QWD Xerox
g Drivate

Whole ALTO' Wond Newsletter

Technology and Tools

XEROX December 31, 1977

SPECIAL ANNOUNCEMENTS

WHOLE ALTO WORLD MEETING - The next Whole Alto World meeting is scheduled to
be held from 9AM-3PM, February 7, 1977 at XEOS in Pasadena. Liz Bond is our hostess.
The last page of the newsletter is a flyer announcing the meeting. Please detach your copy
and post it on an appropriate bulletin board. See you all at the meeting!

GENERAL NOTES

WRC JOINS THE NETWORK - On December 17th the line connecting the gateway at
Webster with the gateway at PARC became operational. This, and the soon to be installed
IFS, will promote the sharing of tools and information, much of which is currently under
development at WRC. Attached to the newsletter is a diagram of the current network.

HARDWARE CATALOG - The first edition of the Alto Hardware Catalog is included with
this issue of the newsletter. It lists by hardware type, e.g. Printers, Scanners, etc., devices
that have been hooked to an Alto or the Ethernet. For an item to be included at least one
working, reproducable copy must exist. Gathering this type of information tends to be a
hit- or- miss proposition so if you know of an item that should be included, please contact
the coordinator. It could save someone a lot of time and effort searching for or designing
and building something that already exists.

TIME STANDARD CHANGE - The Alto’s internal date and time standard is going to be
changed because it is: 1) location dependent (WRC’s Altos indicate PST), and 2) not
monotonic (daylight saving time). The change will involve modifications to the Operating
System and subsystems that deal with dates and times.

It is suggested that users update their disks promptly as subsystems are rereleased. Version
14 of the Operating System and a new release of BRAVO are expected at the end of January.
Subsystems that incorporate the time standard changes, such as the afore mentioned
BRAVO, will SWAT on the current Operating System (version 13). Old subsystems will
continue to operate in the current manner on the new Operating System until April 30th
when they begin reporting in GMT.

If you maintain such subsystems you should read <Taftd>AltoTimebravo and
{Taft>Time.tty. Briefly, the current standard is a 32-bit intcger denoting the number of
seconds since midnight, January 1, 1901, PST. It is manually reset for Daylight Savings time
as appropriate. The new standard will denote the number of seconds since midnight,
January 1, 1901, GMT. This time will be modified by local time zone, begin daylight
savings date, and end daylight savings date. These parameters will be kept in server hosts
(gateways, IFSs, etc.) and in reserved locations in Alto main memory and on Alto disk (for
the convenience of stand-alone Altos), and updated whenever a timeserver is accessible.

Whole ALTO Word Newsletter %@% gf{v‘;’ie
ata

PROPRIETARY INFORMATION - The patent department, in response to specific
questions of general interest and after consulting with appropriate members of management,
has made the following recommendations on Alto, Dover, and Sequoia.

What can we tell job applicants during an interview?

Only information that Xerox has made public or is otherwise in the public domain.
Can we demonstrate Alto to outsiders using University of Rochester software?
Yes. (Ed note: A list of public software is being developed.) V

Can Consultants and/or Co-op students work on Alto?

Yes, providing they each sign an appropriate agreement containing a confidential
disclosure provision. ’

Can outsiders see Dover or Sequoia?

They may be shown the outside of the units providing each has signed an
appropriate agreement containing a confidential disclosure provision. The internals
may not be shown.

Can consultants be shown Dover or Sequoia?

Only information absolutely necessary to perform the consulting services may be
shown, and then only if the consultant has signed an appropriate agreement
containing a confidential disclosure provision.

Can the outpat from Dover or Sequoia be distributed outside Xerox?

Yes, provided the copy does not identify its source or method of generation.

TOOLS
HARDWARE

DEAD ALTO’S - The following text was received in a memo from Ron Cude this last
month. It is filed on [MAXC]<SPG>DeadAlto.memo.

This memo is intended to point out a potential problem that some of you may be experiencing with
your Alto II's. Have you ever had your Alto not want to re-boot after running out of the Cram? If
so there may be a fix. To see if this is your problem, you will need two files:

Ramload.run and AltolICode2.mb
Try the following:
Ramload AltollCode2.mb/F 0/V cr

Ramload will display some information and ask for a confirm. After confirming, it will load the
Cram with the .mb file. When it comes back and says Boot?, confirm with a carriage return. The .mb
file is now running out of the Cram. Type Ramload/T and confirm with a cr. Ramload will write
random numbers into the Cram blowing up your Alto (not literally, just the microcode). If you can
now re-boot, you don’t have the problem. If you can’t re-boot, you have the problem and should
investigate as shown below.

Whole ALTO Word Newsletter %3%% Xerox |

\ 4 Data

Check your Cram module (assy. #216365) to make sure that note K. (page 2 of the Cram module
print) has been done. This note is an etch cut to hole next to label "R7". If this etch cut has not
been made, it will blow one and possibly two components on the Disk Control module. If the cut has
not been made, please make it and also install a new MPQ3303 in Al on the Disk Controller and a
new 74HO00 in All also on the Disk Controller. If your Cram module already has the etch cut but you
are experiencing the problem anyway, try replacing the same two components on the Disk Controller.

ALTO II ENGINEERING CHANGES - A list of the current revision levels for Alto II
components was mailed this last month to the people that perform Alto maintainence.
Future Engineering Orders will also be mailed as they are ready for distribution. If you
maintain Altos and have not received the current revision level list, contact the coordinator.

SOFTWARE

In general, the subsystems, packages, and documentation indicated here will be available
from your local IFS under the directories <Alto> and <AltoDocs>. If they are not available
or if you are in doubt about the version, they may be retrieved from [MAXC] under the
appropriate directory. Files stored under other directories are on [MAXC] unless otherwise
indicated, such as [XEOS].

NEW RELEASE: CALCULATOR - This boot program from Joe Maleson pictures a TI SR-
52 on the display which is operated by using the mouse to select the appropriate keys. Not
all functions are implemented (i.e. it is not programmable). It may be run by booting the
NetExec and entering "calculator™ or by booting while depressing the <BS>, ",], and
<{blank-middle> keys. Documentation is the SR-52 manual.

NEW RELEASE: MICROFLOAT - Joe Maleson has made available a microcoded version of
the FLOAT package. It is four to six times faster than the assembly language version (about
‘80 psec for multiply and divide, 40 psec for add and subtract). The documentation,
<AltoDocs> Float.tty, is appended.

NEW RELEASE: SIGMA/ETH - This is a pair of subsystems by Thomas Holladay and
Keith Knox to transfer arbitrary -files between an Alto and a SIGMA 3 over the Ethernet.
They will be made available on request. The documentation, a Xerox Internal Report
"Ethernet Software for Data Transfer between the SIGMA 3 and an ALTO", Accession No.
X7704459, has not been included with the newsletter.

NEW RELEASE: SPLINE - This is a set of packages by Patrick Baudelaire to both compute
cubic splines and to map them onto an Alto display bitmap. The documentation,
<{Altodocs> Spline.tty, is appended.

NEW RELEASE: TYPE - This is a small subsystem by Roger Bates for use in place of the
Executive supplied "type.~" that displays a larger page, suppresses Bravo trailer information,
can backup, etc. It can be retrieved from <Alto>Typerun and is documented under
<AltoDocs> Type.tty. The documentation is appended.

ReReleases - Subsystems

COPYDISK - This version fixes a bug which prevented copying the second disk of a two-
disk system. The change makes this new version incompatible with previous version. The
new version is available on boot servers or may be retricved from <Alto> CopyDisk.run(18-

Whole ALTO Word Newsletter ggfgg %;f{v‘;’ie
ata

1

Dec-77).

DMT - The new version has been enhanced for extended memory machines in addition to
many internal changes. It is available from <Alto> DMT.boot(17- Dec-77) and boot servers
(Gateways are boot servers). If you have access to a Gateway, simply delete DMT.boot from
your disks and the executive will automatically retrieve it when you "quit".

EMPRESS - In addition to several bug fixes, the new version applies the /c option to press
files, will merge two or more single page press files appending one additional press or text
file if specified, and can personalize individual copies of a document. It is filed on
<Alto>Empress.run(14- Dec-77). The documentation, <AltoDocs> Empress.tty (14-Dec-77),
has been revised.

PEEKSUM - Peek disks should be rebuilt periodically using PeekDisk.cm. See the revised
documentation <AltoDocs> DMT.tty.

TECHNOLOGY

Several methodolgies of information retrieval are being investigated at the Webster Research
Center. One of them, QUANSY, is an empirical natural language question- answering system
by Avi Ben David. Currently operating at the forth grade level over a narrow range of
subjects (as measured by standard tests), the next level of QUANSY is expected to show
substantially improved capability.

Three papers have been written and will soon be available as Xerox Internal Reports
(Accession numbers are not yet assigned). The first, "A Parser Analyser of Emperical
Design for Question- Answering”, AFIPS Conference Proceedings, NCC, Vol. 46, pp. 669-
678, is easily available and so is not reproduced here. The second paper, "A Memory
Structure of Empirical Design for Question- Answering”, presents the relationship between
natural language and the empirically developed memory structures.

The most recent of the papers "Memory Interaction and Question- Answering in the
QUANSY Question- Answering System” provides a sample dialog, an overview of the system,
brief descriptions of the parser-analyser, memory structures and question-answering
routines, and an in- depth discussion of concepts behind the interaction between the parser-
analyser and memory structures.

Whole ALTO Word Newsletter

Technology and Tools

XEROX February 28, 1978

SPECIAL NOTE

NEW OPERATING SYSTEM - As previously announced, the timestandard implementation
is being changed. This last week a new OPERATING SYSTEM and BRAVO were released.
As future releases of this and other subsystems will not necessarily operate properly with the
old operating system, you should change over as soon as possible by retrieving and
executing NEWOS.cm from your local IFS or MAXC. You will need about 300 free pages
on your disk. Check with your local support people for special procedures. The

documentation, <AltoDocs>OS.press, has been revised.

GENERAL NOTES

WHOLE ALTO WORLD MEETING - The Whole Alto World meeting was hosted by Liz
Bond of XEOS in Pasadena on February 7, 1978. Fifty-five people, representing virtually
every Alto using group, attended.

The Distributed Message System(DMS), an upcomming, Alto-based replacement for the
MAXC MSG system, was described by Frank Ludolph. Under DMS, messages are stored on
1FS stations (or MAXC for the immediate future) only during transit. Received messages
will be stored on the user’s Alto disk in one or more user-designated files managed by Alto
resident software. The user interface will be familiar to Alto users, consisting of several
windows, menus, and Bravo style editing facilities. Although it is a research project, it is
expected that DMS will be available to MAXC MSG users this summer.

Dick Sonderegger, SD Support, reports that MESA is now available through the Whole Alto
World coordinator on a limited basis, by specific request, and depending on the proposed
application. The language is still evolving and should not be used for long term
development projects. Questions and problems should also be channeled through the
coordinator’s office to <SDsupport>.

Barry Smith, Sheldon Raizes, Terry Anderson, and Irv Keschner, lawyers with the Xerox
Patent Department, attended the meeting to discuss the methods used to protect intellectual
property, trade secrets, patents, and copyrights, as they apply to the Alto. Barry will be
working with WAW in the near future to develop written material on this subject. The
material will be printed in the Newsletter when it becomes available.

Terry Haney spoke on SPG’s board repair activity. Boards should be sent to Terry, along
with a description of the problems and, if from Orbit or Dover, a copy of the printer’s
output. Boards are logged and their repair scheduled in conjunction with SPG’s other
activities.

Jim Hall announced that his 1200 group is very interested in providing mainicnance service
for as many Altos as possible. Existing spares inventories can be turned in for credit.
Contact Jim for pricing particulars.

Whole ALTO Word Newsletter

The 7th Alto build will proceed on schedule according to Doug Stewart. This will be the
last Alto build. There has been some difficulty obtaining 7000 bases for the Dover build
(marketing has been quite successful in placing them recently), but it is not expected to
significantly delay Dover deliveries.

Sam Losh of XEOS reports that Sequoia development is continuing. He requested that
organizations interested in obtaining Sequoias contact him. If there is sufficient interest,
deliveries could begin in the fall.

John Ellenby briefly described Advanced Systems Division’s role in marketing test probes
based on Alto technology. ASD has requested information on the Fuji Xerox mag brush
developer, used on their 7200, for possible retrofit to Dover. The unit would improve solid
area development. Additional information will be printed in the Newsletter as it is
available.

The reasons for developing Altos as gateways were outlined by Ted Strollo. Essentially, the
current Novas present maintenance problems, the small memory (32K) prevents further
software development, and the Nova operating system is not as malleable as the Alto’s. The
number of gateways is expected to increase to as many as ten this year. Though the DO will
eventually be used in this capacity, they will not be available for this application for some
time.

The meeting was then adjourned to permit attendees to see the Boca Raton Insurance tape,
hosted by John Ellenby, and demonstrations of the touch screen (Dave Moulding), Smalltalk
(Alan Kay), FIRST (Bob Datolla), and HSIL (Marion Suggs, Paul Lam).

ALTO MAINTAINERS MEETING - A meeting of Alto maintainers was held of February
8th, 1978 at El Segundo. The meeting was hosted by Doug Stewart, SPG. The primary
subjects of discussion were hardware problem areas, centralized repair reporting, and SPG
repair service.

The biggest problem area seemed to be the disk drives. Typical adjustments for the read
gate are 460/440 n sec for the long/short one shots though this may vary from drive to
drive. Also, the write head current is normally cut past track 128 due to the reduced track
length. Cutting resistor F-63 on the J-10 board to raise write head current is common but
Diablo advises against it suggesting instead that the value of resistor H-64 (part of the same
voltage divider network) be varied starting with 1K and working down as neccssary. The
heads should be cleaned periodically (approximately 3 months) using a lint free material
such as TexWipes. Q-Tips should not be used as they will leave fibers on the head.
Alignment is generally performed after cleaning heads. Some groups keep spare heads for
replacements.

The 15 volt Sorenson power supply (and to an extent the 12 volt supply) is the other major
problem area. As these units are under a five year warranty they should be returned to the
- manufacture. Sorenson will also update units returned for repair.

It’s useful to have a few memory chips on hand as this is the most common chip failure and
it is easy to repair. Bad 16K memory chips should be returned to Terry Haney for failure
evaluation. Memory Chips may be purchased from SPG. These arc the only chips available
from that group.

Keyboards have multiple character and mechanical sticking problems. The Keytest
diagnostic can be used:to adjust the key producing multiple characters. The electronics are
on the AIM module and keyboard printed wiring board. ‘

Whole ALTO Word Newsletter

Modules will be repaired by SPG in conjunction with their other activities. No headcount is
specifically assigned to repair activity. Boards should be returned to Terry Haney along with
a description of the problem and, if applicable, a copy of printer output.

There is considerable interest in developing a repair data base. The only data of this type
currently available is maintained by Jim Hall’s 1200 group on the machines maintained by
them under contract. Doug Stewart will set up a mechanism for collecting failure
information including net address, date, subsystem affected, serial number (if applicable),
failure symptoms, and corrective actions. Jim Iverson reports that a paper log is currently
being kept for each machine in his group for the convenience in the multiple user
environment and to identify recurring failures in a specific unit.

It was requested that Frank Ludolph set up a system to more quickly disseminate
maintenance information.

ALTO MAINTAINTER’S MESSAGE LIST - An immediate result of the Alto maintainers
meeting is the establishment of a MAXC MSG distribution list file,
<{Secretary> AltoMaintainers.msg, to simplify the communication of general interest
information among Alto maintainers. To use this feature when sending a message, the
response to "TO:" is "tb <{Secretary> AltoMaintainers.msg CR CR". The rest of the sndmsg
procedure is normal. The message will be sent to all accounts listed in the .msg file.

MESSAGING FOR SPECIAL INTEREST GROUPS - The same messaging mechanism
referred to in the preceeding item is used by several special interest groups including; AIS,
PROM (Prolog users), SIL, and AltoMaintainers. If you are actively involved in any of
these are sndmsg to Jennette <Jenkins> for inclusion. A complete listing of all distribution
lists can be retrieved from [MAXC]<Secretary>All.masterlist.

DON'T LEAVE YOUR DISK IN AN ALTO - As pointed out in a recent issue of SDD’s
Random Items, a disk is locked inside the Alto’s disk drive when power is removed from the
unit or when the 15 volt power supply fails. Failure of this supply is one of the most
common Alto ailments. It is suggested that you not leave your disk in an Alto overnight.

TOOLS
HARDWARE

NEW HARDWARE MANUAL - The Alto Hardware manual has been revised and made
available in Press format. If your print server does not have two disk drives, the file
<AltoDocs> AltoHardware.press may have to be broken into two pieces using PRESSEDIT
and the pieces sent to the printer,

ORBIT BUG - Severo Ornstein reports that there is a timing problem in the Orbit adapter.
It appeared that Pimlico had problems aligning the sucessive color passes on a page. In
reality the Output Scanline counter (SLN/SLWN) wasn’t resetting properly due to a race
situation resulting from anding the clock pulse with the clear level using an N163
(synchronous clear). This situation also exists with Dover but isn’t very noticable because it
shifts the image by only a fraction of a band.

The fix is simple; replace the three N163s in locations G2, G3, and G4 on the Input board
with N161s. Severo suggests that the fix be made on all Orbits, regardless of attached
printer, because it could create a very difficult bug to locate someday if printers are
exchanged. '

Whole ALTO Word Newsletter

MAKING A DUAL-DRIVE ALTO - Doug Stewart has written a memo listing the items
necessary to connect a second drive to the Alto. All items can be ordered directly from
Diablo. The memo is appended to the Newsletter.

DISK DIAGNOSTIC DOCUMENTATION - Jim Cucinitti recently wrote some
documentation for the Model 31 disk diagnostics that have been in use for quite sometime.
It describes diagnostic initiation, use of the debugger, understanding the failure data, and
modification of the diagnostics. 7 is intended for maintainers only. The document, which
includes assembler listings of the programs, can be retrieved from
[MAXC]<AltoDocs> DiskDiag.press.

PROM DESTRUCTION BY THE PROLOG PROGRAMMER - Tom Chang informs us that
the ProLog PROM programmer will often destroy the last location of a PROM in socket PM
when powered down. The Prol.og people advise that PROMs should always be inserted and
removed from the socket with the power on.

COLOR DISPLAYS AND THE ALTO - Every now and then Dick Shoup is asked about the
use of color displays with the Alto. While it has been done, the results were generally
unsatisfactory. Dick has written a memo on this topic which has been attached to this
Newsletter.

SOFTWARE

In general, the subsystems, packages, and documentation indicated here will be available
from your local IVY server under the directories <Alto> and {AltoDocs>. If they are not
available, or if you are in doubt as to the version, they may be retrieved from [MAXC]
(same directories). Files stored under other directories are on [MAXC] unless otherwise
indicated, e.g. [XEOS]. :

NEW RELEASE: CONDENSE.RUN - This recently released program by Keith Knox will
retrieve the screen bitmap from the SWAT and SWATEE files. The bitmap can be
displayed or output to a file in either AIS or PRESS format. Documentation will be
forthcomming shortly, but isn’t really required for operation as the menus tell all. Retrieve
[WRC]<KIPA> Subsystems> Condense.run.

NEW RELEASE: AISdump.run - A new dump program, part of the AIS System, will write
out the pixels as decimal values for an 8 bit/pixel or 1 bit/pixel AIS file to a file on the
Diablo disk. Since the dump file is a text file, it is a 4:1 or 16:1 expansion, so be careful
how large a window you choose. Retrieve [WRC]<AIS>Subsystems> AISdump.run.

Whole ALTO Word Newsletter

ReReleases - Subsystems

AlSmagnify - This new version, 2.0, has a menu, runs a little faster, and some new features.
Retrieve [WRC]<AIS> Subsystems> AISmagnify.run. The documentation is
[WRC]<AIS> MEMOS> AISmagnify.press.

BRAVO - The new version, 7.1, contains bug fixes and implements the new time standard.
It will be retrieved and installed automatically when installing the new operating system.
Documentation on the new color facilities can be retrieved from
[IRIS}<Bravo> ColorBravoChanges.bravo.

CHAT - This rerelease, TTY version 9, Display version 15, contains bug fixes and minor
improvements. Retrieve <Alto>Chatrun. The documentation, Chat.tty, is updated to
include the I and O commands which toggles the USER.cm entry TYPESCRIPTCHARS.

COPYDISK - This subsystem, found on boot servers, has been updated to include the new
time standard.

DMT - This subsystem, found on boot servers, has been updated to include the new
timestandard. Also, the bug in the Dec. 10 version, which fails to indicated the bad RAM
chip location, has been corrected.

IFS - The new release, 1.14, includes commands for accessing and manipulating file
protections. Users should retrieve and read <IFS>HowToUse.press.

PRESSEDIT - An experimental release of this subsystem can be found on
<{Newman>PressEdit.run. The documentation PressEdit.tty is on the same directory. It
provides a new, simpler method of combining illustrations with text documents. Official
release will occur in March after sufficient testing. The experimental version is rcasonable
robust.

PROM - The nature of the changes is unknown to me. Retrieve <Alto>PROM.run. New
documentation is available on <EOD>PROM.bravo.

SCAVENGER - The nature of the changes is unknown to me. The documentation is
unchanged. Retrieve <Alto>Scavenger.run.

SETTIME - The new version implements the new timestandard. 1Is is automatically
retrieved when installing the new operating system with NewOS.cm.

SIL - Several changes have been made and are summarized in <SIL>SILupdates.press.
Retrieve <SIL> SIL.run. The documentation SILmanual.press and SILsummary.press, also on
<SIL>, have been revised.

ReReleases - Packages

ALTODEFS, ALTOFILESYS, DISKS, STREAMS, SYSDEFS - These definition files have
changed in conjuction with the new operating system. If they currently reside on a disk they
will be updated when NewOS.cm is run. For a description of changes see the change history
in the rereleased OS Manual.

Whole ALTO Word Newsletter

TECHNOLOGY

This month’s paper, GUS, A Frame-Driven Dialog System by Daniel Bobrow, Ronald
Kaptan, Martin Kay, Donald Norman, Henry Thompson, and Terry Winograd, is the third
in a series on methods of making machines more amenable to the naive user. While this
work is strictly research and not being performed on Altos, it gives us a glimpse of possible
future directions.

The Understander project at PARC is exploring the process of language comprehension and
the cognitive structures and operations which underlie it. GUS was written to assess
progress and suggest area of future effort.

The. Whole Alto World Newsletter is a monthly publication for Xerox employees that use the Alto. It is not
to pe shown to non- Xerox people. Copies are available on [MAXC]<AltoDocs> WAWnews.press or may be
obtained from the editor, Frank Ludolph, XEOS, by messaging <Ludolph> or calling Intelnet 8*923-4356.

GUS, A Frame- Driven Dialog System

Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay,
Donald A. Norman, Henry Thompson, Terry Winograd!

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

GUS is the first of a series of experimental computer systems that we intend to construct as
part of a program of research on language understanding. In large measure, these systems
will fill the role of periodic progress reports, summarizing what we have learned, assessing
the mutual coherence of the various lines of investigation we have been following, and
suggesting where more emphasis is needed in future work. GUS (Genial Understander
System) is intended to engage a sympathetic and highly cooperative human in an English
dialog, directed towards a specific goal within a very restricted domain of discourse. As a
starting point, GUS was restricted to the role of a travel agent in a conversation with a client
who wants to make a simple return trip to a single city in California.

There is good reason for restricting the domain of discourse for a computer system which is
to engage in an English dialog. Specializing the subject matter that the system can talk about
permits it to achieve some measure of realism without encompassing all the possibilities of
human knowledge or of the English language. It also provides the user with specific
motivation for participating in the conversation, thus narrowing the range of expectations
that GUS must have about the user’s purposes. A system restricted in this way will be more
able to guide the conversation. within the boundaries of its competence.

MOTIVATION AND DESIGN ISSUES

Within its limitations, GUS is able to conduct a more-or-less realistic dialog. But the
outward behavior of this first system is not what makes it interesting or significant. There
are, after all, much more convenient ways to plan a trip and, unlike some other artificial
intelligence programs, GUS does not offer services or furnish information that are otherwise
difficult or impossible to obtain. The system is interesting because of the phenomena of
natural dialog that it attempts to model and because of the principles of program
organization around which it was designed. Among the hallmarks of natural dialogs are
unexpected and seemingly unpredictable sequences of events. We describe some of the forms
that these can take below. We then go on to discuss the modular design which makes the
system relatively insensitive to the vagaries of ordinary conversation.

...........................

1 This work was done by the language understander project at the Xerox Palo Alto Reseach Center. Additional
affiliations: ‘D. A. Norman, University of California, San Diego; H. Thompson, University of California,
Berkeley; and T. Winograd, Stanford University. To appear in Artificial Intelligence, Spring 1977 (8:1)

Problems of natural dialog

The simple dialog shown in Figure 1 illustrates some of the language-understanding
problems we attacked. (The bracketed numbers are for reference in the text). The problems
illustrated in this figure, and described in the paragraphs below, include: allowing both the
client and the system to take the initiative, understanding indirect answers to questions,
resolving anaphora, understanding fragments of sentences offered as answers to questions,
and interpreting the discourse in the light of known conversational patterns.

Mixed Initiative. A typical contribution to a dialog, in addition to its more obvious
functions, conveys an expectation about how the other participant will respond. This is
clearest in the case of a question, but it is true of all dialog. If one of the participants has
very particular expectations and states them strongly whenever he speaks, and if the other
always responds in such a way as to meet the expectations conveyed, then the initiative
remains with the first participant throughout. The success of interactive computer systems
can often be traced to the skill with which their designers were able to assure them such a
dominating position in the interaction. In natural conversations between humans, however,
each participant usually assumes the initiative from time to time. Either clear expectations
are not stated or simply not honored.

GUS attempts to retain the initiative, but not to the extent of jeopardizing the natural flow of
the conversation. To this extent it is a mixed-initiative system (see Carbonell, 1970a, 1970b).
This is exemplified in the dialogue at [1] where the client volunteers more information than
GUS requested. In addition to his destination, the client gives the date on which he wants to
travel. Line [3] illustrates a case where the client takes control of the conversation. GUS
had found a potentially acceptable flight and asked for the client’s approval. Instecad of
either giving or denying it, the client replied with a question of his own.

Indirect answers. It is by no means always clear what constitues an answer to a question.
Frequently the purported answer is at best only a basis on which to infer the information
requested. For example, when GUS asks "What time do you want to leave?" it is seeking
information to constrain the selection of a flight. The client’s response to this question, at
[2], does constrain the flight selection, but only indirectly. In general, the kinds of
inference necessary to interpret indirect answers can be very complex. GUS can handle the
problem in its simpler manifestations, thanks largely to the very narrow cxpectations it has
about the subject matter and the client’s goals.

Resolving anaphora. A central issue in dialog is ensuring that both parties understand a
given word or phrase as referring to the same object or event (see Norman and Rumelhart,
Chapter 3, 1975 for a discussion of the general problem of reference). One problem occurs
when a short phrase refers back to something that was introduced earlier. GUS provides for
this problem in some of its simpler manifestations. At line [3], for example, the client’s
query refers to the flight mentioned in GUS’s immfzdiately preceding utterance. In [4] there
is a reference to the flight mentioned earlier in the conversation, at [2]. Note that "next
flight" in [3] was to be interpreted relative to the order of flights in the airline guide
whereas "first one" in [4] refers to the order in which the flights were mentioned. Another

implicit referent underlies the use of "Friday" to specify a date in [6]. Resolution of this
reference requires some complicated reasoning involving both the content and the context of
the conversation. Since May 28th has been given as the departure date, it must presumably
be the following Friday that the client has in mind. On the other hand, suppose that the
specifications were reversed and Friday had been given as the departure date at line [1]. It
would then be most readily interpretable as referring to the Friday immediately following
the conversation.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air.
Where do you want to go?

{1] Client: 1T want to go to San Diego on May 28
GUS: What time do you want to leave?
[2] Client: I must be in San Diego before 10 AM
GUS: Would you like P.S.A. flight 102 that arrives at 9:15 AM?
[3] Client: What is the next flight?
GUS: Air California flight 310 that leaves at 8:30 AM and arrives at 10:.00 AM
[4] Client: T1l take the first one |
GUS: In what name should I make a reservation, please?
{5] Client: Dan Bobrow

GUs: I have confirmed the following flight:
P.S.A. flight 102 on Wednesday May 28 from San Jose to San Diego
that leaves at 7:330 AM and arrives at 9:15 AM.
What date do you want to return on?

[6] Client: On Friday in the evening
GUS: Would you like the flight that leaves at 7:45 PM?
[71 Client: That’s fine.

GUS: I have confirmed the following flight:
P.S.A. flight 307 on Friday May 30 from San Diego to San Jose
that leaves at 7:45 PM and arrives at 9:30 PM
Thank you for calling. Goodbye.

Figure 1. A transcript of an actual dialog with GUS

Sentence fragments. Utterances in natural conversation are by no means always complete
sentences. This is not to say that there are no rules governing the ways in which fragments
can be used. We collected a number of dialogs between people and examined the sentence

fragments that occurred: most appeared as answers to direct questions. Furthermore, a rule
can almost invariably be derived from a question that will convert a fragmentary answer into
a complete sentence expressing the same information. For example, the client’s response in
[5] to the request for a name is not a sentence but, when inserted in the blank space in the
skeleton "You should make the reservation in the name of ", it yields a sentence.
Normal processing of the sentence so constructed gives the required interpretation of the
fragment. This works even for the fragment in [6] which is not even a complete phrase.!

1The SRI speech system (Walker, et al,, 1975) uses a number of other techniques for handling a different set of
fragments.

...

These skeletons are systematically related, in the sense of transformational grammar, to the
corresponding questions. The blank space in the skeletons usually occurs at the end. If Sgall
and the linguists of the modern Prague school are right, then this follows from a strong
tendency to organize sentences so that given information comes at the beginning and new
information at the end. In this case, the given information is clearly that which is shared by
the question and its answer.

Conversational patterns. Conversations conform to patterns, which are still only poorly
understood, and there are specialized patterns that are used in special circumstances such as
those that obtain in a travel agency. Realism requires that GUS fit its conversational strategy
to these patterns. For example, flights are usually specified by departure time, but in
response to [2], GUS specifies an arrival time, because the client had specified the arrival
time to constrain the choice of flights. This is in accordance with a typical conversational
convention; a speaker says as little as will suffice to communicate the point to be made.
Grice [1975] calls these conventions conversational postulates and implicatures.

It seems also to be important to use conversational implicatures with respect to the goals of
the client and the system in interpreting and generating the dialog (see Gordon & Lakoff
(1972) for a general discussion of this issue). For example, in [1] the client says where he
wants to go. GUS interprets this as a request for an action, that is, inserting the appropriate
information into the travel plan being generated.

Principles of program organization

One of the major mcthodological issues we addressed in designing and building GUS was the
question of modularity. We realize that language understanding systems, and other systems
exhibiting some degree of intelligence, will be very large and complicated programs, and the
flow of processing within them will be correspondingly complex. As Simon (1969) has
pointed out, one way of reducing the complexity of a system is to decompose it into simpler,
more readily comprehensible parts, and to develop and debug these in isolation from one
another. When the separate modules have been constructed, however, the task of integrating
them into a single system still remains. This can be difficult: truly complex systems are
more than just the sum of their parts. The components, when put together, interact in subtle

but important ways. We implemented GUS in order to determine whether a modular
approach for a dialog system was at all feasible and to test our notions of what reasonable
lines of decomposition might be. We are aware of alternative decompostions, and are not
committed to this one; it was convenient given the program modules already available, and
the issues we wished to focus on. GUS provided a context in which to explore tools and
techniques for building and integrating independent modules.

The major knowledge- oriented processes and structures in GUS--the morphological analyzer,
the syntactic analyzer, the frame reasoner, and the language gencrator--were built as
independent processes with well defined languages or data structures to communicate across
the interfaces. They were debugged separately, and tied together by means of an overall
asynchronous control mechanism.

Control: The organization of the system is based on the view that language- understanding
systems must operate in a multiprocess environment (Kaplan, 1973b, 1975). In a system with
many knowledge sources and a number of independent processes, some part of the
mechanism must usually be devoted simply to deciding what shall be done next. GUS puts
potential processes on a central agenda. GUS operates in a cycle in which it examines this
agenda, chooses the next job to be done, and does it. In general, the execution of the selected
task causes entries for new tasks to be created and placed on the agenda. Output text
generation can be prompted by reasoning processes at any time, and inputs from the client
are handled whenever they come in. There are places at which information from a later
stage (such as one involving semantics) are fed back to an ealier stage (such as the parser). A
supervisory process can reorder the agenda at any time. This process is similar in function
to the control module in the BBN Speechlis system (Woods, 1974; Rovner, Nash- Webber &
Woods, 1974), except that it can resume processes which are suspended with an active process
state. Preserving the process state is necessary because the flow in the system is not
unidirectional: for example, the state of the syntactic analysis cannot be completely
abandoned when domain dependent translation starts. If a semantically and pragmatically
appropriate interpretation of an utterance cannot be found from the first parsing, the
syntactic analyzer must resume where it was suspended. INTERLISP’s coroutine facility makes
it possible to completely preserve the active state of the various processes (Teitelman, 1976;
Bobrow & Wegbreit, 1974).

Procedural attachment. Broadly speaking, procedural attachment involves redrawing the
traditional boundary between program and data in such a way as to give unusual primacy to
data structures. Most of the procedures that make up a program, instead of operating on
separate data structures, are linked to those structures and are activated when particular items
of data are manipulated in particular ways. This technique lies at the heart of the reasoning
component which is described in more detail later. It provides a natural way of associating
operations with the classes or instances of data on which they are to operate. It is in some
ways extensions of ideas found in SIMULA (Dahl & Nygaard, 1966) and SMALLTALK
(Goldberg and Kay, 1976).

Monitoring and debugging: In a multiprocessing system with processes triggered by
procedures attached to complex data structures, special tools are neceded for programmers to

monitor the flow of control and changes in the data structures. Tightly linked with the
agenda scheduler there is a central monitor with knowledge about how to summarize the
current actions of the system. The monitor interprets special printing instructions associated
with potential actions and particular items of data. In effect, the principle of procedural
attachment has been extended to debugging information.

External data-bases: We believe that an important application of specialized dialog systems
like GUS may be to help users deal with large files of formatted data. In the travel domain,
the Official Airline Guide is such an external data-base. GUS can use an extract of this data-
base, but the information in the file does not form part of its active working memory for
the same rcason that the the information in the Official Airline Guide does not have to be
memorized by a travel agent. Only that portion of the data base relevant to a particular
conversation need be brought into the working memory of the system.

PROCESSES AND KNOWLEDGE BASES

Figure 2 illustrates the knowledge structures and processes in GUS. Each numbered row
corresponds to a single knowledge based process in the system. The input to each process is
shown in the left hand column. Each input is labelled with a number in parentheses
indicating the row number of the process which produces it. Processes usually provide input
to the ones listed below them. The third column names the process which produces the
output structures specified in the fourth column, using for the processing the permanent
knowledge bases specified in column two.

Input Structures Permanent Knowledge Processes Output Structures
Structures
1. Text String Stem dictionary; Dictionary lookup; Chart of
word
(input) Morphological Morphological data-
structures ‘
rules analysis
2. Query context(6); Transition Syntactic Parsing
of a
Chart(1) net grammar analysis
sentence
3. Parsing of a Case-frame Case-frame Case-
frame _
sentence (2) dictionary analysis structure
4, Case-frame Speech patterns; Domain dependent
Frame change
structure (3) Domain specific translation
description
frame forms
5. Frame change Prototype frames Frame
Frame change
descriptions(4,5); and attached reasoning
descriptions
Current frame © procedures Qutput
response
instances (5)
descriptions;

Current

frame

instances
6. Output response Dialog query map; Response
English text;
description (5) Flight description generation Query
context
template

Figure 2. Knowledge structures and Processes in GUS

Figure 3 shows the output structures of the earlier stages of processing of the sentence "I
want to go to San Diego on May 28". Starting with an input string of characters typed by
the client, a sequence of words is identified by a lexical analyzer consisting of a dictionary
lookup process and a morphological analysis. The analysis program has access to a main
dictionary of more than 3,000 stems and simple idioms and a body of morphological rules
specifying how the information in the dictionary can be used to partition character sequences
into known lexical items (Kay & Kaplan, 1976). The output of this stage is a chart (Kay,
1973), a table of syntactic and semantic information for use by the parser.

...

CLIENT: I want to go to San Diego on May 28

[S MOOD =DCL ..the syntactic analysis of the input
SUBJ =[NP HEAD =[PRO CASE =NOMIN NUMBER =SG ROOT =Ij]
FVERB =[V TENSE =PRESENT ROOT =WANT] HEAD =WANT
OBJ =[S MOOD =FOR-TO

SUBJ =I
HEAD =[V TENSE =PRESENT ROOT =GO]
MODS =(
[PP PREP =[PREP ROOT =TO] .
POBJ =[NP HEAD =[NPR PROPERTYPE =CITY-NAME
ROOT = SAN-DIEGO}]]
[PP PREP =[PREP ROOT =ON]}
POBJ =[NP HEAD =[NPR PROPERTYPE =DATE-NAME
MONTH =MAY DAY =28]11i]

[CLIENT DECLARE ..the case-frame structure
(CASE FOR WANT/E (TENSE PRESENT)
(AGENT (PATH DIALOG CLIENT PERSON))
(EVENT (CASE FOR GO (TENSE PRESENT)
(AGENT (PATH DIALOG CLIENT PERSON))
(TO-PLACE (CASE FOR CITY
(NAME SAN-DIEGO)))
(DATE (CASE FOR DATE
(MONTH MAY)

(DAY 28]

CMD: [CLIENTDECLARE .. the domain dependent translation, a
(FRAME ISA TRIP-LEG ... frame change description
(TRAVELLER (PATH DIALOG CLIENT PERSON))
(TO-PLACE (FRAME ISA CITY
(NAME SAN-DIEGO)))

(TRAVEL-DATE (FRAME ISA DATE

(MONTH MAY)

(DAY 28]

Figure 3. Processing the client’s first utterance

The syntactic analyzer is based on the General Syntactic Processor (Kaplan, 1973a). Using a
transition- network grammar and the chart, the parser builds one or more canonical syntactic
structures, depending on whether or not the sentence is syntactically ambiguous. It finds one
parse, and can continue to find others if the sentence is ambiguous and the first parse is
rejected as uninterpretable by a later process. The syntactic analysis of the input sentence is
shown in Figure 3.

The case- frame analysis uses linguistic knowledge associated with individual lexical items to
relate their appearance in canonical syntactic structures to their uses in a semantic
environment. It uses a dictionary of case-frames based on the ideas of case grammar
originated by Fillmore (1968; see Bruce, 1976 for a general review of case systems). This
component uses knowledge about such things as selectional restrictions and the mapping
between surface cases (including prepositions) and semantic roles. As seen in Figure 3, the
cases for GO are AGENT, TO-PLACE, and DATE.

As we have already observed, interpretation of an utterance must include knowledge of
conversational patterns for the appropriate domain. Domain dependent interpretations of
utterances were implemented by a simple structure-matching and reconstruction program
that operates on case- frames. The example in Figure 3 illustrates how the domain- dependent
translation module handles a common conversational pattern for the travel domain: it
interprets a statement of desire (the WANT/E) as an instruction to insert the specified event
into the trip plan being constructed. In addition, the case frame involving GO is transformed
into a description of the TRIP-LEG which is part of the planned trip, with the AGENT of GO
becoming the TRAVELLER in the TRIP-LEG and the DATE becoming the TRAVEL-DATE. This
simple translation mechanism is obviously very limited; in a more recalistic system, the
purposes of the client would have to be understood more deeply.

The frame reasoner component of the system was the focus of most of the research and
development. It was based on the assumption that large scale structures closely tied to
specific procedures for reasoning constitute a framework for producing a mixed initiative
dialog system. It uses the frame change description (labelled cMD in Figure 3) to fill in the
appropriate information in the trip plan it is building and trigger associated reasoning, as

described later.

The generation of output English is guided by a query-map, a set of templates for all the
questions that might be asked by the system. GUS uses a table lookup mechanism to find the
appropriate template and generates the English by filling in the template form. This simple
generation mechanism is sufficient for the dialog system; generation was not one of the areas
of substantial work.

The module that generates questions for the client simultaneously produces one or more
skeletons into which his responses can be inserted, if they do not prove to be sentences in
their own right. What is being done here is surprisingly simple and works well for most of
the fragments we have encountered in response to simple WH-questions. Note that the
language generator communicates with the syntactic analyzer using English phrase fragments
rather than using a specially constructed formalism. This contrasts with other approaches to
the fragment problem, in which the various components of the system are more deeply
affected.

10

THE REASONING COMPONENT

Frames: 1t is widely believed in artificial intelligence that intelligent processing requires
both large and small chunks of knowledge in which individual molecules have their own
sub-structure. Minsky’s 1975 paper on frames discusses the issues and suggests some
directions in which to proceeed. But, as Minsky stated, his ideas were not refined enough to
be a basis for any working system. Our intuitions about the structure of knowledge resemble
Minsky’s in many ways, and we have appropriated the word frame. However, our
conceptions are by no means identical to Minsky’s, and the two notions should not be
confused. The frame structures used in this system were a first step towards a more
comprehensive knowledge representation language whose current development is described in
Bobrow and Winograd (1977).

Frames are used to represent collections of information at many levels within the system.
Some frames describe the sequence of a normal dialog, others represent the attributes of a
date, a trip plan, or a traveller. In general, a frame is a data structure potentially containing
a name, a reference to a prototype frame, and a set of slotzs. Frame names are included
primarily as a mnemonic device for the system builders and are not involved in any of the
reasoning processes. In fact, names are not assigned to any of the temporary frames created
during a dialog.

If one frame is the prototype of another, then we say that the second is an instance of the
first. A prototype serves as a template for its instances. Except for the most abstract frames
in the permanent data base, every frame in GUS is an instance of some prototype. Most
instances are created during the process of reasoning, although some (for example those
representing individual cities) are in the initial data base.

A frame’s important substructures and its relations to other frames are defined in its slots.
A slot has a slot-name, a filler or value, and possibly a set of attached procedures. The
value of a slot may simply be another frame or, in the case of a prototype, it may be a
description constraining what may fill the corresponding slot in any instance of the given
frame. Figure 4 shows the prototype frame for date and the specific date May 28, which has
no external name. The fact that it is an instance of date is indicated by the keyword ISA
followed by the prototype name.

The date prototype illustrates several of the ways in which the values for instance slots can
be described. For example, the slot labelled MONTH specifies that only a name can be used as
value; that is, only a literal LISP atom. GUS interprets a standard set of type terms such as
name, integer, list, and string. The slot for WEEKDAY stipulates that a value for that slot
must be a member of the list shown in the frame. The slot DAY can only be filled by an
integer between 1 and 31. The terms BOUNDED-INTEGER and MEMBER have no special
meaning to the interpreter. Any LISP function may occur in this position as a predicate
whose value must be non-NIL for any object filling the slot.

Not all of the slots of an instance frame need to be filled in. For example, in May 28, only
the MONTH, and DAY are filled in, and not the WEEKDAY. A prototype frame provides slots

11

as placeholders for any data that might be relevant, even though it may not always be
present. Only those slot values which are required for the current reasoning process need be
put into instances.

[DATE
MONTH NAME
DAY _ (BOUNDED-INTEGER 1 31)
YEAR INTEGER

WEEKDAY (MEMBER (SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY
FRIDAY SATURDAY))}

a. Prototype for date

[ISA DATE
MONTH MAY
DAY 28]

b. The instance frame for May 28

Figure 4. Examples of frames

Procedural attachment: We have already referred to procedural attachment, a concept first
discussed by this name by Winograd (1975), as a central feature of GUS. Procedures are
attached to a slot to indicatc how certain operations are to be performed which involve
either the slot in the given frame or the corresponding slot in its instances. We have found
that there are many slots for which some processing is best done by idiosyncratic procedures.
For example, there may be special ways of finding fillers for them or for doing other kinds
of reasoning about them. This might include verifying that the value in an instance is
consistent with other known information or propagating information when the slot value is
obtained.

The procedures associated with slots fall into two general classes: servants and demons.
Demons are procedures that are activated automatically when a datum is inserted into an
instance. Servants are procedurcs that are activated only on demand. The expanded date
prototype in Figure 5 contains examples of both classes. On the slot WEEKDAY there is a
demon marked by the keyword WHENFILLED and a servant marked by the keyword TOFILL.
When a value is filled into the WEEKDAY slot of a date instance, the WHENFILLED statement
on the prototype causes the interpreter to invoke the demon FINDDATEFROMDAY. This
procedure attempts to compute the appropriate date to fill the other slots in the frame, using
the name of the day just entered and contextual information to identify the value uniquely.

The servant GETWEEKDAY on the same slot is only invoked when the name of the week day

is needed. The requirement is satisfied by calling the LISP procedure GETWEEKDAY with the
current instance as an implicit argument. The servant attached to the slot YEAR indicates
how a default value can be filled in. If the year is given by the client, then this servant will
never be activated. However, if the client does not mention the year explicitly, the system
will fill in the default value 1975 when any part of the reasoning process calls for it.

[DATE
MONTH NAME
DAY (BOUNDED- INTEGER 1 31)
YEAR INTEGER (TOFILL ASSUME 1975)

WEEKDAY (MEMBER (SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY
FRIDAY SATURDAY))
(WHENFILLED FINDDATEFROMDAY)
(TOFILL GETWEEKDAY))
SUMMARY (OR (LIST MONTH DAY) WEEKDAY))]

Figure 5. The frame for date with attached procedures and summary form

The system provides a number of standard servant procedures. ASKCLIENT causes the client
to be asked for information that will determine the value of the slot. CREATEINSTANCE
indicates that a new instance of a specified prototype should be created and inserted at that
location. Some of the values of the newly created frame may be filled in by the procedure,
others may be left to be filled through later reasoning or interaction with the client. In
addition to standard servants, the builders of the system can program special procedures to
compute appropriate values, such as the GETWEEKDAY mentioned earlier.

Summarizing data structures. In Figure 5, the frame for date includes a slot with the special
name SUMMARY. A SUMMARY slot appears only in a prototype frame, never in an instance.
It gives a format for describing the instances of the prototype to help programmers monitor
and debug the system. Thus, instances of date will be described by printing the month and
day, e.g. (May 28) or, if they are not known, just the day of the week.

13

USING FRAMES TO DIRECT THE DIALOG

Frames are used at several levels to direct the course of a conversation. At the top level, GUS
assumes that the conversation will be of a known pattern for making trip arrangements, To
conduct a dialog, the system first creates an instance of the dialog frame outlined in Figure
6. It goes through the slots of this instance attempting to find fillers for them in accordance
with the specifications given in the prototype. When a slot is filled by a new instance of a
frame, the slots of that instance are filled in the same way. GUS follows this simple depth-
first, recursive process, systematically completing work on a given slot before continuing to

the next. This is how GUS attempts to retain the initiative in the dialog. Notice, however,

that slots may occasionally be filled out of sequence either through information volunteered
by the client or by procedures attached to previously encountered slots.

In Figure 6, boldface atoms are frame names, representing pointers to other frames,
(Substructures for the frames for Person, Date, City, PlaceStay, TimeRange, and Flight are
not shown.) Each of the slots shown in Figure 6 must be filled in during the course of the
dialog, usually by invoking a servant attached to the prototype slot. The servants for some
slots calculate the desired values from other known data, or (as in the case of frames like
TripSpecification) simply create a new frame. The servant ASKCLIENT obtains information
needed to fill a slot by interrogating the client. The default organization of a dialog is
determined by the order of the slots which have ASKCLIENT as servant, since appropriate
questions will be asked if those slots have not been filled by the time they are encountered.

Now let us follow the system as it goes through part of a dialog, with special emphasis on the
process of filling in the slots of frames. The dialog and the relevant information about the
state of the system are shown in Figure 7. This figure is the beginning of an actual
transcript of a session, and the information shown there is provided to allow us (in the role
of system builders) to follow the actions of the system.

The dialog starts when GUS outputs a standard message ("Hello. My name is GUS. I can help
you plan a simple trip by air.”). At this point, GUS knows that it is about to conduct a dialog
on travel arrangements, so it creates an instance of the prototype Dialog frame shown in
Figure 6 and starts to try to fill its slots. (From now on, all numbers in brackets refer to the
corresponding lines of the frames of Figure 6. All references to the dialog refer to Figure
7.) The slot CLIENT at [1] contains a servant which fills this slot, when necessary, by
creating a new instance of Person. -This is indicated in the first line of the transcript of
Figure 7, where the instance of person is shown as {ISA PERSON}. After the slot is filled in, a
demon associated with the CLIENT slot is triggered, which then puts the same person instance
in the TRAVELLER slot in [16]. GUs fills the NOw slot in [2] by constructing a frame
instance for today’s date. It then creates a TripSpecification instance [3], summarized by
ROUNDTRIP TO ? in the transcript of Figure 7, to fill the ToPIC slot [3].

14

Slots Fillers Servants Demons
Dialog
[1] CLIENT Person Create Link to TRAVELLER
[2] NOW ~ Date GetDate
[3] TOPIC TripSpecification Create

TripSpecification

[4] HOMEPORT City Default - Palo Alto
[5] FOREIGNPORT City Link to OUTWARDLEG,
AWAYSTAY, INWARDLEG
[6] OUTWARDLEG TripLeg Create
[7] AWAYSTAY PlaceStay
[8] INWARDLEG TripLeg Create
TripLeg
[9] FROMPLACE City FindFrom HOMEPORT
[10] TOPLACE City AskClient
[11] TRAVELDATE Date AskClient
[12] DEPARTURESPEC TimeRange AskClient Propose- Flight- By- Departure
[13] ARRIVALSPEC TimeRange Propose- Flight- By- Arrival,

Link to DEPARTURESPEC
[14] PROPOSEDFLIGHTS (SetOf Flight)
[15] FLIGHTCHOSEN Flight AskClient
[16] TRAVELLER Person AskClient

Figure 6. An outline of key frame structures for our dialog

At this point the Dialog frame has been completely filled in so GUS proceeds to fill in the
slots of the TripSpecification frame. In [4], a HOMEPORT which is a City is required; GUS
assumes, on the basis of an attached servant, that the home port is Palo- Alto. There is no
attached servant to find the FOREIGNPORT in [5], so GUS just leaves that slot empty for the
moment. When a TripLeg instance is created for the outward leg of the journey, GUS begins
trying to fill its.slots. A servant for FROMPLACE specifies that it should be filled with the
city used for HOMEPORT in the TripSpecification frame, so PaloAlto is filled in. The first slot
which has an ASKCLIENT servant is at [10}, which requires a city to fill the TOPLACE in the
TripLeg, which is the OUTWARDLEG of the TripSpecification [6]. GUS issues the command
(CMD) shown at the bottom of Figure 7, which directs the generation of the English
question. This is done by a rather elaborate table look up: the result is shown as the last line
of Figure 7.

15

GUS: Hello. My name is GUS. I can help you plan a simple trip by air.

CLIENT ={ISA PERSON} in {ISA DIALOG}
TODAY =(MAY 15) in {ISA DIALOG}

TOPIC =(ROUNDTRIP TO ?) in {ISA DIALOG}
HOME-PORT =PALO-ALTO in (ROUNDTRIP TO ?)
FROM-PLACE =PALO-ALTO in (TRIP TO ?7)

CMD: (GUSQUERY (DIALOG TOPIC TRIP-SPECIFICATION OUTWARD-LEG TRIP-LEG
TO-PLACE CITY))

GUS: Where do you want to go?

Figure 7. The beginning of the transcript for the dialog

We continue the trace of the analysis in Figure 8, starting with the client’s response to the
question. The domain dependent translation contains the information needed to fill the
frame slots. The result of the client’s English input is that both the TOPLACE [10] and the
TRAVELDATE [11] of the TripLeg are filled in.

The system then continues working its way through the entire tree specified by the frames,
asking questions of the client. Many of the slots have demons which propagate information
to other places in the data structure. For example, when the city that fills the slot
FOREIGNPORT [5] is found, GUS will ingert that same City as the place to stay in the
AWAYSTAY [7]. The FOREIGNPORT city also serves as the destination of the OUTWARDLEG of
the trip and the starting point of the return trip (the INWARDLEG). To handle this
information, GUS estabishes two instances of the frame TripLeg, one for the outward leg, the
other for the inward leg, and puts the city names in the appropriate slots.

Once a departure specification (some time range before, near or after the desired flight

departure) is determined, a demon attached to DEPARTURESPEC calls a program which uses

this information to propose a flight. FEach proposed flight is added to the slot for
PROPOSEDFLIGHTS [14]. This slot can be used to resolve anaphoric references to flights,

based on the order of their mention in the conversation. GUS then tries to determine which

of the flights is appropriate to fill in the FLIGHTCHOSEN slot [15]. When that has been
determined, it will ask for the name of the traveller and confirm the flight.

Many of the slots are marked in such a way that they need not be filled for the dialog to be
completed. For example, the arrival specification [13] in each TripLeg frame is never
requested. This slot is provided as a place to put constraints about the arrival of the flight,
if the client volunteers information constraining the desired arrival time. Demons associated
with that slot would then be activated to propose a flight based on the arrival time. In a

16

similar way, the AWAYSTAY slot in the trip specification [7], is never asked for. If the client
specifies something about the time range of the AWAYSTAY, as he did in the dialog of Figure
1, there is a place to store that information in the frame structure and a demon to put it into
the appropriate TripLeg.

CLIENT: I want to go to San Diego on May 28

CMD: [CLIENTDECLARE ... the domain dependent translation
(FRAME ISA TRIP-LEG
(TRAVELLER (PATH DIALOG CLIENT PERSON))
(TO-PLACE (FRAME ISA CITY
(NAME SAN-DIEGO)))
(TRAVEL-DATE (FRAME ISA DATE
(MONTH MAY)

(DAY 28]
TO-PLACE =SAN-DIEGO in (TRIP TO ?) .. filling in the requested information
TRAVEL-DATE =(MAY 28) in (TRIP TO SAN-DIEGO) .. and the volunteered information
dowhen TO-PLACE is put in (TRIP TO SAN-DIEGO) ..propogating information to other slots

(LINK TRIP-SPECIFICATION FOREIGN-PORT CITY)

Figure 8. The reasoning from the first input utterance

Figure 9 illustrates how a sentence fragment is processed. GUS asks "What date do you want
to return on?" Generation of the qucstion also generates a context for the expected
interpretation of the next answer. The context is an inverted form of the question; that is, "1
want .to return" is a potential prefix to the next response. The preposition "on" may be
optionally inserted in this prefix. The client responds "on Friday in the evening”. Since this
is not a sentence, the question context is used in the interpretation and the actual parsed
structure which is interpreted is derived from the sentence "I want to return on Friday in the
evening.”

The time is taken as a departure specification and the date is specified in terms of the day of
the week. The day of the week is filled into the appropriate place and date, and then the
demon associated with that slot in date is activated. That demon computes the date relative
to the previous date specified in the conversation. The phrase evening is taken as being
equivalent to "around 7:30 PM". From this departure specification, GUS proposes the flight
that leaves nearest to that time. Information is provided to the client about the leaving time,
not the arrival time, bécause the client constrained the choice of flight by leaving time.

17

GUS: What date do you want to return on? «. a query generated by GUS

The context of the next answer is:
(I WANT TO RETURN ((ON) (*SKIP#))) -- .. The expected context of the query response

CLIENT: On Friday in the evening

CMD: [CLIENTDECLARE ... the domain dependent translation, including context
(FRAME ISA TRIP-LEG
(TRAVELLER (PATH DIALOG CLIENT PERSON))
(TRAVEL-DATE (FRAME ISA DATE
(WEEKDAY FRIDAY)))
(DEPARTURE-SPEC (FRAME ISA TIME-RANGE
(DAY-PART EVENING]

WEEKDAY =FRIDAY in {ISA DATE}

dowhen WEEKDAY is put in {ISA DATE} ... triggering a demon to find the Friday’s date
(FINDDATEFROMDAY)

DAY =30 in (MAY 30)

DAY-PART =EVENING in {ISA TIME-RANGE} ..evening is interpreted as around 7:30 PM

DEPARTURE-SPEC =(AT 7 30 PM) in (TRIP TO PALO-ALTO)

dowhen DEPARTURE-SPEC is put in (TRIP TO PALO-ALTO)
(PROPOSE-FLIGHT-BY- DEPARTURE) .. this demon proposes a flight using a departure spec

GUS: Would you like the flight that leaves at 7:45 PM?
CLIENT: That’s fine.

Figure 9. Processing a sentence fragment

...

This sample dialog illustrates how GUS attempts to control a conversation by fitting it to the
mold laid down in a structure of related frames. It has a place prepared in this structure for
each piece of information that might potentially be used for making travel arrangements. [t
also has a strategy that will cause the pieces of information that the client must supply to be
elicited in a natural order. The sequence of slots in the frames determines the usual course
of the conversation, but it will change if, for example, the client volunteers information or
asks questions.

18

REAL AND REALISTIC DIALOGS

There is an important difference between real and realistic conversations. The simple
dialog in Figure 1 is a realistic conversation that was actually carried on with Gus. It is
~much too easy to extrapolate from that conversation a mistaken notion that GUS contained
solutions to far more probleins than it did. To get an idea of some problems that GUS does
not approach, we collected a variety of travel dialogs that clients of a full-fledged system
(perhaps the final version of GUS) might expect to conduct. We did this by simulating the
system, asking the clients to arrange for round trip air flights between Palo Alto and San
Diego, typing all queries and responses on the computer terminal, and pretending that a
computer system was interacting with them. In fact, the role of GUS was played by an
experimenter sitting at another computer terminal, airline guide, travel books, and calendar
in hand, responding to the client.?

2 The experimental dialogs were collected by Allen Munro in the LNR research laboratory at the University of
California, San Diego.

GUS Do you want a flight leaving at 4:00 PM
CLIENT Do you have something a little closer to 7

GUS Do you want the flight at 7:.00 PM

a) Interpreting politeness

GUS Do you want the flight arriving at 8:00 PM
CLIENT When does it leave?

GUS 6:30 PM

CLIENT How much?

GUS $25.50 round trip

b) Some pronominal reference problems

GUS When would you like to return?
CLIENT I would like to leave on the following Tuesday, but I have to be back before
my first class at 9 AM. -

¢) Giving a reason for flight preference

Figure 10. Fragments of real dialogs, with a person simulating the role of GUS

--

The two participants -- client and experimenter -- were each seated in independent,

19

individual sound-isolated experimental booths. They communicated with a special
experimental program (designed for tutorial instruction) that presented the experimenter’s
responses in a block presentation, so it appeared as a realistic approximation of a computer
output, without the slow typing rate that would occur otherwise. The system delays were
approximately what one would expect for the operation of a complex program (10 to 60
seconds response time).

Some of the problems we found were unexpected. For example, people spent a lot of time
telling us about their thought processes and reasons. They made excuses for changing their
minds. They hedged a lot about what they wanted. Figure 10a illustrates a type of
conversational interaction our current system cannot even begin to handle. When the system
proposes a flight at 4 PM, the client requests something a little closer to 7. A literal
interpretation of that request would be to find a flight that is as close to 4 PM as possible,
but in the direction of 7 PM: perhaps the 5:00 PM flight. That, of course, is not at all what
was desired by the client. The human experimenter made the natural response of offering
the flight that left at 7.

Figure 10b indicates some pronominal reference problems which we did not attack at all.
When the client says "when does if leave” it is quite obvious that he wants the departure time
of the flight referred to in the previous sentence. For his question "how much,” a response
that "all of the plane leaves" seems somewhat inappropriate. In this case, the client is not
referring to the previous system response, but rather is asking about the cost of the flight.
But a response such as "how much" can sometimes refer to the previous system response.
Suppose the system had just stated "They serve food on that flight.” In this case, the client’s
query could be appropriately interpreted by the system as referring to the quantity of food.
GUS cannot solve the problem of determining when a response is meant to refer to the
previous question and when it is not.

Figure 10c illustrates how people provide extra information about their motivations. In a
system with a better model of human needs and desires, this would be useful for suggesting
alternatives that might otherwise be ruled out.

CONCLUSION

Computer programs in general, and programs intended to model human performance in
particular, suffer from an almost intolerable delicacy. If their users depart from the
behavior expected of them in the minutest detail, or if apparently insignificant adjustments
are made in their structure, their performance does not usually change commensurately.
Instead, they turn to simulating gross aphasia or death. The hope, which has been at least
partially realized in GUS, is that the notions of procedural attachment and scheduling, as well
as being realistic cognitive models, will make for more robust systems. We were pleased, for
example, by the way the system’s expectations could evolve in the course of a single
conversation. The client would occasionally seize the initiative, volunteering information
that was not asked for or refusing to answer a question as asked and GUS was able to respond
appropriately in many cases. It would be misleading to press these claims too far. GUS never
reached the stage where it could be turned loose on a completely naive client, however

20

cooperative. But, to one familiar with other systems of the same general kind, the
impression of increased robustness is clear.

GUS represents a beginning step towards the construction of an intelligent language
understanding system. GUS itself is not very intelligent, but it does illustrate what we believe
to be essential components of such a system. An intelligent language understander must have
a high quality parser, a reasoning component, and a well structured data base of knowledge.
The knowledge is of several types, from language specific information and expertise in the
topic areas in which it can converse to broad general knowledge of the world that must be
used to interpret people’s utterances. This knowledge tends to be taken for granted by most
native speakers of the language, hence often left for the listener to infer. The system must
be capable of giving direction to the conversation, but it must also be flexible enough to
respond to novel directions set by the clients. The system must be able to make use of a
large external data base and to understand what information must be retrieved and processed
in depth. There must be an intimate connection between its representation of structural
knowledge and the procedures used to process knowledge. A general framework for
representing knowledge must be able to encompass all the different necessary forms of
knowledge. In our future studies of GUS, we intend to broaden the general framework for
representing knowledge, as well as to increase the power of the components of the system.
Preliminary steps in this direction include the development of improved systems for
language analysis (Kay & Kaplan, 1976) and a knowledge representation language (KRL:
Bobrow & Winograd, 1976).

21

22

References

Bobrow, D. G. & Collins, A. M. (Eds.) Representation and Understanding: Studies in
Cognitive Science. New York: Academic Press, 1975.

Bobrow, D. G. & Wegbreit, B.,, A model and stack implementation of multiple environments,
Communications of the ACM, 1973, 16, 591-603

Bobrow, D. G. & Winograd, T. An overview of KRL, a Knowledge Representation Language.
Cognitive Science. Vol 1. No 1. 1977

Bruce, B., Case systems for natural language. Artificial Intelligence, 1975, 6, 327-360.

Carbonell, J. R. Al in CAI: An artificial intelligence approach to computer-aided
instruction. [EEE Transactions on Man-Machine Systems, 1970, MMS-11, 190-202.

Carbonell, J. R. Mixed-initiative man-computer instructional dialogues. Unpublished Ph.D.
dissertation. Cambridge, Mass: Massachusetts Institute of technology, 1970.

Dahl, O. J, & Nygaard, K., SIMULA--an ALGOL-Based Simulation Language,
Communications of the ACM, 1966, 9, 671-678.

Fillmore, C. The case for case. In E. Bach and R. T. Harms (Eds.), Universals in Linguistic
Theory. New York: Holt, 1968.

Goldberg, A. & Kay, A. (Eds.)) SMALLTALK-72 instruction manual. Xerox Palo Alto Research
Center SSL-76-6. Palo Alto, Ca. 1976

Gordon D., & Lakoff, G., Conversational postulates, Papers from Seventh Regional
Meeting, Chicago Linguistic Society, Chicago: University of Chicago Linguistics Department,
1972.

Grice, H. P. Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Studies in Syntax,
Volume III. New York: Seminar Press, 1975.

Kaplan, R. A general syntactic processor. In R. Rustin (Ed.), Natural language processing.
New York: Algorithmics Press, 1973a. '

Kaplan, R. A multi-processing approach to natural language. Proceedings of the 1973
National Computer Conference. Montvale, N.J: AFIPS Press, 1973b.

Kaplan, R. On process models for sentence analysis. In Norman, D. A., Rumelhart, D. E,
and the LNR Research Group. Explorations in cognition, San Francisco: Freeman, 1975.

Kay, M. The MIND system. In R. Rustin (Ed.) Natural language processing. New York:
Algorithmics Press, 1973.

Kay, M. & Kaplan, R. Word recognition. - Palo Alto, California: Xerox Palo Alto Research
Center, 1976.

Minsky, M. A framework for representing knowledge. In P. Winston (Ed.), The psychology
of computer vision. New York: McGraw-Hill, 1975.

Reddy, D. R., Erman, L. D., Fennell, R. D., & Neely, R. B. HEARSAY speech understanding
system: An example of the recognition process. Proceedings of the Third International
Joint Conference on Artificial Intelligence, Stanford University, August 1973.

Norman, D. A., Rumelhart, D. E. and the LNR Research Group, Explorations in cognition.
San Francisco: Freeman, 1975.

Rovner, P., Nash- Webber, B., & Woods, W. A. Control concepts in a speech understanding
system. Proceedings of the IEEE Symposium on Speech Recognition, Carnegie- Mellon
University, April 1974.

Simon, H. Sciences of the artificial. Cambridge: Massachusetts Institute of Technology
Press, 1969.

Teitelman, W. INTERLISP reference manual. Palo Alto, California: Xerox Palo Alto
Research Center, December, 1975.

Walker, D., Paxton W., Robinson, J., Hendrix, G., Deutsch, B., Robinson, A. Speech
understanding research. Annual report, Project 3804. Artificial Intelligence Center. Stanford
Research Institute, 1975. :

Winograd, T. Frames and the declarative- procedural controversy, In D. G. Bobrow and A. M.
Collins (Eds.), Representation and Understanding. New York: Academic Press, 1975.

Woods, W. A. Motivation and overview of BBN SPEECHLIS: An experimental prototype for
speech understanding research. Proceeding of the IEEE Symposium on Speech Recognition,
Carnegie- Mellon University, April 1974.

23

Inter- Office Memorandum

To File Date February 3, 1978

From Dick Shoup Location Palo Alto

Subject Color and the Alto Organization SSL

Filed on [XEOS] <Ludolph>Hardware> ColorOnAlto.press

I'm frequently asked about the possibility of putting a color display on the Alto. Here's a
quick summary of what | know about the subject. Contact me for additional info.

0. History

About 3 years ago | modified an Alto1 to provide a color display. (See
maxc<shoup>coloraltodoc.press or .bravo for more details.) Its characteristics were:
640x480 points in a 525-line raster, 4:3 aspect ratio (standard TV format), 1 or 2 bits/pt or
320x240 points at 4 bits/point. Thus full resolution in 2- or 4- color mode, half resolution in
16- color mode. -Colors displayed on the screen were determined by-table lookup ("color
map") so that, for example, in 2 bit/pt mode any 4 colors in the range of the display
phosphors could be used. This color display replaced the standard Alto 875-line display.
The color Alto was subsequently remodified to again have a standard display due to lack of
interest in color at that time and because of lower resolution and partial incompatibility with
respect to the standard display.

1. The facts of life.

The bandwidth required to drive a 525-line standard TV raster, 4:3 aspect ratio and square
pixels (same resolution horizontally as vertically) is about 12 Mpts/sec. The bandwidth
required is therefore 12 x n, where n is the number of bits/point. Thus a 2-bit/pt picture
requires 24 Mbits/sec of peak bandwidth.

The total available Alto memory bandwidth (shared among all devices via the CPU
microcode) is about 32 Mbits/sec. Of this, the standard Alto display uses about 20
Mbits/sec (also 20 Mpoints/sec since it’'s 1 bit/point). The extended memory Alto has no
more bandwidth, just more memory.

Monitors: Standard 525- line color monitors are readily available and cost from $300 to $6K
depending on size and quality. Recently, double-density shadow- mask CRTs (twice as
many color phosphor dots) have become available. Text and small detail look much better
on these tubes than conventional ones, even at the same 525-line scanning rates.

However, such monitors currently cost $3K to $6K. Higher line-rate monitors using these
CRTs are also becoming available, but their cost is currently >$10K. All color monitors
have some misconvergence, especially near the edges of the screen. This annoyance is
often quite noticeable on text or other sharp edges. Trinitrons have color stripes instead of
dots and thus exhibit less convergence error, but are lower resolution than color dot CRTs.
Flicker can be quite noticeable on color CRTs at standard 30 frame/sec rate, particularly
with text and small detail. Slower color phosphors are not readily available.

2. Alternatives.
There are several major alternatives to consider for a color display capability on the Alto:

2.1 With a reasonable amount of effort.

2.1.1 As the primary (working) display, compatible (i.e., 875-line, 3:4 aspect). This
alternative is the simplest, but only 2 colors are possible due to bandwidth limitations.
However, by judiciously loading the color table, different pairs of 2 colors can be
displayed in different bands on the screen (See color Alto document). Monitor very
expensive. Convergence and flicker may be quite annoying for day-to-day use.

2.1.2 As the primary (working) display, incompatible (conventional 525-line is the
only reasonable alternative). This was the color Alto solution described above.
480x640 =300K pixels as compared to 808x606 =480K pixels with the standard Alto
display. Compatible in the sense that scan lines in the color Alto are longer (640 vs.
606) so that most display bit maps will display properly (operating system exec,
Bravo, etc.) and the displayed area will just be shorter in the vertical direction. 2
bits/pt (4 colors) possible at full resolution. Convergence and flicker.

2.1.3 As a secondary (additional) display. |[If the standard Alto display remains
available, then questions of software compatibility are avoided. Both displays could
not be on at the same time, however, due to bandwidth limitations.

2.2 More radical schemes. Other possibilities include: increasing the memory bandwidth
via a new memory card or memory bus design, plugging in some new memory which
contains the display bit map, encoding color pictures (run or area coding) and accessing
via a new display controller, encoding color information separately and combining it with
the bit stream from the standard display controller, etc.

Inter- Office Memorandum

To ALTO II Users Date February 23, 1978
From Doug Stewart Location El Segundo
Subject Second Disk Drive For ALTO Organization ED/SPG

XEROX

Filed on: [XEOS]< Ludolph>Hardware> SecondDisk.press

The following is a list of all of the equipment required to put a second Diablo Model 31
disk ‘drive on an ALTO system. All may be purchased directly from Diablo.

Item Qty. Req’'d Description
1 1 Model 31 disk drive, P/N 15532-06, with:

Option -004, 1562 KBS ,
Option -019, Extended format

2 1 Power Cable, P/N 11188
3 1 Cable, Diablo P/N 11245-xx, where xx is
the length in inches (should be about 60

inches if drive is to sit on top of ALTO
cabinet).

¢: Frank Ludolph

Whole ALTO Word Newsletter

Technology and Tools

XEROX January 31, 1978

SPECIAL ANNOUNCEMENTS

FINAL ALTO II SPARES BUILD - SPG is now taking orders for the final Alto II Spares
Build. This is for Alto II boards excluding accessories such as Orbit and Trident. The
closing date for this build is March 1, 1978. Contact Terry Haney, SPG.

WHOLE ALTO WORLD MEETING - The next Whole Alto World meeting is scheduled to
- be held from 9AM to 3:30PM February 7, 1978, in the Green Room at XEOS, Pasadena. Liz

Bond is our hostess. The topics discussed will include maintenance, build activity,

protection of intellectual property, software, and a demonstration of Smalltalk.

GENERAL NOTES

SUBSYSTEMS CATALOG - The Subsystems Catalog has been revised to include new
subsystems and a functional cross reference. The latter aids in locating a program to
perform a given task. When a program has been located, the alphabetical listing can be used
to obtain a more complete description and direction to the documentation.

ALTO NETWORK DIAGRAM - This diagram, illustrating server location by Ethernet, has
been revised to include the servers’ names and addresses. A copy is attached.

TOOLS
HARDWARE

ALTO II WORKSTATION MULTIPLEXER ADAPTER - An Alto II Keyboard Buffer is
now available that permits the Workstation Multiplexer to be used with Alto II keyboards.
(The multiplexer itself is used to build a 4X4 arrangement of Altos and workstations such
that any workstation may be manually switched to any Alto for exclusive use.) Cost of the
keyboard buffer is $275 plus $125 per workstation interface (one per Alto II workstation).
Also required are cables and the multiplexer (total cost is $2.5K to $3K depending on exact
configuration).

TRIDENT MULTIPLEXER - The following was excerpted from a message by Ron
Freeman, SPG:

The 74161s used for the sector counters on the Trident Multiplexer boards are being used improperly
resulting in erroncous operation of the sector counters unless the 74161 happens to be manufactured by
National Semiconductor...

As this problem does not exist in the design of the 74LS161, an E.O. is being written to use the LS
device for this design.

Several of these modules have been delivered and installed in Alto 1Is, all apparently with the National
part used. You can suit yourselves as to the desirability of replacing the 74161s on these units;
however, should they be returned to SPG for repair in the future, the 74161s will be replaced at that
time with the 74LS161s.

Whole ALTO World Newsletter

SOFTWARE

In general, the subsystems, packages, and documentation indicated here will be available
from your local IVY server under the directories <Alto> and <AltoDocs>. If they are not
available, or if you are in doubt as to the version, they may be retrieved from [MAXC]
(same directories). Files stored under other directories are on [MAXC] unless otherwise
indicated, e.g. [XEOS].

ReReleases - Subsystems

CHAT - Minor fixes have been made and a curve displaying protocol added. Retrieve
<Alto>Chat.run. The documentation is unchanged.

FIND - Enhancements to this subsystem include switches to distinguish upper and lower
case, to print the entire Bravo paragraph containing a match, and to print all text between
blank lines containing a match. Retrieve <Alto>Find.run. Updated documentation is
available from <AltoDocs>Find.tty.

FRED - The restriction limiting the range of character codes to 7-bit ASCII has been lifted.
Load <Alto>Fred.dm. The documentation is unchanged.

MADTEST - The nature of the changes are unknown to me., This subsystem is available
from the bootserver or retrieve <Alto>Madtest.run. There is no documentation.

OEDIT - This subsystem has been extended to provide a simple search command and to
display a range of values for rapid browsing. Retrieve <Alto>Oedit.run. New
documentation is on <AltoDocs>Oedit.tty.

SCAVENGER - Changes involve improved DiskDescriptor reconstruction. Retrieve
<Alto>Scavenger.tty. The documentation is unchanged.

SETTIME - If this subsystem is unable to obtain the date and time from a time server, it
will now display an appropriate message and prompt you to type in the date and time. It
has also been altered for the new time standard. Retrieve <Alto>SetTime.run. The updated
documentation is on <AltoDocs>SetTime.tty.

TYPE - This version fixes the bug that caused long lines to scroll off of the top of the
screen. Retrieve <Alto>Type.run. The documentation is unchanged.

ReReleases - Packages

ETHERBQOOT - This new version conforms to the new time standard, can direct its boot-
load request to a specific address, and can take alternative action if a boot-load request fails
to be honored. The documentation, <AltoDocs>EtherBoot.tty, has been updated.

GP - This package for parsing command lines deletes the DefaultArg routine and slightly
alters the ReadParam routine. The revised documentaion may be retrieved from
<AltoDocs> GP.tty. ‘

Whole ALTO Word Newsletter

DOCUMENTATION DISCREPANCY - It has been reported that there is a discrepancy
between the documentation and implementation of the UtilStr package. For the routine
DblSub, the parameters DblMinuend and DblSubtrahend are reversed. Also, the DbIDiv
routine returns the remainder in the first word and quotient in the second, not a 32-bit
quotient as some have understood the documentation to say.

TECHNOLOGY

The topic of this month’s paper is the emergence of an applied psychology that can be used
by designers to develop user interfaces, to predict user performance on various design
alternatives, and, in some cases, to compare it to the theoretical limit. While a substantial
theory does not yet exist, the authors present a view of what an applied psychology might be
like and assert that a sufficient amount of knowledge exists now to begin impacting the
human side of Office Information Systems.

The Whole Alto World Newsletter is a monthly publication for Xerox employees that use the Alto. It is not
to be shown to non-Xerox people. Copies are available on [MAXC]<AltoDocsd> WAWnews.press or may be
obtained from the editor, Frank Ludolph, XEQS, by messaging <Ludolph> or calling Inteinet 8*923-4356.

Applied Information- Processing Psychology
for Xerox Office Information Systems

Stuart K. Card
Thomas P. Moran

Allen Newell*

AIP Memo 99
July 1977

~Systems Sciences Laboratory
Palo Alto Research Center

3333 Coyote Hill Road
Palo Aito, Califomia 94304

The authors constitute. the staff of the Applied Information Processing Psychology Project of
the Systems Sciences Laboratory at the Palo Alto Research Center. A. Newell is a
consultant, regularly. associated with Carnegie-Mellon University. The order of the authors
above is alphabetical. There is no administratively designated leader of the project.

SUMMARY

This essay addresses the potential contribution of an applied psychology to developing Xerox’s Office
Information Systems. Three years ago, under the impact of a cognitive psychology that finally seemed to be
developing an adequate theoretical base, the Applied Information Processing Psychology Project started down the
path to creating a new applied psychology that would make use of that base. This essay is a restatement of
the original vision in the light of our attempts in the interval since then.

-

An important component of any office information system is its interface to the user. We envision an applied
science of the user that: (1) is based on an information- processing theory of the user, (2) pemits both quick
and detailed calculations of user behavior, (3) contributes to the evaluation of proposed system designs as well
as to the generation of new designs, and (4) is applied directly by the system designers themselves and not
just by professional psychologists.

A model of the user consists of the goals the user sets for himself and the methods he chooses to attain those
goals. The goals reflect the task to be accomplished and the methods reflect the available means, including the
office system. A method consists of a conditional sequence of sub- goals and operations, which are behavior
patterns that occur across many different task situations and for which empirical data is collected. Such a
model allows user behavior in a new task to be predicted by postulating the goals and methods required in the
new task. For example, we have made a prediction (for SDD) of the time to format the pages of a document
with a reasonable (but as yet non- existent) document composition system, and this was done using our models
and data from text editing. Another example of calculation from theory is the time it takes to point to text on a
display with a "mouse". The movement time of the mouse is accurately predicted by Fitts’ Law; and
comparison with other movement studies reveals that the mouse moves as fast as a human can control and thus
that no other pointing device will be faster. '

Looking to the future, we can imagine the shape an applied psychology might take. The model of the user
could be packéged as a Simulated User, a computer program that produces statistically appropriate user behavior
and that can be combined with an office system simulation program. Another application is a notation for
specifying system command languages. The notation would embody the User's Model, i.e., the conceptual model
the user has of the office system. Such a notation would allow the designer to design the system explicitly in
terms of this User's Model. This illustrates how we see an applied psychology being brought directly into the
design process. A more general design tool would be a Handbook of Applied Cognitive Psychology, organized
around classes of design problems and showing how to bring psychological resuits to bear on them.

We believe that such an applied psychology is possible. The question is how to pursue it. The AIP group’s
effort to date has been a mixture of in- depth studies of basic issues to build the theory and of short application
studies to test the theory. Another element. of our strategy is to explore the domain of office task situations,
each new task explored becomes a test of the theory so far and an extension of our knowledge. As can be
seen in the table at the end of this essay, our effort thus far has concentrated on the manuscript editing task.
This has allowed us to pursue some fundamental issues of how to build performance models. There are many
other basic issues - - such as, why do users make errors? and how does one leam a new system? -- that need
to be addressed; and there are many other task areas to explore. Our view is that we have made progress
over the last three years and that we are on the right track to attaining our goal.

Applied Information Processing Psychology
for Xerox Office Information Systems

Stuart K. Card, Thomas P. Moran, & Allen Newell

This essay addresses the potential contribution of an applied psychology to developing
Xerox’s Office Information Systems. Three years ago, under the impact of a cognitive
psychology that finally seemed to be developing an adequate theoretical base, the
Applied Information Processing Psychology Project (AIP for short) started down the path
to creating a new applied psychology that would make use of that base. This essay is a
restatement of the original vision in the light of our attempts in the interval since then.

The Problem and the Vision

Within the world of Xerox Office Information Systems, some propositions are almost seif-
evident:

A. The performance of an office system depends strongly on its being
easy to learn and use.

B. Because the users of office systems are not technically oriented,
the importance of the interface between an office system and its
users is magnified.

C. The marketability of an office system depends on the ease, grace,
and apparent simplicity of its use, even beyond its actual
performance once firmly incorporated into a customer’s operation.

D. The style of information systems most favored by Xerox -- namely,
highly interactive, decentralized, personal computing -- is exactly
the one that most emphasizes the human-system interface.

These propositions accurately reflect the large potential contribution to be made through
good design of the human-system interface. Further argument on this point seems
unnecessary.

This does not establish automatically that an applied psychology is needed for good

Applied Information Processing Psychology
for Xerox Office Information Systems

interface design. Interface design is still largely an art. Sensitive designers often
produce elegant interfaces, and the iteration of designs in response to user reactions
can remove rough edges. But an applied science of how humans use office systems --
how they think, plan, follow procedures, perceive, communicate -- should have much to
say about the design of the interface. That any room for doubt exists about an applied
psychology’s contribution reflects the variability and complexity of human behavior. It
also reflects psychology’s still immature state compared with the physical (and more
recently the biological) sciences. But all sciences grow, and psychology’s potential for
substantial contribution to an applied area, such as office information systems, must be
continually reassessed.

There has indeed been growth in psychology, especially in cognitive psychology, which
has come to view man as an active processor of information who can represent his
environment symbolically, create goals to express his desires, and engage in strategies
of action to attain these goals. The key to treating the information processing aspects of
man scientifically and quantitatively has been the developing understanding of man- made
information processing systems, i.e., computer and control systems.

This cognitive psychology provides us with a vision of an applied psychology of office
systems that is mundane by the standards of physical engineering and science, but novel
in the extreme for psychology. It almost catches the breath:

1. Theoretical base: There will be a unified model of the office person
as he interacts with office information systems; this framework will
allow the progressive cumulation of both facts and theory.

2. Calculations: The theory will permit calculations of results,
especially of the "back-of-the-envelope" type so dear to the
practicing engineer and designer; better approximations may be had
by applying more effort.

3. Scope of application: Contributions will occur across the full range
of the design process, from the evaluation of office systems, both
prototypes and proposals, to the generation of new design
conceptions.

4. Integration into design practice: The resuits will become tools of
the working designer, not just the professional psychologist, thus
maximizing the opportunities for application.

This is a vision, not a present reality. Visions are useful if they are close enough to
reality for current finite efforts to make perceptible headway toward them. Enough
ingredients and demonstrations of power have been provided by recent advances in
psychology to create a suitable base, though much in this vision is still foreign to
traditional techniques (back- of-the- envelope calculations, for example) and must be

Applied Information Processing Psychology 3
for Xerox Office Information Systems

forged on site. Still, it was this vision, and the assessment of its attainability, that
underlay the initiation of AIP at PARC three years ago. It is the perceptible headway that
we've made in the three years that leads us now to a restatement.

The next section will make concrete what we mean by an applied psychology that is
guantitative and admits of calculation, yet deals in goals and symbolic behavior. Then we
will project some of the ways that we see such an applied psychology operating when it
is mature. This will lead to a brief assessment of where AIP currently stands in creating
that mature science, and what needs to be done to move along that path.

The Shape of an Applied Psychology

The Model of the User

Central to the enterprise is a model of the human user and how he interacts with office
systems. This mode! comes from a wide range of basic experiments in cognitive
psychology that have gradually let us piece together a reasonable picture of the
functional information processing architecture of the human.

The simplest version of the model takes the user to have a single long term memory of
unlimited size which holds essentially permanent knowledge. There is also a working
memory of very limited size which holds the knowledge of the current task context; this
represents the user’s focus of attention. What the user does at each given instant of
time is determined by the contents of this working memory. Knowledge flows into the
working memory from both the external environment of the user and from his long term
memory. Both of these flows are determined or moderated by the knowledge in the
working memory at each instant. Similarly, the user’s initiation and contro! of external
(motor) actions and of the addition of new knowledge to his long term memory is
determined by the contents of working memory.

Some important general limitations of the user of office systems can be derived directly
from this simple view of the human information processing architecture:

(1) The user can do only one main thing at a time -- what the working memory
determines at each instant.

(2) He can work only so fast -- there is an upper bound to the cycle time of
the system (in the range of 10 to 20 cycles per second).

(3) His working memory is limited (less than a dozen items of knowledge) and
overloading the working memory causes some immediate knowledge to be
lost.

(4) His knowledge in long term memory can only be retrieved if it can be
accessed via the knowledge already in working memory. Thus, complete
failures to recall relevant knowledge are' possible, as are retrievals of
inappropriate: knowledge because. the retrieval clues were inadequate.

Applied Information Processing Psychology
for Xerox Office Information Systems

(5) Adding knowledge to his long term memory takes much longer than
retrieving knowledge (knowledge can be accessed in a single cycle, less
than a tenth of a second, but takes several seconds to be stored away).
The user is forced to rely on his limited working memory to cope with"
rapidly changing task data.

(6) The information that the user encounters in the outside world must be
encoded if it is to become usable; and this can be done only in terms of the
knowledge already available in the long term memory. Thus, the user can
only learn new things in terms of knowledge he already has.

Calculating from Theory: Goals and Methods

To be able to calculate with a theory, one must be able to represent the behavior of the
system in terms of some primitive components and how they are composed. Editing
manuscripts with interactive computer editing systems provides a good example. It is
typical of the operations that will occur in future office systems. One important quantity
is the rate at which manuscripts are edited. The editing task can be analyzed into a
sequence of "unit tasks", which are relatively independent subtasks (e.g., locating in the
manuscript the next correction to make and then making it). According to the theory, the
behavior of the user in each unit task can be analyzed into a hierarchy of goals and
methods that resolve, at some level of detail, into a sequence of operations. For simple
calculations, these operations can be assumed to take constant time.

An example of such an analysis is shown below for an editor called Poet. The
operations are indicated by cAPITALS, and their average times (empirically determined)
are given in the right column:

Goal: edit unit task
Goal: get unit task from manuscript

GET-NEXT-PAGE (of manuscript), 2.1 seconds
if at end of current page
GET- UNIT-TASK (from manuscript) 1.9 seconds

Goal: carry out unit task obtained
Goal: locate line in file containing unit task,
if not already on the current line
Choose one of the following:
USE- SEARCH- STRING- METHOD ' 3.9 seconds
USE-NEXT- LINE- METHOD 4.3 seconds
Goal: alter text according to unit task
Choose one of the following:
USE: SUBSTITUTE-COMMAND 3.6 seconds
USE-MODIFY- COMMAND 9.7 seconds
VERIFY-EDIT ' 1.5 seconds

Applied Information Processing Psychology
for Xerox Office Information Systems

Though written out in English phrases, this is a formula. It specifies the behavior of the
user during a unit task in terms of some basic components, and permits calculation of its
duration. As shown, it contains options for the user that are determined by specific
details on the manuscript. For example, selecting whether to locate the next line to be
edited by using the NEXT-LINE method (hitting the NEXT-LINE key successively) or the
SEARCH-STRING method (having the system search for a specific string of text) depends
on specifics of the text. Empirical rules are known for how users make such choices,
e.g., use the NEXT-LINE method if the next unit task is less than five lines away from the
current unit task line.

The parts of the formula can be expanded into a finer level of detail. For instance, the
operation USE-SUBSTITUTE-COMMAND can be converted into a goal and then expanded into
smaller operations:

Goal: use Substitute command

SPECIFY- COMMAND 1.5 seconds
SPECIFY- ARGUMENT (old text) 1.4 seconds
SPECIFY- ARGUMENT (new text) 1.4 seconds

These operations can be expanded yet further. But aiready the analysis has been driven
down to the level of operations that are quite independent of the Poet editor, for many
systems are composed of similar command and argument specifications.

The use of such a formalism can be illustrated by an opportunity that fell our way. It
became of some importance within the System Development Division to assess the
rough cost of formatting a page of text by means of an interactive computer system, i.e.,
assembling text, figures, and footnotes into the final physical arrangement on a page.
This posed a typical design quandry. No such systems exist, so there is no directly
relevant operating experience to use as a guide. Yet some gross estimate is needed to
guide the design process into considering alternative product schemes of quite different
character.

Approached by Harold Hall of SDD, we tried to see what our applied psychology in its
current partial state could do in the way of a quick calculation. We analyzed the page
formatting task into unit tasks. Examination of typical pages in reports yielded rough
frequencies for the occurrence of the different kinds of unit tasks. We then analyzed
how the user would perform each unit task, creating formulae analogous to the ones
above and assuming a computer- formatting system with plausible properties. Enough
contact could be made with the operations in the systems we have studied, so that
numerical estimates of the duration of each unit task could be calculated. Taking these
together with the frequencies of occurrence yielded a total estimated time to format a
typical page. We also investigated the non-additivity of the unit tasks (since related
tasks done together avoid repeating common operations) and showed that the correction
was probably too small to make any difference.

Applied Information Processing Psychology 6
for Xerox Office Information Systems

The estimate obtained is surely in error. However, it is probably substantially better than
the more intuitive estimates the designers were drawing from their own experience. 1t
cannot be checked directly, since page- formatting systems do not exist. We did create
one quick analog in the laboratory and took measurements of actual performance to
provide some gross check. We could not quite confine the analysis to the back of an
envelope; it took about a week. Even so, that time scale is well matched to the demands
of the actual design process it was attempting to aid.

Calculating from Theory: Pointing to Text on a Display

Another example of a calculational applied psychology comes from the problem of how
users point to text on computer displays. There are many different devices for moving
the cursor from one point on the screen to another, and the usual range of opinion exists
about the advantages and disadvantages of different devices. This is a classic human
factors situation where the specific devices would be evaluated by running experiments
under a range of conditions (some evaluations of cursor movement devices exist in the
literature).

One can do better than this, however. According to a law proposed by Paul Fitts in
1954, the time it takes a skilled user to move his arm in a task demanding accurate
placement is given by

t = ky +k Iogz(d/s +.5) ,

where d is the distance to be moved and s is the size of the target region into which the
movement must be made. The smaller s is, the more accuracy is demanded. The
formula says that what counts is only the relative accuracy (d/s). Further, the time
increases only as the logarithm of this accuracy (the number of bits in the
discrimination). The constants, ko and k, reflect the movement situation and the skill of
the operator. Fitts’ Law is one of the most robust results in psychology, and it has been
verified in a wide range of experiments.

The usefulness of Fitts’ Law can be seen by considering another question of current
interest to SDD: how good is the "mouse" as a cursor control device, and are there any
better alternative devices? Fitts’ Law can be applied to the case of cursor movement
devices by taking d to be the distance on the screen that the cursor has to move and
taking s to be the size of the target text. Data from a series of experiments that we ran
with the mouse give the following fit to Fitts’ Law:

touse = 103 +.096 log,(d/s +.5) kseconds .

One more step is required to understand the implication of this result. In the literature on
motor control, the value of .1 seconds per bit for the constant k shows up repeatedly in
different arrangements. as a lower bound, i.e., as the fastest the human can operate. This
appears to be a limit due to the information processing necessary to guide the motion.

Applied Information Processing Psychology
for Xerox Office Information Systems

The formula for the mouse above not only tells us how fast it is for different targets, but
also it tells us that it is unlikely that other continuous- movement devices can be found
that improve much upon it. (Even pointing directly to the screen with a finger would not
be much faster!) What hope there is lies in trimming the one second set- up constant, kos
which involves the basic reaction needed to respond to the occurrence of the task itself,
no matter what device is used, and the pushing of the mouse button. In fact, we have
tested other pointing devices in our laboratory, and none are faster than the mouse.

The Yield of an Applied Psychology

The previous section attempted to give some flavor of the applied psychology based on
viewing the user as an information processing system. Drawing on present work, we
showed how one might calculate approximate answers to quantities that are of applied
interest in office information systems. Here we would like to reach beyond what we now
feel sure about to give some examples of ways we envision applications occurring.

Simulated Users

System simulation is a standard design technigue in computer science. It is used to
evaluate proposed designs before they actually exist and to permit explorations of
design variations without the expense and time to construct alternative prototype
systems. Simulations always work with some simulated mode!l of the external
environment. In some areas, such as standard computer time sharing systems, rather
simple models of the environment are adequate. However, for the office information
systems envisioned by Xerox, the interaction between the user and the systems is too
intimate for any simple model to suffice.

A "Simulated User" is a program that will produce the behavior of a human user in
conjunction with a simulation of a proposed system. It will generate sequences of tasks
to do according to some probabilistic model of the task domain, and for each task it will
generate commands to instruct the computer system to carry out these tasks. It will
choose methods based on the same principles that appear to govern human choices, and
it will make errors with the same relative frequencies. A Simulated User can be tuned to
show certain kinds of user characteristics (e.g., to be a particularly sloppy user or a
highly efficient one); and it can behave at any level of detail, depending on how it is to
be used. :

A Simulated User is a way of packaging psychological knowledge that makes it fit
directly into the design tools of the system designer. Simply by using it in conjunction
with his simulation he brings to bear relevant psychological effects in a direct and
continuous way. Furthermore, the Simulated User is cast in exactly the terms that a
practicing software or hardware designer can understand; he can explore its behavior
when it turns up- unexpected issues in the design. It will not be a black box.

Applied Information Processing Psychology 8
for Xerox Office Information Systems

A Design Representation for Command Languages

The artistic side of design lies largely in the generation of ideas and the scientific side
lies largely in their testing. It is easier to imagine how to use scientific knowledge of the
user to evaluate designs than to help in their generation. Yet a good applied psychology
must do both.

Common to all interactive computer systems is the command language -- the language
used by the user for specifying to the computer what he wants it to do. Their design is
an important aspect of the design of interactive office systems. It is almost completely
an intuitive art currently, with its inevitable collection of lore. One notion is the "User’s
Model": that the user develops a conceptual picture of the interactive system that serves
to guide his actions and expectations of how the system will behave. Whether a system
is simple and elegant or awkward and inconsistent is a reflection of its implicit User’s
Model. A simple User’'s Model reflects in ease of learning, though it is recognized that
any finite system can eventually be learned to permit expert performance. Unfortunately,
no scientific substance has ever been given to the notion of a User’s Model, and it
remains essentially a mythical beast.

Imagine, then, a notation for specifying command languages with two main components.
The first is a notation for specifying the computer system being controlled by the user
via the command language. This specifies the user’s view -- the entities that the user
understands, their relations to each other, and the types of actions the user sees the
computer as being able to perform. In short, this is the User's Model. The actual
implementation of the system must stay within the limits imposed by the User’'s Model --
or the user's view will actually be inconsistent -- but otherwise it is quite free.

The second component of the notation is a grammar for the command language itself,
defined in terms of linguistic constructs -- commands, arguments, contexts, state
variables -- and in terms of how it designates and evokes the elements of the User’s
Model. The user sees his commands as designating to the system various elements as
defined in the User’s Model. The grammar can specify command languages of arbitrary
complexity and complexion; it encompasses all possibilities for command languages,
given a User's Model.

By providing a separate representation for the User’'s Model and for the command
language per se, this scheme permits the User's Model to be designed explicitly, rather
than to provide only informal heuristic guidance. This wholly changes the space in which
user-system interfaces are designed.

A command language representation embodying a User’s Model will not look to the
practicing designer like a psychological theory. He will see it simply as a symbolic tool
that lets him write down aspects of proposed systems -- from sketches to completed
specifications. Nevertheless, the representation will be a psychological theory.
Experiments will have verified that the representation reflects how humans actually view

)

Applied Information Processing Psychology
for Xerox Office Information Systems

office systems. For example, users’ learning of systems will be describable in terms of
acquisition of the User's Model. Doing what comes naturally within the representation
will lead to designs that take human cognitive structure into account.

The Style of an Applied Psychology

Questions concerning the user occur everywhere in the design of office information
systems. Often they are not the central question, but operate more as a check against
solutions being user-foolish. Being pervasive, these applications will be made by the
designers themselves or they will not occur at all. An important component of our vision,
then, is to get the tools into the hands and heads of the practicing designer. We do not
thereby believe the designer, by training a software or hardware professional, is to
become also a psychologist. Gaps in expertise always exists between disciplines. But
the main result of an applied psychology will be measured by its lifting the whole design
process in its consideration of the human interface, not by a few psychologically deep
applications, made by the psychologists themselves (though we hope for those too).

The examples we have given already show some ways in which this transfer will occur.
The Simulated User and the command language representation (with the User’'s Model)
both provide tools that are used directly by the designer and incorporate psychological
knowledge in their very structure. More generally, the psychologibal theory we’ve
illustrated is cast in the same language as that used by the engineer, so he can
assimilate it easily.

Perhaps a small example will show what we mean. Recently we gave a seminar about
the pointer studies and Fitts’ Law. A few hours afterwards, Lynn Conway, the Manager of
the LSI Systems Group in SSL, came to us with a computation based on these results
(and in fact done on the back of an envelope) that showed how to decide the placement
of some active touch-areas on the display of an interactive, computer- aided, integrated
circuit design program they were at that moment developing. It was only the smallest of
applications, yet it has exactly the right flavor of spontaneous transmission to the
working designer.

The incident with Lynn Conway was serendipitous. The transfer of expertise will actually
be more deliberate. One product of AIP will be a Handbook of Applied Cognitive
Psychology, which will not only provide systematic psychological data, but will be
organized around classes of applied problems that can be solved by calculation from the
included data. This Handbook will be deliberately aimed at the engineer-designer.
Beyond this there will exist arrangements for designers to work with AP for short
periods on areas of their own special concern, where the transfer of expertise will occur
rapidly and effectively.

Applied Information Processing Psychology 10

for Xerox Office Information Systems

What Needs to be Done

In our own view, the efforts of the first three years have reinforced the premise on which
AIP is based: a useful applied psychology is possible. In particular, it is possible for
Xerox office information systems. The question, in our eyes, is how to pursue that goal.

As we have tried to make clear, AlIP’s fundamental product is the capability to apply
psychology throughout the entire domain of interactive information systems. This domain
is populated by a great diversity of task situations, almost none of which have ever
received even the slightest psychological analysis. One dimension of AlP’s work then is
to explore this total territory. Each new task domain becomes simultaneously an
extension of our knowledge and a test for how it has cumulated so far.

The work of AIP to date can be viewed as an initial foray into the domain of interactive
systems. This view is presented in the table at the end of this essay. It shows
completed, ongoing, and planned AIP studies. The vertical dimension of the table lays
out the task areas and the studies in those areas. The horizontal dimension lays out the
research aspects of each study, both the basic ingredients that it contributes to the
applied science and the types of applications it provides. The ingredients for tackling
each area consist of: (1) exploration of the area -- the acquisition of a first- order view
of the nature of human action in the area and how it fits (or does not fit) within existing
psychological science, (2) creation of successive orders of theory, (3) each coupled
with experimental verification, (4) along with the construction of a data base of facts and
principles, which puts this knowledge into accessible form. These ingredients often do
not come along without the construction of corresponding tools. Finally, we distinguish
three types of applications: (1) quick calculation, (2) quantitative evaluation, (3) and
use in design.

Given the table, one fundamental strategy of AIP can be easily described: engage in an
iterated series of attempts to fill out the table and to expand it along both the dimensions
of tasks and types of applications. Commitment to a unified theory of human information
processing and to cumulation of results implies that each study must contribute to the
whole. Commitment to finding first-order effects and limited-effort calculational
techniques implies that one task area cannot be developed too deeply before others
become too inviting. No time dimension exists in the table, since each study should be
short enough to make its contribution and permit another iteration to commence.
Commitment to embedding applied psychology as a workaday tool of the professional
systems designer puts a premium on learning how to get into a new application area,
explore it, create a local theory for the phenomena, collect a minimum of data, get the
results, and get out -- all in a big hurry!

The domain of interactive man-machine systems, like most task areas, exhibits a
sprawling diversity, which is only exaggerated by the historical vagaries of naming.
"Manuscript editing”, "page layout”, "command languages" -- what underlying structure

Applied Information Processing Psychology 11
for Xerox Office Information Systems

exists in this collection of tasks, and in others that do not yet appear in the table? The
vertical dimension of the table is not intended to be an unstructured list. One major
theoretical concern of AIP is the development of a scientifically relevant taxonomy of
tasks that would produce some order in this exploration. Such a taxonomy would tell us,
for example, whether the requisite basic knowledge was on hand to apply psychology to
a given office system interface or whether specific additions to that knowledge would be
required.

Quick studies are crucial for an applied psychology, but not all steps toward creating the
applied science can be taken that way. A few basic issues before us need substantial
effort (say, of the size and depth of a Ph.D. thesis) before they are well enough
understood to be fully assimilated into the theory. Consider user errors. Almost all of
the AIP studies thus far have concentrated on the error- free performance time of a given
task. Setting errors aside was an important step in making progress on that aspect of
performance, but errors are themselves a crucial aspect of performance and must be
dealt with. Since errors are relatively rare and highly diverse events, the research
problem is how to collect a substantial body of error data for analysis. Once we have
the data, there is the problem of building a model for predicting where errors will occur
and how frequently. These problems are solvable, we believe, but require extended
studies. Another basic issue is the learning of new systems. The research problems are
different than for errors, but they also require a large initial push to get the issue under
control. And there are other issues. Only after we get over the initial hump on these
issues is it be possible to proceed profitably with small studies that involve them.

Therefore, the nature of the AIP effort is research, including a great deal of basic
research at that! But all of the basic research is focussed on providing the capability for
doing relevant, quick, high-payoff application studies.

Applied Information Processing Psychology 12

for Xerox Office Information Systems

Conclusion

We have stated a vision of an applied psychology for office information systems. Such
an applied psychology, come to realization, would lead to systems that humans would
find easier to use and to learn. We do not know how much this would increase the
productivity and reliability of the total office operation. That cannot be a conclusion of
an essay that states a vision. General observation attests to the need for good
interfaces. Faith in science and its relevance to application insists that the solution to
ignorance is systematic and tested knowledge. But no one has seen the effects of
having a really good theory of the human user and no one knows how big a part of the
total office information system it can affect.

We have stated the vision as clearly as we could: an applied psychology based on
theory, admitting of calculation, applicable to the full range of design issues, and part of
the regular designer’s kit of routine techniques. We have made clear that a "theory-
based calculational psychology"” means just what any engineer would expect: relevant
aspects of systems can be characterized by formulas, which can then be used in flexible
ways. Some examples from our work provided illustrations. We showed how to
characterize the time a user takes to edit a manuscript and how that same theory can be
used to estimate the time to do page-layout in a proposed system. We showed how to
characterize the time to point with a continuous cursor-control device, and how the
formula indicated what aspects were already optimal.

The vision is clear enough so we could describe examples of possible applications. We
described a Simulated User, a computer program that embodies much of what is known
about how humans use office systems; it can be used in connection with standard design
simulations to make more accurate design explorations and evaluations. We described a
general notational system for command languages that would permit the characterization
of the User's Model of the office system. Given this, design of new systems could
proceed by first laying out the User's Model -- a truly new design capability. We
described- how the knowledge about the psychology of the user could be cast in a form
to be used by the practicing designer, rather than just by the professional psychologist.

Given this vision, we sketched by means of a table what AIP has been doing in the three
years of its existence. This table laid out the ingredients needed to support application
in any task area. We explained a fundamental strategy of AIP, which is to iterate quickly
over a series of attempts to extend our knowledge and theory to new domains. We
showed that the basic nature of the AIP effort is research, but research that provides the
capability . for effective application.

AP is now three years down the road in creating an applied psychology. We have a
vision of what that applied psychology will be like. We think that it is an attainable goal,
that it is useful -- even crucial -- for Xerox, that we have made considerable progress
toward that goal in the three years, and that the road to it leads straight ahead.

Applied Information Processing Psychology 13

for Xerox Office Information Systems

Reading Further

For the interested reader, the following are some basic references into the cognitive
psychology literature:

P. N. Lindsay & D. A. Norman.
Human Information Processing.
Academic Press, 1972.

A. Newell & H. A. Simon.
Human Problem Solving.
Prentice- Hall, 1872.

R. B. Klatsky.
Human Memory.
W. H. Freeman, 1975.

A. T. Welford.
Fundamentals of Skill.
Mentheun (London), 1968.

Many of the topics discussed in this essay are based on work we have done over the
last three years. This work is documented in an AIP memo series. The AIP memo
numbers for specific studies are shown on the table on the next page. Below are listed
the memos most likely to be of interest to readers of this essay:

A. Newell.
Notes on a proposal for a psychology research unit.
AIP Memo 1, January 1971, 11 pages.

S. K. Card, T. P. Moran, & A. Newell.
The manuscript editing task: a routine. cognitive skill.
SSL. Report 76- 8 (AP Memo 82), December 1976, 80 pages.

S. K. Card, T. P. Moran, & A. Newell.
Zeroth-order analysis of a document composition task.
AIP Memo 83, August 1976, 31 pages.

S. K. Card, W. K. English, & B. Burr.

Evaluation of mouse, joystick, step keys, and text keys
for use in text selection on a CRT. ~
SSL Report 77-1 (AIP Memo 95), April 1977, 27 pages.

AIP STUDIES

(June 1977) BASIC INGREDIENTS APPLICATIONS
X =completed Exploration
¢ =current | Theory Calculation
p =planned | | Verification | Evaluation
| | | Data Base | | Design Use
I I |
TASK AREAS AND STUDIES | I Tools | | | Memos*
------------------------------- [==1--l-=l=====]=====]-=]| ===
Manuscript Editing
Early Poet studies X X e 34
Rand editor prediction e e e . X . . 53,56
Benchmark studies .. . X . D S 54,79,93
Woodstock evaluation (Kimball) e e e . . X **
Data handling programs e e e X --
Poet method selection X X X X 67
Poet modelling study . X X X 82
Bravo individual differences X . X 86
Bravo model cC ¢ ¢ ¢ 88,97
Page layout prediction X . X . . 83
Cursor device study X X X X X X X 92,95
Poet learning studies X X . . . e e 37,94,98
Feedback dictation study X . 78
Command Language Systems
Design evaluation workshop X X . --
SDD user interface group X . X *EE
Critical incident study c . p --
Command Language Grammar . C p p --
Graphics & Displays
Line drawing task study X . . X . .. 85
Display studies P p P P . p p P -
General »
System evaluation workshop X --
L* Alto implementation e e X --
Simulated user exploration X . . 90,97
Parallel behavior study ‘¢ ¢ ¢ . --
Cognitive handbook PP p P p P --
Task taxonomy study pp . p --
Errors study P p p p . --

*AIP Memo numbers **3SL Memo *¥**¥3DD Memo

W erox
ALTO SUBSYSTEMS CATALOG ||E:@ Fivae

Data
January, 1978

Filed on [MAXC]<AltoDocs> SubsystemsCatalog.press

This catalog lists and briefly describes the various Alto subsystems. A subsystem is defined
to be any program that runs on the Alto whether under control of the standard executive or
as a standalone. Each subsystem has an entry of the following format:

PROGRAM NAME: DESCRIPTION
DOCUMENTATION

To simplify locating a piece of software to perform a specific function, a functional cross
reference of Alto subsystems is provided beginning on page 8.

New subsystems are continually being developed throughout the Whole Alto World. This
catalog is maintained and distributed by the Whole Alto World coordinator (Frank
Ludolph). If you have or know of a subsystem which you feel should be included, please
provide the above information to the coordinator. The following criteria should be met
before a subsystem is cataloged and distributed:

1. The program should be in general use at the installation.

2. Support should be provided to at least fix major bugs.

3. Satisfactory documentation must be available and up to date.

4, Management must indicate the sensitivity of the item to outside disclosure.

The subsystems listed are generally available from your local IVY station or [MAXC] under
the <ALTO> directory; the supporting documentation is found in the <ALTODOCS>
directory unless otherwise noted. If you do not have access to an IVY station or MAXC,
contact the coordinator for subsystems/documents requests.

Italicized program names indicate entries that are new or significantly altered.

AIS. a driver subsystem which interacts with the user to perform a set of standard
operations on imaginal data stored as AIS (Array of Intensity Samples) files.
DOCUMENTATION: [MAXC]<AIS>AIS-Manual.ears.

ANALYZE: a part of the Design Automation System that transforms logic diagrams
produced using SIL into a file which can be input to the GOBBLE wirelister.
DOCUMENTATION: [MAXC]<SIL>SilManual.press.

ANSRYV: a program that enables the Alto to use a Nova as a "remote batch” computer, i.e.
the Alto can ship jobs to the Nova for execution and retrieve the results following job
completion.

DOCUMENTATION: ANSRV.tty or Subsystems.ears.

APROM: Superceeded by PROM.

ASM: an assembler for the Alto machine language which produces relocatable files
‘compatible with the BCPL loader, BLDR.

DOCUMENTATION: ASM.tty or Subsystems.ears.

BCPL: a compiler for Alto BCPL language which produces files relocatable with the BLDR
loader. ,

ALTO SUBSYSTEMS CATALOG QT2 Xerox
. E»O€d Private
</\® Data

DOCUMENTATION: BCPL.tty/ .ears.

BLDR: a loader for the relocatable files produced by BCPL and ASM.
DOCUMENTATION: BCPL.tty/ .cars.

BRAVO: a text editor having extensive formating and hardcopy facilities.
DOCUMENTATION: ALTO User’s Handbook, BRAVO Course Outline, BRAVQ.ears and
BRAVOSUMMARY .ears.

BTREETEST: a B-Tree dictionary maintenance program used to support the
PROOFREADER data base.
DOCUMENTATION: ProofReader.tty.

BUILD: a part of the Design Automation System that helps with the data management
aspects of building boards and keeping the design automation data files current.
DOCUMENTATION: [MAXC]<SIL>SilManual.press.

BUILDBOOT: a program for constructing type B bootfiles from either an executable (BLDR
out) file or a segment file.
DOCUMENTATION: BUILDBOOT.tty or Subsystems.ecars.

CALCULATOR: a bootfile that pictures a TI SR-52 on the display which is operated by using
the mouse to select the appropriate keys. It is not programmable.
DOCUMENTATION: SR-52 Manual.

CHAT: a program for establishing PUP Telnet connections between a pair of cooperating
parties. Its chief function is to permit Alto users to talk to MAXC.
DOCUMENTATION: ALTO User’'s Handbook, CHAT.tty or Subsystems.ears.

CLEANDIR: a program to garbage collect a disk file directory (but not disk space).
DOCUMENTATION: Subsystems.ears.

CLEANLOG: a program to compact Sys.Log (or others of identical format), it is essentially
obsoleted by the release of Operating System 14.
DOCUMENTATION: CLEANLOG.tty or Subsystems.ears.

COPYDISK: a program for copying entire diskpacks. It will copy from one drive to another
on the same machine, or between drives on separate machines via a network using Diablo
Model 31/44 and Trident T-80/T-300 disks.

DOCUMENTATION: COPYDISK.tty or Subsystems.ears.

COPYFROMDRIVEL: a program to copy an individual file from DP1 to DP0 of a dual disk
Alto.
DOCUMENTATION: Subsystems.ears.

CREATFILE: a program to create a file of a given size, attempting to allocate it on

consecutive disk pages.
DOCUMENTATION: Subsystems.ears.

CRTTEST: a diagnostic program used to adjust the Alto display linearity. Three different
sized grids are displayed in rotation (press any key).
DOCUMENTATION: none.

CRUMPLE: a program to compress and, optionally, encrypt data files. The resulting files
can be stored or transmitted but must be expanded and decrypted before processing by Alto
programs,

ALTO SUBSYSTEMS CATALOG &TD Xerox
204} Private

@8% Data

DOCUMENTATION: Crumple.press.

DDS: a program to manage an Alto diskpack. Facilities are provided to display filenames,
lengths, creation-read- write dates, and contents, internal operations such as delete, and
rename, and external operations such as Send and Execute.

DOCUMENTATION: ALTO User’s Handbook or DDS.tty or Subsystems.ears.

DMT.BOOT: a memory diagnostic and statistics gathering program.
DOCUMENTATION: DMT.tty or Subsystems.ears.

DPRINT: a program to type text files on the Diablo Hytype printer.
DOCUMENTATION: DPRINT.tty or Subsystems.ears.

DRAW: an interactive illustrator program for creating black-and-white or color pictures
composed of lines, curves, and text captions. The illustrations can be output to a one page
press file.

DOCUMENTATION: ALTO User’s Handbook plus DRAWnews.ears, an on-line manual
(part of the DRAW package), and DRAW-Summary.ears.

EDP: an Ethernet interface diagnostic.
- DOCUMENTATION: None.

EMPRESS: a program to send press and text, e.g. bravo format, files to a press printing
server. Simple formatting options such as Tab and FormFeed are available.
DOCUMENTATION: EmPress.tty or Subsystems.ears.

EXECUTIVE: the Alto command processing subsystem, the intermediary by which users
generally invoke other subsystems and perform several opecrations on the Alto file system.
Normally invoked by the boot operation.

DOCUMENTATION: Executive.tty or Subsystems.ears.

FIND: a subsystem to search one or more. text files for a user supplied string at very high
speed and then display each line containing an occurance of the pattern on request.
DOCUMENTATION: FIND.tty or Subsystems.ears.

FRED: a part of the Font Creation System, it is used to create and/or edit "splines” (i.e.

outlines) of characters.
DOCUMENTATION: [MAXC]<GR-DOCS>Fred.ears.

FTP: a file transfer program to store and retrieve files between an Alto and another Alto,
Maxc, or IFS station. It also supports a Telnet connection that is similar to CHAT in
purpose and operation.

DOCUMENTATION: FTP.tty or Subsystems.ears.

GOBBLE: a part of the Design Automation System that generates a wirelist and routing
information for a single board given one or more node list files generated by ANALYZE.
DOCUMENTATION: [MAXC]<SIL>SilManual.press.

GEARS: an program to compose text files and transmit them to the EARS printer via the
Ethernet.
DOCUMENTATION: Gears.tty or Subsystems.ears.

GYPSY: a modeless text editor using both keyset and mouse, and having a "filing cabinet"”
interface which provides some file management facilities beyond the normal Alto filing
system. Used in applications where limited formatting facilities are required such as
programming,

QU Xerox
R private

ALTO SUBSYSTEMS CATALOG

DOCUMENTATION: Under development.

ICARUS2: a part of the ICARUS2 System, it is an interactive program for actually laying
out printed circuits and manipulating the resulting files.
DOCUMENTATION: [MAXC]<KICARUS>Icarus2doc.press, ICtools.press.

IFD2: a part of the ICARUS2 System that turns an ICARUS2 file into human readable
form, describing each symbol and its contents.
DOCUMENTATION: [MAXC]<KICARUS>IFD2doc.press.

IFS: the IVY File System server that provides one end of the file transfer facility and
maintains the files and directories on Trident T-80/T-300 disks.
DOCUMENTATION: [MAXC]<IFS>IFSdocuments.press.

IFSSCAVENGER: a subsystem to check and correct Trident T-80/T-300 diskpacks from the
IVY and Trident File Systems.
DOCUMENTATION: [MAXC]<IFS>ScavOp.press.

INSTALLSWAT: an installation program to install the SWAT debugging system on you disk.
DOCUMENTATION: None.

KEYTEST: a dignostic program that displays the Alto I keyboard, keyset and mouse. The
depressing of any key(s) is reflected by inverting (white to black) the display of that key on
the screen.

DOCUMENTATION: none.

LISTSYMS: a programming aid to convert a .Syms file (produced by BLDR) to a useful,
human readable form.
DOCUMENTATION: ListSyms.tty or Subsystems.ears.

LOGICPROM: Superceecded by PROM.

MADTEST: a bootfile diagnostic that runs tests on an Alto’s RAM, ALU, and emulator.
DOCUMENTATION: Enter "?" while running.

MAILCHECK: a simple subsystem that checks for mail at some other host (e.g. Maxc) via
the Ethernet.
DOCUMENTATION: MailCheck.tty or Subsystems.ears.

MARKUP: an illustrator used to add pictures consisting of lines, areas, mouse tracks and
text captions to formatted documents, i.e. Press files. It may also be used to simply display

press files.
DOCUMENTATION: Alto- User’s Handbook.

MIKE: a part of the ICARUS2 System that transforms ICARUS2 files into a form suitable
for the Mann 3000 pattern generator.

DOCUMENTATION: [MAXC]KICARUS>MikeUserDoc.press, MikeDoc.press.
MOVETOKEYS: Obsolete, . non- functional.

MU: the Alto Microcode assembler.
DOCUMENTATION: MU.tty or Subsystems.ears.

NETWORK EXECUTIVE: the execcutive obtained by booting from the Gateway over the
Ethernet that provides a convienient way to call "bootfiles” such as FTP or COPYDISK.

ALTO SUBSYSTEMS CATALOG 4T, Xerox
: ©&0@ Private
/A2 Data

DOCUMENTATION: NetExec.tty.

NPGR: a part of the SIL system that sends SIL files to the Ears printer.
DOCUMENTATION: [MAXC]<SIL>SilManual.press.

NPPR: a part of the Design Automation System that generates a Press file from a SIL file

for printing on a press printer.
DOCUMENTATION: [MAXC]<SIL>SilManual.press.

OEDIT: a subsystem for displaying and modifying Alto files in octal. Up to four files may
be simultaneously viewed while one of them may be modified.
DOCUMENTATION: Oedit.tty or Subsystems.ears.

ORBITTEST: the ORBIT interface diagnostic.
DOCUMENTATION: [IFS]<SPRUCE>ORBITtest.press.

PACKMU: a program convert the output of MU (an MB file) to a "packer RAM image"
which is easy to load into the RAM using RPRAM.
DOCUMENTATION: PackMU.tty or Subsystems.ears.

PEEK: a program which listens to the Ethernet for PeckReports and EventReports.
It can also serve as a bootserver and Ethernet Echo server for usc with EDP.
DOCUMENTATION: DMT.tty.

PEEKPUP: a small subsystem enabling one to peek at Pups going to and from a particular
Ethernet host; a debugging aid for new Pup software.
DOCUMENTATION: PeekPup.tty or Subsystems.ears.

PEEKSUM: a subsystem that summarizes the error reports sent to PEEK by DMT.
DOCUMENTATION: DMT.tty.

PREPRESS: a part of the Font Creation System that takes "spline character definitions",
usually created by FRED, and generates scan-converted characters, spline and character
dictionaries, readable listings describing the dictionary’s content, and a "widths"” file for use
by text formating programs.

DOCUMENTATION: [MAXC]<GR-DOCS>PrePress.ears.

PRESS: a subsystem to print full press files on press printers.
DOCUMENTATION: [MAXC]<GR-DOCS>PressOps.ears.

PRESSEDIT: a program to combine Press files together, convert Ears files (generated by
Pub and Bravo) to Press format, sclecting certain pages from a Press or Ears file, or add
extra fonts. The output is a Press file.

DOCUMENTATION: PressEdit.tty or Subsystems.ears.

PROM: a subsystem to edit micrcode, drive the Alto PROM blower and verify PROMs.
DOCUMENTATION: PROM.bravo.

PROMDIAG: Superceeded by PROM.
PROOFREADER: an interim English text proofreader that produces an output file listing

the questionably-speiled words.
DOCUMENTATION: ProofReader.tty.

4UB, Xerox
Q¥ b

ALTO SUBSYSTEMS CATALOG

PUPTEST: a PUP protocol and network integrity test program.
DOCUMENTATION: None. ’

PUT: a program for transfering files between the disks of a dual-drive Alto.
DOCUMENTATION: Internal to the program.

- QED: an in-core line editor used primarily for programming. The file is limited to about
1500 lines of BCPL.
DOCUMENTATION: QED.tty or Subsystems.ears.

RAMLOAD: a microcode loader that uses the output of thé microcode assembler, MU.
DOCUMENTATION: RamlLoad.tty or Subsystems.ears.

RAMTIMING: a bootfile diagnostic program to test the Alto RAM. Its function is also
performed by the more comprehensive MADTEST.
DOCUMENTATION: None,.

READPRESS: reads Press files and displays a text-listing of the entity commands, DL
strings, etc.
DOCUMENTATION: Subsystems.ears.

RENAME: a functional replacement for the EXECUTIVE supplied "rename.~" used to
quickly rename files on the Alto disk.
DOCUMENTATION: Subsystems.tty.

RPRAM: a microcode loader that loads a packed RAM image (generated by PACKMU) into
the RAM after checking the constant memory.
DOCUMENTATION: PackMU.tty or Subsystems.tty.

SCAVENGER: a subsystem for checking and correcting Alto disk packs.
DOCUMENTATION: Scavenger.tty or Subsystems.ears.

SEARS: a part of the Ears printing system run on the Alto, Palo, to start the Ears system.
DOCUMENTATION: Gears.tty or Subsystems.ears.

SETTIME: this simple subsystem attempts to obtain the date and time from some other host
on the Ethernet.
DOCUMENTATION: SetTime.tty or Subsystems.ears.

SIGMA: a subsystem to transfer arbitrary files between an Alto and a SIGMA 3 over the |

Ethernet.
DOCUMENTATION: "Ethernet Software for Data Transfer between the SIGMA 3 and an
ALTO", a Xerox Internal Report, Accession No. X7704459.

SIL: a part of the Design Automation System, it is an illustrator for the creation of logic
and line diagrams. The output may be processed by NPPR to generate Press files or
processed by ANALYZE for circuit design.

DOCUMENTATION: [MAXC]<SIL>SilManual.press.

SORT: a very small subsystem which will sort files containing less than 1000 entries
delimited by a carriage return.
DOCUMENTATION: Subsystems.ears.

SPRUCE: a printer server that utilizes the ORBIT buffer to drive Press printers, e.g. Dover
and Sequoia.

ALTO SUBSYSTEMS CATALOG QTP Xerox
& O@ Private
qd/W Data

DOCUMENTATION: Under revision.

SWAT: a emulator-level code debugger with BCPL oriented features used with the Alto
operating system.
DOCUMENTATION: Swat.tty or Subsystems.ears.

SYS.BOOT: the operating system boot file on the Alto disk.
DOCUMENTATION: None.

TFU: a file utility used to initialize a Trident pack with a virgin file system and to perform
various file copying, deleting, directory listing operations. This is not a part of the IVY
System, rather it initializes and maintains packs operated on by the TFS package.
DOCUMENTATION: TFS.tty or Sybsystems.ears.

TRANSFILE: a part of the ICARUS2 System that translates the intermediate files generated
by Mike into human-readable form. The files it produces are fully instantiated.
DOCUMENTATION: [MAXC]<KICARUS> TransfileDoc.press.

TRIEX: a Trident diagnostic used to initialize, verify, and exercise Trident disk packs and

drives.
DOCUMENTATION: Self-contained.

TYPE: a functional replacement to the Executive supplied "type.~" that displays a larger
page, suppresses Bravo trailer information, can skip forward and backward, etc.
DOCUMENTATION: TYPE.tty.

UGH: an in-core text editor utilizing both mouse and keyset. While some formating
facilities are available it is used primarily for programming.
DOCUMENTATION: UGH.tty.

VYIEWDATA: a subsystem to display on the Alto screen three-dimensional data stored as a
two- dimensional array of single-word values.
DOCUMENTATION: ViewData.tty.

VIEWIC: a part of the ICARUS2 System that displays the data created by Mike on the Alto
screen, simulating the actions of the pattern generator.
DOCUMENTATION: [MAXCIKICARUS> ViewicDoc.press.

VYPRINT: a subsystem to output text files such as .TTY, UGH, BRAVO, or GYPSY, to a
Versatec printer.
DOCUMENTATION: Under development,

ALTO SUBSYSTEMS CATALOG Q@& Xerox
€ Private

FUNCTIONAL CROSS REFERENCE P b

The following list of Alto II subsystems is organized according to the general function they
perform. Because many subsystems perform more than one function or a function may be
thought of in a variety of ways, an item may be listed more than once.

The major functional headings are:

Document Creation Hardware Design Messages

Files Hardware Diagnostics Printing

Font Creation Hardware Drivers Programming
Recovering

DOCUMENT CREATION
EDITORS
TEXT

BRAVO - Rich in formatting features.
GYPSY - Features to handle groups of files (e.g. chapters or modules).
PROOFREADER - Produces an output file of questionably spelled words.
QED - A line editor.
UGH - An in-core editor that uses the keyset for command input.

GRAPHIC
DRAW - Pictures composed of lines, curves, text and smoothed mouse tracks.
FRED - A Spline editor for font work.
MARKUP - Dot pictures of lines, areas, text, and mouse tracks.
SIL. - For creating diagrams composed of lines with text captions.

IMAGINAL
AIS - Image manipulation, printing, Press file creation.

PAGE MAKEUP
MARKUP - Create new or move pre-existing diagrams along side existing text.

MERGING
AIS - Merges bitmap files (e.g PRESS output and AIS files).
EMPRESS - Append press files to personalized coversheets.
PRESSEDIT - Generate Press file from pages of other Press files.

PRINTING - see PRINTING below.

FILES
DISPLAY
OEDIT - Alto files in octal.
MARKUP - Press files,
PRESS - Press files.
TYPE - Text files.
VIEWDATA - Three-dimensional information stored as a matrix of values.

TRANSFER
COPYDISK - Copies whole disks, Diablo Models 31/44 and Trident T-80/T-300.
FTP - Copies a file between Altos, Alto-IVY, and Alto-MAXC.
GYPSY - Transmits its files to a Communicating 800 ETS.
PUT - Copies files between disks of a dual drive Alto.
SIGMA - Copies files between Alto and SIGMA 3.
TFU - Copies files between Trident drives.

ALTO SUBSYSTEMS CATALOG , %@@ Xerox
Private

@ @ Data

ALTO FILE SYSTEM
CLEANDIR - Garbage collect disk directory.
CREATEFILE - Adds new file of specified size on consecutive pages, if possible.
CRUMPLE - Compresses and optionally encrypts a file.
EXECUTIVE - Delete files, list directory.
FIND - Locates and displays lines containing specified text string.
FTP - Transfers files between Alto and Alto, IVY, or MAXC.
OEDIT - Display and modify file in octal.
PUT - Deletes, renames, and copies files between disks of a dual drive Alto.
RENAME - Quickly renames a file.
SCAVENGER - Checks and corrects the disk.
SIGMA - Transfers files between Alto and SIGMA 3.
SORT - Sorts up to 1000 items delimited by carriage returns.
TYPE - Displays contents of text files.

IVY FILE SYSTEM
IFS - The server.
IFSSCAVENGER - Checks and corrects Trident T-80/T-300 disks.
TFU - Initialize directory and verify disk.

TRIDENT FILE SYSTEM
IFSSCAVENGER - Checks and corrects Trident T-80/T-300 disks.
TFU - Initialize and list dirctory, verify disk, copy and delete files.

RECOVERY
IFSSCAVENGER - Check and correct disks of IVY and Trident file systems.
SCAVENGER - Check and correct disk of Alto file system.

FONT CREATION
SPLINES '
DRAW - Create splines using mouse or knots.
FRED - Create and edit splines, create font files.

BITMAPS
PREPRESS - Scales and rotates splines, converts to and edits bitmaps.

DEVICE FORMATS
PREPRESS - Creates printer and display fonts from bitmaps.

HARDWARE DESIGN
CIRCUIT BOARD
SIL - Create and edit logic diagrams.
ANALYZE - Converts SIL drawing for GOBBLE, generates SIL of unassigned pins.
GOBBLE - Generates wirelist and routing information.
BUILD - Aids data management aspects, keeping data files current.
NPGR - Sends a SIL file to Ears.
NPPR - Generates a Press file from a SIL file.

INTEGRATED CIRCUIT
ICARUS2 - Layout integrated circuits.
IFD2 - Generates human readable form of ICARUS2 files.
MIKE - Transforms ICARUS2 file to form for Mann 3000 pattern generator.
TRANSFILE - Generates human readable form of MIKE file.
VIEWIC - Displays MIKE output.
ICGERB- - Generates Gerber photoplotter output from ICARUS files.

ALTO SUBSYSTEMS CATALOG Q@& %ero:; 10
rivate

@ V Data

HARDWARE DIAGNOSTICS
USER
CRTTRST - Displays a rectangular grid. (.boot/.run files).
DMT - Memory diagnostic that transmits results to PEEK. (Alto/server boot files).
EDP - Ethernet interface diagnostic. ,
KEYTEST - Keyboard diagnostic. (.boot/.run files).
MADTEST - Diagnostic for RAM, ALU, and emulator. (.boot/.run files).
TRIEX - A Trident T-80/T-300 diagnostic.

INSTALLATION
DISKTEST - Bootfile diagnostic for the Diablo Model 31.
ORBITTEST - An ORBIT Iaterface diagnostic.
PEEK - Collects PeekReport/EventReport packets on <filename>.
PEEKSUM - Summarizes DMT error reports collected by PEEK.
PUPTEST - Ascertains status of ntwork servers.

HARDWARE DRIVERS - See the Alto Hardware Catalog under appropriate device.

MESSAGES (Requires MAXC account)
SENDING
CHAT - Accesses SNDMSG on MAXC.

RECEIVING
MAILCHECK - Interrogates MAXC for new mail.
CHAT - Accesses MSG on MAXC to retreive mail.

PRINTING
REMOTE
REFORMATING
PREPRESS - Generates a Press file from .tty and many .ears files.

EARS (Palo Alto only)
BRAVO - Sends the workfile to Ears.
GEARS - Format and send text file to Ears.
PRINT - Send Press file to Ears.
SEARS - Ears server.

PRESS
BRAVO - Sends the workfile to SPRUCE.
EMPRESS - Sends the specified Press and/or Text files to SPRUCE.
GYPSY - Sends the workfile to SPRUCE.
SPRUCE - A Press server for Dover/Sequoia/Pimlico.

LOCAL
BRAVO - Prints the workfile on the attached Diablo HyType.

DPRINT - Prints text files on the attached Diablo HyType.
GYPSY - Prints the workfile on the attached Diablo Hytype.
PRESS - Prints Press files on slot and Versatec printers.
VPRINT - Prints text files on Versatec printers.

ALTO SUBSYSTEMS CATALOG

PROGRAMMING
EDITORS - See DOCUMENT-EDITORS-TEXT above.

ASM/BCPL

: ASM - Alto machine language assembler.
BCPL - BCPL compiler.
BLDR - Loader for ASM and BCPL relocatable files.
BUILDBOOT - Generates a type B bootfile.
SWAT - an emulator level, BCPL oriented debugger.
INSTALLSWAT - Installs SWAT on a disk.

LISTSYMS- - Converts .SYMS files to human readable form.

MU
MU - Microcode assembler.
RAMLOAD - Loads RAM with MU output.
PACKMU - Converts MU output for RPRAM.
RPRAM - Loads RAM with RPRAM output.

DEBUGGING AIDS
SWAT - An emulator level, BCPL oriented debugger.

LISTSYMS - Converts .SYMS files to human readable form.

BTREETEST - A B-tree dictionary maintenance program.

S

QD Xerox

€} Private
\'Z Data

PEEKPUP - Peeks at PUPs going to and from a specific Ethernet address.

PUPTEST - Interacts with new subsystems that use the PUP protocol.

READPRESS - Displays entities within a Press file.
RECOVERING
DISK FAILURES - See FILES-RECOVERY above.

SUBSYSTEMS FAILURES
BRAVOBUG - Recovers BRAVO files to point of failure.

11

XEROX ALTO NETWORK
February, 1978

@ 32 LINES
100B

ARPA
NET ¢ MAXC i
IMP) {ELNE} DLS
PARC
i - ——;——-——-———-gzm floor
pover] [pover| lpmuico] krot a1l | Ears (107 Altos}3 #
MENLO{ |cLOVER sLot-2] | paLo
121 # 116 # 3#
PARC
G 1st & 3rd
(10 Altos)§ g #
§SDD/PA
» el B g 33 & 34
vy | [Pmico] [oover] Eequol (50 Altos)d 5
RIS TURKEY| | KANJI
— { s0# 6# 52 #
VAN :
G] (18 Altos)j
N VY DOVER| [SEQuoOI
XEOS whIte | |ArcTIC
; 130 # 122 # 200 #
G : I HSDD/ES
- | e -
85 Altos)}
L N % DOVER | ISEQUOIA BEQUOIA BEQUOI ¢ o
FS-2 - cosTal | GianT | AARDVAR
4 # 402 # 104 # 105 # 13 #
(4 Altos)§13#
vy
S ADL
200 #
ey G\ WRC-
| I (22 Altosi{14 #
__J" vy ISEQUOI
wre | kequold
111 #
Filed on [MAXC] < AltoDocs> AltoNetwork.press
ALTO Server NOVA Other Resource

(ALTO + Device) (Sm:?wv;r/e)pup Gateway

Whole ALTO Wonrd Newsletter

Technology and Tools

XEROX March 31, 1978

GENERAL NOTES

MAINTENANCE NOTES - A new subsection is being added to the Newsletter to circulate
knowledge of specific hardware problems, solutions, and maintenance techniques. It’s
located between the HARDWARE and SOFTWARE subsections under TOOLS. While
many of the items will be directed to the people that maintain the hardware, some will be of
general interest to Alto users, so don’t just skip over this section.

MESA - The information on MESA in the last Newsletter needs some clarification.
Although MESA as a language is still evolving and should not be used outside SDD for
tightly scheduled projects, it is a reasonably robust and complete system and will be highly
compatible from the Alto to successor machines. As such it should be seriously considered
fot both short and long term projects. Remember, the WAW coordinator, Frank Ludolph, is
the MESA contact for non-SDD, non-PARC users.

TOOLS
HARDWARE

SEQUOIA BUILD - This is the last opportunity to indicate your interest in purchasing a
Sequoia from the proposed October build. Contact Sam Losh at XEOS now, Intelnet 8*844-
2501.

HUSHING THE TRIDENT - Jensen Engineering will custom build quiet boxes for the T80
and T300 drives. Externally the units will look identical. The prototype will be "Alto" grey
but the production color(s) is not yet certain. Preliminary price estimates are $450 to $500
for the T80 box and $350 to $400 for the T300 box. (The T80 box costs more because a
platform is necessary to raise it to the same height as the T300.) If interested please send a
message to Barbara <BAIRD?>; quantity orders will lower the price. Don’t wait for an "iffy"
second build.

BUILDING REGULATIONS AND THE ETHERNET - The 1978 National Fire Code states
that electrical wiring within the environmental airspace must be within conduit. In a
building with a drop ceiling, the space above the ceiling is part of the environmental air
space if that space is used for air return by the airconditioning system. If both intake and
exhaust ducting is used, the space above the ceiling is not considered a part of the
environmental airspace. Specifically exempted is low- voltage communication cable provided
the cable is approved for the purpose, i.e. it does not contribute to combustion. To be
approved the cable must meet both smoke and flamability standards. Common polyethelene
insulated coaxial cable is not acceptable but cable having a non-contaminating vinyl sheath
has been approved.

Whole ALTO Word Newsletter

MAINTENANCE NOTES

DIABLO 31 WRITE-HEAD CURRENT - Because Diablo intended the Model 31 to be run
at a slightly lower recording density than used in the Alto, the write-head current beyond
track 128 may be insufficient for reliable operation. Diablo advises that the write- head
current can be raised by. altering the value of resistor H-64 on the J10 board, starting with
1K and reducing if necessary. Resistor F-63, part of the same voltage dividing network,
should not be cut as this drives the associated transistors to full on, altering their
characteristics and causing - splatter (the reason for the current cut in the first place).

HARDWARE CHECKOUT BY THE USER - There are several diagnostic programs that
users can run to verify that the pieces of their Alto are running properly: DMT, CRTTEST,
KEYTEST, and MADTEST. These are available from boot servers such as Gateways. To
execute them, boot over the ethernet (boot while depressing the BS and quote keys) or type
the 'netexec’ command to the Executive. At this point the NetExec will appear on the
screen. Type the name of the diagnostic and you’re off and running. (Enter a *?’ to list the
boot files that can be called by the NetExec; the diagnostics listed above should appear. Do
not use DISKTEST. It’s intended only for maintainers, requires documentation to use, and
could overwrite a readied disk.) CRTTEST and KEYTEST are used to checkout the
workstation and are very simple to use (see below). DMT and MADTEST checkout the Alto
itself and will be described next month.

CRTTEST draws parallel vertical and horizontal lines. The thing to look at is the sharpness
of the lines (are they fuzzy?) and the shape of the boxes circumscribed by the lines. The
boxes should be square, not tall or wide or diamond shaped (romboid). There will be a little
distortion at the corners so don’t worry about that. Depress the space bar.(or any other key
for that matter) and the lines will be redrawn with a different spacing; there are three
different spacings. To quit, boot. '

KEYTEST tests the action of the keyboard, keyset, and mouse. When the program begins,
these items will be drawn on the screen (you may have to move the mouse to find it’s
diagram). It was recently enhanced to display either the Alto I or Alto II keyboard as
appropriate. Depress each key, one at a time; the corresponding key on the display should
turn black. If it stays white, or more than one key turns black, there is a problem. The
latter is particularly a problem with the Alto II keyboard. To quit, boot.

SOFTWARE

In general, the subsystems, packages, and documentation indicated here will be available
from your local IVY server under the directories <Alto> and <AltoDocs>. If they are not
available, or if you are in doubt as to the version, they may be retrieved from [MAXC]
(same directories). Files stored under other directories are on [MAXC] unless otherwise
indicated, e.g. [XEOS].

"NEW RELEASE: AlISshow.run - This new addition to the AIS (Array of Intensity Samples)

system was written by Paul Roetling. As the name implies, the program displays AIS picture
files on the Alto screen. If the image is larger than the screen, the image will be
demagnified using a nearest neighbor algorithm. It operates on either 1 bit/pixel and 8§
bit/pixel images; the 8 bit/pixel images will be displayed using a Floyd halftone routine.
Demagnified 1 bit/pixel images may show substantial Moire patterns. Retrieve
[WRC]<AIS>Subsystems>AlSshow.run. The documentation, < AIS>Memos> AISshow.memo
is appended to the Newsletter.

Whole ALTO Word Newsletter

ReReleases - Subsystems

AlISdump - An error which printed some incorrect values for windows of odd length was
fixed. The new version, 1.1, is available from [WRC]<AIS>Subsystems> AISdump.run.

COPYDISK - The "[thisHost]device"” bug has been corrected and the default value of
WRITEPROTECT is now TRUE. This subsystem is available from boot servers.

DDS - This new version conforms to the new time standard. Retrieve <Alto> DDS.run.
DMT - This new version conforms to the new time standard. Retrieve <Alto> DMT.run.

EXECUTIVE - This new version conforms to the new time standard, fixes a few bugs, and
has some enhancements including the ability to load CHAT, FTP, Scavenger, and NetExec
over the ethernet, a FILESTAT command to report file attributes, and a SETTIME that
obtains the time over the ethernet (delete SetTime.run). Use <Alto>NewOS.cm to update
this subsystem as well as the new OS/15 and FTP. The documentation,
<AltoDocs> Executive.tty, has been revised.

FTP - The 21 March 78 version fixes more file date bugs and contains new features
including a typescript of the user window, new commands (Open, Close, and Compare) in
the command line, and improved command line error handling. This subsystem will be
updated when installing the new operating system. See the revised documentation,
<AltoDocs> FTP.tty.

KEYTEST - This diagnostic, available from boot servers, has been enhanced to display the
correct keyboard, i.e. Alto I or Alto Il. Retrieve <Alto>KeyTest.run only if boot servers, e.g.
gateways, are not on your ethernet.

LISTSYMS - This new version conforms to the new time standard. Retrieve
<Alto>ListSyms.run. The documentation, <AltoDocs>ListSyms.run has been revised.

MICRO/MICROD - A primary reason for the rerelease is to alleviate a space constraint
which prevented certain diagnostics from assembling. Also the filename extension, MC, is
now defaulted rather than forced. Retrieve <Alto>MICRO.run. The changes document,
<AltoDocs> MICRO.tty has been updated.

MU - A bug which failed to give an error message when a semicolon was left off the end of
a predefinition was corrected, the filename extension now defaults to .Mu, and the listing
file contains constants sorted by value as well as by address. Retrieve <Alto>MU.run and
the revised documentation, <AltoDocs>MU.tty.

NETEXEC - This boot file has been enhanced to poll boot servers for the boot files they
can supply, and has some new user command functions such as PROBE and HOST. No .run
file need be retricved.. The new documentation is available on <AltoDocs> NetExec.tty.

OPERATING SYSTEM - This version fixes bugs in the file date code which caused the FTP
update command to fail. Retrieve and execute <Alto> NewOS.cm. Verify that there are at
least 300 free pages on your disk before executing the command file. This will also update
FTP and Executive.

PEEK - This new version conforms to the new time standard. Retrieve <Alto> PEEK .run,

Whole ALTO Word Newsletter

PRESSEDIT - The experimental version reported last month has been officially released. It
enables the merging of one page graphics onto a text document at any location on the
document page, so0 now it’s an easy matter to edit text after inserting graphics (re-edit the
Bravo file, make a Press version, and remerge). It also fixes bugs concerning Private Data
Labels and very complex pages. Retrieve <Alto>PressEdit.run and the new documentation,
<AltoDocs> PressEdit.tty.

PROM - The nature of the changes are unknown to me. Retrieve <{Alto>PROM.run.

READPRESS - The new version properly recognizes Press file elements that have just come
into use. Retrieve <Alto>ReadPress.run.

TRIEX - This release incorporates the new time standard. Do not use it under OSs prior to
version 14. Retrieve <Alto>Triex.run and updated documentation, <AltoDocs> TFS.tty.

TFU - This release incorporates the new time standard. Do not use it under OSs prior to
version 14. Retrieve <Alto> TFU.run and updated documentation, <AltoDocs>TFS.tty.

ReReleases - Packages

PUPPACKAGE - The new version contains changes to the BSP code that improve
performance when communicating through Gateways and also fixes several bugs. Several of
the modules have been broken into smaller pieces to permit substantial overlaying. The
documentation, <AltoDocs> PupPackage.tty, has been updated. .

TIME - The new version conforms to the new time standard. If you are responsible for
subsystems that deal with time in any way, you are requested to begin converting such
subsystems to use the new software. The backward compatiblility measures that have been
implemented in OS 14 will cesae to work correctly on April 30, 1978, so it is desirable that
the revised subsystems be released well before that time. Announcements of new releases
should include a warning that they will not work under pre-OS 14 versions. Load
CAlto>Time.dm. The packages is documented in <AltoDocs> Time.tty; the new time
standard is described in <AltoDocs> AltoTime.Bravo.

TFS - This release contains the modifications necessary to conform to the new Alto time
standard. It will run only under OS 14/15. Also, the microcode source file has been broken
up to facilitate combining it with other microcode, however the microcode binary is
unchanged. Load <Alto>TFS.dm. Updated documentation is available on
<{AltoDocs> TFS.tty.

TECHNOLOGY

Most users are familiar with the printing of text and graphic information but there is a
third type, imaginal. Continuous tone pictures (e.g. photographs) are of this third type. The
problem of printing continuous tonc images is essentially that of representing many shades
of grey with only black ink on white paper. A solution of the printing industry was the
halftone, a pattern (usually regular) of black dots which vary in size and, possibly, shape.
Pictures in the newspaper are an example. Two papers are included, one which describes the
halftone process and a second that presents the resolving limits of the eye, why we see
groups of black dots as multi-grey tone images.

Whole ALTO Word Newsletter

The first, PRESS, Halftones, and You by Joe Maleson, is something of a tutorial on
halftones and the halftone process as implemented in Press. The Press specific information
applies to Press 1. Press 2 has a different halftone screen pattern and no longer uses error
distribution. The new screen pattern, similar to that used in the printing industry, has
dramatically improved image quality. Joe has written a memo describing the halftone screen
being used in Press 2. Since the electronic form does not contain the image and graphic
information, contact Frank Ludolph by message, <Ludolph>, or phone, 8*923-4356, for a

copy.

There is an interesting problem in the printing of papers that demonstrate methods of image representation,
namely that of accurately representing the image. It is the appearance, not the content of the image that is
important. Since imaginal data can currently be printed at Xerox only on low speed, low volume printers
and because of distribution volume, the Newsletter contains a copy made on the 4000 copier (with resultant
image degradation). It is appended at the very end rather than in its usual place following this introduction.
An original (from the Slot-3100) is being sent to each site for posting.

The second paper, by Paul Roetling, Visual Performance and Image Coding, presents data
on the eye’s ability to resolve what it sees and develops guidelines for determining how
much information must be captured and retained in digital form to meet the e¢ye’s
requirements. Continuous tone images contain a hugh amount of data; retaining more than
necessary severly impacts storage requirements and processing times.

Paul has written several other papers of a tutorial nature that contain continuos tone images.
Check the library for the published versions because the image quality suffers in
reproduction. The first describes several methods of representing continuous tone images,
the second is a specific method for improving the appearance of halftones, and the third a
discussion of factors affecting halftone image quality.

Binary Approximation of Continuous Tone Images, Photographic Science and Engineering,
Vol. 21, No. 2, March/April 1977.

Halftone Method with Edge Enhancement and Moire Suppression, Journal of the Optical
Society of America, Vol. 66, No. 10, October 1976.

Analysis of Detail and Spurious Signals in Halftone Images, Journal of Applied
Photographic Engincering, Vol. 3, No. 1, Winter 1977.

Paul’s paper, which originally appeared in SPIE/OSA Vol. 74 (1976) Image Processing, had
to be rekeyed and the graphs redrawn for inclusion in the Newsletter. The editor accepts
sole responsibility for its appearance and accuracy.

The Whole Alto World Newsletter is a monthly publication for Xerox employees that use the Alto. It is not
to be shown to non- Xerox people. Copies are available on [MAXC] < AltoDocs> WAWnews.press or may be
obtained from the editor, Frank Ludolph, XEOS, by messaging <Ludolph> or calling Intelnet 8*923-4356.

XEROX Internal Memo

To Distribution From Paul G. Roetling
Mgr., Image Processing Area
W128/22037
Subject New Program AISshow.run Date March 7, 1978
Version 1.0

A new ALTO program, AISshow.run Version 1.0, is available from the WRC ivy system
under <AIS> SUBSYSTEMS> AlISshow.run. As the name implies, this program is intended to
allow a person to examine AIS picture files by presenting them on the ALTO screen.

Program Operation

When you run the program, the first screen display will come up as a menu similar to that
used in AlSmagnify and AISdump (if you’re not familiar with using the menu, look in the
documentation for AISmagnify). All that is needed is the picture file name, the window can
be defaulted. Selecting start will remove the menu from the screen and start showing the
picture file. If the picture window selected is larger than will fit on the screen, the image is
demagnified (by a nearest neighbor routine) so that the complete window shows on the
screen. If the selected window fits on the screen, it is shown full size without magnification,
and a notation appears above the image stating that the window is shown full size. As with
magnify and dump, the program operates on either eight bit or one bit per pixel files. If
the file is eight bits per pixel, a Floyd halftone routine is used to show the image. One bit-
per-pixel images are shown without halftoning. The photometry sense is noted from the
attributes and is used to show the image in the "correct” sense. A cautionary note should be
added here. Demagnificaton of bit-per-pixel halftone images may cause substantial moire
patterns. Do not assume that the moires are really in your picture unless the picture has the
notation that it is being shown at full size, in which case you are seeing the correct image.

Display control

As the image is in the process of being displayed on the screen, if you realize you do not
want that image, or already have enough to see what you wish to see, typing a control-S will
terminate additional display to the screen, leaving the portion of the picture which it has
already displayed. In its current form, it sometimes takes a long time to produce a large
image in reduced form, thus this is a short cut.

Once the picture is completely displayed on the screen, (or stopped by control-S), a set of
instructions will appear above the picture on the screen. These are various key-in
possibilities:

I - will invert the sense of the screen. Use this if your impresssion of "correct” is different
from that in the photometry section of the file. You can tell when you are opposite to the
normal photometry because the rest of the screen will be black instead of white.
Carriage return - will remove the picture and return to the menu.

Q - will quit the program without returning to the menu.

Escape - will reset the window parameters to full picture, remove the old display and start
displaying the complete picture without returning to the menu.

M - is used to show the area selected by the mouse (see below).

Selection by mouse

If, while the image is displayed, you point the cursor to one corner of an area you wish to
see, depress the left mouse button, move the cursor to the diagonally opposite corner of the
area you wish to see displayed, and release the left mouse button, a box will appear
surrounding the area you have just selected. If you wish to change the selection, simply
repeat the process and a new box will appear after you release the left button. If you try to
select an illegal area, for example, outside the area shown, no box will appear and any
previous one will be erased. If there is a box on the screen at the time M is keyed, the area
outlined by the box is used to define the new window both for the display and for writing
into the window parameters in the menu.

In our limited use of this program, we have found this last feature to be very useful. A file
name is selected, and the full picture is shown initially. We then use the mouse to select the
area we wish to see, key an M to see the region, repeat the process to window down further,
until we get exactly the area we want. We then use carriage return to return to the menu
and copy down the window parameters for use in other programs as for example, magnify.

The primary purpose of this program is to allow us to experiment with user interaction both
for image display and window selection. Thus, we expect that portions of the program will
be revised frequently as we conduct experiments. We would also appreciate comments from
users on their reactions to program features. Please contact either Keith Knox or myself
with comments.

PGR/sm

c: JEBollman
TMHolladay
JEStinehour
LBHolt
DEDamouth
WMReilich
LDMailloux
KTKnox

VISUAL PERFORMANCE AND IMAGE CODING
Paul G. Roetling

ABSTRACT: Sample spacing and quantization levels are usually chosen for digitizing images such that the eye
should not see degradations due to either process. Sample spacing is chosen based on the resolution (or high
frequency) limit of the eye and quantization is based on perception of low contrast differences at lower
frequencies. This process results in about 8 bit/pixel, 20 pixel/mm digitization, but, being based on two
different visual limits, the total number of bits is an overestimate of the information perceived by the eye. The
visual MTF can be interpreted in terms of perceptible levels as a function of spatial frequency. We show by
this interpretation that the total information perceived by the eye is much less than 8 bits times the number of
pixels. We consider the classic -halftone as an image coding process, yielding 1 bit/pixel. This approach
indicates that halftones approximate the proper distribution of levels as a function of spatial frequency;
therefore we have a possible explanation of why halftone images retain most of the visual quality of the
original.

I. INTRODUCTION

In this paper we consider the problem of how visual performance characteristics can be
related to the average number of bits per pixel (picture element) in a sampled and quantized
image. If we establish an average number of useful bits per pixel in the sense that only
these are used by the eye, we then have a number against which to compare the efficiency of
various image coding or bandwidth reduction schemes for cases where system performance is
related to the visually perceived image quality.

It is well- known that visual performance is a function of spatial frequency. That is, at high
spatial frequencies we do not see as well as at lower spatial frequencies and, without
magnification, we can see no detail at spatial frequencies above about 10 line pairs per
millimeter. By examining how visual performance varies as a function of spatial frequency,
we should be able to establish guidelines for image coding experiments as to which pictorial
information is useful to the eye.

In the following sections we will examine the selection of sampling interval and
quantization levels based on visual performance, thereby establishing design guidelines and a
useful number of bits per pixel as a function of sampling interval. We then examine a
simple halftone binary-image code and a similar code applied to multilevel images and
estimate the performance of these simple codes on the basis of cstablished limits.

II. SAMPLING AND QUANTIZATION CHOICES

To bound our problem we first assume that the images will be examined at unity
magnification at normal reading distance. We lose no generality by this assumption, since
all results can be scaled by the magnification. We assume ideal sampling, that is, we ignore
sampling aperture effects and display spot (Kell factorl) effects. We can then assume that
if we sample at an interval A we can adequately represent pictorial information to a spatial
frequency (2A)'!

A simple example serves to show how we use visual performance limits in everyday
estimates of coding efficiency. Let us consider the case where the image is sampled 40 times
{)(:r millimeter. By our assumptions, and the fact that the eye does not see detail beyond 10
ine pairs per millimeter, we lose no visible information by taking alternate samples (or
perhaps averaging every pair of samples). We have therefore reduced the total number of

samples in the two dimensional image by a factor of four without losing perceived image
quality. Most of us would argue that this four-to-one bandwidth reduction should have
been obvious, because the information eliminated by the bandwidth reduction was
information not being used by the visual system. Thus, we tend to judge the bandwidth
reduction in terms of the visually useful information in the original.

To count the useful bits in a picture, we would certainly limit the sampling interval to
approximately 20 per millimeter. Similarly, we would limit the quantization levels to about
8 Dbits (256 levels) since we know that the eye cannot perceive more levels in the output
picture. Nevertheless, if we were to multiply 8 bits per pixel by the number of pixels (20
per millilmeter sampling interval) we get a considerable overestimate of the number of
useful bits in the image. We have failed to take into account how visual performance varies
with spatial frequency. In different words, we have established the sampling interval based
on the high frequency performance of the eye and the quantization levels based on the low
fﬁequerlllcy performance of the eye, without taking into account the translation from one to
the other. -

A VISUAL MTF

We describe an improved approximation to the determination of visually useful bits of
information by basing ourselves on known psychophysical data on visual performance in

2
terms of the modulation transfer function (MTF). Text books, such as Cornsweet’s ,

. . 3 . . .
consider various sources of such data. Dooley gives a convenient functional form which
approximately fits most of the vision data. His fitted curve, in terms of modulation
transfer function (MTF), is given by

-0.138f -0.1f
MTF =5.05 (e) (1-e). 1)

This curve has been normalized and f is spatial frequency in cycles per degree. The peak of
" the curve represents a just detectable modulation of 0.005. The psychophysical data to
which this curve was fitted were measurements of the just detectable modulation of a sine
wave as a function of the spatial frequency of that pattern. It should be noted that we do
not use the data in MTF form, but rather we determine directly the detectable contrast, i.e.,
we use the original form of the experimental data.

We now assume, for our approximation, that at every spatial frequency we should quantize
levels such that the just detectable modulation represents one quantization step. If we
further assume that, for all sine waves, the average luminance was mid-grey, then the
modulation can be written

M =MAX-MIN =detectable difference (2)
MAXAMIN total range

In other words, the number of intervals is the reciprocal of the just detectable modulation,
and the number of levels we must represent is the number of intervals plus one. That is, we
can write the number of detectable levels as a function of spatial frequency by taking out
the normalization from the given MTF curve and adding one, or

of Levels = 1010(e'0'138(5”)) (l_e-O.l(Sv)) +1 (3)

To convert from the cycles per
degree measurement common to
psychologists to the cycles per
millimeter more common in 100 —
image processing, we have used a

co.n\{ersion factor of_ ome cycle per 4 -\ rveLs
millimeter equals five cycles per DISCERNABLE
degree. This curve has a peak at a

spatial frequency of

approximately one cycle per

millimeter. There is evidence? 10—
that threshold measurements are
not a good measure of visual
performance for all contrasts at
frequencies below one cycle per
millimeter. To obtain a

conservative estimate, we have 1 | I [| l J
used Eq. (3) only above one cycle 0 2 4 6 8 10 12
per millimeter, using its SPATIAL FREQUENCY

maximum value below that point.

This curve is shown in Fig. 1. Fig. 1. Visual Performance Limits

B. VISUALLY USEFUL INFORMATION

We can now express visually useful information in a sampled and quantized picture as an
average number bits per pixel, by utilizing the visual performance curve in Fig. 1. We take
an image area L by L, sampled at an interval A by A, as shown in Fig. 2a.

-1 1
b 24 2A
L A ®e— A
e 0 — . ®a—
A 17A
a) IMAGE SPACE B) FREQUENCY SPACE

Fig. 2. Image and Frequency Sampling

The visual performance-data is described in spatial frequency space. We therefore convert
to the image transform space as shown in Fig. 2b. The defined transform space has a
frequency range +1/2A, with frequency samples spaced at intervals 1/L. In each space, the
total number of samples is the same, that is, n? equals (L/A)2 To arrive at an average
number of bits per pixel, we evaluate the total number of useful bits and divide by the total
number of pixels. In frequency space, we arrive at the total number of useful bits by

multiplying the number of bits per frequency sample (log,[#LEVELS]) by the number of

samples per unit frequency interval (L2), times the frequency interval, and integrating over
the frequency range. These operations are combined and expressed as

#bits/pixel =_1_f f {log2[#LEVELS(p,v)] HL2)dpdv 4)
2
n
where p,v are spatial frequencies. Putting together the above relations between constants
and the fact that the visual performance data has approximate circular symmetry we can
rewrite the expression as

#bits/pixel =2r1A2f oIMAX (1082 #LEVELS(v)] }udv (5)

Finally, for any high enough sample rate, we can perform a numerical integral
approximating Eq. (5) which will give

#bits/pixel =211A%177.5) (6)

If we now insert A as approximately 20 samples per millimeter we find that the average
visually useful information in an image is approximately 2.8 bits per pixel, substantially
below the 8 bits per pixel which we would have estimated had we not taken into account the
fall-off of visual performance with spatial frequency.

It is also of interest to note that if we decrease the sampling interval, that is sample more
often, the useful information per pixel drops with the square of the sampling interval. We
can therefore also calculate a sampling interval at which the average information per pixel
would be aapproximately 1 bit. Substitution in Eq. (6) yields 1 bit/pixel at a sample
interval of 33.4 per mm. This result states that, at that sampling interval, an efficient
binary code might be found which could represent the image at no loss of visual quality.
We therefore consider next simple binary image codes.

III. HALFTONE CODES

One simple form of binary image code has been used for somewhat over a century® by the
graphic arts industry. The binary images are referred to as halftones, and are used to give
the appearance of grey while printing only full black and white. Such images are generated
by combining-a non-image related pattern (called the halftone screen) with the pictorial
data by addition or multiplication. The combination is then subjected to a threshold to turn
the continuous tone to a binary image. This process has been applied to sampled imagery by
many authors (for example, see Ref, 5) and the image detail for given screen patterns has
been described.® '

We now .i(glnore tlhe design of1 the hal(ti"tone scree}:ln

to consider what optimal encoding might

achieve. The halftone process is essentially one SIGNAL /ﬁ\\\
of trading off fgrey scale for texture. That is, a LEVELS .]
combination of black/white spots is generated

which, when averaged over some area, give the
illusion of various shades of grey. Again A2
considering ideal sampling, we examine how a —A2 —— —
given periodic structure can be represented.
Clearly, we must have available at least one
sample for every half wavelength of the pattern I
to be represented. Fig. 3 shows a small region of

the picture with two regions identified, each a)\/2 X X X X
half wavelength of the desired sample in length. X X X
To represent the sample of minimum modulation
achievable at this spatial frequency, one bit must
change between these two areas of image. This is
equivalent to asking how many different levels
can be refpresented by turning on different A/2=1/(2f5) I Al

numbers of bits within the image area whose

length is one-half wavelength for the desired Fig. 3. Image Areas Available to Encode
spatial frequency. This can easily be seen to be A One Grey Level Change

o]

of LEVELS =(1/(2F)%(1/A2)4, (N

where f_ is the object frequency, and A the sample interval. It is convenient to immediately

generalize this result by asking what would happen if each pixel could take on more than
black or white values. If each pixel is described by m bits, rather than 1, each element now

adds 2M-1 additional non-black values. Thus the same type of coding applied to a
multilevel image yields the possibility of representing additional grey levels, given by

of LEVELS =((2™-1)/(2f A))2H. (8)

Fig. 4 compares the original curve from
VISUAL LIMIT Fig. 1 with the number of levels
. BINARY IMAGE achievable as a function of spatlal
frequency for the binary case with a
3-BITS/PIXEL sample rate of 20 per millimeter and for
the case of 3 bits per pixel at the same
sample rate.

100 -—-'lt

OF LEVELS
AVAILABLE

It is interesting to note that the 3 bit per
pixel curve indicates that a texture type
code should be able to represent almost
all information visible to the eye. Since
we found that the actual useful
information averages approximately 2.8
10 }— bits per pixel at this sample interval, we
have an indication that the texture type
code could be reasonably efficient. In
the binary case, at this sample interval, .
we see that the 1 bit per pixel code falls
short of that needed to avoid visible
degradation of the image. The manner
in which the curve falls with spatial
1 L] : | | I | frequency, however, gives an indication
o 2 5 8 10 1o of why halftoned images look as good as
: they do, since the curve shapes are
SPATIAL FREQUENCY somewhat similar,
Fig. 4. Texture Code Limits

IV. CONCLUSION

We have described an approach in which visual data for modulation transfer function of the
eye can be utilized to determine the useful information in an image. At a sample interval
of 20 samples per millimeter, we have found that the visually useful information
corresponds to approximately 2.8 bits per pixel. The shape of the visual performance curve
indicates that more levels need to be represented at lower spatial frequencies and less levels
at higher spatial frequencies. Thus, it has been shown that halftone or texture codes,
although simple, represent image information in a manner which tends to be compatible
with the characteristic of the visual system.

V. ACKNOWLEDGEMENTS

The author wishes to express his gratitude to his co-workers for many uscful discussions
which have helped to clarify the concepts described in this paper. In particular, D.
Kermisch and K. Knox provided many helpful suggestions.

REFERENCES

1Costigan, D. M., Fax, Chilton Book Co., Philadelphia, Pennsylvania 1971, p. 127.
2Cornsweet, T. N., Visual Perception, Academic Press, New York, New York 1971, p. 330-342.

3Dooley, R.P., "Predicting Brightness Appearance at Edges Using Lincar and Non- Linear Vlsual Describing
Functions", presented at SPSE Annual Meeting, May 14, 1975, Denver, Colorado.

4Pocket Pal, Tenth Edition, International Paper Compoany, New York, New York, 1970, p. 17.
5Klensch, R. J. "Electrically Generated Halftone Pictures,” RCA Review p. 517-533 (September 1970).

6Kermisch, D. and Roetling, P.G., "Fourier Spectrum of Halftone Images,” Journ. Opt. Soc. Am. 65: p. 716-723
(1975).

Whole ALTO World Newsletter

Technology and Tools

XEROX | Rl e 1o

SPECIAL ANNOUNCEMENTS

WHOLE ALTO WORLD MEETING - The next Whole Alto World meeting is scheduled to
be held from 9AM to 3:30PM on Thursday, June 1, 1978, at El Segundo in the Executive
Dining Room. Dick Sonderegger and SDD are hosting. The last page of the Newsletter is a
flyer announcing the meeting. Please detach your copy and post it on an appropriate bulletin
board. Start your trip to the National Computer Conference right by first attending the

- Whole Alto World meeting.

GENERAL NOTES

FIA BOARD LOAN REQUEST - ASD needs the use of an EIA board for software
development until July 1. If you know of one that can be be spared for a time, contact John
McNeley at Intelnet 8*823-2011. It would be greatly appreciated.

THE ALTO USER’S PRIMER - A new document has been prepared for the new Alto user
(and the experienced user too) by Frank Ludolph, the Whole Alto World coordinator. It
presents, in a non-technical fashion, an overview of the Alto network, hardware and

operation, and provides pointers to the documentation. It is included in the Newsletter in

the TECHNOLOGY section.

ADDRESS LABEL FORM - Have you wondered about the label used to mail the Newsletter
to you? The mailing labels are maintained with Bravo using a form made up by Barbara
Baird. The form, complete with instructions, positions each address in just the right place
for the Xerox gummed labels, 3R311 (three across by eleven high). Retrieve
IMAXCKForms>Form.Addresslabel, use it according to directions, print on a Dover or
Sequoia, and copy onto the label sheets using a standard copier, e.g. 3100, 4500, or 7000. Yes,
the Dover should handle the gummed labels, but the printer is a shared resource and your
labels might be used to print someone else’s output.

WHOLE ALTO WORLD DOCUMENTS - This is just a reminder that the Whole Alto
World maintains several documents to simplify your quest for knowledge. The Alto User’s
Primer, in addition to serving as an introduction to tue Alto World as mentioned above,
serves as a first level index to other, more specific, documents. The Subsystems Catalog
provides both alphabetical and’ funtional cross reference listings to all the released Alto
subsystems, briefly describing each program and pointing to its documentation. The
Hardware Catalog serves a similar function for the various hardv-are components. The Alto
Nerwork drawing maps on a single sheet of paper the Ethernets, Gateways, and servers that
comprise the network. Lastly, the Newsletter provides a monthiy look at changes in the Alto
environment. Each of these documents, revised periodically, is maintained on the AltoDocs
directory of your local IFS or MAXC.

Whole ALTO World Newsletter

TOOLS
HARDWARE

EIA BOARDS - A printed wiring version of the EOS-developed EIA board is being built by
ASD. The price will be based on the number of units built. Contact Frank Brinkerhoff at
Intelnet 8*823-1096 by June 1. There has been a great deal of interest in this board since the
original EOS build closed; don’t miss this opportunity.

. MAGNETIC TAPE CONTROLLER - A mag tape controller for the Alto II is now being
designed by ASD. It will drive a 1600 BPI transport such as those built by Kennedy. A build
is being scheduled for delivery in the August-September timeframe. The estimated cost for
controller and drive is about $7K (actual price will be based on quantity and will include
the sharing of engineering costs). Liz Bond is coordinating the orders for Hoag Nielson.
Contact her at Intelnet 8*844-1064 to order a controller. Kennedy drives, which must be
ordered seperately, may be obtained through Versatec at EOM prices.

THE TRIDENT QUIET BOX HAS ARRIVED - The quitebox has been installed and
evaluated. Ted Strollo reports:

"Jensen Engineering of Santa Rosa, Calif has made up a prototype of a T80 quiet box. The
PARC purchasing department is likely going to go out on competitive bids on these since
there are about 500 or more T80 units in Xerox. PARC will attempt to negotiate a master
- agreement for such units. You should direct any inquiries to Clay Osterhout at PARC. For
those of you with immediate needs, you can contact Jensen direct via your own purchasing
departments. Jensen is quoting prices of $655 for single units, $589.50 for 10-24 units,
$556.75 for 25-49 units, $543.65 for 50-100 units. Contact Harold Jensen at 707-544-9450.
Delivery has been quoted as 30 days.

"The unit comes in a color scheme which matches that of Alto II. It is sized to match a
companion enclosure for the T300. This makes the unit relatively large for just a T80. A
storage compartment is provided inside the base with precautions having been taken to
minimize storage interfering with air flow for cooling.

"Our experience with the prototype unit has been quite good. It is very quiet. In fact, the
ambient room noise(61DBA) from air conditioning and Alto fans is so high that we cannot
measure the S/N improvement precisely but it is definitely more than 23db. We have had
the unit for two weeks now and have specified the following improvements for the final
product all of which have driven the price up from the original estimate.

1) Since the T80 unit is so heavy we have gone to a revised way of inserting the unit into
the box which involves removing a top cover (by removing 4 screws and a hinge bar).
Also the T80 unit can be removed leaving its cabling in place in the box. The unit can be
serviced' in the box by lifting this cover. ‘

2) We required an hydraulic cover closer like that used in the Dover to prevent covers from
crashing down on top of unit

3) A vibration mode was discovered in running the T80 diagnostics which caused the unit to
move back and forth on its casters. We therefore have required heavy duty leveling feet
in addmon to the casters.

Whole ALTO World Newsletter

4) Temperatures inside the quiet box close to the T80 side skin have been observed to get as
high as 95.3 degrees F. The exhaust fan air temperature is 97 degrees F vs a free standing
T80 exhaust temperature peak of 99 degrees F. While the unit has run error free on
diagnostics and in use with the Press software, we feel the temperature must be kept a
little lower. Calcomp spec calls for a maximum ambient of 100 degrees F. We are
requiring the addition of another air intake fan at 70 CFM, low noise to further cool the
unit. The prototype has one such intake fan and one such exhaust fan.

5) We have required hinge modifications from the prototype which will permit units to be
butted side by side next to each other.

"I am not specifically endorsing this unit. It is important to give some weight to the
purchasing dept’s needs of getting competitive bids, negotiating a master contract with
someone. We do not want to be caught in the position we were with our mouse supplier
where price escalation was out of sight due to our lack of foresight in procuring the units
originally.” '

MAINTENANCE NOTES

CATCHING PARITY ERRORS - Occasionally users will experience - memory parity
problems although DMT reports no erros. While DMT will catch bad memory chips, it will
have trouble detecting chips that fail intermittently or only with certain bit configurations.

One method of catching these intermittent chips is to record the location and content of
parity failures when displayed by SWAT. Note the common bits set by anding together the
contents of all even or odd address words within a given 4K address space, e.g. 0-17777.
(Use a 16K space for the XM machines). Using the memory layout maps attached to the
Newsletter, map the common "on" bit to a specific chip and replace it. Of course, this may
not always reduce to a single chip, but the number of possibilites is greatly reduced.

If the system continually crashes running different subsystems without first reporting a
parity error, it could happen that the error is in an area occupied by a vital part of the
operating system. Try toggleing the Memory Configuration Switch to the alternate position
which reverses high and low memory by complementing the high-order memory address bit.

ALTO XM PROBLEM - The 16K memory chips used in the extended memory Alto (and all
7th build Altos) unlatch data sooner than the old 4K RAMS. The Orbit microcode accesses
the value twice, always getting zero the second time. The result is that Dovers and Sequoias,
which use the Orbit, cannot currently be run with an XM machine. An EO is being
generated which causes the data to be latched for 10 microseconds or until the next MAR«,
whichever comes first. Alto maintainers have been messaged the wiring changes to take care
of things until the formal EO arrives.

ALTO [ETHERNET HARDWARE BUG - A very infrequently occuring bug has been
located in the Alto I Ethernet interface which causes the system to SWAT with a parity
error at location 600. This occurs when a Pup packet is received that is just slightly longer
than the receiving buffer (about 2 words or so). What happens is that just as the packet is
ending, the microcode will run out of room in the buffer, take an early exit from the input
main loop, and dive into the status posting code where it says:

mar « EPloc ;=600

Whole ALTO World Newsletter

md « EPFct ;gate interface status to bus.

Unfortunately two of the interface status bits, CRC and IT, are rot syncronized. They can
be changing even as they are slithering down the bus into memory, causing the parity bit to
have an indetermininate value. (Alto IIs have a register between the processor bus and the
memory which serves as a syncronizer, so they aren’t susceptible to this bug.)

The next microcode will contain a fix, changing the status posting microcode to run the
status through an R register before putting it in memory, thus using the register as a
syncronizer. Since 600 is such a magic number, it would have been noticed before in the last
4 years. Since it hasn’t, it’s not worth changing the ROMs in every Alto I, but the fix will be
there in the microcode if a change is made for any other reason.

HARDWARE CHECKOUT BY THE USER: PART II - Last month, methods of verifying
performance of the Alto’s workstation using CRTTEST and KEYTEST were presented. This
month the diagnostics used to checkout the Alto processor are discussed. DMT and
MADTEST are used to test the various functional pieces of the Alto processor: main
memory, microprocessor memories (RAM and PROM), arithmetic-logic unit (ALU),
registers, and data paths (it isn’t necessary to know what they do).

DMT tests the main memory, the area occupied by your data and most, if not all, of the
subsystems that you run. When DMT is executed, the display will be black except for a small
white square that bounces randomly about the screen.

DMT should be run for long periods, say overnight or over the weekend. If the Alto is left

in the Executive, DMT will be called after 20 minutes. In the morning, while waiting for the

disk to spin up to speed, depress and hold the ’s” key. A three line message will be displayed

a few inches from the bottom of the screen. The second and third lines should begin "0

Errors...". If some errors have been found, the memory chip location(s) will be indicated.
Don’t boot the Alto; the machine may not work and the location information will be

~ destroyed. Inform the local maintenance group.

MADTEST, the Microcode Alto Diagnostic Test, éxercises_much of the rest of the processor.
It is actually a collection of routines that test the RAM, PROM, ALU, registers, and data
paths. :

It is run in the same manner as KEYTEST and CRTTEST, namely, execute NetExec by
booting from the Ethernet or typing netexecCR to the Executive, and then type madtestCR.
The screen will indicate at the top the test routine being run, the number of passes
completed, and the errors detected (if any). The middle of the screen will contain trash (the

unformated contents of memory) and below that, a band containing the phrase "Black on
white means DO TEST". Immediatly below the band are the various tests that will be run.

The cursor consists of the usual arrow (like Bravo) with a changing series of black and
white horizontal lines through it. The number and location of the lines change to let you
know that something is happening, because it isn’t always apparent from the rest of the
screen. The cursor also moves about the screen in its usual fashion except that sometimes it
jumps (after a few seconds delay) rather than moving smoothly as is customary. You may
also notice the screen "tearing”. Both of these effects are a result of the level at which the

Whole ALTO World Newsletter

diagnostics operate.

MADTEST will automatically run all the tests, over and over. The number of passes
completed is displayed near the top of the screen; allow MADTEST to run several passes. If
any errors are reported, write them down and pass them along to the maintenance people.
Note: depressing the SPACE bar will halt the program and clear the screen. To suspend
execution without clearing the screen, move the cursor into the area of the test list. Moving

it out will resume execution. After the test has run several passes, either boot to get to the
Executive or type SHIFT-SwAT for DMT.

To prevent any of the tests from being run, move the cursor into the area of the test list and

bug the test not to be run. It should change to white letters on a black background. To cause
it to be executed, bug it again. Any tests shown in black letters on a white background at the
start of a pass will be executed. The default is to execute all tests.

SOFTWARE

In general, the subsystems, packages, and documentation indicated here will be available
from your local IVY server under the directories <Alto> and <AltoDocs>. If they are not

available, or if you are in doubt as to the version, they may be retrieved from [MAXC]

(same directories). Files stored under other directories are on [MAXC] unless otherwise
indicated, e.g. [XEOS].

NEW RELEASE: ShowAIS - Joe Maleson has provided us, via boot server, a program that
halftones and displays 8 bit/pixel AIS files from a remote file server. It is similar in
function to AISshow which expects the file to be on the local disk. The documentation from
[IVY[KMaleson>ShowAlS.bravo is attached to the Newsletter. Note: This program can
degrade the performance of the file server. If this seems to be happening, please delay use
until the need, by others, of ‘this scare resource is reduced.

ReReleases - Subsystems

CHAT - Only minor.changes were made to this release. It is available from bootservers.

DRAW - The clandestine "Color-DRAW" is now officially released as DRAW 4.0. Load
DRAW.dm. A documentation update is available on DRAW-new.press.

PRESSEDIT - Only minor changes were made. Retrieve PressEdit.run.

PUT - Version 1.1 has been enhanced to work on disks using the 'big disk’ feature of the
new operating system. People with model 44 disks who use ’big disk’ will need the new PUT.
Retrieve PUT.run. :

READPRESS - The floating point spline description is now printed out in decimal floating
point rather than it octal representation. Retrieve ReadPress.run.

TRIEX - The latest version runs on Alto’s successor machines and also has a few bug fixes.
Retrieve Triex.run. :

Whole ALTO World Newsletter

ReReleases - Packages

MICROFLOAT.DM - Double precision floating load of the value zero now functions
properly. Load MicroFloat.dm.

TECHNOLOGY

This month, instead of the usual technology paper, we present a new, introductory level
paper for the new and not-so-new Alto user. Most existing documentation tells a person
how to use a specific item. By contrast. this paper describes, in non-technical terms, the
system’s existing facilities, provides an overview of the documentation scheme, updates some
basic operational procedures and documents some procedures that are unrecorded elsewhere.

Of specific interest to current users are the documentation scheme overview in chapter 3 and
the machine check-out procedures in chapter 4 (which were serialized in these last two
editions of the Newsletter).

This document, along with a copy of local procedures, should enable the new user to get
started in a shorter time and with a minimum of frustration.

The Whole Alto World Newsletter is a montly publication for Xerox employees that use the Alto. It is not to
be shown to non-Xerox people. Copies are available on [MAXCKAltoDocs>WAWnews.press or may be
obtained from the editor, Frank Ludolph, XEQOS, by messaging <Ludolph> or calling Intelnet 8*923-4356.

This document is tor XEKUX Internal use oniy

THE ALTO USER’S PRIMER

BY FRANK LUDOLPH

APRIL 1978

XEROX WHOLE ALTO WORL>D

This document is for XEROX internal use only

THE ALTO USER’S PRIMER

INTRODUCTION

I. THE NETWORK
Alto
Ethernet
Transmitting data
: Receiving data
Gateway
Servers
Printers
File Storage
Electronic Mail
Boot Files
Time
Device Name List
Network diagram

[I. THE FILING SYSTEM
Alto Filing System/Filenames
File Servers

III. WHAT YOU NEED
Documents
- Overview
Basic Document List
Subsystems
Accounts
Keeping Up-To-Date

IV. OPERATIONAL PROCEDURES
Operating the Alto ‘
On/Oftt
Loading/Unloading a disk
. Booting
Checking Out Your Machine
Workstation
Disk Drive
Alto Processor
Using the Executive
Starting a service
Correcting typing errors
Aborting a service
Initializing/Installing a New Disk
Copying
Using the network
Installing a new disk
Retrieving a basic set of files
Normal Disk Maintenance
Listing filenames
Listing file attributes
Display a file’s content
Deleting files '
Grouping files
Disk Crash!
The User Command file

Printing
Press files
Bravo files
Ears files
Gypsy files
Text files
TTY files

Other printers

THE ALTO USER’S PRIMER

INTRODUCTION

Most of the existing documentation for the Alto and its systems tell you Aow fo use the Alto,
Bravo, FTP, etc. The purpose of this paper is to present what exists and where to get it. It
is intended as a first reading for the new user and is primarily non-technical in its
presentation. The first chapter, THE NETWORK, presents a brief overview of the system’s
services, components, and their interconnection. The second describes the filing systems,
both Alto and IVY, and their interaction. The chapter, WHAT YOU NEED, presents an
overview of the documentation available, lists the minimal set of documents and subsystems
needed to get started and where to get them, and tells you how to keep up-to-date. Lastly,
there is a how fo chapter comprised of operational procedures that either have been revised
or are unrecorded elsewhere.

Many of the sections reference documents for further study. While many of them should be
available from your local file server, the orginal source is indicated. /¢ is advised that these
papers not be read until reading of the Primer is completed and fully understood.

Many sites have established local procedures to cover establishing accounts and methods of
obtaining and initializing disks. Ask other machine users in your group or area to direct you
to the appropriate people. In case you find yourself all alone or no one seems able to help
you, call the Whole Alto World coordinator. Currently the coordinator is Frank Ludolph.
You can reach him at Intelnet number 8*923-4356 or sending by a message to <Ludolph).

A word on protecting Xerox information. The systems you are using are prototypes for
future Xerox products. Much of the technology involved cannot be covered by patent; your
discretion is required in protecting these developing technologies from premature disclosure.
While the corporation has publicly indicated its intention to market a broad range of Office

Information Systems products, it has been mute on exactly what form they might take.
Telling your friends about the systems you use may damage Xerox’s profitability based on
these technologies by either prematurly indicating trends in future products or preventing
the patenting of a process. Don’t chance diminishing the success of future products by your
indescretion. '

After reading the Primer, it is suggested that you aquire the basic set of documentation and
accounts, find an Alto, and get some hands-on experience. The Machine Operation section
in this paper and the Alto User’'s Handbook can be used to build yourself a disk. Then
tryout FTP, the file transfer program, and Bravo, the text editor. Next use a couple of the
graphics programs, Draw, Markup, and Sil. Create some documents and print them; these are
all functions that you will probably use no matter what else you do. Now that you're fairly
conversant with the Alto, look through the Subsystems Catalog for other subsystems that you
might want to use, retrieve the documentation and programs and try them out. You're off
and running. Enjoy. .

THE ALTO USER’S PRIMER

I. THE NETWORK

The network is composed of Altos and other computers connected to several geographically
dispersed, technologically innovative local computing nets which, in turn, are tied together
by minicomputers over standard leased and/or dial-up telephone lines. The local computing
nets are called Ethernets; the mini-computers linking them are referred to as Gateways, the
latter providing several services in addition to linking together Ethernets. The last page of
this chapter is a diagram of the network as it is currently implemented.

THE ALTO

The Alto is used to prepare and print documents containing both text, diagrams, and images,
convey messages electronically, aid circuit and IC design, and, of course, write programs. [t
is a minicomputer consisting of a processor, disk drive, workstation, and Ethernet
transceiver. The microcoded processor has 64K of 850ns, 16-bit word semiconductor
memory (extended memory versions are available). A 1K microinstruction RAM' can be
loaded with “special purpose microcode to extend the instruction set, perform special
functions or drive special I70 devices. It is packaged with the disk drive and power supplies
‘in an under-table-size cabinet for easy placement in the user’s office.

The disk drive commonly supplied with the processor is the Diablo Model 31 disk drive,
though other Diablo models can be used. The Model 31 accepts a single disk which can be
used to store about 2.5 megabytes. The average seek time is 70 ms, the average transfer rate,
1.22 MHz.

- The workstation is composed of a vertically oriented video display which is refreshed 30
times per second, a standard keyboard with a few extra keys, a mouse (pointing device), and
five-finger keyset. The display is composed of 808 lines, each line having 606 individual

points (a 606 by 808 bitmap). Each point can be individually controlled to produce not only

text but also graphics and even pictures. The cursor, whose position is controlled by the
mouse, is a 16x16 bitmap whose shape is under program control, independent of display
content.

The Ethernet transceiver connects the Alto to the Ethernet, described below. Using the
Ethernet, the Alto can communicate with a large number of other Altos, computers, and
special purpose servers.

See: Alto User’'s Handbook and [MAXCJKAltoDocs>Subsystems.press, Executive section (operation);
[MAXC]<AttoDocs>AltoHardware.press (hardware description).

THE ALTO USER'S PRIMER

THE ETHERNET

The Ethernet was designed to provide a highly reliable communication facility for
computers located within a single building or small complex. It consists of a single length of
coaxial cable (the Ethernet) and transceivers that connect each computer to the cable. Each
computer on the Ethernet has a unique three digit octal address and the Ethernet itself has a
unique two digit octal address. These addresses are wired on the Ethernet board in the Alto.
Data sent over the Ethernet is sent in packets, each packet containing the net and machine
addresses that identify the source and destination machines.

TRANSMITTING DATA Rather than controlling access to the cable by a single active element
whose failure would result in the loss of the communication channel, control is distributed
among the transceivers and communicating programs. Fach transceiver, specially designed to
prevent contamination of the Ethernet in the event of failure, verifies that the cable is clear
before transmitting and listens during transmission for interference, retransmitting at a
randomly determined later time if interference is detected. Each packet of data transmitted
is assumed to have only a high probability (as opposed to certainty) of reception; it is the
communicating programs’ responsibility to verify receipt of data and retransmit if necesary.

RECEIVING DATA The interface module checks each packet as it passes for its own net and
machine addresses. Packets with matching addresses are buffered and passed to the executing
program. The program will normally acknowledge receipt of the packet by transmitting to
the sender an appropriaie reply. The receiving program should be prepared to discard
duplicate packets (the sender may not have received the acknowledgement and retransmited
the packet, assuming it was lost).

See: Ethernet: Distributed Packet Switching for Local Computer Networks by Robert Metcalf and David
Boggs. Parc Universal Packets (PUP) are described in several papers on [MAXCKPUP>, especially
PUP.ears.

THE GATEWAY

The Gateway’s primary function is to transmit packets between FEthernets. It is a- small
computer (currently Novas but soon to include Altos) that attaches to an Ethernet in a
manner similar to any other computer except that it responds to all packets addressed to
other nets. Fach off-net packet is picked up, encapsulated, and routed over the appropriate
lines to other Gateways. Transmission of data packets through Gateways is transparent to
the sending and receiving programs; packets, after passing through Gateways to. the
destination Ethernet, are identical to the original packet;

More than one Gateway may be attached to an Ethernet and there may exist more than one
path between two Ethernets, that is, there may be loops forming a true network structure.
(Remember that it is the responsibility of the communicating programs to recognize and
discard duplicate packets.)

THE ALTO USER’S PRIMER

The Gateway also provides bootfile, time, and name look-up services. These functions are
described below.

See: [MAXC|KPUP> for some papers on Gateway protocols.

SERVERS

Servers provide services that can be provided more effectively in a centralized fashion. In
general these services require special hardware, use intermediate facilities to provide around-
the-clock access, extend local facilities (file storage), or provide backup.

PRINTERS A printing server consists of an Alto, a printer, and usually some additional disk
storage (a second Diablo 31 or a Trident T-80). Like all other Altos on the network it has
an address and usually a name (see the Ethernet Description above). To send a file to a
printer, the printer’s name or address must be indicated. To save you the extra keystrokes of
entering the printer's name or address everytime, a default printer can be specified in the
[HARDCOPY] section of the User.cm file. (See the PRINTING and USER COMMAND FILES
sections under OPERATIONAL PROCEDURES). Once the User.cm file has been modified,
you need to specify a printer's name or address only when you wish to use a different
printer.

-

The most common printers are Spruce printers (Spruce is the name of the software that runs
on the printer’s Alto). They will print Press format files containing text and graphics, e.g.

line drawings, of limited complexity. (For directions on how to send a file to a Spruce
printer see PRINTING). The server listens to the Ethernet, waiting for a print request. When
a request is detected, the file to be printed is transferred as soon as possible to the printer’s
disk (but not until the printer has finished printing the current file). These spooled files are

then converted, in the order' received, to a format suitable for printing and printed.

Spruce is normally run on two types of printers: Dover and Sequoia. Dover is a high volume
printer, its output looking very much like a good clean xerographic copy. Sequoia has better
solid area development, that is, the blacks are blacker, but is intended for low volume (not
over 200 sheets at a time). Dovers are generally available 24 hours a day, Sequoias only
during normal working hours (due to limited component life). Your User.cm should
probably specify a Dover, if possible, as your default printer.

Press printers, i.e. printers running Press software, will print not only text and graphics of
unlimited complexity, they will also print images such as halftoned photographs. Press is
rather more complex to use and generally does not run in server mode; you must personally
supervise the transfer of the print file and initiate printing (although a form of serv-r mode

can be setup when appropriate). Press can be run on any of the printer hardware but is
normally run only for experimental purposes on printers other than Dover and Sequoia.
(Images cannot be printed on Dover by Press because of the Dover’s high speed).

THE ALTO USER’S PRIMER

See: [IVY[KSpruce>SpruceManual.press, Subsystems Manual, Empress section, and [MAXCKGR-
Docs>PressOps.ears.

FILE STORAGE The Diablo 31 disk drive that comes with the Alto can store about 2.5
million bytes on a disk. That sounds like a lot but after putting on an operating system and
various subsystems, it starts to dwindle rapidly. One solution is to have a lot of disks, but
changing disks takes a couple of minutes and sometimes you need a file off another disk.
Transferring files between disks can be inconvenient, particularly if you don’t have a dual-
disk Alto. It can also be kind of scary if you have only one electronic copy of a file; in the
- admittedly unlikely event of a disk failure, you may have to completely re-enter or recreate
the file, if you can.

The solution to these and other problems is a file server, IVY (or [FS), usually one per
geographical site. An IVY station consists of an Alto and one to eight Trident T-80 and/or
T-300 disk drives, each unit having 80 and 300 megabytes of storage respectively.

An IVY account, obtained from the local IVY adminstrator, will provide you with an
additional storage as needed. With your own account, you will have access to public
subsystems and documentation maintained on special directories, and you can freely move
files between the Alto disk and your IVY directory. Keep files on IVY that you have
finished with but wish to keep around for future use. Use IVY as it seems convenient. Don’t
worry about deleting a file from your disk after transfering it to IVY. Not only is there a
excellant program to rebuild Trident disks in the event of a failure, but, at most sites, files
are also backed up each night on a second disk for use in the event of a catastrophic failure.

Files on IVY aren’t quite as private as on your Alto disk; though others can’t write over
them unless explicitly given permission, they can read them unless you invoke IVY’s
protection facilities to prevent it. In any case, others can still list the filenames, protected or
not.

There is a second file server on MAXC, a large computer on the Ethernet located at PARC.
It is used in a manner similar to IVY but is intended for use by PARC people and others
that work closely with them, such as SDD. and ASD. MAXC also provides storage facilities
for the mail -servers discussed below.

See: [MAXCKIFS>HowToUse.press (user manual) and Operation.press {administrator - manual).

ELECTRONIC MAIL has replaced the short hand-written memo for Alto users. Messages
handied in this manner are delivered immediately to as many people as appropriate,
provided of course that they have a MAXC message account. Message accounts are generally
available to members of PARC, SDD, ASD, and others that work closely with PARC.
Attempts are being made to establish at least one group account for each Alto-using group

in order to give all users access to the message system.

There are two message systems now in use: MSG, which is run from your Alto on MAXC,
and Laurel, which runs entirely on the Alto, using MAXC only to hold undelivered mail.
MSG is a teletype oriented system with comparatively primitive editing facilities, though it

THE ALTO USER’S PRIMER

does provide a wide set of message control operations. All messages, both intransit and
received, and the MSG software reside on MAXC.

Laurel is now replacing MSG. The major differences are that it is oriented toward Alto-type
operations, such as menu picking and Bravo-type editing, and resides entirely on the Alto
disk. Undelivered messages are currently kept on the MAXC file server but they will soon be
held on IVY. To receive messages from Laurel you must have a MAXC MSG account,
though it does permit people without message accounts to send messages to registered users.
MSG and Laurel are essentially compatible; users of each can send messages to the other.

See: [MAXCJKDMS>Laurel.press.

BOOT FILES One of the secondary services provided by Gateways is the boot server. Several
standard subsystems have been converted to boot file format. This permits them to be stored
on the Gateway’s disk and transmitted on request to your Alto. This saves you disk space
and permits you to execute those programs even when you don’t have a good disk available.
Some of these boot files enable you to build a working disk, some are commonly used
programs, and some are diagnostics used to verify the operation of your machine.

See: <(AltoDocs>Subsystems.press, NetExec section.

TIME Your Alto may try to set the time-of-day whenever it is booted. If possible it will get
" the time from another machine on the Ethernet. Since the Gateway runs 24 hours a day, a
time server has been included in the software. Gateways will, in turn, attempt to get the time
from other Gateways, so everyone should have the same time, adjusted for their own time.

DEVICE NAME LIST Each device attached to the Ethernet has an address and, probably, a
name. Names are provided because they are easier to remember and can be used to provide
an indication of the machine’s use. Since only addresses are recognized by the Ethernet
interface, the address of a destination machine must be substituted for its name before
sending a packet. The Gateways maintain a name/address correspondence file and provide a
name lookup service so that programs on originating machines can request the address of the
user-supplied machine name.

THE ALTO USER’S PRIMER

XEROX ALTO NETWORK

APRIL, 1978
@ 32LINES
100B

" ARPA
NET ¢ MAXC I
TELNET
N

PARC
% pover | | pover] |eimiico] BLoT 31 EARS (109 Altos) I3 #
vy MeNLO | lcLover] | vioLa ggﬁﬁ@ PALO '

325# 1554 121 % 341 # 116 # 3#

PARC
st & 3rd
DOVER 6#
‘ ™ WONDER
265 #

wy | [Pmucol [oover | Bequoid [oover (50 Altos) §5 #
IRIS rurkey | | kanar | | oaisy
50 # 62 52#

vy DOVER | BEQUOIA
XEOS WHITE ARCTIC
130 # 122 4 200 #
1 0 1 (91 Altos) J10#
vy DOVER] |DOVER | BEQUOI EQUOIA BEQUOIA
IFs-2 - ROVER GIANT | AARDVARK JCOSTAL
4# 204# 154 105 # 13# 104 #
F A S ‘)

@)

VY ‘ : (4 Altos)

\—-/ ADL
200 # . A
rd G\ WRC
. (24 Altos) |1 4 #
N— vy SEQUOIA
WRC SEQUOI
113#% 111 # I]
Filed on [MAXC]<AltoDocs>AltoNetwork.press
TYPE L AL TO Server NGOVA . Other Resource
NAME . (G is w/ pup Gateway .
hDDRESS (ALTO + Device) software)

THE ALTO USER'S PRIVER

Il. THE FILING SYSTEM

Files contain documentation, subsystems, or data and are stored on a disk, either the disk in
the Alto or the disk of a file server. The subject of files is very important in the operation
of the Alto so take the time to understand it completely.

THE ALTO FILING SYSTEM

The Alto stores on its disk all the material with which you work, as well as the programs
you use. Each document and each program is stored as a different file. Because the storage
space on a disk is finite, programs and the materials they require may be grouped on
different disks, for example a document disk, a BCPL programming disk, a MESA
programming disk, and a Design Automation disk. A disk will normally function well if
there are several hundred free pages. Let experience and the amount of free space on the
disk be your guide.. Some disk maintenance techniques are contained in the OPERATIONAL
PROCEDURES chapter..

A file is identified by its name, a string of letters, digits, and the characters " +-.1$" and is no
more than 39 characters in length, Upper and lower case letters can be used interchangeably;
they're identical to the filing system. No spaces are permitted.

The filename can have two parts, the main name followed by the extension, separated by a
period. The main name is any group of characters that make sense to the creator of the file.

The extension is used in a systematic manner to give people hints as to what the file is for.

For example, a program has the extension ".run". Files created by a program often have the
program’s name at its extension, e.g. Report.bravo was created by the program Bravo.run. In
a few cases, the extension indicates the format or intended use of the file; Document.press is

a file that can be printed. Common extensions are:

AL Alto display fonts

.BR Precompiled - modules ready for loading with others to form a program
BOOT Subsystems files that can be executed directly off a boot server
.CM Command files which the Executive will treat as keyboard input

.DM Groups of files packaged together for easy transfer and storage
.EARS ' Document files ready to print on the Ears printer (Palo Alto only)
.EP FEars fonts (Palo Alto only)

.PRESS Document files ready for printing on printing servers

.RUN Subsystems (programs)

SYMS Symbol tables used to debug a program

TITY Document files that can be printed on servers

And don’t forget all the extensions that reflect the creating subsystem e.g. .BRAVO, .BCPL,
MESA, and .DRAW. v ‘

See: Alto User's Handbook.

10

THE ALTO USER’S PRIMER

THE FILE SERVERS

Files are also located on the IVY and MAXC file servers (see THE NETWORK). The storage
space is broken into chunks, each with its own directory. Some of the directories contain

files intended for general distribution, such as subsystems and their supporting documents,

while others provide individual users with a place to store files when not required on the

Alto disk. To get a chunk for yourself you need to get an account from your local IVY

administrator. A file must be on the Alto disk to be used; the file servers are only for
storage.

Each of the file server stations has a name, just like all the other machines attached to the
network. Many of them are named for the facility or group they serve, e.g. WRC, XEOS, and
ADL. The network diagram at the end of the first chapter indicates all the stations.

Names of files on servers are the same as on the Alto disk except that a server needs an
additional part, the directory. If you want to tell someone else where to retrieve a file, they
must also know the server’s name. For example, the Executive subsystem is_stored on
[MAXCKAIlto>Executive.run. Notice that the name of the server is enclosed in "[..J" and
the directory in "<..>". When it comes time to retrieve the file, you will connect to the
server and identify the file by the directory, main name, and extension. Note that the
directory can also be of the form "<..>..>". The name between ">..>" is a subdirectory
name and is used to group files in a fashion similar to the extension.

Using a file server you can:

list the names of files under a directory,

retrieve subsystem and document files from public directories,

retrieve files from other directories if the files are unprotected (the default),
store and retrieve files from your own directory,

store files under other directories if you know the password for that directory.

See: <AltoDocs>Subsystems.press, FTP section, and [MAXCKIFS>HowToUse.press

11

THE ALTO USER’S PRIMER

Il. WHAT YOU NEED

Much of what you will need, programs and their documentation, is stored on file servers.
Typically programs and program modules are stored under the <Alto> directory. Documents
are placed in the <AltoDocs> directory. There are some exceptions which will be pointed
out below. A program, when retrieved onto the Alto disk is immediately usable, though some
first must be installed (normally performed by typing program name/i). Documents may be
viewed on the screen using Bravo if they have the extensions .bravo or .memo, using Markup
if the extension is .press, or with Type, an Executive routine, if in-a .tty file. If you want
printed documents, see the section on printing under OPERATIONAL PROCEDURES.

DOCUMENTS

One of the most difficult problems when learning to use a new system is finding the
existing documentation. A hierarchy of documentation has been created with this document
as the root. The overall documentation scheme is illustrated in the figure below.

ALTO USER'S
PRIMER
PREPRINTED LOCAL CATALOGS ENGINEERING WHOLE ALTO WORLIDD
DOCUMENTS FOLKLORE _ DRAWINGS NEWSLETTER
DOCUMENTS SUBSYSTEMS
1 | | HarDWARE
MANUALS HARDWARE
SUBSX&SEMS DOCUMENTS
PACKAGES
INpIvVIDUAL MANUALls |

Several .commonly used documents have .been printed and bound. These include the Alro
User’s Handbook, the Bravo Course Outline, and the MESA [Language Manual. The
Handbook contains introductory material on how to get started on the Alto and manuals for
several commonly used subsystems: Bravo, DDS, Draw, FIP, and Markup. Though it was
written in late 1976 and is somewhat out of date, it is well done. It is certainly accurate
enough for the beginner; most of the changes have been in the form of enhancements or

additions.

12

THE ALTO USER'S PRIMER

The Bravo Course Outline is a comprehensive teaching and reference guide to using Bravo, a
widely used text editor. There is a companion workbook that contains practice material.
Both have been recently updated.

Local folklore covers a number of papers written to document local procedures and
supplement program manuals for several subsystems. Though intended primarily for use at
the site for which they were written, you will find them useful at other sites as well.
Folklore documents known to exist are: |

ORGANIZATION _ FILE(S)
SDD [IRISKSDSUPPORT>SDDocs>* (several files)
[[FS-2KSDSUPPORT>SDDocs>* (same as on [IRIS])
PARC [MAXCKAltoDocs>ParcAltos.tty
XEOS [XEOSKAIltoDocs>Folklore.bravo

There are now catalogs that list and briefly describe subsystems and hardware. Each entry
also references the supporting documentation. In addition, the software catalog
crossreferences the subsystems by function to simplify locating a program to perform a
given task. They are stored under the <AltoDocs> directory on most servers as
SubsystemsCatalog.press and HardwareCatalog.press.

Most subsystems are documented in the Subsystems Manual, a compendium of individual
manuals. Most of the smaller subsystems are included, only the larger documents are absent.

Each of the included subsystem manuals is also available individually as a .tty format file. As

new versions of subsystems are released, retrieve and print the revised documentation and

replace that part of the Subsystems Manual. A similar coilection, the Packages Manual,
contains documentation relating to general purpose program modules.

Engineering drawings, EOs, for the Alto are forwarded to maintenance people by the
coordinator as changes are made to the existing hardware.

The Whole Alto World Newsletter is a monthly publication for Alto users. It contains
information of a timely nature, notes on hardware and new and revised software, and papers
on Alto-related technologies. Contact the coordinator if you wish to receive the Newsletter.

BASIC DOCUMENT LIST Most of these documents can be obtained from the local file server

(or MAXC) and printed on a Dover or Sequoia. Some of them are not available in electronic
form or are not in a format suitable for printing on the local printers. Those documents
may be obtainable locally. If not, contact the coordinator, listed in the INTRODUCTION, for
help. The following list is not comprehensive, but should be sufficient to begin with.

DOCUMENT SOURCE
Alto User’s Handbook Local sources
Bravo Course Outline Local Sources
Subsystems Catalog <AltoDocs>SubsystemsCatalog.press
Alto Subsystems <AltoDocs>Subsystems.press
How To Use IFS <IFS>HowToUse.press

Laurel Reference Manual IMAXCKDMS>Laurel.press

13

THE ALTO USER’S PRIMER

If you intend to do some BCPL programming ' you will need:

BCPL Reference Manual <AltoDocs>BCPL.ears/.tty
Operating System Manual <AltoDocs>OS.press/ ears

Alto Hardware Manual <AltoDocs>AltoHardware.press/.ears
Packages Manual <AltoDocs>Packages.ears

Gypsy Operator’s Handbook <AltoDocs>Gypsy.press

If you wish to use MESA and are outside SDD, PD, ASD, or PARC, contact the coordinator.

Design Automation System users will need the SIL. Manual on [IRISKSIL>SilManual.press.
It includes documentation on the other programs in the system..

SUBSYSTEMS

When a new disk is built, what subsystems should be put on it? That, of course, depends on

what it will be used for, but that normally breaks down into just a few categories: document .
creation, BCPL or MESA programming, or Design Automation. (Of course there are several

specialized functions but if you know about that, this Primer probably isn’t necessary.)
Almost everyone needs a non-programmers disk (document creation), even if they intend to
program, so we’ll start there. The disk should contain: :

BASIC SYSTEM SUPPORT

EXECUTIVE
INSTALLSWAT rmun to put SWAT and SWATEE on the disk
USER.CM contains user settable defaults for many subsystems

FILE MANAGEMENT

FTP moves files between Altos and a file server
SCAVENGER restores a flaky disk (if space is tight, use the boot server)
DDS simplifies disk maintenance

or PUT for disk maintenance, smaller than DDS but fewer functions

DOCUMENT CREATION

BRAVO text editor

SIL diagrams of vertical and horizontal lines with captions
and/or MARKUP diagrams that include diagonal lines and mouse tracks
and/or DRAW diagrams that include curves

PRESSEDIT merges text and diagrams :

EMPRESS sends files to a printer (press and .tty formats)

NPPR converts .sil format files to .press for printing

FONTS (files containing characters of different styles)
TIMESROMAN* AL several sizes of characters with serifs (hke these)
HELVETICA* AL several sizes of characters without serifs (like these)
MATHI10.AL math and logic symbols for BRAVO

LOGO24.AL teers XER aa O

14

THE ALTO USER’S PRIMER

HIPPO10.AL Greek alphabet e.g. aB&SATp...
GATES32.AL arrows and things for use with SIL

This is a minimum set but it will get you started. Most of these files can be obtained easily
by retrieving and executing the NPDISK command file. See the disk initialization procedure
in the OPERATIONAL PROCEDURES chapter.

Other command files exist to simplify the retrieval of other file groups. These are the most
commonly used; the list is by no means comprehensive.

BRAVO.CM adds Bravo 7 (automatically retrieved by NPDISK.CM)

MESADISK.CM makes an initialized disk into a MESA programmer’s disk

PDISK.CM makes an initialized disk into a BCPL programmer’s disk

SIL.CM adds Design Automation programs to an initialized disk
'ACCOUNTS

[f your machine is a part of the network you will probably need to obtain [VY and message
accounts. IVY is a file storage facility (server) usually located at sites having ten or more

Altos.. (IVY’s old name is [FS.) Stored on IVY are documents, files, and subsystems
(computer programs or services) that you will need later on. Contact the local IVY
administrator. In case you can’t get an account right now, most IVY servers have a guest
account, GUEST, password: Guest, that can be used to retrieve files. This is especially useful
when retrieving files from other than the local IVY server.

If you are at PARC, you may need access to MAXC, a large computer that is part of the
network. In general, MAXC accounts will not be issued to non-PARC people.

The question of message accounts is somewhat up in the air at the moment due to the
- changeover to Laurel. Once Laurel is in general use, local administrators will handle the
assignment of accounts. Until then, message users must have access to a MAXC account.
PARC, SDD, and ASD people are regularly assigned accounts. Group accounts are issued so
that other individuals may also use the message facilities.

KEEPING UP-TO-DATE

The Alto exists in a rapidly changing environment. It requires some effort on your part to
keep up-to-date, but you do have help. Some of the software developers use the message
system to announce new or rereleased subsystems and packages, usually with updated

documentation. The Whole Alto World Newsletter gathers these announcements together,

along with unannounced changes, on a monthly basis. (It also includes documentation on
newly released software, information about the hardware, notes on system operation, and
papers on technologies affecting or affected by the Alto. If you would like to receive the
Newsletter, contact the coordinator as indicated in the INTRODUCTION.)

15

THE ALTO USER'S PRIMER ‘ C "

Once you know of revised documentation, retrieve and print it. Using the Subsystems and
Packages Manuals as a base, replace the updated sections with the documents just printed.
Many of the documents contain a revision history as the last section. Review the changes
indicated there and in the Newsletter and you will find that you can remain up-to-date with
just a couple of hours effort each month.

THE ALTO USER'S PRIMER v

IV. OPERATIONAL PROCEDURES

OPERATING THE ALTO

The Alto itself is a very simple machine for people to operate. There are only three things
you need to know: loading a disk, booting, and turning it on and off. (Of course there are
additional procedures for controlling each of the subsystems.)

ON/OFF The Alto was designed and is intended to be left on at all times. When the
machine is off, all lights are dark. Look for a red POWER light on the front of the machine.

Older Altos (Alto I) generally have the power switch on the back of the display base; reach -
around to the right. On newer Altos (Alto II) the power switch is inside the processor
cabinet (the big box on the floor). Using your thumbs, push in on the brushed alumninum
plates (left and right front) and pull out a couple of inches. The switch is inside the top, left
corner. Don’t turn the machine off unless local procedures tell you to. When turning ON or

OFF always verify the the disk is off, i.e. the RUN/LOAD switch is in the LOAD position and the
yellow READY light (right, front) is out and the white LOAD light is on

"LOADING/UNLOADING A DISK The Diablo Model 31 disk drive used with the Alto has a
protection mechanism that prevents the disk access door from being opened when the disk is
spinning or when the power is off. If you look carefully through the smoked plastic panel, -
you can see a little flag that says LOCK just to the left of the disk pack hand hold when the
disk is on (spinning). Don’t try to open the access door when this flag is up, something may
break if forced.

To load the disk, verify that the Alto is on, the LOAD/RUN switch (front, top, left) is in the
LOAD position, and the white LOAD light is on. Open the access door by pulling out and down
on the handle (cross bar at the top, front), and gently slide the disk in while holding the
pack by the hand grip. Close the access door and push the LOAD/RUN switch to RUN. The
white LOAD light will go out and, after about a minute, the yellow READY light will come on.
The disk is now loaded.

To unload a disk, push the LOAD/RUN switch to LOAD, wait about about a minute for the
white LOAD light to come on, open the access door, and slide the disk out. Some of the doors
get sticky, so if it doesn’t open easily, verify that the LOAD light is on and try again. (If you
want to make really sure that it isn’t locked, look for the flag through the smoked panel; it
should be down.)

BOOTING The purpose of booting is tn Inad into the Alto a copy of a program from an
outside source. Normally, the Alto is booted from the disk (diskboot), so the first step is to
load- an initialized disk. If you have one, ready it. To boot using a disk, depress the boot
button located on the back of the keyboard about an inch to the right of the thick, black
cable. You should hear the disk rattle and a few seconds later, some text should appear at
the top of the screen and a ">" about halfway down the left side. The boot operation is
complete. The ">" is the prompt from the Executive; it is requesting you to type in a
command. See the section below on USING THE EXECUTIVE. ‘

THE ALTO USER'S PRIMER

If you don’t have a disk, try to perform an ethernetboot. Depress and hold down the QUOTE
and BACKSPACE keys on the keyboard, push and release the boot button while continuing to
hold the other two keys until a small square with holes in it appears on the screen (several

seconds). The keys can be released now. Some seconds after the square appears, it will
disappear, some text will be displayed accross the top of the screen, and ">" about halfway
down the left side. The ">" is the prompt from the NetExecutive. This is not the same thing

as booting off your own disk, only a few programs can be run this way. (Type "?" to list

them). One of the things you may be able to do though is initialize a own disk over the
network.

If the small square fails to appear, a boot server is not available; you will have to locate and
ready an initialized disk to boot from.

CHECKING OUT YOUR MACHINE

There are several diagnostic programs that you can run to verify that the various pieces of
your Alto are operating properly: DMT, CRTTEST, KEYTEST, and MADTEST. If the Alto
is connected to the network, each can be obtained from a boot server, such as a Gateway. To
execute any of them, boot over the Ethernet (boot while depressing the BS and quote keys)
or type the netexec®® command to the Executive. At this point the NetExec will appear on
the screen. Type the name of the diagnostic to be performed and you're off and running.
(Enter a "7 to list the boot files that can be called by the NetExec; the diagnostics listed
above should appear. Do not use DISKTEST. It’s intended only for maintainers and could
wipe ou! a readied disk. Commonly used subsystems are also available.) [f the tests indicate
something is amiss, contact your local maintenance group.

THE WORKSTATION consists of the display, keyboard, keyset, and mouse. The action of the
keys and mouse movement are tested by KEYTEST, the adjustment of the display by
CRTTEST.

CRTTEST aids you in making a subjective judgement about the quality of the display’s
focus and linearity by drawing parallel vertical and horizontal lines. The thing to look at is
the sharpness of the lines, especially near the edges of the display, and the shape of the
boxes formed by the intersection of the lines. The boxes should be square, not tall or wide
or diamond-shaped (romboid). There will be a little distortion at the corners so don’t worry
about that. The lines will be redrawn with a different spacing (three in all) when the space
bar is depressed (or any other key for that matter). When finished either boot to get to the
Executive or type SHIFT-SWAT to retun to DMT.

KEYTEST will verify that each key makes positive contact, generating only one character.
When the program starts, the keyboard, keyset, and mouse are drawn on the screen (the
mouse may be hidden in the upper left hand corner). The display should picture the correct
keyboard, either Alto I or Alto II. To flip to the other keyboard picture, move the cursor to
the bottom of the screen (it should change to an arrow) and click any mouse button. Depress
each key, one at a time; the corresponding key on the display should turn black. If it stays
white, flickers, or more than one key turns black, there is a problem. When finished either

THE ALTO USER’S PRIMER 19

boot to get to the Executive or type SHIFT-SWAT to retun to DMT.

THE DISK DRIVE There are no user diagnostics for the disk drive. Problems may be indicated

by the need to run SCAVENGER on your disk more often than, say, once a month, though

this may also indicate a bad disk. (The CopyDisk verify command, v = _erify DPO against
DPOSR, can be used to scan a disk for errors.) Regular preventative maintenance every three

to six months. should be sufficient to maintain proper head alignment and write current
levels. Do not run DISKTEST on a machine with a regular work disk readied: it may be
destroyed by being overwritten.

THE ALTO PROCESSOR can be roughly broken into several functional pieces: main memory,
microprocessor memories (RAM and PROM), arithmetic-logic unit (ALU), registers, and
data paths. [t isn't necessary for you to know each of these or what they do, only that there
are two diagnostics, DMT and MADTEST, which test the operation of most of the
processor. - ‘

DMT tests the main memory, the area occupied by your data and most, if not all, of the
subsystems that you run. When DMT is executed, the display will be black except for a small
white square that bounces randomly about the screen.

DMT should be run for long periods, say overnight or over the weekend. If the Alto is left
in the Executive, DMT will be called after 20 minutes. In the morning, when you come in
and load the disk, while waiting for it to spin up to speed, depress and hold the 's” key. A
three line message will be displayed a few inches from the bottom of the screen. The second
and third lines should begin "0 Errors...". [f some errors have been found, the memory chip
location(s) will be indicated. De¢n’t boot your Alto; the machine may not work and the
location information will be destroyed. Inform the local maintenance group.

MADTEST, the Microcode Alto Diagnostic Test, exercises much of the rest of the processor.
It is actually a collection of routines that test the RAM, PROM, ALU, registers, and data
paths.

[t is run in the same manner as KEYTEST and CRTTEST, namely, execute NetExec by
booting from the Ethernet or typing netexecCR to the Executive, and then type madtest®R.
The screen will indicate at the top the test routine being run, the number of passes
completed, and the errors detected (if any). The middle of the screen will contain trash (the
unformated contents of memory) and below that a band containing the phrase "Black on
white means DO TEST". Immediatly below the band are the various tests that will be run.

The cursor consists of the usual arrow (like Bravo) with a changing series of black and -
white horizontal lines through it. The number and location of the lines change to let you

know that something is happening because it isn’t always apparent from the rest of the
screen. The cursor also moves about the screen in its usual fashion except that sometimes it

jumps (after a few seconds delay) rather than moving smoothly as is customary. You may

also notice the screen "tearing”. Both of these effects are a result of the level at which the
diagnostics operate.

THE ALTO USER’S PRIMER

MADTEST will automatically run all the tests, over and over. The number of passes
completed is displayed near the top of the screen; allow MADTEST to run several passes. If
any errors are reported (they will be displayed about one-third the way down the screen),
write them down and pass them along to the maintenance people. Note: depressing the
SPACE bar will halt the program and clear the screen. To suspend execution without
clearing the screen, move the cursor into the area of the test list. Moving it out will resume
execution. After the test has run several passes, either boot to get to the Executive or type
" SHIFT-SWAT for DMT.

To prevent any of the tests from being run, move the cursor into the area of the test list and

bug the test not to be run. It should change to white letters on a black background. To cause
it to be executed, bug it again. Any tests shown in black letters on a white background at the
start of a pass will be executed. The default is to execute all tests.

USING THE EXECUTIVE

This is the service that runs after a diskboot. It is used primarily for starting up other
services, such as CopyDisk which can be used to initialize a disk.

STARTING A SERVICE To start a service, type its name followed by a RETURN (CR). For

example

>copydiskCR

(If you did this, you will want to abort it. See ABORTING A SERVICE below.) Some services
require additional information, say the name of a document on the disk. To display a
document, "Notes", on the screen, use the service Type. Enter

>type notesCR

It doesn’t matter if words are typed in capital letters, lower case, or a mixture of the two.

When typing a filename, it isn't necessary to enter the entire filename, only enough
characters to unambiguously identify it. While entering a filename, if the ESC key is hit, the
Executive will finish the name if it can. If the screen flashes black, there are two or more
files that begin with the characters typed so far. Enter a few more characters (you needn’t
start over) and hit ESC again. '

20

CORRECTING TYPING ERRORS Typing mistakes can be corrected using some special keys.

LI 1]

To erase the last character typed use the BS (backspace) key. 10 erase the last word, type "w
while holding down the CTRL (control) key. Both the BS and wC keys can be used to erase as
many times as necessary. To erase the whole line and start over, type DEL (delete); it prints
"XXX" and starts a fresh line. '

ABORTING A SERVICE Usually a service can be suspended by swatting. To swat, depress the

SWAT key while holding down the left SHIFT key. The location of the SWAT key depends on
which style of keyboard you have. On the Alto Il keyboard there is a vertical column of five
keys to the right of the standard keys; the SWAT key is the top key on the right column. On

THE ALTO USER’S PRIMER

the Alto I, the SWAT key is the blank key in the lower right corner. In both cases it is blank.

After swatting, the service SWAT takes over. To get back to the Executive type kC (depress
the "k" key while holding down the CTRL key); to resume the service that was running, type
pC (this doesn’t work with some services).

INITIALIZING/INITIALIZING A NEW DISK

There are several ways to initialize a new disk, some better than others for reasons that will
be explained. Usually local procedures will describe the best method for obtaining and
building new disks at that site. One method, using the network facilities (ethernet and file
server) requires that your machine be a part of the network and that you have access to a
file server (IVY or MAXC). An alternate method, copying an existing disk, requires an
initialized disk and either an Alto with two disk drives or two Altos connected by an
ethernet.

In general, initializing a disk gver the ethernet is preferred. Unless the source disk used for
copying has been specifically built for that purpose (and not used otherwise) the new disk
will contain an unknown assortment of programs and fragmented freespace.

21

COPYING - DUAL DRIVE ALTO You've located an initialized disk and a dual drive Alto.

Load the initialized disk into the lower drive (called DP0) and the new disk into the upper
drive (DP1). After both are ready, boot the machine (ethernetboot preferred) and perform
the following dialog.

)c:ogydiskcR (The screen will change appearance)
- NOTE: CopyDisks elsewhere on the net can’t write on

your disks. Type "WRITEPROTECT" to allow it.

*writeprotect off

*copy from dpQCR (Zero, not Oh)

Copy to dp1®R

Copying onto dp0 will destroy its old contents.
Are you sure this is what you want to do? [Confirm] ¥y _es

Are you still sure? [Confirm] y _es

The machine will now copy the lower disk, DPO, to the upper disk, DP1, verify that the two
disks are identical and then ask for another command. Type

*guitCR

After installing (see INSTALLING A DISK), the new disk can be used to boot the Alto and to
store programs and data.

COPYING - TWO ALTOS You've located an initialized disk and two Altos on the same
ethernet. Etherboot each machine. If this is successful, load each machine with a disk.

THE ALTO USER’S PRIMER

If the Altos won’t boot without a disk, lead the initialized disk into one of the Altos, boot it
(boot button only), and type copydisk®R. Without disturbing the keyboard, unload the that
disk and load the new disk. Now take the good disk to the other Alto, load the disk, boot,
and type copydiskCR.

Both machines should now be running the copydisk program and their screens should look
the same. At the Alto containing the new disk, perform the following dialog.

NOTE: CopyDisks. elsewhere on the net can’t write on
your disks. Type "WRITEPROTECT" to allow it.

*writeprotect off ,
*copy from [nnn # JdpO°R (where nnn is the number of the Alto with the

good disk. Look in the black band.)

copy to dpOCR
Copying onto dpO will destroy its old contents.
Are you sure this is what you want to do? [Confirm] y _es

Are you still sure? [Confirm] y _es

The machines will now copy the initialized disk to the new disk, verify that they are the
same, and ask for another command. Type quit®R at both machines. The new disk should
now be installed (see INSTALLING A DISK) and then can be used to store programs and data
files such as documents.

USING THE NETWORK You will need a new disk, an Alto connected to a netWork with a
file server (IVY or MAXC), and access (an account) to the server. Again, local procedures
should be consulted if available.

Load the new disk, perform an etherboot, type operatmg system , and answer the
questions as indicated. :

Do you want to install this operating system? y es

Do you want the long installation dialog? y _es

Do you want to ERASE this disk before installing? y es

Type the name of a host from which | can get Alto programs: name of file server®R

22

Type the name of the directory where Alto Programs are kept: Altg®? (Usually)
If you wish to change disks, please do so now. When the disk is ready

type OK to proceed, A to abort: OKCR

The disk is configured with the multiple-version feature enabled.

Do you want to change this setting? n_o

Do you want to change the error logging address (currently x#yyy#zz#)? n o
Do you want to disable parity error detection? n o

Do you want to disable phantom parity reporting? n _o

What is your name? LudolghCR (Generally 1dentical to your IVY/MAXC account)
Please give your disk a name? Whole Aito World®R

Do you wish to give the disk a password y _es or no '
What is the password? asdf ghCR (Generally identical to your IVY/MAXC account)

THE ALTO USER’S PRIMER 23

The system will now boot itself and call the FTP service. This service retrieves files from
file servers, in this case the one you named in the precceding dialog. You will need a valid
account on that server. The Executive and FTP programs will be retrieved inorder to assure
your having the latest versions on your disk. Disk installation is a part of this procedure, so
it won't have to be done again. The disk is pretty empty so you will want perform the
operations under RETRIEVING A BASIC SET OF FILES below.

INSTALLING A DISK Disk installation (short dialog) is used to identify the owner of a disk,
to give the disk a name, and to optionally require a password each time the disk is booted.
To install a disk, load it, boot the Alto, and type INSTALLCR. The system will then start a
dialog with you.

Do you want the long installation dialog? n_o

What is your name: LudolghCR (Generally identical to your IVY/MAXC account)
Please give your disk a name: Whole Alto World®R

Do you wish to give the disk a password? y es or no _

What is the password: asdfghCR (Generally identical to your IVY/MAXC account)

The system will now boot itself, request the password if specified, display the owner’s and
disk’s names at the top of the screen, and prompt for a command.

RETRIEVING A BASIC SET OF FILES Now that you have a very basic disk you will want to
assure that it contains the subsystems required for its intended use. If it was created using
DiskCopy, it probably has what you need. Typing a TAB will list the files that are on the

disk. Check the list in WHAT YOU NEED against the names displayed on the screen. If most

of the files aren't there or if the disk was initialized over the Ethernet, you will probably

want to use FTP to retrieve and execute a command file which will, inturn, retrieve the files

you need. To do this type the following line to the Executive where "file server” is the name

of the file server you have access to:

>FTP file server RET/C <ALTO>command file®R (Retrieves the command file)
>@command file@CR (Executes the command file)

where "command file” is NEWNPDISK.CM if the disk is for document creation or
NEWPDISK.CM if it is for BCPL programming.

The FTP program will open a connection to the file server and retrieve the command file.
That file contains commands that in turn will use FTP to retrieve a number of files. When
everything finally comes to a stop you will probably be left in Bravo. Type a qCR to quit
and return to the Executive. Your disk is now ready to do some work."

NORMAL DISK MAINTENANCE

The Executive provides routines to list filenames, list a file’s attributes (e.g. type, size, and
creation date), display a file’s contents, delete a file or files, and group files together as a
single file for storage or shipment (and the inverse operation). Two programs, Put and DDS,

THE ALTO USER'S PRIMER ”

can be used to simplify file deletion. Copying files between drives on a dual disk Alto can
be performed by Put and Copydisk. The copying of files to and from the Alto disk is done
using FTP. '

LISTING FILENAMES To find out if a particular file is on the Alto disk, type the name of
the file followed by a TAB. All the files whose names begin with the typed-in characters
will be displayed on the screen. If, while entering a command to the Executive, you get part
way through the filename but don’t remember how it ends, type a "?". All the filenames
beginning with the characters typed so far will be listed on the screen. Find the name you
need and finish typing the name.

If you name your files in a systematic way, groups of filenames can be listed by substituting
pattern characters for parts of the name, followed by a TAB. The two pattern characters are
"#" and "*". Any single character can replace a "#"; any string of characters can replace a
"*" For example "*.memo" represents any filename ending in ".memo"” while "#.memo"
represents only the files that have three character main names followed by the extension
".memo"”, such as "ABC.memo". Any combination of pattern and filename characters is
valid.

LISTING FILE ATTRIBUTES Enter the Executive command, File filename, to list a files size,
type, creation and write dates, and serial number and disk address.

DISPLAY A FILE’S CONTENTS Enter the Executive command, Type filename. A portion of
the file will be displayed, followed by the word MORE?. Type n to terminate, SPACE to
procede. ' '

DELETING FILES To delete a file, type delete filenamel filename2 ..CR. Pattern characters
can be used in the filenames, but be careful because once deleted, you can’t get a file back.

[f there is more than one version, only the oldest version (the one with the lowest number)

is deleted. :

GROUPING FILES Many related files may be grouped as a single unit for storage using the
Executive command, Dump dumpfilename filename filename... The dumpfilename usually
has a .dm extension regardless of content. To recover the individual files, enter Load
dumpfilename. ‘

Additional details on the preceeding operations is contained in the Executive section of the
Subsystems Manual. For information on the capabilities and use of the other programs
mentioned in the first paragraph, see their respective subsections in the Subsystems Manual
(except for Put, which has self-contained documentation).

DISK CRASH!

There are various ways the Alto disk can be damaged. The most typical symptom is the
failure to boot properly. Using Scavanger and various techniques, it is almost always possible
to recover a disk or, at the minimum, the irreplacable files on it. Since a fair amount has
already been written, it won’t be repeated here. The discussions can be found in:

THE ALTO USER’S PRIMER

Alto User’s Handbook pp. 8-9
<AltoDocs>OS.press pp. 30-33
<AltoDocs>Subsystems.press Scavenger section

All of this discussion has been brought together, along with additional comment on [IFS-
2KSDSupport>SDDocs>Scavenger.bravo.

THE USER COMMAND FILE

This file contains user-settable default information for many of the system’s services. It
should be on the disk now, but if not try retrieving New-User.cm from the <Alto> directory
on your local file server and rename it (rename oldname newname). Some of the settings
may have to be altered before placing the disk in general use. Of specific interest are the
[HARDCOPY] and [EXECUTIVE] entries. To see what they contain, enter the command
type user.cm®R to the Executive. This will display on the screen some of the text in the file
User.cm. When you have finished looking at what is on the screen, touch the SPACE bar
(actually, any key except "n" will do). When the whole file has been displayed, Type will

"_n

return to the Exective. If you want to abort Type, enter "n" when it asks "More?".

Look at the [EXECUTIVE] entry; it's usually the first one. You should see something like
the following. Ordering isn’t particularly important. :

[EXECUTIVE]

eventBooted: // eventBooted

eventRFC: FTP// eventRFC

eventlnstall: // eventlnstall

EventAboutToDie: // eventAboutToDie
eventUnknown: // eventUnknown
eventClockWrong: Settime // eventClockWrong

In this case, the words on the left are things (cvents) that happen that the Executive knows
about. If one of these events occur, the Executive will call the service listed following the
""", For example, if the Executive notices that the time value it has doesn’t look like a valid
tlme value, it will call the service Settime which will attempt to get the time from another -
source on the network or, failing that, ask you for the correct date and time. The "//™ is the
start of a comment that is displayed on the screen when that event occurs. Many people
change "eventBooted" to say "Hi {your name)", then, everytime the disk is booted, the screen
displays a greeting.

If you have a message account you may wish to call MailCheck when you boot, like so:
eventBooted: Mailcheck// Hi Frank

To change the User.cm you will want to use Bravo ur one of the other text editors. Because
‘they take a little experience to learn, altering the Usercm won’t be described here. You
should look at the chapter, WHAT YOU NEED, to see about getting a text editor and its
documentation.

THE ALTO USER’S PRIMER

The other entry you should look at is [HARDCOPY]. This one might actually have to be
changed so make a note to do it later when you learn how. This entry defaults where
documents on your disk are sent for printing. This assumes that your machine is part of a
network that has an attached printer. If so you will need to learn its name before making
the change. The entry looks like this: ‘

[HARDCOPY]
PREFERREDFORMAT: Press
EARS:

PRESS: Menlo

PRINTEDBY: "your name"

There are two formats used to encode documents for printing, Press and Ears. The one you
indicate as preferred should be the one you intend to use most often. Since there is only one
Ears printer and it is located in Palo Alto, you probably want to specify "Press”. The
"EARS" and "PRESS" entries identify the default printers you would like your documents to

go to. Even if you specify "Press” as your preferred format, if you are in Palo Alto you may
want to use the FEars printer from time to time so that entry should read

EARS: Palo

If you're not in Palo Alto, you needn’t bother. You will want to specify the name of your
local press printer,. usually either a Dover or Sequoia. If you know what ethernet your on,
look at the Alto Network diagram for the name.

As an alternative to specifying the printer’s name, you may wish to specify its address in the

form nn#mmm#. nn is the ethernet’s address; mmm is the address of the Alto that drives
the printer. The reason for doing this is to cover the infrequent occasion when the name

server, usually a gateway, is down. These numbers can also be found on the Alto Network
diagram. Don’t forget to reinstall Bravo (Bravo/i) after editing this section.

There are also entries for other services; Bravo, DDS, Chat, SIL, and Draw are commonly
used. See the documentation on each of these for descriptions of their entries.

PRINTING

Almost all documents are stored in electronic form on file servers. As a result, you will have

to retrieve and print the documents you need. Printers that run Spruce and Press (Spruce is
run on Dover and Sequoia) software require that files sent to them for printing be in press
format. However, several other formats (bravo, gypsy, tty, text, and some -ears) can be
converted and printed as described below.

You should first assure that the [HARDCOPY] section of the User.cm file is in the proper
format, that is, it should reference a nearby printer. While each of the printing services
provides overide facilities, it is easier and less error prone if you start with a HARDCOPY
specification. See the USER COMMAND FILE section for a full explaination.

26

THE ALTO USER’S PRIMER

PRESS FILES Empress will send a press file to the press printer indicated in the
HARDWARE section of your User.cm file; just type Empress filename. The number of
copies can be specified as well as a different printer. See the Empress section of the
Subsystems manual for a complete description.

BRAVO FILES Bravo has a Hardcopy command that will properly format and transmit the
current workfile to the printer specified in the [HARDCOPY] section of the User.cm file.
Options are available to specify a different printer (@printer nameESC) and multiple copies
(cnumber of copiestSC). An option also exists to create a press file without printing.

EARS FILES Some ears files, which are normally printed only on the ears printer at PARC,
can be converted to press format for printing on.a local printer. The ears file must contain a
defined font set and may not contain diagrams. The only way to discover this is to try to
convert it by calling Pressedit, Pressedit Name.press « Name.ears. If sucessful, this will
create a press format file on the Alto disk which may be treated as any other press file. See
the Pressedit section in the Subsystems Catalog for more detail.

GYPSY FILES Gypsy, like Bravo, will format its workfile into press format and transmit it
to the printer specified in the User.cm file.

TEXT FILES The various text editors, e.g. Bravo, Gypsy, and UGH, maintain their source as a
text file. Empress will automatically recognize and convert text files to press format before
transmitting them to the printer. However, this is not commonly done. Empress does not
attempt to use the formatting information in these files; it is simply stripped off. The Bravo
and Gypsy editors both contain facilities to properly format their workfiles in press format
and transmit them to the printer.

TTY FILES Empress will-automatically recognize and convert .tty files to press format before
transmitting them to the printer: just type Empress filename. The same options that apply
to press files apply to tty files. See the Empress section of the Subsystems manual for a
complete description. ‘ :

OTHER PRINTERS Dovers and Sequoias are not the only printers, though they are the most
common. Other printers include the Versatec electrostatic printer, the Diablo HyType, and
the Slot 3100. The Versatec and Slot 3100 normally run press software which will print press
files as described above. If they have been set up as servers, Empress can be used to transmit
the files to the printer, otherwise the file to be printed will have to be transferred between
machines using FTP. '

The HyType was the original hardcopy printer used with the Alto and is available as an
option. Both Bravo and Gypsy will output their workfiles to this typewritter like device; for
Bravo, use the Hardcopy command with the D option. Though the output is right justified, it
is printed in a single font.

27

ShowAIS Documentation
April 4, 1978

ShowAlS is a program for display 8 bit per sample AIS files on the Alto display. Two
versions are available: [IVY]KMaleson>ShowAIS.RUN requires the AIS file to be on local
disk storage, and [IVYKMaleson>NetShow.RUN displays AIS files from a remote server
site. The network version is available as ShowAIS.RUN from all gateway boot servers.

ShowAlS will display any rectangular window of the AIS file. The window specification
commands are:
XS (XStart) -- first pixel to display in the x direction gdefault=0)
YS (YStart) -- first pixel to display in the y direction (default=0)
XL (XI.ength) -- number of pixels to display in x gdefault——-x length of image)
YL (YLength) -- number of pixels to display in y (default=y length of image)
L (Length of scan) -- number of horizontal output dots to paint on the Alto
screen (default =608)
B (Black) -- all pixels less than or equal to this value will print as black.
W (White) -- all pixels greater than or equal to this value will print as white.
R (Reset) -- restore window settings to default values.
S (Show Settings) -- display current settings.

To display the currently selected window on the screen, the command is:
P (Print Picture) -- the current window is displayed on the screen

Additional useful commands are:
E (FErase Screen)
I (Invert Display) -- turn all black dots white, and all white dots black.
<ESC> -- Remove (or Restore) the six line text display from the screen.
D -- Display on or off: the speed of printing a picture is approximately doubled
when the display is turned off (the area painted so far is indicated by a black
rectangle of increasing size).
Q (Quit) -- In the network version, a new AIS file name is requested (hitting
carriage return will terminate the program). In the disk version, Q immediately
terminates the program.

In addition to the manual commands for setting the window, a window may be specified
interactively using the mouse. After typing the appropriate command, point to one corner
of the desired rectangle; hold down any mouse button as you move the mouse to the
opposite corner of the desired rectangle. A flashing area will indicate the window being
selected. Releasing the mouse button causes the new window to be displayed. The
commands are:

U (Update zoom) -- display the indicated rectangle, and update the current

window parameters (XS,YS,XL,YL) to be the rectangle coordinates.

Z (Zoom) -- display the indicated rectangle, but leave the current settings active.

(After a zoom, the previously displayed image can be restored by typing P).

laltoiimem.sil

ALTOIl MEMORY LAYOUT

100000- 120000- 140000-' 160000-

017777 20000-37777 40000-57777 60000-77777 17777 137777 157777 176777
o eveN J ooo | even J ooo | even | ooo | Even | ooo | Even | oop | even | oop | even | ooo | even | opb
0 116 | 118 | 126 f128 |13 138 |14 | 148 | 156 158 J1ee | 1e8 176 | 178 | 186 | 188
1 216 | 218 | 226 J 228 |23 | 238 |24 | 248 | 256 | 258 |26 | 268 | 276 | 278 | 286 | 288
2 316 | 318 | 326 | 328 J3a |33 |34 |48 | 356 |3ss |36 |aes |37 |3 |3s | zss
3 4-16 4-18 4-26 4-28 4-36 4-38 4-46 4-48 4-56 4-58 4-66 4-68 4-76 4-78 4-86 4-88
4 1-11 1-13 1-21 1-23 1-31 1-33 1-41 1-43 1-51 1-53 1-61 1-63 1-71 1-73 1-81 1-83
5 2-11 2-13 2-21 2-23 2-3 2-33 2-41 2-43 2-51 2-53 2-61 2-63 2-71 2-73 2-81 2-83
6 31 313 | 321 323 | 331 333 | 341 343 | 31 353 | 361 363 | 371 373 | 381 3-83
7 4-11 4-13 4.-21 4-23 4-31 4-33 4-41 4-43 4-51 4-53 4-81 4-63 4-71 4-73 4-81 4-83
8 117 1-19 1-27 1-29 1-37 1-39 1-47 1-43 1-57 1-59 1-67 1-69 1-77 1-79 1-87 1-89
9 2-17 2:19 2-27 2-29 2-37 2-39 2-47 2.49 2-57 2-59 2-67 2-69 2-77 2-79 2-87 2-89
10 317 } 319 | 32r | 320 {337 |33 | 347 |34 | 357 |a3s9 | 367 |369 |377 |arg | 387 | 389
11 417 4-19 4-27 4-29 4.37 4-39 4-47 4-49 4-57 4-59 4-67 4-69 4-77 4-79 4-87 4-89
12 1-12 1-14 1-22 1-24 1-32 1-34 1-42 1-44 1-52 1-54 1-62 1-64 1-72 1-74 1-82 1-84
13 2-12 2-14 2-22 2-24 2-32 2-34 2-42 2-44 2-52 2-54 2-62 2-64 2-72 2-74 2-82 2-84
14 3-12 3-14 3-22 3-24 3-32 3-34 3-42 3-44 3-52 3-54 3-62 3-64 3-72 3-74 3-82 3-84
15 4-12 4-14 4-22 4-24 4-32 4-34 4-42 4-44 4-52 4-54 4-62 4-64 4-72 4-74 4-82 4-84

HO 1-20 1-30 1-40 1-50 1-60 1-70 1-80 1-90

HA 2.20 2-30 2:40 2-50 2.60 270 2-80 290

H2 3-20 3.30 3-40 3-50 360 370 3-80 3-90

H3 4-20 4-30 4-40 4-50 4-60 4-70 4-80 4-90

H4 1-15 1-25 1-35 1-45 1-55 1-65 1-75 1-85

H5 215 2.25 2-35 2-45 2.55 2-65 2.75 2.85

P 3-15 325 3-35 3-45 355 3-65 375 385

.
NOTE: 1. Card-Chip location.

2. The Memory Configuration Switch complements the high-order memory address bit

SSL ALTO I
EXTENDED MEMORY LAYOUT

BANK O : BANK 2 BANK 3

100000- 100000- § 00000- 100000- | 00000- 100000-
177777 177777 § 177777 77777 177777

00D

j 1-68

2-66] 2-68

3-68[3-76

4-681 4-76

1—63' 1-71

2-63) 2-71

3-634 3-71

NOTE: 1. Card - Chip location.
2. The Memory Configuration Switch reverses high and low memory within a bank.

WHOLE ALTO WORLD MEETING
JUNE 1, 1978 |

BOSTON:

SOFTWARE

DALLAS

FL SEGUNDO

GATEWAYS

WAW
PALO ALTO

HARDWARE

PASADENA

MAINTENANCE

- WEBSTER

KEEP IN SYNC

9:00am to 3:30pm

Executive Dining Room
EL Segundo, Ca

S5, Yerox

Whole ALTO Word Newsletter || 9% Data

Technology and Tools

XEROX MAY 31, 1978

SPECIAL NOTES

FONT CHANGE COMMING - As detailed in the attached paper on printing, PARC will be
changing its printing fonts on June 15th. Similar changes are expected to occur at other sites
at about the same time. This will require that everyone retrieve a new Fonts.widths file on
each of their disks soon after local Spruce installers announce the change at their sites. Users
with old Fonts.widths will find their output rather unattractive as a result of bad spacing

and ragged edges.

GENERAL NOTES

WHOLE ALTO WORLD MEETING - The Whole Alto World meeting will be held on June
1 at the Cockatoo Inn near the El Segundo facility. Our host is Dick Sonderegger, SDD. See
next month’s Newsletter for an account of the happenings.

TOOLS
HARDWARE

ALTO BUILD - An 8th build will take place during the last quarter of this year.
Requirements should have been made known to Terry Haney, SPG, by June 1. The
configuration is being altered slightly by replacing the current keyboard with an Alto I
form/function compatible keyboard and deleting the five-finger keyset. Transport trays, a
rolling platform for the Alto which still permits it to be placed under a table, may be
ordered as an option.

SOFTWARE

In general, the subsystems, packages, and documentation indicated here will be available
from your local IVY server under the directories <Alto> and <AltoDocs>. If they are not
available, or if you are in doubt as to the version, they may be retrieved from [MAXC]
(same directories). Files stored under other directories are on [MAXC] unless otherwise
indicated, e.g. [XEOS].

NEW RELEASE: Gypsy - This subsystem has been significantly enhanced so it is being
reported here rather than under ReReleases. GYPSY is a text editor originally derived from
an early version of Bravo. It is modeless, that is, you don’t have to enter "i" before inserting
text, followed by ESC when finished; just position the cursor and type. It has only simple
formatting facilities, so it is more suited to programming than document creation. It also
provides a hierarchical file facility to group documents, i.e. files, into "folders".

One of the enhancements enables GYPSY to replace Executive.run. Replacing Bravo and
Executive with GYPSY will free over 200 disk pages, reduce typing, and integrate source code
editing and: compilation activities. After booting, the screen will contain several Find and
Execute menu items (see the attached hardcopy of the GYPSY screen). Bugging an Execufe

Whole ALTO Word Newsletter %%]’pif{:’;ie
ata

item will cause the subsystem in the associated {..} to be run. Bugging a Find item will
cause that folder to be retrieved and a new screen will be displayed containing a Fefch menu
item for each file. Bugging Fetch will open the associated file for editing. These menu lists
can be expanded by the user at will. '

GYPSY permits text within the file to be "executed"; simply select the text and bug Do If (in
the window above the text window). For example, if the text selected is a compile command,
contained as a comment in the source file, the compiler will be called after automatically
updating the changes. Following compilation, control is returned to GYPSY. Bugging Find
and Feich opens the file for additional editing as necessary. A second text window can be
opened so that both the source and error files can be viewed simultaneously.

A "hardcopy" facility will immediately format and transmit the current file to a printer, or
Empress can be used to print a GYPSY fite. GYPSY formatted hardcopy is in a double
column format.

Due to its bulk, the documentation is not reproduced here. Retrieve <AltoDocs> GYPSY.press.

NEW RELEASE: HARDCOPY - This subsystem, designed by Jay Israel to save you keystrokes
and concentration, will automatically invoke the Bravo "hardcopy"” command from the Alto
EXECUTIVE. It will also call FTP if necessary to retrieve files from a shared file server such
as MAXC or Ivy. Retrieve <Alto>Hardcopy.run. The documentation is appended to the
Newsletter.

NEW RELEASE: Sor1BItBLT - This package, consisting of three files by Dave Boggs,

emulates the BitBlt instruction in software. It can be retrieved by loading
<Alto>SoftBitBlt.dm. The documentation is attached to the Newsletter.

ReReleases - Subsystems

EMPRESS - The changes are of a minor, internal nature. The documentation is unchanged.

GOBBLE - A part of the SIL system, Gobble has been modified to treat F-ICType identically
to N-ICType so that the same Dict.Analyse can be used for GOBBLE and ROUTE. Retrieve
<SIL>Gobble.run. The documentation is unchanged.

GYPSY - Extensive enhancements have been made which enables press output of hardcopy
and permits GYPSY'S use in lieu of Executiverun. See the GYPSY entry under NEW
RELEASE for a more detailed discussion. Load <Alto>GypSy.dm and the new
documentation, <AltoDocs> GYPSY.press. '

MENUEDIT - A part of the BCPLL MENU package, this releases corrects isolated cases in
which- DCBs wre incorrectly written. See the MENU package below.

MicroD - The nature of the changes are unknown to me. Retrieve <Alto>Microd.run. The
documentation is unchanged.

READPRESS - The new version fixes a bug in the interpretation of the SkipControlBytes
command. Retrieve <Alto>ReadPress.run. The documentation is unchanged.

Whole ALTO Word Newsletter ||§59, Xerox
» @8@ Data

ReReleases - Packages

MENU - This version, 1.2, uses BitBlt to manipulate the screen, permits the use of a colon in
a string, generates default names if required, and no longer generates zero DCBs. It is
compatible with the previous version. Load <Alto>Menu.dm. The documentation is
unchanged.

TECHNOLOGY

This month’s paper is on printing within the Xerox Alto community. Dan Swinehart, Joe
Maieson, Patrick Baudelaire, and Edward Fiala have put together on overview of existing
hardware and software with an extensive list of references and a glossary. Although it has
many references to PARC specific items, it is a basic document whose breadth should make
it of interest to all who use the Alto.

The Whole Alto World Newsletter is a monthly publication for Xerox employees that use the Alto. It is not to
be shown to non-Xerox people. Copies are available on [MAXC]<AltoDocs> WAWnews.press or may be
obtained from the editor, Frank Ludolph, XEOS, by messaging <Ludolph> or calling Intelnet 8*923-4356.

XEROX

PALO ALTO RESEARCH CENTER
Computer Science Laboratory

May 11, 1978
To PARC/SDD
From Dan Swinehart, Joe Maleson, Patrick Baudelaire, and Edward Fiala
Subject Printing at Palo Alto
Filed As [Maxc] < Gr- Docs>Printing.Press

This document has the twofold aim of describing the printing facilities that are currently
available, and of announcing two major impending changes.

Key Points

We are currently in transition from one major printing format (EARS) to another (Press), with
a corresponding introduction of new printing hardware (Dover, Pimlico, Sequoia). Some
aspects of this transition will affect users quite a bit, some very little. All will of course affect
those who produce formatted files.

One upcoming change that will have substantial effect on the entire community will be the
distribution, on June 15, of a new Fonts.Widths file, correcting the width specifications for our
major document fonts. Previously produced Press files should continue to print reasonably
accurately, although they may not do so forever. Subsystems that create Press files will be
required to supply the current date (machine readable format) in a new field within each new
Press file.

Another major impact will be felt as the Ears system is decommissioned on the same date
(June 15, 1978). It will be possible to convert most EARS format files to Press format, and
thus to print them. This includes all new EARS files that are produced by the Pub system, and
most if not all previously created ones.

A modification of printing resolution (from 350 to 384 dots/inch) for Dover and Sequoia
printers will limit printing to the lower 10.6" of each page; information in the top .4" will be
lost. This is expected to affect very few documents.

The sections that follow survey the current state of Printing Formats and Transmission
Protocols, Fonts, Printing and Formatting Programs, Printer Types, and Impending Changes.
Appendices supply a variety of useful information, including a comprehensive glossary of
terms associated with page imaging. There is also a bibliography of related documents and
manuals. Feel free to skim or skip those sections that do not appear to be of interest.

Printing Formats

EARS Format

EARS format [Riderl] was developed as the input format for the Ears printer (see below). It
is a character oriented format, specifying for each page the names and positions of each
character to be printed. An EARS format file must also contain a font directory before it can
be printed. This directory, describing the shape of each character to be printed, can be a
permanent part of the file, or may be inserted just before the file is shipped to the printer,
based on a list of requests (the Doculist) that is embedded in the document. Exception: a
default set of 16 commonly used fonts is available at the printer site, and need not be
transmitted with the file.

In addition to characters, line drawings and passable low-resolution bit maps may be specified
using EARS format, by creating suitable "type faces" containing the required patterns. Ears can
handle most Alto screen resolution bit maps in this way.

In Palo Alto, there is only one Ears system (named Palo).

Press Format

Press format [Newman/Sproull] is ’an attempt to define a "universal" format for describing
documents’ for printing and editing. Its major goal is the complete description of document
appearance in a device-independent fashion. A Press file should look the same, within device
limitations, on any printer.

Press format allows the specification of;
Text characters.
Solid rectangles parallel to the paper edges.

Objects whose outlines are defined by a series of graphic commands including spline
curves. Character shapes may be defined in this way. (see fonts section below).

Images specified as a matrix of intensity values at arbitrary resolutions. Bit map
patterns are an instance of such images, where intensity values are constrained to one
bit.
Any of these entities may be placed at any location on the page, and may be assigned
brightness (obtained with half-tone shading methods) and color characteristics. Characters to
be printed are specified by name. Custom shapes may be included by sending their splines and
the names to be assigned to them, but one usually depends on the server to locate the necessary
shapes based on the names alone, using established conventions (see the Fonts section below).

A printer that accepts Press format is not required to implement all its provisions. The
descriptions below indicate for each program and printer what subset of the Press facilities it
implements.

Text Files

Programs exist on both Maxc and Altos (see below) for converting standard Ascii text files to
EARS or Press format, with optional headings and page numbers. Thesc programs often
combine translation with transportation to the appropriate printer. For the results to be
pleasing, the text files must contain explicit line breaks.

Pspool Format

Pspool format [Fialal] is a simple augmentation of Ascii text files. Escape sequences describe
margin settings, column settings, landcape/portrait selection, font selection, underlining, etc. A
document heading may override default selections for user identification, file identification,
etc. .

At present, only the printing subsystem on Maxcl or Maxc2 (see Formatting Programs, below)
will honor Pspool format, and then only for files to be sent to Ears. A Press version should be
complete by June 15.

Transmission Protocols

A printer is classified as a "server” if it can operate unattended, accepting files sent to it over
the internetwork using a Pup-based protocol. Otherwise it is a "stand-alone" printer, requiring
each user to attend its operation.

The user of a stand-alone printer may choose any available transmission program to transfer
files to the printer’s local disk. The Fip program [Boggs/Taft], using the FTP protocol
[Shochl], is preferred because of its speed, utility, and availability -- it is the only protocol
currently used by the IFS systems.

All server systems currently use a simpler protocol, EFTP protocol [Shoch2], which is more
easily incorporated into sending programs like Bravo that are tight for space. The EFTP
protocol provides only for the transmission of file data. Thus the only identification
information available to the server is information contained in the file itself. This, combined
with some limitations in Press format, has caused some difficulty in properly identifying the
sender of documents to Press printers.

A final protocol, known as EARS protocol [Taft2], is honored by all servers. It provides a
means whereby user programs can determine a server’s current status.

See the Formatting Programs section for more information about protocol usage.

Fonts

High resolution raster representations of fonts comprise many bits, and are device dependent;
for these reasons font rasters are not included in Press files. Instead, fonts are specified by
family name, a numberic code specifying type face (bold, italic, regular, etc.), point size, and
rotation. An extensive description of font issues can be found in [Sproull4d]. Two
representations exist for fonts: outlines (described by graphic commands including spline
curves) and rasters (or "bit maps"). Along with the description of character shape according to
one of these representations, positional information is needed. A variety of file formats are
presently used for storing this font information. Sometimes several fonts are included in a
single file, called a dictionary. PrePress [Sproull2] is a program which converts among the
various formats, and performs some bookkeeping operations for font dictionaries. Press
format allows up to 16 different fonts per entity (a page subgrouping). When more than 16
fonts appear in a page, they must be grouped into font sets (of up to 16 fonts) in such a way
that each page contains fonts from only one set. A document may contain up to 64 font sets.

Font Naming Conventions

A standard file naming convention allows identification of what font is contained in a file.
The convention is:

{family- name- in- full}{point- size}{[B|L] H{[I] }{[CIE] }.{extension}
Examples: TimesRomanB.SD, TimesRomanl0B.AC

The optional B|L stands for Bold or Light;I for Italic;C|E for Condensed or Expanded. Device
independent fonts (outlines) omit {point-size}. The extension indicates the format (see below)
of the font representation. For device- dependent (e.g., bit map) representations, the standard
conventions contain no clue to the orientation, resolution, etc., of the font.

An alternate font naming convention is used to expand the code describing the type face, in
Press files and in some of the formats below. This convention uses a three letter code, selecting
from the orthogonal attributes

(bold/medium/regular, italic/regular, condensed/regular/ expanded). In the TimesRomanl0B
example, this face code is thus BRR. See [Sproull4] for the precise mapping between this code
and the actual numeric specifications used in Press and in font dictionaries.

Formats

The format of a file is indicated by its extension. Standard formats include:

SF Outline representations edited with- FRED (device-independent).

SD - Compact outline representations, produced by PrePress from .SF files (device-

‘ independent). _

AC Raster representations edited or created with PrePress from SD format (device-
dependent).
The remaining formals can be be converted to AC format, and can be produced
from AC format:

.CU "Carnegie- Mellon" format raster representations.

AL Raster representations in Alto (CONVERT) format.

STRIKE Raster representations in Alto (BITBLT) format.

.EP EARS-format portrait font (run-coded raster).

.EL EARS- format landscape font (run-coded raster).

Example: Helvetical2l.EP is a 12-point Helvetica font for EARS (face code MIR).

Resolution

While raster representations can be automatically converted from outline descriptions, this
process is not performed efficiently with present hardware. In addition, some hand tuning of a
scan converted font often improves its appearance. Therefore, each Press printer is expected
to have local raster copies of all necessary fonts, converted to whatever resolution is
appropriate. Although Press format allows users to include personal fonts in outline form,
Spruce software does not implement this feature. The Orbit printers (Dover, Sequoia,
Pimlico -- see [Ornstein] and discussion below) generally run at 384 dots per inch. Dovers
currently running 350 dots will soon be converted to 384 (sece issues and plans, below). The
Orbit hardware supports a maximum of 4096 dots per scan line, and so limits printing length
to 10.6" at 384 dots.

Widths

There is one problem with keeping fonts external to Press files: the width of a character is not
specified locally, and formatting programs need to know character widths for things like text
justification. This information is kept in a file named Fonts.Widths. Any changes to the
width information (for purposes of standardization or aesthetic appeal) will alter the
appearance of Press files which were produced using different widths. This is currently a
major problem, as we attempt to reach compatibility with the printing world. Additional
incompatabilities are the printing world’s two kinds of spaces (numeric and regular), different
characters for hyphen and minus, and the use of ligatures (multiple character combinations
like "ae" or "ff") and kerning (sometimes called "optical spacing" -- altering inter-character
spacing for specific pairs of characters).

A list of the standard fonts to be available on printers in PARC beginning June 15 is
contained in an appendix. More may be added, to all or some, as time goes on.

Printing Programs

The Sears program [Riderl] operates the Fars printers as a server, spooling and printing
EARS format files (using the EFTP protocol).

There are two programs that accept Press format files: Press [Sproulll] and Spruce
[Swinehart1].

Press

This program, thc older of the two, will accept and render nearly all Press specifications,
including color (results depend on the printer). Press is a stand- alone program, whose intended
application is the production of high-quality, high-resolution graphical images. Press is
available on most of the printers described in the following section, except for the very fast
ones (see Printers, below). Press does not operate as a "spooling” network service program,
and is therefore not the printing program of choice for high-volume text printing.

Spruce

Spruce is intended as a printing service system, primarily for printing office documents. It
accepts a subset of Press files including text characters, rectangles, and most Alto screen
resolution bit maps. It does not handle splines or arbitrary bit patterns, nor does it honor
brightness and color requests (but see the note below). Enterprising users could obtain limited
line- drawing capability by creating and using appropriate "spline fonts". Spruce operates only
on printers controlled by Alto I1/ Orbit hardware (see Printers, below).

AIS

Continuous tone images which have been digitized are stored as an Array of Intensity Samples.
AIS format is used to store such images. Included in an AIS file are various data about the
image which are important for accurate reproduction. Software is available which prints AIS
files using a variety of halftoning techniques. Halftoning simulates various gray tones using
only one ink color by varying the amount of ink in an area proportional to the original
intensity. By halftoning several different color separations, a wide range of hues can be
achieved.

Color Note

Press format allows specification of hue (color) as well as intensity. The Press program
implements this feature directly on the Pimlico printers (see below). An interim measure has
been used, in Spruce for Pimlico and in Press for the Colorado system (see below), to produce
color images. In these systems, three or four Press pages, one per color (sometimes including
black) are required for each printed page. A full conversion to direct color specification
support is expected for Spruce.

Formatting Programs

Maxc Programs

The Pspool program [Fialal] runs as a background job on the Maxc systems, formatting and
transmitting documents to printers as they appear on the <PRINTER> directory. Files are
placed there either explicitly or in response the attempts of programs to write to the LPT:
device. Files already in EARS or Press format may be sent to an appropriate printing server.
Press format files may, alternatively, be converted to EARS format and sent to the Ears server.
Pspool format may be converted into either EARS or Press format and sent (see the
information on Docgen, below). Pspool will add necessary .EP or .EL files (EARS font
descriptions) to a file on its way to Fars, if that information is not already in the file. It will
use the Doculist section of the EARS file to decide what to send.

The EPress program is invoked by Pspool to translate Press format files into EARS format for
printing on Ears. This conversion is automatic. The user has the option to save the resulting
EARS file.

The standard way to direct text or pre-formatted files to printing servers is to run the Ears,
Press, List, or Copy commands. These programs do intelligent things about selecting files with
the proper extensions, embedding appropriate header information in EARS files, etc. Headings,
page numbers, margin trnasformations and size reduction are also available through the Ears
command.

The Printer Status command will indicate the names of files spooled on the {PRINTER>
directory and of recently printed files, and the state of the most recently active printing server.
Respool may be used to retransmit a file that was send for printing but did not get printed
correctly for some reason.

The Pub [Tesler] formatting program is a batch processing system that is useful in formatting
large documents, especially if they need indices or cross-reference, or if they are going to be
updated frequently. Pub will produce plain text output (for on-line perusal) or EARS format
output, including a Doculist that Pspool can use to include the necessary fonts. Once the Ears
system is gone, production of Pub-formatted documents will of necessity be a two-stage
process, producing first the EARS format file on Maxc, then a Press format file on an Alto
using. PressEdit (below).

Docgen. Prt

Pspool often needs additional information about a user’s printing preferences before it can
perform its tasks. When sending Press files, for instance, Pspool must know what server to send
them to. Although it is always possible to specify these options directly, it is useful to be able
to default them. The system provides global defaults for each option. The user may specify
different ones by creating a Maxc file called Docgen. Pri. The system defaults and the format
of Docgen.Prt may be found in [Fiala2].

Alto Programs

The Gears program [Riderl] will produce an EARS format file from a text file, transmitting
the result to Ears. It will optionally supply a heading and page numbers on each page, expand
tabs properly, and obey a small number of font change and formatting specifications. In
addition, it uses the FEars protocol to report on the status of the printer.

NGPR is part of the design automation package. It produces EARS format versions of Sil
format files, either leaving them on the local disk or sending them to Ears.

The Empress [Boggs/Maleson/Tiberi] and NPPR programs are analogous to Gears and NGPR,
except they produce Press files. Empress does not provide all the formatting options that Gears
does, but it does include some useful Press file processing functions. It is in addition willing to
ship files that are already in Press format to a Press printer. NPPR uses Empress, via a
command file, to print its output.

The OfficeTalk-Zero (OZ) system [Newman/Mott] is also capable of producing and directly
sending Press files to suitable printers.

The Bravo editor will produce hardcopy in either EARS or Press format. It can either produce
a local file or transmit the result directly to a printer. In the latter case, Bravo uses the file
Swatee as a scratch file. Recent versions of Brave and Draw (see below) will accept color
information and produce the appropriate "color separated” Press file.

User.Cm

The [HARDCOPY] section of the User.Cm file on one’s Alto disk serves to personalize default
printing options (e.g., preferred printing format, preferred printer, etc.) It is analogous to
Docgen. Prt on Maxc. The following example contains a sample of each kind of entry that I am
aware of:

[HARDCOPY]

PREFERREDFORMAT: Press Press or Ears

EARS: Palo Name or legal network address of Alto providing Ears
printing service

PRESS: Menlo Similarly for preferred Press printer

COLOR-PRESS: Victoria Preferred color printer (Press only)

PRINTEDBY: "$" Sece explanation below

FONT: TIMESROMAN 10 MIR See explanation below

The FONT entry, used up to this point only by Empress, specifies that TimesRoman10i (italic)
should be used as a default font instead of Gacha8 (Fmpress’s default choice). The second,
point size argument, and the third, face specification argument are optional. The face argument
contains three letters specifying weight (M, B, or L), slope (R or I), and expansion (C, R, or E),
respectively. '

The PRINTEDBY field, if present, specifies the name to be used in the Name field on the
break page. The current disk login name will replace the character $. Empress and Bravo both
chose "$" as a default in the absence of a specification.

As far as we know only Bravo honors the PREFERREDFORMAT entry.

Of course, he [BRAVO] section of User.Cm also contains font selection specifications.

Related Programs

Markup [Newmanl], Draw [Baudelairel], and Sil/ [Thacker/Sproull] are interactive programs
that produce Press file output for hardcopy. Markup and Draw are illustration programs with
different strengths and emphases. Si/ is a part of the hardware design automation package, but
is also useful for producing charts and other simple line drawings.

PressEdit [Newman2] is used to edit and merge Press files (at the page level), and to convert
EARS format files to Press format.

Fred [Baudelaire2] is an interactive spline curve editor specialized for font design. PrePress
[Sproull2] is a utility program for converting spline character shapes to bit maps in various
formats and resolutions, as described in the Fonts section. Both are of use mainly to
implementors of printing or display software.

Printer Types

All the printers described below are Raster Output Scanner (ROS) printers. The complete
printing facility includes a ROS and an Electronic Image Processor (EIP), consisting of an
Alto and either a little or a lot of specialized imaging and interface hardware. Newer systems
interface EIP to ROS using the "9- Wire standard" [Rider2, Rider3] -- a standard hardware
interface and communications protocol.

Ears. [Riderl] A modified 7000 duplicator engine with Slof (Scanned Laser Output Terminal)
imaging optics. Ears is controlled by a very powerful special purpose EIP, the Research
Character Generator (RCG). The RCG is in turn controlled and supplied with data by an Alto.
The Ears printer was designed and built at PARC.

Slot/ 3100. modified 3100 copier with Slot¢ imaging optics. Image processing is done entirely
in Alto microcode, and the machine is controlled through a very simple interface. This simple
structure is made possible by the relatively slow operating speed of the 3100 engine. Because it
runs slowly enough, and because the 3100 engine provides excellent solid-area development,
high- quality, high-resolution graphic objects may be rendered on this machine. The Slot/ 3100
systems were built by XEOS.

Dover. [Ellenby, Sproull3] A modified 7000 duplicator with an improved S/oz head totally
contained within the original engine. Dovers are engineered to be produced in reasonable
quantities. They contain ROS Adapter (video and control electronics) modules that may be used
in several other printers (see below). The adapters communicate with their controlling Alto Ils
using the 9- Wire Standard. A Dover Alto contains relatively inexpensive EIP hardware, called
Orbit [Ornstein, Sproull3]. This device can, with some preprocessing assistance from its Alto,
generate text pages and ruled forms at full Dover speed.

Dover’s capabilities are largely determined by the bandwidth of the associated EIP and storage
medium. The Orbit hardware reduces the bandwidth required to do text and solid rectangles,
but Alto main memory and T80 disk bandwidth limitations restrict Alto/ Orbit/ Dover systems
to relatively low-resolution graphical output. The Alto/ Orbit hardware can produce high-
resolution, high-quality graphical output when used with slower engines (e.g., Sequoia,
Pimlico).

Dover and Orbit were developed by team from PARC and EOD/SPG.

Sequoia. A modified 3100 copier equipped with a Slof head. Sequoia uses the Dover ROS
adapter, obeys the 9-wire standard, and is controlled by an Alto II- Orbit. Sequoia was
developed and manufactured at XEOS. Its operating speed and good solid-area development
allow Sequoia to render high-quality graphics.

Pimlico [Swager, Baudelaire/Swinehart] A modified 6500 color copier. The original optics
have not been removed; therefore hybrid composition techniques involving both platen and
raster-scanned inputs are possible. Pimlico uses the Dover ROS adapter, obeys the 9-wire
standard, and is controlled by an Alto II- Orbit. The entire electronics control package has been
replaced by a microprocessor-based system, using an M6800, that can communicate with the
controlling Alto II via standard adapter commands. This vastly improves the engine control
protocols and capabilities. Pimlico was developed by a team from PARC and EOD/SPG. Its
development was expedited with special funding provided by C. Peter McColough as part of
the Xerox World Conference effort.

Alto/ Orbit/ Pimlico is capable of high quality renditions of graphical objects.
Colorado. A modified 6500 color copier that has been in service at XEOS in Pasadena for

several years. Colorado has been developed by Dale Green (OSL) and his group, and has been
used in a variety of pioneering color copying and printing experiments. This system is a high

10

resolution, very high quality RIS-ROS system, with color correction, tone reporduction (TRC),
and halftoning implemented in hardware. The ROS may also be used, at lower resolutions, as a
color printer for the Alto. The interface to the Alto is the same as is used for the Slot/ 3100.
Colorado uses Press and AIS printing software to print "color separated” files (see the note on
color rendition above). Its 6500 engine has been augmented with a fourth developer (black) to
print four-color pictures.

TC-200. A modified TC-200 telecopier, interfaced to an Alto in a manner similar to the
Slot/ 3100. This system also contains RIS (raster input scanning) capabilities. It was developed
at ADL. A TC-200 system will soon be available at PARC.

Versatec Plotter. A modified Versatec electrostatic plotter, interfaced to an Alto in a manner
similar to the Slot/ 3100. This system is capable of printing on extremely large pieces of paper,
but at a slower speed than the xerographic printers.

Performance and capability specifications for these printers appear in an appendix.

11

Impending Changes
Orbit Printer Resolution

We are currently operating all the Orbit printers (Dovers, Pimlicos, Sequoias) in Palo Alto at
350 dots/inch. For a variety of technical reasons, we plan to switch to a 384 dots/inch
resolution as part of the June 15 cataclysm. With one important exception, users will not notice
the change.

The exception is that, again for technical reasons, Orbit printers at 384 dots/inch are limited to
a 10.6" high page. Dovers and Sequoias will thus enforce a 4" top margin, which may cause
some information to be "clipped"” from the page. Pimlico output will be unaffected.

The Demise of Ears

The Palo/ Ears system, because of its advancing age, is becoming quite difficult to maintain.
For this reason, a second floor tribunal has decided that Palo will be removed from service on
June 15, 1978. The remainder of this section discusses various issues that this decision raises.

Spruce printers are now functionally competitive with the Ears system, although the number
of available, useful fonts is somewhat diminished, particularly landscape fonts (see the
appendix). Pending enabling technology, we are delaying plans to fetch additional font
specifications from less restrictive storage on Juniper or Ivy systems. Some performance
improvements are also planned in anticipation of the increased load.

It was also necessary to decide the fate of EARS format files: those currently in existence, and
those that will continue to be. produced by Pub. Most EARS files, including all new Pub
products, contain the directory entries (Doculists) that allow the PressEdit program to produce
equivalent Press files from them. We hope it will be possible to convert EARS files that do
not contain this directory information to those that do. If not, then a relatively small number
of old EARS files, produced by older verions of Pub, will no longer be printable.

One additional impending change, the modification of some of our character widths, add to the
difficulties of retiring Ears. This is further discussed in the following section.

Character Widths

Press format files do not in general specify the height and widths of their text characters.
Instead, it is assumed that the producer of a Press file {e.g., a formatting program), aand its
consumer (usually a printing server) have a common notion of these values. Each Alfo based
formatting program uses the file Fonts.Widths, which describes the heights and widths of all
available type fonts in device-independent units. This width file is carefully maintained by
each installation. It is augmented as new fonts are added.

The printing programs maintain corresponding width information, usually device- dependent,
that agrees with the information in Fonts. Widths. In this way, the accuracy of Press renditions
is guaranteed.

Unfortunately, we have learned that the widths originally assigned to the characters in the font
families TimesRoman and Helvetica were incorrect -- for the most part, the current widths
produce excessive inter-character spacing. For this reason, it will be necessary to institute a
new width standard, using the following scheme:

On June 15, 1978, a new- Fonts.Widths file will be promulgated. At the same time, an improved
set of fonts, geared to the new widths, will- be installed on all Palo Alto Spruce and Press
systems (many sites already use these new fonts:and widths). Users who obtain the new widths
file should notice no changes. Problems might, however, be expected in printing previously

12

created Press files (using the old width specifications). The following steps will be taken to
reduce the inconvenience:

Old Press Files: The Press file document directory includes some spare fields. We have
chosen one two-word field to represent a date and time, in Alto Standard format [Taft2].
The assumption is that old Press files contain values in this field that can be rejected as
valid dates (typically 0 or -1). Subsequent to June 15, 1978, any Press file whose date
appears invalid, or whose date precedes June 15 will be printed using the old widths. Files
with dates of June 15 or later will use the new widths. It is not clear how long these old
widths will remain available. The scheme to be used is quite general, and can support
additional future width modifications, but such changes are painful, and are expected to be
quite rare. Press file implementors. consult the information in [Swinehart2] or in the
newly-updated version of [Newman/Sproull] for details required to update your output
modules.

Old EARS Files: As indicated above, it should be possible to add Doculist directories to
directory-1less files. (These files contain the EARS fonts directly; PressEdit does not find
them useful.) The old Fonts.Widths will be available, so that PressFEdit may be used to
create "old" Press files, complete with invalid or pre-June dates.

New EARS Files (Pub output) : The .EP format files that Pub uses instead of Fonts.Widths
to perform its formatting will be modified to reflect the new widths (note that only the
width information in each font file will remain relevant, since Pal/o will have been retired.)
Thus, PressEdit will have the proper information, using the new Fonts.Widths, to produce
"new" Press files. These mechanisms are clumsy enough that we expect them to hasten the
transition to newer formatting systems. '

Longer-Term Issues

Many other modifications and additions have been contemplated for improving printing
service. Most will require extensions to either the printing protocols or to the Press format.

Potential printing protocol extensions would permit the specification of the sending user
(distinct from the creator of the Press file). It would also permit the transmission of non-
resident, machine- dependent fonts (Press format supports the transmission of character shapes
as outlines, but not as bit maps). In addition, one could request priority treatment, or could
request that printing be delayed until the user is present, for security reasons. Other extensions
might allow references to fonts and Press files on other file systems (e.g., Ivy) to be spooled,
instead of the files themselves.

These issues are mentioned as possible areas of continued development; implementation should
be considered distant.

Summary

This section has described some impending changes in terms of some problems and their

solutions. The solutions are summarized in the Key Points section on page 1.

13

[Baudelairel]

[Baudelaire?]

14

References

Draw, by Patrick Baudelaire, found in the Alto User’s Handbook,
updates in [Maxc] < Altodocs> Draw- News.Ears.

Fred, by Patrick Baudelaire, [Maxc]<Gr- Docs>Fred.Ears, 22 pp.

[Baudelaire/Israel/Sproull] Array of Intensity Samples -- AIS, by Patrick Baudelaire, Jay

[Baudelaire/Swinehart)

[Boggs/Maleson/ Tiberi]

[Boggs/Taft]

[Ellenby]
[Fialal]

[Fiala2]

[Lampson]

[Malesonl]

[Maleson2]

[Newmanl]

[Newman2]

[Newman/Mott]

[Newman/ Sproull]

[Ornstein]

[Riderl]

[Rider2]

Israel, and Robert Sproull, [Maxc] <AIS> AlS-Manual.Ears, 48 pp.

Pimlico Protocol and Software, by Patrick Baudelaire and Dan
Swinehart, [Maxc]<Dover>Pimlico.Press, Or [IFS]<Pimlico> Pimlico.Press, 21

pp.

Empress, by David Boggs, Joe Maleson, and Rick Tiberi (D.
Swinehart, ed.), {Maxc]<Altodocs>Empress.Tty, 5 pp.

FTP Reference Manual, by David Boggs and Edward Taft, found in
the Alto User’s Handbook, or as [Maxc]<Altodocs>Ftp.Tty, 17 pp.

Dover Overview, by John Ellenby, available from the author.

Document Distribution, by Edward Fiala, [Maxc1]<Doc>Docudis.Ears
(probably archived), 24 pp.

Document Distribution, by Edward Fiala, [Maxc1]<Doc>Docdis.Ears
(probably archived), 8 pp.

Bravo, Reference Manual, by Butler Lampson, found in -the Alto
User’s Handbook.

Pictures, PRESS, and you, by Joe Maleson, archived on
[maxc] < Press>HalftoneMemo.Press and HalftonePlates.Press.

Rotating halftone screens, by Joe Maleson, archived on
[Maxc] <Press>Rotation.Press.

Markup Réference Manual, by William Newman, found in the Alto
User’s Handbook, or as [Maxc]<Altodocs>Markup.Ears, 11 pp.

PressEdit Reference Manual, by William Newman,
[Maxc] < Altodocs> PressEdit.Tty, 1 pg.

OfficeTalk Zero Referencé Manual, by William Newman and Tim
Mott, [Maxc]<SSLDocs>Oz- 15.Ears, 25 pp.

Press File Format, by William Newman and Robert F. Sproull,
[Maxc] <Gr-Docs> PressFormat.Press, 16 pp. ,

Orbit General Description, by Severo Ornstein,
[Maxc] <Dover> OrbitWriteup.Press, 38 pp.

Ears, Gears, Sears, and Other Related Items, by R. E. Rider,
[Maxc] <Altodocs> Gears.Tty, 13 pp.

ROS Interface Conventions, by R. E. Rider,
[Maxc] <Rider> Rosinterface.Press, 4 pp.

[Rider3]

[Shochl]

[Shoch2]

[Sproulll]

[Sprouli2]

[Sprouli3]

[Sproull4]

[Swager]
[Swinehartl]

[Swinehart2]

[Swinehart3]

[Taftl]
[Taft2]
[Tesler]

[Thacker/Sproull]

15

RIS/ ROS Interface Conventions, by R. E. Rider,
[Maxc] <Rider> RisRosInterface.Press, 5 pp.

A File Transfer Protocol Using the BSP -- 2nd Edition, by John
Shoch, [Maxc] <Pup>FtpSpec.Ears, 16 pp.

EFTP: A PUP-based Ether File Transfer Protocol, by John Shoch,
[Maxc] <Pup>EFTPSpec.Ears, 16 pp.

Press Printer Operation, by Robert F. Sproull,
[Maxc] < Gr-Docs> PressOps.Ears.

PrePress Manual, by Robert F. Sproull,
[Maxc] <GR-DOCS> PrePress.Ears, 17 pp.

Programmer’s Guide to Orbit, the ROS Adapter, and the Dover
Printer, by Robert F. Sproull, [lvy]<Spruce>OrbitGuide.Press, 37 pp.

Font Representations and Formais, by Robert F. Sproull],
[Maxc] <GR-DOCS>FontFormats.Ears, 21 pp.

Gandalf (Pimlico) Overview, by Gary Swager, not yet released.

Spruce Reference Manual, by Dan Swinehart,
[Ivy] <Spruce>SpruceManual.Press, 13 pp.

Let’s Talk About Printing, by Dan Swinehart, [Maxc}<Gr-
Docs> PrintingUpdate.Press, 2 pp.

Printing at Palo Alto, by Dan Swinehart (this document), [Maxc] <Gr-
Docs> Printing.Press, 23 pp.

Ears Protocols, by Edward Taft, [Maxc]<Pup>EarsProtocols.Bravo, 1 pg.
Alto Time Standard, by Edward Taf‘t, [Maxc] < Taft> AltoTime.Bravo, 4 pp.

Pub: The Document Compiler, by Larry Tesler, Stanford Artificial
Intelligence Laboratory Operating Note 70, September, 1972.

Sil, Analyze, Gobble, Build Reference Manual, by C.P. Thacker and
R.F. Sproull, [Maxc]<SIL>SILManual.Press, 27 pp. + appendices

16

Appendix -- Font Naming Conventions, User.Cm Formats

Font file naming convention:
{tamily - name- in- full}{point- size}{[BIL] }{[1] H{[C|E] } {extension}

BJL: Bold, Light

C|E: Condensed, Expanded

Point Size: Omitted for device-independent fonts (outlines)
Extension: Designates encoding format (see below).

Examples: TimesRomanB.SD, TimesRoman10B.AC

Type face encoding convention (in Press files, font specifications):

BiM|R: Bold, Medium, Light 2, 0, 4 (see [Sproull4])
IR: ltalic, Regular 1, 0
6

C|E|R: Condensed, Expanded, Regular , 12, 0

Font formats, identified by file extension:
SF Spline outlines, represented by text descriptions.
.SD Compact outlines, produced by PrePress from .SF files (device-independent).
AC Raster representations edited or created with PrePress from SD format

(device- dependent).

.CU "Carnegie-Mellon" format raster representations. | (device-dependent,
AL Raster representations in Alto (CONVERT) format. | convertible to/from
.STRIKE Raster representations in Alto (BITBLT) format. | .AC format)
EP EARS-format portrait font (run-coded raster). |
EL EARS- format landscape font (run- coded raster). |

Example: Helvetica12LEP is a 12-point Helvetica font for EARS (face code MIiR).

User.Cm, [HARDCOPY] Section (Comprehensive example)

[HARDCOPY]

PREFERREDFORMAT: Press Press or Ears

EARS: Palo Name or legal network address of Alto providing Ears
printing service

PRESS: Menlo Similarly for preferred Press printer

COLOR- PRESS: Victoria Preferred color printer (Press only)

PRINTEDBY: "$" See explanation below

FONT: TIMESROMAN 10 MIR See explanation below

FONT: Overrides Empress's default (Gacha8). Uses Face codes as given above.

PRINTEDBY: Overrides Empress, Bravo defaults (Username on Alto disk). The "$" character requests
the Username field.
Others: See text (see also the [BRAVO] section of User.Cm.)

Appendix -- Printer Characteristics and Capabilities, Current Palo Alto Printers

Printer Specifications

Printer Paper Speed Orientation Resolution Software Notes
in/sec sec/page dots/inch
Ears 10 1 Landscape1 500x500 Sears Predominantly text
Slot/3100 3.4 4 either 384 Press6 High quality graphics
Dover 10 1 Landscape 300-400 Spruce Predominantly text, low res. bit maps
Sequoia 34 4 Landscape 300- 400 Spruce3 Low vol. text, quality graphics
Pimlico 4 187 Portrait 300-400 Pres.s2 High quality color graphics
Colorado 4 187 Portrait 300-7004 Press High quality 4-color gr., cop.
Tc-200 55 228 Portrait 200 Press Low cost, RIS capability
Versatec -- - Portrait - Press
Notes:
1. Paper moves sideways through machine. Paper moves longways in Portrait mode.
2. Spruce is also available for this system.
3. Press may be available soon for this system, as well.
4. High resolution used in direct copying (RIS/ROS) operation, and in special printing modes, using two printer

dots per dot specified by the image processor.

Variable speed, depending on black/white ratio, line by line.

The AIS program will also run on all Press printers.

About 6 seconds per revolution, three revolutions per full-color page. The first page takes another several
seconds to emerge from the machine.

Roll fed machine -- no inter-page spacing.

@ Neo

Summary of Composition/Printing Program Capabilities

1

Editor/lllustrator Outputs Press Features Printing Software & Printers
Bravo Markup Sil Draw. AIS Spruce Press (D) Press (S,P) Ears
X X X X text X X X X
X X X rectangles X X X X
X graphics font X X
X objects X
X low res. dots X X X x
X high res. dots X
x2 X X X color P2 P
1 D=Dover, S=Sequoia, P=Pimlico; 2 "Color-separated” Press files, only, at present
Currently Available Printers
Name Ether Address Location Printer Type Configuration Server Protocol
Palo 3#3# 35-2077 Ears Model 44 EFTP (Ears format)
Menlo 3#164 # 35-2026 Dover 2 Model 31’s EFTP {Press)
Wonder 6 #265 # 35-3040 Dover Mode! 31 only. EFTP (Press)
Clover 321 # 35-2069 Dover 2 Model 31’s EFTP (Press) or stand-alone
Viola, 34341 # 35-2069 Pimlico T80 EFTP (Press) or stand-alone
Victoria
Kanji 5#52 % 34-B10 Dover T80 ’ EFTP (Press
Daisy 546 # 33-249 Dover 2 Model 31's EFTP - (Press)

Slot-2 3#116# 35-2015 Slot/3100 T80 stand- alone, by appt. only

Appendix -- Available Fonts (Palo Alto)
Files Containing Available Spruce Fonts (as of June 15, 1978 -- PARC only)

[tvy] <Dover>Spruce.Fonts

Available Spruce Fonts (as of June 15, 1978 -- PARC only)

Family Size (pt.) Face
TimesRoman 8, 10, 12 MRR, BRR, MIR, BIR
Helvetica 7, 8,10, 12 MRR, BRR, MIR, BIR
6 MRR, BRR
18 MRR, BRR
Gacha 8, 10 MRR, MIR
12 MRR
12 MIR
Cream 10, 12 MRR, BRR, MIR, BIR
Math 8 MRR
10 MRR
Apl 8, 10 MRR
Hippo 8 MRR
10 MRR
Sigma 20 MRR
Sail 8 MRR
Gates 32 MRR
Logo 24 MRR
Keyhole 20 MRR
Dots 256mica MRR (for Alto bit -maps)
Arrows 10 MRR

Landscape Fonts:

TimesRoman 8 MRR, MIR, BRR
TimesRoman 10 MRR, BRR
He!v_etica 6 MRR; MIR
Gacha 8 MRR

Sail 6

System

[Maxcl]

[Ivy]

Directory

<Gr-Docs>

{Fonts>

<AltoFonts>

19

Appendix -- Useful File Directories
Description

Graphics-related documents: Press formats, font formats, PrePress and
Fred documentation, etc.

.EP, .EL, and (obsolete) .AL fonts for use on Altos and Ears. As of
this writing, they correspond to the "old" Fonts.Widths specifications.
Alto users should obtain their .EP and .EL fonts (for use with Bravo)
from this directory.

AL, STRIKE fonts for use on Altos. As of this writing, they
correspond to the "old" Fonts.Widths specifications. Alto users should
obtain their screen fonts from this directory.

{PressFonts> .SF (mostly archived), .SD, and .AC fonts that are sources for the

<Alto>,
<AltoDocs>

<{Dover>

<AIS>
<{Press>
<Ears>,

<Graphics>

<{Spruce>

<{Fonts> directory, and for current Palo Alto Spruce and Press fonts.

The repository for many of the systems described in this document.
The current "old" Fonts.Widths also resides on <Altod.

Documents and programs for the Spruce system, the Orbit EIP, and
the Dover, including diagnostic programs. Many of these files are
obsolete, having been superceded by files on [Ivy]<Spruce>.

The AIS program, manual, and some sample AIS pictures.
The Press program operations manual, many sample Press files.
Nearly empty, mostly obsolete directories.

Current Spruce system and operations manuals,. the current OrbitTest
diagnostic program, other systems valuable for Spruce development.

{PressFonts> .SD, .AC, and .AL fonts corresponding to the proposed "new"

{Dover>

<Pimlico>
<{Sequoia>
<{Press>

Fonts.Widths standards. These have also been scan-coverted at 384
dots/inch for Spruce and Press systems.

Spruce font directories, for use on Dover systems. Contains both "old"
style fonts and some of those to be used as "new" style fonts.

"new" style Spruce font directories for Pimlico printers.
"new" style Spruce font directories for Sequoia printers.
Copy of [Maxcl<Press> as of 1 November, 1977.

Appendix -- Glossary of Terms

AIS. Array of Intensity Samples. A file format, picture processing software, and
printing program for arbitrary digitized (scanned) images. The AIS printing program
has about the same bandwidth requirements as the Press program, and is in general
supported on those printers that support Press.

bit map. a sequence of bits (usually represented as a sequence of computer words) that
describe a dot pattern, at some specified resolution, simulating some graphic entity. To
interpret a bit map one needs to know the order in which the sequence of bits must be
laid down to produce the picture. This is usually expressed in terms of line length, the
bit direction within each line, and the direction in which lines are scanned.

Bravo. An Alto-based text editor and formatter. Bravo can produce both Ears and
Press format versions of its files (including "color separations” for Pimlico). It can
either transmit these directly or retain them as named files.

BSP. Byte Stream Protocol, a high-level PUP-based protocol for high-speed, reliable
transmission of information, in byte units.

Clover. An Alto/ Dover/ Spruce system, currently located in CSL.

Colorado. An experimental color RIS/ROS copier/printer system based on the 6500
color copier. Colorado comprises sophisticated digital and analog signal processing
equipment, as well as an Alto interface (resembling that on the SLOT/3100). It is
located in Dale Green’s laboratory at XEOS in Pasadena.

Doculist. A directory added at the beginning of an EARS format file specifying the
fonts needed to print that file. The Pspool system removes this and includes the fonts
themselves as a file is transmitted to the Fars printer. Pressfdit uses this information
to convert EARS files to Press format. The current Pub system produces files
containing Doculists instead of actual fonts.

Doyver. A ROS based on the 7000 duplicator and SLOT optics, using the standard TTL
ROS adapter. Its EIP, interfaced using the 9-wire standard, is an Alto II/Orbit (see
text). Dover is intended for field experiments requiring relatively low-cost printing
facilities.

Draw. An interactive Alto program using cubic splines to express straight and curved
lines, in monochrome or color. Draw produces Press output for printing.

EARS: A file format contalnlng text to be printed, formatting specifications, and font
information.

-- A powerful, prototype EIP/ROS system, controlled by an Alto (or a Nova),
specialized. for printing text. The Zars system is a server system that accepts and prints
EARS format files, without any preprocessing. (see Sears, Palo).

Eftp: A simple, PUP-oriented protocol, designed for file transmission from user
programs to servers (especially printing servers). The server must acknowledge each
packet before the next is sent. This protocol admits to compact implementation in user
programs, offset by some redunction in bandwidth.

-- Programs written for Alto and Maxc, implementing both EFTP sending (user)
and receiving (server) protocols. Empress (Alto) or Press (Maxc) are usually preferred
for communicating with Spruce servers.

20

EIP: Electronic Image Processor. A device that converts image descriptions into raster
information for printing on a ROS. Similarly, a device that processes RIS input rasters,
storing and/or interpreting them. Example: Alto 11/ Orbit.

Empress. An Alto program which converts ordinary text files to Press format and sends
them to a Press printing server. Empres will also transmit pre-formatted Press files
without additional conversion.

Epress. A Maxc program, invoked by Pspool, that converts Press format files to EARS
format for transmission by Pspool to an FEars system.

fonts, Character representations (either outlines or bitmaps).

Fred. A font design program on the Alto, which allows the specification of spline
outlines for characters.

Ftp. A File Transmission Protocol, based on the BSP PUP-based protocol. Fip is the
preferred file transmission protocol, yielding quite acceptable bandwidths when
correctly implemented. Maxc and [FS systems support this protocol; for IFS, it is the
only file transmission currently supported.

- An Alto program providing file transmission facilities using the Fip protocol.
This program also provides a "Telnet" facility, for standard Ascii terminal
communication with a variety of systems on the Internctwork.

Gears. An Alto program which composes text files and transmits them to the EFars ROS
system.

half tones: Binary images which simulate continuous tone images by varying the
number of dots printed proportional to the intensity.

Icarus. An interactive, display based LSI design and layout program. Icarus produces
Press files as a means of obtaining "proof” hardcopy of the new circuits.

Internetwork. The collection of Ethernets, telephone lines, and gateway machines that
comprise the current Xerox experimental network. All machines in the internetwork
share a common, two-level address space. In general, any machine may communicate
with any other, using one of the PUP-based protocols. Other packet protocols are not
forwarded by gateways, limiting such communications to their local network of origin.

Kanji: An Alio/ Dover/Spruce system, currently located in OSL (Bldg. 34).

Markup. An Alto program which allows text and graphic composition (at Alto screen
resolution). Input and output is a Press file. :

Menlo: An Alto/ Dover/ Spruce system, currently located in SSL.

Ngpr. An Alto program that converts Sil format files to EARS format, then
(optionally) transmits the resulting file to an Ears server.

Nppr. An Alto program that converts Sil format files to Press format. The user must
transmit the resulting Press file to a printing server.

objects (Press). Graphic data specified. by an outline consisting of a series of display
commands (Moveto, Drawto, DrawCurve).

Orbit. A hardware device: connected to an Alto whose function is to place raster

21

representations of characters at specified positions on the bitmap for a printed page.
An Alto/Orbit combination comprises an EIP,

OZ The Officetalk Zero system, which (among other things) produces file output in
Press format.

Palo: An Alto/ Ears/ Sears system, located in CSL.

Pimlico. An obsolete name for a computer controlled ROS version of the Xerox 6500
color copier. (cf. Pimlico)

PrePress. A program for converting among the various font formats, and maintaining
dictionaries of fonts.

Press: A file format allowing total specification of the printed appearance of a
document. Press format can handle text, (half tone) bit maps, rectangles, and object
outlines. It has provisions for inclusion of additional information, for use by text
editors, formatting systems, etc.

- An Alto program for printing Press format files on a variety of ROS printers
(see the text and the appendices for a complete list).

-- A command provided by Maxc systems for printing text and Press files.

PressEdit. A program which runs on Maxc and converts EARS files to Press format,
adds fonts to Press files, creates blank Press files with any set of fonts, extracts pages
from EARS/Press files and puts them into a new Press file, merges figures with text
documents, and will add the privatc data stamp to Press files.

Pspool. A server job on Maxc systems that formats and transmits (converted) text,
EARS format, and Press format files to appropriate printing servers. Files are placed
on the <Printer> directory by other programs; in addition to printing the files that
appear there, Pspool manages this directory.

-- An augmentation to standard Ascii text format, specifying simple margin
adjustments, font changes, and heading requests.- The Pspool program interprets this
format, converting to the proper printer specifications.

Pub. A program on Maxc which takes documents containing special formatting
commands, and produces EARS files.

PUP. The PARC Universal Packet, a format for data packets that can be routed or
broadcasted . among any of the hosts in the internetwork. PUP format specifies only
source, destination, error checking information, a top-level command code, and limited
sequencing information. Additional protocols must be implemented by structuring the
data. contained in the packets.

PUP-based Protocols. Any of the hierarchy of communications protocols that have
been defined in terms of PUP (e.g., EFTP, FTP, BSP, RTP (Rondesvous/ Termination
Protocol), etc.)

rectangles (Press). Special Press objects whose shapes are specified by two corners; the
rectangle sides are drawn parallel with the paper edges. Rectangular shapes which are
not parallel to the paper edges are considered regular objects.

ROS,RIS. Raster output(input) scanner. A device which produces a video stream,
either to a printer (ROS) or from a document (RIS).

22

ROS Adapter A hardware module which communicates among the Orbit, ROS, and
printing engine.

Sears. The printing and spooling program for the Ears ROS system.

Sequoia. A Xerox 3100 copier with Orbit and ROS adapter.

server. A program which runs unattended, accepting input from the internetwork.
STL. A design program on the Alto, which supports circuit design. The graphic
features included for circuit design are useful for other design functions; SIL is
sometimes used as a general graphic editor.

Slot. A laser ROS (Scanned Laser Output Terminal).

Slot/3100. A Xerox 3100 copier with a simple Slot interface.

Slot-2: An Altos/ Slot/ 3100 system, currently located in SSL (appt. only).
solid-area development. The ability to produce an image with large areas of solid toner
(3100, 6500). Attempts to print solid areas on other copiers causes "white- out,” where
only the edges of the area are printed.

splines (as used in Press). A kind of curve definition, using cubic equations.

Spruce. Software for printing simple Press files (text, fixed resolution bitmaps) on an
Orbit device. Spruce is a server.

Stand-alone printers. Printers which are not servers.

TC-200. A 200 dot per inch RIS/ROS system. Output speed is about 30 seconds per
page.

Turkey: An Alto/ Sequoia/ Spruce system, located in SDD/Palo Alto.

Viola: An Alto/ Pimlico system, located in CSL. Run§ Spruce or Press,
Versatec. A matrix printer.

Wonder. An Alto/ Dover/Spruce system, currently located in Bldg 35, 3d floor.
3100. A solid-area development Xerox copier.

6500.. A solid-area development color Xerox copier.

7000. A high speed Xerox copier/duplicator.

23

GYPSY of May 12, 1978
auit

an for ¢ Al hstit Vofor v tength Time

GYPSY DEVELOPHMNENT

Find the Folder labelled...
System Files

fhsert a new Folder labelled...

Execute LPUt) Execute {Ftp Maxc} Execute {Fip Ivy}

Execute {Chat} Execute Exacnte {3

hardcopy.tty 6~JUN-78 14:28:16 Page 1

HARDCOPY SUBSYSTEM

Hardcopy is a program for automatically invoking the Bravo "hardcopy" command from

the Alto executive. It will also call FTP if necessary to retrieve files from a shared file
server such as Maxc or IFS. This subsystem saves keystrokes and your concentration, but
not clock time.

How to use it...
You can say to the Alto Executive:

> Hardcopy file-descriptor file-descriptor ...
where a file-descriptor has the usual format:
[host]<directory>fileName.extension

A11 fields are optional, except fileName. 1If ".extension" is omitted, a default is taken
from the user.cm file. If "[host]" is omitted, Hardcopy looks first on the Tocal Alto

disk; if the file is not there, it takes a default remote host from the user.cm file. Once a
"host" or "directory" appears on the command line, it remains in effect along the 1line

until overriden by another. Version aumbers and sub-directories can be used when

contacting servers that support these features.

For multiple copies, attach a switch to a file-descriptor; for example "HardCopy
someFile.bravo/3", for three copies. The copy quantity remains in effect along the
command 1ine until overriden by another.

A temporary file Hardcopy.scratch$ is created and deleted if a file is retrieved from a
server.

You need the proper fonts, and Bravo 6.0 or later.

Name completion and "*" substitution work for local files only.

How to obtain it... ‘

1. Using FTP, load the file hardcopy.dm. This includes two files: hardcopy.run and
UserCm.slice. .

2. UserCm.slice contains two parts: a Bravo H.INIT macro and a specification of default
host and default file extension. Edit the first part into the brave portion of your
user.cm file. Add the second at the end of user.cm, after replacing the host name and
the extension with your favorite ones (the extension must include the leading dot).
Don't forget to "Bravo/I".

softbitblt.tty 6-JUN-78 14:28:16 Page

For Xerox Internal Use Only -- May 22, 1978

SoftBitBLT May 22, 1978 1

Soft BitBLT

This package contains a single procedure, BitBlt, which emulates the
BitB1t instruction in software. It is not reentrant.

BitBit(bbt)
bbt points to an even word aligned BBT structure as defined in
BitBl1t.dec1. See the Alto hardware manual for details.

BitB1t does some setup in BCPL and then calls an assembly language
procedure to do the work. It is distributed as three files:

BitB1t.decl Declarations needed to use the package
BitB1tB.br BCPL setup code
BitB1tA.br Assembly language inner loop

Whole ALTO World Newsletter

Technology and Tools

XEROX June 30, 1978

SPECIAL ANNOUNCEMENTS

WHOLE ALTO WORLD CHAIRMAN CHANGE - Liz Bond, present chairman of the Alto group,
suggested at the June 1st meeting that a new chairman be selected for the Whole Alto World.
Instrumental in forming the group and staffing the coordinator function, she has held the position
since the group’s inception. Liz will continue to participate actively as a representative from XEOS.

A committee, consisting of Art Axelrod (WRC), Liz Bond (XEOS), Terry Haney (SPG), Darwin
Newton (GINN), and Dick Sonderegger (SDD), was appointed to nominate a successor.

RENEW YOUR SUBSCRIPTION NOW - As all periodicals must, it is time to validate the current
Newsletter distribution list. Appended to the Newsletter is a form to be completed and returned.
Please fill in your name, mailing address, and organization. There are also some optional questions
concerning the Newsletter and how you use the Alto. The answers will be used to shape the
information content of future editions. Return the completed form to the coordinator as indicated
on the form. Only those individuals that return a completed form will continue to receive the
Newsletter. For all others, the Newsletter is stored as a Press file and may be retrieved from
<AltoDocs>WawNewsM-YY.press (this issue is WawNews6-78.press).

A special thanks to all of you who have taken the time in the past to pass along changes of address °
and/or terminations. It is greatly appreciated. '

THE BIG FONT CHANGEOVER - The replacement of existing Times Roman and Helvetica fonts
has begun. Pasadena and Palo Alto printers have completed the change, El Segundo should be
changed by the time you read this, and WRC will soon do like-wise. Users should watch for local
announcements.

Pre-existing documents will use the new character shapes with the old character widths, so they will
still be right justified. New documents created by users who have not updated their disks will also
use the new shapes and old widths with the same result. New documents created with up-to-date
software using both the new character shapes and widths, will have the best appearance.

To update your disk retrieve and execute <Alto>PrintingUpdate.cm (but not before the printer
update is announced at your location). Your disk will get a new Fonts.widths, EMPRESS, and
PRESSEDIT. You should also seperately retrieve the new BRAVO 7.2 and DRAW.

GENERAL NOTES

A NEW FOLKLORE DOCUMENT - Roy Levin has written an introductory document, "A Field
Guide to Alto-Land, or Exploring the Ethernet with Mouse and Keyboard". Intended for people
that will do programming on the machine, it explains many of the often unspoken assumptions
about the environment. Though much of it is PARC related (it’s a PARC folklore document), it
appears to be of general interest for anyone doing software development. It also contains an
extensive glossary and a reference to key documents. A copy of the document can be retrieved from
[MAXCKLevin>FieldGuide.press. '

Whole ALTO World Newsletter

WHOLE ALTO WORLD MEETING - The Whole Alto World mecting was hosted by Dick
Sonderegger and SDD at the Cockatoo Inn in Hawthorne on June 1, 1978. Forty people attended,
representing both long established and potential Alto using groups.

Doug Stewart of SPG outlined current and projected build activity. The 7th Alto build and the
Dover build are nearing completion with a 8th build to begin in early November. As a result of
increased activity, Ron Cude has been appointed as head of the Test and Checkout activity. Ron
will also handle items returned for repair.

Jim Hall’s group is now offering to maintain Altos for $132 per month. This price revision results
from additional maintenance experience and changes to the maintenance policy, e.g. the users
provide the spares inventory for their own machines. Interested groups should contact him for
details and quotes on additional Alto-related items.

Alto gateways should become operational by the end of the summer. The gateway can be
configured using either with EIA boards or a communications processor. Using the EIA boards
results in a lower initial cost but a higher incremental cost as new communications lines are added.
Software for both is being developed jointly by PARC and SDD.

Bruce Malasky announced the release of MESA 4.0 and described some of the changes and
enhancements. Complete MESA documentation is available on the SDD Ivy servers, Iris and IFS-2
under <MESA>Doc>.

Operation of the enhanced Gypsy was described by Frank Ludolph. The changes permit Gypsy to
serve as both programming text editor and system executive, leaving more disk space for
programming use.

Jerry Elkind, chairman of the Special Products Allocation Committee, discussed the Committee’s
operation. Composed of representatives from Corporate Research, ITG, and IPG, it allocates Xerox-
built special products in limited supply, such as the Alto and peripherals, to requestors in a manner
that best serves the Corporation.

Much of the afternoon session was used by organizational and site representatives to exchange
information about current activities with others.

The meeting ended with a presentation by Ron Rider on printers under current development.

TOOLS
MAINTENANCE NOTES

BOARD REPAIR - Items returned to SPG for repair should now be sent to Ron Cude, M1-38,
instead of Terry Haney as in the past. Items too large to be mailed should be sent to M1 North
Dock, 555 S. Aviation, attn: Ron Cude. Please include all available information about the problem
and symptoms,. including hardcopy output if the item is a part of printing hardware. Repair will be
scheduled in conjunction with SPG’s other activities.

DISK DRIVE CHECKOUT BY THE USER - Users can now verify correct operation of their
Alto’s disk drive with DIEX, .the Dlablo disk EXerciser. To use it, ready a 'scratch disk (any
information on the disk will be destroyed), etherboot, and enter diex®R. Diex will ask you to

disable the writeprotect by entering ’«’. In the upper window is a menu of commands and -
parameters. The parameters are preset to default values. If the disk you have inserted is a new disk,

Whole ALTO World Newsletter

i.e. it hasn’t been previously initialized with a file system, bug Init Verify using the left (top) mouse
button. When that operation completes, or if the disk has been previously used, bug Do Test. The
test will now run for some time, alternately writing and reading the entire disk. Any errors detected
will appear in the larger, lower window. If errors are indicated, contact your maintenance personnel.

Trident disk drives can be checked out in a similar manner using TRIEX.

SOFTWARE

In general, the subsystems, packages, and documentation indicated here will be available from your
local IVY server under the directories <Alto> and <AltoDocs>. If they are not available, or if
you are in doubt as to the version, they may be retrieved from [MAXC] (same directories). Files
stored under other directories are on [MAXC] unless otherwise indicated, e.g. [XEOS].

MESA 4.0 - The newest MESA, version 4.0, was released on June 1st. The emphasis on this release
is in three areas: implementation of features required for effective use of the new machine
architecture, reduction of overhead in the basic system structures and improved performance of the
Mesa runtime environment, and extension of the debugger’s capabilities (primarily an interpreter for
a subset of the Mesa language). To become a formal MESA user, with all attendant privilages, send
a message to <Ludolph> describing your intended use.

USING GypsYy - Some questions have been posed about Gypsy files as a result of the
enhancements announced in last month’s Newsletter. To move BRAVO files to GYPSY, run DE-
TRAILER <filename> then REFORM <filename> (both are available on [MAXCKAIlto>). DE-

TRAILER removes all formatting information leaving a clear text file. REFORM, normally used to
clean-up a malformed GYPsy file, reformats the file for GPYSY use. The resulting files will accept
bold and italic formatting. v

GypsY can edit both formatted and unformatted documents. Those created by selecting "Fetch
Working Draft" are, by default, formatted. To produce a clear text (unformatted) file, such as a
command file, run the formatted document through DE-TRAILER. Subsequent editing will leave it
unformatted.

NEW RELEASE: BROWNIE - This new program by Bruce Malasky is used to manage directories on
file servers, especially the problem of distributing public files to various hosts. It is primarily for
use by IFS administrators. The documentation is appended to the newsletter.

NEW RELEASE: DE-TRAILER - This subsystem strips formating information from BRAVO and
Gypsy files producing clear text files. Execute De-TRAILER <filename>. There is no
documentation,

NEW RELEASE: Diex - This subsystem by Roger Bates is a Diablo disk diagnostic similar in
nature to TRIEX used. on the Trident. Instructions on its use are displayed on the screen at start-up.
(Also see MAINTAINER’S NOTES above). DIEX can be booted off of the Gateway.

NEW RELFASE: ETHERRCVR - This package, by David Boggs, is for use by diagnostic programs
that wish to exercise as many tasks as possible in attempting to provoke machine failure. It copies
every packet it hears into -an internal buffer. The documentations is attached.

NEW RELEASE: FIRST - Bob Dattola, WRC, is releasing FIRST, a document retrieval system, for
experimental use on Altos: It accepts- English. language queries (sentences, phrases, or words),

Whole ALTO World Newsletter

ignoring the common non-content bearing words and reducing suffix variations (stemming) of the
remaining words. The result is then used to search against a database of abstracts, computing a
similarity function and ordering the resulting matches. It can be used to construct personal
databases or to search an existing FIRST database of Communications of the ACM article abstracts,
1970 to 1977. For details, see the attached documentation. The software and database is available
from both [XEOSKAIlto>First and [WRC] as indicated.

ReReleases - Subsystems

BRrAVO - Version 7.2 fixes minor bugs and supports the new printing software. Retrieve and execute
<Alto>BRAVO.cm.

DRAW - The latest release includes Changes for the new printing software. Load <Alto>DRAW.dm.

EMPRESS - This version incorporates changes required by the printing software. Retrieve
<Alto>EMPRESS.run. The documentation is unchanged.

NETEXEC - The 'Keys’ and "Host’” commands have been combined into a single command °FileStat’.
The change is documneted in the revised documentation <AltoDocs>NETEXEC.tty. It is not
necessary to retrieve the boot file.

PREPRESS - The new version implements the new printing features and also includes a new user
interface, invoked by calling PREPRESS without parameters. Retrieve <Alto>PREPRESS.run. The
documentation is unchanged.

PRESSEDIT - The latest release conforms to the new printing requirements and adds a new facility
to add page numbers to a press-format document. Retrieve <Alto>PRESSEDIT.run. Revised
documentation is available on <AltoDocs>PRESSEDIT.tty.

TECHNOLOGY

This month’s paper by Terry Winograd, a member of the Sanford faculty and a consultant to Xerox,
questions our current programming methodology and suggests an alternate approach. As he states in
the abstract, "... we need to shift out attention away from the detailed specification of algorithms,
towards the description of the properties of the packages and objects with which we build."

The Whole Alto World Newsletter is a monthly publication for Xerox employees that use the Alto. It is not
to be shown to non-Xerox people. Copies are available on [MAXC]<AltoDocs>WawNewsM-YY .press or
may be obtained from the editor, Frank Ludolph, XEOS, by messaging <Ludolph> or calling Intelnet 8*923-
4356.

Why Programming Languages Are Obsolete

Terry Winograd
Stanford University

Abstract

As computer technology matures, our growing ability to create large systems is leading to
basic changes in the nature of programming. Current programming language conceplts are not
adequate for building and maintaining systems of the complexity called for by the tasks we
attempt. Just as high-level languages enabled the programmer to escape from the intricacies of
a machine’s order code, higher-level programming systems can provide the means to understand
and manipulate complex systems and components. In order to do this, we need to shift our
attention away from the detailed specification of algorithms, towards the description of the
properties of the packages and objects with which we build. This paper analyzes some of the
shortcomings of programming languages as they now exist, and lays out some possible directions
for future research.

Introduction

Computer programming today is in a state of crisis (or, more optimistically, a state of creative
ferment). There is a growing recognition that the available programming languages are not adequate
for building computer systems. Of course, as any first year student of computation theory knows,
they are logically sufficient. But they do not deal adequately with the problems we face in our day-
to-day work of programming. We get swamped by the complexity of large systems, lost in code
written by others, and mystified by the behavior of our almost debugged programs. When we look
to the integrated multi-processor systems that will soon dominate computing, the situation is even

worse.

This crisis in software production is far greater (in overall magnitude at least) than the situation
of the early 50’s that led to the development of high-level languages to relieve the burden of
"coding."” The problems are harder to solve, and the costs of not solving them are in the hundreds
of millions. There are many ways to improve things a little, and they are being tried. But to
achieve a fundamental jump in our programming capacity, we need to rethink what we are doing
from the beginning.

The problem

I believe that the problem lies in an obsolete fundamental view of programming and
programming ‘languages. A widely accepted view can be paraphrased:

The programmer’s job is to design an algorithm (or a computation) for carrying out a desired
task, and to write it down: as a complete and precise set of instructions for a computer to follow.
High level programming languages simplify the writing of these instructions by providing basic
building blocks for stating instructions (both control and data structures) that are at a higher
level of the logical structure of the algorithm. than those of the basic machine.

This view has guided the development of many programming languages and systems. It served
well in the early days of computing, but in today’s computational environment, it is misleading and
stultifying. It focusses attention on the wrong issues, and gives the most important aspects of
programming a second-class status. It is obsolete in the same sense that binary arithmetic is
obsolete -- the things it deals with are a necessary part of computing, but should play a subsidiary
rather than central role in our understanding of what is rclevant.

As computer technology (for both software and hardware) matures, our growing ability to create
complex systems has led to two basic changes in the nature of programming. Each of them has
been hindered by the traditional idea of programming languages.

1. The building blocks out of which systems are built are not at the level of programming
language constructs. They are complex "subsystems” or "packages,” each of which is an
integrated collection of data structures, programs, and protocols.

By making use of existing modules, a programmer can deal with design at a much higher level,
creating an integrated system with capacities far greater than a program that could be built with the
same effort "from scratch.” Components for general tasks (such as memory management, user
interface, file management and network communication) can be designed once, rather than
reconstructed for each system that needs the capability. Unfortunately, in current programming
practice this is more of an ideal than a reality. The difficulties of using existing packages often make
it easier to replicate their function than to integrate them into a system. The only way such
packages are generally used is by building programs within an "operating system" that provides
facilities within a uniform environment. Only those packages that are needed by the majority of
users find their way into operating systems, and the facilities for using them are complex and ad hoc
relative to modern programming languages.

2. The main activity of programming is not in the origination of new independent programs, but
in the integration, modification, and explanation of existing ones.

The second change grows from the first. As we are able to build more complex programs, we
develop systems that grow to fit an environment of needs, rather than carrying out a single well-
specified task. A complex system (such as one for airline reservations, text preparation and
formatting, or statistical analysis) evolves over many years, increasingly coming to fit the needs of
those who use it, and adding new capacitics as hardware advances make them practical. = As
additional needs and possibilities arise, it should be far easier to modify and combine existing well-
tested systems than to build new ones. In most cases, the needs for continuity in the use of the
system (including "upward compatibility” for existing data and user programs) make it impractical to
start from scratch. Using current programming techniques, systems often reach a point where the
accretion of changes makes their structure so baroque and opaque that further changes are
impossible, and the performance of the system is irreversibly degraded. The situation is further
complicated by the fact that modifications are often done not by the original builders, but by new
programmers with an incomplete. or even wrong understanding of the system.

The difficulties in building and modifying large systems have long been recognized and
lamented. They have led to various schools of "structured programming,” and to the emphasis on
restriction and discipline in the design and use of programming languages. There is a large body of
lore shared by practicing programmers, providing ways to recognize the problems and guidelines for
avoiding the most obvious of them. These include bodies of standards and conventions designed to
avoid misunderstanding and miscommunication. But ultimately the solution lies not in' greater

discipline but in more adequate tools.

Towards a solution

Just as high-level languages enabled the programmer to escape from the intricacies of a machine’s
order code, higher-level programming systems can provide the means to understand and manipulate
complex systems and components. In order to do this, we need to shift our attention away from the
detailed specification of algorithms, towards the description of the properties of the packages and
objects with which we build. A new generation of programming tools will be based on the
philosophy that what we say in a programming system should be primarily declarative, not
imperalive:

The fundamental use of a programming system is nol to provide a set of instructions for
accomplishing a task (or carrying out an algorithm), but is to provide for the expression and
manipulation of descriptions of computational processes and the objects on which they are
carried out.

Current languages provide only scattered specialized mechanisms for description. Declarations
are a ubiquitous form of low-level description, and assertions about the state of a computation have
been proposed as a basis for automatic programming and verification. But if we look at what a
programmer would say about a program to a colleague who wanted to work on it or use it, very
little of the description appears anywhere in the "code.” If (either because of idealism or coercion)
the programmer has included comments, they can provide useful, but local, description. If further
(almost always through coercion) the program has been documented, there may be more global
descriptions. In large systems, documentation will include a careful specification of protocols and
conventions not belonging to any one program, but vital to the system as a whole. These various
pieces of description are scattered, and for the most part not usable except as English text to be
read. There is an increasing amount of work on "specification languages” and "structured design"
formalisms, which goes in the right direction, but these still play only a peripheral role in the normal
activity of programming and debugging,

I want fto turn the situation on its head. The main goal of a programming system should be
to provide a uniform framework for the information that now appears (if at all) in the
declarations, assertions, and documentation. The detailed specification of executable instructions
is a secondary activity, and the language should not be distorted to emphasize it. The system
should provide a set of tols for generating, manipulating, and integrating descriptions. The
activity that we think of as "writing a program" is only one part of the overall activity that the
system must support, and emphasis should be given to understanding, rather than creating
programs.

The rest of this paper explores some of the consequences of this view, and makes some
suggestions as to what a higher-level programming system might look like. It is an attempt to lay
out the problems, not to solve them. It will take many years of research before these speculations
can be backed up with concrete evidence.

A motivating example

One of the best ways to understand a general view of computing is to look at the examples used
by those who hold it. Knuth’s opus, The Art of Computer Programming [50], begins by discussing
the Euclidean algorithm. In a clear and simple way it exemplifies the basic notions of algorithm and
program from his viewpoint. The LISP 1.5 Manual [51] includes the LISP interpreter written in LISP,
illustrating the manipulation of symbolic structures, and the ability to treat the programs themselves
as symbolic data. The view proposed in this paper is best illustrated by an example at a very
different level.

Imagine that you have come to work as a system designer and programmer for a large university.
The task you are given is:

The current situation: The university administration has a computer system for scheduling and
planning room usage. Users at several sites on campus access the system through interactive
graphics terminals that display building floorplans as well as text and other graphic data. There
is a mini-computer running each cluster of terminals, connected to the central campus facility by
a communication network. FEach cluster has a device capable of printing out floorplans and
graphic data like that displayed on the terminals. Large-scale data storage is at the central
campus computer facility.

The system keeps track of the scheduled usage of all rooms, including long-term lab and
office assignments, regular class schedilles, and special events. 1t is able to answer questions
about current scheduled usage and availability. Querying is done from the terminals, through
structured graphic interaction (menus, standardized forms, pointing, etc.) and a limited natural
language interface. The system does not make complex abstract deductions, but can combine
information in the data base to answer questions like "Is there a conference room for 40 people
with a projection screen available near the education building from 3 to 5 on the 27th?". Users
with appropriate authorization enter new information, including the scheduling of room use and
changes to the facilities (including the interactive drawing of new or modified floorplans). In
addition to the current assignments, the system keeps a history of usage for analysis. Standard
statistical information and data representations (such as tables, bar charts, graphs, etc.) are
produced on demand for use in long-range planning

Your assignment; 7The dean wants the system to provide more help in making up the quarterly
classroom assignments. She wants to give it a description of the courses scheduled for a future
quarter and have it generate a proposed room. assignment for all courses. In deciding on
assignments, the system should consider factors such as expected enrollment (using past data and
whatever new information is available on estimated enrollments), the proximity of rooms to the
departments and teachers involved, the preference for keeping the same location over time, and
the nature of any special equipment needed, It should print out notices for each teacher,
department, dean, and building supervisor, summarizing the relevant parts of the plan. Any of
these people should be able to use the normal querying system to find out more about the plan,
including the motivations for specific decisions. Properly authorized representatives of the dean’s
office should be able to request changes in the plan through an interactive dialog with the
system, in which alternatives can be proposed and compared. When a change is made, the
system should readjust whatever is necessary and produce new notifications for the people
affected.

A system like this is just at the edge of our programming powers today. It would take many
programmer-years of effort to build, and would be successful only if the project were managed
extraordinarily well, even by the standards of the most advanced programming laboratories. But it is
not hard because of the intrinsic difficulty of the tasks the system must carry out. It combines
hardware and software facilities that have been demonstrated in various combinations a number of
times. Even the question-answering and assignment-proposing components are within the bounds of
techniques now considered standard in artificial intelligence.

The problem is in our power to organize systems. The integration of all of the components of
the "initial system™ would be a major achievement, calling on our best design tools and
methodologies. The idea that a new programmer could come in to such a system and make changes
widespread enough to handle the "assignment" is enough to make an experienced programmer
shudder. It would be hard enough to add new types of questions (such as explanations for
decisions), new information (such as distances and estimated enrollments), and new output forms
(such as schedule summaries for departments). But even more, we are trying to integrate a new kind
of data (projected plans) into a system that was originally built to handle only a single current set of
room assignments and a record of their history. These projected plans must be integrated well
enough for all of the existing facilities (including floorplan drawing, question answering, statistics
gathering, etc.) to operate on them just as they do with the initial data base.

In order for any of this to be feasible, we need a uniform language across all of the different
components and data structures, in which the objects and processes of interest can be described.
This description has to be at a conceptual level that makes it possible to ignore details of
implementation whenever possible, and to state the interconnections between objects and processes
of widely varying structure.

Three domains of description

A system of this complexity can be viewed in each of three different "domains," subject,
interaction, and implementation. Each viewpoint is appropriate (and necessary) for understanding
some aspects of the system and inappropriate for others. We will look at the example from each of
these viewpoints in turn, then discuss how they might be embodied in a programming system.

The subject domain. This system, like every practical system, is about some subject.. There is a
world of rooms and classes, times and schedules, that exists completely apart from the computer
system that talks about them. The room or the course can’t be in the computer -- only a description
of it. One of the primary tasks in programming is to develop a set of descriptions that are adequate
for talking about the objects being represented. There are descriptions for things we think of as
objects (e.g., buildings, rooms, courses, departments) and also for processes (e.g., the scheduling of
events). These descriptions are relative to the goals of the system as a whole, and embody a basic
view of the problem. For example, what it takes to represent a room would be fundamentally
different for this system and for a system used by contractors in building construction.

All too often, the development of descriptions in this domain is confused with the specification of
data structures (which are in the domain of implementation). In deciding whether we want a course
to be associated with a single teacher, or to leave open the potential representation of team-teaching,
we are not making a data structure decision. The association of a teacher (or teachers) with a course
may be represénted in many different data structures in many different components of the system.
One of the most common problems in integrating systems is that the components are based on
different decisions in the subject domain, and therefore there is no effective way to translate the data

structures. A programming system needs to provide a powerful set of mechanisms for building up
and maintaining "world views" -- coherent sets of description structures in the subject domain that
are independent of any implementation. Each component can then implement part or all of this in
a way that will be consistent with both the structure of that component and the assumptions made in
other components.

A complex system like that described above will need hundreds of different categories of objects.
Some of these (such as classrooms and courses) will be unique to the system. Others (such as times
and dates, schedules, physical layouts) will be shared across a wide range of systems. They will be
related into hierarchies of abstraction. We can think of a seminar, a course, and a special lecture as
examples of a more general class of event, all having a time, a place, etc. For some purposes, this is
the right level of generality. For other purposes, we need to distinguish carefully and use special
information associated with each. A major part of building up systems will be the systematic
development of descriptions that provide a uniform medium for describing components and their
interactions.

The domain of interaction. This system, like every functioning system, can be viewed as carrying on
an interaction with its environment. As we will discuss in a moment, the choice of "system" and
"environment" is relative to a specific viewpoint, but for the moment let us consider the system as
viewed by the users. In this domain, the relevant objects are those that take part in the system’s
interactions: users, files, questions and answers, forms, maps, statistical summaries and notifications
to departments.'i The processes to be described are those like querying the system, describing a new
event to be scheduled, and proposing a schedule for a new quarter.

The domain of interaction is concerned with descriptions that are largely orthogonal to those in
the subject domain. We can talk about a question as having certain characteristics (e.g., looking for
a yes-no answer) independently of whether it is about a room or a lecture. We can talk about the
filling out of a form without reference to its specific contents. It is also (and more importantly)
independent of the domain of implementation. From the traditional viewpoint, this independence is
a bit more difficult to see than the independence of interaction and subject matter. Whereas a
subject domain object (like classroom) clearly cuts across large parts of the system, an interaction
object (like a question or the process of filling out a form) is typically handled by a single
component and described in terms of its implementation. But for the same reasons we want to keep
subject domain descriptions independent of their implementations, we must do the same with
interaction descriptions.

This view can be applied recursively to sub-parts and components of the system. In looking at
one part (such as the on-site processor and its cluster of terminals) we can view it as an independent
system interacting with an environment including both the users and the other parts of the overall
system, such as the centralized data store. Even within a single implementation module (e.g., the
question-answer;ar), we often want to describe what is happening as an interaction between several
conceptual sub-systems (the parser, the semantic analyzer, etc.). As with the larger system, it is vital
to keep in mind the distinction between the interaction domain and the implementation domain. In
order for two cpnceptual subsystems to be described as interacting, they need not be implemented
on physically different machines, or even in different pieccs of the code. In general, any one
viewpoint of a component includes a specification of a boundary. Behavior across the boundary is
seen in the domain of interactions, and behavior within the boundary is in the domain of
implementat.ion.’ That implementation can in turn be viewed as interaction between sub-
components. :

It is in the domain of interaction where there is currently the most to be gained from developing
bodies of descriptive structures to be shared by system builders. There are already many pieces that
can be incorporated, including protocols f(e.g., network communication protocols, graphics
representation conventions), standardized interaction facilities (e.g., ASKUSER and DLISP in Interlisp
[52, 53], the Smalltalk display programs [31]), front-end query packages (in various artificial
intelligence programs), data-base standards, and so forth. Currently each of these is in a world and
formalism of its own. Given a sufficiently flexible tool for describing and integrating interaction
packages, this level of description will be one of the basic building blocks for all systems.

The domain of implementation. Every computer system operates on a set of physical devices with
hard-wired mechanisms for for storing and manipulating data. It is in this domain that we normally
think of programming. The detailed choice of algorithms, data structures, and configuration is
determined by properties of the hardware and of the descriptive languages we have available for
specifying its behavior. However, it would be a mistake to equate this domain with our current
notions of programming. The objects in this domain include everything from individual memory
bits and subroutines to subsystems (e.g., the file system, the memory management system, the
operating system), running processes, hardware devices, and code segments. They include those
things we talk about in programs, those we talk about in the debugger, and those found in the
machine and hardware manuals. In this domain, as in the others, a uniform system for description is
needed, which is not primarily a language for specifying a set of instructions.

In addition to all those things that are directly derivable from the code, the manuals, and the
state of the machine, there is also a body of process description. For ¢xample, it may be a property
of a specific memory-management package that it periodically undergoes a garbage collection period
of up to 5 seconds during which no new memory allocations can be made. Such "performance”
characteristics may be vital for understanding the interactions of a component with the rest of the
system, but are not explicit in its code. Other descriptions bring into focus things that may be
implicit in the code. A file system may delete a file if its creation process is interrupted in certain
ways that would leave it in danger of being inconsistent. The code that does this may be distributed
through various checks and. actions, but for the programmer attempting to understand the program it
is necessary to have a coherent overview of what is happening.

Similarly, many of the things we think of as properties of data structures are actually conventions
spread through the code that manipulates them. Much of the work in structured programming has
been to isolate these conventions into access functions that go into a "module” with the data
structures [29, 32, 34]. The object-oriented style of programming encouraged by Smalltalk [31] is
another attempt to provide this kind of modularity. A system for implementation description would
provide for stating these in a more general way along with those things that now appear only in the
comments. As with procedures, data structures can also have implicit properties (e.g. the expected
maximal size of variable length fields) that need to be stated explicitly in order for a person to
understand how they will interact with other components.

The boundary between hardware and software has been blurred in the past few years through
developments such as micro-code, uniform logic arrays, and the extensive use of virtual machine
architecture. A programming system based on description pushes this one step further. The
emphasis is on an overall description of a component rather than the instructions needed to cause
some piece of hardware to run it. A piece of software and a piece of hardware designed to achieve
the same purpose would have descriptions that differed in details (e.g. timing), and in the specific
aspect that described the code {or logic circuits) used.to carry out the steps. They might be identical
in- the domain of interaction, and even to a large degree in the domain of implementation (for

example in the logical description of their data structures).

A sketch of a higher level programming system

So far, we have been talking in a general way about the different domains of description and the
kinds of things that might be said about a component or system from each of their viewpoints. This
doesn’t yet provide a coherent picture of what a program will be. What do we see on the printed
page or on the screen? How is it organized? How do we do anything with it?

Once again, it is important not to let our preconceptions get in the way. Notions such as code,
listing, file, and compilation are based on the idea of a program as a set of instructions. There need
not be any directly corresponding objects in a higher-level system. Instead, it should be based on
something much more like what we now think of as an artificial intelligence system, with its
"knowledge base” of assertions and procedures. There will be a set of interrelated descriptions,
stored in a form that makes it possible to retrieve, manipulate and display them. These will include
prototypes for categories of objects and processes (like classroom, and filling out a form), and
instances, which correspond to individual objects and processes in one of the domains (such as the
course CS 365 in Winter 1978, the contents of the. third page of next quarter’s schedule, and the
process currently running in the data-base server). Instances can be described by more than one
prototype, and prototypes are related into hierarchies with different degrees of abstraction. The
details of all this are still a matter for extensive research. One set of possibilities is being explored in
KRL [2,3], but the basic idea of higher level systems could be implemented using other descriptive
representations, such as semantic networks [4, 6, 10, 11, 12] and other frame based systems [5, 7].

In addition to the basic description system, there will be a wide range of commonly useful
prototypes and instances. Some of them (e.g., graphics formats, dates and times, communication
protocols) will be in the subject and interaction domains. Others (such as the data structures used in
a particular data base) will be in the implementation domain. Some (such as descriptions of specific
pieces of hardware and software that are being used) will be specific to the programming system.
Others (such as those for abstract objects like sets and sequences, and for process structures) will be
very general. In approaching a problem, a programmer will make use of this vocabulary of concepts
and descriptive categories, both for interfacing with existing components and organizing new ones.

A programmer’s use of such a system will be highly interactive. Since the understanding of a
component comes from having multiple viewpoints, no single organization of the information on a
printed page will be adequate. The programmer neceds to be able to dynamically reorganize the
information, looking from one view and then another, going from great generality down to specific
detail, and- maneuvering around in the space of descriptions to view the interconnections. This will
require an interface that is more sophisticated than the question-answering interfaces now used on
artificial intelligence knowledge bases. It seems likely. that pictorial representations, interactive
graphics, and ' "intclligent summarizing” will play -a large role.

Of course, there always remains the task of providing a description of each component that is
detailed enough to allow the system to run it. This will be. part of providing a broader description,
and may be done in stages, A very abstract specification of what a component does will be
sufficient for a kind of "high-level debugging” in which its interactions with other components can
be analyzed and described without carrying out the steps at the the lowest level. There is a whole
range of operations that are now thought of as "automatic programming”, which will enable the
programmer to let the system fill in details once the overall behavior of the component has been
specified. Some. of this will be based on standardized defaults, others on automated analysis of

performance characteristics. It will all be based on the availability of descriptions in the
implementation domain of the various machines and subsystems being used.

As systems become more complex, the level of desirable invisibility will rise. Current high-level
programming languages do not give the user the opportunity to decide just how the hardware
registers of the machine will be used to store variables, since there is much more to be gained by a
uniform integrated approach to their use by the compiler. Similarly, much of what we now think of
as data structure and algorithm specification will be handled by programs that can take into account
much more complex efficiency considerations than are practical for a human programmer.

In summary, a programmer will use a programming system that contains a base of knowledge
about the system he or she is working on, and of other potential components and concepts of
programming that might be of use. The programmer will modify the descriptions of existing
components, and create high-level descriptions of new ones to be added. These modifications and
additions may be from the viewpoints of all of the different domains, and will be done in
cooperation with the system, which checks for consistency, looks for consequences of new
information, etc. Checking and debugging will be done at a variety of levels as the description
becomes more detailed. The system will attempt to fill in details that are needed to completely
specify the implementation, so the system as a whole can be run. The debugging process will make
use of sophisticated reasoning processes that can use all of the different domains of description in
analyzing and reporting what is happening.

What needs to be done

To create a system like the one just described, we need further research in three distinct but
interrelated areas: the development of an effective descriptive calculus; the creation of a body of
descriptive concepts for computational processes; and the building of a complex integrated system
which . uses them.

A descriptive calculus. The main thrust of these ideas depends on the ability to create and
manipulate descriptions in an effective, understandable way. There are existing formalisms for
description (for example, the predicate calculus) which are clear and well-understood, but lack the
richness which makes natural description effective. They can be used as a universal basis for
description but only in the same sense that a- Turing machine can express any computation. They
lack the higher-level structuring which makes it possible to manipulate descriptions at an appropriate
level of conceptual detail.

The requirements for a descriptive language of the kind 1 propose are quite different from those
used in the mathematical foundations of computation, or for program verification. Work in these
areas (see, for example the collection of papers in [15]) emphasizes the use of descriptive languages
in rigorous proofs of the properties of programs. A higher-level programming system must instead
emphasize the use of descriptive languages for communication. ‘The concentration must be on those
aspects which aid in giving a person a clear overall understanding (at variable levels of detail and
from multiple points of view), rather than on those aspects which -increase the mathematical
tractability of the descriptions. There are artificial intelligence formalisms (such as semantic
networks [4, 6, 10, 11, 12] and KRL [2,3]) with increased dimensions of expressiveness, but are not
yet at a level of precision which would make them sufficiently understandable to be used in a system
of the required complexity. - The characteristics which they explore {and which will need to be part
of a formalism to be used in a higher-level programming system) include:

Prototype hierarchies. The nouns and verbs of a natural language can be organized into
hierarchies (or taxonomies) which capture much of the logical structure of what they describe.
We know that a dog is an animal, and the answers to questions about dogs will often be derived
through general properties of animals. Systems such as semantic networks treat these
deductions specially, rather than dealing with them uniformly as a set of universally quantified
implications. ‘This leads to greater efficiency for the common calculations, and provides a
structure which makes it much easier for a programmer to organize a knowledge base. These
hierarchies contain information which could be thought of as a set of independent facts, but has
additional structure in the same sense that a structured program structures a set of steps and
jumps.

The centrality of defaults. Most logical calculi are optimized for handling generalizations which
are either true or false. They do not provide means for stating generalizations that are not
completely universal, but are "usual” or "normal"” or "expected”. In natural descriptions of any
kind, people draw heavily on the ability to use information of a less formal sort, and to use a
~ kind of ceteris parabus reasoning in which a standard fact is assumed true unless there is an
explicit reason to believe the contrary. One of the major directions in artificial intelligence
representation research is the attempt to provide this capability in a formally clear system. The
notion of a default value is familiar to every programmer, but its place in a formal calculus
needs to be carefully worked out.

The suppression of exceptional details. One of the major reasons for using precise formalizations
is that they make everything explicit. For some purposes this is good, but there are times when
understanding can come only through the suppression of detail. If we are trying to formally
describe a program which has a normally simple input-output behavior (e.g. one that copies data
from one place to another) we want to describe that behavior in a way which highlights that
simplicity. If there are exceptional cases (e.g. when the storage allocator fails to find a sufficient
block), these need to be described, but in a secondary place. The basic description of an object
cannot be cluttered up with all of the details needed for handling the contingencies.
Formalisms used in denotational semantics for programs demonstrates this problem well. In
order to deal with a special escape at all, they demand that even the simplest programs be
described as operating on continuations, environments, etc. and this description permeates every
level of what is said.

Multiple levels of abstractions and instances. In dealing with programs and processes, we run
into complexities involving the instantiation of general classes. For example, a specific
algorithm (such as Euclid’s algorithm) can be thought of as an instance of a general class
(numerical algorithms), or as a class whose instances are programs implementing the algorithm.
Each of those programs is in turn both an instance (of the class of formal objects known as
programs) and a description of a class of process instances, each of which is carrying it out, If
we look at the finer structure of programs, such as the instantiation of variables or pieces of
code within loops, similar phenomena arise. Higher-order and typed logics deal in certain ways
with the notion of a class (predicate) which is also an instance, but their austerity makes them
inadequate for capturing the rich set of ways in which people interleave levels of abstraction.
Artificial intelligence formalisms have not yet dealt adequately with these issues, which are
currently a topic of active investigation.

10

A basis for describing processes. Given a formalism for descriptions in general, we need a body of
prototypes for describing those things which are common to all of our programs (e.g., processes,
programs, data structures, communication acts). This is a necessary kind of library, just as a library
of standard data-structures and statistical routines is a necessary part of a system for statistical
manipulations. It need not be fixed once and for all, but a good deal of it must be in place before
the system is usable, and it must be held relatively uniform if the system is to be extendable.

In this area, there are many ideas floating around that need to be captured in a more precise form.
The success of higher-level programming systems will depend on having a coherent body of
descriptive categories which can capture all of their variety.

Modularity and structured procedures. There has been a good deal of attention in recent years to
the higher-level structure of control constructs. In addition, languages based on data
abstractions (such as CLU [32], Alphard [34], and Mesa [29]) provide for larger modules which
encapsulate collections of data structures and procedures. Beginning from a different point of
view, structured system description languages [16, 17] provide a body of conceptual tools for
describing the overall structure of large systems. We need a consistent way of talking about
modularization and interaction between semi-independent modules which can be applied to
system structure at all different levels of detail

Structured data objects. Current work on programming language constructs often emphasizes
the structure of the sequence of operations, in terms of loops, recursive calls, etc [14]. A related
notion in describing processes is the ability to hide detail by allowing the combination of objects
into a larger "structured object”, and to define unitary operations on this higher level object
which invoke collections of operations on the components. This has been explored for simple
mathematical objects (e.g. lists in LISP’s MAP functions [51], vectors and arrays in APL [20],
sets in SETL [26] and VERS [19]), and seems applicable to more specialized semantic objects (in
all of the three domains) as well. In many cases, much of what is now thought of as control
structure can be implicit in the data structure, leading to notions of "nonprocedural” or
"procedureless” languages [21, 22, 24]. The interaction between control and data structure needs
to be put into a theoretical framework.

Program factoring -- objects and procedures. In viewing a process as a structured sequence of
individual steps, there are different ways to think about what each of those steps is. Most
programming languages lead the programmer to think in terms of operations (either primitive or
programmer-defined) to be carried out on arguments. Some (such as Simula [27], Smalltalk [31]
and Plasma [47]) think of typed objects which receive and interpret messages. Instead of
organizing code around a single procedure (e.g. print or plus) which selects its action according
to data type, they define classes (such as integer, list, etc.) which select what to do on the basis
of the message. Artificial intelligence languages take a more general approach in using paitern
“directed invocation [1, 28]. - Each step specifies a pattern (or goal) to be achieved. A data base
of pattern-action pairs is accessed to decide what steps to carry out. Each of these viewpoints is
best for some aspects of programming, and we need to understand how to integrate them into a
larger framework.

States and transitions. There are two complementary ways of looking at a computational
process - as a sequence of operations, or as a sequence of states. This duality has been
exploited in the mathematical theory of computation, but has not really been integrated into
programming languages. Transition nets and Petri nets [38, 40] are state-oriented, rather than
operation-oriented. Production systems [43] are state-oriented, with each production specifying a

11

partial state description, and an appropriate transition function (not the name of the new state,
but a set of operations which produce the new state). Languages which provide ways of
specifying actions to be taken on special conditions [37] are really mixing state-transition
description with the normal operation sequence. As with the operation/object distinction above,
the goal is to find a synthesis which allows a process to be described using a mixture of the
conceptual viewpoints, and to be run on the basis of that description.

Interacting processes and communication. The notions above deal primarily with a single process.
The most significant direction in computing over the coming years will be towards multiple
processes, both virtual (e.g. organizing a speech system as a series of separate processes, even if
it runs on a single PDP-10 [46, 49]) and actual (e.g. networks of computers cooperating on a
single task). There are a number of issues which have been dealt with by system designers at
lower levels (like operating systems) which have not found their way into higher level languages.
There is also a wealth of metaphors provided by thinking of a computation as being carried on
by a collection of independent individuals which must communicate by exchanging messages in
a common language. We can draw many analogies from human communication -- What
language do they talk? Which subsystems need to be multi-lingual? What are the discourse rules
for establishing and controlling message flow? Is it possible to learn a second language? How
can two processes make use of shared knowledge to increase the efficiency of communication?
How can one process make use of an internal model of another process, in order to facilitate
communication and cooperation?

A complex system. The kind of higher level programming system described here is itself a massive
and complex system. Its subject matter is not an external one, like room-scheduling, but the
reflective one -- the subject of programming itself. There is a bootstrapping problem. The system
needed to realize these ideas can be built only with a set of tools that help in the construction of
large integrated systems. Perhaps our current systems are good enough to start the bootstrapping,
but that first step will be a big one. It will take a good deal of careful system-organization research
before something of this scale can be effectively constructed.

Conclusion

The title of this paper is consciously provocative. Rather than asking how we might improve
programming . languages, I argue that we should look at things from. a completely different. vantage
point in which there is little concern with specifying programs as we now sec them. It grew out of
work on description systems which emphasize concepts such as muitiple viewpoints for description,
default knowledge, and prototypes. These ideas can be applied to make the rich set of programming
concepts represented in the literature more applicable to the real practice of programuming. In order
to make significant progress, we need to deal with the problems of "programming in the large”.
Once we begin to deal with networks of independent processors, it will become even more important
to deal explicitly with global properties that cannot be understood on the basis of individual program
instructions.

I believe that the the type of higher level programming system described here is a step in the
right direction. - There is no way to demonstrate this with certainty. As stated at the beginning, this
paper is not a presentation of a worked-out solution. All we have at this point is an intuition that a
particular way of approaching the problem will lead to new insights and results. The paper is
intended to provoke thinking and suggest some new directions. If they turn out to be fruitful
directions, we have years. of hard and exciting work ahead.

12

Acknowledgements

In a paper of this kind, it is impossible to properly credit the sources of the ideas. It grew out of
ongoing interactions with people who hold very similar ideas in different forms, and it is really just
an expression of the current state of my intellectual environment. My joint work with Danny
Bobrow and Brian Smith on the theoretical foundations of KRL has been a primary source of ideas,
and the rest of the Stanford/Xerox KRL research group (David Levy, Mitch Model, Don Norman
and Henry Thompson) have been involved in all stages of our thinking. Stanford computer science
students in the CS365 seminar in 1977 pushed and probed on many of the ideas about procedures,
which in turn came from the authors of the papers we read there (included in the list of references).
The Xerox PARC environment has been a context in which the problems of "programming in the
large" are well understood, and has provided a wealth of ideas and examples, including the work of
Alan Kay and his group on Smalltalk, the implementation of the Mesa programming language, the
development of programming environments by Warren Teitelman and Larry Masinter, Bob Sproull’s
understanding of graphics systems and protocols, and Peter Deutsch’s views on system organization
and programming environments. In addition, the cybernetic notions of Humberto Maturana as
introduced to me by Fernando Flores have led to subtle but very important shifts of perspective in
the way I look at systems of all kinds. I am also grateful to Allen Perlis, Peter Deutsch and Jim
Horning for extensive and insightful comments on an earlier draft of this paper.

References

Note for the draft version: This reference list is still somewhat rough. It contains all the
references from the Stanford seminar mentioned in the last section, along with others mentioned in
this paper. It may be better to make it more selective, so I have not bothered to clean it up totally,
but will wait for comments first. My idea in including it was that it gives a broad picture of the
kinds of issues which need to be taken into account. I am a litile worried that it is so broad as to
be overwhelming. It is also somewhat idiosyncratic, since it consists of papers that I was familiar
with. I welcome suggestions of additional papers or substitutes on all of the topics.

Description Formalisms

[1] Daniel Bobrow and Bertram Raphael, "New programming languages for AI Research"”,
Computing Surveys 6:3 (September 1974);

[2] Daniel Bobrow and Terry Winograd, An Overview of KRL, a Knowledge Representation
Language, Cognitive Science 1:1, January 1977, pp. 3-46.

[3] Daniel Bobrow, Terry Winograd, and the KRIL. research group, Experience with KRL-0: One
cycle of a Knowledge Representation Language, Fifth International Joint Conference on
Artificial Intelligence, pp. 223-227. : .

[4] Ron Brachman, What’s in a concept: Structural foundations for semantic networks, Int. J.
Man-Machine Studies (1977) 9, pp. 127-152.

[5] Randy Davis, Knowledge about representations as a basis for system construction and
maintenance, in Pattern Directed Inference Systems, Academic Press (in press).:

13

14

[6] Richard Fikes and Gary Hendrix, A network-based knowledge representation and its natural
deduction system, Fifth International Joint Conference on Artificial Intelligence, pp. 235-246.

[7] Ira Goldstein and Bruce Roberts, Nudge, a knowledge-based scheduling program, MIT Al-
MEMO 405 (February 1977). ’

[8] Pat Hayes, Some problems and non-problems in representation theory, AISB conference,
1974, pp. 63-79.

[9] Pat Hayes, In Defence of Logic, Fifth International Joint Conference on Artificial Intelligence,
pp. 559-565.

[10] Hector Levesque, A procedural approach to semantic networks, TR-105 Dept. of Computer
Science, U. of Toronto, 1977.

[11] David Rumelhart and Donald Norman, The Active Structural Network (Chapter 2) from
Explorations in Cognition, 1975.

[12] Bill Woods, "What’'s in a 1ink?", in Bobrow and Collins (eds.) Representation and
Understanding, 1975.

Formalisms for specifying programs
[13] Burstall, R.M. and Goguen, J.A. Putting Specifications Together, SIJCAIL, 1977.
[14] Edsger Dijsktra, 4 Discipline of Programming, Prentice Hall, 1976.
[15] EJ. Neuhold (ed.), Formal Description of Programming Languages, North-Holland, 1978.
[16] Kenneth T. Orr, Structured Systems Development, Yourdon Press, 1978
[17] Douglas Ross, Structured Analysis Design Technique, 777?

[18] R.D. Tennent, "The Denotational Semantics of Programming Languages”, CACM, August
1976, pp. 437-453.

Structured objects and structured. procedures

[19] Jay Earley, High Level Operations in Automatic Programming, SIGPLAN notices 9:4 (1974),
pp. 34-42. :

[20] A.D. Falkoff and K.E. Iverson, The design of APL, IBM Journal of Research and
Development, 1973, pp. 324-334.

[21] Clair Goldsmith, The design of a procedurcless'programming language, SIGPLAN notices
9:4 (1974), pp. 13-24.

15

[22] Hammer, Howe, and Wladawsky, an Interactive Business Definition System SIGPLAN
notices 9:4 (1974), pp. 25-33.

[23] Robert Kowalski, Predicate Calculus as a programming language, IFIP proceedings, 1975.

[24] Burt Leavenworth and Jean Sammet, An Overview of nonprocedural languages, SIGPLAN
notices 9:4 (1974), pp. 1-12

[25] John Reynolds, GEDANKEN--A Simple typeless language based on the principles of
completeness and the reference concept, CACM 13:5 (May 1970), pp. 308-319.

[26] Jacob Schwartz, On Programming: an interim report on the SETL project; Installment I:
Generalities, NYU Courant Institute, February 1973.

Program factoring -- modules, objects, and procedures
[27] Birtwistle, Dahl, Myhrhaug and Nygaard, SIMULA BEGIN, 1973.

[28] Randy Davis, Generalized procedure calling and content directed invocation, Proc. ACM
Conference on Al and Programming Languages, August 1977.

[29] Charles M. Geschke, James H. Morris Jr., and Edwin H. Satterthwaite, Early Experience
with Mesa, CACM 20:8 (August 1977), pp. 540-552.

{30] Chuck Geschke and Jim Mitchell, On the problem of uniform references to data structures,
Xerox PARC CSL-75-1, January 1975.

[31] Adele Goldberg and Alan Kay, Smalltalk-72 Instruction Manual, Xerox PARC SSL 76-6,
1976.

[32] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert, Abstraction Mechanisms
in CLU, CACM 20:8 (August 1977), pp. 564-576.

[33] Vaughn Pratt, The Competence/Performance dichotomy in programming, 4th ACM
symposium on. the principles of programming languages, 1977, pp. 194-200.

[34] Mary Shaw, William A. Wulf, and Ralph L. London, Abstraction and verification in
Alphard: Defining and specifying iteration and generators, CACM 20:8 (August 1977), pp.
553-562.

[35] Guy Steele, LAMBDA, the ultimate imperative, MIT-AI Memo 353, March 1976.

[36] Guy Steele, LAMBDA, the ultimate declarative, MIT-AI Memo 379, November 1976.

States and transitions

[37] John Goodenough, Exception Handling: Issues and a proposed notation, CACM 18:12,
December 1975, pp. 683-696.

[38] Anatol Holt, Introduction to Occurrence Systems, in Jacks (ed.) Associative Information
Technigues, FElsevier 1971. pp. 175-203.

[39] E. Humby, Programs from Decision Tables, McDonald/Elsevier, 1973.

[40] P.E. Lauer and R.H. Campbell, A Description- of path expressions by Petri Nets, Second
ACM symposium on principles of programming languages, 1975, pp. 95-105.

[41] Howard Lee Morgan, Event Sequenced Programming, Cornell Dept. of operations research
Tech report 119 (July 1970).

[42] Chuck Reiger, "The Commonsense algorithm as a Basis for Computer Models of Human
Memory, Inference, Belief and Contextual Language Comprehension”, Schank and Nash-
Webber (eds.), Theoretical Issues in Natural Language Processing, 1976. pp. 180-195.

[43] Mike Rychener, Production Systems: a case for simplicity in. AI Control Structures, draft of
paper submitted to ACM National Conference, 1977.

[44] Earl Sacerdoti, The non-linear nature of plans, 4IJCAI, pp. 206-214.

[45] Michael Zisman, A Representation for Office Processes, Wharton Department of Decision
Sciences Working paper 76-10-03. ~

Interacting processes and communication

[46] Jeff Barnett, Module linkage and communication in large systems, in D.R. Reddy (ed.)
Speech Recognition, pp. 500-520.

[47] Carl Hewitt, Viewing control structures as patterns of passing messages, MIT Al Memo 410
Dec. 1976.

[48] Lampson, Mitchell and Satterthwaite, 'On the transfer of control between processes,
Proceedings of Programming Symposium, Paris, April 1974 (#19 in Lecture notes in
Computer Science, Springer Verlag, 1974), pp. 181-203.

[49] Victor Lesser, Parallel processing in speech understanding systems: A Survey of design
problems, in Reddy (ed.) Speech Recognition, 1975, pp. 481-499.

Other references

[50] Donald Knuth, The Art of Computer Programming, Vol 1, Fundamental Algorithms, Addison
Wesley, 1968. -

[51] M. Levin, et. al., The Lisp 1.5 Programmer’s Manual, MIT, 1965.

[52] Warren Teitelman, A display oriented programmer’s assistant, Fifth International Joint
Conference on Artificial Intelligence, 1977, pp. 905-915

16

[53] Warren Teitelman, et. al., Interlisp Reference Manual, Xerox PARC, 1975.

17

XEROX

BUSINESS SYSTEMS
Systems Development Division

To Software Distributers Date June 12, 1978
~ From Bruce Malasky Location El-Segundo
Subject Brownie 1.0 Organization SDD/SD

A Program for Maintaining Consistent Distribution Directories

Filed on: [Ifs-2Kmalasky>memos>Brownie.memo

Overview

This memo describes a program for maintaining public distribution directories on a file
server. As the number of users has increased and the slow speed communication lines have
become more heavily utilized, it has become very important to provide easy access to public
software. To this end many local IFS’s now have their own versions of important
directories such as <ALTO>, <ALTOFONTS> and <MESA>. .

The Mesa program Brownie provides a method for semi-automatically making sure these
directories are copies of the original distribution directories. It is hoped that software
distributors, as well as IFS Administrators will make use of Brownie to control distribution
of large systems. Brownie can be found on [Ifs-2KMalasky>Brownie>Brownie.Image. For

a while, I recommend that you run it with a disk that has the Mesa debugger installed.
Since files being transfered will reside on the local disk (in Brownie.buffer$), it is important
to have a disk with about 2000 free pages.

Operation |

Brownie is started in the same manner as any image file. NOTE: Brownie is currently a Mesa 3.0
program. Be sure to use RunMesa.run from <OLDMESA>. During initialization, Brownie looks for a
file called Brownie.data on the local disk that describes the operations to be performed.
Appendix A contains a sample data file and an explanation of its format.

How It Works

Brownie works by first enumerating files on both the source and destination hosts. Since
the IFS software does not distinguish between empty and non-existant directories, there is a
requirement for at least one file in the lowest subdirectory specified. In the example on the next
page, if Brownie was asked to update [HostlKmumble>foodbaz> from [Host2Kmumble>foodbazd, the update
would fail unless there was a placeholding file in [Hostl[<mumble>foodbaz>. This requirement may change in
the future. After the enumerations, Brownie then compares the write dates of files with the
same name to-determine which files require transferring. - Files on the [source host] but not

the [destination host] will be tranferred. If there are communication problems, Brownie
automatically reopens timed out connections.

Filenames are compared without version numbers and with case ignored. However, any
subdirectories not specified in the command line will be used as part of the name for
comparison. When updating [HostlKmumble>foo> from [Host2Kmumble>foo>, the file
B.mesa will be transferred only if it’s newer on Host2. The file a.mesa will be transferred
regardless of its write date because it is not on the Hostl. This will result in one version of
amesa in the Foo>Bar> subdirectory and one in the Foo> subdirectory.

[Host1] [Host2]
<Mumble>Foo> {Mumble>Foo>
Bar> a.mesal2
A.mesall Bas>
Bas> B.mesa!3
B.mesal4 Baz>
Baz> abcd!il

b.bed!2

Planned Enhancements

In the future, Brownie will permit you to add your own module that will be able to fiddle
with the files as they are transferred. This feature was motivated by the desire to alter
command files automatically to use the new host.

The use of the local disk for buffering. files will probably be removed at the time Brownie
is converted to Mesa 4.0.

Brownie will optionally rename files on the same host. This will result in an enormous
performance enhancement for rearranging directories on a single host.

Problem Reporting
All problems should be reported to Bruce <Malasky> (823-1469) or using sndmsg.

Appendix A
Below is a sample brownie.data and an explanation of its format:

{brief}

// logins follow

[Ifs-2KMalasky>(secret)

[Iris]Kguest>(guest)

[Maxc]KMalasky>(secret)

// These are commands

[Ifs-2KMesa> (mumble) « [MaxcKMesa> ()
[Ifs-2[KMesaPup>Feb02> () « [IrisKMesaPup>Feb02> ()
[Ifs-2]<MesaLib>30> (bar) « [MaxcKMesal.ib> (foo)

The first line is the mode it will run in. The mode is one of the following: {error, brief,
verbose, debug}. The mode controls the amount of information that will be put into the
mesa.typescript while Brownie is running. In debug mode it will print out passwords as well
as other internal information. It is recommended that you run in brief mode.

The second line is a comment, but the leading // is required.

The next lines are used by Brownie to log into the various hosts. A host is delimited by [],

a user name by <> and a password by () Spaces are not allowed between fields of a login line.
Logins are terminated by a second comment line.

All the remaining lines in the data file are command lines specifying what updates to
perform. Each command line is in this format:

[Destination}< directory>SP{connect password)SP«SP{Source]{directory>SP{connect password)CR

where SP is-a space and CR is a carriage return. No *’s are permitted in any of the directory -
specifications. Subdirectories for <To directory> and <From directory> are permitted, but
they are ignored by Maxc. The connect password is required only when the login name does
not have the necessary privilege. Nonetheless, the parentheses are required. Normally, a
connect password will be specified for the [destination host] to store files, while one is
usually not necessary to retrieve files.

etherrcvr.tty 5-Jul-78 11:45:34

For Xerox Internal Use Only -- June 21, 1978

EtherRcvr June 21, 1978 1

Ethernet Receiver Exerciser

Diagnostic programs (such as MadTest, DiEx, TriEx, and TFU) often wish
to run as many other tasks as possible to provoke failures caused by

inter-task interference. This package runs the Ethernet receiver in
promiscuous mode and copies every packet it hears into an internal
buffer. The package consists of one file, EtherRcvr.br with one

external procedure:

EtherRcvr(on) = true or false
If 'on' s true the Ethernet receiver is setup to receive
every packet on the Ether. It returas true if the receiver
was not on and false if a previous call to EtherRcvr has
already started the receiver. If 'on' is false the receiver
is shut down. It returns true if the receiver was on and
false if it was already off. Packets are read into an
internal buffer and discarded. Note that it is harmless to
turn the receiver on when it is already on, or off when it is
already off. To minimize overhead, EtherRcvr is written in
Nova assembly language and wuses interrupts. The static
etherStatVec points to a 4 word statistics vector with the
following format:
structure ESV:

C
good word 2 //# of packets rcvd with good status
bad word 2 //# of packets rcvd with bad status

]

Page

1

"WRC ALTO DOCUMENTATION

Program Name: FIRST

Description: Experimental Subsystem
Author: Bob Dattola

Date: May 30, 1978

Location: <dattola>first.dm on WRC IFS

FIRST is a document retrieval system based on the SMART system developed by G. Salton of
Cornell University. It accepts natural, English language queries (sentences, phrases, or words), and
passes the words through a stemming algorithm that ignores STOP words (very common non-
content bearing words) and reduces suffix variations of the remaining words. The query is then
searched against a data base of abstracts by computing a similarity function between the query and
abstracts. Abstracts containing at least one common stem with the query are returned to the user in
decreasing order of score, as determined by the similarity function. Thus, those documents most
similar to the query (and hopefully most relevant) are output first. For more information on
FIRST, see "FIRST -- Flexible Information Retrieval System for Text,” Xerox Internal Report No.
X76-00221, Dec. 1975 by R.T.Dattola.

The file first.dm is a dump file containing all the necessary files for creating and searching a FIRST
data base. It consists of the three programs FirstInit DocLoad and First, the two files STOP first
and Suffix.first, and a copy of this documentation first.doc.

These programs are still considered to be experimental, so they are not being officially released as
Alto Subsystems. Any problems and/or suggestions should be reported to me on Maxc account
ISA.

Creating a FIRST Data Base

A FIRST data base consists of the following: four files:
DocAbs.first -- Text of abstracts used for printing.
DocMat.first -- Weighted numeric vectors (one for each
abstract) used for searching against query.
BF Atree.first - A B-tree used for storing all the unique
content bearing stems in the data base.
Auxtree.first -- A B-tree used for storing STOP words and suffixes.

These files are automatically initialized by running the program FirstInit. This program prompts
the user for the following information:

Data base name -- One line of text which is displayed
when searching,

Maximum document number -- The largest total number of
documents to ever be stored in the data base.

STOP word file -- The name of a file containing all the
words to be treated as STOP words. The words need not
be in any special order, but they must be separated by
spaces or carriage returns. A standard STOP word
list STOP.first is provided in first.dm.

Suffix file -- The name of a file containing all the
English suffixes to be used by the stemming
algorithm. Same format as for STOP word file.

A standard suffix list Suffix.first is provided
in first.dm.

After running FirstInit, documents may be added to the data base by running Docload. At this
time, input documents must conform to the following format requirements:

Date, if present, must be the first string of characters in the document
(except for blanks or control characters), and
date must be entered as MM/YR or MM/DD/YR.
If no valid date is found, the date the document is loaded is used.
Next comes text, which may contain bravo paragraph
information (which is ignored). However, documents
must contain less than 4,000 bytes. Additional characters
are ignored and a warning message is output.
Documents must end with the symbol # followed immediately by
CR (not control CR).

The Docl.oad program might Swat if data does not conform to the above requirements. In this
case, the integrity of the four FIRST files cannot be guaranteed. Therefore, the FIRST files should
be backed up before updating. Any messages output to the display during DocLoad are saved in
the file DoclLoadLog.first.

The time needed to load documents depends on the length of the document, but a typical 200 word
abstract might require about 1.5 minutes. In the beginning when the B-tree is very small,
documents will load much faster.

Currently, data bases must reside on the operating system disk, running on either a Diablo model
31 or model 44 disk drive. Only one FIRST data base is allowed per disk. The total space needed
for a FIRST data base is approximately twice as large as the raw input text.

Searching a FIRST Data base

The program First is used to search a FIRST data base. All user inputs must be terminated by
escape. - FIRST prompts the user for a query and a date or date range. If a single date is entered
(MM/YR), only documents from that date forward will be retrieved. If two dates are entered
(separated by one or more spaces) only documents from within that range of dates {(inclusively) will
be retrieved.

The query is then processed by the stemming algorithm exactly as documents were processed when
added to the data base. Any query words not found in the B-tree dictionary are indicated. Neither
these words nor any suffix variations of them occur in any documents, so they do not contibute to
the retrieval of any documents. If the user is satisfied with the query, "y" is typed (followed by
escape) in response to the prompt "OK to search?”.

The system then indicates the number of documents which satisfy the date specification and have a
non-zero similarity score with the query. The output window is used to display the document-query
score for all retrieved documents. All scores are between 0 and 1, with a higher score indicating
greater similarity. The user can scroll this window (see next paragraph for discription of scrolling)
to view all the scores in order to determine a cutoff point for displaying documents. After entering
escape to stop scrolling, the user is then prompted for the number of documents to be output.

Documents are output using a scrolling package which allows some control over display of
documents. The left (red) mouse button can be used to scroll the display forward; e.g., holding
down the button scrolls the display forward, and releasing it stops the scrolling. The middle
(yellow) mouse button operates like the yellow "bookmark" button in Bravo. The right (blue)
button has no effect. When the user is finished looking at retrieved documents, escape allows
another query to be entered. However, entering a new query will destroy the output file for the
previous query (see below).

Any documents which the user requested to have printed are output on the file Scratchfile.first,
whether or not they were actually viewed on the screen. Hard copies of this file may be obtained
using Bravo or any other program accepting text files. However, this file is deleted the next time
First is executed.

A FIRST data base consisting of abstracts, keywords, and bibliographic information from the
Communications of the ACM (1970-1977) is available for searching using First. In addition to
First.run, the following files must be retrieved from Ivy station WRC:

<dattoladDocAbs.first -- 1902 pages
<dattola>DocMat.first -- 622 pages
<dattola>BF Atree.first -- 692 pages
<{dattola>Auxtree.first -- 32 pages
Total -- 3248 pages

Since some of the files are so large, users outside of Webster should retrieve the files during oft-
peak hours.

WHOLE ALTO WORLD NEWSLETTER
SUBSCRIPTION RENEWAL FORM

NAME MAIL STOP

ORGANIZATION

What do you use the Alto for?

What sections of the Newletter do you usually read?

What sections of the Newsletter do you seldom read?

What additional topics would you like to have included?

RETURN TO: Frank Ludolph, PARC ‘ (Internal mail)

or c/0 Xerox Research Center (U.S. Mail)
PaloAlto, Ca. 94304

or Message: < Ludolph>

Whole ALTO World Newsletter

Technology and Tools

XEROX | | July 31, 1978

SPECIAL ANNOUNCEMENTS

NEW WHOLE ALTO WORLD CHAIRMAN NOMINATED - Jim Iverson of the Webster
Research Center has been nominated to succeed Liz Bond as chairman of the Whole Alto World. A
special committee, appointed at the last WAW meeting for this purpose, met in late June to discuss
potential candidates. They selected Jim based on his active participation, energy, and expressed
desire to continue and expand the activities of the Whole Alto World. The committee’s
recommendation will be presented for ratification at the next WAW meeting in October.

GENERAL NOTES

ALTO NETWORK EXPANDS - Xerox Computer Services in Los Angeles and the Office Systems
Division in Dallas are joining the Alto network. XCS became an operational member this month.
They are connccted through the ASD/El Segundo Gateway (a map of the current network is
attached to the Newsletter). XCS has two machines at this time and will be doing some MESA

programming in conjunction with SDD.

OSD will be come up this month. They will operate over part of the bandwith of an already
existing line to WRC. Dallas currently has three machines, two of which are used by OSD for

human factors work and one by DSD for design.

SUBSCRIPTION RENEWAL RESPONSE - Thank you all for the strong response. Some good
suggestions were received as to how the Newsletter might be expanded. They will be reviewed
during the next month along with a discussion in the August edition of the more popular requests.
An immediate result is the addition of a new section, MARKET PLACE. Several people indicated
on their subscription renewal that they would like some sort of "want ads” for software and/or
hardware. So beginning with this issue, MARKET PLACE becomes a regular section.

MARKET PLACE

Market Place provides a forum for Alto users to make offerings and requests for Alto related
hardware and software. To place an "ad", send the text to the coordinator, Frank Ludolph (PARC),
message <Ludolph>, or phone Intelnet 8%*823-4356.

ALTO MAGNETIC TAPE CONTROLLER - ASD has developed a 1600 bpi mag tape controller
from a David Boggs’ design. The prototype is now at XEOS and work is in progress on a software
handler. The build has already begun. If you would like to participate, contact Jerry Palbilki at
Intelnet 8*823-1637. Cost is $2200 for parts and labor plus a share of the non-recurring engineering
cost (320K to be split among all buyers). So far there are 9 buyers. Act now.

NON-GLARE SCREEN - ASD has a need for Alto displays with non-glare screens to fill a
customer’s request. These monitors were supplied with 4th build Altos. They can be recognized by
the diffused appearance of images reflected off the screen. ASD will trade displays from the 8th
build one-for-one. The 8th build displays have a user-accessable brightness control. The exchange is
for the display only, not the entire workstation. Contact Chuck Anthony at Intelnet 8*%823-1956 or
message. <Anthony>: ’

Whole ALTO World Newsletter

TOOLS
HARDWARE

DOVER II AND SPRUCE - The Dovers built by SPG have some minor engineering changes that
slightly alters their interface characteristics. Old versions of SPRUCE will not drive Dover IIs
properly (the first page images on the drum but paper does not feed). Newer versions of SPRUCE (7
and 8) will operate properly with both old and new Dovers. Coupled with the recent font and Press
changes, it is recommended that all sites use version 8 of SPRUCE (check the output break page for
the version number).

MAINTENANCE NOTES

BEWARE OF RF SOURCES - No one loves an arc welder. One such machine has disrupted
digital and video activities at the PARC facilities inspite of a couple of moves. Electrical arcing can
produce a large amount of energy throughout the radio frequency spectrum. Alto related symptoms
are disk read/write errors on Diablo and Trident drives. Model 31s shielded within the Alto case
have not experienced problems. However, external drives, as in dual-drive systems, must be
grounded to the Alto chassis in the presence of heavy RF otherwise write operations may return
‘not-ready’ yet still write garbage. The Trident doesn’t fare as well. Its symptoms, random checksum
errors on reads, can be reduced but not eliminated by using an earth ground. In neither drive does
the metal case provide adequate sheilding.

To test for excessive RF energy, lay a long (15 foot) wire across the floor and attach it to a scope
input. Interference problems have been encountered starting at about the 1 volt level. Frequency
sensitivity has not been measured.

Other RF sources have been recorded including PUP Ethernet transmissions (.2 volts), the display’s
fly-back transformer (a 40 psec pulse), and display switching through a multiplexer (1 volt). The
display related pulses have caused disk errors {watch the screen of an Alto running TRIEX on a
Trident for error messages).

SOFTWARE

In general, the subsystems, packages, and documentation indicated here will be available from your
local IVY server under the directories <Alto> and <AltoDocs>. If they are not available, or if
you are in doubt as to the version, they may be retrieved from [MAXC] (same directories). Files
stored under other directories are on [MAXC] unless otherwise indicated, eg. [XEOS].

PUP PROTOCOL DOCUMENTATION - In keeping with the spread of Spruce printers and the
demise of Ears; Ed Taft recently converted PUP protocol documents from Pub format files to Bravo
format and regenerated all Press files using the new fonts. Most importantly, the documents
themselves were updated. They are available from [MAXCKPup>.

Irs or Ivy - Some time ago it was decided to rename the IFs file server software to Ivy. However,
since the name IFS is so pervasive in the documentation and folklore, IvY never caught on and its
use only caused confusion. Whole Alto World documents will, from now on, use ’IFS’ to mean the
system software and 'IVY’ to indicate the file server at PARC.

NEW RELEASE: ERL - Tom Moran of PARC and George Robertson of Carnegie-Mellon have
produced a new general programming system: on the Alto based on Alto L*. It was designed for

Whole ALTO World Newsletter

running small user interface and user performance experiments which require real-time control with
no unpredictable system events (e.g. page-swapping or garbage collection). ERL is a list-structured
language with homogeneous program and data representations with easy-to-use programming
facilities for graphics and interrupts. The ERL system runs entirely within memory (it is interpretive
and moderately fast), and offers facilities for debugging, editing, and filing programs.
Documentation can be retrieved from [MAXCKLstar>ERL.press.

ReReleases - Subsystems

ANALYSE - This release fixes some subtle bugs. Retrieve [Maxc[KSIL>DANALYSE.run. The
documentation is unchanged

BUILDBOOT - This release contains internal changes and cleanup. The documentation is unchanged.
CONDENSE - See the MENU entry under ReReleases - Packages.

DRAW - Version 4.3, dated June 23rd, now provides Spruce/Press compatibility and supports the
recent Spruce printing changes. Retrieve DRAW.run or load DRAW.dm if retrieving for the first
time.

FIRST CACM DATABASE - A new version of the CACM database (1970-1977) has been loaded that
enables psuedo-bibliographic searches. (Extracts containing the requested author’s name will also be
reported.) Retrieve [WRC]|KDattola>docabs.first, docmat.first, bfatree.first, and auxtree.first. The
FIRST system and documentation can be loaded from [WRCKDattola>FIRST.dm

IFs - The IFs FIp server now generates a message in response to a "rename" command if the "to"
file already exists. This will be effective when IFS is updated by the local administrator. The
documentation is being revised. :

IFSSCAVENGER - A bug important in scavenging non-IFS Trident disks has been fixed. Retrieve
[MAXCKIFS>IFSSCAVENGER.run,

MENUEDIT - See the MENU entry under ReReleases - Packages.

PEEKPUP - This version has been updated to recognize newer PUP types. The documentation is
unchanged.

PREPRESS - This release fixes minor bugs. Retrieve PREPRESS.run. The documentation is
unchanged.

PUPTEST - This subsystem is undergoing internal cleanup and is being enhanced with additional
Alto network drivers. The documentation is unchanged.

ReReleases - Packages

INTERRUPT - Calls to DisableInterrupts now returns TRUE if interrupts were set, otherwise FALSE.
Current users of the package are unaffected. The documentation, Interrupts.tty, is undergoing
revision.

MgNu - Version 1.4 contains several changes including standard file names, inactive boxes, group
box moves, and a box outline specification. The new version is not compatible with previous menu
definitions; however, a /U switch: for MENUEDIT can be used to convert. Load <Alto>MENU.dm

Whole ALTO World Newsletter

and retrieve MENUEDIT and CONVERT. A memo outlining the changes can be retrieved from
<AltoDocs>Menu-News.bravo. Revised documentation is on Menu.bravo.

TECHNOLOGY

It is well known to Alto users that Xerox is interested in developing Office Information Systems.
Important in the success of this effort is a broad awareness of the behavioral effects the installation
of an OIS is likely to entail. The first paper, "Behavioral Implications of Office Information
Systems", describes the different ways OIS can impact client organizations. The second paper,
"Some Considerations for Office Technology"”, reports on observations made in a working office
from three different perspectives and analyses the potential effects of OIS on the office’s operation.

The Whole Alto World Newsletter is a monthly publication for Xerox employees that use the Alto." It is not
to be shown to non-Xerox people. Copies are available on [MAXC]<AltoDocs>WawNewsM-YY.press or

mady be obtained from the editor, Frank Ludolph, XEQOS, by messaging <Ludolph> or calling Inteinet 8*923-
4356.)

This document is for Xerox internal use only

Behavioral Implications of Office Information
Systems

A Report of a Study Conducted by the Office Research Group

May 1978

Abstract

OIS includes a range of applications from routine data-handling to highly sophisticated
control of information, and OIS will inevitably impact client organizations along many
dimensions. The main conclusions of this paper are: the composition of the client firm's
work force will change; the OIS hardware may produce unforeseen behavioral effects;
extremely close monitoring of employee performance will be possible; managers will have
data on how they are using and processing their data; and managers will reject an OIS if it
requires too much change on their part.

We feel that if Xerox is to pursue the development of OIS, it has no choice but to develop
simultaneously a strong capability to deliver training and consultation to purchasers of OIS,
We also feel the implementation problems of OIS cannot be adequately treated through a
standardized "blueprint" which is applied to each customer.

If we are to counsel users these issues must be squarely addressed. We hope this paper
will focus attention, stimulate a dialog, and precipitate action.

XEROX

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

This document is for Xerox internal use only

This paper points out some of the major ways in which the Office Information Systems (OIS)
now under development will both impact upon and be impacted by behavioral factors.
Behavioral factors include elements of employee motivation, job satisfaction, hiring, training,
supervision, and organizational design which will interact with OIS. The primary focus of
this summary is on the ways in which the implementation of an OIS will interact with
behavioral factors in a client organization. However, the summary will also mention some
implications for the role of the Xerox team which installs such a system.

This report is divided into three major sections. The first section briefly describes the broad
characteristics of the Office Information Systems currently under development. The second
section describes the behavioral implications of these developments. The third section
presents two key considerations which have emerged from these discussions.

This paper summarizes a series of discussions held by members of the Office Research
Group (ORG) of the Palo Alto Research Center, Xerox Corporation. This study included a
review of the Xerox experience with word processing centers (WPC) and with administrative
processing centers (APC). It also included some consideration of the relevant behavioral
research, with guidance from an outside consultant, Professor William G. Ouchi of the
Stanford University Graduate School of Business, and a research associate from Stanford
University, Melanie Powers. These inputs are reflected in the analysis and conclusions
reported here.

The questions raised in this paper represent the best guesses of the Office Research Group.
concerning these behavioral issues. At this point, some general characteristics of the OIS
being designed have clearly emerged, although their final form may be subject to change.
The exact hardware and software which will ultimately reach the customer is yet
undeveloped except in prototype; so. that the conclusions reached here are based on broad
outlines rather than on specific properties of OIS.

. Characteristics of Office Information Systems

OIS includes a range of applications from routine data-handling to highly sophisticated
control of information. The routine data-handling prbperties of the system include the entry,
storage, manipulation, and retrieval of data of the type which is currently done by clerical
employees. An OIS can carry out these routine functions more efficiently than existing
methods of doing this work.

However, the distinctive characteristic of OIS is its capability for information control.
SyStems currently under development have the ability to capture a previously infeasible
spectrum of functions- governing the location, use, and flow of a great range of information.
For example, a sales representative will be able to know in an instant the status of a
customer order. Supervisors will be able to monitor precisely the volume of work, type of

work, and error rate of clerical employees who enter data into an accounting system.
Personnel departments will be able to design and immediately implement repoerting forms
required by new legislation.

The various OIS packages currently under development will combine data management
capabilities with the additional capacity for information control. It is an inherent
characteristic of these systems that while they store and process records, they will
simultaneously be capable of tracking the speed and efficiency of the system operators.

1. Behavioral Impacts of OIS on Client Organizations

OIS will inevitably impact client organizations along many behavioral dimensions. Our
objective here is to anticipate the general nature of these impacts and to suggest the
outlines of a general strategy for coping with them. The most important issue is our firm
belief that these behavioral issues will impact each client in a unique manner. OIS is being
designed in such a way that a client will have a great deal of flexibility in adapting it to his
existing management practices. Despite this flexibility, however, OIS will clearly require
organizational and managerial changes of some sort in each client organization. We do not
believe that a standardized approach to these unique customer needs will be adequate. No
one approach, such as standardized APC’s or job enrichment, will fit all customers.
Therefore, Xerox will probably have to-be prepared to support each OIS installation with a
mixture of training, consultation, and other custom-designed help.

Even the simplest OIS installation will have some behavioral impact on a client firm. Some
broad generalizations are possible.

The composition of the client firm’s work force will change.

Pilot projects suggest that we may be close to achieving our objective of developing a
system so simple to use that a typical secretary or clerk can become competent with a few
hours of training. In this event, most installations will have no need to hire specialized OIS
operators.

In some cases, however, users will want to acquire OIS specialists, possibly creating
problems. of job grade, of compensation, and of reporting responsibility. The OIS specialist
may, in some cases, outrank the OIS supervisor, especially when that supervisor was
formerly head of the clerical department which adopted OIS. If these relationships are not
handled properly, they are sufficient to cause the installation to fail, as was apparently the
case in some WPC’s.

In other cases, the user may choose to emphasize only the simplest, most routine uses of
OIS. In such'cases, if existing clerical or secretarial personnel are transferred to these jobs,

they are likely to feel that they have been downgraded to less interesting work. If less
skilled employees are hired to operate OIS, then the former secretarial and clerical
employees will be subject to termination. Either of these contingencies, improperly handled,
can cause the system to be rejected.

Work force changes brought on by OIS can cause a user more trouble than it is worth.
Clerical employees who fear the impact of OIS on their jobs can sabotage it. Effective
Xerox support may be able to forestall these behavioral problems.

The OIS hardware may produce unforeseen behavioral effects.

In some cases, OIS equipment may be noisy, CRT’'s may produce eye fatigue for those who
use them constantly, or other physical arrangements of the system may reduce the
opportunity for social interaction between employees. Particularly among those workers
whose jobs are intrinsically boring, any increase in individual isolation or other significant
change in the social aspects of work may make the job unbearable. OIS should not be
allowed to become a space-age "sweatshop".

The potential impact of these issues should not be underestimated. Many clients have
noted that the addition of a Xerox copier alters patterns of social interaction in an office
typically increasing social contact. If a Xerox OIS were to similarly decrease the frequency
of social contact available to secretaries or to clerks, they would almost certainly rebel in
one way or another. For example, if OIS equipment were placed in a manner which made it
difficult or impossible for operators to exchange small talk, and if the company were one in
which clerks have little or no influence over supervisors, then the result might be greatly
increased rates of turnover such as in some WPC's,

Extremely close monitoring of employee performance will be possible.

The -information-capture capabilities of OIS will make it almost automatic to retain, in
extreme detail, quantitative data on the job performance of all personnel who work with the
system. It will be possible for managers to intrude into the private work space of an
individual to an extent unapproachable with current technology. The potential behavioral
impact of this innovation may be more important than any other. Supervisors in some cases
may react like a small boy who has just discovered a hammer -- he finds that everything
needs hammering. This problem will be especially acute in the case of first-line supervisors.
This position is almost universally one in which the supervisor is engaged in at least some
conflict with subordinates. The subordinates (clerical or data-entry workers) are engaged in
dull jobs and thus frequently seek ways to divert themselves, which are commonly perceived
by a superior as "goldbricking". A supervisor in this kind of situation, given the ability to
monitor completely every aspect of the performance of every individual subordinate, could
quickly. develop an inappropriately:tough, solely output-oriented managerial style that would

result in a very high level of turnover and low employee morale. A skilled Xerox
representative can help higher levels of management in the client firm to anticipate issues of
privacy and avoid problems of counterproductive over-monitoring.

Managers will have data on how they are using and processing their data.

Lower and middle level managers in client firms will be able to monitor not only the
performance of their subordinates but also the performance of their work systems. They will
be able to track the rate at which bills are arriving or being paid, the status of the
distribution of new customer account data to field offices, or the average age of credit data
on customer accounts. Since most lower and middle level managers are not accustomed to
data manipulation and use, the nature of their jobs will change. As the experience of many
companies in introducing computerized management information systems over the past two
decades has shown, we can expect two general effects: (1) most managers will not use the
system up to its full capabilities; (2) most managers will change their behavior to some
extent and will make use of the system in at least a limited way. Although we can be
relatively confident that managers can and will adapt themselves to OIS, we cannot expect
anything approaching optimal usage without help. The companies which have been most
successful in selling business computers have devoted a great deal of their resources to
developing the means of training and consulting with their clients on these issues. Xerox
may have to mount a serious effort of this sort.

Managers will reject an OIS if it requires too much change on their part.

Managers, unlike lower-level employees, have the power to reject an office system which
they don’t like. Therefore, it is critical that the design of those features with which they
come in contact take into account a deep and complete understanding of the needs and
tastes of managers in potential client firms. (Relying upon introspection is particularly
dangerous in this case, since most Xerox managers are far more accustomed to information
technology than is the average manager). Perhaps the most innovative characteristic of OIS
is its adaptability to the working style of most managers. One of our primary objectives
must be to design a system which a manager will want to use, one which fits into his
habitual modes of thinking, communicating, and problem-solving. However, the evidence of
behavioral science research and. the history of business computers and WPC’s all indicate
“that an apparently small change in habits or relationships will drive many managers to reject
a system despite its overall advantages.

For example, an OIS which permits greater efficiency in creating and storing travel expense
reports but which transfers even a small fraction of the task from the secretary to the
manager is not likely to be welcomed by managers. An OIS which gives others ready,
convenient access to these same expense reports may also be unwelcome.

Not all behavioral impacts will be negative. It would be a mistake to conclude from the .
above that we must try to implement OIS without intruding any change in the office
sociology. It would be foolish, as well as impossible, to try to preserve, say, the exact
pattern of communication paths that support the existing friendship groups. It is inherent in
OIS that it will intrude into the communication patterns of an office. Indeed, if OIS does not
alter office communication structure, then it accomplishes nothing. From a behavioral point
of view, however, a change in patterns of communication is almost always disruptive.

In most offices, the disruption will be temporary, and a new and equally satisfactory pattern
of social and business communication will grow up around the OIS. In such cases, the
critical task is to support the client in a manner which avoids unnecessary disruption and
which passes through the necessary disruption as quickly and as effortlessly as possible.

In some installations, the client may explicitly wish to alter permanently patterns of
communication in a major way. Here the Xerox task will be more complex.

In summary, an OIS is a process, not a machine. Each OIS installation will include elements
of hardware and software that will make it at least somewhat unique, as is the case in
computer systems. Each client will have organizational and managerial conditions that will
make it unique. A flexible approach to implementation and a commitment to support the
whole OIS -- ‘both technical and behavioral -- are appropriate.

Iil. Implications for Internal Xerox Organization
The analysis above leads to two key questions that we would like to emphasize.
Should Xerox develop internal training and consulting capabilities?

We- feel this is the most critical question. We feel that if Xerox is to pursue the development
of OIS, it has no choice but to develop simultaneously a strong capability to deliver training
and consultation to purchasers of OIS. An integrated office information system must be
supported by technical training, management training, and some specialized, high-quality
consultation on organizational and behavioral issues relevant to office information systems.
We are not suggesting that Xerox has to become a giant consulting firm. Rather, we are
suggesting that we develop a high level of expertise in a relatively narrow, specialized area
of training and consultation. Implementation of OIS will be a significant change in at least
some features of the managerial process in the client organization. Since most clients will
be inexperienced at managing this kind of change, and since Xerox will quickly become
familiar with it, it seems reasonable for Xerox to provide these support services.

Should Xerox design a standardized installation format?

The implementation problems of OIS cannot be adequately treated through a standardized

"blueprint" which is applied to each customer. The systems being developed provide
sufficient flexibility to be adapted to the needs of a wide variety of users with a wide variety
of information needs and managerial styles. Nevertheless, a properly "tailored" OIS, like a
properly matched computer system, should provide a client with effective, trouble-free
service. However, this flexibility means that an inexpert client or Xerox representative may
be overwhelmed by the variety of forms which the final installation is able to take.

1V. Conclusion

We believe that Xerox will have a superior technology to offer to customers, one that will
give them both immediate, tangible cost savings and enhanced. managerial capability. We
further believe that our proprietary system will be superior to any which our competitors will
be able to offer. However, it is only by considering key behavioral issues that we will realize
success in the marketplace.

Computer application projects often proceed without regard for the behavioral implications
of installation and use. This has been the case for OIS. There is, however, a clear choice.
On one hand, OIS could be sold as a collection of hardware. On the other hand, OIS could
be sold together with consultation concerning the behavioral and managerial implications of
installation.

This choice must be made soon. These issues must be squarely addressed. We hope this
paper will focus attention, stimulate a dialog, and precipitate action.

There are opportunities for fruitful interaction among Xerox groups concerned with OIS. A
short-run objective would be to exchange information concerning the technical and
behavioral characteristics of OIS. A long-run objective would be to understand more
effectively the kinds of future OIS developments which are technically feasible and are
compatible with larger Xerox objectives.

This document is for Xerox internal use only

Some Considerations for Office Technology

BY Cheryl Crawley, Katherine Newman and Allen Sonafrank

October 1977

University of California, Berkeley

Abstract

The observations and analyses presented in this report summarize the authors’ findings
from a six-week fieldwork period. These observations are intended primarily for the use of
those involved in developing new types of office technology. The authors believe that it is
vital to understand the working environment into which new forms of technology may be
introduced. This project could not have been completed without the invaluable cooperation
of ther members of the three Customer Service Divisions with whom the authors worked.

XEROX

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

This document is for Xerox internal use only

SOME CONSIDERATIONS FOR OFFICE TECHNOLOGY

Experience has shown that the introduction of new office technology can have important
effects on the daily operation of bureaucratic organizations. Technological innovations
may require the reorganization of work groups, reallocation of responsibilities, and major
changes in the nature of the tasks that employees currently perform. The effects of these
changes can be minimized, however, by anticipating the impact of new technologies and
by designing systems that are sensitive to the environment into which they will be
introduced. Therefore, in order to create office systems that will be successfully accepted,
researchers need to understand the working environment and the people who are part of it.

This project was initiated by the Office Research Group of the Palo Alto Research Center
with a particular goal in mind: to familiarize individuals involved in creating new
technologies with the work situations and the office people at the company being studied.
To this end, anthopologists from the University of California at Berkeley joined three
different company branch offices for six weeks of field observation. They participated in
the daily activities of the customer service division of their respective branches in an effort
to learn as much as possible about the operatioh of this one department. The researchers
were quickly incorporated into the daily routines of the customer service divisions and were
thus able to observe ongoing events unobtrusively. This report is a summary of their
combined research findings.

The term "working environment," is open to several interpretations. For example, the
"ecology" of the work place could be studied to determine how physical location and
population density affect the behavior of employees; aiternately the psychological aspects--
the effects of personality traits on job performance and motivation--could be examined.

Each of the three researchers on this project studied the working environment from a
different perspective. Like the approaches mentioned above, each of these highlighted
certain aspects of the field situation. By using three complementary "definitions” of the
work situation, a more complete and holistic description of the field setting was produced
than would have been possible using only one perspective.

The first of these approaches is drawn from an area of social science known as "formal
organizations theory.” From this viewpoint, the work environment consists mainly of a
series of incentives, controls, and constraints on the behavior of individuals in the office.
These controls are generally instituted on a formal basis; that is, they are developed by
management. in order to encourage individuals to cooperate in the pursuit of organizational
goals. However, because these formal controls elicit informal responses from employees,
the formal organizations perspectiver emphasizes both the formal structure created by
behavioral controls in the work place and the typical response patterns that develop in
reaction to those controls.

The second approach focuses on socialization in the work place. Here the researcher’s
goal is to describe how individuals who enter the customer service division become
established members: of the organization. What kind of "world view" do people adopt as

SOME CONSIDERATIONS FOR OFFICE TECHNOLOGY

they become absorbed into the ongoing activities of the branch? What sorts of social rules
must they master in order to function effectively as employees? In short, how does one go
about taking on new roles in the branch? Whereas the first approach deals with the
structure of the organization, the second deals primarily with the way in which participants
learn and interpret that structure.

The daily tasks that individuals perform should be understood within both of these
contexts. Thus the third research perspective, which examines the actual activities of
customer service division employees, particularly the customer assistants (billers),
describes the decision-making processes that are central to the work. Drawing on an
important area of social science known as "decision theory," this approach attempts to
identify the significant choices that individuals must make in the course of fulfilling their
responsibilities. In particular, the emphasis is on the information used and the factors that
influence decision making on the job.

These three perspectives provide a detailed description of the working environment of the
customer service division in each of the three branches. Beginning with the most abstract
perspective and moving toward the most concrete, a comprehensive picture will be
provided of the kind of situation into which new forms of office technology might be
introduced. ‘

1. Control Stirategies and Response Patterns in the Customer Service Division

Every bureaucracy must deal with the problem of gaining the cooperation of its members;
that is, the interests of each individual must somehow be channeled so that the goals of
the organization are reached. There are a variety of strategies that business organizations
use to gain the compliance of employees. For the purposes of this project, two particular
control strategies should be mentioned--utilitarian and normative. Utilitarian organizations
are those that use the incentive of financial reward in order to obtain desired employee
behavior. People tend to cooperate because they know that they will receive pay raises,
bonuses, or some other form of monetary reward. In contrast, normative organizations rely
on the fact that employees feel a sense of personal identification with and loyalty to the
organization. Individuals in normative bureaucracies work hard because they believe in the
goals of the organization and see themselves contributing significantly to its activities.

Each of these general control strategies has advantages and disadvantages. Utilitarian
control works best in situations where a firm organizational hierarchy exists; individuals
work to fulfill production quotas and are content with financial reward instead of influence
in the decision-making process. Normative control works best when individuals are more
autonomous and can be involved in decision making. People who identify personally with
the: goals of the organization must be made to feel that their opinions count in important
decisions. Normative control can only be effective when the hierarchy of the organization

SOME CONSIDERATIONS FOR OFFICE TECHNOLOGY

is willing to relinquish some control to those at lower levels.

A mixture of the two control strategies was evident within the customer service division of
each branch. Individuals were financially rewarded for performing at a high level. At the
same time, they were strongly encouraged to consider their jobs as careers, instead of as
ways just to earn a living. This combination of strategies was implemented by the use of
targets, which measured absolute production (e.g., dollar amounts billed, accounts
receivable collected) and efficiency (amount of time required to transfer information from
documents into the office information system), and by the use of employee evaluations,
which encouraged particular kinds of behavior.

The target system is a formally sanctioned method of measuring employee productivity and
efficiency. However, the particular kinds of targets used in the customer service division
(and elsewhere in the branches) have certain very important informal consequences. In
order to understand the nature of these informal responses to targets, one significant
aspect of this measurement system should be noted: Every position in the customer
service division carries certain responsibilities that cannot be met without cooperation of
individuals over whom little direct control can be exercised. Thus, for example, equipment
.order entry (EOE) personnel are responsible for processing installation and cancellation of
orders and are targeted on the time that elapses between the date of a request for action
and the date on which the computer system recognizes that such a request has been
made. However, in order to fulfill this-efficiency criterion, the EOE clerk must have the
cooperation of the salesperson with whom an order has been placed. Order documents
must be turned in on time and must include all the necessary information before they can
be dealt with properly. The salesperson is responsible for completing the documents
correctly. Should he/she fail to do so; the order is in danger of being processed fate, and
the EOE clerk will be held responsible. The individuals in equipment order entry have little
control over the behavior of sales staff and yet they depend on them in order to complete
their own responsibilities. Fortunately, the dependency is mutual. The salesperson does
not receive credit for placing an order until the computer system acknowledges that order.

What this example indicates is the fact that the target system sets up certain mutual
dependencies among m