA1 using the rightmost
(rather than, as in Algorithm MM, the leftmost) position of each group in SA1 to
identify h-rank[i].

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA1 = 12 (1 4 6 8 11) (2 9) 5 7 (3 10)

ISA1 = 6 8 12 6 9 6 10 6 8 12 6 1

In addition to identifying h-groups in SAh that are not singletons, LS also identifies
runs of consecutive positions that are singletons (fully sorted). For this purpose
an array L = L[1..n] is maintained, in which L[j] = ℓ (respectively, −ℓ) if and only
if j is the leftmost position in SAh of an h-group (respectively, run) of length ℓ:

1 2 3 4 5 6 7 8 9 10 11 12

L = −1 5 2 −2 2

Left-to-right processing of L thus allows runs to be skipped and non-singleton h-
groups to be identified, in time proportional to the total number of runs and h-
groups. TSQS is again used to sort the suffixes i in each of the identified h-
groups according to keys ISAh[i+h], thus yielding, by Observation 1, a collection of
subgroups and subruns in 2h-order. A straightforward update of L and ISA then
yields stage 2h:

1 2 3 4 5 6 7 8 9 10 11 12

SA2 = 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)
ISA2 = 4 8 12 5 9 6 10 4 8 12 2 1

L = −2 2 −2 2 −2 2

ACM Journal Name, Vol. V, No. N, 08 2005.

10 · S. J. Puglisi et al.

A further doubling yields

1 2 3 4 5 6 7 8 9 10 11 12

SA4 = 12 11 (1 8) 4 6 9 2 5 7 10 3
ISA4 = 4 8 12 5 9 6 10 4 7 11 2 1

L = −2 2 −8

and then the final results SA8 and ISA8 are achieved as for Algorithm MM, with
L[1] = −12.

Observe that, like MM, LS maintains ISA2h[i] = ISAh[i] for every suffix i that is
a singleton in its h-group. However, unlike MM, LS avoids having to process every
position in SAh (see the for loop in Figure 3) by virtue of its use of the array L
— in fact, once for some h, i is identified as a singleton, SAh[i] is never accessed
again.

In fact, as observed in [Larsson and Sadakane 1999], L can be eliminated entirely.
L is not required to determine non-singleton h-groups because for every suffix i in
such a group, ISAh[i] is by definition the rightmost position in the group. Thus,
in particular, at the leftmost position j of the h-group, where i = SAh[j], we can
compute the length ℓ of the group from ℓ = ISAh[i]−j+1. Of course L also keeps
track of runs of fully sorted suffixes in SAh, but, as just remarked, positions in SAh

corresponding to such runs are thereafter unused — it turns out that they can be
recycled to perform the run-tracking role. This implementation requires that SAh

be reconstructed from ISAh in order to provide the final output, a straightforward
procedure (see Section 2).

Algorithm LS thus requires 4n additional bytes of storage (the integer array ISA),
and like MM can save n bytes during processing by overwriting the input string.
As shown in [Larsson and Sadakane 1999], LS executes in O(n log n) time, again
the same as MM; however, in practice its running time is usually much (10 times
or so) faster.

3.2 Recursive Algorithms [Farach 1997]

In this section we consider a family of algorithms that were all discovered in 2003
or later, that are recursive in nature, and that generally execute in worst-case time
linear in string length. All are based on an idea first put forward in [Farach 1997] for
linear-time suffix tree construction of strings on an indexed alphabet: they depend
on an initial assignment of type to each suffix (position) in x that separates the
suffixes into two or more classes. Thus the recursion in all cases is based on a
split of the given string x = x

(0) into disjoint (or almost disjoint) components
(subsequences) that are transformed into strings we call x

(1) and y
(1), chosen so

that, if SA
x

(1) is (recursively) computed, then in linear time

—SA
x

(1) can be used to induce construction of SA
y

(1) , and furthermore

—SA
x

(0) can then also be computed by a merge of SA
x

(1) and SA
y

(1) .

Thus the computation of SA
x

(0) (in general, SA
x

(i)) is reduced to the computation

of SA
x

(1) (in general, SA
x

(i+1)). To make this strategy efficient and effective, two

requirements need to be met:

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 11

procedure construct(x; SA)
split(x; x′ , y)
semisort(x′ ; ISA′)
if ISA′ contains duplicate ranks then

construct(ISA′; SAx′ = SA′)

else

invert(ISAx′ = ISA′; SAx′)

induce(SAx′ , ISAx′ ; SAy)

merge(SAx′ ,SAy; SAx)

Fig. 4. General algorithm for recursive SA construction. The convention procedure name(input;
output) is used (input and output parameters are separated by a semicolon).

(1) At each recursive step, ensure that

|x(i+1)|
/

|x(i)| ≤ f < 1;

thus the sum of the lengths of the strings processed by all recursive steps is

|x|(1+f +f2+. . .) < |x|/
(

1−f).

In fact, over all the algorithms proposed so far, f ≤ 2/3, so that the sum of the
lengths is guaranteed to be less than 3|x| — for most of them ≤ 2|x|.

(2) Devise an approximate suffix-sorting procedure, semisort say, that for some
sufficiently short string x

(i+1) will yield a complete sort of its suffixes and thus
terminate the recursion, allowing the suffixes of x

(i), x(i−1), . . . , x(0) all to be
sorted in turn. Ensure moreover that the time required for semisort is linear
in the length of the string being processed.

Clearly suffix-sorting algorithms satisfying the above description will compute SAx

(or equivalently ISAx) of a string x = x[1..n] in Θ(n) time. The structure of such
algorithms is shown in Figure 4.

All of the algorithms discussed in this subsection compute x
′ (that is, x

(1)) and
y (that is, y

(1)) from x (that is, x
(0)) in similar ways: the alphabet of the split

strings is in fact the set of suffixes (positions) 1..n in x, so that x
′ and y together

form a permutation of 1..n.
Attention then focuses on ranking the positions i′ of x

′, a string of length n′ ≤
⌊fn⌋. This ranking is based on computing the ranks of the corresponding suffixes

x
[

x
′[i′]..n

]

(1)

of x, taking into account only those suffixes that have been assigned to x
′. We call

this string of ranks ISA
x

′ = ISA
x

′ [1..n′].
Since computation of ISA

x
′ may require more than Θ(n′) time, we therefore

invoke a procedure semisort that in Θ(n′) time computes an approximation ISA′ =
ISA′[1..n′] of ISA

x
′ — that is, a partial ranking (h-ranking) of the suffixes (1)

that breaks ties among them only up to some common prefix of a predetermined
constant length h. At some level of recursion, the approximation ISA′ will be exact
(its entries will be distinct) — and so we may write ISA

x
′ = ISA′, then invert

ISA
x

′ to form SA
x

′ .

ACM Journal Name, Vol. V, No. N, 08 2005.

12 · S. J. Puglisi et al.

If however ISA′ is not exact, then it is used as the input string for a recursive call
of the construct procedure, thus yielding the suffix array, SA′ say, of ISA′ — the
key observation made here, common to all the recursive algorithms, is that since
SA′ is the suffix array for the (approximate) ranks of the suffixes identified by x

′,
it is therefore the suffix array for those suffixes themselves. We may accordingly
write SA

x
′ = SA′.

In our discussion below of these algorithms, we focus on the nature of split and
semisort and their consequences for the induce and merge procedures.

KA [Ko and Aluru 2003; 2005].

Algorithm KA’s split procedure assigns suffixes i < n in left-to-right order to a
sequence S (respectively, L) iff x[i..n] < (respectively, >) x[i + 1..n]. Suffix n ($)
is assigned to both S and L. Since x[i] = x[i+1] implies that suffixes i and i+1
belong to the same sequence, it follows that the KA split requires time linear in x.

Then x
′ is formed from the sequence of suffixes of smaller cardinality, y from the

sequence of larger cardinality. Hence for KA, |x′| ≤ |x|/2.
For example,

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a c c a $
type = L S L L S L L S L L L S/L

yields |S| = 4, |L| = 9, x
′ = 2 5 8 12, y = 1 3 4 6 7 9 10 11 12.

For every j ∈ 1..|x′|, KA’s semisort procedure forms i = x
′[j], i1 = x

′[j+1] (i1 =
x

′[j] if j = |x′|), and then performs a radix sort on the resulting substrings x[i..i1],
a calculation that requires Θ(n) time. The result of this sort is a ranking ISA′

of the substrings x[i..i1], hence an approximate ranking of the suffixes (positions)
i = x

′[j]. In our example, semisort yields

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a c c a $
x

′ = 2 5 8 12
ISA′ = 3 3 2 1

If after semisort the entries (ranks) in ISA′ are distinct, then a complete ordering
of the suffixes of x

′ has been computed (ISA′ = ISA
x

′); if not, then as indicated

in Figure 4, the construct procedure is recursively called on ISA′. In our example,
one recursive call suffices for a complete ordering (12, 8, 5, 2) of the suffixes of x

′,
yielding ISA

x
′ = 4321.

At this point KA deviates from the pattern of Figure 4 in two ways: it combines
the induce and merge procedures into a single KA-merge (see Figure 5), and it
computes SAx directly without reference to ISAx

1.
First SA1 is computed, yielding 1-groups for which the leftmost and rightmost

positions are specified in arrays head[1..α] and tail[1..α], respectively. Since in
each 1-group all the S-suffixes are lexicographically greater than all the L-suffixes,
and since the S-suffixes have been sorted, KA-merge can place all the S-suffixes in

1In [Ko and Aluru 2003] it is claimed that the ISA must be built in unison with the SA for this
procedure to work, but we have found that this is actually unnecessary.

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 13

initialize SA← SA1, head[1..σ], tail[1..σ]
for i← |x′ | downto 1 do

λ← x
ˆ

x′ [i]
˜

SA
ˆ

tail[λ]
˜

← x′[i]
tail[λ]← tail[λ]−1

for j ← 1 to n do

i← SA[j]
if type[i−1] = L then

λ← x[i−1]
SA

ˆ

head[λ]
˜

← i−1
head[λ]← head[λ]+1

Fig. 5. Algorithm KA-merge

their final positions in SA — each time this is done, the tail for the current group
is decremented by one. (In this description, we assume that |S| ≤ |L|; obvious
adjustments yield a corresponding approach for the case |L| < |S|.)

The SA at this stage is shown below, with “−” denoting an empty position:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (− 8 5 2) (−) (− −) (− − − −)
type = S L S S S L L L L L L L

To sort the L-suffixes, we scan SA left to right. For each suffix position i = SA[j]
that we encounter in the scan, if i−1 is an L-suffix still awaiting sorting (not yet
placed in the SA), we place i−1 at the head of its group in SA and increment the
head of the group by one. Suffix i−1 is now sorted and will not be moved again.
The correctness of this procedure depends on the fact that when the scan of SA
reaches position j, SA[j] is already in its final position. In our example, placements
begin when j = 1, so that i = SA[1] = 12. Since suffix i−1 = 11 is type L, it is
placed at the front of the a group (of which it happens to be the only member):

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (11 8 5 2) (−) (− −) (− − − −)
type = S L S S S L L L L L L L

Next the scan reaches j = 2, i = SA[2] = 11, and we place i−1 = 10 at the front
of the c group at SA[7] and increment the group head.

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (11 8 5 2) (−) (10 −) (− − − −)
type = S L S S S L L L L L L L

The scan continues until finally

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 1 10 9 7 4 6 3

Algorithm KA can be implemented to use only 4n bytes plus 1.25n bits in addition
to the storage required for x and SA.

KS [Kärkkäinen and Sanders 2003; Kärkkäinen et al. 2006].

ACM Journal Name, Vol. V, No. N, 08 2005.

14 · S. J. Puglisi et al.

The split procedure of Algorithm KS first separates the suffixes i of x into sequences
S1 (every third suffix in x: i ≡ 1 mod 3) and S02 (the remaining suffixes: i 6≡
1 mod 3). Thus in this algorithm three types 0, 1, 2 are identified: x

′ is formed
from S02 by

x
′ = (i ≡ 2 mod 3) (i ≡ 0 mod 3),

while y is formed directly from S1. For our example string

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a c c a $

we find x
′ = (2 5 8 11)(3 6 9 12), y = 1 4 7 10. Note that |x′| ≤ ⌊2|x|/3⌋.

Construction of ISA′ using semisort begins with a linear-time 3-sort of suffixes
i ∈ S02 based on triples ti = x[i..i+2]. Thus a 3-order of these suffixes is established
for which a 3-rank ri can be computed, as illustrated by our example:

i 2 3 5 6 8 9 11 12
ti add dda add dda acc cca a$− $−−
ri 4 6 4 6 3 5 2 1

These ranks enable ISA′ to be formed for x
′:

1 2 3 4 5 6 7 8

ISA′ = (4 4 3 2) (6 6 5 1)

As with Algorithm KA, one recursive call on x
′ = 44326651 suffices to complete

the ordering, yielding ISA
x

′ = 54328761 — this gives the ordinal ranks in x of the
suffixes x

′ = 2 5 8 11 3 6 9 12.
The induce procedure sorts the suffixes specified by y based on the ordering

ISA
x

′ . First SA
x

′ = 12 11 8 5 2 9 6 3 is formed by linear-time processing of ISA
x

′ .
Then a left-to-right scan of SA

x
′ allows us to identify suffixes i ≡ 2 mod 3 in

increasing order of rank and thus to select letters x[i−1], i−1 ≡ 1 mod 3, in the
same order. A stable bucket sort of these letters will then provide the suffixes of
y in increasing lexorder. In our example SA

x
′ [2..5] = 11 8 5 2, and so we consider

x[10] = c, x[7] = x[4] = d, x[1] = b. A stable sort yields bcdd corresponding to
SAy = 1 10 7 4.

Thus we may suppose that SA
x

′ and SAy are both in sorted order of suffix. The
KS merge procedure may then be thought of as a straightforward merge of these
two strings into the output array SAx, where at each step we need to decide in
constant time whether suffix i02 of SA

x
′ is greater or less than suffix i1 of SAy .

Observing that i1+1 ≡ 2 mod 3 and i1+2 ≡ 0 mod 3, we identify two cases:

—if i02 ≡ 2 mod 3, then i02+1 ≡ 0 mod 3, and so it suffices to compare the pairs
(

x[i02], rank(i02+1)
)

and
(

x[i1], rank(i1+1)
)

;

—if i02 ≡ 0 mod 3, then i02+2 ≡ 2 mod 3, and so it suffices to compare the triples
(

x[i02..i02+1], rank(i02+2)
)

and
(

x[i1..i1+1], rank(i1+2)
)

.

We now observe that each of the ranks required by these comparisons is available
in constant time from ISA

x
′ ! For if i ≡ 2 mod 3, then

rank(i) = ISA
x

′

[

⌊(i+1)/3⌋
]

,

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 15

while if i ≡ 0 mod 3, then

rank(i) = ISA
x

′

[

⌊(n+1)/3⌋+⌊i/3⌋
]

.

Thus the merge of the two lists requires Θ(n) time.
Excluding x and SA, Algorithm KS can be implemented in 6n bytes of working

storage. A recent variant of KS [Na 2005] permits construction of a succinct suffix
array in O(n) time using only O(n log σ logq n) bits of working memory, where
q = log2 3.

KJP [Kim et al. 2003; Hon et al. 2003; Kim et al. 2004; Kim et al. 2005].

The KJP split procedure adopts the same approach as Farach’s suffix tree con-
struction algorithm [Farach 1997]: it forms x

′, the string of odd suffixes (positions)
i ≡ 1 mod 2 in x, and the corresponding string y of even positions. ISA

x
′ is then

formed by a recursive sort of the suffixes identified by x
′. Algorithm KJP is not

quite linear in its operation, running in O(nloglogn) worst-case time.
For KJP we modify our example slightly to make it more illustrative:

1 2 3 4 5 6 7 8 9 10 11

x = b a d d d d a c c a $

yielding x
′ = 1 3 5 7 9 11, y = 2 4 6 8 10.

The KJP semisort 2-sorts prefixes pi = x[i..i+1] of each odd suffix i and assigns
to each an ordinal rank ri:

i 11 7 1 9 3 5

pi $− ac ba ca dd dd
ri 1 2 3 4 5 5

As in the other recursive algorithms, a new string ISA′ is formed from these
ranks; in our example,

1 2 3 4 5 6

ISA′ = 3 5 5 2 4 1

As with the other recursive algorithms, one recursive call suffices to find ISA
x

′ =
365241 corresponding to x

′ = 1 3 5 7 9 11. At this point KJP computes the inverse
array SA

x
′ = 11 7 1 9 5 3. The KJP induce procedure can now compute SAy ,

the sorted list of even suffixes, in a straightforward manner: first set SAy [i] ←
SA

x
′ [i] − 1, and then sort SAy stably, using x

[

SAy [i]
]

as the sort key for suffix
SAy [i]:

1 2 3 4 5 6

SA
x

′ = 11 7 1 9 5 3

SAy = 10 2 8 6 4

The KJP merge is more complex. In order to merge SA
x

′ and SAy efficiently, we

need to compute an array C
[

1..⌈n/2⌉
]

, in which C[i] gives the number of suffixes in
SA

x
′ that lie between SAy [i] and SAy [i−1] in the final SA (with special attention

to end conditions i = 1 and i = |y|+1). In [Kim et al. 2004] it is explained how

ACM Journal Name, Vol. V, No. N, 08 2005.

16 · S. J. Puglisi et al.

C can be computed in log |x′| time using a suffix array search (pattern-matching)
algorithm described in [Sim et al. 2003]. We omit the details; however, for our
example we would find

1 2 3 4 5 6

C = 0 1 1 0 1 1

With C in hand, merging is just a matter of using each C[i] to count how many
consecutive SA

x
′ entries to insert between consecutive SAy entries.

There are two other algorithms which, like KJP, perform an odd/even split of the
suffixes. Algorithm KSPP [Kim et al. 2003] was the first of these, and although its
worst-case execution time is Θ(n), it is generally considered to be of only theoretical
interest, mainly due to high memory requirements. On the other hand, Algorithm
HSS [Hon et al. 2003] uses “succinct data structures” [Munro 1999] effectively to
construct a (succinct) suffix array in O(n log log σ) time with only Θ(n log σ) bits
of working memory. (Compare the variant [Na 2005] of Algorithm KS mentioned
above.) It is not clear how practical these lightweight approaches are, since their
succinctness may well adversely affect speed.

3.3 Induced Copying Algorithms [Burrows and Wheeler 1994]

The algorithms in this class are arguably the most diverse of the three main divi-
sions of SACAs discussed in this paper. They are united by the idea that a (usually)
complete sort of a selected subset of suffixes can be used to induce a fast sort of the
remaining suffixes. This induced sort is similar to the induce procedures employed
in the recursive SACAs; the difference is that some sort of iteration is used in place
of the recursion. This replacement (of recursion by iteration) probably largely ex-
plains why several of the induced copying algorithms are faster in practice than any
of the recursive algorithms (as we shall discover in Section 4), even though none
of these algorithms is linear in the worst case. In fact, their worst-case asymptotic
complexity is generally O(n2 log n). In terms of space requirements, these algo-
rithms are usually lightweight: for many of them, use of additional working storage
amounts to less than n bytes.

We begin with brief outlines of the induced copying algorithms discussed in this
section:

—Itoh & Tanaka [Itoh and Tanaka 1999] select suffixes i of “type B” — those
satisfying x[i] ≤ x[i+1] — for complete sorting, thus inducing a sort of the
remaining suffixes.

—Seward [Seward 2000] on the other hand sorts certain 1-groups, using the results
to induce sorts of corresponding 2-groups, an approach that also forms the basis
of Algorithms MF [Manzini and Ferragina 2004] and SS [Schürmann and Stoye
2005].

—A third approach, due to Burkhardt & Kärkkäinen, uses a small integer h to form
a “sample” S of suffixes that is then h-sorted; using a technique reminiscent of
the recursive algorithms, the resulting h-ranks are then used to induce a complete
sort of all the suffixes.

—The algorithm of Maniscalco [Maniscalco and Puglisi 2006a] computes ISAx

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 17

using an iterative technique that, beginning with 1-groups, uses h-groups to
induce the formation of (h+1)-groups.

—Finally, the new algorithm of Maniscalco and Puglisi [Maniscalco and Puglisi
2006b] extends the IT/KA splitting idea to select a small sample of suffixes
which are sorted in a cache-friendly way and then used to obtain the full SA.

Before describing the algorithms in more detail, we mention one other approach
[Baron and Bresler 2005] that is also related to the Burrows-Wheeler transform.
The authors describe a method in which suffixes are inserted in descending order
of position in x into a suffix list maintained in lexorder. Three implementations
are described, of which the fastest has time complexity O(n

√
log n) and, according

to our experiments, a speed in practice somewhat faster than that of Algorithm LS
(Subsection 3.1). However, due to the need to use pointers, the space requirement
of the fastest version is several times that of the lightweight algorithms (averaging
17.6n in our experiments), and is thus not suited to long strings.

IT [Itoh and Tanaka 1999].

Algorithm IT classifies each suffix i of x as being type A if x[i] > x[i+1] or type B
if x[i] ≤ x[i+1] (compare types L and S of Algorithm KA). The key observation of
Itoh and Tanaka is that once all the groups of type B suffixes are sorted, the order
of the type A suffixes is easy to derive. For example:

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a c c a $
type = A B B A B B A B B A A B

To form the full SA, we begin by computing the 1-group boundaries, noting
the beginning and end of each 1-group with arrays head[1..σ] and tail[1..σ] (recall
σ = |Σ|). Each 1-group is further partitioned into two portions, so that in the
first portion there is room for the type A suffixes, and in the second for the type
B suffixes. For each group the position of the A/B partition is recorded. Observe
that within a 1-group, type A suffixes should always come before type B suffixes.
The SA at this stage is shown below, with “−” denoting an empty position:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (− 2 5 8) (−) (− 9) (− − 3 6)
type = B A B B B A A B A A B B

Algorithm IT now sorts the B suffixes using a fast string sorting algorithm. In
[Itoh and Tanaka 1999] multikey quicksort (MKQS) [Bentley and Sedgewick 1997]
is proposed, but any other fast sort, such as burst sort [Sinha and Zobel 2004] or
the elaborate approach introduced in Algorithm MF (see below), could be used:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 (− 8 5 2) (−) (− 9) (− − 6 3)
type = B A B B B A A B A A B B

To sort the A-suffixes, and complete the SA, we scan SA left to right, j =
1, 2, . . . , n. For each suffix position i = SA[j] that we encounter in the scan, if i−1

ACM Journal Name, Vol. V, No. N, 08 2005.

18 · S. J. Puglisi et al.

initialize SA← SA1

— head[1..σ] and tail[1..σ] mark 1-group boundaries

— part[1..σ] marks A/B partition of each 1-group

for h← 1 to σ do

suffixsort
“

SA
ˆ

part[h]
˜

,SA
ˆ

part[h]+1
˜

, . . . , SA
ˆ

tail[h]
˜

”

for j ← 1 to n do

i← SA[j]
if type[i−1] = A then

λ← x[i−1]
SA

ˆ

head[λ]
˜

← i−1
head[λ]← head[λ]+1

Fig. 6. Algorithm IT

is an A-suffix still awaiting sorting (that is, it has not yet been placed in the SA),
then we place i−1 at the head of its group in SA and increment the head of the
group by one. Suffix i−1 is now sorted and will not be moved again. Like Algorithm
KA, the correctness of this procedure depends on SA[j] already being in its final
position when the scan of SA reaches position j. In our example, placements begin
when j = 1, i = SA[1] = 12. Suffix i−1 = 11 is type A, so we place 11 at the front
of the a group (of which it happens to be the only unsorted member), and it is now
sorted:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 (−) (− 9) (− − 6 3)
type = B A B B B A A B A A B B

Next the scan reaches j = 2, i = SA[2] = 11, and so we place i−1 = 10 at the
front of its c group at SA[7] and increment the group head, completing that group:

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 (−) 10 9 (− − 6 3)
type = B A B B B A A B A A B B

The scan continues, eventually arriving at the final SA :

1 2 3 4 5 6 7 8 9 10 11 12

SA = 12 11 8 5 2 1 10 9 7 4 6 3

Figure 6 gives an algorithm capturing these ideas. The attentive reader will
note the similarity between it and Algorithm KA (Subsection 3.2). In fact, the
set of B-suffixes used in Algorithm IT is a superset of the S-suffixes treated in
Algorithm KA.

Clearly IT executes in time linear in n except for the up to σ suffix sorts of the
possibly Θ(n) B-suffixes in each 1-group; these sorts may require O(n2 log n) time
in pathological cases. In practice, however, IT is quite fast. It is also lightweight:
with careful implementation (for example, both head and tail arrays do not need
to be stored, and suffixsort can be executed in place), IT requires less than n bytes
of additional working storage when n is large (megabytes or more) with respect to

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 19

σ.

S [Seward 2000].

Algorithm S begins with a linear-time 2-sort of the suffixes of x, thus forming SA2

in which the boundaries of each 2-group are identified by the head array — also
used to mark boundaries between the 1-groups. Therefore in this case head =
head[1..σ, 1..σ], allowing access to every boundary head[λ, µ] for every λ, µ ∈ Σ.
For our example the result of the 2-sort could be represented as follows:

1 2 3 4 5 6 7 8 9 10 11 12

x = b a d d a d d a c c a $
SA2 = 12

(

11 8 [2 5]
)

1 (10 9)
(

[4 7] [3 6]
)

where () encloses non-singleton 1-groups, [] encloses non-singleton 2-groups.
Now consider a 1-group Gλ corresponding to a common single-letter prefix λ.

Suppose that the suffixes of Gλ are fully sorted, yielding a sequence G∗

λ in ascending
lexorder. Imagine now that G∗

λ is traversed in lexorder: for every suffix i > 1, the
suffix i−1 can be placed in its final position in SAx at the head of the 2-group
for x[i−1]λ — provided head

[

x[i−1], λ
]

is incremented by one after the suffix is
placed there, thus allowing for correct placement of any other suffixes in the same
2-group. The lexorder of G∗

λ ensures that the suffixes i−1 also occur in lexorder
within each 2-group.

This is essentially the strategy of Algorithm S: it uses an efficient string sort
[Bentley and McIlroy 1993] to sort completely the unsorted suffixes in a 1-group
that currently contains a minimum number of unsorted suffixes, then uses the sorted
suffixes i to induce a sort of suffixes i−1. Thus all suffixes can be completely sorted
at the cost of a complete sort of only half of them.

The process can be made still more efficient by observing that when Gλ is sorted,
the suffixes with prefix λ2 can be omitted, provided that the 2-group λ2 is the last
2-group of Gλ to be traversed. To see this, suppose there exists a suffix λkµv in
Gλ, k ≥ 2, µ 6= λ. Then the suffix λµv will have been sorted into G∗

λ and already
processed to place suffix x[i..n] = λ2µv at head[λ, λ]. Thus when λ2µv is itself
processed, suffix x[i−1]λ2µv will be placed at head

[

x[i−1], λ
]

— this will again be
(the now incremented) head[λ, λ] if k ≥ 3 (x[i−1] = λ).

We can apply Algorithm S to our example string:

Iteration 1. The 1-group corresponding to λ = $ contains only the singleton
unsorted suffix i = 12. Thus the sort is trivial: 12 is already in its final position in
SA, and suffix i−1 = 11 is put in final position at head[a, $] = 2.

Iteration 2. The minimum 1-group corresponding to b contains only suffix i = 1,
which is therefore in final position. Since i−1 = 0, there is no further action.

Iteration 3. The minimum 1-group corresponds to λ = c; it again has only one
entry to be sorted, since one of the 2-groups represented is cc. Thus suffix i = 10 is
in final position at head[c, a] = 7, and determines the final position of suffix i−1 = 9
at head[c, c] = 8. Then finally for i = 9, the final position of suffix i−1 = 8 is fixed
at head[a, c] = 3.

Iteration 4. The 1-group for λ = a now contains only the two unsorted suffixes
2 and 5, since 11 and 8 have been put in final position by previous iterations. The

ACM Journal Name, Vol. V, No. N, 08 2005.

20 · S. J. Puglisi et al.

sort yields SA[4] = 5, SA[5] = 2, so that the completely sorted 1-group becomes
SA[2..5] = 11 852. For i = 11, suffix i−1 = 10 is already in final position; for i = 8,
suffix i−1 = 7 is placed in final position at head[d, a] = 9; then, for i = 5, after
head[d, a] is incremented, suffix i−1 = 4 is placed in final position at head[d, a] = 10;
for i = 2, i−1 = 1 is already in final position.

Iteration 5. The final group corresponds to λ = d; by now its only unsorted
suffixes, 3 and 6, belong to the 2-group dd and so do not require sorting. As a
result of Iteration 4, SA[9..10] = 74. Thus, for i = 7, suffix i−1 = 6 is placed at
head[d, d] = 11, while for i = 4, the final suffix i−1 = 3 is placed at head[d, d] = 12.

For this example, only one simple sort (of suffixes 2 and 5 in Iteration 4) needs to
be performed in order to compute SAx!

Algorithm S shares the O(n2 log n) worst case time of other induced copying
algorithms, but is nevertheless very fast in practice. However, its running time
sometimes seems to degrade significantly when the average lcp, lcp, is large, for
reasons that are not quite clear. This problem is addressed by a variant, Algorithm
MF, discussed next. Like IT, Algorithm S can run using less than n bytes of working
storage.

MF [Manzini and Ferragina 2004].

Algorithm MF is a variant of Algorithm S that replaces TSQS [Bentley and McIlroy
1993], used to sort the 2-groups within a selected 1-group, by a more elaborate and
sophisticated approach to suffix-sorting. This approach is two-tiered, depending
initially on a user-specified integer lcp∗, the longest lcp of a group of suffixes that
will be sorted using a standard method. (Typically, for large files, lcp∗ will be
chosen in the range 500..5000.) Thus, if a 2-group of suffixes is to be sorted, then
MKQS [Bentley and Sedgewick 1997] (rather than TSQS) will be employed until
the recursion of MKQS reaches depth lcp∗: if the sort is not complete, this defines
a set Im = {i1, i2, ..., im}, m ≥ 2, of suffixes such that

lcp(i1, i2, . . . , im) ≥ lcp∗.

At this point, the methodology used to complete the sort of these m suffixes is
chosen depending on whether m is “large” or “small”.

If m is small, then a sorting method called blind sort [Ferragina and Grossi
1999] is invoked that uses at most 36m bytes of working storage. Therefore, if
blind sort is used only for m ≤ n/Q, its space overhead will be at most (36/Q)n
bytes; by choosing Q ≥ 1000, say — and thus giving special treatment to cases
where “not too many” suffixes share a “long” lcp — it can be ensured that for
small m, the space used is a very small fraction of the 5n bytes required for x and
SAx.

Blind sort of Im depends on the construction of a blind trie data structure
[Ferragina and Grossi 1999]: essentially the strings

x[ij+lcp∗..n], j = 1, 2, . . . , m

are inserted one-by-one into an initially empty blind trie; then, as explained in
[Ferragina and Grossi 1999], a left-to-right traversal of the trie obtains the suffixes
in lexorder, as required.

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 21

If m is large (> n/Q), Algorithm MF reverts to the use of a slightly modified
TSQS, as in Algorithm S; however, whenever at some recursive level of execution
of TSQS a new set of suffixes I ′m is identified for which m ≤ n/Q, then blind sort
is again invoked to complete the sort of I ′m.

Following the initial MKQS sort to depth lcp∗, the dual strategy (blind sort/TSQS)
described so far to complete the sort is actually only one of two strategies employed
by Algorithm MF. Before resorting to the dual strategy, MF tries to make use of
generalized induced copying, as we now explain.

Suppose that for i1 ∈ Im and for some least ℓ ∈ 1..lcp∗−1,

x[i1+ℓ..i1+ℓ+1] = λµ,

where [λ, µ] identifies a 2-group that as a result of previous processing has already
been fully sorted. Since the m suffixes in Im share a common prefix, it follows that
every suffix in Im occurs in the same 2-group [λ, µ]. Since moreover the m suffixes
in Im are identical up to position ℓ, it follows that the order of the suffixes in Im

is determined by their order in [λ, µ]. Thus if such a 2-group exists, it can be used
to “induce” the correct ordering of the suffixes in Im, as follows:

(1) Bucket-sort the entries ij ∈ Im in ascending order of position (not suffix), so
membership in Im can be determined using binary search (step (3)).

(2) Scan the 2-group [λ, µ] to identify a match for suffix i1+ℓ, say at some position q.

(3) Scan the suffixes (positions) listed to the left and to the right of q in 2-group
[λ, µ]; for each suffix i, use binary search to determine whether or not i−ℓ occurs
in (the now-sorted) Im. If it does occur, then mark the suffix i in [λ, µ].

(4) When m suffixes have been marked, scan the 2-group [λ, µ] from left to right:
for each marked suffix i, copy i−ℓ left-to-right into Im.

Step (2) of this procedure can be time-consuming, since it may involve a Θ(n)-time
match of two suffixes; in [Manzini and Ferragina 2004] an efficient implementation
of step (2) is described that uses only a very small amount of extra space.

Of course if no such ℓ, hence no such 2-group, exists, then this method cannot
be used: the dual strategy described above must be used instead.

In practice Algorithm MF runs faster than any of Algorithms KS, IT or S; in
common with other induced copying algorithms, it uses less than n bytes of addi-
tional working storage but can require as much as O(n2 log n) time in the worst
case.

SS [Schürmann and Stoye 2005].

Algorithm SS could arguably be classified as a prefix-doubling algorithm. Certainly
it is a hybrid: it first applies a prefix-doubling technique to sort individual h-groups,
then uses Seward’s induced copying approach to extend the sort to other groups of
suffixes.

For SS, the integer h is actually a user-specified parameter, chosen to satisfy
h < logσ n. First a radix sort is performed to compute SAh, then the corresponding
ISAh, in which the h-rank of each h-group is formed from the tail of the h-group in
SAh (the same system used in Algorithm LS). Thus, for example, using h = 2, the
result of the first phase of processing would be just the same as after the second
iteration of LS:

ACM Journal Name, Vol. V, No. N, 08 2005.

22 · S. J. Puglisi et al.

1 2 3 4 5 6 7 8 9 10 11 12

x = a b e a c a d a b e a $
SA2 = 12 11 (1 8) 4 6 (2 9) 5 7 (3 10)

ISA2 = 4 8 12 5 9 6 10 4 8 12 2 1

In its second phase, SS considers h-groups in SAh that are not singletons. Let
H be one such h-group. The observation is made that since every suffix i in H has
the same prefix of length h, therefore the order of each i in H is determined by the
rank of suffix i+h; that is, by ISAh[i+h]. A sort of all the non-singleton h-groups
in SAh thus leads to the construction of SA2h and ISA2h:

1 2 3 4 5 6 7 8 9 10 11 12

SA4 = 12 11 (1 8) 4 6 9 2 5 7 10 3
ISA4 = 3 8 12 5 9 6 10 3 7 11 2 1

Observe that as a result of the prefix-doubling, the h-groups (2 9) and (3 10) have
become completely sorted.

To entries in h-groups that become completely sorted by prefix-doubling, SS
applies Algorithm S: if suffix i is in fixed position in SA, then the final position
of suffix i−1 can also be determined. Thus, in our example, the sort of the h-
group (2 9) that yields 2h-order 9, 2 induces a corresponding sorted order 8, 1 for
the 2h-group (1 8), completing the sort.

Algorithm SS iterates this second phase — prefix-doubling followed by induced
copying — until all entries in SA are singletons. Note that after the first iteration,
the induced copying will as a rule refine the h-groups so that they break down
into (h+k)-groups for various values of k ≥ 0; thus, after the first iteration, the
prefix-doubling is approximate.

Algorithm SS has worst-case time complexity O(n2) and appears to be very fast
in practice, competitive with Algorithm MF. However, it is not quite lightweight,
requiring somewhat more than 4n bytes of additional working storage.

BK [Burkhardt and Kärkkäinen 2003; Kärkkäinen et al. 2006].

In a way similar to the recursive algorithms of Section 3.2, Algorithm BK com-
putes SAx by first ordering a sample of the suffixes S. The relative ranks of the
suffixes in S are then used to accelerate a basic string sorting algorithm, such as
MKQS [Bentley and Sedgewick 1997], applied to all the suffixes. Of the recursive
algorithms, Algorithm KS is particularly related to Algorithm BK — a relationship
elucidated in a recent paper [Kärkkäinen et al. 2006].

Central to BK is a mathematical construct called a difference cover, which
defines the suffixes in S. A difference cover Dh is a set of integers in the range
0..h−1 such that for all i ∈ 0..h−1, there exist j, k ∈ Dh such that i ≡ k−j(mod h).
For a chosen Dh, S contains the suffixes of x beginning at positions i such that
i mod h ∈ Dh.

For example, D7 = {1, 2, 4} is a difference cover modulo 7. If we were to sample
according to D7 then for the string

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

x = b a d d a d d b a d d a d d b a d d $

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 23

we would obtain S = {1, 2, 4, 8, 9, 11, 15, 16, 18, 22, 23, 25}. Observe for every i ∈ S
that i mod 7 is in D7.

In practice, only covers Dh with |Dh| ∈ Θ(
√

h) are suitable. However, for the
chosen Dh a function δ(i, j) must also be precomputed. For any integers i, j, δ(i, j)
is the smallest integer k ∈ 0..h− 1 such that (i + k) mod h and (j + k) mod h are
both in Dh. A lookup table allows constant time evaluation of δ(i, j) — we omit
the details here.

Algorithm BK consists of two main phases. The goal of the first phase is to
compute a data structure ISAx′ allowing the lexicographical rank of i ∈ S, relative
to the other members of S, to be computed in constant time. To this end, BK first
h-sorts S using MKQS (or alternative) and then assigns each suffix its h-rank in
the resulting h-ordering. For our example the h-ranks are:

i ∈ S 1 2 4 8 9 11 15 16 18
h-rank 3 6 4 3 6 4 2 5 1

These ranks are then used to construct a new string x
′ (compare to x

′ for Algo-
rithm KS) as follows

i ∈ S 1 8 15 2 9 16 4 11 18

x
′ = (3 3 2) (6 6 5) (4 4 1)

The structure of x
′ is deceptively simple. The h-ranks, ri, appear in |Dh| groups

in x
′ (indicated above with ()) according to i modulo h. Then, within each group,

ranks ri are sorted in ascending order according to i. Because of this structure in
x

′, its inverse suffix array, ISAx′ , can be used to obtain the rank of any i ∈ S in
constant time. To compute ISAx′ , BK makes use of Algorithm LS as an auxiliary
routine (recall that LS computes both the ISA and the SA). Although LS is probably
the best choice, any SACA suitable for bounded integer alphabets can be used.

With ISAx′ computed, construction of SAx can begin in earnest. All suffixes
are h-ordered using a string sorting algorithm, such as MKQS, to arrive at SAh.
The sorting of the non-singleton h-groups which remain is then completed with a
comparison-based sorting algorithm using ISAx′ [i+δ(i, j)] and ISAx′ [j +δ(i, j)] as
keys when comparing suffixes i and j. We note that the tactic of storing ranks of
some suffixes to later limit the sort depth of others is also adopted in the algorithm
of [Khmelev 2003], albeit in a quite different way, and with worse performance
(both asymptotically and in practice).

In [Burkhardt and Kärkkäinen 2003] it is shown that by choosing h = log2 n
an overall worst case running time of O(n log n) is achieved. Another attractive
feature of BK is its small working space — less then 6n bytes — made possible by
the small size of S relative to x and the use of inplace string sorting.

Finally, we remark that the ideas of Algorithm BK can be used to ensure any
of the induced copying algorithms described in this section execute in O(n log n)
worst-case time.

M [Maniscalco 2005; Maniscalco and Puglisi 2006a].

Algorithm M differs from the other algorithms in this section in that it directly
computes ISAx and then transforms it into SAx in place.

At the heart of Algorithm M is an efficient bucket sorting routine. Most of the
work is done in what is eventually ISAx, with extra space required for a few stacks.

ACM Journal Name, Vol. V, No. N, 08 2005.

24 · S. J. Puglisi et al.

The bucket sort begins by linking together suffixes that are 2-equal, to form chains
of suffixes. For example, the string

1 2 3 4 5 6 7 8

x a a a b a b a a $

would result in the creation of the following chains

8 7,2,1 5,3 6,4
a$ aa ab ba

We define an h-chain in the same way as an h-group – that is, suffixes i and j are
in the same h-chain iff they are h-equal. Thus, the chains above are all 2-chains,
and the chain for a$ is a singleton.

The space allocated for the ISA provides a way to efficiently manage chains. In-
stead of storing the chains explicitly as above, Algorithm M computes the equivalent
array

1 2 3 4 5 6 7 8

x a a a b a b a a $
ISA ⊥ 1 ⊥ ⊥ 3 4 2 ⊥

in which ISA[i] is the largest j < i such that x[j..j +1] = x[i..i+1] or ⊥ if no such j
exists. In our example, the chain of all the suffixes prefixed with aa contains suffixes
7, 2 and 1 and so we have ISA[7] = 2, ISA[2] = 1 and ISA[1] = ⊥, marking the end
of the chain. Observe that chains are singly linked, and are only traversable right-
to-left. We keep track of h-chains to be processed by storing a stack of integer pairs
(s, h), where s is the start of the chain (its rightmost index), and h is the length of
the common prefix. Chains always appear on the stack in ascending lexicographical
order, according to x[s..s + h−1]. Thus for our example, initially (8, 2) for chain
a$ is atop the stack, and (6, 2) for chain ba at the bottom.

Chains are popped from the stack and progressively refined by looking at further
pairs of characters. So long as we process the chains in lexicographical order, when
we pop a singleton chain, the suffix contained has been differentiated from all others
and can be assigned the next lexicographic rank. Elements in the ISA which are
ranks are differentiated from elements in chains by setting the sign bit; that is, if
ISA[i] < 0, then the rank for suffix i is −ISA[i]. The evolution of the ISA for our
example string proceeds as follows in subsequent sorting rounds:

1 2 3 4 5 6 7 8

x a a a b a b a a $
ISA ⊥ 1 ⊥ ⊥ 3 4 2 ⊥ Initial chains (8, 2)a$(7, 2)aa(5, 2)ab(6, 2)ba

ISA ⊥ 1 ⊥ ⊥ 3 4 2 -1 Pop (8, 2)a$ and assign rank
ISA ⊥ ⊥ ⊥ ⊥ 3 4 ⊥ Split chain (7, 2)aa into (7, 4)aa$(1, 4)aaab(2, 4)aaba

ISA -3 -4 ⊥ ⊥ 3 4 -2 Pop (7, 4)aa$(1, 4)aaab(2, 4)aaba, assign ranks
ISA ⊥ ⊥ ⊥ 4 Split chain (5, 2)ab into (5, 4)abaa(3, 4)abab

ISA -6 ⊥ -5 4 Pop (5, 4)abaa(3, 4)abab, assign ranks
ISA ⊥ ⊥ Split chain (6, 2)ba into (6, 4)baa$(4, 4)baba

ISA -8 -7 Pop (6, 4)baa$(4, 4)baba, assign ranks
ISAx 3 4 6 8 5 7 2 1 Completed Inverse Suffix Array

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 25

formInitialChains()
repeat

(s, h) ← chainStack.pop()
if ISA[s] = ⊥ then

ISA[s] ← nextRank()
else

while s 6= ⊥ do

sym ← getSymbol(s + h)
updateSubChain(sym,s)
s ← ISA[s]

sortAndPushSubChains(h+1)
until chainstack is empty

Fig. 7. Bucket sorting of Algorithm M

When the value in a column becomes negative, the suffix has been assigned its
(negated) rank and is effectively sorted. We reiterate that when a chain is split,
the resulting subchains must be placed on the stack in lexicographical order for the
subsequent assignment of ranks to singletons to be correct. This is illustrated in
the example above when the chain for aa is split, and the next chain processed is
the singleton chain for aa$. An algorithm embodying these ideas is shown in Figure
7.

Algorithm M adds two powerful heuristics to the string sorting algorithm de-
scribed in Figure 7. We discuss only the first (and more important) of these heuris-
tics here and refer the reader to [Maniscalco and Puglisi 2006a] for details of the
second.

The processing of chains in lexicographical order allows for the possibility of
using previously assigned ranks as sort keys for some of the suffixes in a chain. To
elucidate this idea we first need to make some observations about the way chains
are processed.

When processing an h-chain, suffixes can be classified into three types: suffix i
is of type X if the rank for suffix i + h − 1 is known, and is of type Y if the rank
for suffix i + h is known. If i is not of type X or type Y , then it is of type Z. Any
suffix can be classified by type in constant time by virtue of the fact that we are
building the ISA (we inspect ISA[i + h − 1] or ISA[i + h] and a checked sign bit
indicates a rank). Now consider the following observation: lexicographically, type
X suffixes are smaller than type Y suffixes, which in turn are smaller than type Z
suffixes.

To use this observation, when we refine a chain, we place only type Z suffixes into
subchains according to their h + 1st symbol and place type X and type Y suffixes
to one side. Now, the order of the m suffixes of type X can be determined via a
comparison-based sort, using for suffix i the rank of suffix i + h− 1 as the sort key.
Once sorted, the type X suffixes can be assigned the next m ranks by virtue of the
fact that chains are being processed in lexicographical order. Type Y suffixes are
treated similarly, using the rank of j +h as the sort key for suffix j. In [Maniscalco
and Puglisi 2006a] this technique is referred to as induction sorting 2.

2In fact, we can sort the type X and Y suffixes in the same sort call by using as a key for a type

ACM Journal Name, Vol. V, No. N, 08 2005.

26 · S. J. Puglisi et al.

Loosely speaking, as the number of assigned ranks increases, the probability that
a suffix can be sorted using the rank of another also increases. In fact, every chain
of suffixes with prefix α1α2 such that α2 < α1 will be sorted entirely in this way.
Clearly, induction sorting will lead to a significant reduction in work for many texts.

One could consider the induction sorting of Algorithm M to be an extension
of the ideas in Algorithm IT. As noted above, suffixes in a 2-chain with common
prefix α1α2 and α1 > α2 are sorted entirely by induction (like the type A suffixes
of Algorithm IT). However the lexicographical processing of suffixes in Algorithm
M means this property can be applied to suffixes at deeper levels of sorting (when
h > 2).

In practice Algorithm M is very fast. By carefully using the space in ISA, and
converting it to SA in place, it also achieves a small memory footprint — rarely
requiring more than n bytes of additional working space.

MP [Maniscalco and Puglisi 2006b].

Algorithm MP takes the sampling method of KA and IT a step further, intro-
ducing a way of splitting suffixes that is more separative and that thus allows the
order of more suffixes to be induced cheaply. Recall the way algorithm KA divides
suffixes into sets S and L, by classifying each suffix as either type S or type L, as
shown in the example string below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

x e d a b d c c d e e d a b $
type L L S S L S S S L L L S L −

Algorithm KA sorts the set containing fewer suffixes, which in this example would
be S. In [Maniscalco and Puglisi 2006b] it is shown that only a subset of S need
in fact be sorted (a fact contemporaneously discovered by Mori [Mori 2006]). This
subset, denoted T , is defined as follows:

T = {i : i ∈ S and i+1 ∈ L}.
That is, only the rightmost suffix in every run of S suffixes is included in T — thus
for the example string T = {4, 8, 12}, of size two less than S. From the order of
the suffixes in T , the order of those in S can be inferred; from this point on, the
algorithm is identical to algorithm KA.

We will shortly explain how algorithm MP sorts the suffixes in T , but for now
assume they have been sorted, and have been placed in their final positions in SA,
as shown below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SA (−) 12 (−) (−) 4 (−) (−) (− −) (−) 8 (− −) (−)
group $ ab b$ bd cc cd da dc de ed ee

The parentheses (), as usual, indicate group boundaries, in this case 2-group bound-
aries, which are easily computed with a counting sort. To sort the type S suffixes,
we scan SA in its current state from right to left. For each suffix (that is, non-empty
location) SA[i] that we encounter in the scan, if SA[i] − 1 is of type S we place

X suffix i the rank of i + h− 1 and for a type Y suffix the negated rank of i + h.

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 27

SA[i]− 1 at the current end of the group for x[SA[i]− 1]x[SA[i]] and decrement the
end of that group.

When the scan is complete, all the members of S are in their final place in SA,
and a method identical to that described for algorithm KA is used to complete the
construction of SA.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Description
SA (−) 12 (−) (−) 4 (−) (−) (− −) (−) 8 (− −) (−) Initial
SA (−) 12 (−) (−) 4 (−) 7 (− −) (−) 8 (− −) (−) SA[11]=8, 7 ∈ S, place 7
SA (−) 12 (−) (−) 4 6 7 (− −) (−) 8 (− −) (−) SA[7]=7, 6 ∈ S, place 6
SA (−) 12 (−) (−) 4 6 7 (− −) (−) 8 (− −) (−) SA[6]=6, 5 /∈ S, no action
SA (−) 12 3 (−) 4 6 7 (− −) (−) 8 (− −) (−) SA[5]=4, 3 ∈ S, place 3
SA (−) 12 3 (−) 4 6 7 (− −) (−) 8 (− −) (−) SA[3]=3, 2 /∈ S, no action
SA (−) 12 3 (−) 4 6 7 (− −) (−) 8 (− −) (−) SA[2]=12, 11 /∈ S, no action
group $ ab b$ bd cc cd da dc de ed ee

Clearly, in general, |T | ≤ |S| (consider the string an$ to see the case where
|T | = |S|). However, in [Maniscalco and Puglisi 2006a] measurements are given
indicating that in practice there is a marked difference between the schemes, with
T rarely containing more than 30% of suffixes.

Algorithm MP collects the sample suffix pointers in an array SP[1..|T |] and sorts
them with a variation of MKQS. Before sorting begins, however, the input string
x[1..n] is mapped onto an array of integers ISA′[1..n] by setting ISA′[i] to be the
tail of the 1-group boundary for symbol x[i]. An important property of the trans-
formation is that the lexorder of the suffixes of ISA′ is the same as for x, so sorting
the suffixes of ISA′ is equivalent to sorting those of x. This recoding allows for the
first of Algorithm MP’s heuristics3.

For each symbol α ∈ Σ a counter next rank[α] is maintained, initially set to the
head of the 1-group for α. When the final position of a sample suffix i prefixed
with α becomes known relative to the other sample suffixes in SP, ISA′[i] is set to
next rank[α] and next rank[α] is incremented. Because of the initial transform and
the maintenance of next rank counters, MKQS continues to sort suffixes correctly
in the face of the changing ISA′ values. The only other requirement for this to
work correctly is that when suffix SP[i] is placed in its final position, suffixes in
SP[0..i− 1] are already sorted — this is a natural consequence of MKQS.

Modifying ISA′ on-the-fly in this way will ultimately lead to faster sorting as
the number of unique symbols (sort keys) in ISA′ increases. The idea is essentially
the induction sorting technique utilised by algorithm M (see above); the major
difference here is that the sorted rank information is stored so it is immediately
available when it is needed and does not have to be retrieved from another part
of memory — the MKQS procedure carries on regardless, and the use of rank
information is “seamlessly” integrated. This ultimately means algorithm MP will
incur far fewer CPU-cache misses than algorithm M.

It is also shown in [Maniscalco and Puglisi 2006b] how MKQS can be modified

3Actually, the transformation is more complex, but this simplified version will do for our purposes
here.

ACM Journal Name, Vol. V, No. N, 08 2005.

28 · S. J. Puglisi et al.

to reveal repetitions (adjacent repeating substrings) in the input and how, once
revealed, they can sort them efficiently without the need for extraneous symbol
comparisons. This allows MP to avoid the catastrophic slowdowns incurred by
many induced copying algorithms on highly repetitive inputs.

Because ISA′ and SA can be implemented to use the same memory space and
because the maximum sample size is n/2, algorithm MP is able to cap its memory
usage at 6n bytes, and in practice uses little more than 5n bytes. It is also the
fastest algorithm we tested.

3.4 Hybrid Algorithms

In this section we briefly describe three hybrid SACAs not previously described in
the literature or implemented. While there are likely many ways in which the ideas
of various SACAs can be combined, our aim here is to deal with the obvious cases
and close some open questions in the literature. The hybrids are as follows:

(1) IT+KA. It was observed earlier that algorithms IT and KA divide suffixes in a
similar way — in particular, IT chooses a subset of the suffixes chosen by KA.
The hybrid algorithm selects suffixes as KA does: it labels each suffix L or S
and chooses the set containing fewer members. These suffixes are then sorted
with a string sorting algorithm into their final place in the L/S partitioned
1-groups (as in algorithm IT). The final phase is then a pass over the SA to
move the remaining suffixes into place. Such an algorithm will undoubtedly
be faster than IT as more suffixes have their order induced automatically. A
disadvantage is that the type of a suffix can no longer be determined in constant
time, unless n extra bits of working space are used.

(2) BK+S. This hybrid was mentioned by [Burkhardt and Kärkkäinen 2003] as
a possible way to improve the average running time of algorithm BK. The
combination of the ideas is simple: we select a sample of suffixes as in BK and
sort them. Then sorting of the 1-groups in algorithm S using MKQS stops at
depth h, where h is the modulus of the difference cover. To complete the sort
the ranks of suffixes in the sample are used as sort keys. The pointer-copying
of algorithm S operates as usual.

(3) BK+IT+KA. We can obtain a hybrid algorithm similar to BK+S by combining
BK with algorithm IT, or perhaps better with the IT+KA hybrid described
above.

Tests of these hybrids are included in the experiments described in the next
section.

4. EXPERIMENTAL RESULTS

To gauge the performance of the SACAs in practice we measured their runtimes and
peak memory usage for a selection of files from the Canterbury corpus4 and from the
corpus compiled by Manzini5 and Ferragina [Manzini and Ferragina 2004]. Details
of all files tested are given in Table II. The table also provides several statistics for

4http://www.cosc.canterbury.ac.nz/corpus/
5http://www.mfn.unipmn.it/~manzini/lightweight/corpus/

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 29

Table II. Description of the data set used for testing. LCP refers to the Longest
Common Prefix amongst all suffixes in the string.

String
Mean Max Size

σ Description
LCP LCP (bytes)

eco 17 2, 815 4, 638, 690 4 Escherichia coli genome
chr 1, 979 199, 999 34, 553, 758 5 Human chromosome 22

bibl 14 551 4, 047, 392 63 King James bible
worl 23 559 2, 473, 400 94 CIA world fact book
prot 89 7, 373 109, 617, 186 66 SwissProt database
rfc 93 3, 445 116, 421, 901 120 Concatenated IETF RFC files
how 267 70, 720 39, 422, 105 197 Linux Howto files
reut 282 26, 597 114, 711, 151 93 Reuters news in XML format
jdk 679 37, 334 69, 728, 899 113 JDK 1.3 documentation

etext 1, 108 286, 352 105, 277, 340 146 Texts from Gutenberg project

each file; the Mean and Maximum LCP values provide a rough guide to suffix sorting
difficulty [Sadakane 1998], and give the average and maximum number of character
comparisons respectively, required by a string sorting algorithm to separate two
suffixes.

We implemented Algorithm IT as described in [Itoh and Tanaka 1999] and Algo-
rithm KS with heuristics described in [Puglisi et al. 2005]. We also implemented the
hybrid algorithms IT+KA, BK+IT+KA and BK+S, and had them use MKQS for
string sorting. Two implementations of Algorithm KA were tested: one by Lee and
Park, and the other due to Ko [Lee and Park 2004; Ko 2006]. Implementations of
all other algorithms were obtained either online or by request to respective authors.
For completeness we also tested a tuned suffix tree implementation [Kurtz 1999].
We did not include algorithm MM in experiments because results in [Larsson and
Sadakane 1999] show it to be many times slower than other algorithms such as LS.
We are confident that all tested implementations are of high quality.

Algorithm MF was run with default parameters and Algorithm SS with parameter
h = 7 for genomic data (files eco and chr) and h = 3 otherwise, as used for
testing in [Schürmann and Stoye 2005]. Algorithm BK and the hybrids BK+S and
BK+IT+KA used parameter h = 32, as in [Burkhardt and Kärkkäinen 2003].

All tests were conducted on a 2.8 GHz Intel Pentium 4 processor with 2Gb
main memory. The operating system was RedHat Linux Fedora Core 1 (Yarrow)
running kernel 2.4.23. The compiler was g++ (gcc version 3.3.2) executed with
the -O3 option. Running times, shown in Table III, are the average of four runs
and do not include time spent reading input files. Times were recorded with the
standard unix time function. Memory usage, shown in Table IV, was recorded with
the memusage command available with most Linux distributions.

Results are summarized in Figure 8. Algorithm MP is the fastest (or equal
fastest) algorithm on all files, and shades algorithm M by about 33% on aver-
age. These two algorithms (MP, M) have a clear advantage over the next fastest
algorithms, MF and SS, which are approximately 70% and 80% slower on aver-
age respectively, than MP. On the shorter files (eco,bib,wor), the times of MP are
equalled by several algorithms. This result fits with the observations of several
authors that on short files, which tend to have low average LCP, simple SACAs
that do not deviate tremendously from their underlying string sorting algorithms

ACM Journal Name, Vol. V, No. N, 08 2005.

30 · S. J. Puglisi et al.

Table III. CPU time (seconds) on test data. Minimum is shown in bold for each string.

eco chr bib wor prot rfc how reut jdk etex

MP 2 15 1 1 49 48 14 57 30 50

M 2 18 2 1 59 61 18 73 44 58
SS 2 25 2 1 99 93 22 133 64 92
MF 2 16 2 1 74 65 18 147 82 76
IT 2 416 1 1 125 108 38 278 286 331
IT+KA 2 205 1 1 119 86 31 281 274 335
S 3 29 2 1 126 110 37 258 217 290
BK 4 40 3 2 200 171 43 280 152 141
BK+IT+KA 3 27 2 1 129 103 27 176 97 116
BK+S 3 29 3 2 164 126 31 240 132 116
LS 4 35 3 2 144 154 40 183 105 146
BB 3 26 3 2 117 113 43 84 40 131
KA(Ko) 5 43 4 2 118 109 39 121 57 138
KA(Lee) 6 47 5 3 183 179 63 185 98 202
KS 5 57 4 2 306 288 55 377 204 219
KJP 4 31 4 3 183 189 61 192 102 179
Tree 6 51 5 3 183 193 80 141 52 226

give acceptable behaviour.
The speed of MP, M and MF for the larger inputs is particularly impressive given

their small working memory: 5.13n, 5.49n and 5.01n bytes on average respectively.
The lightweight nature of these algorithms separates them from SS which requires
slightly more than 9n bytes on average. Times in Table III for Algorithm SS versus
Algorithm MF seem to run contrary to results published in [Schürmann and Stoye
2005]; however, our experiment is different. In [Schürmann and Stoye 2005], files
were bounded to at most 50,000,000 characters, making many test files shorter than
their original form. We suspect the full length files are harder for Algorithm SS to
sort.

It is important to note an advantage of MF over MP is the stability of its memory
use. In the worst case MF can garauntee only 5.01n bytes will be used, whereas
MP, in the worst case, may require 6n bytes. Thus, when memory is especially
tight, MF may be the algorithm of choice. We also remark that while Algorithm
BK is not amongst the fastest algorithms tested, its central concept (the difference
cover) provides a simple strategy to provide O(n log n) worst case behavior to the
faster algorithms without heavily impacting on their speed or space usage.

All three hybrid algorithms improve the average speed of their component algo-
rithms. Algorithm IT+KA removes the wild variation of IT’s runtime by reducing
the amount of suffixes sorted with MKQS to less than n/2 for all files. This is at
the cost of n bits of space required to store the type of each suffix. As one would
expect, algorithms BK+S and BK+IT+KA improve on the runtime of BK for every
file by reducing the need for string sorting. In constrast, BK brings stability to S
and IT+KA: variation in runtime is diminished, but a slight slowdown is incurred
on some files. Such slowdowns occur when the time taken to sort the sample re-
quired by BK outweighs the time saved by limiting the depth of the string sort.
We observed the time taken for this phase was around 20-25% of overall runtime
— a significant improvement here would make the BK hybrids more competetive
with the leaders.

The large variation in performance of Algorithm KS can be attributed to the

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 31

Table IV. Peak Memory Usage (Mbs)

eco chr bib wor prot rfc how reut jdk etex

MP 23 167 20 12 542 560 194 571 340 572
M 25 182 21 14 555 580 197 564 342 519
SS 40 297 36 24 942 1, 006 368 988 604 915
MF 22 165 19 12 524 557 188 548 333 503
IT 22 165 19 12 523 555 188 547 332 502
IT+KA 23 169 19 12 536 569 193 561 340 514
S 22 165 19 12 523 555 188 547 332 502
BK 26 194 23 14 614 652 221 643 391 590
BK+IT+KA 27 198 23 14 627 666 226 657 399 603
BK+S 26 194 23 14 614 652 221 643 391 590
LS 35 264 31 19 836 888 301 875 532 803
BB 78 580 68 42 1, 840 1, 954 662 1, 925 1, 170 1, 767
KA(Lee) 58 429 50 31 1, 359 1, 443 526 1, 422 864 1, 406
KA(Ko) 47 332 32 19 805 752 282 847 495 832
KS 43 334 37 23 1, 279 1, 230 389 1, 434 870 1, 071
KJP 58 427 58 36 1, 574 1, 673 571 1, 645 1, 000 1, 509
Tree 74 541 54 32 1, 421 1, 554 526 1, 444 931 1, 405

occasional ineffectiveness of heuristics described in [Puglisi et al. 2005]. Of inter-
est also is the general poor performance of the recursive algorithms KS, KA and
KJP. These algorithms have superior asymptotic behaviour, but for many files run
several times slower than the other algorithms and often consume more memory
than the suffix tree (KJP in particular). Memory profiling reveals that the recur-
sive algorithms suffer from very poor cache behaviour, which largely nullifies their
asymptotic advantage.

5. CONCLUDING REMARKS

Over the last few years, suffix arrays — algorithms for their construction and use —
have constituted, along with the closely-related topic of string sorting, an intense
area of research within computer science. While this paper was in review two new
(as yet unpublished) algorithms appeared on the Internet that are nearly as fast as
Algorithm MP and use a similar amount of space [Malyshev 2006; Mori 2006].

The algorithms surveyed in this paper are a testament to the ingenuity of many
researchers who have collectively made the suffix array the data structure of choice
for a wide range of applications — replacing the suffix tree, whose “myriad virtues”
were already well-recognized 20 years ago [Apostolico 1985].

Impressive as the progress has been, ingenious as the methods have been, there
still remains the challenge to devise a SACA that is lightweight, linear in the worst
case, and fast in practice.

We hope that by a timely exposition of existing SACAs to a wider audience, we
will contribute to further progress in a fascinating and important area of research.

ACKNOWLEDGMENTS

The authors would like to thank Dror Baron, Dong Kyue Kim, Stefan Kurtz,
Sunglim Lee and Kunsoo Park for responding to requests for source code, and
to all authors who made code accessible via their web pages. They also thank three
anonymous referees for constructive comments that have improved this paper. A

ACM Journal Name, Vol. V, No. N, 08 2005.

32 · S. J. Puglisi et al.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

ill
is

ec
on

ds
/s

ym
bo

l)

Memory (bytes/symbol)

 MP
 M

 SSMF

IT

IT+KA

S

 LS

BB

 BK

 BK+IT+KA

 BK+S

 KA(Lee)

 KA(Ko)

 KS

 KJP

 Suffix Tree

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 2 4 6 8 10 12 14 16 18

T
im

e
(m

ill
is

ec
on

ds
/s

ym
bo

l)

Memory (bytes/symbol)

 MP
 M

 SSMF

IT

IT+KA

S

 LS

BB

 BK

 BK+IT+KA

 BK+S

 KA(Lee)

 KA(Ko)

 KS

 KJP

 Suffix Tree

Fig. 8. Resource requirements of the algorithms averaged over the test corpus.
Error bars are one standard deviation. Abscissa error bars for algorithms MF,
S, IT, IT+KA, BK, BK+S, BK+IT+KA, BB and LS are insignificantly small.
Ordinate error bars for algorithms S, IT, IT+KA, BK and BK+S are not shown to
improve presentation (standard deviations 0.009, 0.0036, 0.0019, 0.0006 and 0.00053
respectively).

preliminary version of this paper appeared as “A taxonomy of suffix array construc-
tion algorithms”, S. J. Puglisi, W. F. Smyth, A. Turpin, Proceedings of the Prague
Stringology Conference, Prague, Czech Republic, Jan Holub, Ed., August, 2005.
This work is supported in part by grants from the Natural Sciences & Engineering
Research Council of Canada and the Australian Research Council.

REFERENCES

Abouelhoda, M. I., Kurtz, S., and Ohlebusch, E. 2004. Replacing suffix trees with suffix
arrays. Journal of Discrete Algorithms 2, 1, 53–86.

Apostolico, A. 1985. The myriad virtues of subword trees. In Combinatorial Algorithms on
Words. NATO ASI Series F12. Springer-Verlag, Berlin, 85–96.

Baron, D. and Bresler, Y. 2005. Antisequential suffix sorting for bwt-based data compression.
IEEE Transactions on Computers 54, 4 (April), 385–397.

Bentley, J. L. and McIlroy, M. D. 1993. Engineering a sort function. Software, Practice and
Experience 23, 11, 1249–1265.

Bentley, J. L. and Sedgewick, R. 1997. Fast algorithms for sorting and searching strings. In

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 33

Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms. New Orleans,

Louisiana, 360–369.

Burkhardt, S. and Kärkkäinen, J. 2003. Fast lightweight suffix array construction and check-
ing. In Proceedings of the 14th Annual Symposium CPM 2003, R. Baeza-Yates, E. Chávez, and
M. Crochemore, Eds. Lecture Notes in Computer Science, vol. 2676. Springer-Verlag, Berlin,
55–69.

Burrows, M. and Wheeler, D. J. 1994. A block sorting lossless data compression algorithm.
Tech. Rep. 124, Digital Equipment Corporation, Palo Alto, California.

Crauser, A. and Ferragina, P. 2002. A theoretical and experimental study on the construction
of suffix arrays in external memory. Algorithmica 32, 1–35.

Farach, M. 1997. Optimal suffix tree construction for large alphabets. In Proceedings of the
38th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society,
137–143.

Ferragina, P. and Grossi, R. 1999. The string b-tree: a new data structure for search in external
memory and its applications. Journal of the ACM 46, 2, 236–280.

Grossi, R. and Vitter, J. S. 2005. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing 35, 2, 378–407.

Hart, M. 1997. Project Gutenberg. http://www.gutenberg.net.

Hon, W., Sadakane, K., and Sung, W. 2003. Breaking a time-and-space barrier in constructing
full-text indices. In Proceedings of the 44th IEEE Symposium on Foundations of Computer
Science (FOCS’03). IEEE Computer Society Press, 251–260.

Itoh, H. and Tanaka, H. 1999. An efficient method for in memory construction of suffix arrays.
In Proceedings of the sixth Symposium on String Processing and Information Retrieval. IEEE
Computer Society, Cancun, Mexico, 81–88.

Kärkkäinen, J. and Sanders, P. 2003. Simple linear work suffix array construction. In Proceed-
ings of the 30th International Colloquium Automata, Languages and Programming. Lecture
Notes in Computer Science, vol. 2971. Springer-Verlag, Berlin, 943–955.

Kärkkäinen, J., Sanders, P., and Burkhardt, S. 2006. Linear work suffix array construction.
Journal of the ACM . to appear.

Karp, R. M., Miller, R. E., and Rosenberg, A. L. 1972. Rapid identification of repeated
patterns in strings, trees and arrays. In Proceedings of the fourth annual ACM symposium on
Theory of computing. Denver, Colorado, United States, 125–136.

Kasai, T., Lee, G., Arimura, H., Arikawa, S., and Park, K. 2001. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In Proceedings of the 12th Annual
Symposium CPM 2001. Lecture Notes in Computer Science, vol. 2089. Springer-Verlag, Berlin,
181–192.

Khmelev, D. V. 2003. Program suffsort version 0.1.6. http://www.math.toronto.edu/dkhmelev/
PROGS/tacu/suffsort-eng.html.

Kim, D. K., Jo, J., and Park, H. 2004. A fast algorithm for constructing suffix arrays for fixed-
size alphabets. In Proceedings of the 3rd Workshop on Experimental and Efficient Algorithms
(WEA 2004), C. C. Ribeiro and S. L. Martins, Eds. Springer-Verlag, Berlin, 301–314.

Kim, D. K., Sim, J. S., Park, H., and Park, K. 2003. Linear-time construction of suffix arrays.
In Proceedings of the 14th Annual Symposium Combinatorial Pattern Matching, R. Baeza-
Yates, E. Chávez, and M. Crochemore, Eds. Lecture Notes in Computer Science, vol. 2676.
Springer-Verlag, Berlin, 186–199.

Kim, D. K., Sim, J. S., Park, H., and Park, K. 2005. Constructing suffix arrays in linear time.

Journal of Discrete Algorithms 3, 126–142.

Ko, P. 2006. Linear time suffix array. http://www.public.iastate.edu/˜
kopang/progRelease/homepage.html.

Ko, P. and Aluru, S. 2003. Space efficient linear time construction of suffix arrays. In Proceedings
of the 14th Annual Symposium CPM 2003, R. Baeza-Yates, E. Chávez, and M. Crochemore,
Eds. Lecture Notes in Computer Science, vol. 2676. Springer-Verlag, Berlin, 200–210.

Ko, P. and Aluru, S. 2005. Space efficient linear time construction of suffix arrays. Journal of
Discrete Algorithms 3, 143–156.

ACM Journal Name, Vol. V, No. N, 08 2005.

34 · S. J. Puglisi et al.

Kurtz, S. 1999. Reducing the space requirement of suffix trees. Software, Practice and Experi-

ence 29, 13, 1149–1171.

Larsson, J. N. and Sadakane, K. 1999. Faster suffix sorting. Tech. Rep. LU-CS-TR:99-214
[LUNFD6/(NFCS-3140)/1-20/(1999)], Department of Computer Science, Lund University, Swe-
den.

Lee, S. and Park, K. 2004. Efficient implementations of suffix array construction algorithms.
In AWOCA 2004: Proceedings of the Fifteenth Australasian Workshop on Combinatorial Al-
gorithms, S. Hong, Ed. 64–72.

Mäkinen, V. and Navarro, G. 2006. Compressed full text indexes. Tech. Rep. TR/DCC-2006-6,
Department of Computer Science, University of Chile. April.

Malyshev, D. 2006. DARK the universal archiver based on BWT-DC scheme.
http://darchiver.narod.ru/.

Manber, U. and Myers, G. W. 1990. Suffix arrays: a new method for on-line string searches.
In Proceedings of the first ACM-SIAM Symposium on Discrete Algorithms. 319–327.

Manber, U. and Myers, G. W. 1993. Suffix arrays: a new method for on-line string searches.
SIAM Journal of Computing 22, 5, 935–948.

Maniscalco, M. A. 2005. MSufSort. http://www.michael-maniscalco.com/msufsort.htm.

Maniscalco, M. A. and Puglisi, S. J. 2006a. An efficient, versatile approach to suffix sorting.
ACM Journal of Experimental Algorithmics. to appear.

Maniscalco, M. A. and Puglisi, S. J. 2006b. Faster lightweight suffix array construction. In
Proceedings of 17th Australasian Workshop on Combinatorial Algorithms, J. Ryan and Dafik,
Eds. 16–29.

Manzini, G. 2004. Two space saving tricks for linear time LCP computation. In Proceedings of
9th Scandinavian Workshop on Algorithm Theory (SWAT ’04), T. Hagerup and J. Katajainen,
Eds. Lecture Notes in Computer Science, vol. 3111. Springer-Verlag, Berlin, 372–383.

Manzini, G. and Ferragina, P. 2004. Engineering a lightweight suffix array construction algo-
rithm. Algorithmica 40, 33–50.

McIlroy, M. D. 1997. ssort.c. http://cm.bell-labs.com/cm/cs/who/doug/source.html.

McIlroy, P. M., Bostic, K., and McIlroy, M. D. 1993. Engineering radix sort. Computing
Systems 6, 1, 5–27.

Mori, Y. 2006. DivSufSort. http://www.homepage3.nifty.com/wpage/software/libdivsufsort.html.

Munro, J. I. 1999. Succinct data structures. In Proceedings of Workshop on Data Structures.

Na, J. C. 2005. Linear-time construction of compressed suffix arrays using O(nlogn)-bit working
space for large alphabets. In Proceedings of the 16th Annual Symposium Combinatorial Pat-
tern Matching, A. Apostolico, M. Crochemore, and K. Park, Eds. Lecture Notes in Computer
Science, vol. 3537. Springer-Verlag, Berlin, 57–67.

Puglisi, S. J., Smyth, W. F., and Turpin, A. H. 2005. The performance of linear time suffix
sorting algorithms. In Proceedings of the IEEE Data Compression Conference, M. Cohn and
J. Storer, Eds. IEEE Computer Society Press, Los Alamitos, CA, 358–368.

Sadakane, K. 1998. A fast algorithm for making suffix arrays and for Burrows-Wheeler transfor-
mation. In DCC: Data Compression Conference. IEEE Computer Society Press, Los Alamitos,
CA, 129–138.

Schürmann, K. and Stoye, J. 2005. An incomplex algorithm for fast suffix array construc-
tion. In Proceedings of The Seventh Workshop on Algorithm Engineering and Experiments
(ALENEX05). SIAM, 77–85.

Seward, J. 2000. On the performance of BWT sorting algroithms. In DCC: Data Compression
Conference. IEEE Computer Society Press, Los Alamitos, CA, 173–182.

Sim, J. S., Kim, D. K., Park, H., and Park, K. 2003. Linear-time search in suffix arrays. In
Proceedings of the 14th Australasian Workshop on Combinatorial Algorithms, M. Miller and
K. Park, Eds. Seoul, Korea, 139–146.

Sinha, R. and Zobel, J. 2004. Cache-conscious sorting of large sets of strings with dynamic tries.
ACM Journal of Experimental Algorithmics 9.

Smyth, B. 2003. Computing Patterns in Strings. Pearson Addison-Wesley, Essex, England.

ACM Journal Name, Vol. V, No. N, 08 2005.

A Taxonomy of Suffix Array Construction Algorithms · 35

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, 08 2005.

