GA22-7000-4
File No. S/370-01

IBM System/370
Systems Principles of Operation

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

Fourth Edition (September 1974)

This major revision obsoletes GA22-7000-3. The revision includes format changes,
corrections, and additions.

Significant technical changes are indicated by a vertical line to the left of the change.

Requests for copies of IBM publications should be made to your IBM representative or the
IBM branch office serving your locality.

Changes are made periodically to the information herein; before using this publication in
connection with the operation of the System/370, refer to the latest IBM System/370
Bibliography, GC20-0001, and associated technical newsletter, for the editions that are
applicable and current.

This manual has been prepared by the IBM System Products Division, Product Publica-
tions, Dept. B98, PO Box 390, Poughkeepsie, N.Y., 12602. A form for readers’ comments
is provided at the back of this publication. If the form has been removed, comments may
be sent to the above address. Comments and suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1970, 1972, 1973, 1974

This publication provides, for reference purposes, a
detailed definition of the machine functions per-
formed by System/370. _

The manual describes each function to the level of
detail that must be understood in order to prepare an
assembly language program that relies on that func-
tion. It does not, however, describe the notation and
conventions that must be employed in preparing
such a program, for which the user must instead
refer to the appropriate assembly language manual,
such as the IBM System/360 Operating System
Assembly Language, GC28-6514.

The information in this publication is provided
principally for use by assembly language program-
mers, although anyone concerned with the functional
details of System/370 will find it useful.

Note that this manual is written as a reference
document and should not be considered to be an
introduction or a textbook for System/370. It as-
sumes the user has a basic knowledge of data proc-
essing systems and, specifically, the System/370,
such as can be derived from the Introduction to
IBM Data Processing Systems, GC20-1684, and
the IBM System/370 System Summary, GA22-
7001. Persons intending to use the information pre-
sented here in preparing computer programs should
also become familiar with the publications dealing
with the programming language to be used. The lan-
guage publications available in the System/370 Sys-
tem Library, as well as all publications relating to
other aspects of the system, are listed and described
in the IBM System/370 Bibliography, GC20-0001.

All facilities discussed in this manual are not nec-
essarily available on every model of System/370.
Furthermore, in some instances the definitions have
been structured to allow for some degree of extensi-
bility, and therefore certain capabilities may be
described or implied that are not offered on any
model. Examples of such capabilities are the provi-
sions for the number of channel mask bits in the
control register, for the size of the processor ad-
dress, and for the number of CPUs sharing main stor-
age. The allowance for this type of extensibility
should not be construed as implying any intention by
IBM to provide such capabilities. For information
about the characteristics and availability of fea-
tures on a specific System/370 model, use the func-
tional characteristics manual for that model. The
availability of features on System/370 models is
summarized in the IBM System/370 System Sum-
mary, GA22-7001.

Page of GA22-70004

Revised September 1, 1975

By TNL: GN22-0498

Preface

The information presented in this manual is
grouped into 14 chapters and several appendixes:

IBM System/370 highlights some of the major
features of System/370--particularly those that con-
stitute advances beyond System/360.

System Organization describes the major group-
ings within the system--the central processing unit,
main storage, and input/output--with some attention
paid to the composition and characteristics of those
groupings.

Program Execution explains the role of instruc-
tions in program execution, looks in detail at instruc-
tion formats, and describes briefly the use of the
program status word (PSW), of branching, and of
interruptions. It also details the aspects of program
execution on one CPU as observed by channels or
another CPU.

System Control describes in depth the facilities
for the switching of system status, for program pro-
tection, for special externally initiated operations,
and for certain system enhancements. It deals specif-
ically with CPU states, control modes, the PSW,
control registers, protection, monitoring, program-
event recording, timing facilities, resets, store status,
and initial program loading. _

Dynamic Address Translation explains the opera-
tion of the machine facility which, coupled with spe-
cial programming support, makes the use of a virtual
storage possible in System/370. Dynamic address
translation (DAT) eliminates the need to assign a
program to a fixed location in real main storage and
thus reduces the addressing constraints on system
and problem programs.

Interruptions details the System/370 mechanism
that permits the CPU to change its state as a result
of conditions external to the system, within the sys-
tem, or within the CPU itself. Six classes of interrup-
tions are identified and described: machine-check
interruptions, program interruptions, supervisor-call
interruptions, external interruptions, input/output
interruptions, and restart interruptions.

Multiprocessing describes the facilities required
for the sharing of main storage by multiple CPUs
and associated 1/0.

System Control Instructions contains detailed
descriptions of all of the instructions, except for the
1/0 instructions, that are available only to the con-
trol program.

General Instructions contains detailed descrip-
tions of all of the instructions in the standard in-

struction set that are available to all programs.

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Decimal Instructions describes in detail the in-
structions provided by the decimal feature.

Floating-Point Instructions contains detailed de-
scriptions of the instructions provided by the
floating-point feature and by the extended-precision
floating-point feature.

Machine-Check Handling describes the
System/370 mechanism for detecting, correcting,
and reporting machine malfunctions.

Input/Output Operations explains the programmed
control of 1/0 devices by the channel and by
the CPU. It includes detailed descriptions of the 1/0
instructions, channel command words, and other
1/0 control formats.

System Console describes the basic manual func-
tions and controls available for operating and con-
trolling the system.

The Appendixes include:
o A list of the System/370 features
« A discussion of certain functions that differ
from System/360
» Lists of the instructions arranged in several
sequences
« Summaries of important formats and of condition-
code settings
« Table of the powers of 2
« Tabular information helpful in dealing with hexa-
decimal numbers
« An EBCDIC chart
¢ Information about number representation
« Instruction-use examples
Largely because the manual is arranged for refer-
ence purposes, certain words and phrases appear, of
necessity, earlier in the manual than the principal
discussions explaining them. The reader who en-
counters a problem of this sort should refer to the
index, which will indicate the location of the key
description.

IBM System/370 .
General-Purpose Design .
Compatibility.

System Program .
Availability

System Organization.
Main Storage .
Information Formats
Addressing
Information Posmonmg
Central Processing Unit .
General Registers
Floating-Point Registers
Control Registers
Input and Output
Channels .
Input/Output Interface .
Input/Output Devices and Control Umts .
System Console .

Program Execution
Instructions .
Operands .
Instruction Format .
Address Generation .
Program Status Word
Instruction Execution
Branching.
Interruptions .
Sequence of Storage References
Instruction Fetch
DAT Table Fetches .
Key-in-Storage Accesses
Storage-Operand References
Storage-Operand Consistency . .
Relation Between Operand Accesses .
Serialization .

System Control
CPU States .
Wait and Running States
Problem and Supervisor States .
Stopped and Operating States .
Control Modes .o
BC Mode .
EC Mode . .
Set-System-Mask Suppresswn .
Program Status Word .
Program Status Word Format in BC Mode
Program Status Word Format in EC Mode
Exceptions Associated with the PSW .
Control Registers .
Key in Storage
Protection
Protection Actlon
Accesses Protected .
Monitoring

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Contents
Program-Event Recording 39
Control Register Allocation 40
Operation. . . - 1
Storage Area Desngnation Y)
Program Events . . . L. .. 42
Indication of Events Concurrently w1th Other
Interruption Conditions 43
DirectControl 46
Time-of-Day Clock 46
Format 46
States . . . T 1
Setting and Inspectlon of Value e ¥
Clock Comparator 47
CPUTimer 48
Interval Timer . . - 1
Externally Initiated Functlons - 1)
Resets. 50
Store Status . . . - 1
Initial Program Loadmg - 1
Dynamic Address Translation. 57
Logical Storage Addressmg . . .« 58
Control . . . 1.
PSW . . . - 1.
Control Register 0 - 1
Control Register1 5
Translation Tables : 59
Segment-Table Entries 59
Page-Table Entries 60
Translation . . B L
Types of Translatlon Y ¢
TranslationProcess 60
Addresses Translated . . . 62
Interlocks Between Logical and Real Storage Referencc,s . 63
Table Manipulation . . . Y
Translation-Lookaside Buffer 2 4
States of Translation-Table Entries 65
Use of the Translation-Lookaside Buffer 65
Modification of Translation Tables 66
Reference and Change Recording 67
Address-Translation Exceptions 68
Summary of Dynamic Address Translation Formats . . . 68
Interruptions 69
Interruption Action. 170
Source Identification 70
Enabling and Disabling 170
Instruction-LengthCode 171
Point of Interruption 74
Instruction Execution T4
Machine-Check Interruption 75
Program Interruption . . . P A1
Program Interruption Condltlons B A
Recognition of Access Exceptions . . . 80
| Handling of Multiple-Program-Interruption Condmons . 83
Supervisor-Call Interruption 84
External Interruption 8
| Input/Output Interruption. 88

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Restart .
Priority of Interruptlons .
Assigned Main-Storage Locations .

Real Main Storage
Absolute Main Storage .

Multiprocessing

Shared Main Storage
Prefixing .

CPU Signaling and Response

Orders .
Conditions Determmmg Response .

TOD Clock Synchronization
CPU Address Identification

System-Control Instructions

DIAGNOSE . . .

INSERT PSWKEY . e
INSERT STORAGEKEY
LOAD CONTROL .

LOAD PSW . .

LOAD REAL ADDRESS

PURGE TLB.

READ DIRECT . . .

RESET REFERENCE BIT
SETCLOCK . . .

SET CLOCK COMPARATOR

SET CPU TIMER

SET PREFIX .
SET PSW KEY FROM ADDRESS.
SET STORAGE KEY

SET SYSTEM MASK .

SIGNAL PROCESSOR . .
STORE CLOCK COMPARATOR .
STORE CONTROL .

STORE CPU ADDRESS
STORECPUID .

STORE CPU TIMER

STORE PREFIX

STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK .
WRITE DIRECT

General Instructions .
Data Format .
Number Representation
Instructions .

vi

ADD . . .

ADD HALFWORD

ADD LOGICAL .

AND

BRANCH AND LINK .

BRANCH ON CONDITION

BRANCH ON COUNT . .

BRANCH ON INDEX HIGH .
BRANCH ON INDEX LOW OR EQUAL
COMPARE e
COMPARE AND SWAP .o
COMPARE DOUBLE AND SWAP
COMPARE HALFWORD .

COMPARE LOGICAL . .
COMPARE LOGICAL CHARACTERS UNDER MASK
COMPARE LOGICAL LONG .
CONVERT TO BINARY

CONVERT TO DECIMAL .

DIVIDE .

. 101
. 101

88

90
90
91

95
95
95
97
97
98

. 103
. 103
. 104
. 105
. 105
. 105
. 106
. 107
. 107
. 107
. 108
. 108
. 109
. 109
. 109
. 110
. 110
. 110
.11
. 111
. 112
. 112
. 113
. 113
. 113
. 114
. 114

. 115
. 116
. 116
. 117
. 117
. 117
. 120
. 120
. 121
. 121
. 122
. 122
. 123
. 123
. 123
. 124
. 125
. 125
. 126
. 126
. 127
. 128
. 128

EXCLUSIVE OR
EXECUTE . . .
INSERT CHARACTER

INSERT CHARACTERS UNDER MASK

LOAD. . . .

LOAD ADDRESS

LOAD AND TEST . .

LOAD COMPLEMENT .

LOAD HALFWORD

LOAD MULTIPLE .

LOAD NEGATIVE .

LOAD POSITIVE

MONITOR CALL

MOVE . .

MOVE LONG .

MOVE NUMERICS .

MOVE WITH OFFSET .

MOVE ZONES .

MULTIPLY . . .

MULTIPLY HALFWORD

OR

PACK. . .

SET PROGRAM MASK

SHIFT LEFT DOUBLE. . .
SHIFT LEFT DOUBLE LOGICAL
SHIFT LEFT SINGLE . .
SHIFT LEFT SINGLE LOGICAL
SHIFT RIGHT DOUBLE
SHIFT RIGHT DOUBLE LOGICAL .
SHIFT RIGHT SINGLE

SHIFT RIGHT SINGLE LOGICAL
STORE .o

STORE CHARACTER

STORE CHARACTERS UNDER MASK .

STORE CLOCK .

STORE HALFWORD
STORE MULTIPLE
SUBTRACT . .
SUBTRACT HALFWORD
SUBTRACT LOGICAL.
SUPERVISOR CALL
TEST AND SET .

TEST UNDER MASK .
TRANSLATE .
TRANSLATE AND TEST
UNPACK

Decimal Instructions.
Data Format .
Zoned Format
Packed Format .
Number Representation
Instructions .
ADD DECIMAL .o
COMPARE DECIMAL .
DIVIDE DECIMAL .
EDIT .
EDIT AND MARK
MULTIPLY DECIMAL. . . .
SHIFT AND ROUND DECIMAL .
SUBTRACT DECIMAL.
ZERO AND ADD

Floating-Point Instructions.
Data Format .
Guard Digit .

. 128
. 129
. 130
. 130
. 130
- 131
. 131
. 131
. 131
. 132
. 132
. 132
. 132
. 133
. 133
. 135
. 135
. 136
. 136
. 136
. 137
. 137
. 138
. 138
. 139
. 139
. 139
. 140
. 140
. 140
. 141
. 141
. 141
. 141
. 141
. 142
. 142
. 143
. 143
. 143
. 144
. 144
. 145
. 145
. 145
. 146

. 147
. 147
. 147
. 147
. 148
. 148
. 149
. 149
. 149
. 150
. 152
. 153
. 183
. 154
. 155

. 157
. 157
. 158

Number Representation
Normalization
Instructions . .
ADD NORMALIZED
ADD UNNORMALIZED
COMPARE
DIVIDE
HALVE
LOAD. . . .
LOAD AND TEST .
LOAD COMPLEMENT .
LOAD NEGATIVE .
LOAD POSITIVE
LOAD ROUNDED .
MULTIPLY .
STORE .
SUBTRACT NORMALIZED
SUBTRACT UNNORMALIZED

Machine-Check Handling
Machine-Check Detection .
Recovery Mechanisms
Redundancy Correction
CPU Retry
Unit Deletion .
Handling of Machine Checks
Handling of Invalid CBC in Storage .
Handling of Invalid CBC in Keys in Storage .
Handling of Invalid CBC in Registers .
Check-Stop State . .
Machine-Check Interruption Concl]tlons .
Machine-Check Interruption
Interruption Action .
Point of Interruption
Machine-Check Logout .

Machine-Check Extended Interruptlon Informatlon.

Machine-Check Interruption Code
Machine-Check Control Registers .
Control Register 14 .
Control Register 15 .
Summary of Machine-Check Maskmg

Input/Output Operations
Attachment of Input/Output Devices .
Input/Output Devices
Control Units
Channels .
System Operation
Compatibility of Operatlon
Control of Input/Output Devices .
Input/Output Device Addressing .
States of the Input/Output System
Resetting of the Input/Output System
Condition Code . R
Instruction Formats
List of Instructions .
CLEARI/O .
HALT DEVICE .
HALT I/O
STARTI/O . .
START I/O FAST RELEASE
STORE CHANNEL ID .
TEST CHANNEL
TEST 1/O.
Input/Output Instxuctlon Exceptlon Handlmg

. 159
. 159
. 160
. 160
. 162
. 163
. 163
. 164
. 165
. 165
. 165
. 166
. 166
. 166
. 167
. 168
. 169
. 169

. 171
. 171
. 172
. 172
. 172
. 172
. 172
. 172
. 173
. 173
. 175
. 175
. 175
. 175
. 176
. 177
. 177
. 178
. 181
. 181
. 182
. 183

. 185
. 186
. 186
. 187
. 187
. 189
. 191
. 191
. 192
. 192
. 194
. 195
. 197
. 197
. 198
. 199
. 202
. 204
. 204
. 206
. 207
. 208
. 210

Page of GA22-70004

Revised September 1, 1975

By TNL: GN22-0498

Execution of Input/Output Operations
Blocking of Data. oo
Channel Address Word .

Channel Command Word

Command Code . .
Designation of Storage Area

Chaining .

Skipping
Program-Controlled Interruptlon .
Channel Indirect Data Addressing .
Commands . .

Conclusion of Input/Output Operatlons .
Types of Conclusion .
Input/Qutput Interruptions
Priority of Interruptions
Channel Status Word
Unit Status Conditions .

Channel Status Conditions .
Contents of Channel Status Word .
Channel Logout . .
I/O Communications Area .

System Console
Operator Section
Address-Compare Controls
Check-Stop Indicator
Configuration Controls .
Display-and-Enter Controls.
Emergency-Pull Switch .
Enable-System-Clear Key
IMPL Controls
Interrupt Key
Load Indicator
Load Key. . .
Load-Unit-Address Controls
Manual Indicator
Power-Off Key
Power-On Key
Rate Control .
Restart Key .
Start Key .
Stop Key . .
Store-Status Key .
System Indicator.
System-Reset Key
Test Indicator
Thermal/CB Power-Check Indlcator
TOD Clock Key .
Wait Indicator
Remote Operator-Control Panel
Customer-Engineer Section.

~Appendix A. System/370 Features .

Central Processing Unit .
I/O Channels
Availability of CPU Features on System/370 Models

Appendix B. Functions That Differ From
System/360 . o

Removal of USASCII-8 Mode .

Handling Invalid Decimal Sign .

Recognizing Protection Exception in Edlt

Operation Code for HALT DEVICE .

Extent of Logout Area . .

Command Retry .

Logout on Channel Data Check

Channel Prefetching .

. 210
. 210
. 210
. 211
. 212
. 212
. 213
. 215
. 215
. 216
. 217
. 222
. 222
. 226
. 227
. 228
. 229
. 233
. 235
. 238
. 239

. 243
. 243
. 244
. 245
. 245
. 245
. 245
. 245
. 245
. 245
. 245
. 245
. 246
. 246
. 246
. 246
. 246
. 246
. 247
. 247
. 247
. 247
. 247
. 247
. 247
. 247
. 248
. 248
. 248

. 249
. 249
. 250
. 250

. 251
. 251
. 251
. 251
. 251
. 251
. 251
. 252
. 252

Appendix C. Lists of Instructions
Arranged by Name . L.
Arranged by Mnemonic .
Arranged by Operation Code
Arranged by Feature
Standard Instruction Set
Decimal Feature Instructions .
Floating-Point Feature Instructions
CPU-Timer and Clock-Comparator Feature Instructlons
Direct-Control Feature Instructions .
Extended-Precision Floating-Point Feature Instructlons
Translation Feature Instructions .
Multiprocessing Feature Instructions .
Conditional-Swapping Feature Instructions .
PSW-Key-Handling Feature Instructions .

Appendix D. Formats .

Program Status Word

Assignment of Control Register Flelds
Assigned Locations in Real Main Storage
Assigned Locations in Absolute Main Storage

viii

. 253
. 254
. 258
. 262
. 266
. 266
. 268
. 269
. 270
. 270
. 270
. 270
. 270
. 270
. 270

. 271
. 271
. 272
. 273
. 274

Appendix E. Condition-Code Settings .

Appendix F. Table of Powers of 2 .

Appendix G. Hexadecimal Tables

Appendix H. EBCDIC Chart .

Appendix I. Number Representation and
Instruction-Use Examples.

Index.

. 275

. 277

. 279

. 287

. 289

. 315

IBM System/370 is a product of the experience
gained with System/360. It preserves compatibility
forward from System/360--that is, makes it possible
to move from System/360 to System/370 with the
same ease that is possible in moving from a lower
model to a higher model within the system--and at
the same time includes advanced information pro-
cessing capabilities. '

The latest in solid-state and monolithic technolo-
gies is reflected in most phases of System/370 de-
sign. Complementing this design are new facilities
that assist the user in extending his computer appli-
cations: dynamic address translation, channel indi-
rect data addressing, multiprocessing, timing facili-
ties, extended-precision floating point, program-
event recording, monitoring, and the block-
multiplexer channel--together with substantially
improved reliability, availability, and serviceability.

o Dynamic address translation, a CPU facility
that generally eliminates the need to assign a
program to fixed locations in real main storage
and thus reduces the addressing constraints on
both system and problem programs, provides
greater freedom in program design and permits
a more efficient and effective utilization of
main storage. When one of the operating sys-
tems for virtual storage is employed, dynamic
address translation allows the use of up to
16,777,216 bytes of virtual storage.

o Channel indirect data addressing, a companion
facility to dynamic address translation, pro-
vides assistance in translating data addresses
for I/0 operations. It permits a single channel
command word to control the transmission of
data that spans noncontiguous areas of real
main storage.

o Multiprocessing provides for the interconnec-
tion of CPUs to enhance system availability
and share data and resources. It includes facili-
ties for shared main storage, for programmed
and special machine signaling between CPUs,
and for the programmed reassignment of the
first 4,096 bytes of real main storage for each
CPU.

» Timing facilities include a time-of-day clock, a
clock comparator, and a CPU timer, along with
an interval timer that is also available in
System/360. The time-of-day clock provides a
measure of elapsed time suitable for the indica-
tion of date and time; it has a cycle of approxi-
mately 143 years and a resolution such that the
incrementing rate is comparable to the instruc-

IBM System/370

tion execution rate of the model. The clock
comparator provides for an interruption when
the time-of-day clock reaches a program-
specified value. The CPU timer is a high-
resolution timer that initiates an interruption
upon being decremented past zero.

» Extended-precision floating point includes the
facilities for addition, subtraction, and multipli-
cation of floating-point numbers with a frac-
tion of 28 hexadecimal digits. Included in the
feature are instructions for rounding from ex-
tended to long and from long to short formats.

» Program-event recording provides program
interruptions on a selective basis as an aid in
program debugging.

o Monitoring provides for passing control to a
monitoring program when selected indicators
are reached in the monitored program. It can
be used, for example, in analyzing which pro-
grams get executed, how often, and in what
length of time.

o The block-multiplexer channel, which permits
concurrent processing of multiple channel pro-
grams, provides an efficient means of handling
1/0 devices that transfer data on the I/O inter-
face at a high rate but have relatively long peri-
ods of channel inactivity in between transfers.

To accommodate many of these new functions,
program-addressable control registers and a new

CPU mode -- extended-control mode--are provided.

System/370 provides the capability of running
System/360 operating systems, as well as those spe-
cifically designed for its advanced features, with
little or no change in application programs and data.
At the same time, System/370 provides several CPU
models at different performance levels, making many
of the new information processing capabilities avail-

“able to all System/370 users--from the smallest to

the very large. The wide choice of models and sup-
port, together with the new and advanced features,
makes System/370 one of the most versatile systems
offered today.

General-Purpose Design

Like System/360, System/370 is a general-purpose
system that can readily be tailored for a variety of
applications. A standard instruction set, which is
expanded over that of System/360 and includes the
protection facility, provides the basic processing
capabilities of the system. To this, a decimal feature,
which includes decimal shifting, may be added to

IBM System/370 9

provide a commercial instruction set. Joining the
floating-point feature to the standard instruction set
provides a scientific instruction set, which in turn
can be augmented by the inclusion of the
extended-precision floating-point feature. If both
the decimal feature and the floating-point feature are
installed with the standard instruction set, a universal
instruction set is obtained. Adding other features,
such as the conditional-swapping feature, extends
the processing capabilities of the system still further.

Along with System/360, System/370 has the
capability of addressing a main storage of
16,777,216 bytes, and the System/370 translation
feature, used with appropriate programming support,
provides a user with up to this maximum address
space despite the attachment of a lesser amount of
real main storage. This feature and this support per-
mit a System/370 model with limited real main stor-
age to be used for a much wider set of applications,
and they make many applications with requirecments
for extensive main storage more practical and con-
venient. Additionally, for many System/370 models,
the speed of accessing main storage is improved by
the use of a cache. The cache is a buffer--not appar-
ent to the user--that often provides information re-
quested from main storage without the delay associ-
ated with accessing main storage itself.

Another major aspect of the general-purpose de-
sign of System/370 is the capability provided to
attach a wide variety of 1/0 devices through several
types of multiplexing channels. Like System/360,
System/370 has a byte-multiplexer channel for the
attachment of unbuffered devices and of a large
number of communications devices. Additionally,
System/370 offers a block-multiplexer channel,
which is particularly well-suited for the attachment
of buffered devices and high-speed cyclic devices.

An individual System/370 installation is obtained
by selecting the system components best suited to
the applications from a wide variety of alternatives
in internal performance, functional ability, and
input/output.

Compatibility
Although models of System/370 differ in implemen-
tation and physical capabilities, logically they are
upward and downward compatible. That is, within
the limitations of compatibility, as described below,
any program gives identical results on any model.
Compatibility allows for ease in systems backup, and
simplicity in education.
The compatibility rule has four limitations:
1. The systems facilities used by the program
should be the same in each case. For example,
the optional CPU features and the storage ca-

10 Systern/370 Principles of Operation

pacity, as well as the quantity and type of 1/0
equipment, should be equivalent.

2. The program should be independent of the
relation between instruction execution times,
I/0 data rates, access times, CCW execution
times, and elapsed time values.

3. The program should not depend on functions
that are identified in this manual as model-
dependent, on results that are defined to be
unpredictable, or on special-purpose functions
that are not described in this manual.

4. The program should not use or depend on un-
assigned fields unless they are explicitly made
available for program use. Additionally, the
program should not be designed to cause inter-
ruptions by means of format errors, such as the
use of invalid operation codes or invalid com-
mand codes.

System/370 is forward compatible from
System/360, and System/360 programs that are to
be run on System/370 must observe both the pre-
ceding limitations and the following three limita-
tions:

1. The program must not use PSW bit 12 as an

ASCII bit, which is a function that is provided
only for System/360.

2. The program must not depend on main-storage
locations assigned specifically for System/370,
such as the interruption-code areas, the
machine-check save areas, and the extended-
logout area.

3. The program associated with input/output
operations must take into account the effects
of channel prefetching, command retry, logout
on channel data check, and the operation-code
assignment for HALT DEVICE.

System Program

The system is designed to operate with a supervisory
program that coordinates the use of system resources
and executes all I/O instructions, handles exception-
al conditions; and supervises scheduling and execu-
tion of multiple programs.

System/370 can operate with several different
types of supervisory programs. Some of these pro-
grams provide support for the new System/370 in-
structions, for the advanced reliability, availability,
and serviceability features, and for the new I/O
capabilities. Additionally, some of these programs
provide for system and application programs to op-
erate in a virtual-storage environment.

System/370 can also operate in the mode of
System/360 and run all of the supervisory and appli-

cation programs written for System/360 that satisfy
the conditions described in "'Compatibility."

Availability

Availability is the capability of a system to accept
and successfully process an individual job.
System/370 machine facilities permit increased
availability by (1) allowing a larger number and a
broader range of jobs to be processed concurrently,
thus making the system more readily accessible to
any particular job, and (2) limiting the effect of an
error and identifying more precisely its cause, with
the result that the number of jobs affected by errors
is minimized and the correction of the errors is facili-
tated.

Several design aspects make this possible.

« A program is checked for the correctness of
instructions and data as the program is execut-
ed, and program errors are indicated separately
from equipment errors. Such checking and re-
porting assists in locating failures and isolating
effects.

« The protection facility, in conjunction with dy-
namic address translation, permits the protec-
tion of the contents of main storage from de-
struction or misuse caused by erroneous or
unauthorized storing or fetching by a program.
This provides increased security for the user,
thus permitting applications with different se-
curity requirements to be processed concur-
rently with other applications.

« Dynamic address translation allows isolation of
one application from another, still permitting
them to share common resources. Also, it per-
mits the implementation of virtual machines,
which may be used in the design and testing of
new versions of operating systems along with
the concurrent processing of application pro-

grams. Additionally, it provides for the concur-
rent operation of incompatible operating sys-
tems.

« Multiprocessing permits better use of storage

and processing capabilities, more efficient
communication between CPUs, and duplica-
tion of resources, thus aiding in the continua-
tion of system operation in the event of ma-
chine failures.

« Monitoring, program-event recording, and the

high-resolution timing facilities permit the test-
ing and debugging of programs without manual
intervention and with little effect on the con-
current processing of other programs.

« Emulation is performed under supervisory pro-

gram control, thus making it possible to per-
form emulation concurrently with other appli-
cations.

« On most models, error checking and correction

(ECC) in main storage, instruction retry, and
command retry provide for circumventing in-
termittent equipment malfunctions, thus reduc-
ing the number of equipment failures.

¢ An enhanced machine-check handling mecha-

nism provides model-independent fault isola-
tion, which reduces the number of programs
impacted by uncorrected errors. Additionally,
it provides model-independent recording of
machine-status information. This leads to
greater machine-check handling compatibility
between models and improves the capability
for loading and running a program on a differ-
ent model when a system failure occurs.

« A small number of manual controls are required

for basic system operation, permitting most

operator-system interaction to take place via a
unit operating as an I/O device and thus reduc-
ing the possibility of accidental operator errors.

IBM System/370 11

System Organization

Contents

Main Storage .
Information Formats
Addressing P
Information Positioning
Integral Boundaries .
Byte-Oriented-Operand Feature
Central Processing Unit . .
General Registers
Floating-Point Registers
Control Registers
Input and Output
Channels . .
Input/Output Interface
Input/Output Devices and Control Umts
System Console .

Logically, System/370 consists of main storage, a
central processing unit (CPU), selector and multi-
plexer channels, and input/output devices, usually
attached to channels through control units. The
physical identity of these functions may vary be-
tween models. It is possible for systems to communi-
cate with each other by means of shared I/O de-
vices, a channel, or shared storage. The accompany-
ing illustration depicts the logical structure for a
single-CPU system and for a two-CPU multiprocess-
ing system.

.13
.14
.14
.15
. 15
. 15
. 18
. 6
. 16
. 16
.17
.17
.17
. 18
. 18

Main Storage

Main storage provides the system with directly ad-
dressable fast-access storage of data. Both data and
programs must be loaded into main storage (from

input devices) before they can be processed.

Main storage may be either physically integrated
with a CPU or may be constructed as standalone
units. Additionally, main storage may be composed
of large-volume storage and a faster access buffer
storage, sometimes called a cache. Each CPU may
have an associated cache. The effects, except on

I155T

IBM System/370 Logical Structures

TITT

Main { I Main {

Storage) J Storage]

{ (ccu |1 cru {

cru) y—)
Channel Channel Channel Channel Channel Channel

T

System Organization 13

performance, of the physical construction and the
use of distinct storage media are not observable by
the program.

Fetching and storing of data by the CPU are not
affected by any concurrent I/0 data transfer or by
concurrent reference to the same storage location by
another CPU. When concurrent requests to a main-
storage location occur, access normally is granted in
a sequence that assigns highest priority to references
by channels and that alternates priority between
CPUs . If the first reference changes the contents of
the location, any subsequent storage fetches obtain
the new contents.

Main storage may be volatile or nonvolatile. If it
is volatile, the contents of main storage are not pre-
served when power is turned off. If it is nonvolatile,
turning power off or on does not affect the contents
of main storage, provided the CPU is in the stopped
state and no references are made to main storage by
channels when power is turned off. In both types of
main storage, the contents of the keys in storage
associated with protection are not necessarily pre-
served when the power for main storage is turned
off.

Information Formats

The system transmits information between main
storage and a CPU or channel in units of eight bits,
or a multiple of eight bits, at a time. Each eight-bit
unit of information is called a byre, the basic building
block of all formats.

The bits in a byte are numbered consecutively,
left to right, O through 7. Within any program format
or any fixed-length operand format of multiple
bytes, the bits making up the format are consecu-
tively numbered from left to right, starting with the
number 0. Leftmost bits are sometimes referred to as
the "high-order" bits and rightmost bits as the "low-
order" bits.

For purposes of error detection, and in some
models for correction, one or more check bits are
transmitted with each byte or with a group of bytes.
The check bits are generated automatically by the
system and cannot be directly controlled by the pro-
gram. References in this manual to the size of data
fields and registers exclude mention of the associated
check bits. All storage capacities are expressed in
number of bytes provided, without regard to storage
width.

Bytes may be handled separately or grouped to-
gether in fields. A halfword is a group of two con-
secutive bytes and is the basic building block of in-
structions. A word is a group of four consecutive
bytes; a doubleword is a group of eight bytes. The

14 System/370 Principles of Operation

location of any field or group of bytes is specified by
the address of its leftmost byte.

The length of fields is either implied by the opera-
tion to be performed or stated explicitly as part of
the instruction. When the length is implied, the in-
formation is said to have a fixed length, which can
be either one, two, four, or eight bytes.

When the length of a field is not implied by the
operation code, but is stated explicitly, the informa-
tion is said to have variable field length. Variable-
length operands are variable in length by increments
of one byte.

When information is placed in main storage, the
contents of only those byte locations are replaced
that are included in the designated field, even though
the width of the physical path may be wider than the
field being stored.

Addressing

Byte locations in storage are consecutively num-
bered, left to right, starting with 0; each number is
considered the address of the corresponding byte. A
group of bytes in storage is addressed by the left-
most byte of the group. The number of bytes in the
group is either implied or explicitly defined by the
operation. The addressing arrangement uses a 24-bit
binary address to accommodate a maximum of
16,777,216 byte addresses.

Storage addressing wraps around from the maxi-
mum byte address, 16,777,215, to address 0. In-
formation may be located partially in the last and
partially in the first location of storage and is proc-
essed without any special indication of crossing the
maximum address boundary.

For purposes of addressing main storage, three
types of addresses are recognized: absolute, real, and
logical.

Absolute addresses are the lowest level of
program-recognizable addresses, and in this manual
they are considered to be the addresses of actual
storage locations. On some models, storage-
configuration controls may be provided which permit
the operator to change the correspondence between
absolute addresses and the actual physical storage
locations. However, at any one time, a physical stor-
age location is not associated with more than one
absolute address.

When the multiprocessing feature is included in a
CPU, an address reassignment mechanism is provid-
ed that permits the first 4,096 bytes of real main
storage for each CPU to be assigned to different
absolute storage locations. This reassignment mecha-
nism is called "prefixing." Most addresses generated
in the CPU are monitored by the prefixing mecha-
nism and reassigned when necessary. Addresses sub-

ject to monitoring by the prefixing mechanism are
referred to as ''real" addresses. When prefixing is
not installed, a real address and the corresponding
absolute address are identical.

When dynamic address translation is invoked,
addresses specified by the program are normally
translated to real addresses before main storage is
accessed. The address specified by the program is
referred to as a logical address. When dynamic ad-
dress translation is not invoked, a logical address and
the corresponding real address are identical.

All CPUs and channels having access to a com-
mon main-storage location have access to the entire
2,048-byte block containing that location and the
associated key in storage. All CPUs and channels
refer to a shared main-storage location by using the
same absolute address.

Available storage is normally assigned to contigu-
ous absolute addresses starting at address 0, and is
always assigned in multiples of 2,048 bytes. An ex-
ception condition is recognized when an attempt is
made to access main storage by using an absolute
address that does not correspond to a physical loca-
tion. Normally, the exception condition is recognized
only when the information associated with the abso-
lute address is actually required and not when the
operation can be completed without using the in-
formation.

Information Positioning

Integral Boundaries

Certain units of information must be located in main
storage on an integral boundary. A boundary is
called integral for a unit of information when its
storage address is a multiple of the length of the unit
in bytes. For example, a word (four bytes) is on an
integral boundary when it is located in storage so
that its address is a multiple of the number 4. A half-
word (two bytes) is on an integral boundary when it
has an address that is a multiple of the number 2,
and a doubleword (eight bytes) is on an integral
boundary when it has an address that is a multiple of
the number 8.

When storage addresses designate halfwords,
words, and doublewords on integral boundaries, the
binary representation of the address contains one,
two, or three low-order zero bits, respectively.

Instructions must appear on halfword integral
boundaries, and channel command words and the
operands of certain privileged instructions must ap-
pear on integral boundaries.

Main Storage Locations (with Simplified Addresses) ————————]

!
:
7 | | | [
HALF W/‘?ﬂ HALFWORD, /rdzr/mﬂ? HALFY WORD, HALFWORD, 4
| L] ok

1
0000 0002 N 0004 . uOOOé . 0008 |
A A A
| | |
| !
| |
| 4 1 7
i woro woro | woro
I A A
T L T T ¥ J T T
0000 0004 0008
1 L A 1 . i A L

QDoUBLEwWORD 20,
/
y U t =t 1" L L f y
0000 0008
L L L ! " e 1 L

Integral Boundaries for Halfwords, Words, and Doublewords

N\

-

Byte-Oriented-Operand Feature

The byte-oriented-operand feature is standard on
System/370. This feature permits storage operands
of most unprivileged operations to appear on any
byte boundary.

The feature does not pertain to instruction ad-
dresses, or to the operands for COMPARE AND
SWAP (CS) and COMPARE DOUBLE AND
SWAP (CDS). Instructions must appear on even
byte boundaries. The low-order bit of a branch ad-
dress must be zero, and the instruction EXECUTE
must designate the subject instruction at an even
byte address. COMPARE AND SWAP must desig-
nate a word boundary, and COMPARE DOUBLE
AND SWAP must designate a doubleword bounda-

ry.

Programming Note

Significant performance degradation is possible
when storage operands are not positioned at ad-
dresses that are integral multiples of the operand
length. To ensure optimum performance, storage
operands should be aligned on integral boundaries,
and the use of unaligned operands should be re-
served for exceptional cases.

Central Processing Unit

The central processing unit (CPU) is the controlling
center of the system. It contains the sequencing and
processing controls for instruction execution, inter-
ruption action, timing facilities, initial program load-

System Organization 15

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

ing, and other system-related functions.

The physical makeup of the CPU controls in the
various models of the System/370 may be different,
but the logical function remains the same. The result
of executing a valid instruction is the same for each
model.

The CPU, in executing instructions, can process
binary integers and floating-point numbers of fixed
length, decimal integers of variable length, and logi-
cal information of either fixed or variable length.
Processing may be in parallel or in series; the width
of the processing elements, the multiplicity of the
shifting paths, and the degree of simultaneity in per-
forming the different types of arithmetic differ from
one CPU to another without affecting the logical
results.

Instructions which the CPU executes fall into five
classes: system-control, general, decimal, floating-
point, and input/output instructions. The system-
control and input/output instructions are privileged
instructions that can be executed only when the
CPU is in the supervisor state. The general instruc-
tions are used in performing fixed-point, logical,
branching, and other control and data-manipulation
operations. The decimal instructions operate on data
in the decimal format, and the floating-point instruc-
tions on data in the floating-point format.

To perform its functions, the CPU uses a certain
amount of internal storage other than main storage.
Portions of this storage can be designated by the
program, such as the current program status word
(PSW), the general registers, the floating-point reg-
isters, the control registers, the prefix register, and
registers associated with the timing facilities.

The current PSW contains information used to
control instruction sequencing and to hold and indi-
cate the states of the system in relation to the pro-
gram currently being executed. Registers associated
with the timing facilities contain the time-of-day
clock, the clock comparator, and the CPU timer. The
general, floating-point, and control registers are dis-
cussed separately in the following paragraphs. The
instruction operation code determines which type of
register is to be used in an operation.

General Registers

The CPU can address information in 16 general
registers. The general registers can be used as base-
address registers and index registers in address arith-
metic and as accumulators in general arithmetic and
logical operations. Each register contains 32 bits. The
general registers are identified by the numbers 0-15

16 System/370 Principles of Operation

and are designated by a four-bit R field in an instruc-
tion (see accompanying illustration). Some instruc-
tions provide for addressing multiple general registers
by having several R fields.

For some operations, two adjacent general regis-
ters are coupled together, providing a 64-bit format.
In these operations, the program must designate an
even-numbered register, which contains the high-
order bits. The next higher numbered register con-
tains the low-order bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16 gen-
eral registers are also used as base-address and index
registers in address generation. In these cases, the
registers are designated by a four-bit B field or X
field in an instruction. A value of zero in the X or B
field specifies no index or base is to be applied, and,
thus, general register O cannot be designated as con-
taining an index or base address.

Floating-Point Registers

Four floating-point registers are available for
floating-point operations. They are identified by the
numbers 0, 2, 4, and 6 (see illustration). Each
floating-point register contains 64 bits and can con-
tain either a short (32-bit) or a long (64-bit) floating-
point operand. A short operand occupies the high-
order bit positions of a floating-point register. The
low-order portion of the register is ignored and re-
mains unchanged in arithmetic calling for short ope-
rands. Two pairs of adjacent floating-point registers
can be used for extended operands: registers 0, 2,
and registers 4,6. Each of these pairs provides a 128-
bit format.

Control Registers

The CPU can designate 16 control registers, each 32
bit positions in length. The bit positions in the regis-
ters are assigned to particular facilities in the system,
such as program-event recording, and are used either
to specify whether an operation can take place or to
provide special information required by the facility.
On any particular model, only those bit positions are
necessarily provided which are required by the in-
stalled facilities.

The control registers are identified by the num-
bers 0-15 and are designated by a four-bit R field in
the instructions LOAD CONTROL and STORE
CONTROL. Multiple control registers can be ad-
dressed by these instructions.

R Field Reg. Number Control Registers

[«— 32 Bis—>]

General Registers

I<— 32 Bits —’-I

Floating-Point Registers

fe———64 Bits ————>]

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 1
1100 12
1101 13
1110 14

1111 15

Note: The braces indicate that the two registers may be coupled as a double-register
pair, designated by the R field of the lower-numbered register. For exampie, the

general register pair 0 and 1 is designated by the R field of register 0.

General, Floating-Point, and Control Registers

Input and Qutput

Input/output (I/0O) operations involve the transfer
of information between main storage and an 1/0
device. I/0 devices attach to channels, which con-
trol the transfer of data between the devices and
main storage.

Channels

The channel connects with the CPU and main stor-
age and, usually by means of the I/0 interface, with
control units. The channel relieves the CPU of the
burden of communicating directly with I/0O devices
and permits data processing to proceed concurrently
with I/O operations.

A channel may be an independent unit, complete
with necessary logical and storage capabilities, or it
may time-share CPU facilities and be physically
integrated with the CPU. In either case, channel
functions are identical. Channels may be implement-
ed, however, to have different maximum data-
transfer capabilities.

System/370 has three types of channels: byte-
multiplexer, block-multiplexer, and selector chan-
nels.

Input/Output Interface

For most devices, communication between the con-
trol unit and the channel takes place over a connec-
tion called the I/0O interface. The 1/0 interface

System Organization 17

provides an information format and control signal
sequences that are independent of the type of con-
trol unit and channel and provide a uniform means
of attaching and controlling various types of 1/0
devices.

1/0 devices that do not use the I/O interface
employ the same information format and control
signal sequences.

Input/Output Devices and Control Units
Input/output devices include such equipment as card
readers and punches, magnetic tape units, disk stor-
age, drum storage, typewriter-keyboard devices,
printers, teleprocessing devices, and sensor-based
equipment.

Many I/0 devices function with an external doc-
ument, such as a punched card or a reel of magnetic
tape. Some I/0O devices handle only electrical sig-
nals, such as those found in sensor-based networks.
In either case, I/0 device operation is regulated by a
control unit. The control-unit function may be
housed with the 1/0 device or in the CPU, or a sep-

18 System/370 Principles of Operation

arate control unit may be used. In all cases, the
control-unit function provides the logical and buffer-
ing capabilities necessary to operate the associated
I/0O device. From the programming point of view,
most control-unit functions merge with I/O device
functions.

System Console

The system console provides the functions necessary
to operate and control the system. It consists of a
system control panel and, in most cases, an associat-
ed console device, which may also be used as an I/O
device for communicating with the supervisory pro-
gram and problem programs. The need for operator
manipulation of manual controls is held to a mini-
mum by the system design and the governing super-
visory program,

The main functions provided by the system con-
sole include power-on/ off, reset, initial-program-
loading, start/stop, and display and enter functions.

Program Execution

Contents

Instructions .
Operands .
Instruction Format .
Register Operands
Immediate Operands
Storage Operands
Address Generation .
Program Status Word
Instruction Execution
Branching
Interruptions.
Sequence of Storage References
Instruction Fetch
DAT Table Fetches .
Key-in-Storage Accesses .
Storage-Operand References . . .
Storage-Operand Fetch References
Storage-Operand Store References

Storage-Operand Update References .

Storage-Operand Consistency .
Single-Access References
Block-Concurrent References .
Consistency Specification . .

Relation Between Operand Accesses .

Serialization .

Normally, operation of the CPU is controlled by
instructions taken in sequence. This sequence is
governed by the program status word (PSW), which
contains the primary information required for proper
program execution. A change in the sequential opera-
tion may be caused by branching, LOAD PSW, in-
terruptions, or manual intervention.

Instructions

Each instruction consists of two major parts: (1) an
operation code, which specifies the operation to be
performed, and (2) the designation of the operands
that participate.

Operands

Operands can be grouped in three classes: operands
located in registers, immediate operands, and oper -
ands in main storage. Operands may be either ex-
plicitly or implicitly designated.

Register operands can be located in general,
floating-point, or control registers, with the type of
register identified by the operation code. The regis-
ter containing the operand is specified by identifying
the register in a four-bit field, called the R field, in
the instruction. For some instructions an operand is

- 19
- 19
- 20
- 20
- 20
- 20
- 21
- 22
.22
.22
.22
.23
.23
.24
.24
.25
.25
.25
.25
. 26
. 26
.27
- 27
.27
.28

located in an implicitly designated register, the regis-
ter being implied by the operation code.

Immediate operands are contained within the
instruction, and the eight-bit field containing the
immediate operand is called the I field.

Operands in main storage may either have an
implied length, be specified by a bit mask, or, in
other cases, be specified by a four-bit or eight-bit
length specification, called the L field, in the instruc-
tion. The addresses of operands in main storage are
specified by means of a format that uses the con-
tents of a general register as part of the address. This
makes it possible to:

« Specify a complete address by using an abbrevi-
ated notation.

o Perform address manipulation using instructions
which employ general registers for operands.

« Modify addresses by program means without
alteration of the instruction stream.

« Operate independently of the location of data
areas by directly using addresses received from
other programs.

The address used to refer to main storage either is
contained in a register designated by the R field in
the instruction or is calculated from a base address,

Program Execution 19

index, and displacement, designated by the B, X,
and D fields, respectively, in the instruction.

For purposes of describing the execution of in-
structions, operands are designated as first and sec-
ond operands and, in some cases, third operands.

In general, two operands participate in an instruc-
tion execution, and the result replaces the first oper -
and. An exception is instructions with "store" in the
name, where the result replaces the second operand.
Except for storing the final result, the contents of all
registers and storage locations participating in the
addressing or execution part of an operation remain
unchanged.

Instruction Format

An instruction is one, two, or three halfwords in
length and must be located in main storage on an
integral halfword boundary. Each instruction is in
one of six basic formats: RR, RX, RS, SI, S, and SS,
with two variations of SS.

Some instructions contain fields that vary slightly
from the basic format, and in some instructions the
operation performed does not follow the general
rules stated in this section. All such exceptions are
explicitly identified in the individual instruction de-
scriptions.

The format names express, in general terms, the
classes of operands which participate in the opera-
tion: RR denotes a register-to-register operation;
RX, a register-and-indexed-storage operation; RS, a
register-and-storage operation; SI, a storage-and-
immediate operation; and SS, a storage-to-storage
operation. The S format denotes an operation using
an implied operand and storage.

The first byte and, in the S format, the first two
bytes of an instruction contain the operation code
(op code). For some instructions in the S format, all
or a portion of the second byte is ignored. The first
two bits of the operation code specify the length and
format of an instruction, as follows:

Bit Positions Instruction fnstruction
0-1 Length Format
00 One halfword RR
01 Two halfwords RX
10 Two haifwords RS/SI/S/RX
11 Three halfwords Ss

In the format illustration for each individual in-
struction description, the op-code field shows the op
code in hexadecimal representation. The hexacdeci-
mal representation uses one graphic for a four-bit
code, and therefore two graphics for an eight-bit
byte. The graphics 0-9 are used for the codes 0000-
1001; the graphics A-F are used for codes 1010-
1111.

20 System/370 Principles of Operation

The remaining fields in the format illustration for
each instruction are designated by code names, con-
sisting of a letter and possibly a subscript number.
The subscript number denotes the operand to which
the field applies.

Register Operands

In the RR, RX, and RS formats, the contents of the
register designated by the Rj field are called the first
operand. In the RR format, the Ry field designates
the register containing the second operand, and the
same register may be designated for the first and
second operand. In the RS format, the use of the R3
field depends on the instruction.

The R field designates a general register in the
general instructions and a floating-point register in
the floating-point instructions. In the instructions
LOAD CONTROL and STORE CONTROL the R
field designates a control register.

Unless otherwise indicated in the individual in-
struction description, the register operand is one
register in length (32 bits for a general register or a
control register and 64 bits for a floating-point regis-
ter), and the second operand is the same length as
the first.

Immediate Operands

In the SI format, the contents of the eight-bit
immediate-data field, the I field of the instruction,
are used directly as the second operand. The By and
Dj fields designate the first operand, which is one
byte in length.

Storage Operands

In the SI and SS formats, the contents of the general
register designated by the B field are added to the
contents of the Dy field to form the first-operand
address. In the S, RS, and SS formats, the contents
of the general register designated by the B field are
added to the contents of the D3 field to form the
second-operand address. In the RX format, the con-
tents of the general registers designated by the X3
and Bj fields are added to the contents of the Da
field to form the second-operand address.

In the SS format, with two length fields given, Lq
specifies the number of additional operand bytes to
the right of the byte designated by the first-operand
address. Therefore, the length in bytes of the first
operand is 1-16, corresponding to a length code in
Ly of 0-15. Similarly, L specifies the number of
additional operand bytes to the right of the location
designated by the second-operand address. Results
replace the first operand, and are never stored out-
side the field specified by the address and length. In
the event the first operand is longer than the second,

First Halfword Second Halfword

Third Halfword

Byte 1 | Byte 2
|
| | | |
: Register Register I
| Operand 1 Operand 2 |
{.__M_W_A_—‘
|
Op Code Ry Ry RR Format I
|
0 8 12 15, |
1

[Register Operand 1 | Address Operand 2
f_)‘—w A~

|
|
|
[
1
|
|
|
Op Code R, X5 B, D, RX Format :
0 8 12 16 20 31, ‘
:Register Operand 1 Register Operand 3 Address Operand 2 ! |
e a— Ag - N |
Op Céde‘ R4 R3 B, D, RS Formoat |
0 8 12 16 20 31 :
! Immediate Operand Address Qperand 1 { |
r Y A}
|
Op Code Iy B, D, S! Format |
0 8 16 20 31, :
: | : Address Operand 2 | i
! . r - A — :
Op Code v B, D, S Format I
- |
0) 16 20 31 i
: } Length " Address Operand 1 1 Address Operand 2 f
A A A
r Y Y Al
Op Code L B, D4 By D, SS Format
0 8 Length 16 20 32 36 47,
! Operand 1 Operand 2 Address Operand 1 ! Address Operand 2 !
| ey A — A ‘I'i A]
Op Code L, L, B, D, B, D, SS Format
0 8 12 16 20 32 36 47

Six Basic Instruction Formats

the second operand is extended with high-order ze-
ros up to the length of the first operand. Such exten-
sion does not modify the second operand in storage.

In the SS format with a single, eight-bit length
field, L specifies the number of additional operand
bytes to the right of the byte designated by the first-
operand address. Therefore, the length in bytes of
the first operand is 1-256, corresponding to a length
code in L of 0-255. Storage results replace the first
operand and are never store'd outside the field speci-
fied by the address and length. In this format, the
second operand has the same length as the first oper -
and, except for the following instructions: EDIT,
EDIT AND MARK, TRANSLATE, and TRANS-
LATE AND TEST.

Address Generation

The address used to refer to main storage either is
contained in a register designated by the R field in
the instruction or is calculated from the following

three binary numbers:

Base Address is a 24-bit number contained in a
general register specifed by the program in a four-bit
field, called the B field, in the instruction. Base ad-
dresses can be used as a means of independently
addressing each program and data area. In array-
type calculations, it can specify the location of an
array, and, in record-type processing, it can identify
the record. The base address provides for addressing
the entire main storage. The base address may also
be used for indexing purposes,

Index is a 24-bit number contained in a general
register designated by the program in a four-bit field,
called the X field, in the instruction. It is included
only in the address specified by the RX instruction
format. The RX format instructions permit double
indexing; that is, the index can be used to provide
the address of an element within an array.

Displacement is a 12-bit number contained in a
field, called the D field, in the instruction. The dis-

Program Execution 21

placement provides for relative addressing of up to
4,095 bytes beyond the location designated by the
base address. In array-type calculations, the dis-
placement can be used to specify one of many items
associated with an element. In the processing of
records, the displacement can be used to identify
items within a record.

In forming the address, the base address and in-
dex are treated as unsigned 24-bit positive binary
integers. The displacement is similarly treated as a
12-bit positive binary integer, and 12 high-order
zeros are appended. The three are added as 24-bit
binary numbers, ignoring overflow. The sum is al-
ways 24 bits long. The bits of the generated address
are numbered 8-31, corresponding to the numbering
of the base-address and index bits in the general
register.

A zero in any of the X3, By, or B; fields indicates
the absence of the corresponding address compo-
nent. For the absent component, a zero is used in
forming the address, regardless of the contents of
general register 0. A displacement of zero has no
special significance.

An instruction can designate the same general
register both for address computation and as the
location of an operand. Address computation is
completed prior to the execution of the operation.

Unless otherwise indicated in the individual in-
struction definition, the computed operand address
designates an operand in main storage. When a
main-storage operand is designated, the address des-
ignates the leftmost byte of the operand. For
branching instructions, the second-operand address
is used as the branch address. For shifting instruc-
tions, the second-operand address is not used as an
address but specifies the shift amount.

Program Status Word

The program status word (PSW) is 64 bits in length
and contains the information required for proper
program execution. The PSW includes the instruc-
tion address, condition code, and other fields. In
general, the PSW is used to control instruction se-
quencing and to hold and indicate the status of the
system in relation to the program currently being
executed. The active or controlling PSW is called the
current PSW. By storing the current PSW during an
interruption, the status of the CPU can be preserved
for subsequent inspection. By loading a new PSW or
part of a PSW, the state of the CPU can be initial-
ized or changed.

22 System/370 Principles of Operation

Instruction Execution

In program execution, the instruction is fetched from
the location designated by the instruction address in
the current PSW. The instruction address is then
increased by the number of bytes in the instruction
in order to address the next instruction in sequence.
The instruction is then executed, and the same steps
are repeated using the new value of the instruction
address.

Branching

The normal sequential execution of instructions may
be changed by the use of the branching instructions
in order to perform subroutine linkage, decision-
making, and loop control.

Subroutine linkage is provided by the BRANCH
AND LINK instructions, which permit not only the
introduction of a new instruction address but also
the preservation of the return address and associated
information.

Facilities for decision making are provided by the
BRANCH ON CONDITION instruction. This in-
struction inspects a two-bit condition code that re-
flects the result of a majority of the arithmetic, logi-
cal, and I/O operations. Each of these operations
can set the code in any one of four states, and the
instruction BRANCH ON CONDITION can specify
any selection of these four states as the criterion for
branching. For example, the condition code reflects
such conditions as nonzero, first operand high,
equal, overflow, channel busy, and zero. Once set,
the condition code remains unchanged until modified
by an instruction that causes a different condition
code to be set.

The two bits of the condition code provide for
four possible condition code settings: 0, 1, 2, and 3.
The specific meaning of any setting depends on the
operation that sets the condition code.

Loop control can be performed by the use of
BRANCH ON CONDITION to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of arithme-
tic and tests, the instructions BRANCH ON
COUNT and BRANCH ON INDEX are provided.
These branches, being specialized, provide increased
performance for these tasks.

Interruptions

The interruption system permits the CPU to change
state as a result of conditions external to the system,
in input/output (I/0) units, or in the CPU itself. Six
classes of interruption conditions are possible: ma-
chine check, supervisor call, program, external, I/0,
and restart.

Each class has two related PSWs, called "old"
and "new," in permanently assigned real main-
storage locations. In all classes, an interruption in-
volves storing information identifying the cause of
the interruption, storing the current PSW in its '"old"
position, and making the PSW at the ''new" position

- the current PSW.

The old PSW holds all necessary status informa-
tion of the CPU existing at the time of the interrup-
tion. If, at the conclusion of the program invoked by
the interruption, there is an instruction to make the
old PSW the current PSW, the CPU is restored to
the state prior to the interruption, and the interrupt-
ed program continues.

Sequence of Storage References

Conceptually, the CPU processes instructions one at
a time, with the execution of one instruction preced-
ing the execution of the following instruction, and
the execution of the instruction specified by a suc-
cessful branch follows the execution of the branch.
Similarly, an interruption takes place between execu-
tions of instructions.

The sequence of events implied by the processing
just described is sometimes called the conceprual
sequence or conceptual order.

Even though physical storage width and overlap
of instruction execution with storage accessing may
cause actual processing to be different, as observed
by a CPU itself, each operation is performed se-
quentially, with one instruction being fetched after
the preceding operation is completed and before the
execution of the current operation is begun. With
certain exceptions discussed in the section
"Interlocks Between Logical and Real Storage Refer-
ences' in the chapter "Dynamic Address Transla-
tion," the results generated are those that would
have been obtained had the operation been per-
formed in the conceptual sequence. Thus, it is possi-
ble to modify an instruction in storage by the imme-
diately preceding instruction.

In very simple machines in which operations are
not overlapped, the conceptual and actual order are
essentially the same. However, in more complex
machines, overlapped operation, buffering of oper -
ands and results, and execution times which are
comparable to the propagation delays between units
can cause the actual order to differ considerably
from the conceptual order. In these machines, spe-
cial circuitry is employed to detect dependencies
between operations and ensure that the results ob-
tained are those that would have been obtained if
the operations had been performed in the conceptual
order. However, as observed by channels and other

CPUgs, the sequence may appear to differ from the
conceptual order.

When only a single CPU is involved, it can nor-
mally be assumed that the execution of each instruc-
tion occurs as an indivisible event. However, in actu-
al operation, the execution of an instruction may
consist of a series of discrete steps. Depending on
the instruction, operands may be fetched and stored
in a piecemeal fashion, and some delay may occur
between fetching and storing a result. As a conse-
quence, another CPU or a channel may be able to
observe intermediate, or partially completed, results.

When the program on one CPU interacts with a
program on a channel or another CPU, the programs
may have to take into consideration that a single
operation may consist of a series of storage refer-
ences, that a storage reference may in turn consist of
a series of accesses, and that the conceptual and
actual sequences of these accesses may differ. Stor-
age references associated with instruction execution
are of the following types: instruction fetches, DAT
table fetches, storage operand references, and key-
in-storage accesses.

Instruction Fetch

Instruction fetching consists in fetching the one, two,
or three halfwords specified by the instruction ad-
dress in the current PSW. The immediate field of an
instruction is accessed as part of an instruction fetch.
If, however, an instruction specifies a storage ope-
rand at the location occupied by the instruction it-
self, the location is accessed both as an instruction
and as a storage operand. The fetch of the subject
instruction of EXECUTE is considered to be an
instruction fetch.

The bytes of an instruction may be fetched piece-
meal and are not necessarily accessed in a left-to-
right direction. The instruction may be fetched mul-
tiple times for a single execution; for example, it may
be fetched for testing the availability of dynamic-
address-translation tables or for inspection for
program-event exceptions, and it may be refetched
for actual execution.

Instructions are not necessarily fetched in the
order in which they are conceptually executed and
are not necessarily fetched for each time they are
executed. In particular, the fetching of an instruction
may precede the storage-operand references for an
instruction that is conceptually earlier. The instruc-
tion fetch occurs prior to all storage-operand refer-
ences for all instructions that are conceptually later.

There is no limit established as to the number of
instructions which may be prefetched, and multiple
copies may be fetched of the contents of a single
storage location. As a result, the instruction executed

Program Execution 23

is not necessarily the most recently fetched copy.
Storing caused by channels or by other CPUs does
not necessarily change the copy of prefetched in-
structions. However, if a store that is conceptually
earlier occurs on the same CPU using the same logi-
cal address as that by which the instruction is
fetched, the updated information is obtained.

All copies of prefetched instructions are discarded
when the CPU enters or leaves translation mode,
when the DAT parameters are changed in control
registers 0 and 1 at a time when translation mode is
specified, by a serializing operation, and as the CPU
enters the operating state.

Programming Notes

As observed by a CPU itself, instruction prefetching
is not normally apparent; the only exception occurs
when more than one logical page address is translat-
ed to a single real page address. This is described in
the section "Interlocks Between Logical and Real
Storage References' in the chapter ''Dynamic Ad-
dress Translation."

The following are some effects of instruction pre-
fetching on the execution of a program as viewed by
another CPU.

If a program in one CPU changes the contents of
a storage location and then sets a flag to indicate
that the change has been made, a program in anoth-
er CPU can test and find the flag set but subse-
quently can branch to the modified locations and
execute their original contents. Additionally, when a
channel or another CPU modifies an instruction, it is
possible for a CPU to recognize the changes to some
but not all bit positions of the instruction.

It is possible for a CPU to prefetch an instruction
and subsequently, before the instruction is executed,
for another CPU to change the key in storage. As a
result, a CPU may appear to execute instructions
from a storage location that is protected.

DAT Table Fetches
Fetching of dynamic address translation (DAT) ta-
ble entries may occur as follows:

1. DAT entries may be prefetched into the
translation-lookaside buffer (TLB) and used
from the TLB without refetching from storage,
until a PURGE TLB (PTLB) instruction is
executed. DAT entries may be fetched at any
time they are attached and valid, including dur-
ing the execution of conceptually previous in-
structions, and are not necessarily fetched in
the order conceptually called for.

2. A DAT table entry may be fetched piecemeal,
a byte at a time, from main storage. However,
no operand stores by this CPU or any other

24 System/370 Principles of Operation

CPU are permitted, to the same location, be-
tween the fetches of the bytes.

3. A DAT table entry may be fetched even after
some operand references for the instruction
have already occurred. The fetch may occur as
late as just prior to the actual byte access re-
quiring the DAT entry.

4. A DAT table entry may be fetched for each use
of the address, including pretesting, if per-
formed, and for each reference to each byte of
each operand.

5. The DAT page-table-entry fetch precedes the
reference to the page. When a page-table en-
try goes from inactive to active status, the
fetch of the associated segment-table entry
precedes the fetch of the page-table entry.

For translation of the second operand of LOAD
REAL ADDRESS, the segment-table-entry fetch
precedes the page-table-entry fetch. The entries are
fetched using the same rule as (2) above. The rela-
tionship of these two fetches to other references
follows the rules for storage-operand fetches.

Key-in-Storage Accesses
References to the key in storage are handled as fol-
lows:

1. Whenever a reference to main storage is made
and protection applies to the reference, the five
access control bits associated with the storage
location are inspected concurrently with the
reference to the storage location.

2. When storing is performed, the change bit is set
in the associated key in storage concurrently
with the store operation.

3. The instruction SET STORAGE KEY causes
the five access control bits and the change bit
to be set concurrently in the key in storage.
The access to the key in storage for SET
STORAGE KEY follows the sequence rules
for storage-operand store references, and is a
single-access reference.

4. The instruction INSERT STORAGE KEY
provides a consistent image of the field consist-
ing of the five access control bits and the
change bit. The access to the key in storage for
INSERT STORAGE KEY follows the se-
quence rules for storage-operand fetch refer-
ences, and is a single-access reference.

5. The instruction RESET REFERENCE BIT
modifies only the reference bit. All other bits
of the key in storage remain unchanged. The
access to the key in storage for RESET REF-
ERENCE BIT follows the sequence rules for

storage-operand update references. The refer-
ence bit is the only bit which is updated.

The record of references provided by the refer-
ence bit is not necessarily accurate, and the handling
of the reference bit is not subject to the concurrency
rules. However, in the majority of situations, refer-
ence recording approximately coincides with the
storage reference.

Storage-Operand References
A storage-operand reference is the fetching or stor-
ing of the explicit operand or operands in the main-
storage locations specified by the instruction.
During the execution of an instruction, all, or a
portion, of the storage operands for that instruction
may be fetched, intermediate results may be main-
tained for subsequent modification, and final results
may be temporarily held prior to placing them in
main storage. Stores caused by channels or by other
CPUs do not necessarily affect these intermediate
results. Storage-operand references are of three
types: fetches, stores, and updates.

Storage-Operand Fetch References

When the bytes of a storage operand participate in
the instruction execution only as a source, the refer-
ence to the location is called a storage-operand fetch
reference. A fetch reference is identified in the indi-
vidual instruction definition by indicating that the
access exception is for fetch.

All bits within a single byte of a fetch reference
are accessed concurrently. When an operand consists
of more than one byte, the bytes may be fetched
piecemeal a byte at a time from main storage. Unless
otherwise specified, the bytes are not necessarily
fetched in any particular order. The fetch reference
for the operands of some instructions is specified to
be concurrent within a block. In this case, no stores
by any other CPU are permitted, to the same loca-
tion, between the fetches of the bytes within a block.

Storage-Operand Store References

When the bytes of a storage operand participate in
the instruction execution only to the extent of being
replaced by the result, the reference to the location
is called a storage-operand store reference. A store
reference is identified in the individual instruction
definition by indicating that the access exception is
for store.

All bits within a single byte of a store reference
are accessed concurrently. When an operand consists
of more than one byte, the bytes may be stored
piecemeal a byte at a time into main storage. Unless
otherwise specified, the bytes are not necessarily
stored in any particular order. The store reference

for some instructions is specified to be concurrent
within a block. In this case, no stores or fetches by
any other CPU are permitted, to the same location,
between the stores of bytes within a block.

A CPU may delay storing results into main stor-
age. There is no defined limit on the length of time
that results may remain pending before they are
stored.

This delay does not affect the order in which re-
sults are placed in main storage. The results of one
instruction are placed in main storage after the re-
sults of all preceding instructions have been placed
in main storage and before any results of the suc-
ceeding instructions are stored. The results of any
one instruction are stored in the order specified for
that instruction.

A CPU does not fetch operands, or dynamic-
address-translation table entries, from a main-
storage location until all information destined for
that real main-storage location by that CPU has
been placed in main storage. Prefetched instructions
may appear to be updated prior to the information
appearing in storage.

The stores are necessarily completed only as a
result of a serializing operation and before the CPU
enters the stopped state.

Storage-Operand Update References

In some instructions, the storage-operand location
participates both as a source and as a destination. In
these cases, the reference to the location consists
first of a fetch and subsequently of a store. The com-
bination of the two accesses is referred to as an up-
date reference. Instructions such as MOVE ZONES,
TRANSLATE, OR (OI), and ADD DECIMAL
cause an update to the first-operand location. In
most cases, no special interlock is provided between
the fetch and store, and accesses by channels and
other CPUs are permitted. An update reference is
identified in the individual instruction definition by
indicating that the access exception is for both fetch
and store. The fetch and store accesses associated
with an update reference are not necessarily made
contiguously, and it is possible for another CPU or
channel to make one or more interleaved accesses to
the same location. The interleaved accesses can be
either fetches or stores and can be associated with
either an update or an interlocked-update reference.

Three instructions perform an update which is
interlocked against accesses to the same location
during the execution of the instruction. The instruc-
tion TEST AND SET (TS) causes an interlocked
update, and the instructions COMPARE AND
SWAP (CS) and COMPARE DOUBLE AND

Program Execution 25

SWAP (CDS) cause an interlocked update when
they set condition code O.

The fetch and store accesses associated with an
interlocked-update reference are not necessarily
made contiguously, but restrictions are made on
accesses to the location. The fetch access of an inter-
locked update by another CPU, and all store access-
es by another CPU, are prevented from occurring
between the fetch and the store accesses of an inter-

| locked update. CPU fetches which are not part of an
interlocked update, including the fetches of a CS or
CDS instruction which results in condition code 1,
may be made from the location during the interlock
period. 1/0 accesses, either fetch or store, may oc-
cur during the interlock period.

Within the limitations of the above requirements,
the fetch and store accesses associated with an up-
date follow the same rules as the fetches and stores
described in the previous sections.

Programming Notes

When two CPUs attempt to update information at a
common main-storage location by an instruction that
causes fetching and subsequently storing of the up-
dated information, it is possible for both CPUs to
fetch the information and subsequently take the
store access. The change made by the first CPU to
store the result in such a case is lost. Similarly, if
one CPU updates the contents of a field but another
CPU makes a store operation to that field between
the fetch and store parts of the update reference, the
effect of the store is lost. If, instead of a store ac-
cess, a CPU makes an interlocked-update reference
to the common storage field between the fetch and
store portions of an update due to another CPU, any
change in the contents produced by the interlocked
update is lost.

Only those bytes which are included in the result
field of both operations are considered to be part of
the common main-storage location. However, all bits
within a common byte are considered to be common
even if the bits modified by the two operations do
not overlap. As an example, if one CPU executes the
instruction OR (OI) with the value 80 (hex) in the
immediate field and the other CPU executes AND
(NI) with an immediate operand of FE (hex) on the
same byte, one of the updates can be lost.

When the store access is part of an update refer-
ence by the CPU, the execution of the storing is not
contingent on whether the information to be stored
is different from the original contents of the loca-
tion. In particular, the contents of all designated
byte locations are replaced, and, for each byte in the
field, the entire contents of the byte are replaced.

26 System/370 Principles of Operation

An access to store information is performed, for
example, in the following cases:

a. Execution of the OR instruction (OI or OC)
with a second operand of all zeros.

b. Execution of OR (OC) with the first- and
second-operand fields coinciding.

c. For those locations of the first operand of
TRANSLATE where the argument and func-
tion values are the same.

The instructions TEST AND SET, COMPARE
AND SWAP, and COMPARE DOUBLE AND
SWAP facilitate updating of a common storage field
by two CPUs. In order for the change by either CPU
not to be lost, both CPUs must use an instruction
providing an interlocked update. It is possible, how-
ever, for a channel to make an access to the same
storage location between the fetch and store por-
tions of an interlocked update.

Storage-Operand Consistency

Single-Access References

With the exception of instructions operating on deci-
mal data, storage-operand references are single-
access references. A fetch reference is said to be a
single-access reference if the result of the operation
comprises a value fetched in a single access to each
byte of the data field. In the case of overlapping
operands, the location may be accessed once for
each operand. A store-type reference is said to be a
single-access reference if a single store access occurs
to each byte location within the data field. An up-
date reference is said to be single-access if the fetch
and store accesses are each single-access.

The storage references associated with the follow-
ing instructions are not necessarily single-access
references: the decimal-feature instructions and the
instructions CONVERT TO BINARY, CONVERT
TO DECIMAL, MOVE WITH OFFSET, PACK,
and UNPACK.

When a storage-operand reference to a location is
not a single-access reference, the contents placed at
a byte location are not necessarily the same for each
store access; thus, intermediate results in a single
byte location may be observed by channels or other
CPUs.

Programming Note

When multiple fetch accesses are made to a single
byte that is being changed by a channel or another
CPU, the result is not necessarily limited to that
which could be obtained by fetching the bits individ-
vally. For example, the process used in MULTIPLY
DECIMAL may consist of repetitive additions and

subtractions each of which causes the second oper -
and to be fetched from storage.

Block-Concurrent References

For some references, the accesses to all bytes within
a group of contiguous storage locations, or a block,
appear to be concurrent to another CPU, but the
accesses do not necessarily appear to include more
than a byte at a time to I/0Q. When a fetch-type
reference is concurrent within a block to CPUs, no
store access by another CPU is permitted to the
block during the time that bytes contained in the
block are being fetched. I/O accesses may occur to
the bytes within the block between the fetches.
When a store-type reference is concurrent within a
block to CPUs, no access, either fetch or store, is
permitted to the block during the time that the bytes
within the block are being stored. I/O accesses may
occur to the bytes in the block between the stores.

Consistency Specification

The storage-operand references associated with all S
format instructions and all RX format instructions
with the exception of EXECUTE, CONVERT TO
DECIMAL, and CONVERT TO BINARY, are
block-concurrent, as observed by all CPUs, if the
operand is addressed on a boundary which is integral
to the size of the operand.

For the instructions COMPARE AND SWAP
and COMPARE DOUBLE AND SWAP all accesses
to the storage operand appear to be concurrent as
observed by all CPUs.

The under-mask instructions COMPARE LOGI-
CAL CHARACTERS UNDER MASK, INSERT
CHARACTERS UNDER MASK, and STORE
CHARACTERS UNDER MASK, and the instruc-
¢ tions LOAD MULTIPLE and STORE MULTIPLE,
"‘ access the storage operand in a left-to-right direc-

; tion, and all bytes accessed within each doubleword
appear to all CPUs to be accessed concurrently.

When destructive overlap does not exist, the oper-
ands of MOVE (MVC) are accessed as follows:

» The first operand is accessed in a left-to-right
direction, and all bytes accessed within a dou-
bleword appear to all CPUs to be accessed
concurrently.

« The second operand is accessed left to right,
and all bytes within a doubleword in the sec-
ond operand that are moved into a single dou-
bleword in the first operand appear to all
CPUs to be fetched concurrently. Thus, if the
first and second operands begin on the same
byte offset within a doubleword, the second
operand appears to be fetched doubleword-
concurrent. If the offsets within a doubleword

differ by four, the second operand appears to
be fetched word-concurrent.

Destructive overlap is said to exist when the result
location is used as a source after the result has been
stored, assuming processing to be performed a single
byte at a time.

The operands for MOVE LONG and COMPARE
LOGICAL LONG appear to all CPUs to be ac-
cessed doubleword-concurrent when both operands
start on doubleword boundaries and are an integral
number of doublewords in length, and, for MOVE
LONG, the operands do not overlap.

For EXCLUSIVE OR (XC), when the first and
second operands coincide, the operands appear to all
CPUs to be accessed doubleword-concurrent.

Programming Note

It should be noted that, in the case of XC designat-
ing operands which coincide exactly, the bytes with-
in the field may appear to be accessed three times,
by two fetches and one store: once as the fetch por-
tion of the first operand update, once as the second-
operand fetch, and then once as the store portion of
the first-operand update. Each of the three accesses
appears to all CPUs to be doubleword-concurrent,
but the three accesses do not necessarily appear to
occur one immediately after the other.

Relation Between Operand Accesses
Storage-operand fetches associated with one instruc-
tion execution precede all storage-operand refer-
ences for conceptually subsequent instructions. A
storage-operand store specified by one instruction
precedes all storage-operand stores specified by con-
ceptually subsequent instructions, but it does not
necessarily precede storage-operand fetches speci-
fied by conceptually subsequent instructions. How-
ever, a storage-operand store does precede a con-
ceptually subsequent storage-operand fetch to the
same real storage location.

When an instruction has two storage operands
both of which cause fetch references, it is unpredict-
able which operand is fetched first, or how much of
one operand is fetched before the other operand is
fetched. When the two operands overlap, the com-
mon locations may be fetched independently for
each operand.

When an instruction has two storage operands the
first of which causes a store and the second a fetch
reference, it is unpredictable how much of the sec-
ond operand is fetched before the results are stored.
In the case of destructively overlapping operands,
the portion of the second operand which is common
to the first is not necessarily fetched from storage.

Program Execution 27

When an instruction has two storage operands the
first of which causes an update reference and the
second a fetch reference, it is unpredictable which
operand is fetched first, or how much of one oper -
and is fetched before the other operand is fetched.
Similarly, it is unpredictable how much of the result
is processed before it is returned to storage. In the
case of destructively overlapping operands, the por-
tion of the second operand which is common to the
first is not necessarily fetched from storage.

Programming Notes

The independent fetching of a single location for
each of two operands may affect the program execu-
tion in the following situation.

When the same main-storage location is designat-
ed by two operand addresses of an instruction, and a
channel or another CPU causes the contents of the
location to change during execution of the instruc-
tion, the old and new values of the location may be
used simultaneously. For example, comparison of a
field to itself may yield a result other than equal, or
EXCLUSIVE-ORing of a field to itself may yield a
result other than zero.

Serialization
All interruptions, and the execution of certain in-
structions, cause serialization of CPU operation.
Execution of a serialization function consists in com-
pleting all conceptually prior storage accesses by this
CPU, as observed by channels and other CPUs,
before the conceptually following storage accesses
occur. Serialization affects the order of all accesses
by this CPU to storage and to the key in storage,
except for those associated with DAT-table-entry
fetch.

Serialization is performed by all interruptions and
by the execution of the following instructions:

1. These general instructions: BRANCH ON
CONDITION (BCR) with the Ry and R fields
containing all ones and all zeros, respectively,
and COMPARE AND SWAP, COMPARE
DOUBLE AND SWAP, STORE CLOCK,
SUPERVISOR CALL, and TEST AND SET.

2. LOAD PSW.

3. PURGE TLB and SET PREFIX , which also
cause the translation-lookaside buffer to be
purged.

4. All 1/0 instructions.

5. The signaling instructions: READ DIRECT,
WRITE DIRECT, and SIGNAL PROC-
ESSOR.

The sequence of events associated with a serializ-

28 System/370 Principles of Operation

ing operation is as follows:

« All conceptually previous CPU storage accesses
I by this CPU are completed, as observed by
channels and other CPUs. This includes all
conceptually previous stores and changes to
keys in storage.

» The normal function associated with the serial-
izing operation is performed. In the case of
instruction execution, operands are fetched,
and the storing of results is completed. The
exceptions are LPSW and SPX, in which the
operands may be fetched before previous
stores have been completed, and interruptions,
in which the interruption code and associated
fields may be stored prior to the serialization.
The fetching of the serializing instruction oc-
curs before the execution of the instruction and
may precede the execution of previous instruc-
tions, but may not precede the completion of
the previous serializing operation. In the case
of an interruption, the old PSW, the interrup-
tion code, and other information, if any, are
stored, and the new PSW is fetched.

« Finally, instruction fetch and operand accesses
for conceptually subsequent operations may
continue.

A serializing function affects the order of storage
accesses that are under the control of the CPU in
which the serializing function takes place. It does
not affect the order of storage accesses caused by a
program in a channel or another CPU.

Programming Notes
The following are some effects of a serializing opera-
tion:

1. When an instruction changes the contents of a
storage location that is used as a source of a
following instruction and when different ad-
dresses are used to designate the location for
storing the result and fetching the instruction, a
serializing operation following the change en-
sures that the modified instruction is executed.

2. When a serializing operation takes place, chan-
nels and any other CPU observe instruction
and operand fetching and result storing to take
place in the order established by the serializing
operation.

Storing into a location from which a serializing
instruction is fetched does not necessarily affect the
execution of the serializing instruction unless a seri-
alizing function has been performed after the storing
and before the execution of the serializing instruc-
tion.

System Control

Contents
CPU States . . T (0]
Wait and Runnmg States . (4
Problem and Supervisor Statess.30
Stopped and OperatingStates30
ControlModes03
BCMode a0 w32
EC Mode . . . T ¥4
Set-System-Mask Suppressuon T /)
Program Status Word . . D ¥
Program Status Word Format in BC Mode e X §
Program Status Word FormatinECMode34
Exceptions Associated withthePSW35
Early Exception Recognition35
Late Exception Recognition35
Control Registers36
Key in Storage .38
Protection .38
Protection Actlon .38
Accesses Protected . e L
Monitoring . . G i)
Program-Event Recordmg e 2
Control Register Allocation40
Operation .. 11
Identification of Cause e
Priority of Indication&4
Storage Area Designation o 42
ProgramEvents« .« . . <42
Successful Branching42
{nstruction Fetching42
Storage Alteration . . o 4
General-Register Alteratlon43
Indication of Events Concurrently with Other Interruptlon Condntuons43
DirectControl+ .+ . .+4
Time-of-DayClock« . . .4
Format« .« « « .+« .+4
States P ()
Setting and lnspectlon of Value e |
Clock Comparator « .« .« .« .« .«47
CPUTimer« . .« . .+ . .+ .+ &« v < < « . . .48
Interval Timer . . - (¢
Externally Initiated Functaons e =10
Resets« .« . « .« .+ . < < . < . . .bO
CPUReset« .+ .+ « .+ « « < < . . .5
Initial CPUReset51
1/0SystemReset <51
ProgramResetB1
Initial Program ResetB2
SystemClearResetb3
PowerOnReset53
Store Status . . . e - 7
Initial Program Loadmg -
This chapter provides the detailed description of a The information determining the state and opera-
number of facilities that provide for switching the tion of the CPU resides in the program status word
status of the system, for protecting a program from (PSW) and in control registers. Additional status and
interference by another program, for initiating cer- control information appears in low-order locations
tain operations externally, and, in general, for en- of main storage. By providing a supervisor state and
hancing the efficiency, utility, and programmability a set of instructions that are valid only in the super-
of the system. visor state for changing the contents of the PSW and

System Control 29

control registers, a means is provided for avoiding
unauthorized or inadvertent change to the system
state.

The protection facility permits the protection of
the contents of main storage from destruction or
misuse caused by erroneous or unauthorized storing
or fetching by a program.

Four timing facilities are provided for measuring
time: the time-of-day clock permits indication of
calendar time with a resolution of 1 microsecond and
a period in excess of one hundred years; the clock
comparator permits a program to be alerted at a
particular instant of real time; and the CPU timer
and interval timer provide a means for a program to
be alerted after a specified time interval has elapsed.

Additionally, the following three facilities are
provided: monitoring, program-event recording, and
direct control. The monitoring facility is useful for
performing various measurement functions, whereas
program-event recording provides a means to assist
in debugging programs.

A set of externally initiated functions is provided
for initializing the system or for inspecting its state.
These functions include reset, store status, and initial
program loading.

CPU States

Excluding facilities that are provided for the mainte-
nance of equipment, three types of state alternatives
in the CPU are distinguished: wait-running,
problem-supervisor, and stopped-operating. These
states differ in the way they affect CPU functions
and in the way their status is indicated and switched.

Wait and Running States

In the wait state no instructions are processed,
whereas in the running state instruction fetching and
execution proceed in the normal manner. The CPU
is interruptible in the wait state, provided it is ena-
bled for the interruption source.

The CPU is in the wait state when bit 14 of the
PSW is cne. When bit 14 is zero, the CPU is in the
running state.

The wait state is indicated in the operator section
of the system console by the wait light. No explicit
operator control is provided for changing the state.

The updating of timing facilities is not affected by
whether the CPU is in the wait or running state.

Problem and Supervisor States
The alternative between problem and supervisor
state determines whether the full set of instructions
is valid.

In the supervisor state all instructions are valid. In

30 System/370 Principles of Operation

the problem state only those instructions are valid
that cannot be used to affect system integrity and
that do not pertain to maintenance or model-
dependent functions. The instructions that are not
valid in the problem state are called privileged in-
structions; they include those which modify or in-
spect keys in storage, those which modify or inspect
the system control fields in the PSW and in control
registers, and those which pertain to timing facilities,
prefixing, inter-CPU communication, and
input/output. A privileged instruction encountered
in the problem state constitutes a privileged-
operation exception and causes a program interrup-
tion.

The CPU is in the problem state when bit 15 of
the PSW is one. When bit 15 is zero, the CPU is in
the supervisor state.

The updating of timing facilities is not affected by
whether the CPU is in the problem or supervisor
state.

Programming Notes

The CPU may be switched between wait-running
and problem-supervisor states only by introducing
an entire new PSW. This may be performed by
LOAD PSW, an interruption (including a supervisor-
call interruption), or initial program loading.

The instruction LOAD PSW can be used to
switch from the supervisor to the problem state and
from the running to the wait state but not vice versa.
To allow return from an interruption-handling rou-
tine by LOAD PSW, the PSW for the interruption-
handling routine must specify the supervisor state.

In the wait state the CPU does not make repeated
references to main storage; therefore, wait state is
suitable for delaying operation until an interruption
occurs. References, however, may be made due to
I/0 operations and for updating the interval timer.
To leave wait state without manual intervention, the
CPU must be enabled for the interruption source.

Stopped and Operating States

When the CPU is in the stopped state, instructions
and interruptions, other than the restart interruption,
are not executed. In the operating state, the CPU
executes instructions and interruptions, subject to
the control of the wait bit and mask bits and in the
manner specified by the setting of the rate control
on the system console.

A change between the stopped and operating
states can be effected by manual intervention or by
use of the SIGNAL PROCESSOR instruction. The
stopped state is not controlled or identified by a bit
in the PSW.

The state of the CPU is changed from stopped to
operating by the following events:

« When the start key on the system console is
activated or when the CPU accepts the start
order specified by a SIGNAL PROCESSOR
instruction addressing this CPU. However, the
effect of start is unpredictable when the stop-
ped state has been entered by means of a reset.

« When a restart interruption occurs, either as a
result of the activation of the restart key or the
execution of the SIGNAL PROCESSOR re-
start order.

« When initial program loading is successfully
completed.

The state of the CPU is changed from operating
to stopped by the performance of the stop function.
The execution of the stop function is initiated:

o When the stop key on the system console is
activated while the CPU is in the operating
state.

« When the CPU accepts a stop or stop-and-
store-status order specified by a SIGNAL
PROCESSOR instruction addressing this CPU
while the CPU is in the operating state.

« When the CPU has finished the execution of an
instruction with the rate control set to instruc-
tion step.

When the stop function is performed, the tran-
sition from the operating to the stopped state occurs
at the end of the current unit of operation. When the
CPU is in the wait state, the transition takes place
immediately provided no interruptions are pending
for which the CPU is enabled. In the case of the
interruptible instructions, the amount of data pro-
cessed in a unit of operation depends on the particu-
lar instruction and may depend on the model.

All interruptions pending and not disallowed are
taken while the CPU is still in the operating state.
They cause the old PSW to be stored and the new
PSW to be fetched before the stopped state is en-
tered. When the CPU is in the stopped state, inter-
ruption conditions may be ignored or remain pend-
ing, the action being the same as when the CPU is
disabled for the conditions.

The CPU is placed in the stopped state also:

« After the completion of CPU reset, except
when the reset operation is performed as part
of initial program loading, and

+ When an address comparison indicates equality
and stopping on the match is specified.

The execution of CPU reset is described in

"Resets" in this chapter, and the stopping due to
address comparison is described in "' Address-

Compare Controls" in the chapter ''System Con-
sole."

Additionally, the CPU may, depending on the
model, temporarily enter the stopped state when the
restart interruption is initiated with the CPU in the
operating state.

When the CPU is in the stopped state, the manual
indicator on the system console is on.

Two other alternatives to the stopped and operat-
ing states exist: the load state and the check-stop
state. The CPU is in the load state during the initial-
program-loading operation. The check-stop state is
entered on certain types of machine malfunctioning
and is described in the chapter '"Machine-Check
Handling."

A CPU may have other alternatives to the stop-
ped and operating states for maintenance and diag-

nostic functions and for the purpose of displaying

and entering information via the console.

The interval timer is updated only when the CPU
is in the operating state. The CPU timer is updated
when the CPU is in the operating state or the load
state.

Programming Notes

Except for the relationship between execution
time and real time, the execution of a program is not
affected by stopping the CPU.

When, because of a machine malfunction, the
CPU is unable to end the execution of an instruc-
tion, the stop function is ineffective, and a reset
function has to be invoked instead. A similar situa-
tion occurs in the case of an unending interruption
sequence resulting from a PSW with a format error
or from a direct interruption condition, such as one
due to the CPU timer.

Input/output operations continue to completion
after the CPU enters the stopped state. The inter-
ruption conditions due to completion of I/O opera-
tions remain pending when the CPU is in the stop-
ped state.

Control Modes

Two modes are provided for the formatting and use
of control and status information: basic-control
(BC) mode and extended-control (EC) mode. The
mode is specified by the contents of bit position 12
of the program status word (PSW).

The two modes determine the allocation of bit
positions within the PSW, the use of permanently
assigned locations in main storage for storing the
interruption code and the instruction-length code on
some classes of interruptions, the controlling of 1/0
interruptions for channels 0-5, and the handling of
reference and change bits by INSERT STORAGE

System Control 31

KEY. Furthermore, program-event recording and
dynamic address translation can be specified only in
the EC mode, as the corresponding control bits in
the PSW are provided only in the EC mode.

BC Mode
In the BC mode, the PSW has the same format as in
System/ 360, and, except for the old PSW stored on
a machine-check interruption, the interruption code
and the instruction-length code appear in the PSW.
As in System /360, interruptions from channels 0-5
are subject to the control by PSW bits 0-5, and IN-
SERT STORAGE KEY provides zeros in bit posi-
tions 29 and 30 that correspond to the reference and
change bits. A number of additional permanently
assigned storage locations, however, are used during
interruptions associated with extended or new func-
tions, including those for storing the machine-check
interruption code and those for storing the monitor
code and monitor class number as the result of a
monitor-call event.

The BC mode is specified when PSW bit 12 is 0.
The BC mode of operation is provided on all CPUs.

EC Mode

In the EC mode, fields for channel masks 0-5, for
the interruption code, and for the instruction-length
code have been removed from the PSW, and the
program-mask and condition-code fields have been
allocated different bit positions within the PSW.
Two additional control bits have been introduced
into the PSW--the program-event-recording mask
and the translation-mode bit. The interruption code
and instruction-length code have been assigned sepa-
rate main-storage locations for certain classes of
interruptions, and 1/0 interruptions from channels
0-5 are subject to control by PSW bit 6, as well as
by channel masks in control register 2. The instruc-
tion INSERT STORAGE KEY provides the refer-
ence and change bits.

The EC mode is made available with the
extended-control facility. It is specified when PSW
bit 12 is one. When extended control is installed, the
CPU can operate either in the BC mode or EC
mode, depending on the value of PSW bit 12. When
PSW bit 12 is one and extended control is not in-
stalled, a specification exception is recognized.

Programming Note

The choice between BC and EC modes affects only
those aspects of operation that are specifically de-
fined to be different for the two modes. It does not
affect the operation of any facilities that are not
associated with the control bits provided in the PSW
only in the EC mode, and it does not affect the va-

32 Systern/370 Principles of Operation

lidity of any instructions. Although dynamic address
translation cannot be specified in the BC mode, the
instructions LOAD REAL ADDRESS, RESET REF-
ERENCE BIT, and PURGE TLB are valid and per-
form the specified function in the BC mode. The
instructions SET SYSTEM MASK, STORE THEN
AND SYSTEM MASK, and STORE THEN OR
SYSTEM MASK perform the specified function on
the leftmost byte of the PSW regardless of the mode
specified by the current PSW. The instruction SET
PROGRAM MASK introduces a new set of program
masks regardless of the PSW bit positions occupied
by the mask.

Set-System-Mask Suppression
When the SSM-suppression bit, bit 1 of control reg-
ister 0, is one, the execution of SET SYSTEM
MASK is suppressed, and a program interruption for
a special-operation exception occurs. The initial val-
ue of the SSM-suppression bit is zero.

The SSM-suppression control, when installed, is
effective in the BC, as well as the EC, mode.

Programming Note

The facility to suppress the execution of SET SYS-
TEM MASK may be used to assist in converting a
program written for BC-mode PSW to operate with
an EC-mode PSW.

Program Status Word

The program status word (PSW) contains the con-
trol information that is switched by an interruption.
Additional control and status information is con-
tained in control registers and permanently assigned
main-storage locations.

In certain circumstances all of the PSW is stored
or loaded; in others, only part of it. The entire PSW
is stored and a new PSW is introduced when the
CPU is interrupted. The instruction LOAD PSW
introduces a new PSW; SET PROGRAM MASK
introduces a new condition code and the four pro-
gram mask bits; SET SYSTEM MASK, STORE
THEN AND SYSTEM MASK, and STORE THEN
OR SYSTEM MASK introduce new bits into the
leftmost byte of the PSW; SET PSW KEY FROM
ADDRESS introduces a new PSW key; and the in-
struction address is updated by sequential instruction
execution and replaced by successful branches. The
instruction INSERT PSW KEY stores the PSW key;
STORE THEN AND SYSTEM MASK and STORE
THEN OR SYSTEM MASK store the leftmost byte
of the PSW; and BRANCH AND LINK stores the
instruction-length code, condition code, program
mask, and instruction address.

The new PSW as introduced by an interruption or
instruction becomes active (that is, the information
introduced into the current PSW assumes control
over the system) at the completion of the interrup-
tion or at the completion of the execution of the
instruction, respectively. The interruption for
program-event recording associated with an ifstruc-
tion that changes the PSW occuts under control of
the PSW mask that is effective at the beginning of
the operation.

The figures below show PSW formats in the BC
and EC modes.

Program Status Word Format in BC
Mode
The BC mode is specified by a zero in PSW bit posi-

tion 12. The following is a summary of the functions
of the PSW fields.

Channel Masks 0-5: Bits 0-5 control whether the
CPU is enabled for 1/0 interruptions from channels
0-5, respectively. When the bit is zero, the channel
cannot cause an I/0 interruption. When the bit is
one, a condition at the channel can cause an I/0
interruption.

Input/Output Mask (I0): Bit 6 controls whether
the CPU is enabled for I/O interruptions from chan-
nels 6 and higher. When the bit is zero, these chan-
nels cannot cause 1/0 interruptions. When the bit is
one, 1/0 interruptions are subject to the channel-
mask bits of the corresponding channels in control
register 2: when the channel-mask bit is zero, the
channel cannot cause an 1/0 interruption; when the
channel-mask bit is one, a condition at the channel
can cause an interruption.

External Mask (E): Bit 7 controls whether the CPU
is enabled for interruption by conditions included in
the external class. When the bit is zero, an external
interruption cannot occur. When the bit is one, an
external interruption is subject to the corresponding
external subclass-mask bits in control register 0:
when the subclass-mask bit is zero, conditions asso-
ciated with the subclass cannot cause an interrup-
tion; when the subclass-mask bit is one, an interrup-
tion in that subclass can occur.

Protection Key: Bits 8-11 form the CPU protection
key. The key is matched with a key in storage when-
ever information is stored, or whenever information
is fetched from a location that is protected against
fetching,

Channel Masks ! E Key O{M|W[P Interruption Code
0-5 10
0 6 8 12 16 31
ILC (o] Program Instruction Address
Mask
32 34 36 40 63
PSW Format in BC Mode

. 1 Program
OROOOTOE Key 1| M{W{P| O O cC Mask 00000000
0 8 12 16 18 20 24 31
000O0OOOO Instruction Address
32 40 63

PSW Format in EC Mode

System Control 33

Extended Control Mode: Bit 12 controls the format
of the PSW and the mode of operation of the CPU.
When the bit is zero, the PSW format and the CPU
operation are as defined for the basic control (BC)
mode. When the bit is one, the extended control
(EC) mode is specified.

Machine-Check Mask (M): Bit 13 controls whether
the CPU is enabled for interruption by machine-
check conditions. When the bit is zero, a machine-
check interruption cannot occur. When the bit is
one, machine-check interruptions due to system
damage and instruction-processing damage are per-
mitted, and interruptions due to other machine-
check conditions are subject to the subclass-mask
bits in control register 14.

Wait State (W): When bit 14 is one, the CPU is in
the wait state. When bit 14 is zero, the CPU is in the
running state.

Problem State (P): When bit 15 is one, the CPU is
in the problem state. When bit 15 is zero, the CPU is
in the supervisor state.

Interruption Code: Bits 16-31 in the old PSW
stored on a program, supervisor-call, external, or
1/0 interruption identify the cause of the interrup-
tion. When a new PSW is introduced, the contents of
this field are ignored.

Instruction-Length Code (ILC): The code in bit
positions 32 and 33 indicates the length of the last-
interpreted instruction when a program or
supervisor-call interruption occurs or when
BRANCH AND LINK is executed. When a new
PSW is introduced, the contents of this field are
ignored.

Condition Code (CC): Bits 34 and 35 are the two
bits of the condition code.

Program Mask: Bits 36-39 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

Program

Mask Bit Program Exception
36 Fixed-point overflow
37 Decimal overflow
38 Exponent underflow
39 Significance

When the mask bit is one, the exception results in
an interruption. When the mask bit is zero, no inter-
ruption occurs. The significance-mask bit also deter-

34 System/370 Principles of Operation

mines the manner in which floating-point addition
and subtraction are completed.

Instruction Address: Bits 40-63 form the instruction
address. This address designates the location of the
leftmost byte of the next instruction.

Program Status Word Format in EC

Mode

The EC mode is specified by a one in PSW bit posi-
tion 12. The following is a summary of the functions
of the PSW fields:

Program-Event-Recording Mask (R): Bit 1 controls
whether the CPU is enabled for interruption by pro-
gram events associated with the program-event-
recording facility. When the bit is zero, no program
event can cause an interruption. When the bit is one,
interruptions are permitted subject to the event-
mask bits in control register 9.

Translation Mode (T): Bit 5 controls whether im-
plicit translation of storage addresses by use of seg-
ment and page tables takes place. When the bit is
zero, storage addresses are not translated. When the
bit is one, the dynamic-address-translation mecha-
nism is invoked.

Input/Output Mask (I0): Bit 6 controls whether
the CPU is enabled for I/O interruptions. When the
bit is zero, an I/O interruption cannot occur. When
the bit is one, I/0 interruptions are subject to the
channel-mask bits in control register 2: when the
channel-mask bit is zero, the channel cannot cause
an interruption; when the channel-mask bit is one, a
condition at the channel can cause an interruption.

External Mask (E): Bit 7 controls whether the CPU
is enabled for interruption by conditions included in
the external class. Its meaning is the same as in the
BC mode.

Protection Key: Bits 8-11 form the CPU protection
key. The key is matched against a key in storage
whenever information is stored, or whenever informa-
tion is fetched from a location that is protected
against fetching.

Extended-Control Mode: Bit 12 controls the format
of the PSW and the mode of operation of the CPU.
When the bit is zero, the PSW format and the CPU
operation are as defined for the basic-control (BC)
mode. When the bit is one, the extended-control
(EC) mode is specified.

Machine-Check Mask (M): Bit 13 controls whether
the CPU is enabled for interruption by machine-

check conditions. Its meaning is the same as in the
BC mode.

Wait State (W): When bit 14 is one, the CPU is in
the wait state. When bit 14 is zero, the CPU is in the
running state.

Problem State (P): When bit 15 is one, the CPU is
in the problem state. When bit 15 is zero, the CPU is
in the supervisor state.

Condition Code (CC): Bits 18 and 19 are the two
bits of the condition code.

Program Mask: Bits 20-23 are the four program-
mask bits. The meaning of these bits is the same as
that of bits 36-39 of the BC PSW.

Instruction Address: Bits 40-63 form the logical
instruction address. This address designates the loca-
tion of the leftmost byte of the next instruction.

Bit positions 0, 2-4, 16-17, and 24-39 are unas-
signed. A specification exception is recognized when
these bit positions do not contain zeros.

Exceptions Associated with the PSW
Exceptions associated with the information in the
current PSW may be recognized when the informa-
tion is introduced into the PSW, or as part of the
execution of the next instruction.

Early Exception Recognition

For the following error conditions, a program inter-
ruption for specification exception occurs immedi-
ately after the PSW becomes active.

« A one is introduced into an unassigned bit posi-
tion of the EC-mode PSW.

« The EC mode is specified (PSW bit 12 is one)
in a CPU that does not have the EC facility
installed.

The interruption takes place regardless of whether
the wait state is specified. If the invalid PSW causes
the CPU to become enabled for a pending I/0, ex-
ternal, or machine-check interruption, the program
interruption is taken instead, and the pending inter-
ruption is subject to the mask bits of the new PSW
introduced by the program interruption. If the EC
facility is not installed, bits 0-15 and 34-63 of the
invalid PSW are stored unchanged into the corre-
sponding bit positions of the program old PSW, and

| the interruption code and instruction-length code are
stored into bit positions 16-33 of the program old
PSW.

When the execution of LOAD PSW or an inter-
ruption introduces a PSW with one of the above
conditions, the instruction-length code is set to 0,
and the newly introduced PSW, except for the inter-
ruption code and the instruction-length code in the
BC mode, is stored unmodified as the old PSW.
When one of the above error conditions is intro-
duced by execution of SET SYSTEM MASK or
STORE THEN OR SYSTEM MASK, the
instruction-length code is set to 2, and the instruc-
tion address is updated by two halfword locations.
The PSW containing the invalid value introduced
into the system-mask field is stored as the old PSW.

When a PSW with one of the above error condi-
tions is introduced during initial program loading, the
loading sequence is not completed, and the load light
remains on.

Late Exception Recognition

For the following conditions, the exception is recog-

nized as part of the execution of the next instruction.
¢ An instruction address is introduced in which

PSW bit 63 is one (specification exception).

» An access (addressing, protection, segment-
translation, page-translation, or translation-
specification) exception is associated with the
location designated by the instruction address
or the second or third halfword of the instruc-
tion starting at the designated address.

1f the invalid PSW causes the CPU to be enabled
for a pending 1/0, external, or machine-check inter-
ruption, the corresponding interruption occurs, and
the PSW invalidity is not recognized. Similarly, the
specification or access exception is not recognized in
a PSW specifying the wait state.

For specification, addressing, protection, and
translation-specification exceptions, the instruction-
length code (ILC) stored upon the program interrup-
tion is 1, 2, or 3, indicating the number of halfword
locations by which the instruction address has been
updated. Whether the ILC is 1, 2, or 3 is unpredicta-
ble. For segment-translation and page-translation
exceptions, the instruction address is not updated,
and the ILC is 1, 2, or 3, the indication being unpre-
dictable. In other respects, the current PSW, except
for the interruption code and the ILC in the BC
mode, is stored unmodified as the old PSW and con-
tains the invalid value causing the interruption.

System Control 35

Programming Notes

The execution of LPSW, SSM, STNSM, and STOSM
is suppressed on an addressing or protection excep-
tion, and hence the program old PSW provides in-
formation concerning the program causing the ex-
ception.

When the first halfword of an instruction can be
fetched but an access exception is recognized on
fetching the second or third halfword, the
instruction-length code is not necessarily related to
the operation code.

| If the new PSW introduced by an interruption
contains a format error, a series of interruptions
occurs. See the section ''Priority of Interruptions' in
the chapter "'Interruptions."

Control Registers

The control registers provide a means for maintain-
ing and manipulating control information that re-
sides outside the PSW.

The addressing structure provides for sixteen 32-
bit registers for control purposes. These registers are
not part of addressable storage. The instruction
LOAD CONTROL provides a means for loading
control information from main storage into control
registers, whereas STORE CONTROL permits in-
formation to be transferred from control registers to
main storage. These instructions operate in a manner
similar to LOAD MULTIPLE and STORE MULTI-
PLE.

One or more specific bit positions in control regis-
ters are assigned to each facility requiring such regis-
ter space. When the facility and the associated reg-

36 System/370 Principles of Operation

ister positions are installed, the bit performs the indi-
cated control function, and STORE CONTROL
returns the information placed in the register posi-
tion by LOAD CONTROL or on reset. When
STORE CONTROL is executed, the value corre-
sponding to the unassigned register positions is un-
predictable.

At the time the registers are loaded, the informa-
tion is not checked for exceptions, such as invalid
segment-size or page-size code or an address desig-
nating an unavailable or a protected location. The
validity of the information is checked and the excep-
tions, if any, are indicated at the time the informa-
tion is used.

Only the general structure of control registers is
described here; a definition of the meaning of regis-
ter positions appears with the description of the fa-
cility with which the register position is associated. A
summary of control register allocation appears in the
table ''Assignment of Control Register Fields." This
table shows the facility with which the field is associ-
ated and the initial value placed in the field upon
execution of reset.

Programming Note

To ensure that presently written programs run if and
when new facilities using additional control register
positions are installed, only zeros should be loaded
in unassigned control register positions. Similarly,
although on some CPUs STORE CONTROL may
provide zeros in the bit positions corresponding to
the unassigned register positions, the program should
not depend on such zeros being provided.

Wo r;! Bits

Name of Field

0 0

0 1

0 2

0 89

0 10

0 1112

0 16

0 17

0 18

0 19

0 20

0 21

0 24

0 25

0 26

1 0-7

1 8-25

2 0-31

8 16-31

9 0

9 1

9 2

9 3

9 16-31
10 8-31
11 8-31
14 0
14 1
14 2
14 4
14 5
14 6
14 7
14 8
14 9
15 8-28

Explanation:

Block-Multiplexing Control
SSM-Suppression Control
TOD Clock Sync Control
Page-Size Control
Unassigned, must be zero
Segment-Size Control
Malfunction-Alert Mask
Emergency-Signal Mask ; L
External-Call Mask I S R
TOD-Clock-Sync-Check Mask ' #xctensd
Clock-Comparator Mask Sk
CPU-Timer Mask Masic
Interval-Timer Mask

Interrupt-Key Mask

External-Signal Mask

Segment-Table Length
Segment-Table Address

Channel Masks
Monitor Masks

Successful-Branching Event Mask
Instruction-Fetching-Event Mask
Storage-Alteration-Event Mask
GR-Alteration-Event Mask

PER1 General Register Masks

PER Starting Address
PER Ending Address

Check-Stop Control
Synchronous-MCE L2 Control
1/0-Extended-Logout Control
Recovery-Report Mask
Degradation-Report Mask
External-Damage-Report Mask
Warning Mask
Asynchronous-MCEL Control
Asynchronous-Fixed-Log Control

MCEL Address

The fields not listed are unassigned.

Except for bit 10 of control register 0, the initial value of unassigned register positions is unpredictable.

1 PER means program-event recording.

ZmcEL means machine-check extended logout.

Associated With

Block-Multiplexing

SSM Suppression
Multiprocessing

Dynamic Addr. Translation
Dynamic Addr. Translation
Dynamic Addr. Translation
Multiprocessing
Multiprocessing
Multiprocessing
Multiprocessing

Clock Comparator

CPU Timer

Interval Timer

Interrupt Key

External Signal

Dynamic Addr. Translation
Dynamic Addr. Translation

Channels
Monitoring

Program-Event Recording
Program-Event Recording
Program-Event Recording
Program-Event Recording
Program-Event Recording

Program-Event Recording
Program-Event Recording

Machine-Check Handling
Machine-Check Handling
1/0O Extended Logout

Machine-Check Handling
Machine-Check Handling
Machine-Check Handling
Machine-Check Handling
Machine-Check Handling
Machine-Check Handling

Machine-Check Handling

3Bit 22 is set to one, with all other bits set to zero, thus yielding a decimal byte address of 512.

Assignment of Control Register Fields

- s =2 000000000 0COO

(=]

(=] o coQooOo o

Q0O =000 ==

o1

pur'y

N
w

System Control 37

Key in Storage
For purposes of protection and recording of refer-
ences and changes, main storage is divided into
blocks of 2,048 bytes, each block having an address
that is 2 multiple of 2,048. A control field, called
"key in storage," is associated with each block of
storage.

The key in storage has the following format:

Acc FIR|C

0 4 6

The bit positions in the key are allocated as fol-
lows:

Access-Control Bits (ACC): Bits 0-3 are matched
against the four-bit protection key whenever infor-
mation is stored, or whenever information is fetched
from a location that is protected against fetching.

Fetch-Protection Bit (F): Bit 4 controls whether
protection applies to fetch-type references: a zero
indicates that only store-type references are moni-
tored and that fetching with any protection key is
permitted; a one indicates that protection applies to
both fetching and storing. No distinction is made
between the fetching of instructions and of oper -
ands.

Reference Bit (R): Bit 5 normally is set to one each
time a location in the corresponding storage block is
referred to either for storing or for fetching of in-
formation. This bit is associated with dynamic ad-
dress translation.

Change Bit (C): Bit 6 is set to one each time in-
formation is stored into the corresponding storage
block. This bit is associated with dynamic address
translation.

The key in storage is not part of addressable stor-
age. The program can explictly place information in
all seven bits of the key by SET STORAGE KEY,
and the contents of the key can be inspected by IN-
SERT STORAGE KEY. Additionally, the instruc-
tion RESET REFERENCE BIT provides a means of
inspecting the reference and change bits and of set-
ting the reference bit to zero.

Protection

The protection facility is provided to protect the
contents of main storage from destruction or misuse
caused by erroneous or unauthorized storing or
fetching by the program. It provides protection

38 System/370 Principles of Operation

against improper storing or against both improper
storing and fetching, but not against improper fetch-
ing alone.

Protection Action

When protection applies to a storage access, the key
in storage is compared with the protection key asso-
ciated with the request for storage access. A store is
permitted only when the key in storage matches the
protection key. The keys are said to match when the
four high-order bits of the key in storage are equal
to the protection key or when the protection key is
zero. A fetch is permitted when the keys match or
when bit 4 of the key in storage is zero. The protec-
tion action is summarized in the table ''Summary of
Protection Action."

Is Access to Storage

Conditions Permitted ?
Bit 4 of Key Key
in Storage Relation Fetch Store
0 Match Yes Yes
0 Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No
Explanation:

Match The four high-order bits of the key in storage are
equal to the protection key, or the protection key
is zero.

Yes Access is permitted.

No Access is not permitted; on fetching, the information
is not made available to the program, and, on storing,
the contents of the storage location are not changed.

Summary of Protection Action

When the access to storage is initiated by the
CPU, and protection applies, the protection key of
the current PSW is used as the comparand. The pro-
tection key of the CPU occupies bit positions 8-11
of the PSW. When the reference is made by a chan-
nel, and protection applies, the protection key asso-
ciated with the I/O operation is used as the compa-
rand. The protection key for an 1/0 operation is
specified in bit positions 0-3 of the channel address
word (CAW) and is recorded in bit positions 0-3 of
the channel status word (CSW) stored as a result of
an I1/0O operation.

When a CPU access is prohibited because of pro-
tection, the operation is suppressed or terminated,
and a program interruption for a protection excep-
tion takes place. When a channel access is prohibit-
ed, a protection-check condition is indicated in the
channel status word (CSW) stored as a result of the
operation.

When a store access is prohibited because of pro-
tection, the contents of the protected location re-
main unchanged. On fetching, the protected informa-
tion is not loaded into an addressable register,
moved to another storage location, or provided to an
1/0 device.

The protection system is always active, regardiess
of whether the CPU is in the problem or supervisor
state and regardless of the type of CPU instruction
or channel command word being executed.

Accesses Protected

All main-storage accesses to locations that are ax-
plicitly designated by the program and that are used
by the CPU or channel to store or fetch information
are subject to protection.

Protection is not applied to accesses that are im-
plicitly made by the CPU or channel for such se-
quences as interruptions, updating the interval timer,
logout, dynamic address translation, fetching the
CAW during execution of an I/0 instruction, storing
the CSW by an 1/0 instruction or interruption, stor-
ing channel identification during execution of
STORE CHANNEL ID, and the initial-program-
loading and store-status functions. Similarly, protec-
tion does not apply to accesses initiated via the sys-
tem console for entering or displaying information.
However, when the program explicitly designates
these locations, they are subject to protection.

Monitoring

The monitoring facility provides the capability for
passing control to a monitoring program when se-
lected indicators are reached in the monitored pro-
gram. The indicators are MONITOR CALL instruc-
tions implanted in the monitored program. When
executed, these instructions cause a program inter-
ruption for monitoring to take place, provided an
interruption is allowed for the monitor class speci-
fied by the instruction. Along with the interruption,
the monitor class number and a monitor code are
stored for subsequent use by the monitoring pro-
gram.

The monitoring facility includes the instruction
MONITOR CALL, which designates one of 16
monitoring classes, together with a set of 16 monitor
masks in a control register. One mask bit is associat-
ed with each class. The execution of the instruction
causes a program interruption when the monitor-
mask bit for the class specified in the instruction is
one.

The monitoring facility is available in both the BC
and EC modes.

The monitor-mask bits are in bit positions 16-31
of control register 8.

Control Register 8:

Monitor Masks

0 16 31

The mask bits, 16-31, correspond to monitor
classes 0-15, respectively. Any number of monitor-
mask bits may be on at any one time; together they
specify the classes of monitor events that are moni-
tored at that time. The mask bits are initialized to
Zero.

When a MONITOR CALL instruction is inter-
preted for execution and the corresponding monitor-
mask bit is one, a program interruption for monitor-
ing occurs. The cause of the interruption is identified
by setting bit 9 of the interruption code to one, and
by the information placed at locations 148-149 and
156-159 of main storage. The format of the informa-
tion placed at locations 148-149 and 156-159 is the
same in BC and EC modes and is as follows:

Locations 148-149:

Monitor
Class No.

0 8 1%

00000000

Locations 156-159:

00000000 Monitor Code

0 8 31

The contents of bit positions 8-15 of MONITOR
CALL are placed at location 149 and constitute the
monitor class number. The address specified by the
B1 and D fields of the instruction forms the monitor
code, which is placed at locations 157-159. Zeros
are placed at locations 148 and 156.

Program-Event Recording

The purpose of the program-event-recording (PER)
facility is to assist in debugging programs. It permits
the program to be alerted to the following events:

» Successful execution of a branch instruction.

« Alteration of the contents of designated general
registers.

« Fetching of an instruction from designated
main-storage locations.

« Alteration of the contents of designated main-
storage locations.

The program has control over the conditions that
are considered events ‘or recording purposes and
can specify selectively one or more events to be
monitored. The information concerning a program

System Control 39

event is provided to the program by means of a pro-
gram interruption, with the cause of the interruption
being identified in the interruption code.

Control Register Allocation

The information for controlling program-event re-
cording resides in control registers 9, 10, and 11 and
consists of the following fields:

Control Register 9:

E.M. General-Register Masks

0 4 16 31

Control Register 10:

Starting Address

0 8 31

Control Register 11:

Ending Address

PER Event Masks: Bits 0-3 of control register 9
specify which events are monitored. The bits are
assigned as follows:

Bit 0: Successful-Branching Event

Bit 1: Instruction-Fetching Event

Bit 2: Storage-Alteration Event

Bit 3: General-Register-Alteration Event

Bits 0-3, when ones, specify that the correspond-
ing events are monitored. When the bit is zero, the
event is not monitored.

PER General-Register Masks: Bits 16-31 of control
register 9 specify which general registers are moni-
tored for alteration of their contents. The 16 bits, in
the order of ascending bit numbers, are made to
correspond one for one with the 16 registers, in the
order of ascending addresses. When the bit is one,
the register is included in monitoring for alteration;
if zero, the register is not monitored.

PER Starting Address: Bits 8-31 of control register
10 form an address that designates the beginning of
the monitored main-storage area.

PER Ending Address: Bits 8-31 of control register
11 form an address that designates the end of the

40 System/370 Principles of Operation

monitored main-storage area.

Programming Note

Most models operate at reduced performance while
monitoring for program events. In order to ensure
that CPU performance is not degraded due to the
operation of the program-event-recording facility,
programs that do not utilize program-event record-
ing should disable program-event recording by set-
ting the PER mask in the EC-mode PSW to zero. No
degradation due to program-event recording occurs
in the BC mode or when the PER mask in the EC-
mode PSW is zero. Disabling of program-event re-
cording in the EC mode by means of the masks and
addresses in control registers 9-11 does not neces-
sarily assure avoidance of performance degradation
due to the use of the facility.

Operation

Program-event recording (PER) is available only in
the EC mode and is under control of PSW bit 1, the
PER mask; when the mask is zero, no program event
can cause an interruption; when the mask is one, a
monitored event, as specified by the contents of
control registers 9, 10, and 11, causes an interrup-
tion. In BC mode the PER mask has, in effect, a
value of zero, and program-event recording is dis-
abled.

An interruption due to a program event is taken
after the execution of the instruction responsible for
the event. The occurrence of the event does not
affect the execution of the instruction, which may be
either completed, terminated, suppressed, or nulli-
fied.

A program-event condition cannot be kept pend-
ing. When the CPU is disabled for a particular pro-
gram event at the time it occurs, either by the mask
in the PSW or by the masks in control register 9, the
interruption condition is lost.

A change to the PER mask in the PSW or to the
PER control fields in control registers 9, 10, and 11
affects program-event recording starting with the
execution of the immediately following instruction.
When the CPU is enabled for some program event
and an instruction causes the CPU to be disabled for
that particular event, the event causes an interrup-
tion if it occurs during the execution of the instruc-
tion.

When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
changes CPU operation from EC mode to BC mode,
the PER interruption is taken with the old PSW
specifying BC mode and with the interruption code
stored in the old PSW. The additional information

identifying the PER condition is stored in its regular
format in locations 150-155.

Program-event recording applies to all instruc-
tions, including the special-purpose instructions,
such as those provided for emulation. The latter
class of instructions indicates all events that have
occurred and may additionally indicate events that
did not occur and were not called for in the instruc-
tion, provided monitoring was enabled for the type
of event by the PER mask in the PSW and the PER
event masks, bits 0-3 in control register 9. In such
cases, the contents of the remaining positions in
control registers 9, 10, and 11 may be ignored. Thus,
for example, a special-purpose instruction may cause
general-register alteration to be indicated even
though no general registers are altered, and even
 though bits 16-31 of control register 9 are all zeros.

Identification of Cause

The cause of the interruption is identified by setting
bit 8 of the interruption code to one and by the in-
formation placed in locations 150-155 of main stor-
age. The interruption code on a program-event inter-
ruption may indicate concurrently a program event
and another program-interruption condition. The
format of the information stored in locations 150-
155 is as follows:

Locations 150-151:

P.C. |000000000000

0 4 15

Locations 152-155:

00000000 PER Address

0 8 31

The event causing a program-event interruption is
identified by a one in bit positions 0-3 of location
150, the PER code, with the rest of the bits in the
code set to zeros. The bit position in the PER code
for a particular event is the same as the bit position
for that event in the PER event-mask field. When a
PER interruption occurs and more than one desig-
nated program event has been recognized, all recog-
nized program events are concurrently indicated in
the PER code.

The PER address at locations 153-155 identifies
the location of the instruction causing the event.
When the instruction is executed by means of EX-
ECUTE, the address of the location containing the
EXECUTE instruction is placed in the PER-address
field. In either case, the address of the instruction to
be executed next is placed in the PSW. Zeros are

stored in bit positions 4-7 of location 150 and at
locations 151 and 152.

Priority of Indication

When the execution of an interruptible instruction is
due to be interrupted by an 1/0, external, or
machine-check-recovery condition, the program-
event interruption occurs first, and the 1/0, external,
or machine-check interruption is subsequently sub-
ject to the control of mask bits in the new PSW.
Similarly, when the CPU is placed in the stopped
state during the execution of an interruptible instruc-
tion, an interruption for a pending PER condition
occurs before the stopped state is entered. When a
dynamic-address-translation (DAT) exception is
encountered, the pending PER condition is indicated
concurrently with the DAT condition. Normally a
program event does not cause premature interrup-
tion of the interruptible instruction unless some oth-
er event is due to cause an asynchronous interrup-
tion. However, depending on the model, in certain
situations, a PER condition may cause the execution
of an interruptible instruction to be interrupted with-
out an associated asynchronous condition or pro-
gram exception.

In the case of an instruction-fetching event on
SUPERVISOR CALL, the PER interruption occurs
immediately after the supervisor-call interruption.

Programming Notes

In the following cases an instruction can both cause
a PER interruption and change the value of bits con-
trolling the occurrence of a PER interruption for
that particular event. In these cases the original val-
ues of the control bits determine whether a PER
interruption occurs.

1. The instructions LOAD PSW, SET SYSTEM
MASK, STORE THEN AND SYSTEM
MASK, and SUPERVISOR CALL can cause
an instruction-fetching event and disable the
CPU for PER interruptions. Additionally,
STORE THEN AND SYSTEM MASK can
cause storage alteration to be indicated. In all
these cases, the old program PSW associated
with the program-event interruption may indi-
cate that the CPU was disabled for the inter-
ruption.

2. The instruction LOAD CONTROL may cause
an instruction-fetching event and change the
value of the PER event masks in control regis-
ter 9 or the addresses in control registers 10
and 11 controlling indication of the instruction-
fetching event.

System Control 41

No instructions can both change the values of
general-register alteration masks and cause a
general-register alteration event to be recognized.

When a PER interruption occurs during the execu-
tion of an interruptible instruction, the ILC indi-
cates the length of that instruction or EXECUTE, as
appropriate. When a PER interruption occurs as a
result of LOAD PSW or SUPERVISOR CALL, the
ILC indicates the length of these instructions or EX-
ECUTE, as appropriate, unless a concurrent specifi-
cation exception on LOAD PSW calls for an IL.C of
0.

When a PER interruption is caused by branching,
the PER address identifies the branch instruction (or
EXECUTE, as appropriate), whereas the old PSW
points to the next instruction to be executed. When
the interruption occurs during the execution of an
interruptible instruction, the PER address and the
instruction address in the old PSW are the same.

Storage Area Designation

Two of the program events--instruction fetching and
storage alteration--involve the designation of an area
in main storage. The storage area monitored for the
references starts at the location designated by the
starting address in control register 10 and extends up
to and including the location designated by the end-
ing address in control register 11. The area extends
to the right of the starting address.

When dynamic address translation is specified,
the storage area is designated by logical addresses;
when dynamic address translation is suppressed,
control registers 10 and 11 contain real addresses.

The set of locations designated for monitoring
purposes wraps around at location 16,777,215; that
is, location O is considered to follow location
16,777,215. When the starting address is smaller
than the ending address, the area is contiguous.
When the starting address is larger than the ending
address, the set of locations designated for monitor-
ing purposes includes the area from the starting ad-
dress to the largest address in the system and the
area from location 0 to, and including, the ending
address. When the starting address is equal to the
ending address, only the location designated by that
address is monitored.

The monitoring of main-storage alteration and
instruction fetching is performed by carrying out the
address comparison on all 24 bits of the addresses.

Program Events
Successful Branching

Execution of a successful branch operation causes a
program-event interruption if bit O of the PER-

42 System/370 Principles of Operation

event-mask field is one and the PER mask in the
PSW is one.

A successful branch occurs whenever one of the
following instructions causes control to be passed to
the instruction designated by the branch address:

BRANCH ON CONDITION

BRANCH AND LINK

BRANCH ON COUNT

BRANCH ON INDEX HIGH

BRANCH ON INDEX LOW OR EQUAL

The branch event is also indicated by special-
purpose instructions, such as those provided for em-
ulation, when the special-purpose instruction causes
a branch. That is, the location of the next instruc-
tion executed by the CPU after leaving emulation
mode does not immediately follow the location of
the instruction which caused the CPU to enter the
mode.

The event is identified by setting bit 0 of the PER
code to one.

Instruction Fetching

Fetching the first byte of an instruction from the
main-storage area designated by the contents of
control registers 10 and 11 causes a program-event
interruption if bit 1 of the PER-event-mask field is
one and the PER mask in the PSW is one.

A program event is recognized whenever the CPU
executes an instruction whose initial byte is located
within the monitored area. When the instruction is
executed by means of EXECUTE, a program event
is recognized when the first byte of the EXECUTE
instruction or the subject instruction or both is locat-
ed in the monitored area.

The event is identified by setting bit 1 of the PER
code to one.

Storage Alteration

Storing of data by the CPU in the main-storage area
designated by the contents of control registers 10
and 11 causes a program-event interruption if bit 2
of the PER-event-mask field is one and the PER
mask in the PSW is one.

The contents of main storage are considered to
have been altered whenever the CPU executes an
instruction that causes the whole operand or part of
it to be stored within the monitored area of main
storage. Alteration is considered to take place when-
ever storing is considered to take place for purposes
of indicating protection exceptions. (See
"Recognition of Access Exceptions' in the chapter
"Interruptions.") An arithmetic or movement opera-
tion is considered to fetch the operand, perform the
indicated operation, if any, and then store the result.
Such storing into main storage constitutes alteration

for program-event recording purposes even if the
value stored is the same as the original value.

Implied locations that are referred to by the CPU
in the process of timer updating, interruptions, exe-
cution of I/0 instructions, and machine-check logout,
including the interval timer, PSW, CSW, and logout
locations, are not monitored. These locations, how-
ever, are monitored when information is stored there
explicitly by an instruction. Similarly, monitoring
does not apply to storing of data by a channel. The
key storage is not considered part of main storage,
and hence monitoring does not apply to alterations
made by SET STORAGE KEY and RESET REF-
ERENCE BIT.

The instruction STORE CHARACTERS UN-
DER MASK is not considered to alter the storage
location when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the second-operand location only when stor-
ing actually occurs.

The event is identified by setting bit 2 of the PER
code to one.

General-Register Alteration

Alteration of the contents of a general register caus-
es a program-event interruption if bit 3 of the PER-
event-mask field is one, the alteration mask corre-
sponding to that general register is one, and the PER
mask in the PSW is one.

The contents of a general register are considered
to have been altered whenever a new value is placed
into the register. Recognition of the event is not
contingent on the new value being different from the
previous one. A register-to-register format arithme-
tic or movement operation is considered to fetch the
contents of the register, perform the indicated opera-
tion, if any, and then replace the value in the regis-
ter. The register can be designated implicitly, such as
in TRANSLATE AND TEST and EDIT AND
MARK, or explicitly by an RR, RX, or RS instruc-
tion, including BRANCH AND LINK, BRANCH
ON COUNT, BRANCH ON INDEX HIGH, and
BRANCH ON INDEX LOW OR EQUAL.

The instructions EDIT AND MARK and TRANS-
LATE AND TEST are considered to have altered
the contents of general register 1 only when these
instructions have caused information to be stored
into the register.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to alter the
contents of the four registers specifying the two oper-
ands, including the cases where the padding charac-
ter is used, when both operands have a zero length,
or when condition code 3 is set for MOVE LONG.

The instruction INSERT CHARACTERS UN-
DER MASK is not considered to alter the general
register when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or general register pair,
designated by R only when the contents are actual-
ly replaced, that is, when the first and second oper-
ands are not equal.

The event is identified by setting bit 3 of the PER
code to one.

Programming Notes
The following are some specifics concerning general-
register alteration:

1. Register-to-register load instructions are con-
sidered to alter the register contents even when
both operand addresses designate the same
register.

2. Addition or subtraction of zero and multiplica-
tion or division by one are considered to con-
stitute alteration.

3. Logical and fixed-point shift operations are
considered to alter the register contents even
for shift amounts of zero.

4. The branching instructions BXH and BXLE
are considered to alter the first operand even
when zero is added to its value.

Indication of Events Concurrently with
Other Interruption Conditions

The following rules govern the indication of program
events caused by an instruction that has caused also
a program exception or the monitor event to be indi-
cated, or that causes a supervisor-call interruption.

1. The indication of an instruction-fetching event
does not depend on whether the execution of
the instruction was completed, terminated, sup-
pressed, or nullified. The event, however, is not
indicated when an access exception prohibits
access to the first byte of the instruction.

When the first halfword of the instruction is
accessible but an access exception applies to
the second or third halfword of the instruction,
it is unpredictable whether the instruction-
fetching event is indicated.

2. When the operation is completed, the event is
indicated regardless of whether any program
exception or the monitoring event is recog-
nized.

3. Successful branching, storage alteration, or
general-register alteration are not indicated for
an operation or, in the case of the interruptible

System Control 43

instruction, for a unit of operation that is sup-
pressed or nullified.

4. When the execution of the instruction is termi-
nated, general-register and storage alteration is
indicated whenever the event has occurred.
Additionally, a model may indicate the event if
the event would have occurred had the execu-
tion of the instruction been completed, even if
altering the contents of the result field is con-
tingent on operand values.

5. When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
introduces a new PSW with the type of format
error that is recognized immediately after the
PSW becomes active, the interruption code
identifies both the PER condition and the
specification exception. When these instruc-
tions introduce a PSW format error of the type
that is recognized as part of the execution of
the following instruction, the PSW is stored as
the old PSW without the exception being rec-
ognized.

The indication of program events concurrently
with other program interruption conditions is sum-
marized in the table "Indication of Program
Events."

Programming Notes
The execution of the interruptible instructions
MOVE LONG (MVCL) and COMPARE LOGI-
CAL LONG (CLCL) can cause events for general-
register alteration and instruction fetch. Additional-
ly, MVCL can cause the storage-alteration event.
Since the execution of MVCL and CLCL can be
interrupted, a program event may be indicated more
than once. It may be necessary, therefore, for a pro-
gram to remove the redundant event indications
from the PER data. The following rules govern the

44 System/370 Principles of Operation

indication of the applicable events during execution
of these two instructions:

1. The instruction-fetching event is indicated
whenever the instruction is fetched for execu-
tion, regardless of whether it is the initial exe-
cution or resumption.

2. The general-register-alteration event is indicat-
ed on initial execution and on each resumption
and does not depend on whether or not the
register actually is changed.

3. The storage-alteration event is indicated only
when data has been stored in the monitored
area by the portion of the operation starting
with the last initiation and ending with the last
byte transferred before the interruption. No
special indication is provided on premature
interruptions as to whether the event will occur
again upon the resumption of the operation.
The event for address match on data storing
for a single byte location can be recognized
only once in the execution of MOVE LONG.

The following is an outline of the general action a
program must take to delete the redundant entries in
the PER data for MOVE LONG and COMPARE
LOGICAL LONG so that only one entry for each
complete execution of the instruction is obtained:

1. Check to see if the PER address is equal to the
instruction address in the old PSW and if the
last instruction executed was MVCL or CLCL.

2. If both conditions are met, delete instruction-
fetching and register-alteration events.

3. If both conditions are met, and the event is
storage alteration, delete the event if the cur-
rent destination-operand address is within the
monitored area and the count for the destina-
tion operand is not zero.

PER Event

Instruction Storage General Register
Exception Type Of Ending Branch Fetch Alter Alteration

Operation S - x1 — -
Privileged Operation S - x1 — -
Execute S - x1 - —
Protection
Instruction S - -1 — —
Operand SorT -2 X X + X+
Addressing
DAT entry for instruction address
Instruction
DAT entry for operand address
Operand
Specification
QOdd instruction address
Invalid PSW format
Other
Data
Invalid sign
Other
Fixed-Point Overflow
Fixed-Point Divide
Division
Conversion
Decimal Overflow
Decimal Divide
Exponent Overflow
Exponent Underflow
Significance
Floating-Point Divide
Segment Translation
Instruction address translation
Operand address translation
Page Translation
Instruction address translation
Operand address translation
Translation Specification
Instruction address translation
Operand address transiation
Special Operation
Monitor Event

»
Svwoun
—I

| |
N
xX X |
X |
+

X |
+

wown
[
X X |
| |
| |

0O-4n
I
X X X
X
+
X
+

OO NO0On
11

XX XXX XXX
|
|

z 2
11
N
X |
X |
w
x|
w

P
(.
N
x|
x|
w
X |
w

onwnwn
|

X X X |
|
I

Explanatjon:
C The operation or, in the case of the interruptible instructions, the unit of operation is completed.

N The operation or, in the case of the interruptible instructions, the unit of operation is nullified.
The instruction address in the old PSW has not been updated.

§ The operation or, in the case of the interruptible instructions, the unit of operation is suppressed.

—

The execution of the instryction is terminated.

X The event is indicated along with the exception if the event has occurred; that is, the contents of the monitored storage
location or general register were changed, or an attempt was made to execute an instruction whose first byte is
located in the monitored area.

+ A model may indicate the event, but does not necessarily, if the event was called for (would have occurred had the
operation been completed) but the event did not take place because the execution of the instruction was terminated.
— The event is not indicated.

When an access exception applies to the second or third halfword of the instruction but the first halfword is
accessible, it is unpredictable whether the instruction-fetching event is indicated.

This condition may occur for some special-purpose instructions, such as those provided for emulation.

This condition may occur in the case of the interruptible instructions when the event is recognized in the unit of
operation that is completed and when the exception causes the next unit of operation to be suppressed or nullified.

Indication of Program Events

System Control 45

Direct Control

| The direct-control feature provides two instructions,
READ DIRECT and WRITE DIRECT, and an
external-signal facility, consisting of six external
interruption lines. This feature operates indepen-
dently of the facilities for performing I1/0O operations.
The read and write instructions provide for the
transfer of a single byte of information, normally for
controlling or synchronizing purposes, between two
cable-connected processing units or a cable-
connected processing unit and external devices. Each
of the six external lines, when pulsed, sets up the
conditions for an external interruption.

Note: Some models provide the external-signal facili-
ty as a separate feature (without the READ DIRECT
and WRITE DIRECT instructions).

For a detailed description of direct control, see
the System/360 and System/370 Direct Control
and External Interruption Features--Original
Equipment Manufacturers’ Information, GA22-
6845.

Time-of-Day Clock

The time-of-day clock provides a consistent measure
of elapsed time suitable for the indication of date
and time. The cycle of the clock is approximately

143 years.

In an installation with more than one CPU, de-
pending on the model, each CPU may have a sepa-
rate time-of-day clock, or more than one CPU may
share a clock. In all cases, each CPU accesses a sin-
gle clock.

Format

The time-of-day clock is a binary counter with a
format as shown in the following illustration. The bit
positions of the clock are numbered O to 63, corre-
sponding to the bit positions of an unsigned fixed-
point number of double precision. Time is measured
by incrementing the value of the clock, following the
rules for unsigned fixed-point arithmetic.

0 31

32 52 63

In the basic form, the clock is incremented by
adding a one in bit position 51 every microsecond.

46 System/370 Principles of Operation

In models having a higher or lower resolution, a dif-
ferent bit position is incremented at such a frequen-
cy that the rate of advancement of the clock is the
same as if a one were added in bit position 51 every
microsecond. The resolution of the time-of-day
clock is such that the incrementing rate is compara-
ble to the instruction execution rate of the model.

When more than one time-of-day clock exists in a
configured system, the stepping rates are synchro-
nized such that all time-of-day clocks in the configu-
ration are incremented at the exact same rate.

When incrementing of the clock causes a carry to
be propagated out of bit position 0, the carry is ig-
nored, and counting continues from zero on. The
program is not alerted, and no interruption condition
is generated as a result of the overflow.

The operation of the clock is not affected or in-
hibited by any normal activity or event in the sys-
tem. The clock runs when the CPU is in the wait or
stopped state, or in the instruction-step, single-cycle,
or test mode, and its operation is not affected by
CPU, initial-CPU, program, initial-program, or
system-clear resets or by the IPL procedure. De-
pending on the implementation, the clock may or
may not run with the CPU power off.

States

The following states are distinguished for the time-
of-day clock: set, not set, stopped, error, and not
operational. The state determines the condition code
set by STORE CLOCK. The clock is said to be run-
ning when it is in either the set or not-set state.

The clock is in the not-operational state when its
power is down or when it is disabled for mainte-
nance. It depends on the model if the clock can be
placed in this state.

When the power for the clock is turned on, the
value of the clock is set to zero, and the clock enters
the not-set state. With the clock in this state,
STORE CLOCK causes condition code 1 to be set.

The clock enters the stopped state when SET
CLOCK causes the clock’s contents to be set, that
is, when SET CLOCK is executed without encoun-
tering any exceptions and with the TOD-clock
switch in the enable-set position. The clock can be
placed in the stopped state from the set, not-set, and
error states. The clock is not incremented while in
the stopped state. When the clock is in the stopped
state, STORE CLOCK causes the value of the
stopped clock to be stored and condition code 3 to be
set. This is distinguished from the not-operational
state, where condition code 3 is set and a value of
zero is stored.

The clock enters the set state only from the
stopped state. This is under control of the time-of-day

clock synchronization control bit, which is contained

in control register 0, bit position 2. The initial value
of this bit is zero. When the bit is zero or the clock-
synchronization facility is not installed, the clock
enters the set state at the completion of the SET
CLOCK instruction. When the bit is one, the clock

remains in the stopped state until either the bit is set

to zero or until any other running time-of-day clock

in the configured system is incremented to a value of
all zeros in bit positions 32-63. Incrementing of the

clock begins with the first stepping pulse after the
clock enters the set state. If a clock is set to a value
of all zeros in bit positions 32-63 and enters the set

state as the result of a signal from another clock, bits

32-63 of the two clocks are in synchronism. The

SET CLOCK instruction results in condition code O
when the clock is set, regardless of whether the clock
remains in the stopped state or enters the set state at

the completion of the instruction.

The clock enters the error state when a malfunc-
tion is detected that is likely to have affected the
validity of the clock’s value. A timing-facility dam-

age machine-check interruption condition is generat-

ed whenever the clock enters the error state. When
STORE CLOCK is executed with the clock in the
error state, condition code 2 is set.

Setting and Inspection of Value
The clock can be inspected by means of the instruc-
tion STORE CLOCK which causes the current 64-
bit clock value to be stored in main storage. The
execution of STORE CLOCK is interlocked such
that successive executions, either from the same
CPU or from different CPUs, do not provide the
same clock value if the clock is running. In multi-
processing configurations, this unique value may be
obtained by storing additional bits of lower order
than the resolution of the clock. These bits are not
stored when the clock is in the stopped or not-
operational state. With the exception of these bits,
the clock provides only those bits which are incre-
mented. Zeros are stored for the low-order bits not
‘provided by the clock.

The clock can be set to a specific value by means
of SET CLOCK, which causes the current clock
value to be replaced by the operand designated by

the instruction. The instruction SET CLOCK causes

the value of the clock to be changed only when the
TOD-clock switch on the system console is set to
permit changing the value of the clock. In a multi-
processing system, the TOD-clock switch in each
CPU which is configured to this CPU is ORed with

the switch on this CPU. Thus, the operator can ena-

ble the setting of all clocks in the configuration by
using the switch of any CPU in the configuration.

In a system where more than one CPU accesses
the same clock, SET CLOCK is interlocked such
that the entire contents appear to be updated at
once. That is, if SET CLOCK instructions are issued
simultaneously by two CPUs, the final result is ei-
ther one or the other value. If SET CLOCK is issued
on one CPU and STORE CLOCK on the other, the
result is either the entire old value or the entire new
value. When SET CLOCK is issued by one CPU, a
STORE CLOCK issued on another CPU may find
the clock in the stopped state even when the time-
of-day clock synchronization control bit is zero.
Since the clock enters the set state before increment-
ing, the first STORE CLOCK issued after the clock
enters the set state may still find the original value

‘= introduced by SET CLOCK.

Programming Notes

“,f Bit position 31 of the clock is incremented every
- 1.048576 seconds; hence for timing applications

involving human responses, the high-order clock
word may provide sufficient resolution.

To provide compatible operation from one system
to another requires the establishing of a standard
time origin, or epoch; that is, the calendar date and
time to which a clock value of zero corresponds.
January 1, 1900, 0 A.M. Greenwich Mean Time is
recommended as the standard epoch for the clock,
although some early support of the TOD clock is not
based on this epoch.

A program using the clock’s value as a time-of-
day and calendar indication may have to be aware of
the support under which it is running. With the
standard epoch, bit 0 of the TOD clock turns on
May 11, 1971 at 11:56:53.685248 A.M. GMT.
Normally a test of the high-order bit is sufficient to
determine if the TOD clock value is the standard
epoch: a one in this bit position indicates the
standard epoch.

In converting to or from the current date or time,
the program assumes each day to be 86,400 seconds.
It does not take into account "'leap" seconds added
because of time-correction standards.

Because of the inaccuracies in setting the clock
value on the basis of a synchronization signal pro-
vided by the operator, the low-order bit positions of
the clock, expressing fractions of seconds, normally
are not valid as indications of time of day. However,
they permit elapsed time measurements of high reso-
lution.

Clock Comparator

The clock comparator provides a means of causing
an interruption when the time-of-day clock has
passed a value specified by the program.

System Control 47

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

In a multiprocessing system, each CPU has a sep-
arate clock comparator.

The clock comparator has the same format as the
time-of-day clock. In the basic form, the clock com-
parator consists of bits 0-47, which are compared
with the corresponding bits of the time-of-day clock.
In some models, higher resolution is obtained by
comparing more than 48 bits. When the resolution of
the time-of-day clock is less than that of the clock
comparator, the contents of the clock comparator
are compared with the clock value as this value
would be stored by STORE CLOCK.

The clock comparator causes an external inter-
ruption with the interruption code 1004 (hex). A re-
quest for a clock comparator interruption exists when-
ever either of the following conditions exists:

« The time-of-day clock is running and the value
of the clock comparator is less than the value
in the compared portion of the time-of-day
clock, both comparands being considered bina-
ry unsigned quantities

« The clock comparator is installed and the time-
of-day clock is in the error state or not opera-
tional

A request for a clock-comparator interruption
does not remain pending when the value of the clock
comparator is made equal to or larger than that of
the time-of-day clock or when the value of the time-
of-day clock is made less than the clock-comparator
value. The latter may occur as a result of the time-
of-day clock either being set or wrapping to zero.

The clock comparator can be inspected by means
of the instruction STORE CLOCK COMPARA-
TOR and can be set to a specific value by means of
the SET CLOCK COMPARATOR instruction.

The contents of the clock comparator are initial-
ized to zero.

Programming Note

The instruction STORE CLOCK may store a value
which is larger than that in the clock comparator,
even though the CPU is enabled for the clock com-
parator interruption. This is because the time-of-day
clock may be incremented one or more times be-
tween the instants when instruction execution is
begun and when the clock value is accessed. Howev-
er, in this situation the interruption occurs at the
completion of the execution of the instruction.

An interruption request for clock comparator
persists as long as the clock comparator value is less
than that of the TOD clock or as long as the TOD
clock is not operational or in the error state. In view
of this, after an external interruption for clock com-
parator has occurred, either the value of the clock
comparator has to be replaced or the clock-

48 System/370 Principles of Operation

comparator submask has to be set to zero before the
CPU is again enabled for external interruptions.
Otherwise, loops of external interruptions are
formed.

CPU Timer

The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a prespecified amount of time has elapsed.

In a multiprocessing system, each CPU has a sep-
arate CPU timer.

The CPU timer is a binary counter with a format
which is the same as that of the time-of-day clock,
except that bit 0 is considered a sign. In the basic
form, the CPU timer is decremented by subtracting a
one in bit position 51 every microsecond. In models
having a higher or lower resolution, a different bit
position is decremented at such a frequency that the
rate of reduction of the CPU timer is the same as if a
one were subtracted in bit position 51 every micro-
second. The resolution of the CPU timer is such that
the stepping rate is comparable to the instruction
execution rate of the model.

The CPU timer causes an external interruption
with the interruption code 1005 (hex). A request for
a CPU-timer interruption exists whenever the value
in the CPU timer is negative (bit O of the CPU timer
is one). The request does not remain pending when
the CPU-timer value is made positive.

When both the CPU timer and the time-of-day
clock are running, the stepping rates are synchro-
nized such that both are stepped at the same rate.
Normally the decrementing of the CPU timer is not
affected by concurrent I/O activity. However, in
some models the CPU timer may stop during ex-
treme I/0 activity and other similar interference
situations. In these cases, the time recorded by the
CPU timer provides a more accurate measure of the
CPU time used by the program than that which
would have been recorded had the CPU timer con-
tinued to step.

The CPU timer is decremented when the CPU is
executing instructions, during the wait state, and
during initial program loading, but it is not decre-
mented when the CPU is in the stopped state. When
the rate switch on the system console is in the
instruction-step position, the CPU timer is decre-
mented only during the time in which the CPU is
actually performing a unit of operation. Depending
on the model, the CPU timer may or may not be
decremented when the time-of-day clock is in the
error, stopped, or not-operational state or when the
CPU is in the check-stop state.

The CPU timer can be inspected by means of the
instruction STORE CPU TIMER and can be set to a

specific value by means of the SET CPU TIMER
instruction.

The contents of the CPU timer are initialized to
Zero.

Programming Notes

The instruction STORE CPU TIMER may store a
negative value even though the CPU is enabled for
the interruption. This is because the timer value may
be decremented one or more times between the in-
stants when instruction execution is begun and when
the CPU timer is accessed. However, in this situation
the interruption occurs at the completion of the ex-
ecution of the instruction.

The fact that a CPU-timer interruption does not
remain pending when the CPU timer is set to a posi-
tive value eliminates the problem of an undesired
interruption. This would occur if between the time
that the old value is stored and a new value is set the
CPU is disabled and the CPU-timer value goes from
positive to negative.

The fact that CPU-timer interruptions are re-
quested whenever the CPU timer is negative rather
than just when the timer goes from positive to nega-
tive eliminates the requirement to test a value to
ensure that it is positive before setting the CPU tim-
er. A previously stored CPU-timer value could be
negative if the CPU timer goes from positive to neg-
ative while external interruptions are disallowed
between the time a non-CPU-timer interruption is
taken and the CPU timer is stored.

The persistence of the CPU timer interruption
request means, however, that after an external inter-
ruption for CPU timer has occurred, either the value
of the CPU timer has to be replaced or the CPU
timer submask has to be set to zero before the CPU
is again enabled for external interruptions. Other-
wise, loops of external interruptions are formed.

The CPU timer in association with a program may
be used as both a CPU-execution-time clock and a
CPU interval timer.

The time measured for the execution of a se-
quence of instructions may depend on the effects of
such factors as I/0 interference, the remoteness of
storage, and use of the cache, dynamic address
translation, and instruction retry. Hence, repeated
measurements of the same sequence on the same
installation may differ.

Interval Timer

The interval timer occupies a 32-bit word at real
main-storage location 80 and has the following for-
mat:

In a multiprocessing system, each CPU has an
associated interval timer.

The interval timer is a binary counter that is treat-
ed as a signed integer by following the rules for
fixed-point arithmetic. In the basic form, the con-
tents of the timer are reduced by one in bit position
23 every 1/300 of a second. Higher resolution of
timing may be obtained in some models by counting
with higher frequency in one of the positions 24
through 31. In each case, the frequency is adjusted
to give counting at 300 cycles per second in bit posi-
tion 23. The cycle of the timer is approximately 15.5
hours.

The interval timer causes an external interruption,
with bit 8 of the interruption code set to one and bits
0-7 set to zero. Bits 9-15 are zero unless set to one
for another condition that is concurrently indicated.

A request for an interval-timer interruption is’
generated whenever the timer value is decremented
from a positive number, including zero, to a negative
number. The request is preserved and remains pend-
ing in the CPU until it is cleared by an interval-timer
interruption or reset. The overflow occurring as the
timer value is decremented from a large negative
number to a large positive number is ignored.

The timer is not necessarily synchronized with
line frequency or the time-of-day clock, and its tol-
erance is not necessarily related to the tolerance of
the line frequency or the clock.

The timer contents are updated at the appropriate
frequency whenever other activity in the system
permits it. The updating occurs only between the
execution of instructions, with the exception that the
timer may be updated during the execution of an
interruptible instruction, such as MOVE LONG. An
updated timer value is normally available at the end
of each instruction execution. When the execution of
an instruction or other activity in the system causes
updating to be delayed by more than one period, the
contents of the timer may be reduced by more than
one unit in a single updating cycle, depending on the
length of the delay and the extent of timer backup
storage. Timer updating may be omitted when 1/0
data transmission approaches the limit of storage
capability, when a channel sharing CPU equipment
and operating in burst mode causes CPU activity to
be locked out, or when the instruction time for
READ DIRECT is excessive. The program is not
alerted when omission of updating causes the real-
time count to be lost.

System Control 49

The value of the timer is accessible by fetching
the word at location 80 as an operand, provided the
location is not protected against fetching. The 32-bit
timer value may be changed at any time by storing a
new value at location 80. When location 80 is pro-
tected, any attempt to change the value of the timer
causes a program interruption for protection excep-
tion. When protection exception is indicated, the
timer value remains unchanged.

The value of the timer may be changed without
losing the real-time count by loading the new value
in byte locations 84-87 and then shifting bytes 80-
87 into byte locations 76-83 by means of the in-
struction MOVE (MVC), thus placing in a single
operation the new timer value into word location 80
and making the old value available at location 76.
The MVC instruction may designate locations 76-87
by real addresses 76-87 or by any logical addresses
that translate to real addresses 76-87.

When the contents of the timer are fetched by
another CPU or by a channel or are used as a source
of an instruction, the result is unpredictable. Similar-
ly, storing by the channel or by another CPU at loca-
tion 80 causes the contents of the timer to be unpre-
dictable.

The timer value is not decremented when the
CPU is not in the operating state, or when the rate
switch on the system console is set to the
instruction-step position.

Programming Notes
The interval timer, in association with a program,
can serve both as a real-time clock and as an interval
timer.

If any means other than the instruction MOVE
(MVC) are used to interrogate and then replace the
value of the timer, including MOVE LONG or two

Position of Enable-

separate instructions, the program may lose a time
increment if an updating cycle occurs between fetch-
ing and storing.

When the value of the interval timer is to be re-
corded on an I/0O device, the program should first
store the timer value in a temporary storage location
to which the I/O operation subsequently refers.
When the channel fetches the timer value directly
from location 80, the value obtained is unpredicta-
ble.

Externally Initiated Functions

Resets

Two types of CPU-reset functions are provided:
CPU reset and initial CPU reset. By combining the
two CPU-reset functions with the I/O-system-reset
function and clearing of storage, the following three
system resets are provided: program reset, initial
program reset, and system-clear reset. The table
"Manual Initiation of System Resets'" at the end of
the description of resets summarizes how each type
of system reset is manually initiated. Power-on reset
is performed as part of powering on.

CPU reset provides a means of clearing
equipment-check indications and the resultant un-
predictability, if any, in the CPU state with the least
amount of information destroyed. It is intended in
particular for clearing check conditions when the
system state is to be preserved for analysis or re-
sumption of the operation.

Initial CPU reset performs the same functions as
CPU reset but additionally initializes the contents of
control fields. In particular, it initializes the prefix
and control registers, which is normaily necessary for
initial program loading.

Function Performed On1

CPU on Which Key Was

Other CPUs Configured for

Key Activated System-Clear Key Activated Propagation of Manual Reset
System reset
o Without store-status facility Normal Initial-program reset *
o With store-status facility Normal Program reset Program reset
System reset Clear System-clear reset System-clear reset
Load Normal Initial-program reset, followed Program reset
by IPL
Load Clear System-clear reset, followed System-clear reset
by IPL

Explanation:

* This situation cannot occur, since the store-status facility is provided in a CPU equipped for multiprocessing.

1 Activation of the system-reset or load key may change the configuration, including the connection with channels, storage units,

and other CPUs,

Manual Initiation of System Resets

50 System/370 Principles of Operation

Program reset and initial program reset cause
CPU reset and initial CPU reset, respectively, to be
performed, and additionally cause I/O system reset
to be performed.

System-clear reset causes initial program reset to
be performed and, additionally, initializes or clears
all registers and storage locations whose contents
can be modified by a program. Such clearing is use-
ful in debugging programs and to ensure user priva-
cy.

Power-on reset initializes the contents of all con-
trol fields and either clears to zeros with valid
checking-block code, or introduces valid checking-
block code on, registers and storage locations that
lose their contents when power is down. It eliminates
the possibility of machine-check conditions due to
random values introduced by powering on.

CPU Reset
CPU reset causes the following actions:

1. The execution of the current instruction or
other processing sequence, such as interrup-
tion, is terminated, and all program and
supervisor-call interruption conditions are
cleared.

2. Pending external-interruption conditions are
cleared.

3. Pending machine-check-interruption conditions
and error indications are cleared.

4. The translation-lookaside buffer is cleared of
entries.

5. Any buffers containing prefetched instructions
or operands or results due to be stored are
cleared of entries.

6. The CPU is placed in the stopped state after
actions 1-5 have been completed.

See the table ""Summary of Reset Action' for a
detailed description of the effect of this reset on
other parts of the system. _

The CPU-reset function is performed as part of
the three system resets and when the CPU accepts
the CPU-reset order specified by a SIGNAL PROC-
ESSOR instruction addressing this CPU. On some
CPUs, model-dependent controls may be provided
for initiating CPU reset.

Initial CPU Reset

Initial CPU reset causes CPU reset to be performed
and additionally causes the following actions prior to
placing the CPU in the stopped state:

1. The contents of the PSW, prefix, CPU timer,
and clock comparator are set to zeros with
valid checking-block code.

2. The contents of control registers are set to their

initial values with valid checking-block code.

By setting the contents of the PSW to zero, the
initial-CPU-reset function causes the PSW to assume
the BC-mode format. The contents of the
instruction-length-code and interruption-code fields
remain unpredictable, as these values are not re-
tained when a new PSW is introduced.

See the table ''Summary of Reset Action" for a
detailed description of the effect of this reset on
other parts of the system.

The initial-CPU-reset function is performed as
part of the initial-program and system-clear resets
and when the CPU accepts the initial-CPU-reset
order specified by a SIGNAL PROCESSOR instruc-
tion addressing this CPU. On some CPUs, model-
dependent controls may be provided for initiating
initial CPU reset.

1/0O System Reset

I/0 system reset causes the I/O-system-reset func-
tion to be performed in the channel (see the chapter
"I/0 Operations'). As part of this reset, pending
I/O-interruption conditions are cleared and system
reset is signaled to all control units and devices con-
figured to the channel.

The effect of system reset on I/O control units
and devices and the resultant control-unit and device
state are described in the appropriate Systems Refer-
ence Library (SRL) or System Library (SL) publica-
tion. In general, a system reset resets only those
functions in a shared control unit or device that are
associated with the CPU signaling the reset.

The I/0-system-reset function is performed as
part of the three system resets and normally cannot
be initiated by itself.

Program Reset
Program reset causes CPU reset to be performed
and causes I/0 system reset to be performed in all
channels configured to the CPU. See the table
"Summary of Reset Action" for a detailed descrip-
tion of the effect of the reset on other parts of the
system.

Execution of the program-reset function is initiat-
ed in a CPU by any of the following;:

1. On a model that has the store-status facility
installed, by activating the system-reset key on
that CPU with the enable-system-clear key in
the normal position.

2. By activating the following keys in any other
configured CPU in a multiprocessing system:

« The system-reset key with the enable-system-
clear key in the normal position, or

System Control 51

» The load key with the enable-system-clear
key in the normal position.

3. When the CPU accepts the program-reset or-
der specified by a SIGNAL PROCESSOR in-
struction addressing this CPU.

Initial Program Reset

Initial program reset causes initial CPU reset to be
performed and causes I/O system reset to be per-
formed in all channels configured to the CPU. See
the table '"Summary of Reset Action' for a detailed
description of the effect of the reset on other parts
of the system.

Reset Function

CPU Program Initial CPU Initial Program System Clear Power On
Area Affected Reset Reset Reset Reset Reset Reset

CPU state S S S s! st s

Configured channels N R N R R R

PSW urv urv c* c+1 c+1 c*

Prefix u/v u/v Cc C C C

CPU timer u/v u/v (o] C C Cc

Clock comparator u/v u/v C C C C

Control registers u/v u/v 1 1 | |

General registers u/v u/v u/v u/v c/V C/X

Floating-point registers u/v u/v u/v u/v c/vV C/X

Keys in storage U U U U Cc c/x3

Volatile main storage U V) 8] U Cc c/x3

Nonvolatile main storage U U U 9} Cc V)

TOD clock u? u? u? U2 U2 c3

Explanation:

S CPU reset is performed. At the completion of this C The contents-are cleared to zero with valid checking-block
sequence, the CPU is in the stopped state. code.

N The state of the channel is not affected, and 1/O- C/V The checking-block code of the contents is made valid.
interruption conditions are not cleared, provided the The contents normally are cleared to zeros but in some
CPU initially is in the stopped state. models may be left unchanged.

When the reset function in the CPU is initiated at the C/X The checking-block code of the contents is made valid.
time the CPU is executing an 1/O instruction, is in The contents normally are cleared to zeros but in some

the process of taking an 1/0 interruption, or is models may be left unpredictable.

performin.'\g t.he initial-program-loading function, the | The contents are set to their initial values with valid
comrnumcatu‘on between the CPU and the channel checking-block code.

may be terminated, and the resuitant state of the

associated channel, subchannel, and 1/O device is * Clearing the contents of the PSW to zero causes the CPU to
unpredictable. In this case, an 1/O-interruption assume the BC-mode format. The contents of the
condition may appear to have been cleared, or an instruction-length-code and interruption-code fields remain
additional 1/O-interruption condition may be unpredictable, as these values are not retained when a new
generated. PSW is introduced.

R 1/0 system reset is performed in the configured 1 When the IPL sequence follows the reset function on that
channels, and pending 1/0-interruption conditions CPU, the CPU does not enter the stopped state, and the
are cleared. As part of this reset, system reset is PSW is not necessarily cleared to zeros.

- signaled to the 1/O control units anid devices 2 Access to the TOD clock by means of STORE CLOCK at
configured to the channel. the time a reset function is performed does not cause the

V] The contents, including the checking-block code, value of the TOD clock to be affected.
remain unchanged, provided the field is not being 3 When these units are separately powered, the action is

accessed at the time the reset function is performed.
The subsequent contents of a field are unpredictable
if it is accessed at the time of the reset.

U/V The contents remain unchanged, provided the field

is not being accessed at the time the reset function

is performed. However, on some models the checking-
block code of the contents may be made valid. The
subsequent contents of a field are unpredictable if it

is accessed at the time of the reset.

Summary of Reset Action

52 System/370 Principles of Operation

performed only when the power for the unit is turned on.

Execution of the initial-program-reset function is
initiated in a CPU by one of the following:

1. On a model that does rot have the store-status
facility installed, by activating the system-reset
key on that CPU, with the enable-system-clear
key in the normal position.

2. By activating the load key on that CPU, with
the enable-system-clear key in the normal posi-
tion. (The initial-program-reset function is im-
mediately followed by the initial-program-
loading operation.)

3. When the CPU accepts the initial-program-
reset order specified by a SIGNAL PRO-
CESSOR instruction addressing this CPU.

System-Clear Reset

System-clear reset causes initial CPU reset to be
performed, causes I/0 system reset to be performed
in all channels configured to the CPU, and causes
the contents to be set to zeros with valid checking-
block code in that part of main storage and of keys
in storage that is configured to the CPU. Additional-
ly, the checking-block code of the contents of gener-
al registers and floating-point registers is made valid.
In most models the contents of the registers are
cleared to zeros, but in some the contents may be
left unchanged except for making the checking-block
code valid.

See the table '"Summary of Reset Action' for a
detailed description of the effect of the reset on oth-
er parts of the system.

Execution of the system-clear-reset function is
initiated in a CPU by one of the following:

1. By activating the system-reset key on that
CPU, with the enable-system-clear key in the
clear position.

2. By activating the load key on that CPU, with
the enable-system-clear key in the clear posi-
tion. (The system-clear function is immediately
followed by the initial-program-loading opera-
tion.)

3. By performing either of the above on any other
configured CPU in a multiprocessing system.

Programming Notes

In order for the CPU-reset and initial-CPU-reset
operations not to affect the contents of fields that
are to be left unchanged, the CPU must not be exe-
cuting instructions and must be disabled for all inter-
ruptions at the time of the reset. Except for the oper-
ation of the interval timer, CPU timer, and clock
comparator and for the possibility of taking a
machine-check interruption, all CPU activity can be
quiesced by placing the CPU in the wait state and by
disabling it for I/O and external interruptions. In

order to avoid the possibility of causing a CPU reset
at the time the timing facilities are being updated or
a machine-check interruption occurs, the CPU must
be in the stopped state.

Resetting of the CPU does not affect the value
and operation of the time-of-day clock.

System-clear reset causes all bit positions of the
interval timer to be cleared to zeros.

The conditions under which the CPU enters the
check-stop state are model-dependent and include
malfunctions that preclude the completion of the
current operation. Hence, in general, when CPU
reset or initial CPU reset is executed in a CPU that
is in the check-stop state, the contents of the PSW,
addressable registers, and storage locations, includ-
ing the keys, accessed at the time of the error are not
reliable.

Power-On Reset

The power-on-reset function for a component of the
system is performed as part of the power-on se-
quence for that component.

The power-on sequences for the TOD clock, main
storage, and channels may be included as part of the
CPU power-on sequence, or the power-on sequence
for these units may be initiated separately. The fol-
lowing sections describe the power-on resets for the
CPU, TOD clock, and main storage. See also "'I/O
Operations'’ and the appropriate Systems Reference
Library (SRL) or System Library (SL) publication
for channels, control units, and I/0O devices.

CPU Power-On Reset: The power-on reset causes
initial CPU reset to be performed and causes I/0
system reset to be performed in all channels config-
ured to the CPU. The checking-block code on the
contents of general registers and floating-point regis-
ters is made valid. In most models the contents are
cleared to zero, but in some models the contents
may be left unpredictable except for the checking-
block code.

TOD Clock Power-On Reset: The power-on reset
causes the value of the time-of-day clock to be set to
zero and causes the clock to enter the not-set state.

Main-Storage Power-On Reset: For volatile main
storage (one that does not preserve its contents
when power is down) and for keys in storage,
power-on reset causes valid checking-block code to
be placed in these fields. In most models the con-
tents are cleared to zeros, but in some models the
contents may be left unpredictable except for the
checking-block code. The contents of nonvolatile

System Control 53

main storage, including the checking-block code,
remain unchanged.

Store Status
The store-status facility includes the following:

1. A change to the operation of the system-reset
key when the enable-system-clear key is in the
normal position. With the store-status facility
installed, pressing the system-reset key causes
a program reset; without this facility, initial
program reset is performed.

2. An operator-initiated store-status function.

The store-status operation consists in placing the
contents of the current PSW and the prograrn-
addressable registers in permanently assigned loca-
tions within the first 512 bytes of main storage. In
the BC mode, the instruction-length code in the
PSW is unpredictable, and an interruption code of
zero is stored. The information provided for control
register positions not associated with an installed
facility is unpredictable. If the CPU timer, clock
comparator, prefix register, or floating-point facility
is not installed, the contents of the corresponding
locations in main storage remain unchanged.

The word beginning at absolute storage address
268 is reserved for storing additional status as re-
quired by certain model-dependent features. If no
feature requiring this field is installed, the contents
of the field remain unchanged upon execution of the
store-status function.

The following table lists the fields that are stored,
their length, and their location in main storage.

Length in Absolute

Field Bytes Address’
CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Model-dependent feature 4 268
F-P registers 0-6 32 352
General registers 0-15 64 384
Controf registers 0-15 64 448

Explanation:

TDecimal address of the first byte of the field in absolute main
storage.

Permanently Assigned Storage for Store Status

The contents of the registers are not changed. If
an error is encountered during the operation, the
CPU enters the check-stop state.

The store-status operation can be initiated by the
operator on the system console. The operator con-
trols and the procedure for initiating the function
may differ among models and are described in the
System Library (SL) publication for the model. In a

54 System/370 Principles of Operation

multiprocessing system, the store-status operation
can also be initiated at the addressed CPU by execu-
ting SIGNAL PROCESSOR, specifying the stop-
and-store-status order.

Initial Program Loading

Initial program loading (IPL) is provided for the
initiation of processing when the contents of main
storage or of the PSW are not suitable for process-
ing.

Initial program loading is initiated manually by
selecting an input device with the load-unit-address
switches and then pressing the load key. Pressing the
load key causes a system-clear or an initial-program-
reset operation to be performed on the CPU, as de-
termined by the setting of the enable-system-clear
key. Subsequently, a read operation is initiated from
the selected input device.

The read operation is performed as if a START
1/0 instruction were executed that specified the
device addressed by the load-unit-address switches
and used a channel address word (CAW) containing
a protection key of zero and a channel command
word (CCW) address of 0. The address set up on
the load-unit-address switches provides the 12 low-
order bits of the I/O address; zeros are implied for
the high-order address bits. Although the location of
the first CCW to be executed is specified as 0, the
first CCW actually executed is an implied CCW,
containing, in effect, a read command with the mod-
ifier bits set to zero, a data address of 0, a byte
count of 24, the chain-command flag on, the
suppress-incorrect-length-indication flag on, the
chain-data flag off, the skip flag off, and the
program-controlled-interruption (PCI) flag off. The
CCW fetched, as a result of command chaining,
from location 8 or 16, as well as any subsequent
CCW in the IPL sequence, is interpreted the same as
a CCW in any 1/0 operation, with the exception
that the PCI flag is ignored.

When the 1/0 device provides channel-end status
for the last operation of the IPL chain and no excep-
tional conditions are detected in the operation, a
new PSW is obtained from locations 0-7. When this
PSW specifies the BC mode, the I/0 address that
was used for the IPL operation is stored at locations
2 and 3; when the EC mode is specified, the 1/0
address is stored at locations 186-187, and zeros are
stored at location 185. The load indicator is turned
off, and CPU operation proceeds under the control
of the new PSW.

When channel-end status for the IPL operation is
presented, either separate from or along with device-
end status, no I/O interruption condition is generat-
ed. Similarly, any PCI flags specified by the pro-

gram in the CCWs used for the IPL sequence are
ignored. If the device-end status for the IPL opera-
tion is provided separately after channel-end status,
it causes an I/0 interruption condition to be generat-
ed.

If*%the IPL I/O operation or the PSW loading is
not completed satisfactorily, the CPU idles, and the
load indicator remains on. This occurs when the
device designated by the address set up on the load-
unit-address switches is not operational, when the
device or channel signals any condition other than
channel end, device end, or status modifier during or
at the completion of the IPL I/0 operation, or when
the PSW loaded from location O has a format error
that is recognized during the loading procedure. The
address of the I/0 device used in the IPL operation
is not stored. The contents of locations 0-7 are un-
predictable, but the contents of other main-storage
locations remain unchanged. When less than eight
bytes are read into the doubleword at location 0, the
PSW fetched from location O at the conclusion of
the IPL operation is unpredictable.

Programming Notes

The information read into locations 8-15 and 16-23
may be used as CCWs for reading additional infor-
mation during the IPL sequence: the CCW at location

8 may specify reading additional CCWs elsewhere in
main storage, and the CCW at location 16 may speci-
fy the transfer-in-channel command, causing trans-
fer to these CCWs.

The status-modifier bit has its normal effect dur-
ing the IPL operation, causing the channel to fetch
and chain to the CCW whose main-storage address
is 16 higher than that of the current CCW. This ap-
plies also to the initial chaining that occurs after
completion of the read operation specified by the
implicit CCW.

The PSW that is loaded at the completion of the
IPL procedure may be provided by the first eight
bytes of the IPL I/0 operation or may be read into
locations 0-7 by a subsequent CCW.

The IPL 1/0O operation implicitly specifies the use
of the first 24 bytes of main storage. Since the re-
mainder of the IPL program may be placed in any
part of storage, it is possible to preserve such areas
of storage as the PSW and logout areas, which may
be helpful in recovery.

When the PSW in location O has bit 14 set to one,
the CPU is placed in the wait state after the IPL
procedure is completed; at that point, the manual
indicator is off, and the wait indicator is on.

System Control 355

Dynamic Address Translation

Contents

Logical Storage Addressing .58
Control .58
PSW .68
Control Register 0 .58
Control Register 1 .59
Translation Tables .59
Segment-Table Entries . .59
Page-Table Entries .60
Translation .60
Types of Translatlon .60
Translation Process . . .60
Inspection of Control Register 0 . .61
Segment Table Lookup . .61

Page Table Lookup . . 61
Formation of the Real Address . 62
Addresses Translated L.82
Interlocks Between Logical and Real Storage References .« + . .« . . .63
Table Manipulation 64
Translation-Lookaside Buffer . . 64
States of Translation-Table Entries . 65
Use of the Translation-Lookaside Buffer . . 65
Modification of Translation Tables . 66
Reference and Change Recording . .67
Address-Translation Exceptions68
Summary of Dynamic Address Translatlon Formats . o+ o« o« <08

Dynamic address translation provides the ability to
interrupt the execution of a program at an arbitrary
moment, record it and its data on an external medi-
um, such as a direct-access storage device, and at a
later time return the program and the data to differ-
ent main-storage locations for resumption of execu-
tion. The transfer of the program and its data be-
tween main and external storage may be performed
piecemeal, and the return of the information to main
storage may take place in response to an attempt by
the CPU to access it at the time it is needed for ex-
ecution. These functions may be performed without
change or inspection of the program and its data, do
not require any explicit programming convention for
the relocated program, and do not disturb the execu-
tion of the program except for the time delay in-
volved.

Address translation is achieved by treating the.
addresses supplied by and available to the program
as logical addresses. These logical addresses are
translated by means of translation tables to real
addresses when storage is addressed. The translation
occurs in blocks of addresses, called pages.

With appropriate support by an operating system,
the dynamic-address-translation facility may be used
to provide to a user a system wherein his main stor-
age appears to be larger than the installed main stor-

age. This apparent main storage is referred to as
virtual storage, and the logical addresses used to
designate locations in the virtual storage are referred
to as virtual addresses. The virtual storage of a user
may far exceed the size of the real main storage of
the installation and normally is maintained on an
external storage medium. Only the most recently
referred-to pages of the virtual storage are assigned
to occupy blocks of real main storage. As the user
refers to pages of his virtual storage that do not ap-
pear in real main storage, they are brought in to re-
place pages in real main storage that are less likely to
be needed. The swapping of pages of storage is per-
formed by the operating system without the user’s
knowledge.

In the process of replacing blocks of main storage
by new information from an external medium, it
must be determined which block to replace and
whether the block being replaced should be recorded
and preserved on the external medium. To aid in this
decision process, the key in storage is extended with
a reference bit and a change bit.

Dynamic address translation may be specified for
instruction and data addresses generated by the cen-
tral processing unit (CPU), but is not available for
the addressing of data and of control words in 1/0
operations. To facilitate I/O operations in a virtual-

Dynamic Address Translation 57

storage environment, the indirect-data-addressing
facility is provided in the channel.

The address-transiation facility requires that the
CPU be equipped with the extended-control facility,
as address translation is under control of bit 5 of the
extended-control (EC) PSW.

The address-translation facility includes the in-
structions LOAD REAL ADDRESS, RESET REF-
ERENCE BIT, and PURGE TLB. It makes use of
control register 1 and bits 8-12 in control register 0.

Logical Storage Addressing

Address translation is achieved by treating the ad-
dresses supplied by the program as logical addresses.
When the dynamic-address-translation facility is
active, a logical address is translated during a storage
reference into the corresponding real address, which
designates a location in real storage. When the
dynamic-address-translation facility is not installed
or translation is not specified, a real address is iden-
tical to the corresponding logical address.

In the process of translation, two types of tinits of
information are recognized--segments and pages. A
segment is a block of sequential logical addresses
spanning 65,536 (64K) or 1,048,576 (1M) bytes
and beginning at an address that is a multiple of its
size. The size of the segment is controlled by bits 11
and 12 of control register 0. A page is a block of
contiguous storage containing 2,048 (2K) or 4,096
(4K) bytes and beginning at an address that is a
multiple of its size. The size of the page is con-
trolled by bits 8 and 9 of control register O.

The logical address, accordingly, is divided into a
segment-index field, a page-index field, and a byte-
index field. The size of these fields depends on the
segment and page size.

The segment index starts with bit 8 of the logical
address and extends through bit 15 for a 64K-byte
segment size and through bit 11 for a 1M-byte seg-
ment size. The page index starts with the bit follow-
ing the segment index and extends through bit 19 for
a 4K-byte page size and through bit 20 for a 2K-
byte page size. The byte index comprises the remain-
ing 11 or 12 low-order bits of the logical address.
The formats of the logical address are as follows:

For 64K-byte segments and 4K-byte pages:

For 64K-byte segments and 2K-byte pages:

[egmen Page
7 |

0 8 16 21 31

Byte Index

For 1M-byte segments and 4K-byte pages:

e

0 8 12 20 31

Page Index Byte index

For 1M-byte segments and 2K-byte pages:

7 e

0 8 12 21 31

Page Index Byte Index

Logical addresses are translated into real address-
es by means of two translation tables, a segment
table and a page table, which reflect the current as-
signment of real storage. The assignment of real
storage occurs in units of pages, the real locations
Being assigned contiguously within a page. The
pages need not be adjacent in real storage even
though assigned to a set of sequential logical address-
es.

Control

Address translation is controlled by the translation-
mode bit in the PSW and by a set of bits in control
registers 0 and 1. Additional controls are located in
the translation tables.

PSW

When the dynamic-address-translation facility is
installed, the CPU can operate either in the transla-
tion mode or without address translation. The mode
of operation is controlled by bit 5 of the extended-
control PSW, the translation-mode bit. When this
bit is one, translation is specified; when this bit is
zero, no implicit dynamic address translation takes
place, and logical addresses are used as real address-
es.

Control Register 0
Four bits are provided in control register O for the
control of page size and segment size, as follows:

Segment Page
7 Index Index

Byte Index

PS|0O|SS

0 8 16 20 31

58 System/370 Principles of Operation

8 10 12

The bits are defined as follows:

Page Size (PS): Bits 8 and 9 of control register 0
control the size of pages, using the following code:

Bits8 and 9 Page Size

of Control Register 0 (Bytes)
01 2,048 (2K)
10 4,096 (4K)

When bit positions 8 and 9 contain a binary code
other than 01 or 10, a translation-specification ex-
ception is recognized as part of the execution of an
instruction using address translation, and the opera-
tion is suppressed. These bits are initialized to zeros.

Segment Size (SS): Bits 11 and 12 of control regis-
ter O control the size of segments, using the follow-
ing code:

Bits 11 and 12 Segment Size

of Control Register O (Bytes)
00 65,636 (64K)
10 1,048,576 (1M)

When bit position 12 contains a one, a translation-
specification exception is recognized as part of the
execution of an instruction using address translation,
and the operation is suppressed. These bits are ini-
tialized to zeros.

Bit 10 of control register 0 must be zero when an
instruction is executed that uses address translation;
otherwise, a translation-specification exception is
recognized as part of the execution of the instruc-
tion, and the operation is suppressed. The bit is not
checked for zero when address translation is not
installed.

Control Register 1
Bits 0-25 of control register 1 designate the begin-
ning and length of the segment table:

Length Segment-Table Address

0 8 26 31

The fields in the register are allocated as follows:
Segment-Table Length: Bits 0-7 of control register 1
designate the length of the segment table in units of
64 bytes, thus making thie length of the segment
table variable in multiples of 16 entries. The length
of the segment table, in units of 64 bytes, is equal to
one more than the value in bit positions 0-7. The
contents of the length field are used to establish
whether the entry designated by the segment-index
portion of the logical address falls within the seg-
ment table.

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Segment-Table Address: Bits 8-25 of control register 1,
with six low-order zeros appended, form a 24-bit
real address that designates the beginning of the
segment table.

Programming Note
The validity of the information loaded into a control

register, including that pertaining to dynamic address
translation, is not checked at the time the register is
loaded. This information is checked and the pro-
gram exception, if any, is indicated at the time the
information is used.

The information pertaining to dynamic address
translation is considered to be used when an instruc-
tion is executed in the translation mode or when
LOAD REAL ADDRESS is executed. The informa-
tion is not considered to be used when the PSW
specifies translation, but an I/0, external, restart, or
machine-check interruption occurs before an instruc-
tion is executed, including the case when the PSW
specifies the wait state.

Translation Tables

Two types of translation tables are used for the
translation process—a segment table and a page
table. These tables reside in main storage.

Segment-Table Entries
The entry fetched from the segment table designates
the length, availability, and origin of the correspond-
ing page table.

An entry in the segment table has the following
format:

Length [0000 Page-Table Address 001

0 4 8 29 A

The fields in the segment-table entry are allocated
as follows:

Page-Table Length: Bits 0-3 designate the length of
the page table in increments that are equal to a six-
teenth of the maximum size of the table, the maxi-
mum size depending on the size of segments and
pages. The length of the page table, in units one-
sixteenth of the maximum size, is equal to one more
than the value in bit positions 0-3. The length field is
compared against the high-order four bits of the
page-index portion of the logical address to deter-
mine whether the page index designates an entry
within the page table.

Dynamic Address Translation 59

Page-Table Address: Bits 8-28, with three low-order
zeros appended, form a 24-bit real address that des-
ignates the beginning of the page table.

Segment-Invalid Bit: Bit 31 controls whether the
segment associated with the segment-table entry is
available. When bit position 31 contains a zero, ad-
dress translation proceeds using the designated page
table. When the bit is a one, a segment-translation
exception is recognized, and the unit of operation is
nullified.

The handling of bit positions 4-7 and 29-30 of
the segment-table entry depends on the model. Nor-
mally a translation-specification exception is recog-
nized and the unit of operation is suppressed when
these bits are not zeros; however, on some models
the contents of these bit positions may be ignored.

Page-Table Entries

The entry fetched from the page table indicates the
availability of the page and contains the high-order
bits of the real address. The format of the page-table
entry depends on page size, as follows:

Page-table entry with 4K-byte pages:

Page Address 1{jojo /
0 12 15

Page-table entry with 2K-byte pages:

4
Page Address 1|0

/i

15

0 13

The fields in the page-table entry are allocated as
follows:

Page Address: Bits 0-11 or bits 0-12, depending on
the page size, provide the leftmost 12 or 13 bits of a
24-bit real storage address. When the page address
and the contents of the byte-index field of the logi-
cal address are concatenated, with the page address
forming the high-order part, the real storage address
is obtained.

Page-Invalid Bit: Bit 12 or 13, depending on the
page size, controls whether the page associated with
the page-table entry is available. When the bit is
zero, address translation proceeds using the table
entry. When the bit is one, a page-translation excep-
tion is recognized, and the unit of operation is nulli-
fied.

Except for the rightmost bit position of the entry,
the bit positions to the right of the page-invalid bit
must contain zeros; otherwise, a translation-

60 System/370 Principles of Operation

specification exception is recognized as part of the
execution of an instruction using that entry for ad-
dress translation, and the unit of operation is sup-
pressed.

Programming Notes

A segment-table or page-table length code in excess
of the maximum usable length code is valid. For
example, the length code is valid even if the end of
the table falls outside the available main storage or if
part of the table is not addressable by the logical
address.

The low-order bit position of a page-table entry is
unassigned and is not checked for zero; thus, it is
available for programming use.

Translation

Types of Translation

Two types of translation of main-storage addresses
are distinguished--implicit and explicit. An explicit
translation is one that is invoked for the translation
of the operand address of LOAD REAL ADDRESS.
The procedure invoked for the translation of all in-
struction addresses and of addresses of main-storage
operands for all other instructions is referred to as
implicit translation.

Translation Process

Translation is performed by means of a segment
table and a page table, both of which reside in main
storage. It is controlled by the translation-mode bit
in the PSW and by a set of bits in control registers 0
and 1.

The segment-index portion of the logical address
is used to select an entry from the segment table, the
starting address and length of which are specified by
the contents of control register 1. This entry desig-
nates the page table to be used. The page-index por-
tion of the logical address is used to select an entry
from the page table. This entry, the format of which
depends on the size of the page, contains the high-
order bits of the real address that corresponds to the
logical address. The byte-index field of the logical
address is used unchanged for the low-order bit posi-
tions of the real address.

In order to avoid the delay associated with refer-
ences to translation tables in main storage, the in-
formation fetched from the tables normally is placed
also in a special buffer, the translation-lookaside
buffer (TLB), and subsequent translations involving
the same table entries may be performed using the
information recorded in the TLB.

Control Register 1

Logical Address

Segment Page
Index Index Byte Index
o Q
e J
L = Ol ®
o—
Segment Table ™
(_"_L'j Page Table™
¥ !

— 0 ®

Translation-Lookaside
Buffer (TLB)

* In Main Storage

Lo | ¢]

Real Address

@ Information, which may include portions of the logical address and the segment-table address,

is used to search the TLB.
@ If match exists, address from TLB is used in forming the real address.

@ I1f no match exists, table entries in main storage are fetched to translate the address. Resulting
value, in conjunction with search information, is used to form an entry in the TLB.

Translation Process

The translation process, including the effect of
the TLB, is shown graphically in the figure
"Translation Process."

Inspection of Control Register 0

The interpretation of the logical address for transla-
tion purposes is controlled by the segment size and
page size, which are specified by the contents of bit
positions 8-12 of control register 0. If bit positions
8-9 or 11-12 contain an invalid code or if bit 10 is
one, a translation-specification exception is recog-
nized, and the operation is suppressed.

Segment Table Lookup

The segment-index portion of the logical address is
used to select a segment-table entry that designates
the page table to be used in arriving at the real ad-
dress. The address of the segment-table entry is ob-
tained by appending six low-order zeros to the con-
tents of bit positions 8-25 of control register 1 and
adding the segment index to this value, with the low-
order bit position of the segment index aligned with
bit position 29 of the segment-table address.

As part of the segment-table lookup process, the
segment index is compared against the segment-table
length, bits 0-7 of control register 1, to establish
whether the addressed entry is within the table.

With 1M-byte segments, entries for all addressable
segments are contained in a table of minimum length
(length code of 0). With 64K-byte segments, four
high-order zeros are appended to the contents of bit

positions 8-11 of the logical address, and this ex-
tended value is compared against the eight-bit
segment-table length. If the value in the segment-
table-length field is less than the value in the corre-
sponding bit positions of the logical address, a
segment-translation exception is recognized, and the
unit of operation is nuilified.

If the storage address generated for fetching the
segment-table entry refers to a location outside the
main storage of the installed system, an addressing
exception is recognized, and the unit of operation is
suppressed. ’

Bit 31 of the entry fetched from the segment ta-
ble specifies whether the corresponding segment is
available. This bit is inspected, and, if it is one, a
segment-translation exception is recognized, with the
unit of operation nullified. Handling of bit positions
4-7 and 29-30 of the segment-table entry depends
on the model: normally a translation-specification
exception is indicated and the unit of operation is
suppressed when they do not contain zeros; howev-
er, on some models they may be ignored.

When no exceptions are recognized in the process
of segment-table lookup, the entry fetched from the
segment table designates the length and beginning of
the corresponding page table.

Page Table Lookup

The page-index portion of the logical address, in
conjunction with the page-table address derived
from the segment-table entry, is used to select an
entry from the page table. The page-table-entry ad-

Dynamic Address Translation 61

dress is obtained by appending three low-order zeros
to the contents of bit positions 8-28 of the segment-
table entry and adding the page index to this value.
The addition is performed with the low-order bit of
the page-index aligned with bit 30 of the page-table
address.

As part of the page-table lookup process, the four
high-order bits of the page index are compared
against the page-table length, bits 0-3 of the
segment-table entry, to establish whether the ad-
dressed entry is within the table. If the value in the
page-table-length field is less than the value in the
four high-order bit positions of the page-index field,
a page-translation exception is recognized, and the
unit of operation is nullified.

If the storage address generated for fetching the
page-table entry refers to a location outside the main
storage of the installed system, an addressing excep-
tion is recognized, and the unit of operation is sup-
pressed.

The entry fetched from the page table indicates
the availability of the page and contains the high-
order bits of the real address. The page-invalid bit is
inspected to establish whether the corresponding
page is available. If this bit is one, a page-translation
exception is recognized, and the unit of operation is

nullified. If bit positions 13-14 for 4K-byte pages or

bit position 14 for 2K-byte pages contains one, a
translation-specification exception is recognized, and
the unit of operation is suppressed.

Formation of the Real Address

When no exceptions in the translation process are
encountered, the real page address obtained from
the page-table entry and the byte-index portion of
the logical address are concatenated, with the page
address forming the high-order part. The result
forms the real storage address.

Whenever access to main storage is made during
the address translation process for the purpose of
fetching an entry from a segment or page table, stor-
age protection is ignored; that is, the reference is
made as if the storage location containing the
translation-table entry were ‘not protected against
fetching.

Programming Note

When more than one exception is encountered in the
process of address translation, only the exception
with the highest priority is indicated with the pro-
gram interruption. The priority in which exceptions
are recognized is listed in the table 'Priorities of
Access Exceptions" in the chapter "Interruptions."

62 System/370 Principles of Operation

Addresses Translated

All main storage addresses that are explicitly speci-
fied by the program and are used by the CPU to
refer to main storage for an instruction or an oper-
and are logical addresses and are subject to dynamic
address translation. Analogously, the corresponding
addresses indicated to the program on an interrup-
tion or as the result of executing an instruction are
logical, as are the addresses in control registers 10
and 11 designating the starting and ending locations
for program-event recording (PER).

Translation is not applied to addresses explicitly
designating keys in storage (operand addresses in
SET STORAGE KEY, INSERT STORAGE KEY,
and RESET REFERENCE BIT) and to quantities
that are formed as storage addresses from the values
designated in the B and D fields of an instruction but
that are not used to address main storage. The latter
include operand addresses in LOAD ADDRESS,
MONITOR CALL, and the shifting and I/0 in-
structions. Similarly, translation is not applied to the
addresses implicitly used by the CPU or channel for
such sequences as interruptions, updating the inter-
val timer at location 80, address translation, and
logout, including the machine-check-extended-
logout address in control register 15. However, when
the program explicitly designates these locations as
the source of an operand or instruction, the address-
es are subject to translation.

Dynamic address translation is not applied to the
addresses used by channels to transfer data, channel-
command words, or indirect-data-address words.
Similarly, dynamic address translation is not applied
to the I/O-extended-logout address at location 172.

The handling of storage addresses associated with
DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is summarized in
the charts "Types of Addresses' and ''Handling of

Absolute, real, and logical addresses are distinguished on the
basis of the transformations that are applied to the address
during a storage access.

An absolute address is the address assigned to a main-storage
location. An absolute address is used for a storage access
without any transformations performed on it.

A real address identifies a location in real main storage. When
a real address is used for an access to main storage, it is
converted, by means of prefixing, to an absolute address.

When a logical address is used for an access to main storage,
it is translated, by means of dynamic address translation, to
a real address and subsequently is converted, by means of
prefixing, to an absolute address.

Types of Addresses

Addresses." Prefixing, when provided, is applied
after the address has been translated by means of
the dynamic-address-translation facility. For a de-
scription of prefixing, see '"Prefixing'" in the chapter
"Multiprocessing."

Interlocks Between Logical and Real
Storage References

When dynamic address translation is not invoked,
the results stored by one instruction appear to that
CPU to be completed before execution of the next
instruction, including the instruction fetch, is begun.
When an instruction has two main-storage operands,
the handling of overlapped main-storage operands is
included as part of the instruction definition.

When dynamic address translation is invoked and
translation tables are constructed such that a loca-
tion in real storage is designated by one and only
one logical address, overlapping operands and
changes to subsequent instructions are handled in
the same way as when the references are made by
real addresses.

With dynamic address translation, a location in
real main storage may have multiple logical address-
es. That is, the translation tables may be set up in
such a way that more than one logical page address
(segment-index and page-index portion of logical
address) is translated to the same real page address.
Only when the tables are set up in this way and

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

when more than one logical page address is used to
refer to a real location as a source of an instruction or
operand, the following exceptions to the normal inter-
locks occur:

1. When an instruction changes the contents of a
storage location from which a subsequent in-
struction has been prefetched and when differ-
ent logical page addresses are used to designate
that location for storing the result and fetching
the instruction, the use of the common real
location is not necessarily recognized. An in-
struction may be prefetched using a translated
logical address only when the associated
dynamic-address-translation table entries are
attached and valid. Instructions which are pre-
fetched may be interpreted for execution only
for the same logical address for which the in-
struction was prefetched. All copies of pre-
fetched instructions are discarded when the
CPU enters or leaves translation mode, when
changes are made to the translation parameters
in control registers 0 and 1 while the CPU is in
the translation mode, when a serializing op-
eration is performed, and when the CPU enters
the operating state.

2. When both operands in a unit of operation
include the same real storage location (the oper-
ands overlap in real storage) and the common
location is designated in the two operands by

L.ogical Addresses Explicitly Designated by the Program:

e Instruction address in PSW

Branch addresses

Addresses of operands in main storage

Operand address in LOAD REAL ADDRESS

PER starting address in control register 10 and PER ending
address in control register 11

Real Addresses Explicitly Designated by the Program:

® Operand addresses in SET STORAGE KEY, INSERT
STORAGE KEY, and RESET REFERENCE BIT

o MCEL address in control register 15

® Segment-table address in control register 1

o Page-table address in segment-table entry

o Page address in page-table entry

Absolute Addresses Explicitly Designated by the Program:
Prefix value

CCW address in CAW

Data address in CCW

CCW address in a CCW specifying transfer in channel
Data address in indirect-data-address words

I0EL address at real location 172

Addresses Not Used to Address Storage:

o Operand addresses specifying the amount of shift in the
shift insrtuctions

Operand address in LOAD ADDRESS

Operand address in MONITOR CALL

Second-operand address in SIGNAL PROCESSOR

1/0 addresses in 1/0 instructions

Handling of Addresses

Real Addresses Used Implicitly :

® Addresses of PSWs used during interruption

o Address used by CPU to update interval timer at real
location 80

e Address of CAW, CSW, and other locations used during an
1/0 interruption or during execution of an 1/O instruction,
including STORE CHANNEL ID

Absolute Addresses Used Implicitly:
® Addresses used for the store-status function

Logical Addresses Provided to the Program:

o Address stored in instruction-address field of old PSW on
interruption

o Address stored by BRANCH AND LINK

® Address stored in register 1 by TRANSLATE AND TEST
and EDIT AND MARK

® Address stored at real location 144 on a program interrup-
tion for page-translation or segment-translation exception

® Address stored at real location 152 on a program interrup-
tion for PER

Real Addresses Provided to the Program:

o The translated address generated by LOAD REAL ADDRESS

@ Address of segment-table entry or page-table entry provided
by LOAD REAL ADDRESS

'Absolute Addresses Provided to the Program:
e Failing-storage address at real location 248
o CCW address in CSW

Dynamic Address Translation 63

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

different logical page addresses; the use of the
common real location is not necessarily recog-
nized.

When the use of a common real storage location
is not recognized, storing into the location does not
necessarily appear to be completed by the time the
instruction or operand is fetched from the location.
In the case of unrecognized operand overlap, the
portion of the instruction definition pertaining to
overlap does not necessarily apply.

Any change to the key in storage appears to be
completed before the following reference to the as-
sociated storage block is made, regardiess of whether
the reference to the storage location is made by a
logical or real address. Analogously, any prior refer-
ences to the storage block appear completed when
the key for that block is changed or inspected.

Since the interlocks discussed in this section per-
tain to references made by the same CPU, a com-
mon real location implies also a common absolute
location. This is true because, for any one CPU, a
one-to-one correspondence exists between real and
absolute addresses, and a change in the prefix value,
changing this mapping, causes serialization.

The interlocks between storage references are
summarized in the table ""Summary of Interlocks
Between Storage References."

Table Manipulation

Translation-Lookaside Buffer

To enhance performance, the dynamic-address-
translation mechanism normally is implemented such
that some of the information specified in the seg-

ment and page tables is maintained in a special buff-

er, referred to as the translation-lookaside buffer
(TLB). The CPU necessarily refers to a table entry
in main storage only for the initial access to that
entry. This information subsequently may be main-
tained in the TLB, and all subsequent translations
involving translation-table entries from the same real
storage location may be performed using the infor-
mation recorded in the TLB. The presence of the TLB
affects the translation process to the extent that a
modification of the contents of a table entry in main
storage does not necessarily have an immediate ef-
fect, if any, on the translation.

The size and the structure of the TL.B depends on
the model. For instance, the TLB may be imple-
mented such as to contain only a few entries pertain-
ing to the currently designated segment table, each
entry consisting of the high-order portions of a logi-
cal address and its corresponding real address; or it
may contain arrays of values where the real page
address is selected on the basis of the current
segment-table starting address, page-size designa-
tion, segment-size designation, and the high-order
bits of the logical address. Entries within the TLB
are not explicitly addressable by the program.

The following sections describe the conditions
under which information may be placed in the TLB
and information from the TLB may be used for ad-
dress translation, and describe how changes to the
translation tables affect the translation process. In-
formation is not necessarily retained in the TLB
under all conditions for which such retention is per-
missible. Furthermore, information in the TLB may

Interlocks between two references by a single CPU to a location in real storage when the same real

location is designated by different addresses.

Is it necessarily recognized that reference is made to the same real location ?

Addresses used to designate a
location in real storage

References within
Same Instruction

References by Two Instructions

Operand-Operand Operand-Operand Operand-Instruction
Real X and Real X v Yes Yes Yes
Real X and Logical A — Yes Yes
Logical A and Logical A Yes Yes Yes
Logical A and Logical B No Yes No*

Explanation:
— Not applicable.

*

Reference to the same real location is recognized when a serialization function occurs between the two references.

Real X A real address designating location X in real storage.
Logical A A logical address A designating location X in real storage.
Logical B A logical address B designating location X in real storage.

Summary of Interlocks Between Storage References

64 System/370 Principles of Operation

be purged under conditions additional to those for
which purging is mandatory.

States of Translation-Table Entries

The effects of any manipulation of the contents of a
table entry by the program and the recording of its
contents in the TLB depend on whether the entry is
valid, on whether the entry is attached, and on
whether the entry is active.

The valid state denotes that the segment or page
associated with the table entry is available. An entry
is valid when the segment-invalid bit or page-invalid
bit in the entry is zero. A segment-translation or
page-translation exception is recognized when an at-
tempt is made to use an invalid table entry for trans-
lation.

The attached state denotes that the CPU can
attempt to use the table entry for implicit address
translation and hence depends on the state of the
CPU as specified by the PSW, control register 1, and
bit positions 8-12 of control register 0.

A segment-table entry is attached to a CPU when
all of the following three conditions are met:

« The current PSW specifies the translation mode.

« The entry is within the segment table designated
by control register 1.

« With the segment size currently specified in
control register 0, the entry can be designated
by a logical address.

The PSW is considered to specify the translation
mode when bit 5 is one and the EC mode is speci-
fied, regardless of whether the contents of any other
PSW fields are due to cause an exception to be rec-
ognized.

A page-table entry is attached to a CPU when it
is within the page table designated by the page-table
address and page-table length either in an attached
and valid segment-table entry or in a TLB copy of
an attached segment-table entry and by the page-
size specification in control register 0.

The active state denotes that the table entry may
remain recorded in the TLB.

A table entry becomes active when it is made
both valid and attached or after the TLB is purged
with the table entry both valid and attached. A table
entry ceases being active when the TLB is purged.
Although all entries become inactive during a purge
of the TLB, entries that are both valid and attached
become active at the completion of the purge.

Programming Notes
The segment size controls how many segment-table

entries can be referred to for translation. Both the
page size and segment size control selection of page-

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

table entries and hence may affect whether or not an
entry is attached.

Although a table entry becomes active when it is
made both valid and attached, it need not remain
valid and attached to remain active. For example, an
attached table entry remains active when the I bit is
set to one, and a valid table entry remains active
when it is made unattached.

Use of the Translation-Lookaside Buffer
A segment-table entry or a page-table entry may be
placed in the TLB only when the entry is attached
and the I bit in the entry is zero. The entry may be
placed in the TLB as soon as it becomes attached
and valid.

Information from a TLB copy of a segment-table
entry may be used for implicit address translation
only when the TLB entry was formed using informa-
tion that was fetched from storage as an attached
and valid segment-table entry, only when that real
storage location is selected as a segment-table entry
during the translation process, and only when the
table entry is attached at the time of the selection.

Information from a TLB copy of a page-table
entry may be used for implicit address translation
only when the TLB entry was formed using informa-
tion that was fetched from storage as an attached
and valid page-table entry, only when that real stor-
age location is selected as a page-table entry during
the translation process and the table entry is attached
at the time of selection, and only when the
page size at the time of forming the TLB copy was
the same as the current page size.

The operand address of LOAD REAL AD-
DRESS is translated without the use of the TLB
contents. Translation in this case is performed by the
use of the designated tables in main storage.

All information in the TLB is necessarily cleared
only by execution of PURGE TLB, SET PREFIX,
or CPU reset. ’

Programming Notes
No entries can be placed in the TLB in the BC mode
or when translation is not specified, because the
table entries at this time are not attached. In particu-
lar, translation of the operand address of LOAD
REAL ADDRESS, with translation suppressed, does
not cause entries to be placed in the TLB.
Conversely, when translation is specified, infor-
mation may be loaded into the TLB from all
translation-table entries that could be used for ad-
dress translation, given the current designation of
page size, segment size, segment-table address, and
segment-table length. The loading of the TLB does
not depend on whether the entry is used for transla-

Dynamic Address Translation 65

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

tion as part of the execution of the current instruc-
tion, and such loading can occur when the wait state
is specified. Similarly, information from a segment-
table or page-table entry having a format error may
be recorded in the TLB.

More than one copy of a table entry may exist in
the TLB. For example, some implementations may
cause a copy of a valid table entry to be placed in
the TLLB for each segment-table address by which
the entry becomes attached, and some implementa-
tions may cause a valid page-table entry to be placed
in the TLB for each attached and valid segment-
table entry by which the page-table entry is desig-
nated.

Modification of Translation Tables

When an inactive, attached, and invalid table entry is
made valid, the change takes effect immediately.
Similarly, when an inactive, unattached, and valid
page-table entry is made attached by making an
inactive, attached, and invalid segment-table entry
valid, the change takes effect immediately.

However, since the exceptions associated with
dynamic address translation may be established by a
pretest for operand accessibility that is performed as
part of the initiation of the execution of the instruc-
tion, a segment-translation or page-translation ex-
ception may be indicated on the basis of the state of
the table entry at the start of the execution of an
instruction. Consequently, a segment-translation or
page-translation exception may be indicated when a
table entry is invalid at the start of execution even if
the instruction would have validated the table entry
it uses and the table entry would have appeared valid
if the instruction were considered to process the
operands one byte at a time. See the section
"Recognition of Access Exceptions' in the chapter
"Interruptions' for the recognition of dynamic-
address-translation exceptions for the interruptible
instructions.

A change to an active table entry may take effect
for implicit translation any time from the instant of
the change through the completion of the following
purging of the TLB.

When an active table entry is changed, either to
another value suitable for translation, or to a value
that prohibits its use for translation, any subsequent
attempt to use the entry for implicit address transla-
tion before the TLB is purged may yield unpredicta-
ble results. The use of the new value may begin be-
tween instructions or during execution of an instruc-
tion, including the instruction that caused the
change. Moreover, until the TLB is purged, the TLB
may contain both the old and the new values, and it
is unpredictable whether the old or new value is se-

66 System/370 Principles of Operation

lected for a particular access. If the use of the new
value of the entry causes an exception, the exception
may or may not cause an interruption to occur, and
if an interruption does occur, the instruction execu-
tion may be terminated even though the exception
would normally cause suppression or nullification.

Manipulation of attached table entries may cause
spurious table-entry values to be recorded in a TLB.
For example, if changes are made piecemeal, modifi-
cation of a valid attached entry may cause a partially
updated entry to be recorded, and, if an intermediate
value is introduced in the process of the change, a
supposedly invalid entry may temporarily appear
valid and may be recorded in the TLB. Such an in-
termediate value may be introduced if the change is
made by an I/O operation that is retried, or if an
intermediate value is introduced during the execution
of a single instruction.

When LOAD CONTROL changes the segment
size, page size, segment-table address, or segment-
table length, the values of these fields at the start of
the operation are in effect for the duration of the
operation.

The relation between the states of table entries
and their use is summarized in the table '""Use of
Translation Tables."

Programming Notes

When an instruction, such as MOVE (MVC),
changes an attached table entry, including a change
that makes the entry invalid, and subsequently uses
the entry for implicit translation, a changed entry is
being used without a prior purging of the TLB, and
the associated unpredictability of result values and
of exception indication applies.

All modifications to translation tables by the pro-
gram should consider the effect of the TLB on the
use of the tables in main storage and the possible
effects of intermediate result values and of piece-
meal changes. The following rules are recommended
for changing translation tables. If these rules are
observed, translation is performed as if the table
entries from main storage were always used for the
translation process.

1. An entry must not be changed, other than
changing the low-order bit of a page-table en-
try, while it is being used by any CPU.

2. When any change is made to a table entry,
other than a change to the low-order bit of a
page-table entry, each CPU in which the entry
is active must issue PURGE TLB after the
change occurs and prior to the use of the entry
for implicit address translation by that CPU.

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Can Copy of Can Table Entry Can Table Entry Can TLB Copy Be
Table Entry Be Be Fetched for Be Used for Fetched for Implicit
State of Table Entry inTLB ? Translation ? Translation ? Translation ?
Active Attached Valid Yes Yes Yes Yes
Active Attached Invalid Yes! Yes No Yes
Active Unattached Valid Yes! No No No
Active Unattached Invalid Yes! No No No
Inactive Attached Valid * * * *
Inactive Attached Invalid No Yes No No
Inactive Unattached Valid No No No No
Inactive Unattached Invalid No No No No
Explanation:

1 The TLB may contain a copy of a previously attached and valid entry.

* This state cannot exist. An attached and valid table entry is active.

Use of Translation Tables

3. When any change is made to an invalid entry in
such a way as to cause intermediate valid val-
ues to appear in the entry, each CPU to which
the entry is attached must issue PURGE TLB
after the change occurs and prior to the use of
the entry for implicit address translation by
that CPU.

Note that when an invalid page-table entry is
made valid without introducing intermediate valid
values, the TLB need not be purged in a CPU in
which the entry previously was inactive. Similarly,
when an invalid segment-table entry is made valid
without introducing intermediate valid values, the
TLB need not be purged in a CPU in which the
segment-table entry and all page-table entries
attached by it previously were inactive.

Execution of the PURGE TLB instruction may
have an adverse effect on the performance of some
models. Use of this instruction should, therefore, be
minimized in conformity with the above rules.

Reference and Change Recording

Reference recording provides information for use in
selecting storage blocks for page replacement.
Change recording provides information as to which
pages have to be saved when they are replaced by
new pages. Both reference and change recording are
associated with the dynamic-address-translation
facility.

When the dynamic-address-translation facility is
installed, the key in storage is extended with two
additional bits. Bit 5, the reference bit, normally is
set to one each time a location in the corresponding
storage block is referred to either for storing or
fetching of information. Bit 6, the change bit, is set
to one each time information is stored in the corre-
sponding storage block. The recording of references

and changes is not contingent on whether the CPU
is in the extended-control or basic-control mode or
whether address translation is specified.

Reference and change recording takes place for
any main-storage access and applies to accesses
made by a CPU, as well as to those due to I/O oper-
ations. Hence, references to a main-storage location
associated with interruptions and 1/0 instructions,
such as occur to the CAW, CSW, or PSW locations,
are included. A translation-table lookup in the pro-
cess of address translation is considered a reference,
provided the table in main storage has actually been
referred to. It is unpredictable whether updating of
the interval timer causes change and reference bits
for location 80 to be turned on. References to the
operand locations of SET STORAGE KEY, IN-
SERT STORAGE KEY, and RESET REFERENCE
BIT do not cause reference or change to be record-
ed.

The change bit is not turned on for an attempt to
store if the storage reference is not permitted, re-
gardless of whether the CPU instruction responsible
for the reference is suppressed or terminated. In
particular, a CPU reference causing a protection,
addressing, segment-translation, or page-translation
exception, or an I/0 reference to an invalid or pro-
tected location does not cause the change bit to be
turned on.

The record of references provided by the refer-
ence bit is substantially accurate. The reference bit
may be turned on by fetching data or instructions
that are neither designated nor used by the program,
and, under certain conditions, a reference may be
made without the reference bit being turned on.
Under certain unusual conditions, a reference bit
that is on may be turned off by other than explicit
program action.

Reference and change recording operates on
2,048-byte blocks regardless of the page size in-

Dynamic Address Translation 67

voked. With a 4,096-byte page size, two keys are
associated with a page.

Programming Note
The accuracy of reference recording is such as to
allow for effective operation of paging algorithms.
The reference bit cannot be used to establish the
usage of pages containing translation tables since,
after the initial reference, the tables may be used by
means of references to the translation-lookaside
buffer, without any fetching of the table entries from
main storage.

Address-Translation Exceptions

When the dynamic-address-translation facility is
installed, three additional program-exception condi-
tions are introduced: segment-translation exception,
page-translation exception, and translation-
specification exception. The CPU cannot be disabled
for the translation exceptions.

The presence of the dynamic-address-translation
facility also introduces new conditions that are rec-
ognized as addressing exceptions. When address
translation is invoked, an addressing exception is
recognized when an attempt is made to use a
segment-table entry or a page-table entry that is
designated at a location outside the available main
storage of the installed system. The unit of operation
is suppressed.

The handling of all exceptions associated with
dynamic address translation is summarized in the
table '"Handling of Access Exceptions' in the chap-
ter ""Interruptions."

Summary of Dynamic Address
Translation Formats

The first table summarizes the possible combina-
tions of the page-address and byte-index fields in the
formation of a real storage address.

The eight-bit length field in control register 1
provides for a maximum length code of 255 and
permits designating a segment table of 16,384 bytes,
or 4,096 entries, which is more than can be referred
to for translation purposes by the logical address.
With 1M-byte segments, only 16 segments can be
addressed, requiring a segment table of 64 bytes. A
table of 64 bytes is specified by a length code of 0
and is the smallest table that can be specified. With
64K-byte segments, up to 256 segments can be ad-
dressed, requiring at the most a segment table of
1,024 bytes and a length code of 15. These relations
are summarized in the second table.

The third table lists the maximum sizes of the
page table and the increments in which the size of
the page table can be controlled.

Real Storage Address

Page Address

Byte Index

Size of Page Bit Positions in Page-Table Bit Positions in Logical
(Bytes) Entry No. of Bits Address No. of Bits
2K 0-12 13 21-31 11
4K 0-11 12 20-31 12

Maximum Segment Table

Size of Segment Segment Index Field Number of Addressable Size Usable Length Table Increment
(Bytes) Size (Bits) Segments (Bytes) Code (Bytes)
64K 8 256 1,024 15 64
™ 4 16 64 0 64
Size of Maximum Page Table
Segment Page Page Index Field Number of Pages in Size Usable Length Table Increment
(Bytes) (Bytes) Size (Bits) Segment (Bytes) Code (Bytes)
64K 2K 5 32 64 15 4
64K 4K 4 16 32 15 2
™ 2K 9 512 1,024 15 64
™ 4K 8 256 512 15 32

Summary of DAT Formats

68 System/370 Principles of Operation

Contents

Interruption Action .
Source ldentification
Enabling and Disabling .
Instruction-Length Code

Zero ILC .

ILC on Instruction Fetch Exceptlons

Point of Interruption
Instruction Execution
Types of Ending

Execution of Interruptible Instructlons

Machine-Check Interruption
Program Interruption .
Program Interruption Condntlons .

Operation Exception
Privileged-Operation Exceptlon
Execute Exception .
Protection Exception
Addressing Exception
Specification Exception
Data Exception .
Fixed-Point-Overflow Exceptlon
Fixed-Point-Divide Exception .
Decimal-Overflow Exception
Decimal-Divide Exception .
Exponent-Overflow Exception
Exponent-Underflow Exception
Significance Exception . .
Floating-Point-Divide Exception
Segment-Translation Exception
Page-Translation Exception

Translation-Specification Exception

Special-Operation Exception

Monitor Event

Program Event .
Recognition of Access Except:ons

Handling of Multiple Program-I nterruption Condltlons

Supervisor-Call Interruption
External Interruption
Interval Timer
Interrupt Key
External Signal
Malfunction Alert
Emergency Signal
External Call .
Time-of-Day Clock Sync Check
Clock Comparator
CPU Timer
Input/Output lnterruptlon
Restart . -
Priority of Interruptlons [
Assigned Main-Storage Locations .
Real Main Storage
Absolute Main Storage .

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

70
70
70
71
71
73
74
74
74
74
75
75
75
76
76
76
76
76
77
78
78
78
78
78
78
79
79
79
79
79
79
80
80
80
80
83
84
84
86
86
86
86
87
87
87
87
88
88
88
89
90
90
91

Interruptions

Interruptions

69

The interruption system permits the CPU to change
its state as a result of conditions external to the sys-
tem, within the system, or within the CPU itself. To
permit fast response to conditions of high priority
and immediate recognition of the type of condition,
interruption conditions are grouped into six classes:
input-output, external, program, supervisor call, ma-
chine check, and restart.

Interruption Action

An interruption consists in storing the current PSW
as an old PSW, storing further detail information
identifying the cause of the interruption, and fetch-
ing a new PSW. Processing resumes as specified by
the new PSW.

The old PSW stored on an interruption normally
contains the address of the instruction that would
have been executed next had the interruption not
occurred, thus permitting resumption of the inter-
rupted program. For program and supervisor-call
interruptions, the information stored also contains a
code that identifies the length of the last-executed
instruction, thus permitting the program to respond
to the cause of the interruption. In the case of some
program conditions for which the execution of the
instruction causing the interruption normally is re-
sumed, the instruction address directly identifies the
instruction last executed.

Except for restart, an interruption can take place
only when the CPU is in the operating state. The
restart interruption can occur with the CPU either
stopped or operating.

The details of source identification, location de-
termination, and instruction execution are explained
in later sections and are summarized in the table
"Interruption Action."

Programming Note

See the section ""Program Status Word'' in the chap-
ter ""System Control'" for details as to when the new
PSW introduced by an interruption is checked for
format errors.

Source Identification

The six classes of interruptions (I/0, external, pro-
gram, supervisor call, machine check, and restart)
are distinguished by the storage locations at which
the old PSW is stored and from which the new PSW
is fetched. For most classes, the causes are further
identified by an interruption code and, for some
classes, by additional information placed in main
storage during the interruption. For I/0, external,
supervisor-call, and program interruptions, the inter-
ruption code comprises 16 bits and is placed in the
old PSW when the old PSW specifies the BC mode

70 System/370 Principles of Operation

and in separate main-storage locations when the EC
mode is specified.

For I/0 interruptions, additional information is
provided by the contents of the channel status word
(CSW) stored at location 64, and further informa-
tion may be provided by the limited channel logout
stored at location 176 and by the I/O extended log-
out.

For program interruptions, additional information
may be provided in the form of the translation-
exception address, monitor-class number and moni-
tor code, and PER code and PER address stored at
locations 144-159.

For machine-check interruptions, the interruption
code comprises 64 bits and is placed in main storage
at location 232. Additional information for identify-
ing the cause of the interruption and for recovering
the state of the CPU may be provided by the con-
tents of the logout and save areas.

The assignment and format of the permanently
allocated storage locations is shown in the table
"Permanently Assigned Storage Locations' at the
end of this chapter.

Enabling and Disabling

The CPU may be enabled or disabled for all 1/0,
external, and machine-check interruptions and for
some program interruptions. When the CPU is ena-
bled for a class of interruptions, these interruptions
can take place. When the CPU is disabled, the condi-
tions that cause I/O interruptions remain pending,
and the disallowed program-interruption conditions
are ignored, except that some causes are indicated
also by the setting of the condition code. External
and machine-check conditions, depending on the
type, are ignored or remain pending.

Program interruptions for which mask bits are not
provided, as well as the supervisor-call and restart
interruptions, are always taken.

Whether the CPU is enabled or disabled for a
particular type of interruption is controlled by mask
bits in the current PSW and in control registers. The
setting of the mask bits may disallow all interrup-
tions within the class or may selectively allow inter-
ruptions for particular causes. This control is pro-
vided by assigning a mask bit in the PSW to a partic-
ular cause, such as in the case of the four maskable
program interruption conditions, or by providing a
hierarchy of masks, where a mask in the PSW con-
trols all interruptions within a type, and masks in
control registers provide more detailed control over
the sources.

When the mask bit is one, the CPU is enabled for
the corresponding interruptions. When the mask bit
is zero, these interruptions are disallowed. Interrup-

tions that are controlled by a hierarchy of masks are

allowed only when all mask bits in the hierarchy are
ones.

Programming Note

Mask bits in the PSW provide a means of disabling
all maskable interruptions; thus, subsequent inter-
ruptions can be disallowed by the new PSW intro-
duced by an interruption. Furthermore, the mask
bits can be used to establish a hierarchy of interrup-
tion priorities, where a condition in one class can
interrupt the program handling a condition in anoth-
er class but not vice versa. To prevent an
interruption-handling routine from being interrupted
before the necessary housekeeping steps are per-
formed, the new PSW must disable the CPU for
further interruptions within the same class or within
a class of lower priority.

Since the mask bits in control registers are not
changed as part of the interruption procedure, these
masks cannot be used to prevent an interruption
immediately after a previous interruption in the same
class. The mask bits in control registers provide a
means for selectively enabling the CPU for some
sources and disabling it for others within the same
class.

Instruction-Length Code

The instruction-length code (ILC) occupies two bit
positions and provides the length of the last instruc-
tion executed. It permits identifying the instruction
causing the interruption when the instruction address
in the old PSW designates the next sequential in-
struction. The ILC is provided also by the BRANCH
AND LINK instructions.

In an old PSW specifying the BC mode, the
instruction-length code is stored in bit positions 32
and 33. It is meaningful, however, only after a pro-
gram or supervisor-call interruption. For I/0, exter-
nal, machine-check, and restart interruptions, the
code does not indicate the length of the last-
executed instruction and is unpredictable. Similarly,
the ILC is unpredictable in the PSW stored during
execution of the store-status function and when the
PSW is displayed.

When the old PSW specifies the EC mode, the
instruction-length code for supervisor-call and pro-
gram interruptions is stored in bit positions 5 and 6
of the bytes at locations 137 and 141, respectively.
For I/0, external, machine-check, and restart inter-
ruptions the code is not stored.

For supervisor-call and program interruptions, a
nonzero instruction-length code identifies in half-
words the length of the instruction that was last ex-
ecuted. Whenever an instruction is executed by
means of EXECUTE, instruction-length code 2 is
set to indicate the length of EXECUTE and not that

of the subject instruction.
The value of a nonzero instruction-length code is

related to the leftmost two bits of the instruction.
The value is not contingent on whether the operation
code is assigned or on whether the instruction is
installed. The following table summarizes the mean-
ing of the instruction-length code:

ILC

Decimal Binary Instruction Bits 0-1 Instruction Length

0 00 Not available

1 01 00 One halfword

2 10 01 Two halfwords

2 10 10 Two halfwords

3 11 11 Three halfwords
Zero ILC

Instruction-length code 0, after a program interrup-
tion, indicates that the location of the instruction
causing the interruption is not made available to the
program. Instruction-length code 0 occurs only in
the following cases:

1. When a specification exception is recognized
that is due to a PSW format error, other than
one due to an odd instruction address, and the
invalid PSW has been introduced by LOAD
PSW or an interruption. In the case of LOAD
PSW, the address of the instruction has been
replaced by the new PSW. When the invalid
PSW is introduced by an interruption, the for-
mat error cannot be attributed to an instruc-
tion.

2. On some models, when an addressing exception
(excluding those detected during implicit refer-
ences to dynamic-address-translation-table
entries) or a protection exception is recognized
during a store-type reference. In these cases
the interruption due to the exception is de-
layed, the length of time or number of instruc-
tions of the delay being unpredictable. Neither
the location of the instruction causing the ex-
ception nor the length of the last-executed in-
struction is made available to the program.

When the new PSW introduced by LOAD PSW
or a supervisor-call interruption has a format error,

Interruptions

71

Source
tdentification

Interruption

Code

Machine check (old PSW 48, new PSW 112)

Exigent condition
Repressible cond.

mmmmmmmm lnnnnnwnnunnﬂ
mmmmmmmm lnnwnnwnn"nnﬂ

Supervisor call (old PSW 32, new PSW 96)

Instruction bits 00000000

Program (oid PSW 40, new PSW 104)

Operation 00000000
Privileged oper. 00000000
Execute 00000000
Protection 00000000
Addressing 00000000
Specification 00000000
Data 00000000
Fixed-pt. overflow 00000000
Fixed-point divide 00000000
Decimal overflow 00000000
Decimal divide 00000000
Exponent overflow 00000000
Exponent underflow 00000000
Significance 00000000
Floating-pt. divide 00000000
Segment transl. 00000000
Page translation 00000000
Translation spec 00000000
Special operation 00000000
Monitor event 00000000
Program event 00000000

External (old PSW 24, new PSW 88)

Interval timer 00000000
| interrupt key 00000000
External signal 2 00000000
External signal 3 00000000
Externat signal 4 00000000
External signal 5 00000000
External signal 6 00000000
External signal 7 00000000
Malfunction alert 00010010
.Emergency signal 00010010
External call 00010010
TOD clock sync chk 00010000
Clock comparator 00010000
CPU timer 00010000

rrrrrerrr

n0000001
n0000010
n0000011
n0000100
n0000101
n0000110
n0000111
n0001000
n0001001
n0001010
n0001011
n0001100
n0001101
n0001110
n0001111
n0010000
n0010001
n0010010
n0010011
n1000000
1e0cecce?

1nnnnnnn
ninnnnnn
nninnnnn
nnninnnn
nnnninnn
nnnnninn
nnnnnnin
nnnnnnni
00000000
00000001
00000010
00000011
00000100
00000101

Input/Output {old PSW 56, new PSW 120)

Channel O 00000000
Channel 1 00000001
Channel 2 00000010
Channel 3 00000011
Channel 4 00000100
Channel 5 00000101
Channels 6 & on cceceece

Restart (old PSW 8, new PSW 0)

Restart key 00000000

Interruption Action

dddddddd?
dddddddd?
dddddddd?
dddddddd?
dddddddd?
dddddddd?
dddddddd?

000000008

72 System/370 Principles of Operation

Mask Bits ~

Register Bit |LC Set

Execution of Instruction
Identified by Old PSW

PSW Mask in Control
Bits Registers

BC EC

13 13

13 13 14 4-7

36 20
37 2
38 . 22
39 23

o 1

8 16+
. 1 9 03
7 7 0 24
7 7 0 25
7 7 0 2
7 7 0 2
7 7 0 2
7 7 0 2
7 7 0 2
7 7 0 2
7 7 0 16
7 7 0 a7
7 7 0 18
7 7 0 19
7 7 0 20
7 7 0 21
o 6 2 0°
1 6 2 15
2 6 2 25
3 6 2 3
4 6 2 45
5 6 2 &
6 6 2 6+

1,2

1,23
1,2

0,1,2,3
0,1,2,3
0,1,2,3
2,3
1,2
1,2
2,3
2,3
1,2
1.2
1,2
1,2
12,3
1,23
12,3
2
2
0,1.2,3

X X X X X X X X X X X X X X

X X X X X X X

terminated or nullified7
unaffected’

completed

suppressed

suppressed

suppressed

suppressed or terminated
suppressed or terminated
suppressed or completed
suppressed or terminated
completed

suppressed or completed
completed

suppressed

completed

completed

completed

suppressed

nullified

nullified

suppressed

suppressed

completed

completed3

unaffected
unaffected
unaffected
unaffected
unaffected
uhaffected
unaffected
unaffected
unaffected
unaffected
unaffected
unaffected
unaffected
unaffected

unaffected
unaffected
unaffected
unaffected
unaffected
unaffected
unaffected

unaffected

Explanation:

1 A machine-check interruption code of 64 bits is stored at
locations 232-239.

2 When the interruption code indicates a program event, an ILC

of zero may be stored only when the code formed by bits
12-15 of the interruption code has a nonzero value.

3 The unit of operation is completed, unless a program exception

concurrently indicated has caused the unit of operation to be
nullified, suppressed, or terminated.

4 In the EC mode, the 1/O address is stored at locations 186-187.

5 For channels 0-5, channel masks in control register 2 have no
effect in BC mode.

6 Bits 16-31 in the old PSW in BC mode are set to zeros. No
interruption code is provided in EC mode.

7 For any machine-check interruption condition, either exigent
or repressible, the effect of this condition is identified by the
validity bits in the machine-check interruption code. The
instruction has been nullified or unaffected only if the
associated validity bits are set to ones.

Interruption Action (Continued)

other than an odd instruction address, and, concur-
rently, the LOAD PSW or SUPERVISOR CALL
instruction causes a program event, the ILC is 0, as
called for in the specification exception.

ILC on Instruction Fetch Exceptions

When a program interruption occurs because of an
exception that prohibits access to the instruction, the
instruction-length code cannot be set on the basis of
the first two bits of the instruction. As far as the
significance of the ILC for this case is concerned,
the following two situations are distinguished:

1. When an odd instruction address causes a spec-
ification exception to be recognized or when a
protection, addressing, or translation-
specification exception is encountered on
fetching an instruction, the instruction-length
code is 1, 2, or 3, indicating the number of
halfwords by which the instruction address has
been incremented. When the instruction ad-
dress in the old PSW is reduced by the number
of halfword locations indicated by the
instruction-length code, the address originally
appearing in the PSW is obtained. It is unpre-
dictable whether the code is 1, 2, or 3.

2. When a segment-translation or page-translation
exception is recognized on the access to an
instruction, the ILC is 1, 2, or 3, with the indi-
cation being unpredictable. In this case the op-
eration is nullified, and the instruction address
is not incremented.

The TLC is not necessarily related to the first two
bits of the instruction when the first halfword of an
instruction can be fetched but an access exception is
recognized on fetching the second or third halfword.

+ Plus the following bits in the control register.

* In BC mode, program-event recording is disabled.

¢ Channel address bits.
Device address bits.

e A possible nonzero code indicating another program
interruption condition.

m Bits of model-dependent code.

n Possible bit-significant indication of other concurrent
interruption conditions.

r Bits of the | field of SUPERVISOR CALL.

x Unpredictable in BC mode; not stored in EC mode.

When any exceptions are encountered on fetching
the subject instruction of EXECUTE, the ILC is 2.

Programming Notes

A nonzero instruction-length code for a program
interruption indicates the number of halfword loca-
tions by which the instruction address in the old
PSW must be reduced to obtain the address of the
last instruction executed, unless one of the following
situations exists:

1. The interruption is caused by a segment-
translation or page-translation exception.

2. An interruption for a program event occurs
before the completion of the execution of an
interruptible instruction.

3. The interruption is caused by a program event
due to a branch instruction, LOAD PSW, or
SUPERVISOR CALL. ‘

4. The interruption is caused by an access excep-
tion encountered in fetching an instruction,
and the instruction address has been intro-
duced into the PSW by a means other than
sequential operation (by a branch instruction,
LOAD PSW, or an interruption).

5. The interruption is caused by a specification
exception because of an odd instruction ad-
dress. '

6. The interruption is caused by a specification or
access exception encountered in fetching an
instruction, and changes have been made or
may have been made to the parameters that
control the relation between the logical and
real instruction address (turning the translation
mode on or off without introducing an entire
new PSW, changing the translation-control

Interruptions 73

parameters in control registers 0 and 1, intro-
ducing invalid values in bit positions 0-7 of an
EC PSW).

For situations 1 and 2, the operation is nullified,
and the instruction designated by the instruction
address is the same as the last one executed. These
two are the only cases where the instruction address
in the old PSW identifies the instruction causing the
exception.

For situations 3, 4, and 5, the instruction address
in the program old PSW has been replaced and can-
not be calculated using the one appearing in the
PSW.

For situation 6, the logical instruction address in
the PSW has nct been replaced, but the correspond-
ing real address after the change is different.

When bit 8 (program event) in the interruption
code is on, the PER address at locations 153-155
identifies the location of the instruction causing the
interruption, and the instruction-length code (ILC)
is redundant. Similarly, the ILC is redundant when
the operation is nullified, since in this case the ILC
can be derived from the operation code of the in-
struction identified by the old PSW,

Point of Interruption

An interruption is permitted between operations;
that is, an interruption can occur after the perform-
ance of one operation and before the start of a sub-
sequent operation. The entire execution of an in-
struction is an operation.

For the two instructions MOVE LONG and
COMPARE LOGICAL LONG, referred to as inter-
ruptible instructions, an interruption is permitted
after a partial execution of the instruction. The exe-
cution of an interruptible instruction is considered to
consist of a number of units of operation, and an
interruption is permitted between units of operation.
The amount of data processed in a unit of operation
depends on the particular instruction and may de-
pend on the model and on the particular condition
that causes the execution of the instruction to be
interrupted.

Whenever discussion in this publication pertains
to points of interruptibility that include those occur-
ring within the execution of an interruptible instruc-
tion, the term "unit of operation' is used. This use
of the term considers that the entire execution of the
noninterruptible instruction consists, in effect, of
one unit of operation.

Programming Note

Any interruption, other than supervisor call and
some program interruptions, can occur after a partial
execution of an interruptible instruction. In particu-

74 System/370 Principles of Operation

lar, interruptions for I/0, external, and machine-
check conditions and for program access exceptions
can occur between units of operation.

Instruction Execution

Types of Ending

Instruction execution is said to end in one of four
ways--completion, nullification, suppression, and
termination.

When the execution of an instruction is complet-
ed, results are provided as called for in the definition
of the instruction. When an interruption occurs after
the completion of the execution of an instruction,
the instruction address in the old PSW designates the
next instruction to be executed.

When the execution of an instruction is sup-
pressed, the instruction is executed as if it specified
"no operation." The contents of any result fields,
including the condition code, are not changed. The
instruction address in the old PSW on an interrup-
tion after suppression designates the next sequential
instruction.

Nullification is the same as suppression, except
that when an interruption occurs after the execution
of the instruction has been nullified, the instruction
address in the old PSW designates the instruction
whose execution was nullified instead of the next
sequential instruction.

When the execution of an instruction is terminat-
ed, the contents of any fields due to be changed by
the instruction are unpredictable. The operation may
have replaced all, part, or none of the contents of
the designated result fields and may have changed
the condition code if such change was called for by
the instruction. Unless the interruption is caused by
a machine-check condition, the validity of the in-
struction address in the PSW, the interruption code,
and the instruction-length code are not affected; and
the state or the operation of the system has not been
affected in any other way. The instruction address in
the old PSW on an interruption after termination
designates the next sequential instruction.

Execution of Interruptible Instructions

The execution of an interruptible instruction is com-
pleted when all units of operation associated with
that instruction are completed. When an interruption
occurs after completion, nullification, or suppression
of a unit of operation, all prior units of operation
have been completed.

On completion of a unit of operation other than
the last one and on nullification of any unit of opera-
tion, the instruction address in the old PSW desig-
nates the interrupted instruction, and the operand

parameters are adjusted such that the execution of
the interrupted instruction is resumed from the point
of interruption when the old PSW stored on the in-
terruption is made the current PSW. It depends on
the instruction how the operand parameters are ad-
justed.

When a unit of operation is suppressed, the in-
struction address in the old PSW designates the next
sequential instruction. The operand parameters,
however, are adjusted so as to indicate the extent to
which instruction execution has been completed. If
the instruction is reexecuted after the conditions
causing the suppression have been removed, the
execution is resumed from the point of interruption.
As in the case of completion and nullification, it
depends on the instruction how the operand parame-
ters are adjusted.

When a unit of operation of an interruptible in-
struction is terminated, the contents, in general, of
any fields due to be changed by the instruction are
unpredictable. On an interruption, the instruction
address in the old PSW designates the next sequen-
tial instruction.

Machine-Check Interruption

The machine-check interruption provides a means
for reporting to the program the occurrence of
equipment malfunctions. Information is provided to
assist the program in determining the location of the
fault and extent of the damage.

A machine-check interruption causes the old PSW
to be stored at location 48 and a new PSW to be
fetched from location 112. When the old PSW spec-
ifies the BC mode, the interruption code and the
instruction-length code in the old PSW are unpredict-
able.

The cause and severity of the malfunction are
identified by a 64-bit machine-check code stored at
location 232. Further information identifying the
cause of the interruption and the location of the fault
may be stored at locations 216-511 and in the area
starting with the location designated by the contents
of control register 15.

Interruption action and the storing of the associ-
ated information are under the control of PSW bit
13 and bits in control register 14. See the chapter
"Machine-Check Handling" for more detailed in-
formation.

Program Interruption

Exceptions resulting from execution of the program,
including the improper specification or use of in-
structions and data, or the detection of a program or
monitor event cause a program interruption.

A program interruption causes the old PSW to be
stored at location 40 and a new PSW to be fetched
from location 104.

The cause of the interruption is identified by the
interruption code. When the old PSW specifies the
BC mode, the interruption code and the instruction-
length code are placed in the old PSW; when it speci-
fies the EC mode, the interruption code is placed at
locations 142-143, the instruction-length code is
placed in bit positions 5 and 6 of the byte at location
141, with the rest of the bits set to zero, and zeros
are stored at location 140. For some causes addition-
al information identifying the reason for the inter-
ruption is stored in main-storage locations 144-159.

Except for the program-event condition, the con-
dition causing the interruption is identified by a cod-
ed value placed in the rightmost seven bit positions
of the interruption code. Only one condition at a
time can be indicated. Bits 0-7 of the interruption
code are set to zeros.

The program-event condition is indicated by set-
ting bit 8 of the interruption code to one, with bits
0-7 set to zeros. A program-event condition can be
indicated concurrently with another program inter-
ruption condition, in which case bit 8 is one and the
coded value appears in bit positions 9-15.

A program interruption can occur only when the
corresponding mask bit, if any, is one. The program
mask in the PSW permits masking four of the excep-
tions, bit 1 in control register O controls whether
SET SYSTEM MASK causes a special-operation
exception, bits 16-31 in control register 8 control
interruptions due to monitor events, and, in the EC
mode, masks are provided for controlling interrup-
tions due to program events. When the mask bit is
zero, the condition is ignored; the condition does not
remain pending.

Programming Note

When the new PSW for a program interruption has-a
format error or causes an exception to be recognized
in the process of instruction fetching, a string of
program interruptions takes place. See "Priority of
Interruptions' for a description of how such strings
are terminated.

Some of the conditions indicated as program ex-
ceptions may be recognized also by an I/0 opera-
tion, in which case the exception is indicated in the
channel status word.

Program Interruption Conditions
The following is a detailed description of each
program-interruption condition.

Interruptions 75

Operation Exception
An operation exception is recognized when the CPU
encounters an instruction with an invalid operation
code. The operation code may not be assigned, or
the instruction with that operation code may not be
available on the CPU. For the purpose of recogniz-
ing an operation exception, the first eight bits of an
instruction, or, when the first eight bits have the
hexadecimal value B2, the first 16 bits form the oper-
ation code.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

Programming Note

In the case of I/0O instructions with the values 9C,
9D, and 9E in bit positions 0-7, the value of bit 15 is
used to distinguish between two instructions. Bits
8-14, however, are not checked for zeros, and these
operation codes never cause an operation exception
to be recognized.

To ensure that presently written programs run if
and when the operation codes 9C, 9D, and 9E are
extended further to provide for new functions, only
zeros should be placed in bit positions 8-14. Similar-
ly, zeros should be placed in bit positions 8-15 in the
instruction with the operation code 9F. In accord-
ance with these recommendations, the operation
codes for the seven I/0 instructions are shown as
9C00, 9C01, 9D00, 9D01, 9E00, 9E01, and 9F00.

Some models may offer instructions not listed in
this manual, such as those provided for emulation or
as part of special or custom features. Consequently,
all unlisted operation codes do not necessarily cause
an operation exception to be recognized. Further-
more, as part of the specified operation, these in-
structions may cause modes of operation to be set up
or otherwise alter the system so as to affect the ex-
ecution of subsequent instructions. In order to avoid
the possibility of accidentally causing such operation,
instructions with an unlisted operation code should
be issued only when the specific function associated
with the operation code is desired.

The operation code 00, with a two-byte instruc-
tion format, and the set of sixteen 16-bit operation
codes B2EO to B2EF, with a four-byte instruction
format, are allocated for software uses where indica-
tion of invalid operation is required. It is improbable
that these operation codes will ever be assigned to
an instruction implemented in the CPU.

Privileged-Operation Exception

A privileged-operation exception is recognized when
the CPU encounters a privileged instruction in the
problem state.

The operation is suppressed.

76 System/370 Principles of Operation

The instruction-length code is 1 or 2.

Execute Exception
The execute exception is recognized when the sub-
ject instruction of EXECUTE is another EXE-
CUTE.

The operation is suppressed.

The instruction-length code is 2.

Protection Exception

A protection exception is recognized when the CPU
causes a reference to a main-storage location that is
protected against the type of reference, and the key
in storage associated with the location does not
match the protection key in the PSW.

The execution of the instruction is suppressed
when the location of the instruction, including the
location of the subject instruction of EXECUTE, is
protected against fetching. Except for some specific
instructions whose execution is suppressed, the oper-
ation is terminated when a protection exception is
encountered during a reference to an operand loca-
tion. See the following table for a summary of the
action taken on a protection exception.

On fetching, the protected information is not
loaded into an addressable register or moved to an-
other storage location. When part of an operand
location is protected against storing and part is not,
storing may be performed in the unprotected part.
The contents of a protected location remain un-
changed.

For a protected operand location, the instruction-
length code is 1, 2, or 3, designating the length of
the instruction that caused the reference. However,
for a store-protected operand location, the
instruction-length code on some models may be O.

When the location of any part of the instruction is
protected against fetching, the instruction-length
code is 1, 2, or 3, indicating the number of halfwords
by which the instruction address has been incre-
mented. It is unpredictable whether the code is 1, 2,
or 3.

Addressing Exception
An addressing exception is recognized when the
CPU causes a reference to a main-storage location
that is not available to the CPU. A main-storage
location is not available to the CPU when the loca-
tion is not provided, when the storage unit is not
configured to the CPU, or when power is off in the
storage unit. An address designating an unavailable
storage location is referred to as invalid.

The execution of the instruction is suppressed
when the address of the instruction, including the
location of the subject instruction of EXECUTE, is

invalid. Similarly, the unit of operation is suppressed
when the exception is encountered during an implicit
reference to a dynamic-address-translation (DAT)
table entry Except for some specific instructions
whose execution is suppressed, the operation is ter-
minated for an operand address that can be translat-
ed but designates an unavailable location. See the
following table for a summary of the action taken on
an addressing exception.

Data in storage remains unchanged unless the
location is available to the CPU. When part of an
operand location is available to the CPU and part is
not, storing may be performed in the available part.

For an invalid operand address or an invalid ad-
dress of a DAT table entry associated with an oper-
and reference, the instruction-length code is 1, 2, or
3, designating the length of the instruction that
caused the reference. However, when the exception
is due to an attempt to store and the address can be
translated but designates an unavailable operand
location, the code on some models may be 0.

When any part of the location of an instruction is
unavailable or the address of a DAT table entry as-
sociated with an instruction fetch is invalid, the
instruction-length code is 1, 2, or 3, indicating the
number of halfword locations by which the instruc-
tion address has been incremented. It is unpredicta-
ble whether the code is 1, 2, or 3.

Specification Exception
A specification exception is recognized for the fol-
lowing causes:

1. An instruction address does not designate a
location on an even-byte boundary.

2. An operand address does not designate an inte-
gral boundary in an instruction requiring such
integral boundary designation.

3. The block address in SET STORAGE KEY or
INSERT STORAGE KEY does not have zeros
in the four low-order bit positions.

4. An odd-numbered general register is designat-
ed by an R field of an instruction that requires
an even-numbered register designation.

5. A floating-point register other than 0, 2, 4, or 6
is specified for a short or long operand, or a
floating-point register other than 0 or 4 is speci-
fied for an extended operand.

6. The multiplier or divisor in decimal arithmetic
exceeds 15 digits and sign.

7. The first-operand field is shorter than or equal
to the second-operand field in decimal multipli-
cation or division.

8. Bit positions 8-11 of MONITOR CALL do not
contain zeros.

9. The EC mode is specified (PSW bit 12 is one)
in a CPU that does not have the EC facility
installed.

10. A one is introduced into an unassigned bit
position of the EC-mode PSW (bit positions 0,
2-4,16-17, 24-39).

The execution of the instruction identified by the
old PSW is suppressed. However, for causes 9 and
10, the operation that introduces the new PSW is
completed, but an interruption occurs immediately
thereafter.

When the instruction address is odd (cause 1), the
instruction-length code (ILC) is 1, 2, or 3, indicating
the number of halfword locations by which the in-
struction address has been incremented. It is unipre-
dictable whether the code is 1, 2, or 3.

For causes 2-8, the ILC is 1, 2, or 3, designating
the length of the instruction causing the reference.

When the exception is récognized because of
causes 9 and 10 and the invalid bit value has been
introduced by LOAD PSW or an interruption, the
ILC is 0. When the exception due to cause 10 is

Action On
Exception DAT Table Entry Fetch Instruction Fetch Operand Reference
Protection —— Suppress Terminate' , but suppress LPSW, SSM, STNSM, STOSM,
Exception SCKC, SPT, SPX
Addressing Suppress Suppress Terminate! , but suppress LPSW, SSM, STNSM, STOSM,
Exception SCKC, SPT, SPX
Explanation:

— — Not applicable.

1 For termination, changes may occur only to result fields. In this context, “'result field” includes condition code, registers,
and storage locations, if any, which are designated to be changed by the instruction. However, no change is made to a
storage location or a key in storage when the reference causes an access exception. Therefore, if an instruction is due to
change only the contents of a field in main storage, and every byte of that field would cause an access exception, the

operation is suppressed.

Summary of Action for Protection and Addressing Exceptions

Interruptions 77

introduced by SET SYSTEM MASK or STORE
THEN OR SYSTEM MASK, the ILC is 2.

See "Program Status Word" in the chapter
"System Control" for a discussion of when the ex-
ceptions associated with the PSW are recognized.

Data Exception
A data exception is recognized when:

1. The sign or digit codes of operands in the
decimal-feature instructions or in CONVERT
TO BINARY are invalid.

2. The operand fields in ADD DECIMAL, COM-
PARE DECIMAL, DIVIDE DECIMAL,
MULTIPLY DECIMAL, and SUBTRACT
DECIMAL overlap in a way other than with
coincident rightmost bytes; or operand fields in
ZERO AND ADD overlap, and the rightmost
byte of the second operand is to the right of
the rightmost byte of the first operand.

3. The multiplicand in MULTIPLY DECIMAL
has an insufficient number of high-order zeros.

Except for EDIT and EDIT AND MARK, the
operation is suppressed when a sign code is invalid,
regardless of whether any other condition causing
the exception exists; otherwise, the operation is ter-
minated. However, the contents of the sign position
in the rightmost byte of the result field either remain
unchanged or are set to the preferred sign code; the
contents of the remainder of the result field are un-
predictable.

In the case of EDIT and EDIT AND MARK, an
invalid sign code is not recognized, and the opera-
tion is terminated on a data exception.

The instruction-length code is 2 or 3.

Programming Note

When, on a program interruption for data exception,
the program finds that a sign code is invalid, the
operation has been suppressed if the following two
conditions are met;

« The invalid sign is not located in the numerical
portion of the result field.

» The sign code appears in a position specified by
the instruction to be checked for valid sign.
(This condition excludes the first operand of
ZERO AND ADD and both operands of EDIT
and EDIT AND MARK.)

An invalid sign code for the rightmost byte of the
result field is not generated when the operation is
terminated. However, an invalid second-operand
sign code is not necessarily preserved when it ap-
pears in the numerical portion of the result field.

78 System/370 Principles of Operation

Fixed-Point-Overflow Exception

A fixed-point-overflow exception is recognized
when a carry occurs out of the high-order bit posi-
tion in fixed-point arithmetic operations, or high-
order significant bits are lost during the algebraic
left-shift operations.

The interruption may be disallowed in the BC
mode by PSW bit 36, and in the EC mode by PSW
bit 20.

The operation is completed by setting condition
code 3 but otherwise ignoring the information placed
outside the register.

The instruction-length code is 1 or 2.

Fixed-Point-Divide Exception

A fixed-point-divide exception is recognized when in
fixed-point division the divisor is zero or the quo-
tient exceeds the register size, or when the result of
CONVERT TO BINARY exceeds 31 bits.

In the case of division, the operation is sup-
pressed. Execution of CONVERT TO BINARY is
completed by ignoring the high-order bits that can-
not be placed in the register.

The instruction-length code is 1 or 2.

Decimal-Overflow Exception

A decimal-overflow exception is recognized when
one or more significant high-order digits are lost
because the destination field in a decimal operation
is too small to contain the result.

The interruption may be disallowed in the BC
mode by PSW bit 37, and in the EC mode by PSW
bit 21.

The operation is completed by setting condition
code 3 but otherwise ignoring the overflow informa-
tion.

The instruction-length code is 2 or 3.

Decimal-Divide Exception
A decimal-divide exception is recognized when in
decimal division the divisor is zero or the quotient
exceeds the specified data field size.

The operation is suppressed.

The instruction-length code is 2 or 3.

Exponent-Overflow Exception

An exponent-overflow exception is recognized when
the result characteristic in floating-point addition,
subtraction, multiplication, or division exceeds 127
and the result fraction is not zero.

The operation is completed. The fraction is nor-
malized, and the sign and fraction of the result re-
main correct. The result characteristic is made 128
smaller than the correct characteristic.

The instruction-length code is 1 or 2.

Exponent-Underflow Exception

An exponent-underflow exception is recognized
when the result characteristic in floating-point addi-
tion, subtraction, multiplication, halving, or division
is less than zero and the result fraction is not zero.

The interruption may be disallowed in the BC
mode by PSW bit 38, and in the EC mode by PSW
bit 22.

The operation is completed. The setting of the
exponent-underflow mask also affects the result of
the operation. When the mask bit is zero, the sign,
characteristic, and fraction are set to zero, making
the result a true zero. When the mask bit is one, the
fraction is normalized, the characteristic is made 128
larger than the correct characteristic, and the sign
and fraction remain correct.

The instruction-length code is 1 or 2.

Significance Exception

A significance exception is recognized when the
result fraction in floating-point addition or subtrac-
tion is zero.

The interruption may be disallowed in the BC
mode by PSW bit 39, and in the EC mode by PSW
bit 23.

The operation is completed. The significance
mask affects also the result of the operation. When
the mask bit is zero, the operation is completed by
replacing the result with a true zero. When the mask
bit is one, the operation is completed without further
change to the characteristic and sign of the result.

The instruction-length code is 1 or 2.

Floating-Point-Divide Exception
A floating-point-divide exception is recognized when
a floating-point division by a number with a zero
‘fraction is attempted.

The operation is suppressed.

The instruction-length code is 1 or 2.

Segment-Translation Exception
A segment-translation exception is recognized when:

1. The segment-table entry is outside the segment
table.
2. The segment-invalid bit has the value 1.

The exception is recognized as part of the execu-
tion of the instruction that needs the segment-table
entry in the translation of either the instruction or
operand address, except for the operand address in
LOAD REAL ADDRESS, in which case the condi-
tion is indicated by the setting of the condition code.

The unit of operation is nullified.

The segment and page portion of the logical ad-
dress causing the exception is placed in main storage
at locations 145-147, and zeros are placed at loca-

tion 144, When 2,048-byte pages are used, the low-
order 11 bits of the address are unpredictable; when
4,096-byte pages are used, the low-order 12 bits of
the address are unpredictable.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception. When the excep-
tion occurs during fetching of an instruction, the ILC
is 1, 2, or 3, the indication being unpredictable.

Page-Translation Exception
A page-translation exception is recognized when:

1. The page-table entry is outside the page table.
2. The page-invalid bit has the value 1.

The exception is recognized as part of the execu-
tion of the instruction that needs the page-table en-
try in the translation of either the instruction or oper-
and address, except for the operand address in
LOAD REAL ADDRESS, in which case the condi-
tion is indicated by the setting of the condition code.

The unit of operation is nullified.

The segment and page portion of the logical ad-
dress causing the exception is placed in main storage
at locations 145-147, and zeros are placed at loca-
tion 144, When 2,048-byte pages are used, the low-
order 11 bits of the address are unpredictable; when
4,096-byte pages are used, the low-order 12 bits of
the address are unpredictable.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception. When the excep-
tion occurs during fetching of an instruction, the ILC
is 1, 2, or 3, the indication being unpredictable.

Translation-Specification Exception
A translation-specification exception is recognized
when:

1. Bit positions 8 and 9 of control register 0 con-’
tain values 00 or 11.

2. Bit position 10 of control register O contains a
one.

3. Bit positions 11 and 12 of control register O
contain values 01 or 11.

4. Bit positions 4-7 or 29-30 in a valid segment-
table entry do not contain zeros (on some
models these bit positions are not checked for
Zeros).

5. Depending on the page size, the one or two bit
positions next to the low-order bit in a valid
page-table entry do not contain zeros.

The exception is recognized only as part of the
execution of an instruction using address translation,

Interruptions 79

that is, when an instruction is executed with bit 5 of
the EC-mode PSW one or when LOAD REAL AD-
DRESS is executed. Causes 1-3 are recognized on
any translation attempt; causes 4 and 5 are recog-
nized only for table entries that are actually used.

The unit of operation is suppressed.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception. When the excep-
tion occurs during fetching of an instruction, the ILC
is 1, 2, or 3, indicating the number of halfword loca-
tions by which the instruction address has been up-
dated. It is unpredictable whether the code is 1, 2, or
3.

Programming Note

When a translation-specification exception is recog-
nized in the process of translating an instruction
address, the operation is suppressed. In this case, the
instruction-length code (ILC) is needed to derive the
address of the instruction, as the instruction address
in the old PSW has been incremented by the amount
specified by the IL.C. In the case of segment-
translation and page-translation exceptions, the op-
eration is nullified, the instruction address in the old
PSW identifies the instruction, and the ILC is redun-
dant.

Special-Operation Exception
A special-operation exception is recognized when a
SET SYSTEM MASK instruction is encountered in
the supervisor state and the SSM-control bit, bit 1 of
control register 0, is one.

The execution of SET SYSTEM MASK is sup-
pressed.

The instruction-length code is 2.

Monitor Event

A monitor event is recognized when MONITOR
CALL is executed and the mask bit in control regis-
ter 8 corresponding to the class specified by instruc-
tion bits 12-15 is one.

The operation is completed.

As part of the interruption, information identify-
ing the event is placed in main storage at locations
148-149 and 156-159. See '""Monitoring' in the
chapter ""System Control'" for a detailed description
of the interruption condition.

The instruction-length code is 2.

Program Event

A program event is recognized when program-event
recording is specified by the contents of control reg-
isters 9-11 and one or more of these events occur.

80 System/370 Principles of Operation

In the EC mode, the interruption may be disal-
lowed by PSW bit 1. In the BC mode, program-
event recording is disabled.

The unit of operation is completed, unless another
concurrently indicated condition has caused the unit
of operation to be nullified, suppressed, or terminat-
ed.

As part of the interruption, information identify-
ing the event is placed in main storage at locations
150-155. See '"Program-Event Recording'' in the
chapter "System Control" for a detailed description
of the interruption condition.

The instruction-length code is 0, 1, 2, or 3. Code
0 can be set only because of a protection addressing
or specification condition that is concurrently indi-
cated.

Recognition of Access Exceptions

The protection, addressing, segment-translation,
page-translation, and translation-specification excep-
tions are collectively referred to as access excep-
tions. The table "Handling of Access Exceptions"
summarizes the conditions that can cause these ex-
ceptions and the action taken when they are encoun-
tered.

An access exception due to fetching an instruction
is indicated when an instruction halfword cannot be
fetched without encountering the exception. The
exception is indicated as part of the execution of the
instruction.

Except for the specific cases described below, an
access exception due to a reference to an operand
location is indicated whenever a reference to a part
of the designated storage operand causes the excep-
tion. The exception for a partially inaccessible oper-
and is recognized even if the operation could be
completed without the use of the inaccessible part of
the operand. The access exception is indicated as
part of the execution of the instruction making the
reference.

Whenever an access to an operand location can
cause an access exception to be recognized, the word
"access" is included in the list of program exceptions
in the description of the instruction. This entry also
indicates which operand can cause the exception to
be recognized and whether the exception is recog-
nized on a fetch or store access to that operand loca-
tion. Additionally, each instruction can cause an
access exception to be recognized due to instruction
fetch.

The following are exceptions or special cases
where the instruction does not explicitly specify the
extent of the storage operand or where the instruc-
tion provides for completion of execution without
the use of the entire operand. The handling of these

Page of GA22-7000-4

Revised September 1, 1975

By TNL: GN22-0498

Implicit Explicit Translation
Translation (Operand of LRA)
Indication
Condition Instruction Operand Action Indication Action

Control register contents!
Invalid page size (CR 0 bits 8 and 9) TS i suppress TS suppress
One in bit position 10 of control register 0 TS *x suppress TS suppress
Invalid segment size (CRO bits 11 and 12) TS *x suppress TS suppress
Segment table entry
Segment table length violation ST ST nullify cc3 complete
Entry protected against fetching or storing - - - - —
Invalid address of entry A A suppress A suppress
| bit on ST ST nullify ccl complete
One in an unassigned bit position2 TS TS suppress TS suppress
Page table entry
Page table length violation PT PT nullify cc3 complete
Entry protected for fetching or storing — — - - -
Invalid address of entry A A suppress A suppress
| bit on PT PT nullify cc2 complete
One in an unassigned bit position2 TS TS suppress TS suppress
Access for instruction or data
Location protected P P * — -
Invalid address A A * - -
Explanation:
TS Translation-specification exception. * Action depends on the type of reference.
ST Segment-translation exception. * The condition cannot occur because it is recognized as part of the
PT Page-translation exception. translation of the instruction address.
A Addressing exception. 1 A translation-specification exception for an invalid code in control
P Protection exception. register O bit positions 8-12 is recognized as part of the execution of
ccl Condition code 1 set. the instruction using address translation.
cc2 Condition code 2 set. 2 A translation-specification exception for a format error in a table entry
cc3 Condition code 3 set. is recognized only when the execution of an instruction requires the

The condition does not apply.

Handling of Access Exceptions

cases is summarized in the table "'Recognition of
Access Exceptions."

1. When the instructions COMPARE LOGICAL

(CLC or CL), COMPARE LOGICAL

CHARACTERS UNDER MASK (CLM) with

a nonzero mask, and COMPARE LOGICAL
LONG (CLCL) designate part of an operand
in an inaccessible location but the operation

can be completed by using the accessible oper-

and parts, it is unpredictable whether the ac-

cess exception for the inaccessible part is indi-

cated.
2. Access exceptions are not indicated for that
part of the first operand (argument) of

entry for the translation of an address.

TRANSLATE AND TEST (TRT) which is not

used for the completion of the operation.
3. Access exceptions are not indicated for that
part of the second operand (list) of TRANS-

LATE (TR) and TRANSLATE AND TEST
(TRT) which is not used for the completion of
the operation.

. Access exceptions are not indicated for that

part of the second operand (source) of EDIT
(ED) and EDIT AND MARK (EDMK) which

is not used for the completion of the operation.
. When the instructions MOVE WITH OFFSET

(MVO), PACK (PACK), and UNPACK
(UNPK) designate part of the second operand
in an inaccessible location but the operation
can be completed by using the accessible oper-
and parts, it is unpredictable whether the ex-
ception for the inaccessible part is indicated.

. Access exceptions are not indicated for that

part of the second operand (source) of MOVE
LONG (MVCL) which is not used for the
completion of the operation.

Interruptions

81

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Is an access exception indicated for that part of the
designated operand which is not used for the

Instruction
completion of the operation ?

Instructions that can be completed without
the use of the entire designated or implied

operand:
TM (zero mask) Yes
CLC,CL Unpredictable

CLM (nonzero mask)

Unpredictable

CLCL Unpredictable *
TRT (first operand) No
TR, TRT (second operand) No
ED, EDMK (second operand) No

Instructions in which the second operand may
specify more data than can be processed with
the designated first operand:

PACK, UNPK, MVO

MVCL

Special cases:

1CM, CLM (zero mask)

Unpredictable
No

Yes for one byte

STCM (zero mask) No

Explanation:
Unpredictable

It is unpredictable whether the exception is indicated.

No The exception is not indicated.
Yes The exception is indicated.

* For CLCL, no exceptions are indicated other than those for the

current page and the following page of each operand.

Access exceptions include the following:

protection

addressing

segment translation
page translation
translation specification

Recognition of Access Exceptions

7. When the mask in INSERT CHARACTERS
UNDER MASK (ICM) and COMPARE
LOGICAL CHARACTERS UNDER MASK
{CLM) is zero, access exceptions are indicated
for the one byte designated by the second-
operand address.

8. When the mask in STORE CHARACTERS
UNDER MASK (STCM) is zero, access excep-
tions are not indicated.

The execution of the interruptible instructions
COMPARE LOGICAL LONG and MOVE LONG
is initiated only when no access exceptions associat-
ed with references to dynamic-address-translation
tables for the initial page of each operand exist, and
the initiation may additionally be contingent on the
absence of exceptions associated with table refer-
ences for the following page of each operand. After
the execution of the instruction has been initiated,
an access exception associated with a reference to a
translation table may be indicated as early as when

82 System/370 Principles of Operation

execution has progressed to the point where the last
accessible page of the operand causing the exception
is being processed.

The extent of the operands that is actually used in
the operation may be established in a pretest for
operand accessibility that is performed before the
execution of the instruction is started.

In the case of TRANSLATE (TR), EDIT (ED),
and EDIT AND MARK (EDMK), the initiation of
the execution is contingent only on the absence of
exceptions associated with dynamic-address- '
translation table entries for that part of the second
operand that is actually used for the completion of
the operation.

If the first operand of TR or either operand of ED
or EDMK is changed by an I/0 operation, or by
another CPU, after the initial pretest but before
completion of execution, such that an additional
second-operand page is needed and translation of
the address of the additional page causes an access

exception to be recognized, results are unpredicta-
ble. Furthermore, it is unpredictable whether an
interruption for the access exception occurs. In the
case of ED and EDMK, this situation can occur also
because of overlapping operands.

This case is an exception to the general rule that
the operation is nullified on segment-translation and
page-translation exceptions and is suppressed on a
translation-specification exception and on an ad-
dressing exception caused by an invalid address of a
table entry. When, in this case, an interruption for a
segment-translation or page-translation occurs, the
instruction address in the old PSW points to the in-
struction causing the exception even though partial
results have been stored.

Programming Notes

An access exception is indicated as part of the execu-
tion of the instruction with which the exception is
associated. In particular, the exception is not recog-
nized when the CPU has made an attempt to fetch
from the inaccessible location or otherwise has de-
tected the access exception, but a branch instruction
or an interruption changes the instruction sequence
such that the instruction is not executed.

The following are some specific storage refer-
ences where access exceptions, including store pro-
tection when applicable, are recognized even if the
operation could be completed without the use of the
inaccessible part of the operand:

« Fetching the operand of TEST UNDER MASK
with a zero mask.

« Fetching parts of operands of algebraic compare
instructions (C and CH).

« Fetching parts of operands of floating-point
instructions.

« References to the first-operand location of deci-
mal instructions when the second operand in
addition and subtraction is zero or in multipli-
cation and division is one.

« Storing the pattern character in an edit opera-
tion when the pattern character remains un-
changed.

« Storing during SHIFT AND ROUND DECI-
MAL when no shifting or rounding takes place.

« Storing during move operations when the first-
and second-operand locations coincide.

« Storing the first operand of OR (OI and OC)
when the corresponding second-operand byte
is zero, as well as the analogous cases for AND
and EXCLUSIVE OR.

« Storing the first operand of TRANSLATE

when the argument and function bytes are the
same.

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

With a nonzero mask in INSERT CHARAC-
TERS UNDER MASK, COMPARE LOGICAL
CHARACTERS UNDER MASK, and STORE
CHARACTERS UNDER MASK, access exceptions
are indicated only for the extent of the storage oper-
and designated by the mask. In MOVE LONG or
COMPARE LOGICAL LONG, no exceptions are
recognized for any operand having a length of zero.

Handling of Multiple
Program-Interruption Conditions

Except for program events, only one program-
interruption condition is indicated with a program in -
terruption. The existence of one condition, however,
does not preclude the existence of other condi-

tions. When more than one program-interruption
condition exists, only the condition having the high-
est priority is identified in the interruption code.

When two conditions exist of the same priority, it
is unpredictable which is indicated. In particular, the
priority of access exceptions associated with the two
parts of an operand that crossesa page or a protec-
tion boundary is unpredictable and is not necessarily
related to the sequence specified for the access of
bytes within the operand.

The type of ending which occurs (nullification,
suppression, or termination) is that which is defined
for the type of exception that is indicated in the in-
terruption code. However, if a condition is indicated
which permits termination, and another condition
also exists which would cause either nullification or
suppression, then the unit of operation is suppressed.

The table "Priorities of Access Exceptions' lists
the priorities of access exceptions for a single access.
The table "Priorities of Program Interruption Condi-
tions' lists the priorities of all program-interruption
conditions other than program events. All exceptions
associated with references to storage for a particular
instruction halfword or a particular operand byte are
grouped as a single entry called "access." Thus, the
first table specifies which of several exceptions that
are encountered in the access of a particular portion
of an instruction, or in any particular access associat-
ed with an operand, has highest priority, and the
latter table specifies the priority of this condition in
relation to other conditions detected in the opera-
tion.

The relative priorities of any two conditions can
be found by comparing the priority numbers within a
table from left to right until a mismatch is found. If
the first inequality is between numeric characters,
the two conditions are either mutually exclusive, or,
if both can occur, the condition with the smaller
number is indicated. If the first inequality is between
alphabetic characters, the two conditions are not

Interruptions 83

Translation-specification exception due to invalid page size or segment size
designation or due to a one in bit position 10 of control register 0.

2. Segment-translation exception due to segment-table entry being outside table.

3. Addressing exception due to segment-table entry being outside main storage of
installation.

4. Segment-transiation exception due to | bit having the value one.

5. Translation-specification exception due to invalid ones in segment-table entry.

6. Page-translation exception due to page-table entry being outside table.

7. Addressing exception due to page-table entry being outside main storage of

installation.

8. Page-translation exception due to | bit having the value one.

9. Translation-specification exception due to invalid ones in page-table entry.

10. Addressing exception due to instruction or operand location outside main

storage of installation.

11. Protection exception due to attempt to access a protected instruction or

operand location.

Explanation:

The access exceptions are listed in the order of descending priorities.

Priorities of Access Exceptions

exclusive, and it is unpredictable which is indicated
when both occur.

The second instruction halfword is accessed only
if bits 0-1 of the instruction are not 00. The third
instruction halfword is accessed only if bits 0-1 of
the instruction are 11.

Supervisor-Call Interruption

The supervisor-call interruption occurs as a result of
the execution of the instruction SUPERVISOR
CALL. The CPU cannot be disabled for the inter-
ruption, and the interruption occurs immediately
upon the execution of the instruction.

The supervisor-call interruption causes the old
PSW to be stored at location 32 and a new PSW to
be fetched from location 96.

The contents of bit positions 8-15 of SUPERVI-
SOR CALL are placed in the low-order byte of the
interruption code. The high-order byte of the inter-
ruption code is set to zero. The instruction-length
code is 1, unless the instruction was executed by
means of EXECUTE, in which case the code is 2.

When the old PSW specifies the BC mode, the
interruption code and instruction-length code appear
in the old PSW; when the old PSW specifies the EC
mode, the interruption code is placed at locations
138-139, the instruction-length code is placed in bit
positions 5 and 6 of the byte at location 137, with

84 System/370 Principles of Operation

the other bits set to zero, and zeros are stored at
location 136.

Programming Note
The name "supervisor call" indicates that one of the
major purposes of the interruption is the switching
from problem to supervisor state. This major pur-
pose does not preclude the use of this interruption
for other types of status switching.

The interruption code may be used to convey a
message from the calling program to the supervisor.

External Interruption

The external interruption provides a means by which
the CPU responds to various signals originating ei-
ther from within or from outside of the system.

An external interruption causes the old PSW to be
stored at location 24 and a new PSW to be fetched
from location 88.

The source of the interruption is identified in the
interruption code. When the old PSW specifies the
BC mode, the interruption code is placed in bit posi-
tions 16-31 of the old PSW, and the instruction-
length code is unpredictable. When the old PSW
specifies the EC mode, the interruption code is
placed at locations 134-135.

Additionally, in both the BC and EC modes, for
some conditions a 16-bit processor address is associ-

1.A Delayed addressing exception due to an attempted store by a previous instruction (zero ILC).

1.B Delayed protection exception due to an attempted store by a previous instruction (zero ILC).

2. Specification exception due to any PSW error of the type that causes an immediate interruption.1
3. Specification exception due to an odd instruction address in the PSW.

4, Access exceptions for first instruction halfword.2

5.A Access exception for second instruction halfword.2

5.B Access exception for third instruction halfword.

5.C.1 Operation exception.

5.C.2 Privileged-operation exception.

5.C.3 Execute exception.
5.C.4 Special-operation exception.
5.D Specification exception, due to conditions other than those included in 2 and 3 above, for an

instruction that is not installed but has an operation code assigned.

6.A Specification exception due to conditions other than those included in 2, 3, and 5.D above.2
6.B-.G* Access exceptions for any particular access to an operand in main storage.3

6.H Data exception.4

6.1 Decimal-divide exception.4

7.-14. Fixed-point divide, floating-point divide, and conditions, other than program events, which

result in completion. These conditions are mutually exclusive.

Explanation:

Numbers indicate priority, with priority decreasing in ascending order of numbers; letters indicate no priority.

* As in instruction fetching, separate accesses may occur for
each portion of an operand. Each of these accesses is of
equal priority, and in effect a different letter is assigned to
each. There is a maximum of six different operand access
exceptions corresponding to fetch accesses to two operands,
each of which crosses a protection or page boundary, and
store accesses to one operand which crosses a boundary.
Access exceptions for INSERT STORAGE KEY, SET
STORAGE KEY, RESET REFERENCE BIT, and LOAD
REAL ADDRESS are also included in 6.B.

1 PSW errors which cause an immediate interruption may
be introduced by a new PSW loaded as a result of an
interruption or by the instructions LPSW, SSM, and STOSM.
The priority shown in the chart is that for the case of an
error introduced by an interruption and may also be
considered as the priority for the case of an error introduced
by the previous instruction. The error is introduced only if
the instruction encounters no other exceptions. If the
recognition of this exception is considered to be part of the
execution of the instruction introducing the error, then it

is of lower priority than all other exceptions for that instruction.

Priorities of Program Interruption Conditions

ated with the source of the interruption and is stored
at locations 132-133. When the processor address is
stored, bit 6 of the interruption code is set to one.
When bit 6 is zero and the old PSW specifies the BC
mode, the contents of locations 132-133 remain
unchanged. When bit 6 is zero and the old PSW

2 In the case of an EXECUTE instruction, both EXECUTE
and the subject instruction of the EXECUTE must be
accessed and interpreted. In this case, the priorities shown
are for the subject instruction. The priority of exceptions
associated with the EXECUTE can be considered as being
prefixed with a “'3.”, thus occurring between priorities 3
and 4, and numbered as follows: 3.4, 3.5.A, and 3.6.A.

3 For MOVE LONG and COMPARE LOGICAL LONG, an
access exception for a particular operand can be indicated
only if the R field for that operand designates an even-
numbered register. For instructions requiring that storage
operands be specified on integral boundaries, an access
exception may be indicated for the extent of the operand
that would be implied if the byte-oriented operand feature
applied.

4 The exception can be indicated only if the sign, digit, or
digits responsible for the exception were fetched without
encountering an access exception.

specifies the EC mode, zeros are stored at locations
132-133.

An external interruption for a particular source
can occur only when the CPU is enabled for inter-
ruption by that source. Whether the CPU is enabled
for external interruption is controlled by the external

Interruptions 85

mask, PSW bit 7, and external submask bits in con-
trol register 0. Each source for an external interrup-
tion is assigned a submask bit, and the source can
cause an interruption only when the external-mask
bit is one and the corresponding submask bit is one.
The use of the submask bits does not depend on
whether the CPU is in the BC or EC mode.

When the CPU becomes enabled for a pending
external-interruption condition, the interruption
occurs at the completion of the instruction execution
or interruption that causes the enabling.

More than one source may present a request for
an external interruption at the same time. When the
CPU becomes enabled for more than one concur-
rently pending request, the interruption occurs for
the pending condition or conditions having the high-
est priority.

The highest priority is assigned to the set of con-
ditions that includes the interval timer, interrupt key,
and external signals 2 through 7. Within this set, all
pending requests for which the CPU is enabled are
indicated concurrently in the interruption code. Next
in priority are interruption requests for the following
sources, the sources being listed in descending order
of priority:

Malfunction alert

Emergency signal

External call

Time-of-day clock sync check

Clock comparator

CPU timer

When more than one emergency-signal or
malfunction-alert request exists at a time, the request
associated with the smallest processor address is
honored first. Only one occurrence each of these
conditions can be indicated at a time in the external-
interruption code.

Interval Timer

An interruption request for the interval timer is gen-
erated when the value of the interval timer is decre-
mented from a positive number, including zero, to a
negative number. The request is preserved and re-
mains pending in the CPU until it is cleared. The
pending request is cleared when it causes an inter-
ruption and by CPU reset.

The condition is indicated by setting bit 8 in the
interruption code to one and by setting bits 0-7 to
zero. Bits 9-15 are zero unless set to one for another
condition that is concurrently indicated. In the EC
mode, zeros are stored at locations 132-133.

The submask bit is located in bit position 24 of
control register 0. This bit is initialized to one.

86 System/370 Principles of Operation

Interrupt Key
An interruption request for the interrupt key is gen-
erated when the interrupt key on the operator sec-
tion of the system control panel is activated. The
request is preserved and remains pending in the CPU
until it is cleared. The pending request is cleared
when it causes an interruption and by CPU reset.
The condition is indicated by setting bit 9 in the
interruption code to one and by setting bits 0-7 to
zero. Bits 8 and 10-15 are zero unless set to one for
another condition that is concurrently indicated. In
the EC mode, zeros are stored at locations 132-133.

The submask bit is located in bit position 25 of
control register 0. This bit is initialized to one.

External Signal

An interruption request for an external signal is gen-
erated when a signal is received on one or more of
the signal-in lines. Up to six signal-in lines may be
connected, providing for external signal 2 through
external signal 7. The request is preserved and re-
mains pending in the CPU until it is cleared. The
pending request is cleared when it causes an inter-
ruption and by CPU reset.

External signals 2 through 7 are indicated by set-
ting to one interruption code bits 10-15, respective-
ly. Bits 0-7 are set to zero, and any other bits in the
low-order byte are made zero unless set to one for
another condition that is concurrently indicated. In
the EC mode, zeros are stored at locations 132-133.

All external signals are subject to control by the
submask bit in bit position 26 of control register 0.
This bit is initialized to one.

The facility to accept external signals is part of
the direct-control feature. On some models, it is also
available as a separate feature.

Programming Note

The pattern presented in bit positions 10-15 of the
interruption code depends on the pattern received
before the interruption is taken. Because of circuit
skew, all simultaneously generated external signals
do not necessarily arrive at the same time, and some
may not be included in the external interruption
resulting from the earliest signals. These late signals
may cause another interruption to be taken.

Malfunction Alert

An interruption request for malfunction alert is gen-
erated when another CPU that is configured to the
CPU enters the check-stop state or loses power. The
request is preserved and remains pending in the re-
ceiving CPU until it is cleared. The pending request
is cleared when it causes an interruption and by
CPU reset.

Facilities are provided for holding a separate
malfunction-alert request pending in the receiving
CPU for each other configured CPU. Configuring a
CPU out of the system does not generate a
malfunction-alert condition.

The condition is indicated by an external-
interruption code of 1200 (hex). The processor
address of the CPU that generated the condition is
stored at locations 132-133.

The subclass mask bit is located in bit position 16
of control register 0. This bit is initialized to zero.

Emergency Signal

An interruption request for emergency signal is gen-
erated when the CPU accepts the emergency-signal
order specified by a SIGNAL PROCESSOR instruc-
tion addressing this CPU. The instruction may have
been executed by this CPU or by another CPU con-
figured to this CPU. The request is preserved and
remains pending in the receiving CPU until it is
cleared. The pending request is cleared when it caus-
es an interruption and by CPU reset.

Facilities are provided for holding a separate
emergency-signal request pending in the receiving
CPU for each configured CPU, including the receiv-
ing CPU itself.

The condition is indicated by an external-
interruption code of 1201 (hex). The processor
address of the CPU that issued the SIGNAL PRO-
CESSOR instruction is stored at locations 132-133.

The subclass mask bit is located in bit position 17
of control register 0. This bit is initialized to zero.

External Call

An interruption request for external call is generated
when the CPU accepts the external-call order speci-
fied by a SIGNAL PROCESSOR instruction ad-
dressing this CPU. The instruction may have been
executed by this CPU or by another CPU configured
to this CPU. The request is preserved and remains
pending in the receiving CPU until it is cleared. The
pending request is cleared when it causes an inter-
ruption and by CPU reset.

Only one external-call request, along with the
processor address, may be held pending in a CPU at
a time.

The condition is indicated by an external-
interruption code of 1202 (hex). The processor
address of the CPU that issued the SIGNAL PRO-
CESSOR instruction is stored at locations 132-133.

The subclass mask bit is located in bit position 18
of control register 0. This bit is initialized to zero.

Time-of-Day Clock Sync Check

The time-of-day (TOD) clock sync check condition
indicates that more than one TOD clock exists in the
configuration, and that the low-order 32 bits of the
clocks are not running in synchronism.

An interruption request for TOD clock sync
check exists when the clock accessed by this CPU is
running, the clock accessed by any other CPU con-
figured to this CPU is running, and bits 32-63 of the
two clocks do not match. When a clock enters the
running state, or a running clock is added to the
configuration, a delay of up to 1.048576 seconds
(220 microseconds) may occur before the mismatch
condition is recognized.

When only two clocks are in the configuration
and either or both of the clocks are in the error,
stopped, or not-operational state, it is unpredictable
whether a TOD clock sync check condition is recog-
nized, and, if it is recognized, it may continue to
persist up to 1.048576 seconds after both clocks
have been running with low-order bits matching.
However, in this case, the condition does not persist
if the two CPUs are configured apart.

When more than one CPU shares a TOD clock,
only the CPU with the smallest processor address
among those sharing the clock indicates a sync-
check condition associated with that clock.

If the condition responsible for the request is re-
moved before the request is honored, the request
does not remain pending, and no interruption occurs.
Conversely, the request is not cleared by the inter-
ruption, and, if the condition persists, more than one
interruption may result from a single occurrence of
the condition.

The condition is indicated by an external-
interruption code of 1003 (hex). In the EC mode,
zeros are stored at locations 132-133.

The subclass mask bit is located in bit position 19
of control register 0. This bit is initialized to zero.

Clock Comparator

An interruption request for the clock comparator
exists whenever either of the following conditions is
met:

1. The time-of-day clock is running, and the value
of the clock comparator is less than the value
in the compared portion of the time-of-day
clock, both comparands being considered bina-
ry unsigned quantities.

2. The clock comparator is installed, and the time-
of-day clock is in the error state or not opera-
tional.

If the condition responsible for the request is re-
moved before the request is honored, the request
does not remain pending, and no interruption occurs.

Interruptions 87

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Conversely, the request is not cleared by the inter-
ruption, and, if the condition persists, more than one
interruption may result from a single occurrence of
the condition.

The condition is indicated by an external-
interruption code of 1004 (hex). In the EC mode,
zeros are stored at locations 132-133.

The submask bit is located in bit position 20 of
control register 0. This bit is initialized to zero.

CPU Timer

An interruption request for the CPU timer exists
whenever the CPU timer value is negative (bit O of
the CPU timer is one). If the value is made positive
before the request is honored, the request does not
remain pending, and no interruption occurs. Con-
versely, the request is not cleared by the interrup-
tion, and, if the condition persists, more than one
interruption may occur from a single occurrence of
the condition.

The condition is indicated by an external-
interruption code of 1005 (hex). In the EC mode,
zeros are stored at locations 132-133.

The submask bit is located in bit position 21 of
control register 0. This bit is initialized to zero.

Input/Output Interruption

The input/output (I/0) interruption provides a
means by which the CPU responds to conditions in
1/0 devices and channels.

An I/0 interruption causes the old PSW to be
stored at location 56, a channel status word to be
stored at location 64, and a new PSW to be fetched
from location 120. Upon detection of equipment
errors, additional information may be stored in the
form of a limited channel logout at location 176 and
in the form of an I/O extended logout starting at the
location designated by the contents of locations 173-
175.

When the old PSW specifies the BC mode, the
interruption code in PSW bit positions 16-31 identi-
fies the channel and device causing the interruption:
the channel address appears in the high-order eight
bit positions and the device address in the low-order
eight. The instruction-length code is unpredictable.
When the old PSW specifies the EC mode, the de-
vice address is placed at location 187, the channel
address at location 186, and zeros are stored at loca-
tion 185.

An I/0 interruption can occur only while the
CPU is enabled for interruption by the channel pre-
senting the request. Whether the CPU is enabled for
interruption by a channel is controlled by mask bits

88 System/370 Principles of Operation

in the PSW and by channel masks in control register
2, and the method of control depends on whether
the current PSW specifies the BC or EC mode.

Channel mask bits are located in control register
2 starting at bit position 0 and extending for as many
contiguous bit positions as the number of channels
provided. The assignment is such that a bit is as-
signed to the channel whose address is equal to the
position of the bit in control register 2. Channel-
mask bits for installed channels are initialized to one.
The state of channel mask bits for unavailable chan-
nels is unpredictable.

When the current PSW specifies the BC mode,
interruptions from channels 6 and up are controlled
by the I/O mask bit, PSW bit 6, in conjunction with
the corresponding channel mask bit: the channel can
cause an interruption only when the I/0 mask is one
and the corresponding channel mask is one. Interrup-
tions from channels 0-5 are controlled by channel
masks 0-5 in the PSW; an interruption can occur
only when the mask corresponding to the channel is
one. In the BC mode, bits 0-5 in control register 2
do not participate in controlling I/O interruptions;
they are, however, preserved in the control register.

When the current PSW specifies the EC mode,
each channel is controlled by the I/0O mask bit and
the corresponding channel mask bit in control regis-
ter 2: the channel can cause an interruption only
when the I/0 mask bit is one and the corresponding
channel mask bit is one.

When the CPU becomes enabled for a pending
I/O-interruption condition, the interruption occurs
at the completion of the instruction execution or
interruption that causes the enabling.

A request for an /O interruption may occur at
any time, and more than one request may occur at
the same time. The requests are preserved and re-
main pending in channels or devices until accepted
by the CPU. Priority is established among requests
so that only one interruption request is processed at
a time. For more details, see the section
"Input/Output Interruptions’ in the chapter on 1/0
operations.

Restart

The restart interruption provides a means for the
operator or another CPU to invoke the execution of
a program. The CPU cannot be disabled for this
interruption.

A restart interruption causes the old PSW to be
stored at main-storage location 8 and a new PSW to
be fetched from location 0. In the BC mode, the
instruction-length code in the PSW is unpredictable,

and zeros are stored in the interruption-code field.
In the EC mode, the instruction-length and interrup-
tion codes are not stored.

If the CPU is in the operating state, the exchange
of the PSWs occurs at the completion of the current
unit of operation and after all pending interruption
conditions for which the CPU is enabled have been
taken. In this case, it depends on the model if the
CPU temporarily enters the stopped state as part of
the execution of the restart operation. If the CPU is
in the stopped state, the CPU enters the operating
state and exchanges the PSWs without first taking
any pending interruptions.

The restart interruption is initiated by activating
the restart key on the system console. In a multipro-
cessing system, the operation can also be initiated at
the addressed CPU by issuing SIGNAL PRO~
CESSOR, specifying the restart order.

Programming Note

In order to perform restart when the CPU is in the
check-stop state, the CPU has to be reset. This can
be accomplished by means of program reset, which
does not clear the contents of program-addressable
registers, including the control registers, but causes
the attached channels to be reset.

Priority of Interruptions
During the execution of an instruction, several
interruption-causing events may occur simultaneous-
ly. The instruction may give rise to a program inter-
ruption, a request for an external interruption may
be received, equipment malfunctioning may be de-
tected, an 1/O-interruption request may be made,
and the restart key may be activated. Instead of the
program interruption, a supervisor-call interruption
might occur; or both can occur if the program-event-
recording facility is installed. Simultaneous interrup-
tion requests are honored in a predetermined order.

An exigent machine-check condition has the high-
est priority. When it occurs, the current operation is
terminated or nullified. Program and supervisor-call
interruptions that would have occurred as a result of
the current operation may be eliminated. Any pend-
ing repressible machine-check conditions may be
indicated with the exigent machine-check interrup-
tion. Every reasonable attempt is made to limit the
side effects of an exigent machine-check condition,
and, normally, requests for I/O and external inter-
ruptions remain unaffected.

In the absence of an exigent machine-check con-
dition, requests for interruption existing concurrently
at the end of a unit of operation are honored in the

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

following order of priority (the conditions are listed
in descending order of priorities):

Supervisor call

Program

Repressible machine-check

External

Input/output

Restart

The processing of multiple simultaneous interrup-
tion requests consists in storing the old PSW and
fetching the new PSW belonging to the interruption
first taken. This new PSW is subsequently stored
without the execution of any instructions, and the
new PSW associated with the next interruption is
fetched. This storing and fetching continues until no
more interruptions are to be serviced. The priority is
reevaluated after the new PSW is loaded. Each eval-
vation is performed taking into consideration any ad-
ditional interruptions which may have become pend-
ing. Additionally, external and I/0 interruptions, as
well as'machine-check interruptions due to repres-
sible conditions, are taken only if the current PSW at
the instant of evaluation indicates that the CPU is inter-
ruptible for the cause.

Instruction execution is resumed using the last-
fetched PSW. The order of executing interruption
subroutines is therefore the reverse of the order in
which the PSWs are fetched.

If the new PSW for a program interruption has an
unacceptable instruction address (the instruction
address is odd or causes an access exception to be
recognized), another program interruption occurs.
Since this second interruption introduces the same
unacceptable PSW, a string of interruptions is estab-
lished. These program exceptions are recognized as
part of the execution of the following instruction,
and the string may be broken by an I/O, external, or
restart interruption or the stop function.

If the new PSW for a program interruption con-
tains a one in an unassigned bit position in an EC-
mode PSW, or if it specifies the EC mode in a CPU
that does not have the EC facility installed, or if it
specifies any other facility that is not installed on the
CPU, another program interruption occurs. This
condition is of higher priority than restart, I/0, ex-
ternal, or repressible machine-check conditions, or
the stop function, and CPU reset has to be used to
break the loop.

Interruption loops of other interruption classes
can also exist if the new PSW is enabled for the
same interruption. These include machine-check
interruptions and external interruptions due to
channel-available or PCI conditions. Interruption
loops involving more than one interruption class can

Interruptions 89

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

also exist. For example, assume that the CPU timer
is negative and the CPU-timer subclass mask is one.
If the external new PSW has an exception which is
recognized as part of early recognition, and the pro-
gram new PSW is enabled for external interruptions,
then a series of interruptions occur, alternating be-
tween external and program. Even more complex
loops are possible. So long as more interruptions
must be serviced, the loop cannot be broken by em-
ploying the stop function; CPU reset is required.

Similarly, CPU reset has to be invoked to termi-
nate the condition that exists when an interruption is
attempted with a prefix value designating a main-
storage location that is not available to the CPU.

On some models, when an excessive number of
consecutive interruptions is detected which cannot
be broken by means of the stop function, the CPU
enters a special state that can be exited only by use
of CPU reset.

Interruptions for all requests for which the CPU is
enabled are taken before the CPU is placed in the
stopped state. When the CPU is in the stopped state,
restart has a higher priority than pending 1/0, exter-
nal, or repressible machine-check conditions.

Programming Note

The order in which concurrent interruption requests
are honored can be changed to some extent by
masking.

Assigned Main-Storage Locations

Real Main Storage

The chart " Assigned Locations in Real Main Stor-
age'' shows the format and extent of the assigned
locations in real main storage. In a multiprocessing
system, real storage addresses are transformed to
absolute addresses by means of prefixing. The loca-
tions are used as follows. Unless specifically noted,
the usage applies to both the BC and EC modes.

0-7 Restart New PSW: The new PSW is
fetched from locations 0-7 during the re-
start interruption.

8-15 Restart Old PSW: The current PSW is
stored as the old PSW at locations 8-15
during the restart interruption.

Interruption Old PSWs: The current
PSW is stored as the old PSW at locations
24-31, 32-39, 40-47, 48-55, and 56-63
during the external, supervisor-call, pro-
gram, machine-check, and input/output
interruptions, respectively.

CSW: The channel status word (CSW) is
stored at locations 64-71 during an 1/0O

24-63

64-71

90 System/370 Principles of Operation

72-75

80-83

88-127

132-133

134-135

136-139

140-143

interruption. It, or portions thereof, may
be stored during the execution of START
1/0, START I/O FAST RELEASE,
TEST I/0, CLEAR 1/0, HALT 1/0, or
HALT DEVICE, in which case condition
code 1 is set.

CAW: The channel address word (CAW)
is fetched from locations 72-75 during
the execution of START 1/0 and
START I/0O FAST RELEASE.

Interval Timer: Locations 80-83 contain
the interval timer. The timer is updated
whenever the CPU is in the operating
state. Depending on the resolution of the
timer, the low-order locations may not be
updated.

Interruption New PSWs. The new PSW
is fetched from locations 88-95, 96-103,
104-111, 112-119, and 120-127 during
the external, supervisor-call, program,
machine-check, and input/output inter-
ruptions, respectively.

Processor Address: During an external
interruption due to malfunction alert,
emergency signal, or external call, the
processor address associated with the
source of the interruption is stored at lo-
cations 132-133. For all other external
interruption conditions, zeros are stored
at locations 132-133 when the old PSW
specified EC mode, and the field remains
unchanged when the old PSW specified
the BC mode.

External-Interruption Code: During an
external interruption in the EC mode, the
interruption code is stored at locations
134-135.

Supervisor-Call-Interruption
Identification: During a supervisor-call
interruption in the EC mode, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and the
interruption code is stored at locations
138-139. Zeros are stored at location 136
and in the remaining bit positions of 137.

Program-Interruption Identification: Dur-
ing a program interruption in the EC
mode, the instruction-length code is
stored in bit positions 5 and 6 of location
141, and the interruption code is stored
at locations 142-143. Zeros are stored at
location 140 and in the remaining bit
positions of 141.

144-147

148-149

150-151

152-155

156-159

168-171

172-175

176-179

Translation-Exception Address: During a
program interruption due to a segment-
translation exception or a page-
translation exception, the translation-
exception address is stored at locations
145-147, and zeros are stored at location
144. This field can be stored only when
the old program PSW specifies the EC
mode.

Monitor Class Number: During a pro-
gram interruption due to a monitor event,
the monitor class number is stored at lo-
cation 149, and zeros are stored at 148.
This field can be stored in either the BC
or EC modes.

PER Code: During a program interrup-
tion due to a program event, the
program-event-recording (PER) code is
stored in bit positions 0-3 of location
150, and zeros are stored in bit positions
4-7 and at location 151. This field can
be stored only when the instruction caus-
ing the PER condition was executed un-
der the control of a PSW specifying the
EC mode.

PER Address: During a program interrup-
tion due to a program event, the
program-event-recording (PER) address
is stored at locations 153-155, and zeros
are stored at location 152. This field can
be stored only when the instruction caus-
ing the PER condition was executed un-
der the control of a PSW specifying the
EC mode.

Monitor Code: During a program inter-
ruption due to a monitor event, the moni-
tor code is stored at locations 157-159,
and zeros are stored at location 156.

This field can be stored in either the BC
or EC mode.

Channel ID: The four-byte channel-
identification information is stored at lo-
cations 168-171 during the execution of
STORE CHANNEL ID.

IOEL Address: The 1/0-extended-
logout address is fetched from locations
172-175 during the I/O-extended-logout
operation.

Limited Channel Logout. The limited-
channel-logout information is stored at
locations 176-179. This field may be

185-187

216-511

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

stored only when the CSW or a portion
of the CSW is stored. It may be stored in
either the BC or EC mode.

1/0 Address: During an I/0 interruption
in the EC mode, the two-byte I/0O ad-
dress is stored at locations 186-187, and
zeros are stored at location 185.

Machine-Check Interruption Code, Save
Area, and Logout. Information may be
stored at locations 216-239 and 248-511
during a machine-check interruption, and
information may be stored at locations
256-351 during an 1/0 interruption. Ad-
ditionally, the contents of locations 256-
351 may be changed at any time, subject
to the asynchronous-fixed-logout-control
bit in control register 14.

Absolute Main Storage

The chart "'Assigned Locations in Absolute Main
Storage'' shows the format and extent of the as-
signed locations in absolute main storage. The loca-
tions are as follows, and the usage applies to both
the BC and EC modes.

0-7

8-15

16-23

216-511

IPL PSW: The first eight bytes read
during the IPL initial read operation are
stored at locations 0-7. The contents of
these locations are used as the new PSW
at the completion of the IPL operation.
These locations may also be used for
temporary storage at the initiation of the
IPL operation.

IPL. CCW]I: Bytes 8-15 read during the
IPL initial read operation are stored at
locations 8-15. The contents of these lo-
cations are ordinarily used as the second
CCW in an IPL. CCW chain after com-
pletion of the IPL initial read operation.

IPL CCW?2: Bytes 16-23 read during the
IPL initial read operation are stored at
locations 16-23. The contents of these
locations may be used as the third CCW
of an IPL. CCW chain after completion of
the IPL initial read operation.

Store-Status Save Area: Information is
stored at locations 216-231, 256-271,
and 352-511 during the execution of the
store-status operation.

Interruptions 921

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Hex
0

4
8
c

10

14

18

1C

20

24

28

2C

8 &2 88888

50

58
5C

8828

70
74
78
7C

8888

20

98

A0
A4
A8
AC
BO
B4
B8

Dec
0| Restart New PSW
4
8| Restart Old PSW
12
16
20
24| External Old PSW
28
32| Supervisor Call Old PSW
36
40| Program Old PSW
44
48| Machine-Check Old PSW
52
56| Input/Output Old PSW
60
64 | Channel Status Word
68
72| Channel Address Word
76
80{ Interval Timer
84
88| External New PSW
92
96| Supervisor Call New PSW
100
104} Program New PSW
108
112} Machine-Check New PSW
116
120 Input/Output New PSW
124
128
132 Processor Address External-Interruption Code
1361000000 0000000]ILC|O| Superv.-Cali-irptn. Code
140)0000000000000fILC 0|Program-interruption Code
1441000000 00| Translation-Exception Address
1481000000 00[Monitor C1.#[PERC.[000000000000
152100000000 PER Address
156100000000, Monitor Code
160
164
168 Channel 1D
172 | 10EL Address
176 Limited Channel Logout
180
184 loooooooo] 1/0 Address

Assigned Locations in Real Main Storage

92 System/370 Principles of Operation

Hex
BC

co
ca4
cs
cc
Do
D4
D8
DC
EO
E4
E8
EC
FoO
F4
F8
FC
100
104
108
10C

154
158
15C
160
164
168
16C
170
174
178
17C
180
184
188
18C

1B4
1B8
1BC
1CO
1C4
1C8
1CC

1F4
1F8
1FC

Dec

188
192
196
200
204
208
212

216
220

Machine-Check CPU-Timer Save Area

224
228

Machine-Check Clock-Comparator Save Area

232
236

Machine-Check Interruption Code

240
244

248

00 000000l Failing-Storage Address

2562

Region Code

256
260
264
268

©31

34

Fixed Logout Area

Q¢

)

4

352
356
360
364
368
372
376
380

Machine-Check Floating-Point Register Save Area

384
388
392
396

436
440

Machine-Check General-Register Save Area

1l

))

L

448
452
456
460

500
504
508

Machine-Check Control-Register Save Area

L QS

))
10

Hex

10
14
18
1Cc
20
24
28
2C

30
34
38
3C
40
44
48
4C
50
54
58
6C

60
64
68
6C
70
74
78
7C

80
- 84

88

8C
90
94
98
9C
AOQ
A4
A8
AC
BO
B4

B8
BC

Assigned Locations in Absolute Main Storage

Dec

16
20
24

32
36

N

56

5 8.2 8

76
80
84
88
92
96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

188

Initial Program Loading PSW

Initial Program Loading CCW1

Initial Program Loading CCW2

Hex
Cco
Cc4
c8
cc
DO
D4
D8
DC
EO
E4
E8
EC
FO
F4
F8
FC
100
104
108
10C
110

158
15C
160
164
168
16C
170
174
178
17C
180
184
188
18C

1B4
188
1BC
1C0
1C4
1C8
1CC

1F4
1F8
1FC

Dec
192
196
200
204
208
212
216
220
224
228
232
236
240
244
248
252
256
260
264
268
272

344

3562
356
360
364
368
372
376
380
384
388
392
396

436
440
444
448
452
456
460

500
504
508

b1

o

b))

)

R4S

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Store-Status CPU Timer Save Area

Store-Status Clock-Comparator Save Area

Store-Status PSW Save Area

Store-Status Prefix Save Area

Store-Status Model-Dependent Feature Area

I

K4S

Store-Status Floating-Point Register Save Area

W]

Store-Status General-Register Save Area

N
W

Store-Status Control-Register Save Area

b3
«

Interruptions

93

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Multiprocessing
Contents

Shared Main Storage 95
Prefixing . 95
CPU Signaling and Response 97
Orders 97
Conditions Determlmng Response 98
Conditions Precluding Interpretation of the Order Code 98
Status Bits L. 99

TOD Clock Synchronlzatlon . 101
CPU Address Identification . 101

The multiprocessing feature provides for the inter-
connection of CPUs, via a common main storage, in
order to enhance system availability and to share
data and resources. The multiprocessing feature in-
cludes the following facilities:

» Shared main storage
« Prefixing

« CPU signaling and response
» TOD-clock synchronization

Associated with these facilities are four extensions
to external interruption (external call, emergency
signal, TOD clock sync check, and malfunction
alert), which are described in the chapter
"Interruptions'; control-register positions for the
TOD-clock-sync-control bit and for the masks for
the four external-interruption conditions, which are
listed in " Control Registers" in the chapter "System
Control"; and the instructions SET PREFIX, SIG-
NAL PROCESSOR, STORE CPU ADDRESS, and
STORE PREFIX, which are described in the chapter
"System-Control Instructions."

When the CPU is equipped with the multiprocess-
ing feature, certain additional functions are provided
as part of the system console. These functions per-
tain to the following controls, which are described in
the chapter "'System Console": configuration con-
trols, enable-system-clear key, load key, system-
reset key, and TOD-clock key.

Channels in a multiprocessing system are associat-
ed with a particular CPU. Only one CPU can initiate
I/0 operations at a channel, and all interruption
conditions are directed to that CPU.

Shared Main Storage

The shared-main-storage facility permits more than
one CPU to have access to common main-storage
locations. All CPUs having access to a common

main-storage location have access to the entire
2,048-byte block containing that location and to the
associated key in storage. All CPUs refer to a shared-
main-storage location using the same absolute ad-
dress.

Prefixing

When the multiprocessing feature is installed in a
CPU, most addresses associated with storage refer-
ences by the CPU are processed by a mechanism
called "prefixing." All addresses subject to this pro-
cessing are referred to as "'real" addresses. Storage
addresses which are not subject to this processing,
and all addresses that have been processed, whether
or not they are changed, are referred to as
"absolute" addresses.

As a result of the processing to form the absolute
address, real addresses 0-4095 are interchanged with
the 4,096 addresses of the block that begins at the
address identified in the prefix register. All other real
addresses remain unchanged.

The real addresses 0-4095 include the addresses
of the assigned storage locations that are implicitly
generated by the CPU and channels, and include the
addresses that can be specified by the program with-
out the use of a base address or an index. Prefixing
provides the ability to reassign this block of real
locations for each CPU to a different block in abso-
lute main storage, thus permitting more than one
CPU sharing main storage to operate concurrently
with a minimum of interference, especially in the
processing of interruptions.

Because the prefixing mechanism interchanges
the real addresses, each CPU can access all of abso-
lute main storage, including the first 4,096 bytes and
the assigned locations for another CPU.

Multiprocessing 95

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

The relationship between real and absolute ad-
dresses is graphically depicted in the figure

"Relationship Between Real and Absolute Addresses."

The prefix is a 12-bit quantity located in the pre-
fix register. The register has the following format:

Y Y

8 31

The contents of the register can be set and in-
spected by the privileged instructions SET PREFIX
and STORE PREFIX, respectively. On setting, bits
corresponding to bit positions 0-7 and 20-31 of the
prefix register are ignored. On storing, zeros are
provided for these bit positions. The prefix register is
initialized to zero.

Prefixing is applied to all references to main stor-
age and to keys in storage, except for references by
a CPU to the permanently assigned storage locations
during performance of the store-status function, and
except for references by a channel to extended-
logout locations, to I/0 data, to indirect-data-

address words, and to CCWs. When dynamic ad-
dress translation is specified, prefixing is applied
after the address has been translated by the dynamic-
address-translation mechanism. When installed,
prefixing is always active and is not subject to any
mode control.

When prefixing is applied, the storage address is
translated as follows:

1. Bits 8-19 of the storage address, if all zeros,
are replaced with bits 8-19 of the prefix.

2. Bits 8-19 of the storage address, if equal to bits
8-19 of the prefix, are replaced with all zeros.

3. Bits 8-19 of the storage address, if not all zeros
and not equal to bits 8-19 of the prefix, remain
unchanged.

In all cases, bits 20-31 of the storage address re-
main unchanged.

Only the address presented to storage is translat-
ed by prefixing. The contents of the source of the
address remain unchanged.

The distinction between real and absolute ad-
dresses is made even when prefixing is not installed

L prefing r P
] 1| | |
| No Change I o1 | | 1
l | T: | No Change l ’T‘
| i |
}_ ‘ | | *
| I -~ | l A
T | | T | T
| § —©
&~
L | N i | R
£ . |
* | I . S | !
L I L | 2 | L
—~— | o | o~ | ,}; ~——
N ange — +]
| T | |
+ | : 3 Q——-—-I—No Change ! -
| |
} ! | } |) |
| ' g
| t S | -
Address | | Address |l < l
4 4096 I L / ‘ "‘,ﬁg;;ess
_ ' 9{ 4 | {
1 4_,_Add(;ess L __________ I 1 | Address L ________] «—Address

Real Addresses
for CPU A

Absolute
Addresses

Real Addresses
for CPU B

@ Real addresses in which the high-order 12 bits are equal to the prefix for this CPU (A or B).

@ Absolute addresses of the block that contains, for this CPU (A or B), the assigned locations

in real storage.

Relationship Between Real and Absolute Addresses

96 System/370 Principles of Operation

or when the prefix register contains all zeros. In both
of these cases, a real address and its corresponding
absolute address are identical.

CPU Signaling and Response

The CPU-signaling-and-response facility provides
for communications among CPUs by means of the
SIGNAL PROCESSOR instruction. It provides for
transmitting and receiving the signal, decoding a set
of assigned order codes, performing the specified
operation, and responding to the signaling CPU.

If a CPU has the CPU-signaling-and-response
facility installed, it can address the SIGNAL PRO-
CESSOR instruction to itself. All orders are executed
as defined.

Orders

Twelve orders are provided for communications
among CPUs in a multiprocessing system. The or-
ders are specified in bit positions 24-31 of the
second-operand address of SIGNAL PROCESSOR
and are encoded as follows:

Code Order
00 Invalid and Unassigned
01 Sense
02 External Call
03 Emergency Signal
04 Start
05 Stop
06 Restart
07 Initial Program Reset
08 Program Reset
09 Stop and Store Status
OA Initial Microprogram Load
oB Initial CPU Reset
ocC CPU Reset
| OD-FF Invalid and Unassigned

The orders are defined as follows:

Sense: The addressed CPU presents its status to the
issuing CPU (see '"'Status Bits'" in this chapter for a
definition of the bits). No other action is caused at
the addressed CPU. The status, if not all zeros, is
stored in the general register designated by the Ry
field, and condition code 1 is set; if all status bits are
zero, condition code O is set.

External Call: An "external call" external-
interruption condition is generated at the addressed
CPU. The interruption condition becomes pending
during the execution of the SIGNAL PROCESSOR
instruction. The associated interruption occurs when
the CPU is interruptible for that condition and does
not necessarily occur during the execution of the
SIGNAL PROCESSOR instruction. The address of
the CPU sending the signal is provided with the in-

terruption code when the interruption occurs. Only
one external-call condition can be kept pending in a
CPU at a time.

Emergency Signal: An "emergency-signal” external-
interruption condition is generated at the addressed
CPU. The interruption condition becomes pending
during the execution of the SIGNAL PROCESSOR
instruction. The associated interruption occurs when
the CPU is interruptible for that condition and does
not necessarily occur during the execution of the
SIGNAL PROCESSOR instruction. The address of
the CPU sending the signal is provided with the in-
terruption code when the interruption occurs. At any
one time the receiving CPU can keep pending one
emergency-signal condition for each CPU of the
multiprocessing system, including the receiving CPU
itself.

Start: The addressed CPU is placed in the operating
state (see "'Stopped and Operating States" in the
chapter "System Control"). The order is effective
only when the addressed CPU is in the stopped’

state, and the effect is unpredictable when the stopped
state has been entered by reset. The CPU does

not necessarily enter the operating state during the
execution of the SIGNAL PROCESSOR instruction.

Stop: The addressed CPU performs the stop func-
tion (see "Stopped and Operating States'' in the
chapter "System Control"). The CPU does not
necessarily enter the stopped state during the execu-
tion of the SIGNAL PROCESSOR instruction. No
action is caused at the addressed CPU if that CPU is
in the stopped state when the order code is accepted.

Restart: The addressed CPU performs the restart
function (see "Restart" in the chapter
"Interruptions'). The CPU does not necessarily
perform the function during the execution of the
SIGNAL PROCESSOR instruction.

Initial Program Reset: The addressed CPU per-
forms initial program reset (see "'Resets" in the
chapter "System Control"). The execution of the
reset does not affect other CPUs and does not affect
channels not configured to the CPU being reset. The
reset operation is not necessarily completed during
the execution of the SIGNAL PROCESSOR instruc-
tion.

Program Reset: The addressed CPU performs pro-
gram reset (see "Resets'' in the chapter "System
Control"). The execution of the reset does not affect
other CPUs and does not affect channels not config-

Multiprocessing 97

ured to the CPU being reset. The reset operation is
not necessarily completed during the execution of
the SIGNAL PROCESSOR instruction.

Stop and Store Status: The addressed CPU per-
forms the stop function, followed by the store-status
function (see "'Stopped and Operating States' and
"Store Status' in the chapter "System Control'").
The CPU does not necessarily complete the opera-
tion, or even enter the stopped state, during the exe-
cution of the SIGNAL PROCESSOR instruction.

Initial Microprogram Load (IMPL): The addressed
CPU performs initial program reset and then initi-
ates the initial-microprogram-load function. The
latter function is the same as that which is performed
as part of manual initial microprogram loading. If the
initial-microprogram-lioad function is not provided
on the addressed CPU, the order code is treated as
unassigned and invalid. The operation is not neces-
sarily completed during the execution of the SIG-
NAL PROCESSOR instruction.

Initial CPU Reset: The addressed CPU performs
initial CPU reset (see "Resets'" in the chapter
"System Control'). The execution of the reset does
not affect other CPUs and does not cause any chan-
nels, including those configured to the addressed
CPU, to be reset. The reset operation is not neces-
sarily completed during the execution of the SIG-
NAL PROCESSOR instruction.

CPU Reset: The addressed CPU performs CPU
reset (see 'Resets'' in the chapter "System Con-
trol'"). The execution of the reset does not affect
other CPUs and does not cause any channels, in-
cluding those configured to the addressed CPU, to
be reset. The reset operation is not necessarily com-
pleted during the execution of the SIGNAL PRO-
CESSOR instruction.

Conditions Determining Response

Conditions Precluding Interpretation of the Order
Code

The following situations determine the initiation of
the order. The sequence in which the situations are
listed is the order of priority for indicating concur-
rently existing situations:

1. The access path to the addressed CPU is busy
because a concurrently issued SIGNAL
PROCESSOR instruction is using the CPU-
signaling-and-response facility. The concur-
renily issued instruction may or may not have
been issued by or to the addressed CPU and

98 System/370 Principles of Operation

may or may not have been issued to this CPU.
The order is rejected. Condition code 2 is set.

2. The addressed CPU is not operational, that is,
the addressed CPU is not installed, is not con-
figured to the issuing CPU, or is in certain
customer-engineer test modes, or does not
have its power on. The order is rejected. Con-
dition code 3 is set.

3. One of the following conditions exists at the
addressed CPU:

a. A previously issued start, stop, restart, or
stop-and-store-status order has been accept-
ed by the addressed CPU, and execution of
the order has not yet been completed.

b. A manual start, stop, restart, or store-status
function has been initiated at the addressed
CPU, and the operation has not yet been
completed.

¢. A manual initial-program-load function has
been initiated at the addressed CPU, and
the reset portion, but not the program load
portion, of the operation has been complet-
ed.

If the currently specified order is a sense,
external call, emergency signal, start, stop,
restart, or stop and store status, the order is
rejected, and condition code 2 is set. If the
currently specified order is an IMPL, one of
the reset orders, or an unassigned or not-
implemented order, the order code is inter-
preted as described in the section "Status
Bits."

4. One of the following conditions exists at the
addressed CPU:

a. A previously issued initial-program-reset,
program-reset, IMPL, initial-CPU-reset, or
CPU-reset order has been accepted by the
addressed CPU, and execution of the order
has not yet been completed.

b. A manual reset or IMPL function has been
initiated at the addressed CPU, and the
function has not yet been completed. The
term ''manual reset function" includes the
reset portion of TPL.

If the currently specified order is a sense,
external call, emergency signal, start, stop,
restart, or stop and store status, the order is
rejected, and condition code 2 is set. If the
currently specified order is an IMPL, one of
the reset orders, or an unassigned or not-
implemented order, either the order is re-
jected and condition code 2 is set or the or-

der code is interpreted as described under
the heading '"Status Bits."

When any of the conditions described in 3 and 4
exists, the addressed CPU is referred to as "'busy."
Busy is not indicated if the addressed CPU is in the
check-stop state or when the operator-intervening
condition exists. A CPU-busy condition is normally
of short duration; however, the conditions described
in item 3 may last indefinitely because of an unend-
ing series of interruptions or because of an invalid
address in the prefix register. In this situation, how-
ever, the CPU does not appear busy to any of the
reset orders or to IMPL.

Status Bits

Eight status conditions are defined whereby the issu-
ing and addressed CPUs can indicate their response
to the designated order. The status conditions and
their bit positions in the general register designated
by the Rj field of the SIGNAL PROCESSOR in-
struction are as follows:

Bit Position Status Condition
0 Equipment check
1-23 Unassigned; zeros stored
24 External-call pending
25 Stopped
26 Operator intervening
27 Check stop
28 Not ready
29 Unassigned; zero stored
30 Invalid order
31 Receiver check

The status condition assigned to bit position O is
generated by the CPU executing the SIGNAL
PROCESSOR instruction. The status conditions
assigned to bit positions 24-31 are generated by the
addressed CPU.

When the access path to the addressed CPU is
not busy and the addressed CPU is operational and
does not indicate busy to the currently specified
order, the addressed CPU presents its status to the
issuing CPU. These status bits are of two types:

« Status bits 24-28 indicate the presence of the
corresponding conditions in the addressed
CPU at the time the order code is received.
Except in response to the sense order, each
condition is indicated only when the condition
precludes the successful execution of the desig-
nated order. In the case of sense, all existing
status conditions are indicated; the operator-
intervening and not-ready conditions each are
indicated if these conditions preclude the exe-
cution of any installed order.

« Status bits 30 and 31 indicate that the corre-
sponding conditions were detected by the ad-
dressed CPU during reception of the order.

If the presented status is all zeros, the addressed
CPU has accepted the order, and condition code 0 is
set at the issuing CPU; if the presented status is not
all zeros, the addressed CPU has rejected the order,
the presented status is stored at the issuing CPU in
the general register designated by the Rj field of the
SIGNAL PROCESSOR instruction, zeros are stored
in bit positions 0-23 of the register, and condition
code 1 is set.

When the equipment-check condition exists, bit 0
of the general register designated by the Ry field of
the SIGNAL PROCESSOR instruction is set to one,
bits 1-23 are set to zeros, and the contents of bit
positions 24-31 are unpredictable. In this case, con-
dition code 1 is set independently of whether the
access path to the addressed CPU is busy and inde-
pendently of whether the addressed CPU is not op-
erational, is busy, or has presented zero status.

The status conditions are defined as follows:

Equipment Check: This condition exists when the
CPU executing the instruction detects equipment
malfunctioning that has affected only the execution
of this instruction and the associated order. The or-
der code may or may not have been transmitted, and
may or may not have been accepted, and the status
bits provided by the addressed processor may be in
error.

External Call Pending: This condition exists when
an external-call interruption condition is pending in
the addressed CPU because of a previously issued
SIGNAL PROCESSOR instruction. The condition
exists from the time an external-call order is accept-
ed until the resultant external interruption has been
completed. The condition may be due to the issuing
CPU or another CPU. The condition, when present,
is indicated only in response to sense and to external
call.

Stopped: This condition exists when the addressed
CPU is in the stopped state. The condition, when
present, is indicated only in response to sense.

Operator Intervening: This condition exists when
the addressed CPU is executing certain operations
initiated from the console or the remote operator
control panel. The particular manually initiated op-
erations that cause this condition to be present de-
pend on the model and on the order specified. This
condition, when present, can be indicated in re-
sponse to all orders. Operator intervening is indicat-

Multiprocessing 99

ed in response to sense if the condition is present
and precludes the acceptance of any of the installed
orders. The condition may also be indicated in re-
sponse to unassigned or uninstalled orders.

Check Stop: This condition exists when the ad-
dressed CPU is in the check-stop state. The condi-
tion, when present, is indicated only in response to
sense, external call, emergency signal, start, stop,
restart, and stop and store status. The condition may
also be indicated in response to unassigned or unin-
stalled orders. ’

Not Ready: This condition exists when the ad-
dressed CPU uses reloadable control storage to per-
form an order and the required microprogram is not
loaded. The not-ready condition may be indicated in
response to all orders except IMPL.

Invalid Order: This condition exists during the com-
munications associated with the execution of SIG-
NAL PROCESSOR when the addressed CPU de-
codes an unassigned or uninstalled order code.

Receiver Check #

Receiver Check: This condition exists when the
addressed CPU detects malfunctioning of equipment
during the communications associated with the exe-
cution of SIGNAL PROCESSOR. When this condi-
tion is indicated, the order has not been initiated
and, since the malfunction may have affected the
generation of the remaining receiver status bits,
these bits are not necessarily valid. A machine-check
condition may or may not have been generated at
the addressed CPU.

The following chart summarizes which status con-
ditions are presented to the issuing CPU in response
to each order code.

If the presented status bits are all zeros, the order
has been accepted, and the issuing processor sets
condition code 0. If one or more ones are presented,
the order has been rejected, and the issuing proces-
sor stores the status in the general register specified

by the R field of the SIGP instruction and sets
condition code 1.

Programming Notes
A CPU can obtain the following functions by
addressing SIGNAL PROCESSOR to itself:

1. Sense indicates whether an external-call condi-
tion is pending.

Invalid Order
Not Ready
Check Stop
Operator Intervening #
Stopped
External Call Pending

Sense

External Call
Emergency Signal
Start

Stop

Restart

Initial Program Reset
Program Reset

Stop and Store Status
IMPL*

Initial CPU Reset*
CPU Reset*
Unassigned Order

DOOXOOXXXXXX

oooooooooooxxJ

OO0 00O00000O0 O X—m—J
XXXXXXXXXXXXX
XXXOXXXXXXXXX

(=]
=
X

Explanation:

- 0000CO0O0O0OOO0OO0OO0CCO0O

XXXXXXXXXXXXX

0 A zero is presented in this bit position regardless of the current state of this condition.

1 A oneis presented in this bit position.

X. A zeroor aone is presented in this bit position, reflecting the current state of the corresponding condition,

Either a zero or the current state of the corresponding condition is indicated.

The current state of the operator-intervening condition may depend on the order code that is being interpreted.
|f a one is presented in the receiver-check bit position, the values presented in the other bit positions are not

necessarily valid.

* If the order code is implemented, use the line entry for the order code; if the order code is not implemented, use

the line entry labeled ‘‘Unassigned Order.”’

100 System/370 Principles of Operation

2. External call and emergency signal cause the
corresponding interruption conditions to be
generated. External call can be rejected be-
cause of a previously generated external-call
condlition.

3. Start sets condition code 0 and has no other
effect.

4. Stop causes the CPU to set condition code O,
take pending interruptions for which it is ena-
bled, and enter the stopped state.

5. Restart provides a means to store the current
PSW.

Two CPUs can simultaneously execute SIGNAL
PROCESSOR instructions, with each CPU address-
ing the other. When this occurs, one CPU, but not
both, can find the access path busy because of the
transmission of the order code or status bits associat-
ed with the SIGNAL PROCESSOR instruction that
is being executed by the other CPU. Alternatively,
both CPUs can find the access path available and
transmit the order codes to each other. In particular,
two CPUs can simultaneously stop, restart, or reset
each other.

TOD Clock Synchronization

In an installation with more than one CPU, depend-
ing on the model, each CPU may have a separate
time-of-day clock, or more than one CPU may share
a clock. In all cases, each CPU accesses a single
clock. A configuration change does not affect the
value in any of the clocks or which clock a CPU
accesses.

When more than one time-of-day clock exists in a
configured system, the stepping rates are synchro-
nized such that all time-of-day clocks in the configu-
ration are incremented at the exact same rate. The
CPU timer in each CPU is also decremented at this
same rate.

The TOD-clock-synchronization facility provides
functions that make it possible to write a single
model-independent supervisor clock-synchronization
program which can handle systems with a single
time-of-day clock or with multiple clocks. Addition-
ally, the facility, in conjunction with the supervisor

clock-synchronization program, provides, in effect,
only one clock in a multiprocessing system, so that,
to all programs storing the clock, it appears that all
CPUs read the same clock.

The synchronization is provided by a mechanism
which causes a stopped clock to start incrementing in
response to a signal from another clock and which
checks whether the low-order 32 bits of all clocks in
the configuration are stepped at the same time.

Lack of synchronization is signaled by an external
interruption indicating the TOD-clock-sync-check
condition. The synchronization is under control of
the TOD-clock-sync-control bit in control register 0,
bit position 2. See "Time-of-Day Clock Sync

Check" in the chapter "Interruptions" and "Time-of-
Day Clock" in the chapter "System Control."

Programming Note

- A stopped clock, with the TOD-clock-sync-control

bit set to one, starts when bits 32-63 of any running
clock in the configuration are incremented to zero.
This permits the program to synchronize all clocks to
any particular clock without requiring special opera-
tor action to select a ""'master clock" as the source of
the clock synchronization pulses. The supervisor
clock-synchronization program must check for syn-
chronization of high-order bits and assist in syn-
chronizing clocks by communicating the high-order
bit values and setting them in the clocks to be syn-
chronized.

CPU Address Identification

Each CPU in a multiprocessor installation is as-
signed a unique address. The CPU is designated by
specifying this address in the processor address field
of a SIGNAL PROCESSOR instruction. The CPU
signaling a malfunction alert, emergency signal, or
external call is identified by storing this address in
the processor-address field with the interruption.
The CPU address is assigned during system installa-
tion and is not changed as a result of configuration
changes. The program can determine the address of
the CPU by means of the instruction STORE CPU
ADDRESS.

Multiprocessing 101

Contents

DIAGNOSE .

INSERT PSW KEY . .

INSERT STORAGE KEY .

LOAD CONTROL

LOAD PSW . .o

LOAD REAL ADDRESS

PURGE TLB.

READ DIRECT . .

RESET REFERENCE BIT .

SET CLOCK . e

SET CLOCK COMPARATOR .

SET CPU TIMER

SETPREFIX
SET PSW KEY FROM ADDRESS.
SET STORAGE KEY

SET SYSTEM MASK

SIGNAL PROCESSOR . .
STORE CLOCK COMPARATOR .
STORE CONTROL .

STORE CPU ADDRESS
STORECPUIID .

STORE CPU TIMER

STORE PREFIX. S
STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK .
WRITE DIRECT

The system-control instructions include all privileged
instructions that are described in this manual except
the input/output instructions, which are described in
the chapter "Input/Output Operations."

The system-control instructions and their mne-
monics, formats, and operation codes are listed in
the following table. The table also indicates when
the condition code is set and the exceptional condi-
tions in operand designations, data, or results that
cause a program interruption.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designation for the IBM System/370 assembly
language are shown with each instruction. For
LOAD PSW, for example, LPSW is the mnemonic
and D2(B3) the operand designation.

Diagnose

83

0 8 31

The CPU performs built-in diagnostic functions, or
other model-dependent functions. The purpose of
the diagnostic functions is to verify proper function-

System-Control Instructions

. 103
. 104
. 105
. 105
- 105
. 106
- 107
- 107
- 107
- 108
- 108
- 109
- 109
- 109
- 110
- 110
- 110
-1
111
- 112
- 112
- 113
- 113
- 113
. 114
. 114

ing of CPU equipment and to locate faulty compo-
nents. Other model-dependent functions may in-
clude disabling of failing buffers, reconfiguration of
storage and channels, and modification of control
storage.

Bits 8-31 may be used as in the SI or RS formats,
or in some other way, to specify the particular diag-
nostic function. The use depends on the model.

The execution of the instruction may affect the
state of the CPU and the contents of a register or
storage location, as well as the progress of an I/0
operation. Some diagnostic functions cause the test
light of the system console to be turned on.

Condition Code: The code is unpredictable.

Program Excepftions:
Privileged Operation

Depending on the model, other exceptions may be
recognized.

Programming Notes

Since the instruction is not intended for problem-
program or supervisor-program use, DIAGNOSE
has no mnemonic.

DIAGNOSE, unlike other instructions, does not

System-Control Instructions 103

Name Mnemonic Characteristics Code
DIAGNOSE M DM 83
INSERT PSW KEY IPK S PK ™M R B20B
INSERT STORAGE KEY ISK RR M A1l sP R 09
LOAD CONTROL LCTL RS M A SP B7
LOAD PSW LPSW S L M A SP $ 82
LOAD REAL ADDRESS LRA RX C TR M A2 R B1
PURGE TLB PTLB S TR M $ B20D
READ DIRECT RDD Sl DC M A $ ST 85
RESET REFERENCE BIT RRB S (o4 TR M A1l B213
SET CLOCK SCK S C M A SP B204
SET CLOCK COMPARATOR SCKC S CK M A sP B206
SET CPU TIMER SPT S CK ™ A sP B208
SET PREFIX SPX S MP M A SP $ B210
SET PSW KEY FROM ADDRESS SPKA S PK M B20A
SET STORAGE KEY SSK RR M A1 SP 08
SET SYSTEM MASK SSM S M A SO 80
SIGNAL PROCESSOR SIGP RS C MP M $ R AE
STORE CI.OCK COMPARATOR STCKC S CK M A SP ST B207
STORE CONTROL STCTL RS M A SP ST B6
STORE CPU ADDRESS STAP S MP M A SP ST B212
STORE CPU ID STIDP S ™M A SP ST B202
STORE CPU TIMER STPT S CK M A SP ST B209
STORE PREFIX STPX S MP M A sP ST B211
STORE THEN AND SYSTEM MASK STNSM si TR ™M A ST AC
STORE THEN OR SYSTEM MASK STOSM sl TR M A ST AD
WRITE DIRECT WRD Sl DC M A $ 84

Explanation:

A Access exceptions

A1 Addressing exceptions only

A2 Addressing and translation-specification exceptions only

C Condition code is set

CK CPU-timer and clock-comparator feature

DC Direct-control feature

DM Depending on the model, DIAGNOSE may generate
various program exceptions and may change the
condition code.

L New condition code loaded

M Privileged-operation exception

MP Multiprocessing feature

System-Control-Instruction Summary

follow the rule that programming errors are distin-
guished from equipment errors. Improper use of
DIAGNOSE may result in false machine-check indi-
cations or may cause actual machine malfunctions to
be ignored. It may also alter other aspects of system
operation, including instruction execution and chan-
nel operation, to an extent that the operation does
not comply with that specified in this manual. As a
result of the improper use of DIAGNOSE, the sys-
tem may be left in such a condition that the power-
on reset or initial-microprogram-loading function
must be performed.

104 System/370 Principles of Operation

PK PSW-key-handling feature

R PER general-register-alteration event
RR RR instruction format

RS RS instruction format

RX RX instruction format

S S instruction format

Sl Sl instruction format

SO Special-operation exception
SP Specification exception

ST PER storage-alteration event
TR Translation feature

$ Causes serialization

Insert PSW Key

IPK [S]

B20B

0 31
The four-bit protection key of the current PSW is
inserted into bit positions 24-27 of general register
2. Bits 0-23 of general register 2 remain unchanged,
and bits 28-31 are set to zeros. Bits 16-31 of the
instruction are ignored.

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the PSW-key-handling feature is not
installed)

Privileged operation

Insert Storage Key

ISK RyR» [RR]
09 Ry | Ry
0 8 12 15

The key in storage associated with the block that is
addressed by the contents of the general register
designated by the R field is inserted in the general
register designated by the Ry field.

Bits 8-20 of the register designated by the Ry
field designate a block of 2,048 bytes in real main
storage. Bits 0-7 and 21-27 of the register are ig-
nored. Bits 28-31 of the register must be zeros; oth-
erwise, a specification exception is recognized, and
the operation is suppressed.

The address designating the storage block, being a
real address, is not subject to dynamic address trans-
lation. Hence, the reference to the key cannot cause
segment-translation, page-translation, and
translation-specification exceptions to be recognized,
and an addressing exception can be caused only by
an invalid storage-block address (as contrasted to an
invalid address of a table entry). The reference to
the key is not subject to a protection exception.

The execution of the instruction depends on the
mode of operation. When the PSW specifies the
extended-control mode, the complete seven-bit key
is inserted into bit positions 24-30 of the register
designated by the Ry field, with bit 31 set to zero.
When the PSW specifies the basic-control mode, bits
0-4 of the key are placed in bit positions 24-28 of
the register, with bits 29-31 of the register set to
zeros. The contents of bit positions 0-23 of the regis-
ter remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

Privileged operation

Access (addressing for operand access only, oper-
and 2)

Specification

Load Control

LCTL R,R3,D2(B2) [RS]

B7 Ry | Ry | B, D,

0 8 12 - 16 20 31

The set of control registers starting with the control
register designated by the Ry field and ending with
the control register designated by the Rj field is
loaded from the locations designated by the second-
operand address.

The storage area from which the contents of the
control registers are obtained starts at the location
designated by the second-operand address and con-
tinues through as many storage words as the number
of control registers specified. The control registers
are loaded in ascending order of their addresses,
starting with the control register designated by the
R field and continuing up to and including the con-
trol register designated by the R3 field, with control
register O following control register 15. The second
operand remains unchanged.

An attempt is made to fetch the operand from
main storage for each of the designated control reg-
isters, regardless of whether the facility requiring the
presence of the control register is installed. Whenev-
er the storage reference causes an access exception,
the exception is indicated.

The second operand must be designated on a
word boundary; otherwise, a specification exception
is recognized, and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:
Privileged operation
Access (fetch, operand 2)
Specification

Programming Note

To ensure that presently written programs run when
new facilities using additional control register posi-
tions are installed, only zeros should be loaded in
unassigned control register positions.

Load PSW
LPSW Dy(B2) [S]
82 ///// B b,
4
0 8 16 20 31

System-Control Instructions 105

The current PSW is replaced by the contents of the
doubleword at the location designated by the .
second-operand address.

If the new PSW specifies the basic-control (BC)
mode, information in bit positions 16-33 of the new
PSW is not retained as the PSW is loaded. When the
PSW is subsequently stored, these bit positions con-
tain the new interruption code and the instruction-
length code.

A serialization function is performed. CPU oper-
ation is delayed until all previous accesses by this
CPU to main storage have been completed, as ob-
served by channels and other CPUs. No subsequent
instructions or their operands are accessed by this
CPU until the execution of this instruction is com-
pleted.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

The value which is to be loaded by the instruction
is not checked for validity before it is loaded. How-
ever, immediately after loading, a specification ex-
ception is recognized, and a program interruption
occurs, when the value specifies the EC mode and
the EC facility is not installed, or when the value
specifies the EC mode and the contents of bit posi-
tions 0, 2-4, 16-17, and 24-39 are not all zeros. In
these cases, the operation is completed, and the re-
sulting instruction-length code is zero.

Bits 8-15 of the instruction are ignored.

Resulting Condition Code: The code is set as speci-
fied in the new PSW loaded.

Program Exceptions:
Privileged operation
Access (fetch, operand 2)
Specification

Load Real Address
LRA

R1,D2(X2,B2) [RX]

B1 Ry | Xo | B, D,

0 8 12 16 20 31

The real address corresponding to the second-
operand address is inserted in the general register
designated by the Ry field. The remaining high-order
bits of the register are set to zeros.

The logical address specified by the X3, B2, and
D, fields is translated by means ofthe dynamic-
address-translation facility, regardless of whether

106 System/370 Principles of Operation

translation is specified in the PSW, and regardless of
whether the PSW specifies the BC or EC mode. The
translation is performed using the current contents
of control registers 0 and 1, but without the use of
the translation-lookaside buffer (TLB). The resul-
tant 24-bit real address is inserted in bit positions
8-31 of the general register designated by the Ry
field, and bits 0-7 of the register are set to zeros.
The translated address is not inspected for resolu-

‘tion, protection, or validity.

Condition code 0 is set when translation can be
completed, that is, when the entry in each table lies
within the specified table length and its I bit is zero.

When the I bit in the segment-table entry is one,
condition code 1 is set, and the real address of the
segment-table entry is placed in the register desig-
nated by the R field. When the I bit in the page-
table entry is one, condition code 2 is set, and the
real address of the page-table entry is placed in the
register designated by the Rj field. When either the
segment-table entry or the page-table entry is out-
side the table, condition code 3 is set, and the regis-
ter designated by the Ry field contains the real ad-
dress of the entry that would have been referred to if
the length violation did not occur. In all these cases,
the 24-bit address is placed in bit positions 8-31 of
the register, and the leftmost eight bits of the regis-
ter are set to zeros.

An addressing exception is recognized when the
address of the segment-table entry or page-table
entry designates a location outside the available
main storage of the installed system. A translation-
specification exception is recognized when bits 8-12
of control register 0 contain an invalid code, or the
segment-table entry or page-table entry has a format
error. For all these cases, the operation is sup-
pressed.

Resulting Condition Code:

0 Translation available

1 Segment-table entry invalid (I bit is one)
2 Page-table entry invalid (I bit is one)

3 Segment- or page-table length violation

Program Exceptions:

Operation (if the translation feature is not in-
stalled)

Privileged operation

Access (addressing for table-entry access and
translation specification only, operand 2)

Purge TLB

PTLB [S]

B20D

7777

All information in the translation-lookaside buffer
(TLB) of this CPU is made invalid. No change is
made to the contents of addressable storage or regis-
ters.

The TLB appears cleared of its original contents
for all following instructions. When the CPU does
not have a TLB, the instruction is equivalent to a
no-operation. The invalidation is not signaled to any
other CPU.

A serialization function is performed. CPU oper-
ation is delayed until all previous accesses by this
CPU to main storage have been completed, as ob-
served by channels and other CPUs. No subsequent
instructions, their operands, or dynamic-address-
translation entries are fetched by this CPU until the
execution of this instruction is complete.

Bits 16-31 of the instruction are ignored.

0

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the translation feature is not in-
stalled)
Privileged operation

Read Direct

RDD Di(By)]l2 [S1]

1

85 I By D,

0 8 16 20 31

The contents of the I field are made available as
signal-out timing signals. A direct-in data byte is
accepted from an external device in the absence of a
hold signal and is placed in the location designated
by the operand address.

The contents of the I field are made available on
a set of eight signal-out lines as 0.5-microsecond to
1.0-microsecond timing signals. These signal-out
lines are also used in WRITE DIRECT. On a ninth
line (read out) a 0.5-microsecond to 1.0-
microsecond timing signal is made available coinci-
dent with these timing signals. The read-out line is
distinct from the write-out line in WRITE DIRECT.
No checking bits are made available with the eight
instruction bits.

FEight data bits are accepted from a set of eight
direct-in lines when the hold signal on the hold-in
line is absent. The hold signal is sampled after the
read-out signal has been completed and should be
absent for at least 0.5 microsecond. No checking bits
are accepted with data signals, but a checking-block
code is generated as the data is placed in storage.
When the hold signal is not removed, the CPU does
not complete the instruction.

A serialization function is performed before the
signals are made available and again after the first-
operand byte is placed in storage. CPU operation is
delayed until all previous accesses by this CPU to
main storage have been completed, as observed by
channels and other CPUs, and then the signal-out
timing signals are presented. No subsequent instruc-
tions or their operands are accessed by this CPU
until the first operand byte has been placed in main
storage, as observed by channels and other CPUs.

An excessively long instruction execution may
result in incomplete updating of the interval timer.

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the direct-control feature is not
installed)

Privileged operation

Access (store, operand 1)

Reset Reference Bit

RRB D;y(B) [s1

8213 B, D,

0 16 20 31

The reference bit is set to zero in the key in storage
associated with the block that is designated by the
second-operand address.

Bits 8-20 of the second-operand address desig-
nate a block of 2,048 bytes in real main storage. Bits
0-7 and 21-31 of the address are ignored.

The address designating the storage block, being a
real address, is not subject to dynamic address trans-
lation. Hence, the reference to the key cannot cause
segment-translation, page-translation, and
translation-specification exceptions to be recognized,
and an addressing exception can be caused only by
an invalid storage-block address (as contrasted to an
invalid address of a table entry). The reference to
the key is not subject to a protection exception.

The value of the remaining bits of the key, includ-
ing the change bit, is not affected.

System-Control Instructions 107

The condition code is set to reflect the state of
the reference and change bits before the reference
bit is set to zero.

Resulting Condition Code:

0 Reference bit zero, change bit zero
1 Reference bit zero, change bit one
2 Reference bit one, change bit zero
3 Reference bit one, change bit one

Program Exceptions:

Operation (if the translation feature is not in-
stalled)

Privileged operation

Access (addressing for operand access only, oper-
and 2)

Set Clock

SCK D(By) [S]

B204 B, D,

0 16 20 31

The current value of the time-of-day clock is re-
placed by the contents of the doubleword designated
by the second-operand address, and the clock is
placed in the stopped state.

The operand designated by the instruction is con-
sidered an unsigned, 64-bit, fixed-point number.
This operand replaces the contents of the clock, as
determined by the clock’s resolution. Only those bits
of the operand are set in the clock that correspond
to the bit positions to be updated by the clock; the
contents of the remaining rightmost bit positions are
not preserved in the clock and are ignored.

After the clock value is set, the clock is placed in
the stopped state. The clock leaves the stopped state
to enter the set state and resume counting under
control of the time-of-day clock synchronization
control bit (control register 0, bit 2). When the bit
is zero or the clock-synchronization facility is not
installed, the clock enters the set state at the comple-
tion of the instruction. When the bit is one, the
clock remains in the stopped state either until the bit
is set to zero or until any other running time-of-day
clock in the configured system is incremented to a
value of all zeros in bit positions 32-63.

The value of the clock is changed, and the clock is
placed in the stopped state only if the TOD-clock
switch on the system console is in the enable-set
position. If the switch is in the secure position, the
value and the state of the clock are not changed. The
two results are distinguished by condition codes 0

108 System/370 Principles of Operation

and 1, respectively. When the clock is not opera-
tional, regardless of the setting of the TOD-clock
switch, the value and the state of the clock are not
changed, and condition code 3 is set.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. Access
exceptions are recognized regardless of the state of
the clock and the setting of the TOD-clock switch.

Resulting Condition Code:
0 Clock value set

1 Clock value secure

2 .

3 Clock not operational

Program Exceptions:
Privileged operation
Access (fetch, operand 2)
Specification

Set Clock Comparator

SCKC D2(By) [S]

B206 B, D,

0 16 20 31

The current value of the clock comparator is re-
placed by the contents of the doubleword designated
by the second-operand address.

Only those bits of the operand are set in the clock
comparator that correspond to the bit positions to be
compared with the time-of-day clock; the contents
of the remaining rightmost bit positions are ignored
and are not preserved in the clock comparator.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions. '

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the clock comparator is not in-
stalled)

Privileged operation

Access (fetch, operand 2)

Specification

Set CPU Timer

SPT D2(B3) [S]

B208 B, D,

0 16 20 31

The current value of the CPU timer is replaced by
the contents of the doubleword designated by the
second-operand address.

Only those bits of the operand are set in the CPU
timer that correspond to the bit positions to be up-
dated; the contents of the remaining rightmost bit
positions are ignored and are not preserved in the
CPU timer.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the CPU timer is not installed)
Privileged operation
Access (fetch, operand 2)

Specification
Set Prefix
SPX Dz(By) [S]
B210 B, Dy
0 16 20 31

The contents of the prefix register are replaced by
the contents of bit positions 8-19 of the word at the
location designated by the second-operand address.
All information in the translation-lookaside buffer
(TLB) of this CPU is made invalid.

If the operation is completed, the new prefix is
used for any interruptions following the execution of
the instruction and for the execution of subsequent
instructions. The contents of bit positions 0-7 and
20-31 of the operand are ignored.

The TLB, if the CPU has one, appears cleared of
its original contents for all following instructions.

A serialization function is performed. CPU oper-
ation is delayed until all previous accesses by this
CPU to main storage have been completed, as ob-
served by channels and other CPUs. No subsequent
instructions, operands, or dynamic-address-

| translation entries are fetched by this CPU until the

execution of ‘this instruction is completed.

The operand must be designated on a word
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the multiprocessing feature is not
installed)

Privileged operation

Access (fetch, operand 2)

Specification

Set PSW Key From Address

SPKA Dy(B2) [S]

B20A B, D,

0 16 20 31

The four-bit protection key of the current PSW is
replaced by bits 24-27 of the operand address.

The second-operand address is not used to ad-
dress data; instead, bits 24-27 of the address form
the new key. Bits 8-23 and 28-31 of the second-
operand address are ignored.

Resuiting Condition Code: The code remains un-
changed.

Program Exceptions:

Operation (if the PSW-key-handling feature is not
installed)
Privileged operation

Programming Notes

The format of the SPKA instruction permits the
program to set the protection key either from the
general register designated by the Bj field or from
the D2 field in the instruction itself.

When a problem program requests the supervisor
program to access a location specified by the prob-
lem program, the SPKA instruction can be used by
the supervisor program to verify that the problem
program is authorized to make this access, provided
the supervisor program is not protected against
fetching. The supervisor program can perform the
verification by replacing the PSW key of the supervi-
sor program with the problem-program key before
making the access and subsequently restoring the

System-Control Instructions 109

supervisor-program PSW key to its original value.
Caution must be observed, however, in handling any
resulting protection exceptions since such exceptions
may cause the operation to be terminated and, on
some modlels, the resulting interruption may be de-
layed and indicated with an instruction-length code
of zero.

Set Storage Key

SSK Ry,Rz [RR]

08 Ry Ry

0 8 12 156

The key in storage associated with the block that is
addressed by the contents of the register designated
by the Rj field is replaced by the contents of the
register designated by the Ry field.

Bits 8-20 of the register designated by the Ry
field designate a block of 2,048 bytes in real main
storage. Bits 0-7 and 21-27 of the register are ig-
nored. Bits 28-31 of the register must be zeros; oth-
erwise, a specification exception is recognized, and
the operation is suppressed.

The address designating the storage block, being a
real address, is not subject to dynamic address trans-
lation. Hence, the reference to the key cannot cause
segment-translation, page-translation, and
translation-specification exceptions to be recognized,
and an addressing exception can be caused only by
an invalid storage-block address (as contrasted to an
invalid address of a table entry). The reference to
the key is not subject to a protection exception.

The seven-bit key is obtained from bit positions
24-30 of the register designated by the Ry field. The
contents of bit positions 0-23 and 31 of the register
are ignored. When dynamic address translation is not
installed, bits 29 and 30 are ignored.

Condition Code: The code remains unchanged.

Program Exceptions:

Privileged operation

Access (addressing for operand access only, oper-
and 2)

Specification

110 Systern/370 Principles of Operation

Set System Mask

SSM Da(B3) [S]

w) s o,

0 8 16 20 31

Bits 0-7 of the current PSW are replaced by the byte
at the location designated by the second-operand
address.

When the SSM-suppression facility is installed,
the execution of the instruction is subject to the
SSM-suppression bit, bit 1 of control register 0.
When the bit is zero, the instruction is executed nor-
mally. When the bit is one and the CPU is in the
supervisor state, a special-operation exception is
recognized, and the operation is suppressed.

The operation is suppressed on protection and
addressing exceptions.

The value to be loaded into the PSW is not
checked for validity before loading. However, im-
mediately after loading, a specification exception is
recognized, and a program interruption occurs, if the
CPU is in the EC mode and the contents of bit posi-
tions 0 and 2-4 of the PSW are not all zeros. In this
case, the instruction is completed, and the
instruction-length code is set to 2.

Bits 8-15 of the instruction are ignored.

Condition Code: The code remains unchanged.
Program Exceptions:

Privileged operation

Access (fetch, operand 2)

Specification
Special operation

Signal Processor

SIGP Rl,Rs,Dz(Bz) [RS]

AE R, | Rz | By D,

0 8 12 16 20 31

An eight-bit order code is transmitted to the CPU
designated by the processor address contained in the
third operand. The result is indicated by the condi-
tion code and may be detailed by status assembled in
the first-operand location.

The second-operand address is not used to ad-
dress data; instead, bits 24-31 of the address contain
the eight-bit order code. Bits 8-23 of the second-
operand address are ignored. The order code speci-
fies the function to be performed by the addressed

CPU. The assignment and definition of order codes
appears in the chapter ""Multiprocessing."

The 16-bit binary number contained in bit posi-
tions 16-31 of the general register designated by the
R3 field forms the processor address. The high-order
16 bits of the register are ignored.

A serialization function is performed. CPU oper-
ation is delayed until all previous accesses by this
CPU to main storage have been completed, as ob-
served by channels and other CPUs, and then the
signaling occurs. No subsequent instructions or their
operands are accessed by this CPU until the execu-
tion of the instruction is completed.

When the order code is accepted and no nonzero
status is returned, condition code O is set. When
status information is generated by this CPU or re-
turned by the addressed CPU, the status is placed in
the general register designated by the Ry field, and
condition code 1 is set.

When the access path to the addressed CPU is
busy or the addressed CPU is operational and in a
state where it cannot respond to the order code,
condition code 2 is set.

When the addressed CPU is not operational (that
is, it is not provided, or it is not configured to this
CPU, or it is in certain customer-engineer test modes,
or its power is off), condition code 3 is set.

A more detailed discussion of the condition-code
settings for SIGNAL PROCESSOR is contained in
the chapter '"Multiprocessing."

Resulting Condition Code:
0 Order code accepted

1 Status stored

2 Busy

3 Not operational

Program Exceptions:

Operation (if the multiprocessing feature is not
installed)
Privileged operation

Programming Notes

The execution time on the issuing CPU for SIG-
NAL PROCESSOR may vary depending on the
model, the order code, and the state of the addressed
CPU. In some cases, the execution time may be sev-
eral seconds.

To ensure that presently written programs will be
executed properly when new facilities using addi-
tional bits are installed, only zeros should appear in
the unused bit positions of the second-operand ad-
dress and in bit positions 0-15 of the register desig-

nated by the Rj field.

Store Clock Comparator

STCKC D2(B2) [S]

B207 By D,

0 16 20 31

The current value of the clock comparator is stored
at the doubleword designated by the second-operand
address.

Zeros are provided for the rightmost bit positions
that are not used for comparison with the time-of-
day clock.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the clock comparator is not in-
stalled)

Privileged operation

Access (store, operand 2)

Specification

Store Control

STCTL Ri,R3,D2(B3) [RS]

B6 R, Rz | By Dy

0 8 12 16 20 31

The set of control registers starting with the control
register designated by the Ry field and ending with
the control register designated by the R3 field is
stored at the locations designated by the second-
operand address.

The storage area where the contents of the con-
trol registers are placed starts at the location desig-
nated by the second-operand address and continues
through as many storage words as the number of
control registers specified. The contents of the con-
trol registers are stored in ascending order of their
addresses, starting with the control register designat-
ed by the R field and continuing up to and includ-
ing the control register designated by the Rj field,
with control register 0 following control register 15.
The contents of the control registers remain un-
changed.

System-Control Instructions 111

An attempt is made to store each of the designat-
ed control registers, regardless of whether the facility
requiring the presence of the control register is in-
stalled. Whenever the storage reference causes an
access exception, the exception is indicated. The
informaticn provided for control register positions
not associated with an installed facility is unpredicta-
ble. ‘

The second operand must be designated on a
word boundary; otherwise, a specification exception
is recognized, and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:
Privileged operation
Access (store, operand 2)
Specification
Programming Note
Although on some CPUs STORE CONTROL may
provide zeros in the bit positions corresponding to

the unassigned register positions, the program should
not depend on such zeros.

Store CPU Address

STAP Di(By) [S]

Store CPU ID

STIDP D2(B3) [S]

B202 B, D,

| Version Code

B212 B, D,

0 16 20 31

The processor address by which this CPU is identi-
fied in a multiprocessing system is stored at the Half-
word location designated by the second-operand
address.

The operand must be designated on a halfword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions. .

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the multiprocessing feature is not
installed)

Privileged operation

Access (store; operand 2)

Specification

112 System/370 Principles of Operation

0 16 20 31

Information identifying the CPU is stored at the
doubleword location designated by the second-
operand address.

The format of the information is as follows:

CPU ldentification Number

0 8 31

Model Number Maximum MCEL Length

32 48 63

The version-code field, bit positions 0-7, contains
model-dependent information, not otherwise easily
obtained, that is normally of importance only in
model-dependent recovery or diagnostic programs.

Bit positions 8-31 contain the CPU identification
number, consisting of six digits: a high-order zero
digit and five digits selected from the physical serial
number stamped on the CPU, or six digits selected
from the serial number. The contents of the CPU
identification-number field, in conjunction with the
model number, permit unique identification of the
CPU.

Bit positions 32-47 contain the model number,
consisting of four digits: a high-order zero digit and
the three digits of the model number, such as 0145
or 0168.

Bit positions 48-63 containi a 16-bit binary value
indicating the length in bytes of the longest machine-
check extended logout (MCEL) that can be stored
by the CPU. '

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Privileged operation
Access (store, operand 2)
Specification

Programming Notes

The program should allow for the possibility that the
CPU identification number may contain the digits
A-F as well as the digits 0-9.

The principal uses of the information stored by
the instruction STORE CPU ID are the following;:

1. The CPU identification number, combined with
the model number, provides a unique CPU
identification that can be used in associating
results with an individual system, particularly
in regard to functional differences, perform-
ance differences, and error handling.

2. The model number, in conjunction with the
version code, can be used by model-
independent programs in determining which
model-dependent recovery programs should be
called.

3. The MCEL length can be used by model-

independent programs to allocate main storage
for the MCEL area.

Store CPU Timer

STPT Di(By) [S]

B209 B, D,

0 16 20 31

The current value of the CPU timer is stored at the
doubleword designated by the second-operand ad-
dress.

Zeros are provided for the rightmost bit positions
that are not updated by the CPU timer.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The

operation is suppressed on protection and addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the CPU timer is not installed)
Privileged operation

Access (store, operand 2)

Specification

Store Prefix

STPX D3(By) [S]

B211 B, D,

0 16 20 31

The contents of the prefix register are stored at the
word location designated by the second-operand
address. Zeros are provided for bit positions 0-7 and
20-31.

The operand must be designated on a word
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and addressing
exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the multiprocessing feature is not
installed)

Privileged operation

Access (store, operand 2)

Specification

Store Then AND System Mask

STNSM D1(By).I [S1]

AC I, B, D,

0 8 16 20 31

Bits 0-7 of the current PSW are stored at the first-
operand location. Then the contents of bit positions
0-7 of the current PSW are replaced by the logical
product (AND) of their original contents and the
second operand.

The operation is suppressed on protection and
addressing exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Operation (if the translation feature is not in-
stalled)
Privileged operation

Programming Note

The STORE THEN AND SYSTEM MASK instruc-
tion permits the program to turn off selected bits in
the system mask while retaining the original contents
for later restoration. For example, in EC mode it

System-Control Instructions 113

may be necessary that a program, which is not aware
of the present status, disable program-event record-
ing for a few instructions.

Store Then OR System Mask

STOSM Di(B1).I» [S1]

AD 1, B, D,

0 8 16 20 31

Bits 0-7 of the current PSW are stored at the first-
operand location. Then the contents of bit positions
0-7 of the current PSW are replaced by the logical
sum (OR) of their original contents and the second
operand.

The value to be loaded into the PSW is not
checked for validity before loading. However, im-
mediately after loading, a specification exception is
recognized, and a program interruption occurs, if the
CPU is in the EC mode and the contents of bit posi-
tions 0 and 2-4 of the PSW are not all zeros. In this
case, the instruction is completed, and the
instruction-length code is set to 2.

The operation is suppressed on protection and
addressing exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the translation feature is not in-
stalled)

Privileged operation

Access (store, operand 1)

Specification

Programming Note

The STORE THEN OR SYSTEM MASK instruc-
tion permits the program to turn on selected bits in
the system mask while retaining the original contents
for later restoration. For example, in EC mode the
program may desire to enable the CPU for I/0 in-
terruptions and yet may not know the current status
of the external-mask bit.

114 Systern/370 Principles of Operation

Write Direct

WRD Di(B1).I2 [S1]

84 I, B, D,

0 8 16 20 31

The byte at the location designated by the operand
address is made available as a set of direct-out static
signals. Eight instruction bits are made available as
signal-out timing signals.

The eight data bits of the byte fetched from stor-
age are presented on a set of eight direct-out lines as
static signals. These signals remain until the next
WRITE DIRECT is executed. No checking bits are
presented with the eight data bits.

The contents of the I field are made available
simultaneously on a set of eight signal-out lines as
0.5-microsecond to 1.0-microsecond timing signals.
On a ninth line (write out), a 0.5-microsecond to
1.0-microsecond timing signal is made available con-
currently with these timing signals. The eight signal-
out lines are also used in READ DIRECT. No
checking bits are made available with the eight in-
struction bits.

A serialization function is performed before the
operand is fetched and again after the signals have
been presented. CPU operation is delayed until all
previous accesses by this CPU to main storage have
been completed, as observed by channels and other
CPUs, and then the first operand byte is fetched and
the signals made available. No subsequent instruc-
tions or their operands are fetched by this CPU until
the signals have been made available.

Condition Code: The code remains unchanged.

Program Exceptions:
Operation (if the direct-control feature is not
installed)
Privileged operation
Access (fetch, operand 1)

General Instructions

Contents

DataFormat. .16
Number Representation.116
Instructionso .17
ADD . ., . S B ¥/
ADD HALFWORD e K V4
ADDLOGICAL + .+ . .«12
AND . . . S 021]
BRANCH AND LINI< . M|
BRANCHONCONDITION12
BRANCHONCOUNT«122
BRANCH ON INDEX HIGH . . . e e e e e e 122
BRANCH ON INDEX LOW OR EQUAL128
COMPARE . . . e ¢
COMPARE AND SWAP S X
COMPARE DOUBLEANDSWAP124
COMPARE HALFWORD125
COMPARE LOGICAL 125
COMPARE LOGICAL CHARACTERS UNDER MASK126
COMPARE LOGICALLONG126
CONVERTTOBINARY« . . 127
CONVERTTODECIMAL128
DIVIDE«128
EXCLUSIVEOR«128
EXECUTE . . . e i)
INSERT CHARACTER e e (]
INSERT CHARACTERS UNDER MASK 130
LOAD %0
LOADADDRESS+ o3
LOADANDTEST« .+ « + « « + . . .13
LOAD COMPLEMENT.13
LOADHALFWORD« .+ +« .« + . « .13
LOADMULTIPLE132
LOAD NEGATIVE132
LOADPOSITIVE« . .« .+ « .« « . . .13
MONITORCALL«132
MOVE < . < . . .133
MOVELONG+ . .+ . . .+ . .133
MOVENUMERICS.13
MOVEWITHOFFSET13
MOVEZONES136
MULTIPLY . . . s e e13
MULTIPLY HALFWORD S <)
ORo e e e e e s a3
PACK. . . S K4
SET PROGRAM MASK T 2
SHIFTLEFTDOUBLE138
SHIFT LEFT DOUBLE LOGICAL13
SHIFT LEFT SINGLE . . . S e
SHIFT LEFT SINGLE LOGICAL e e e]
SHIFT RIGHT DOUBLE . ., . S P[]
SHIFT RIGHT DOUBLE LOGICAL c e e J140
SHIFTRIGHTSINGLE140
SHIFT RIGHT SINGLELOGICAL14
STORE . . . e T4
STORE CHARACTER - I 1 X
STORE CHARACTERS UNDER MASK e X
STORECLOCK+ . .+ . . .14
STOREHALFWORD . . :+ . . .142

General Instructions 115

Instructions (continued)
STORE MULTIPLE
SUBTRACT . .
SUBTRACT HALFWORD .
SUBTRACT LOGICAL
SUPERVISOR CALL
TEST AND SET .

TEST UNDER MASK .
TRANSLATE ..
TRANSLATE AND TEST .
UNPACK .

This chapter includes all the unprivileged instruc-
tions described in this manual, other than the deci-
mal and floating-point instructions.

Data Format

The general instructions treat data as being of four
types: signed fixed-point numbers, unsigned fixed-
point numbers, unstructured logical quantities, and
decimal data. Data is treated as decimal by the con-
version, packing, and unpacking instructions and is
described in the chapter ''"Decimal Instructions."

Data resides in general registers or in storage or is
introduced from the instruction stream.

In a storage-to-storage operation the operand
fields may be defined in such a way that they over-
lap. The effect of this overlap depends upon the
operation. When the operands remain unchanged, as
in COMPARE or TRANSLATE AND TEST, over-
lapping does not affect the execution of the opera-
tion. For instructions such as MOVE and TRANS-
LATE, one operand is replaced by new data, and the
execution of the operation may be affected by the
amount of overlap and the manner in which data is
fetched or stored. For purposes of evaluating the
effect of overlapped operands, data is considered to
be handled one eight-bit byte at a time. All overlap-
ping fields are considered valid.

Number Representation

Fixed-point numbers are treated as signed or un-
signed integers.

In an unsigned fixed-point number, all bits are
used to express the absolute value of the number.
When two unsigned fixed-point numbers are added,
the shorter number is considered to be extended
with high-order zeros.

For signed fixed-point numbers, the leftmost bit
represents the sign, which is followed by the integer
field. Positive numbers are represented in true binary
notation with the sign bit set to zero. Negative num-
bers are represented in two’s-complement binary
notation with a one in the sign-bit position.

116 System/370 Principles of Operation

. 142
. 143
. 143
. 143
. 144
. 144
. 145
. 145
. 145
. 146

Specifically, a negative number is represented by
the two’s complement of the positive number. The
two’s complement of a number is obtained by invert-
ing each bit of the number and adding a one in the
low-order bit position.

This type of number representation can be con-
sidered the low-order portion of an infinitely long
representation of the number. When the number is
positive, all bits to the left of the most significant bit
of the number are zeros. When the number is nega-
tive, all these bits are ones. Therefore, when an oper-
and must be extended with high-order bits, the ex-
pansion is achieved by setting the bits equal to the
high-order bit of the operand. '

The notation for signed fixed-point numbers does
not include a negative zero. It has a number range in
which the set of negative numbers is one larger than
the set of positive numbers. The maximum positive
number consists of an all-one integer field with a
sign bit of zero, whereas the maximum negative
number (the negative number with the greatest ab-
solute value) consists of an all-zero integer field with
a sign bit of one.

The complement of the maximum negative num-
ber cannot be represented in the same number of
bits. When an operation, such as a subtraction of the
maximum negative number from zero, attempts to
produce the complement of the maximum negative
number, a fixed-point overflow exception is recog-
nized. An overflow does not result, however, when
the maximum negative number is complemented and
the final result is within the representable range. An
example of this case is a subtraction of the maximum
negative number from minus one. The product of
two maximum negative numbers is representable as
a double-length positive number.

In discussions of signed fixed-point numbers in
this publication, the expression '"32-bit signed integ-
er'' denotes a 31-bit integer with a sign bit, and the
expression ''64-bit signed integer'' denotes a 63-bit
integer with a sign bit.

In some operations, the result is achieved by the
use of the one’s complement of the number. The

one’s complement of a number is obtained by invert-
ing each bit of the number.

In an arithmetic operation, a carry out of the in-
teger field changes the sign. However, in algebraic
left-shifting the sign bit does not change even if sig-
nificant high-order bits are shifted out.

Programming Note

The integer part of a signed fixed-point number may
be considered to represent a positive value, with the
sign representing a value of either zero or the maxi-

mum negative number.

Instructions

The general instructions and their mnemonics, for-
mats, and operation codes are listed in the following
table. The table also indicates when the condition
code is set and the exceptional conditions in operand
designations, data, or results that cause a program
interruption. :

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designations for the IBM System/370 assembly
language are shown with each instruction. For
LOAD AND TEST, for example, LTR is the mne-
monic and Ry, Ry the operand designation.

Add
AR Ri,R2 [RR]
1A R, Ry
0 8 12 15
A Ry,D2(X2,B2) [RX]
5A R, X5 By D,
) 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.

Addition is performed by adding all 32 bits of
both operands. If the carry out of the sign-bit posi-
tion and the carry out of the high-order numeric bit
position agree, the sum is satisfactory; if they disa-
gree, an overflow occurs. The sign bit is not changed
after the overflow. A positive overflow yields a neg-
ative final sum, and a negative overflow results in a
positive sum. The overflow causes a program inter-
ruption when the fixed-point overflow mask bit is
one.

Resulting Condition Code:
0 Sum is zero
1 Sum is less than zero

2 Sum is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2 of A only)
Fixed-Point Overflow

Programming Note
In two’s-complement notation a zero result is always
positive.

Add Halfword

AH R1,D2(X2,B2) [RX]

4A Ry | X, | B, D,

0 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The second operand is two bytes in length and is
considered to be a 16-bit signed integer.

The second operand is expanded to 32 bits before
the addition by propagating the sign-bit value
through the 16 high-order bit positions. The con-
tents of the second operand in main storage remain
unchanged.

Addition is performed by adding all 32 bits of
both operands. If the carry out of the sign-bit posi-
tion and the carry out of the high-order numeric bit
position agree, the sum is satisfactory; if they
disagree, an overflow occurs. The sign bit is not
changed after the overflow. A positive overflow
yields a negative final sum, and a negative overflow
results in a positive sum. The overflow causes a pro-
gram interruption when the fixed-point overflow
mask bit is one.

Resulting Condition Code:
0 Sum is zero

1 Sum is less than zero

2 Sum is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2)
Fixed-Point Overflow

General Instructions 117

Name Mnemonic Characteristics

ADD AR RR C IF R
ADD A RX C A IF R
ADD HALFWORD AH RX C A IF R
ADD LOGICAL ALR RR C R
ADD LOGICAL AL RX C A R
AND NR RR C R
AND N RX C A R
AND (character) NC SS Cc A ST
AND (immediate) NI Sl C A ST
BRANCH AND LINK BALR RR B R
BRANCH AND LINK BAL RX B R
BRANCH ON CONDITION BCR RR $1 B
BRANCH ON CONDITION BC RX B
BRANCH ON COUNT BCTR RR B R
BRANCH ON COUNT BCT RX B R
BRANCH ON INDEX HIGH BXH RS B R
BRANCH ON INDEX LOW OR BXLE RS B8 R

EQUAL
COMPARE CR RR C
COMPARE Cc RX C A
COMPARE AND SWAP cs RS C SW A sSP $ R ST
COMPARE DOUBLE AND SWAP CDS RS C SW A SP R ST
COMPARE HALFWORD CH RX C A
CCMPARE LOGICAL CLR RR C
COMPARE LOGICAL CL ,RX C A
COMPARE LOGICAL (character) CLC SS C A
COMPARE LOGICAL. {immediate) CLlI si C A
COMPARE LOGICAL CHAR- CcCLM RS C A

ACTERS UNDER MASK
COMPARE LOGICAL LONG CLCL RR C A sP n R
CONVERT TO BINARY cvB RX A D IK R
CONVERT TO DECIMAL CvD RX A ST
DIVIDE DR RR SP IK R
DIVIDE D RX A SP IK R
EXCLUSIVE OR XR RR C R
EXCLUSIVE OR. X RX C A R
EXCLUSIVE OR (character) XC SS o} A ST
EXCLUSIVE OR (immediate) X1 Sl C A ST
EXECUTE EX RX A spP EX
INSERT CHARACTER IC RX A R
INSERT CHARACTERS UNDER ICM RS C A R

MASK
LOAD LR RR R
LOAD L RX A R
LOAD ADDRESS LA RX R
LOAD AND TEST LTR RR C R
LOAD COMPLEMENT LCR RR C IF R
LOAD HALFWORD LH RX A R
LOAD MULTIPLE LM RS A R
LOAD NEGATIVE LNR RR C R
LOAD POSITIVE LPR RR C IF R
MONITOR CALL MC Sl SP MO
MOVE (character) MVvC SS A ST

General-Instruction Summary (Part 1 of 2)

118 System/370 Principles of Operation

Code

1A
B5A
a4A
1E
5E

14
54
D4
94
05

45
07
47
06
46

86
87

19
59
BA

BB
49
15
55
D5

95
BD

OF
4F
4E

1D
5D
17
57
D7

97
44
43
BF

18

58
41
12
13
48

98
11
10
AF
D2

Name Mnemonic Characteristics Code
MOVE (immediate) MVI S A ST 92
MOVE LONG MVCL RR C A SP 1l R ST OE
MOVE NUMERICS MVN SS A ST D1
MOVE WITH OFFSET MVO SS A ST F1
MOVE ZONES mMvz SS A ST D3
MULTIPLY MR RR SP R 1Cc
MULTIPLY M RX A sP R 5C
MULTIPLY HALFWORD MH RX A R 4c
OR OR RR C R 16
OR o RX C A R 56
OR (character) ocC SSs (o} A ST D6
OR (immediate) (e]] Si C A ST 96
PACK PACK SS A ST F2
SET PROGRAM MASK SPM RR L 04
SHIFT LEFT DOUBLE SLDA RS C sP IF R 8F
SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 8D
SHIFT LEFT SINGLE SLA RS C IF R 8B
SHIFT LEFT SINGLE LOGICAL SLL RS R 89
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E
SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C
SHIFT RIGHT SINGLE SRA RS C R 8A
SHIFT RIGHT SINGLE LOGICAL SRL RS R 88
STORE ST RX A ST 50
STORE CHARACTER STC RX A ST 42
STORE CHARACTERS UNDER STCM RS A ST BE
MASK
STORE CLOCK STCK S C A $ ST B2056
STORE HALFWORD STH RX A ST 40
STORE MULTIPLE STM RS A ST 90
SUBTRACT SR RR C IF R 1B
SUBTRACT S RX C A IF R 58
SUBTRACT HALFWORD SH RX C A IF R 4B
SUBTRACT LOGICAL SLR RR C R 1F
SUBTRACT LOGICAL SL RX C A R 5F
SUPERVISOR CALL SvC RR $ 0A
TEST AND SET TS S Cc A $ ST 93
TEST UNDER MASK ™ Si Cc A 91
TRANSLATE TR SS A ST DC
TRANSLATE AND TEST TRT SS Cc A R DD
UNPACK UNPK SS A ST F3
Explanation:
A Access exceptions RS RS instruction format
B PER branch event RX RX instruction format
C Condition code is set S S instruction format
D Data exception Sl Sl instruction format
EX Execute exception sP Specification exception
IF Fixed-point-overflow exception SS SS instruction format
1 Interruptible instruction ST PER storage-alteration event
IK Fixed-point-divide exception SW Conditional-swapping feature
L New condition code loaded $ Causes serialization
MO Monitor event $! Causes serialization when the R1 and
R PER general-register-alteration event R fields contain all ones and zeros, respectively
RR RR instruction format
General-Instruction Summary (Part 2 of 2)
General Instructions 119

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Add Logical

ALR RyRy [RR]
1E R, | Ry
0 8 12 15
AL R1,D2(X2,B2) [RX]
5E Ri | X2 | B2 D2
0 3 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The occurrence of a carry out of the sign position is
recorded in the condition code.

Logical addition is performed by adding all 32
bits of both operands without further change to the
resulting sign bit. The instruction differs from ADD
in the meaning of the condition code and in the ab-
sence of the interruption for overflow.

If a carry out of the sign position occurs, the left-
most bit of the condition code is made one. In the
absence of a carry, the bit is made zero. When the
sum is zero, the rightmost bit of the condition code is
made zero. For a nonzero sum, the bit is made one.

Resulting Condition Code:

0 Sum is zero, with no carry

1 Sum is not zero, with no carry
2 Sum is zero, with carry

3 Sum is not zero, with carry

Program Exceptions:

Access (fetch, operand 2 of AL only)

AND

NR RiR2 [RR]
14 Ry R,

0 8 12 15

120 System/370 Principles of Operation

N Ry,D2(X2,B2) [RX]

54 Ry | X3 | Bz D,
0 8 12 16 20 31
NI Di(Bp,Iz [S1]

94 1, B4 D,
0 8 16 20 31
NC Diy(L,B1),D2(B2) [SS]

D4 L B, D, B, D;:I
0 8 20 32 36’47

The AND of the first and second operands is placed
in the first-operand location.

Operands are treated as unstructured logical
quantities, and the connective AND is applied bit by
bit. A bit position in the result is set to one if the
corresponding bit positions in both operands contain
a one; otherwise, the result bit is set to zero.

For NC, each operand field is processed left to
right. When the operands overlap, the result is ob-
tained as if the operands were processed one byte at
a time and each result byte were stored immediately
after the necessary operand byte is fetched.

Resulting Condition Code:
0 Result is zero

1 Result not zero

2 -

3 -

Program Exceptions:

Access (fetch, operand 2, N and NC; fetch and
store, operand 1, NI and NC)

Programming Note
The instruction AND may be used to set a bit to
Zero.

The execution of NI and NC consists in fetching a
first-operand byte from main storage and subse-
quently storing the updated value. These fetch and
store accesses to a particular byte do not necessarily
occur one immediately after the other. Thus, the
instruction AND cannot be safely used to update a
shared location in main storage if the possibility ex-
ists that another CPU or a channel may also be updat-
ing the location. For NI, only one byte is stored.

Branch and Link

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Branch on Condition

BALR Ri,R2 [RR] BCR M1,R2 [RR]
05 R, | Ry 07 M, | Ry
0 8 1215 0 8 12 15
BAL R1,D2(X2,B2) [RX] BC Mj,D2(X2,B?) [RX]
45 R, X, B, D, 47 M, Xy By D,

Information from the current PSW, including the
updated instruction address, is loaded as link infor-
mation in the general register designated by Rj. Subse-
quently, the instruction address is replaced by the
branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of bit positions 8-31 of the general register
designated by Ry are used as the branch address.
However, when the Ry field contains zeros, the op-
eration is performed without branching,.

The branch address is computed before the link
information is loaded. The link information, in both
the BC and EC modes, consists of the instruction-
length code, the condition code, the program mask
bits, and the updated instruction address, arranged in
the following format:

Prog

ILC |C
¢ Mask

Instruction Address

0 2 4 8 31

The instruction-length code is 1 or 2.

Condition Code:
The code remains unchanged.

Program Exceptions:
None

Programming Notes

When the Rj field in the RR format contains all
zeros, the link information is loaded without branch-
ing. The format and the contents of the link infor-
mation do not depend on whether the PSW specifies
the BC or EC mode.

When BRANCH AND LINK is the subject in-
struction of EXECUTE, the instruction-length code
is 2.

In both the BC and EC modes, the link informa-

tion is in the format of the rightmost 32 bit positions
of the BC-mode PSW.

The updated instruction address in the current PSW
is replaced by the branch address if the state of the
condition code is as specified by My; otherwise, nor-
mal instruction sequencing proceeds with the updat-
ed instruction address.

In the RX format the second-operand address is
used as the branch address. In the RR format the
contents of bit positions 8-31 of the general register
specified by Ry are used as the branch address.
However, when the R field contains zeros, the oper-
ation is performed without branching.

The Mj field is used as a four-bit mask. The four
bits of the mask correspond, left to right, with the
four condition codes (0, 1, 2, and 3), as follows:

Instruction Bit Mask Position Value Condition Code

8 8 0
9 4 1
10 2 2
11 1 3

The branch is successful whenever the condition
code has a corresponding mask bit of one.

When the My and R fields of BCR are 15 and 0,
respectively, a serialization function is performed.
CPU operation is delayed until all previous storage
accesses by this CPU to main storage have been
completed, as observed by channels and other
CPUs. No subsequent instructions or their operands
are-accessed by this CPU until the execution of this
instruction is completed.

Condition Code:
The code remains unchanged.

Program Exceptions:
None

Programming Notes

When a branch is to be made on more than one con-
dition code, the pertinent condition codes are speci-
fied in the mask as the sum of their mask position
values. A mask of 12, for example, specifies that a

General Instructions 121

branch is to be made on condition codes 0 and 1.

When all four mask bits are zero or when the Ry
field in the RR format contains zero, the branch
instruction is equivalent to a no-operation. When all
four mask bits are ones, that is, the mask value is 15,
the branch is unconditional unless the R field in the
RR format is zero.

Execution of BCR 15,0 may result in significant
performance degradation, especially on larger mod-
els. To ensure optimum performance, the program
should avoid use of BCR 15,0 except in cases when
the serialization function is actually required.

Note that the relation between the RR and RX
formats in branch-address specification is not the
same as in operand-address specification. For branch
instructions in the RX format, the branch address is
the address specified by X3, B2, and D»; in the RR
format, the branch address is in the low-order 24
bits of the register specified by Ra. For operands,
the address specified by X3, B2, and D3 is the oper-
and address, but the register specified by Ra con-
tains the operand itself.

Branch on Count

BCTR Ry,Rz [RR]
06 R; | Ry
0 8 12 15
BCT Ry,D2(X2,B2) [RX]
46 Ry | X2 | By D2
0 8 12 16 20 31

The contents of the general register specified by Ry
are algebraically reduced by one. When the result is
zero, normal instruction sequencing proceeds with
the updated instruction address. When the result is
not zero, the instruction address in the current PSW
is replaced by the branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of bit positions 8-31 of the general register
specified by Rj are used as the branch address. How-
ever, when the Rj field contains zeros, the operation
is performed without branching.

The branch address is computed before the count-
ing operation. Counting does not change the condi-
tion code. The overflow occurring on transition from
the maximum negative number to the maximum pos-
itive number is ignored. Otherwise, the subtraction
proceeds as in fixed-point arithmetic, and all 32 bits
of the general register participate in the operation.

122 System/370 Principles of Operation

Condition Code:
The code remains unchanged.

Program Exceptions:
None

Programming Notes
An initial count of one results in zero, and no
branching takes place; an initial count of zero results
in minus one and causes branching to be executed;
an initial count of minus one results in minus 2 and
causes branching to be executed; and soon. In a
loop, branching takes place each time the instruction
is executed until the result is again zero. Note that,
because of the number range, an initial count of
minus 231 results in the positive value of 231-1.
Counting is performed without branching when
the R field in the RR format contains zero.

Branch on Index High

BXH Riy,R3,D2(B2) [RS]

86 R, | Rz | B2 D,

0 8 12 16 20 31

An increment is added to the first operand, and the
sum is compared algebraically with a comparand.
Subsequently, the sum is placed in the first-operand
location, regardless of whether the branch is taken.
The second-operand address is used as the branch
address.

When the sum is high, the instruction address in
the current PSW is replaced by the branch address.
When the sum is low or equal, instruction sequenc-

ing proceeds with the updated instruction address.

The first operand and the increment are in the
registers specified by Ry and R3. The comparand
register address is odd and is either one larger than
Rj or equal to R3. The branch address is computed
before the addition and comparison.

Overflow caused by the addition is ignored and
does not affect the comparison. Otherwise, the ad-
dition and comparison proceed as in fixed-point
arithmetic. All 32 bits of the general registers partici-
pate in the operations, and negative quantities are
expressed in two’s-complement notation. When the
first operand and comparand locations coincide, the
original register contents are used as the comparand.

Condition Code:
The code remains unchanged.

Program Exceptions:
None

Programming Note

The name '"branch on index high" indicates that one
of the major purposes of this instruction is the incre-
menting and testing of an index value. The incre-
ment may be algebraic and of any magnitude.

Branch on Index Low or Equal

BXLE Ry,R3,D2(By) [RS]

87 Ry | Ra B, D,

0 8 12 16 20 31

An increment is added to the first operand, and the
sum is compared algebraically with a comparand.
Subsequently, the sum is placed in the first-operand
location, regardless of whether the branch is taken.
The second-operand address is used as the branch
address.

When the sum is low or equal, the instruction
address in the current PSW is replaced by the branch
address. When the sum is high, normal instruction
sequencing proceeds with the updated instruction
address.

The first operand and the increment are in the
registers specified by Ry and R3. The comparand
register address is odd and is either one larger than
R3 or equal to R3. The branch address is computed
before the addition and comparison.

This instruction is similar to BRANCH ON IN-
DEX HIGH, except that the branch is successful
when the sum is low or equal compared to the com-
parand.

Condition Code:
The code remains unchanged.

Program Exceptions:

None
Compare
CR Ri,R2 - [RR]
19 R, Ry
0 8 12 15
C Ry,D2(X2,B2) [RX]
59 R, X, By D,
0 8 12 16 20 31

The first operand is compared with the second oper-
and, and the result determines the setting of the
condition code.

Comparison is algebraic, treating both compa-
rands as 32-bit signed integers. Operands in regis-
ters or storage are not changed.

Resulting Condition Code:
0 Operands are equal

1 First operand is low

2 First operand is high

3 -

Program Exceptions:
Access (fetch, operand 2 of C only)

Compare and Swap

CS R,R3,D2(By) [RS]

BA Ry | Rz | By D,

0 8 12 16 20 31

The first and second operands are compared. If they
are equal, the third operand is stored in the second-
operand location. If they are unequal, the second
operand is loaded into the first-operand location.

The first and third operands are 32 bits in length,
with each operand occupying a general register. The
second operand is a word in main storage.

The result of the 32-bit comparison, either equal
or unequal, is used to set the condition code. When
the result of the comparison is unequal, no attempt
to store occurs, and no change-bit and store-
protection actions are taken.

When an equal comparison occurs, no access by
another CPU is permitted at the second-operand
location between the moment that the second oper -
and is fetched for comparison and the moment that
the third operand is stored at the second-operand
location.

A serialization function is performed before the
operand is fetched, and, if condition code 0 is set,
after the result is stored. CPU operation is delayed
until all previous accesses by this CPU to main stor-
age have been completed, as observed by channels
and other CPUs, and then the second operand is
fetched. No subsequent instructions or their oper -
ands are accessed by this CPU until the execution
of this instruction is completed, including placing the
result value, if any, in main storage, as observed by
channels and other CPUs.

The second operand must be designated on a ~;
word boundary; otherwise, a specification exception}z-
is recognized, and the operation is suppressed.....__}

General Instructions 123

Resulting Condition Code:

0 First and second operands equal, second oper-
and replaced by third operand

1 First and second operands unequal, first oper-
and replaced by second operand

2 -

3 .

Program Exceptions:

Operation (if the conditional-swapping feature is
not installed)

Specification
Access (fetch and store, operand 2)

Programming Notes

The instruction COMPARE AND SWAP can be
used by programs sharing common storage areas in
either a multiprogramming or multiprocessing envi-
ronment. The following are two examples:

By performing the following procedure, a pro-
gram can modify the contents of a storage location
even though the possibility exists that the program
may be interrupted by another program that will
update the location or even though the possibility
exists that another CPU may simultaneously update
the location. First, the entire word containing the
byte or bytes to be updated is loaded into a general
register. Next, the updated value is computed and
placed in another general register. Then the instruc-
tion COMPARE AND SWAP is executed with the
Rj field designating the register that contains the
original value and the Rj field designating the regis-
ter that contains the updated value. If condition code
0 is set, the update has been successful. If condition
code 1 is set, the storage location no longer contains
the original value, the update has not been success-
ful, and the general register designated by the Ry
field of the COMPARE AND SWAP instruction
contains the new current value of the storage loca-
tion. When condition code 1 is set, the program can
repeat the procedure using the new current value.

COMPARE AND SWAP may be used for con-
trolled sharing of a common storage area in a man-
ner similar to that described in the programming
note under TEST AND SET, but it provides the
added capability of leaving a message when the com-
mon area is in use. To accomplish this, a word in
storage may be used as a control word, with a zero
value in the word indicating that the common area is
not in use, a negative value indicating that the area is
in use, and a nonzero positive value indicating that
the common area is in use and that the value is the
address of the most recent message added to the list.
Thus, any number of programs desiring to seize the

124 System/370 Principles of Operation

area may use COMPARE AND SWAP to update
the control word to indicate that the area is in use or
to add messages to the list. The single program
which has seized the area may also safely use COM-
PARE AND SWAP to remove messages from the
list.

It should be noted that COMPARE AND SWAP
does not interlock against storage accesses by chan-
nels. Therefore, the instruction should not be used to
update a word, all or part of which is in an I/0 input
area, since the input data may be lost.

Compare Double and Swap

CDS Ry,R3,D2(B2) [RS]

BB R, F‘3 B, D,

0 8 12 16 20 31

The first and second operands are compared. If they
are equal, the third operand is stored in the second-
operand location. If they are unequal, the second
operand is loaded into the first-operand location.

The first and third operands are 64 bits in length,
with each operand occupying an even-odd pair of
general registers. The second operand is a.double-
word in main storage.

The result of the 64-bit comparison, either equal
or unequal, is used to set the condition code. When
the result of the comparison is unequal, no attempt
to store occurs, and no change-bit and store-
protection actions are taken.

When an equal comparison occurs, no access by
another CPU is permitted at the second-operand
location between the moment that the second oper-
and is fetched for comparison and the moment that
the third operand is stored at the second-operand
location.

A serialization function is performed before the
operand is fetched, and, if condition code O is set,
after the result is stored. CPU operation is delayed
until all previous accesses by this CPU to main stor-
age have been completed, as observed by channels
and other CPUs, and then the second operand is
fetched. No subsequent instructions or their oper-
ands are accessed by this CPU until the instruction
is completed, including placing the result value, if
any, in main storage, as observed by channels and
other CPUs.

The Ry and R3 fields must each designate an even
register, and the second operand must be designated
on a doubleword boundary; otherwise, a specifica-
tion exception is récogiiized, and the operation is
suppressed.

Resulting Condition Code:

0 First and second operands equal, second oper -
and replaced by third operand

1 First and second operands not equal, first oper -
and replaced by second operand

2 -

3 .

Program Exceptions:

Operation (if the conditional-swapping feature is
not installed)

Specification

Access (fetch and store, operand 2)

Programming Note

The instruction COMPARE DOUBLE AND
SWAP may be used in a manner similar to that de-
scribed in the programming notes for COMPARE
AND SWAP.

In addition, it has another use. Consider a chained
list, with a control word used to address the first
message in the list, as described in the second exam-
ple for COMPARE AND SWAP. If multiple pro-
grams are permitted to add and delete messages by
using COMPARE AND SWAP, there is a possibility
the list will be incorrectly updated. This would occur
if, after one program has fetched the address of the
most recent message in order to remove the message,
another program removes the first two messages and
then adds the first message back into the chain. The
first program, on continuing, is not aware that the
list is changed. By increasing the size of the control
word to a doubleword containing both the first mes-
sage address and a word with a change number that
is incremented for each modification of the list, and
by using COMPARE DOUBLE AND SWAP to
update both fields together, the possibility of the list
being incorrectly updated is reduced to a negligible
level. That is, an incorrect update can occur only
if the first program is delayed while changes exactly
equal in number to a multiple of 232 take place
and only if the last change places the original message
address in the control word.

It should be noted that COMPARE DOUBLE
AND SWAP does not interlock against storage ac-
cesses by channels. Therefore, the instruction should
not be used to update a doubleword all or part of
which is in an I/0O input area, since the input data
may be lost.

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Compare Halfword

CH R1,D2(X32,B2) [RX]

49 Ri | X2 | By D2

0 8 12 16 20 31

The first operand is compared with the second oper-
and, and the result determines the setting of the
condition code. The second operand is two bytes in
length and is considered to be a 16-bit signed inte-
ger.

The second operand is expanded to 32 bits before
the comparison by propagating the sign-bit value
through the 16 high-order bit positions.

Comparison is algebraic, treating both compa-
rands as 32-bit signed integers. Operands in regis-
ters or storage are not changed.

Resulting Condition Code:
0 Operands are equal

1 First operand is low

2 First operand is high

3 .

Program Exceptions:
Access (fetch, operand 2)

Compare Logical

CLR Ri,R2 [RR]
15 Ry R,
) 8 12 15
CL Ry,D2(X32,B2) [RX]
55 Ry X5 B, D,
0 8 12 16 20 31
CLI Dy(Bp,I» [s1]
95 I, B4 D4
0 8 16 20 31
CLC Di(L,B1),D2(B2) [SS]
D5 L By | Dy| B, D,
0 8 16 207 32 36 a7

General Instructions 125

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

The first operand is compared with the second oper-
and, and the result is indicated in the condition
code.

The comparison is performed with the operands
considered as binary unsigned quantities, with all
codes valid. The operation proceeds left to right and
ends as soon as an inequality is found or an end of
the fields is reached.

When part of an operand in CL or CLC is desig-
nated in an inaccessible location but the operation
can be completed by using the accessible operand
parts, it is unpredictable whether the access excep-
tion for the inaccessible part is recognized.

Resulting Condition Code:
0 Operands are equal

1 First operand islow

2 First operand is high

3 -

Program Exceptions:

Access (fetch, operand 2, CL and CL.C; fetch,
operand 1, CLI and CLC)

Programming Note

The COMPARE LOGICAL instruction treats all
bits alike as part of an unsigned binary quantity. In
variable-length operation, comparison may extend to
field lengths of 256 bytes. The operation may be
used to compare unsigned packed decimal fields or
alphameric information in any code that has a collat-
ing sequence based on ascending or descending bi-
nary values. For example, EBCDIC has a collating
sequence based on ascending binary values.

Compare Logical Characters Under Mask

CLM R ,M3,D2(B2) [RS]

BD Ry | Mg | B, D,

0 8 12 16 20 31

The second operand is compared with the first oper-
and, under control of a mask, and the result is indi-
cated in the condition code.

The contents of the M3 field, bit positions 12-15,
are used as a mask. The four bits of the mask, left to
right, correspond one for one with the four bytes,
left to right, of the general register designated by the
R1 field. The byte positions corresponding to ones in
the mask are considered as a contiguous field and

126 System/370 Principles of Operation

are compared with the second operand. The second
operand is a contiguous field in storage, starting at
the second-operand address and equal in length to
the number of ones in the mask. The bytes in the
general register corresponding to zeros in the mask
do not participate in the operation.

The comparison is performed with the operands
considered as binary unsigned quantities, with all
codes valid. The operation proceeds left to right.

When the mask is not zero, exceptions associated
with storage-operand access are recognized only for
the number of bytes specified by the mask. Howev-
er, when part of the designated storage operand is in
an inaccessible location but the operation can be
completed by using the accessible operand parts, it is
unpredictable whether the exception for the inaccess-
ible part is indicated. When the mask is zero, access
exceptions are recognized for one byte.

Resulting Condition Code:
0 Selected bytes are equal, or mask is zero
1 Selected field of first operand is low

2 Selected field of first operand is high
3 -

Program Exceptions:
Access (fetch, operand 2)

Compare Logical Long

CLCL RgR» [RR]

OF R, R,

0 8 12 156

The first operand is compared with the second oper-
and, and the result is indicated in the condition
code. The shorter operand is considered extended
with the padding character.

The Ry and R, fields each specify an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first oper-
and and second operand is designated by bits 8-31
of the general registers specified by the Ry and Ry
fields, respectively. The number of bytes in the first-
operand and second-operand locations is specified
by bits 8-31 of the general registers having addresses
R1+1 and Ry+1, respectively. Bit positions 0-7 of
register R+ 1 contain the padding character. The
contents of bit positions 0-7 of registers Ry, R2, and
Ry+1 are ignored.

Graphically, the contents of the registers just de-
scribed are as follows:

R1

First-Operand Address

R1+1

ey
/ First-Operand Length

R2

Second-Operand Address

Ro +1

Pad Second-Operand Length

The comparison is performed with the operands
considered as binary unsigned quantities, with all
codes valid. The comparison starts at the high-order
end of both fields and proceeds to the right. The
operation ends as soon as an inequality is detected
or the end of the longer operand is reached. If the
operands are not of the same length, the shorter
operand is extended, for the purpose of comparison,
with the padding character.

If both operands are of zero length, the operands
are considered equal.

The execution of the instruction is interruptible.
When an interruption occurs after a unit of opera-
tion other than the last one, the contents of registers
R1+1 and R+ 1 are decremented by the number of
bytes compared, and the contents of registers Ry and
Rj are incremented by the same number, so that the
instruction, when re-executed, resumes at the point
of interruption. The high-order byte of registers Ry
and R is set to zero; the contents of the high-order
byte of registers R1+1 and Ry+1 remain un-
changed; and the condition code is unpredictable. If
the operation is interrupted after the shorter operand
has been exhausted, the count field pertaining to the
shorter operand is zero, and its address is updated
accordingly.

If the operation ends because of a mismatch, the
count and address fields at completion identify the
byte of mismatch. The contents of bit positions
8-31 of registers R1+1 and Rz+1 are decremented
by the number of bytes that matched, unless the
mismatch occurred with the padding character; in
which case the count field for the shorter operand is
set to zero. The contents of bit positions 8-31 of
registers Ry and Ry are incremented by the amounts
by which the corresponding count fields were re-
duced. If the two operands, including the padding
character, if necessary, are equal, both count fields

are made zero at completion, and the addresses are
incremented by the corresponding count values. The
contents of bit positions 0-7 of registers Ry and Ry
are set to zero, including the case when one or both
of the original count values are zero. The contents of
bit positions 0-7 of registers R1+1 and R2+1 remain
unchanged.

When part of an operand is designated in an inac-
cessible location, but the operation can be completed
by using the available operand parts, it is unpredicta-
ble whether the access exception for the inaccessible
part is recognized.

When the count field for an operand has the value
Zero, no access exceptions are recognized for that
operand.

Resulting Condition Code:

0 Operands are equal, or both fields have zero
length

1 First operand is low

2 First operand is high

3 -

Program Exceptions:

Access (fetch, operands 1 and 2)
Specification

Programming Notes

When the contents of the Ry and Ry fields are the
same, condition code 0 is set, and protection and
addressing exceptions are indicated when called for
by the operand designation.

Special precautions should be taken when COM-
PARE LOGICAL LONG is made the subject of
EXECUTE. See the programming notes under EX-
ECUTE.

See also the programming notes under MOVE
LONG.

Convert to Binary

CVB Ry1,D2(X2,B2) [RX]

aF Ri | X | B Dy

0 8 12 16 20 31

The radix of the second operand is changed from
decimal to binary, and the result is placed in the
first-operand location. The number is treated as a
right-aligned signed integer both before and after
conversion.

The second operand has the packed decimal data
format and is checked for valid sign and digit codes.
Improper codes are a data exception and cause a

General Instructions 127

program interruption. The decimal operand occupies
eight bytes in storage. The low-order four bits of the
field represent the sign. The remaining 60 bits con-
tain 15 binary-coded-decimal digits in true notation.
The packed decimal data format is described under
"Decimal Instructions."

The result of the conversion is placed in the gen-
eral register specified by Ry. The maximum number
that can be converted and still be contained in a
32-bit register is 2,147,483,647; the minimum num-
ber is -2,147,483,648. For any decimal number out-
side this range, the operation is completed by placing
the 32 low-order binary bits in the register; a fixed-
point divide exception exists, and a program inter-
ruption follows. In the case of a negative second
operand, the low-order part is in two’s-complement
notation.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Data
Fixed-Point Divide

Convert to Decimal

CVD R1,D2(X2,B2) [RX]

4E Ry Xo B, D,

0 8 12 16 20 31

The radix of the first operand is changed from bina-
ry to decimal, and the result is stored in the second-
operand location. The number is treated as a right-
aligned signed integer both before and after conver-
sion.

The result is placed in the storage location desig-
nated by the second operand and has the packed
decimal format, as described in ''Decimal Instruc-
tions." The result occupies eight bytes in storage.
The low-order four bits of the field represent the
sign. A positive sign is encoded as 1100; a negative
sign is encoded as 1101. The remaining 60 bits con-
tain 15 binary-coded-decimal digits in true notation.

The number to be converted is obtained as a 32-
bit signed integer from a general register. Since 15
decimal digits are available for the decimal equiva-
lent of 31 bits, an overflow cannot occur.

Condition Code:
The code remains unchanged.

128 System/370 Principles of Operation

Program Exceptions:
Access (store, operand 2)

Divide

DR Ry,Ry [RR]

1D Ry | Ry

0 8 12 156

D Ry,D2(X2,B2) [RX]

5D R, X2 | By D,

0 8 12 16 20 31
The dividend (first operand) is divided by the divisor
(second operand) and replaced by the remainder and
the quotient.

The dividend is a 64-bit signed integer and occu-
pies the even-odd pair of registers specified by the
R field of the instruction. A specification exception
occurs when Ry is odd. A 32-bit signed remainder
and a 32-bit signed quotient replace the dividend in
the even-numbered and odd-numbered registers,
respectively. The divisor is a 32-bit signed integer.

The sign of the quotient is determined by the
rules of algebra. The remainder has the same sign as
the dividend, except that a zero quotient or a zero
remainder is always positive. When the relative mag-
nitude of dividend and divisor is such that the quo-
tient cannot be expressed by a 32-bit signed integer,
a fixed-point divide exception is recognized (a pro-
gram interruption occurs, no division takes place,
and the dividend remains unchanged in the general
registers).

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of D only)
Specification
Fixed-Point Divide

Exclusive OR

XR Ry,Rz [RR]

17 R, Ry

0 8 12 15

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

X R1,D2(X2,B2) [RX] instruction EXCLUSIVE OR cannot be safely used
to update a shared location in main storage if the
57 Ry | X, | B, D, | possibility exists tl'lat another CPU or a channel
\ may also be updating the location. For XI, only one
Y 8 12 16 20 31 byte is stored.
XI Di(By).I2 (s1] Execute
07 I, B D, EX Ry,D2(X2,B2) [RX]
16 20 31
0 8 44 Ry Xy By D,
XC Dy(L,B1),D2(B SS
1(L,B1),D2(B2) [SS] 5 5 P EET—T =
i ' The single instruction at the second-operand address
D7 L B; | Dy B, D, . It .
B] is modified by the contents of the general register
) 8 16 200 32 36 47 specified by Ry, and the resulting subject instruction

The EXCLUSIVE OR of the first and second oper-
ands is placed in the first-operand location.

Operands are treated as unstructured logical
quantities, and the connective EXCLUSIVE OR is
applied bit by bit. A bit position in the result is set to
one if the corresponding bit positions in the two
operands are unlike; otherwise, the result bit is set to
Zero.

For XC, each operand field is processed left to
right. When the operands overlap, the result is ob-
tained as if the operands were processed one byte at
a time and each result byte were stored immediately
after the necessary operand byte is fetched.

Resulting Condition Code:
0 Result is zero

1 Result not zero

2 .

3 -

Program Exceptions:

Access (fetch, operand 2, X and XC; fetch and
- store, operand 1, XI and XC)

Programming Note

The instruction EXCLUSIVE OR may be used to
invert a bit, an operation particularly useful in test-
ing and setting programmed binary bit switches.

A field EXCLUSIVE-ORed with itself becomes
all zeros.

The sequence A EXCLUSIVE-ORed B, B
EXCLUSIVE-ORed A, A EXCLUSIVE-ORed B
results in the exchange of the contents of A and B
without the use of an auxiliary buffer area.

The execution of XI and XC consists in fetching a
first-operand byte from main storage and subse-
quently storing the updated value. These fetch and
store accesses to a particular byte do not necessarily
occur one immediately after the other. Thus, the

is executed.

Bits 8-15 of the instruction designated by the
branch address are ORed with bits 24-31 of the reg-
ister specified by Ry, except when register 0 is speci-
fied, which indicates that no modification takes
place. The subject instruction may be two, four, or
six bytes in length. The ORing does not change ei-
ther the contents of the register specified by Ry or
the instruction in storage, and it is effective only for
the interpretation of the instruction to be executed.

The execution and exception handling of the sub-
ject instruction are exactly as if the subject instruc-
tion were obtained in normal sequential operation,
except for the instruction address and the
instruction-length code.

The instruction address of the current PSW is
increased by the length of EXECUTE. This updat-
ed address and the length code (2) of EXECUTE
are used as part of the link information when the
subject instruction is BRANCH AND LINK. When
the subject instruction is a successful branching in-
struction, the updated instruction address of the
current PSW is replaced by the branch address speci-
fied by the subject instruction.

When the subject instruction is in turn an EXE -
CUTE, an execute exception is recognized, and the
operation is suppressed. The effective address of
EXECUTE must be even; otherwise, a specification
exception is recognized.

Condition Code:
The code may be set by the subject instruction.

Program Exceptions:
Execute
Access (fetch, operand 2)
Specification

General Instructions 129

Programming Notes
The ORing of eight bits from the general register
with the designated instruction permits indirect
length, index, mask, immediate data, and arithmetic-
register specification.

If the subject instruction is a successful branch,
the length code still stands at 2.

Arn addressing or specification exception may be
caused by EXECUTE or by the subject instruction.

When an interruptible instruction is made a sub-
ject of EXECUTE, the program normally should not
designate any register updated by the interruptible
instruction as either the Ry, X2, or By register for
EXECUTE, since on resumption of execution after
an interruption, or if the instruction is refetched
without an interruption, the updated values of these

registers will be used in the execution of EXECUTE.

Similarly, the program should normally not let the
destination field of an interruptible instruction in-
clude the location of the EXECUTE, since the new
contents of the location may be interpreted for a
resumption of the execution.

Insert Character

IC Ry,D2(X2,B2) [RX]

43 Ri | X2 B2 D2

0 8 12 16 20 31

The byte at the second-operand location is inserted
into bit positions 24-31 of the general register desig-
nated by the R field. The remaining bits in the reg-
ister remain unchanged.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Insert Characters Under Mask

ICM R1,M3,D2(B2) [RS]

left to right, of the general register designated by the
R field. The byte positions corresponding to ones in
the mask are filled, in the order of ascending byte
numbers, with bytes from the storage operand. Bytes
are fetched from contiguous storage locations begin-
ning at the second-operand address. The length of
the second operand is equal to the number of ones in
the mask. The bytes in the general register corre-
sponding to zeros in the mask remain unchanged.

The resulting condition code is based on the mask
and on the value of the bits inserted. When the mask
is zero or when all inserted bits are zero, the condi-
tion code is made 0. When all inserted bits are not
zero, the code is set according to the leftmost bit of
the storage operand: if this bit is one, the code is
made 1 to indicate a negative algebraic value; if this
bit is zero, the code is made 2, reflecting a positive
algebraic value.

When the mask is not zero, exceptions associated
with storage operand access are recognized only for
the number of bytes specified by the mask. When
the mask is zero, access exceptions are recognized
for one byte.

Resulting Condition Code:

0 All inserted bits are zeros, or mask is zero

1 First bit of the inserted field is one

2 First bit of the inserted field is zero, and not all
inserted bits are zeros

3 -

Program Exceptions:
Access (fetch, operand 2)

Programming Note

The condition code for INSERT CHARACTERS
UNDER MASK is defined such that when the mask
is 1111, the instruction causes the same condition
code to be set as for LOAD AND TEST.

Load

LR RyRz [RR]

BF R4 Mz | By D,

18 Ry | Ry

0 8 12 16 20 31

Bytes from contiguous locations beginning at the
second-operand address are inserted into the first-
operand location under control of a mask.

The contents of the M3 field, bit positions 12-15,
are used as a mask. The four bits of the mask, left to
right, correspond one for one with the four bytes,

130 System/370 Principles of Operation

L Ry,Dy(X2,B2) [RX]

58 Ry | X, | By D,

0 8 12 16 20 31

The second operand is placed unchanged in the first-
operand location.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of L only)

Load Address
LA Ry1,D2(X2,B3) [RX]
41 R 1 X 2 32 02
) 8 12 16 20 31

The address specified by the X3, B2, and D5 fields is
inserted in bit positions 8-31 of the general register
specified by the Ry field. Bits 0-7 of the register are
set to zeros. The address computation follows the
rules for address arithmetic.

No storage references for operands take place,
and the address is not inspected for access excep-
tions.

Condition Code:
The code remains unchanged.

Program Exceptions:
None.

Programming Note

The same general register may be specified by the
R1, X3, and By instruction field, except that general
register 0 can be specified only by the Rj field. In
this manner it is possible to increment the low-order
24 bits of a general register, other than 0, by the
contents of the Dj field of the instruction. The regis-
ter to be incremented should be specified by Ry and
by either X, (with By set to zero) or By (with X3 set
to zero).

Load and Test

LTR Ry,R; [RR]

12 Ry | Ra

0 8 12 156

The second operand is placed unchanged in the first-
operand location, and the sign and magnitude of the
second operand determine the condition code.

Resulting Condition Code:
0 Result is zero
1 Result is less than zero

2 Result is greater than zero
3 .

Program Exceptions:
None.

Programming Note

When the Ry and R fields designate the same regis-
ter, the operation is equivalent to a test without data
movement.

Load Complement

LCR Rg,R; [RR]

13 Ry | Rz

0 8 12 15

The two’s complement of the second operand is
placed in the first-operand location.

An overflow condition occurs when the maximum
negative number is complemented; the number re-
mains unchanged. The overflow causes a program
interruption when the fixed-point overflow mask bit
is one.

Resulting Condition Code:
0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:

Fixed-Point Overflow

Programming Note ‘
Zero remains unchanged by complementation.

Load Halfword

LH Ry1,D2(X2,B2) [RX]

48 Ry | X3 By D,

0 8 12 16 20 31

The second operand is placed in the first-operand
location. The second operand is two bytes in length
and is considered to be a 16-bit signed integer.

The second operand is expanded to 32 bits by
propagating the sign-bit value through the 16 high-
order bit positions. Expansion occurs after the oper-
and is obtained from storage and before insertion in
the register.

General Instructions 131

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Load Multiple

LM R1,R3,D2(B2) [RS]

98 Ry | Rz | By Dy

0 8 12 16 20 31

The set of general registers starting with the register
specified by Ry and ending with the register speci-
fied by R3 is loaded from the locations designated by
the second-operand address.

The storage area from which the contents of the
general registers are obtained starts at the location
designated by the second-operand address and con-
tinues through as many locations as needed. The
general registers are loaded in the ascending order of
their addresses, starting with the register specified by
Ry and continuing up to and including the register
specified by Rj3, with register 0 following register 15.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Note

All combinations of register addresses specified by
R and R3 are valid. When the register addresses are
equal, only one word is transmitted. When the ad-
dress specified by Rj is less than the address speci-
fied by Ry, the register addresses wrap around from
15to 0.

Load Negative

LNR Ri,R; [RR]

1" Ri | Ra

0 8 12 15

The two’s complement of the absolute value of the
second operand is placed in the first-operand loca-
tion.

The operation complements positive numbers;
negative numbers remain unchanged. The number
zero remains unchanged with positive sign.

132 System/370 Principles of Operation

Resulting Condition Code:
0 Result is zero

1 Result is less than zero
2 .

3 -

Program Exceptions:
None.

Load Positive

LPR Ri,R; [RR]
10 R4 Ra
0 8 12 15

The absolute value of the second operand is placed
in the first-operand location.

The operation includes complementation of nega-
tive numbers; positive numbers remain unchanged.

An overflow condition occurs when the maximum
negative number is complemented; the number re-
mains unchanged. The overflow causes a program
interruption when the fixed-point overflow mask bit
is one.

Resulting Condition Code:
0 Result is zero

1 -

2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Monitor Call

MC Di(Bp,Ir [S1]

AF 1'2 B, D,

0 8 16 20 31

A program interruption is caused if the appropriate
monitor-mask bit in control register 8 is one.

Bit positions 12-15 in the I field contain a binary
number specifying one of 16 monitoring classes.
When the monitor-mask bit corresponding to the
class specified by the I field is one, a program inter-
ruption for monitoring occurs. The contents of the I
field are stored at location 149 of main storage, with
zeros stored at location 148. Bit 9 of the program
interruption code is set to one.

The address specified by the By and Dy fields
forms the monitor code, which is placed at locations

157-159. Address computation follows the rules of
address arithmetic. The address is not inspected for
access exceptions. Zeros are stored at location 156.

When the monitor-mask bit corresponding to the
class specified by bits 12-15 of the instruction is
zero, no interruption occurs, and the instruction is
executed as a no-operation.

Bit positions 8-11 of the instruction must contain
zeros; otherwise, a specification exception is recog-
nized, and the operation is suppressed.

Condition Code:
The code remains unchanged.

Program Exceptions:
Specification
Monitoring

Programming Notes

The monitoring function is useful in performing vari-
ous measurement functions; specifically, by implant-
ing MONITOR CALL instructions within the code,
tracing information can be generated indicating
which programs were executed, counting informa-
tion can be generated indicating how often particular
programs are used, and timing information can be
generated indicating how long a particular program
required for execution.

The monitor code provides a means of associating
descriptive information, in addition to the class num-
ber, with each MONITOR CALL instruction. With-
out the use of a base register, up to 4,096 distinct
monitor codes can be associated with a monitoring
interruption. With the base register designated by a
nonzero value in the Bj field, each monitoring inter-
ruption can be identified by a 24-bit code.

The monitor masks provide a means of disallow-
ing all interruptions due to MONITOR CALL or
allowing monitoring for all or selected classes.

Move
MVI Di(By),I2 [S1]
92 I, B, D,
0 8 16 20 31
MVC Dy(L,B1),D2(B2) [SS]
D2 L B, |Dy| B | D,
0 8 16 207 32 36747

The second operand is placed in the first-operand
location.

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

For MVC, each operand field is processed left to
right. When the operands overlap, the result is ob-
tained as if the operands were processed one byte at
a time and each result byte were stored immediately
after the necessary operand byte is fetched.

Condition Code:
The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 of MVC; store, operand
1, MVI and MVC)

Programming Note

It is possible to propagate one character through an
entire field by having the first-operand field start
one character to the right of the second-operand
field.

Move Long

MVCL Ry,Rz [RR]
0E Ry | Ry

0 8 12 15

The second operand is placed in the first-operand
location, provided overlapping of operand locations
does not affect the final contents of the first-
operand location. The remaining low-order byte
positions, if any, of the first-operand location are
filled with the padding character.

The Ry and R fields each specify an even-odd
pair of general registers and must designate an even-
numbered register; otherwise, a specification excep-
tion is recognized.

The location of the leftmost byte of the first oper-
and and second operand is designated by bits 8-31
of the general registers specified by the Ry and Ry
fields, respectively. The number of bytes in the first-
operand and second-operand locations is specified
by bits 8-31 of general registers having addresses
Ri1+1 and Ry+1, respectively. Bit positions 0-7 of
register R2+1 contain the padding character. The
contents of bit positions 0-7 of registers Ry, Rz, and
Rj+1 are ignored.

Graphically, the contents of the registers just de-
scribed are as follows:

Rq

/ / First-Operand Address

0 8 31

General Instructions 133

Rq+1

/ First-Operand Length

R2

Second-Operand Address

Ry + 1

Pad Second-Operand Length

The movement starts at the high-order end of
both fields and proceeds to the right. The operation
is ended when the number of bytes specified by bit
positions 8-31 of register Rq1+1 have been moved
into the first-operand location. If the second oper-
and is shorter than the first operand, the remaining
low-order bytes of the first operand are filled with
the padding character.

As part of the execution of the instruction, the
values of the two count fields are compared for the
setting of the condition code, and a check is made
for destructive overlap of the operands. Operands
are said to overlap destructively when the first-
operand location is used as a source after data has
been moved into it, assuming the inspection for ov-
erlap is performed by the use of logical operand ad-
dresses. When the operands overlap destructively, no
movement takes place, and condition code 3 is set.

Depending on whether the second operand wraps
around from location 16,777,215 to location 0,
movement takes place in the following cases:

1. When the second operand does not wrap
around, movement is performed when the
high-order byte of the first operand coincides
with or is to the left of the high-order byte of
the second operand, or if the high-order byte
of the first operand is to the right of the right-
most second-operand byte participating in the
operation.

2. When the second operand wraps around, move-
ment is performed when the high-order byte of
the first operand coincides with or is to the left
of the high-order byte of the second operand,
and if the high-order byte of the first operand
is to the right of the rightmost second-operand
byte participating in the operation.

The rightmost second-operand byte is determined
by using the smaller of the first-operand and second-
operand counts.

When the count specified by bit positions 8-31 of
register R1+1 is zero, no movement takes place, and
the condition code is set to 0 or 1 to indicate the
relative values of the counts.

134 System/370 Principles of Operation

The execution of the instruction is interruptible.
When an interruption occurs, the contents of regis-
ters R1+1 and Rp+1 are decremented by the num-
ber of bytes moved, and the contents of register Ry
and Ry are incremented by the same number, so that
the instruction, when re-executed, resumes at the
point of interruption. The high-order byte of regis-
ters Ry and Rj is set to zero; the contents of the
high-order byte of registers R1+1 and Ra+1 remain
unchanged; and the condition code is unpredictable.
If the operation is interrupted during padding, the
count field in register R2+1 is zero, the address in
register Ry is incremented by the original contents of
register Ra+1, and registers Ry and Rq+1 reflect the
extent of the padding operation.

When the first-operand location includes the loca-
tion of the instruction, the instruction may be re-
fetched from main storage and reinterpreted even in
the absence of an interruption during execution. The
exact point in the execution at which such a refetch
occurs is unpredictable.

At the completion of the operation, the count in
register Ry+1 is zero, and the address in register Ry
is incremented by the original value of the count in
register R1+1. The count in register R2+1 is decre-
mented by the number of bytes moved out of the
second-operand location, and the address in register
Rj is incremented by the same amount. The contents
of bit positions 0-7 of registers Ry and Rj are set to
zero, including the case when one or both of the
original count values are zero or when condition
code 3 is set. The contents of bit positions 0-7 of
registers R1+1 and R+ 1 remain unchanged.

When the count specified by bit positions 8-31 of
register Ry+1 is zero, or condition code 3 is set, no
exceptions associated with operand access are recog-
nized. When the count specified by bit positions
8-31 of register Ra+1 is zero, no access exceptions
for the second-operand location are recognized.
Similarly, when the second operand is larger than the
first operand, access exceptions are not recognized
for the part of the second-operand field that is in
excess of the first-operand field.

Resulting Condition Code:

0 First-operand and second-operand counts are
equal

1 First-operand count is low

2 First-operand count is high

3 No movement performed because of destruc-
tive overlap

Program Exceptions:

Access (fetch, operand 2; store, operand 1)
Specification

Programming Notes

The instruction MOVE LONG can be used for clear-
ing storage. Clearing can be accomplished by setting
the padding character to zero and the second oper~
:and count to zero.

When the first-operand count is zero, the opera-
tion consists in setting the condition code and setting
the high-order bytes of registers Ry and Rj to zero.

When the contents of the Ry and Ry fields are the
same, the operation proceeds the same way as when
two distinct pairs of registers having the same con-
tents are specified. Condition code 0 is set, and pro-
tection and addressing exceptions are indicated when
called for by the operand designation.

Since the execution of MOVE LONG is interrup-
tible, the instruction cannot be used for situations
where the program must rely on uninterrupted exe-
cution of the instruction or on the interval timer not
being updated during the execution of the instruc-
tion. Similarly, the program should normally not let
the first operand of MOVE LONG include the loca-
tion of the instruction since the new contents of the
location may be interpreted for a resumption after
an interruption, or if the instruction is refetched
without an interruption.

Special precautions must be taken if MOVE
LONG is made the subject of EXECUTE. See the
programming notes under EXECUTE.

When the stop key is activated during the execu-
tion of MOVE LONG or COMPARE LOGICAL
LONG, the CPU enters the stopped state at the
completion of the execution of the next unit of oper-
ation. Similarly, in the instruction-step mode, only a
unit of operation is performed. The amount of data
processed in a unit of operation depends on the
model and may depend on the particular condition
that causes the execution of the instruction to be
interrupted.

Move Numerics

MVN Dy(L,B1),D2(B2) [SS]
D1 L ‘B, | Dy B, | D,
0 8 16 20" 3 36 47

The low-order four bits of each byte in the second-
operand field, the numerics, are placed in the low-
order bit positions of the corresponding bytes in the
first-operand field. The high-order four bits of each
byte in the first-operand field remain unchanged.

Each operand field is processed left to right.
When the operands overlap, the result is obtained as
if the operands were processed one byte at a time

and each result byte were stored immediately after
the necessary operand byte is fetched.

Condition Code:
The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and store, oper-
and 1)

Programming Note

The execution of MVN consists in fetching the low-
order four bits of each byte in the first-operand
field, and subsequently storing the updated value of
the byte. These fetch and store accesses to a partic-
ular byte do not necessarily occur one immediately
after the other.

Move With Offset

MVO Diy(L1,B1),D2(L2,B2) [SS]

vy /
+/ x4

F1 Ly | Ly | By | D By | Dy

)

0 8 12 16 200 32

36 47

The second operand is placed to the left of and adja-
cent to the low-order four bits of the first operand.

The low-order four bits of the first operand are
attached as low-order bits to the second operand,
the second operand bits are offset by four bit posi-
tions, and the result is placed in the first-operand
location. The first-operand and second-operand
bytes are not checked for valid codes.

The result is obtained as if the fields were pro-
cessed right to left. If necessary, the second operand
is extended with high-order zeros. If the first-
operand field is too short to contain all bytes of the
second operand, the remaining information is ig-
nored.

When the operands overlap, the result is obtained
as if the operands were processed one byte at a time
and each result byte were stored immediately after
the necessary operand bytes are fetched. The high-
order digit of each second-operand byte remains
available for the next result byte and is not re-
fetched.

Condition Code:
The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and store, oper-
and 1)

General Instructions 135

Programming Note

In the execution of MVO, the fetch and subsequent
store accesses to the low-order byte of the first oper-
and do not necessarily occur one immediately after

the other.

Move Zones

MVZ Di(L,By),D2(B3) [SS]

D3 L By | Dy | By | Dy

0 8 16 20 32 36 47

The high-order four bits of each byte in the second-
operand field (the zones) are placed in the high-
order four bit positions of the corresponding bytes in
the first-operand field. The low-order four bits of
each byte in the first-operand field remain un-
changed.

Each operand field is processed left to right.
When the operands overlap, the result is obtained as
if the operands were processed one byte at a time
and each result byte were stored immediately after
the necessary operand byte is fetched.

Condition Code:
The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and store, oper-
and 1)

Programming Note

The execution of MVZ consists in fetching the high-
order four bits of each byte in the first-operand
field, and subsequently storing the updated value of
the byte. These fetch and store accesses to a particu-
lar byte do not necessarily occur one immediately
after the other.

Multiply

MR RiR2 [RR]

1c Ry | Ry

0 8 12 15
M Ry,D2(X2,B2) [RX]

8C Ri | X2 | B2 D2

0 8 12 16 20 31

136 System/370 Principles of Operation

The product of the multiplier (the second operand)
and the multiplicand (the first operand) replaces the
multiplicand.

Both multiplier and multiplicand are 32-bit signed
integers. The product is always a 64-bit signed inte-
ger and occupies an even-odd register pair. Because
the multiplicand is replaced by the product, the Ry
field of the instruction must refer to an even-
numbered register. A specification exception occurs
when R is odd. The multiplicand is taken from the
odd register of the pair. The contents of the even-
numbered register replaced by the product are ig-
nored, unless the register contains the multiplier. An
overflow cannot occur.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand sign,
except that a zero result is always positive.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of M only)

Specification

Programming Note

The significant part of the product usually occupies
62 bits or fewer. Only when two maximum negative
numbers are multiplied are 63 significant product
bits formed. Since two’s-complement notation is
used, the sign bit is extended right until the first sig-
nificant product digit is encountered.

Multiply Halfword
MH Ry1,D02(X32,B2) [RX]
4c Ry X2 | B2 D,
0 8 12 16 20 31

The product of the multiplier (second operand) and
multiplicand (first operand) replaces the multipli-
cand. The second operand is two bytes in length and
is considered to be a 16-bit signed integer.

Both multiplicand and product are 32-bit signed
integers and may be located in any general register.
The 16-bit multiplier is expanded to 32 bits before
multiplication by propagating the sign-bit value
through the 16 high-order bit positions. The multipli-
cand is replaced by the low-order part of the prod-
uct. The bits to the left of the 32 low-order bits are
not tested for significance; no overflow indication is
given, ' ‘

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand sign,
except that a zero result is always positive.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Note

The significant part of the product usually occupies
46 bits or fewer, the exception being 47 bits when
both operands are maximum negative. Since the
low-order 32 bits of the product are stored un-
changed, ignoring all bits to the left, the sign bit of
the result may differ from the true sign of the prod-
uct in the case of overflow.

OR

OR RyR2[RR]

16 Ry | Ry

0 8 1215
O Ry1,D2(X2,By) [RX]

56 R1 X2 BZ D2

0 8 12 16 20 31

Ol Di(By),Ix[S1]

96 I B, D,

0 8 16 20 31

OC Di(L,B1),D2(By) [SS]

D6 L B, | b;| By | Dy

0 8 16 207 32 36 47

The OR of the first and second operands is placed in
the first-operand location.

Operands are treated as unstructured logical
quantities, and the connective OR is applied bit by
bit. A bit position in the result is set to one if the
corresponding bit position in one or both operands
contains a one; otherwise, the result bit is set to
zero.

For OC, each operand field is processed left to
right. When the operands overlap, the result is ob-

tained as if the operands were processed one byte at
a time and each result byte were stored immediately
after the necessary operand byte is fetched.

Resulting Condition Code:
0 Result is zero

1 Result not zero

2 .

3 -

Program Exceptions:

Access (fetch, operand 2, O and OC; fetch and
store, operand 1, Ol and OC)

Programming Note
The instruction OR may be used to set a bit to one.

The execution of OI and OC consists in fetching a
first-operand byte from main storage and subse-
quently storing the updated value. These fetch and
store accesses to a particular byte do not necessarily
occur one immediately after the other. Thus, the
instruction OR cannot be safely used to update a
shared location in main storage if the possibility ex-
ists that another CPU may also be updating the loca-
tion. For OI, only one byte is stored.

Pack
PACK Dj(Ly,B1),D2(L2,B2) [SS]

F2 ty | Ly | 8, | Dy| By | Dy
0 8§ 12 16 20" a2 36747

The format of the second operand is changed from
zoned to packed, and the result is placed in the first-
operand location.

The second operand is assumed to have the zoned
format. All zones are ignored, except the zone over
the low-order digit, which is assumed to represent a
sign. The sign is placed in the right four bits of the
low-order byte, and the digits are placed adjacent to
the sign and to each other in the remainder of the
result field. The sign and digits are moved un-
changed to the first operand field and are not
checked for valid codes.

The result is obtained as if the fields were pro-
cessed right to left. If necessary, the second operand
is extended with high-order zeros. If the first-
operand field is too short to contain all significant
digits of the second-operand field, the remaining
high-order digits are ignored.

General Instructions 137

When the operands overlap, the result is obtained
as if each result byte were stored immediately after
the necessary operand bytes are fetched. Two
second-operand bytes are needed for each result
byte, except for the rightmost byte of the result
field, which requires only the rightmost second-
operand byte.

Condition Code:
The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; store, operand 1)

Programming Notes
The PACK instruction may be used to interchange
the two hex digits in one byte by specifying a zero in
the L1 and L fields and the same address for both
operands.

To remove the zones of all bytes of a field, in-
cluding the low-order byte, both operands must be
extended with a dummy byte in the low-order posi-

tion, which subsequently is ignored in the result
field.

Set Program Mask

SPM R1 [RR]
04 R /

! /

0 8 12 15

Bits 2-7 of the general register specified by the Ry
field replace the condition code and the program
mask bits of the current PSW. Bits 12-15 of the in-
struction are ignored.

Bits 0, 1, and 8-31 of the register specified by the
Ry field are ignored. The contents of the register
specified by the Ry field remain unchanged.

The instruction permits setting of the condition
code and the mask bits in either the problem or su-
pervisor state.

Condition Code:
The code is set according to bits 2 and 3 of the
register specified by Rj.

Program Exceptions:
None

Programming Note

Bits 2-7 of the general register may have been load-
ed from the PSW by BRANCH AND LINK.

138 System/370 Principles of Operation

Shift Left Double

SLDA Ry,D2(B3) [RS]

8F R, B, D,

0 8 12 16 20 31

The double-length integer part of the first operand is
shifted left the number of bits specified by the
second-operand address. Bits 12-15 of the instruc-
tion are ignored.

The Ry field of the instruction specifies an even-
odd pair of registers and must designate an even-
numbered register. When Rj is odd, a specification
exception is recognized.

The second-operand address is not used to ad-
dress data; its low-order six bits indicate the number
of bit positions to be shifted. The remainder of the
address is ignored.

The first operand is treated as a number with 63
integer bits and a sign in the sign position of the
even register. The sign remains unchanged. The
high-order position of the odd register contains an
integer bit, and the contents of the odd register par-
ticipate in the shift in the same manner as the other
integer bits. Zeros are supplied to the vacated posi-
tions of the registers.

If a bit unlike the sign bit is shifted out of bit posi-
tion 1 of the even register, an overflow occurs. The
overflow causes a program interruption when the
fixed-point overflow mask bit is one.

Resulting Condition Code:
0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:
Specification
Fixed-Point Overflow

Programming Notes
The eight shift instructions provide the following
three pairs of alternatives: left or right, single or
double, and algebraic or logical. The algebraic shifts
differ from the logical shifts in that, in the algebraic
shifts, overflow is recognized, the condition code is
set, and the high-order bit participates as a sign.
The maximum shift amount which can be speci-
fied is 63. For algebraic shifts this is sufficient to
shift out the entire integer field. Since 64 bits partici-
pate in the double-logical shifts, the entire register
contents cannot be shifted out.

A zero shift amount in the two algebraic double-
shift operations provides a double-length sign and
magnitude test.

The base register participating in the generation
of the second-operand address permits indirect spec-
ification of the shift amount. A zero in the B3 field
indicates the absence of indirect shift specification.

Shift Left Double Logical

SLDL Ry,D2(B2) [RS]

7

8D R, B, D,

0 8 12 16 20 31

The double-length first operand is shifted left the
number of bits specified by the second-operand ad-
dress. Bits 12-15 of the instruction are ignored.

The Ry field of the instruction specifies an even-
odd pair of registers and must designate an even-
numbered register. When Ry is odd, a specification
exception is recognized.

The second-operand address is not used to ad-
dress data; its low-order six bits indicate the number
of bit positions to be shifted. The remainder of the
address is ignored.

All 64 bits of the first operand participate in the
shift. High-order bits are shifted out of the even-
numbered register without inspection and are lost.
Zeros are supplied to the vacated positions of the
registers.

Condition Code:
The code remains unchanged.

Program Exceptions:
Specification

Shift Left Single

SLA Ry,D2(Ba) [RS]

8B R, / B, D,

0 8 12 16 20 31

The integer part of the first operand is shifted left
the number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The second-operand address is not used to ad-
dress data; its low-order six bits indicate the number
of bit positions to be shifted. The remainder of the
address is ignored.

The sign of the first operand remains unchanged.
All 31 integer bits of the operand participate in the
left shift. Zeros are supplied to the vacated low-
order register positions.

If a bit unlike the sign bit is shifted out of position
1, an overflow occurs. The overflow causes a pro-
gram interruption when the fixed-point overflow
mask bit is one.

Resulting Condition Code:
0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Note

For numbers with an absolute value of less than 23,
a left shift of one bit position is equivalent to multi-
plying the number by two.

Shift amounts from 31-63 cause the entire integer
to be shifted out of the register. When the entire
integer field for a positive number has been shifted
out, the register contains a value of zero. For a nega-
tive number, the register contains a value of -231,

Shift Left Single Logical

SLL R1,D2(B3) [RS]

89 ZE 0,

0 8 12 16 20 31

The first operand is shifted left the number of bits
specified by the second-operand address. Bits 12-15
of the instruction are ignored.

The second-operand address is not used to ad-
dress data; its low-order six bits indicate the number
of bit positions to be shifted. The remainder of the
address is ignored.

All 32 bits of the first operand participate in the
shift. High-order bits are shifted out without inspec-
tion and are lost. Zeros are supplied to the vacated
low-order register positions.

Condition Code:
The code remains unchanged.

Program Exceptions:
None

General Instructions 139

Shift Right Double
SRDA R1,D2(B) [RS]

8E Ry /// By D2
12 1

0 8 6 20 31

The double-length integer part of the first operand is
shifted right the number of places specified by the
second-operand address. Bits 12-15 of the instruc-
tion are ignored.

The R field of the instruction specifies an even-
odd pair of registers and must designate an even-
numbered register. When Ry is odd, a specification
exception is recognized.

The second-operand address is not used to ad-
dress data; its low-order six bits indicate the number
of bit positions to be shifted. The remainder of the
address is ignored.

The first operand is treated as a number with 63
integer bits and a sign in the sign position of the
even register. The sign remains unchanged. The
high-order position of the odd register contains an
integer bit, and the contents of the odd register par-
ticipate in the shift in the same manner as the other
integer bits. The low-order bits are shifted out with-
out inspection and are lost. Bits equal to the sign are
supplied to the vacated positions of the registers.

Resulting Condition Code:
0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 .

Program Exceptions:
Specification

Shift Right Double Logical

SRDL R1,D2(B3) [RS]

8C R4 // B, Dy

0 8 12 16 20 31

The double-length first operand is shifted right the
number of bits specified by the second-operand ad-
dress. Bits 12-15 of the instruction are ignored.

The Rj field of the instruction specifies an even-
odd pair of registers and must designate an even-
numbered register. When Ry is odd, a specification
exception is recognized.

140 System/370 Principles of Operation

The second-operand address is not used to ad-
dress data, its low-order six bits indicate the number
of bit positions to be shifted. The remainder of the
address is ignored.

All 64 bits of the first operand participate in the
shift. Low-order bits are shifted out of the odd-
numbered register without inspection and are lost.
Zeros are supplied to the vacated positions of the
registers.

Condition Code:
The code remains unchanged.

Program Exceptions:
Specification

Shift Right Single

SRA Ry,D2(B2) [RS]

v
8A R, B, D,

0 8 12 16 20 31

The integer part of the first operand is shifted right
the number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The second-operand address is not used to ad-
dress data; its low-order six bits indicate the number
of bit positions to be shifted. The remainder of the
address is ignored.

The sign of the first operand remains unchanged.
All 31 integer bits of the operand participate in the
right shift. Bits equal to the sign are supplied to the
vacated high-order bit positions. Low-order bits are
shifted out without inspection and are lost.

Resulting Condition Code:
0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:
None

Programming Note

A right shift of one bit position is equivalent to divi-
sion by two with rounding downward. When an even
number is shifted right one position, the value of the
field is that obtained by dividing the value by 2.
When an odd number is shifted right one position,
the value of the field is that obtained by dividing the
next lower number by two. For example, +5 shifted
right by one bit position yields 42, whereas -5 yields
-3,

Shift amounts from 31-63 cause the entire integer
to be shifted out of the register. When the entire
integer field of a positive number has been shifted:
out, the register contains a value of zero. For a nega-
tive number, the register contains a value of -1.

Shift Right Single Logical

SRL Ry,D2(B2) [RS]

88 R4 // B, Dy

0 8 12 16 20 31

The first operand is shifted right the number of bits
specified by the second-operand address. Bits 12-15
of the instruction are ignored.

The second-operand address is not used to ad-
dress data; its low-order six bits indicate the number
of bit positions to be shifted. The remainder of the
address is ignored.

All 32 bits of the first operand participate in the
shift. Low-order bits are shifted out without inspec-
tion and are lost. Zeros are supplied to the vacated
high-order register positions.

Condition Code:
The code remains unchanged.

Program Exceptions:

None
Store
ST R1,D2(X2,B2) [RX]
50 Ry | X2 | By Da
0 8 12 - 16 20 31

The first operand is stored at the second-operand
location.

The 32 bits in the general register are placed un-
changed at the second-operand location.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Store Character

STC R1,D2(X32,B7) [RX]

42 Ry Xy B, D,

0 8 12 16 20 31

The contents of bit positions 24-31 of the general
register designated by the Ry field are placed un-
changed at the second-operand location. The second
operand is one byte in length.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Store Characters Under Mask

STCM Ry,M3,D2(By) [RS]

BE Ry | Mg | B, D,

0 8 12 16 20 31

Bytes selected from the first operand under control
of a mask are placed in contiguous byte locations
beginning at the second-operand address.

The contents of the M3 field, bit positions 12-15,
are used as a mask. The four bits of the mask, left to
right, correspond one for one with the four bytes,
left to right, of the general register designated by the
R field. The bytes corresponding to ones in the
mask are placed in the same order in successive and
contiguous storage locations beginning with the loca-
tion designated by the second-operand address. The
number of bytes stored is equal to the number of
ones in the mask. The contents of the general regis-
ter remain unchanged.

When the mask is not zero, exceptions associated
with storage-operand access are recognized only for
the number of bytes specified by the mask. When
the mask is zero, no access exceptions are recognized.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Store Clock

STCK Dj(By) [S]

B205 By D,

0 16 20 31

The current value of the time-of-day clock is stored
at the eight-byte field designated by the second-

General Instructions 141

operand address, provided the clock is in the set,
stopped, or not-set state.

The value of the clock is expressed as an un-
signed, 64-bit fixed-point number. Zeros are stored
for the low-order bit positions that are not provided
by the clock.

When the clock is in the error state, the value
stored is unpredictable. When the clock is in the
not-operational state, zeros are stored at the opet-
and location.

The quality of the clock value stored by the in-
struction is indicated by the resultant condition code
setting. .

A serialization function is performed before the
value of the clock is fetched and again after the val-
ue is placed in main storage. CPU operation is de-
layed until all previous accesses by this CPU to main
storage have been completed, as observed by chan-
nels and other CPUs, and then the value of the clock
is fetched. No subsequent instructions or their oper-
ands are fetched by this CPU until the clock value
has been placed in main storage, as observed by
channels and CPUs.

Resulting Condition Code:

0 Clock in set state

1 Clock in not-set state

2 Clock in error state

3 Clock in stopped state or not-operational state

Program Exceptions:
Access (store, operand 2)

Programming Notes

Condition code 0 normally indicates that the clock
has been set by the control program. Accordingly,
the value may be used in elapsed-time measurements
and as a valid time-of-day and calendar indication.
Condition code 1 indicates that the clock’s value is
the elapsed time since the power for the clock was
turned on. In this case the value may be used in
elapsed time measurements but is not a valid time-
of-day indication. Condition codes 2 and 3 mean
that the value provided by STORE CLOCK cannot
be used for time measurement or indication.

Condition code 3 indicates that the clock is either
in the stopped state or not-operational state. These
two states can normally be distinguished since an
all-zero value is stored when in the not-operational
state.

Bit position 31 of the clock is incremented every
1.048576 seconds; hence, for timing applications
involving human responses, the high-order clock
word may provide sufficient resolution.

142 System/370 Principles of Operation

To provide compatible operation from one system
to another requires the establishment of a standard
time origin, or epoch, that is, the calendar date and
time to which a clock value of zero corresponds.
January 1, 1900, 0 A.M. Greenwich Mean Time is
recommended as the standard epoch for the clock,
although some early support of the TOD clock is not
based on this epoch. A program using the clock’s
value as a time-of-day and calendar indication may
have to be aware of the support under which it is
running. With the standard epoch, bit 0 of the TOD
clock turns on May 11, 1971 at 11:56:53.685248
AM. GMT. Therefore, in most cases, the program
can test the high-order bit to determine if the TOD
clock value is the standard epoch.

Because of the inaccuracies in setting the clock
value on the basis of a synchronization signal pro-
vided by the operator, the low-order bit positions of
the clock, expressing fractions of seconds, normally
are not valid as indications of time of day. However,
they permit elapsed time measurements of high reso-
lution.

Store Halfword

STH R1,D2(X2,B2) [RX]

40 Ryl X5 | By D,

The contents of bit positions 16-31 of the general
register designated by the R field are placed un-
changed at the second-operand location. The second
operand is two bytes in length.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Store Multiple

STM R1.R3,D2(By) [RS]

Q0 Ry Rg By P

0 8 12 16 20 31

The set of general registers starting with the register
specified by Ry and ending with the register speci-
fied by R3 is stored at the locations designated by
the second-operand address.

The storage area where the contents of the gener-
al registers are placed starts at the location designat-
ed by the second-operand address and continues
through as many locations as needed. The general
registers are stored in the ascending order of their
addresses, starting with the register specified by Ry
and continuing up to and including the register speci-
fied by R3, with register O following register 15.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Subtract

SR Ri,R2 [RR]

1B Ry | Rz

0 8 12 16

S Ry,D2(X2,B2) [RX]

5B R 1 X2 B2 D2

0 8 12 16 20 31

The second operand is subtracted from the first oper-
and, and the difference is placed in the first-
operand location.

Subtraction is considered to be performed by
adding the one’s complement of the second operand
and a low-order one to the first operand. All 32 bits
of both operands participate, as in ADD. If the carry
out of the sign-bit position and the carry out of the
high-order numeric bit position agree, the difference
is satisfactory; if they disagree, an overflow occurs.
The overflow causes a program interruption when
the fixed-point overflow mask bit is one.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2 of S only)
Fixed-Point Overflow

Programming Note

The use of the one’s complement and the low-order
one instead of the two’s complement of the second

operand is necessary for proper recognition of over-
flow when subtracting the maximum negative num-
ber.

When, in the RR format, the Ry and R fields
designate the same register, subtracting is equivalent
to clearing the register.

Subtracting a maximum negative number from
another maximum negative number gives a zero re-
sult and no overflow.

Subtract Halfword

SH Ry,D2(X3,B2) [RX]

48 R, | X | B, D,

0 8 12 16 20 31

The second operand is subtracted from the first oper-
and, and the difference is placed in the first-operand
location. The second operand is two bytes in length
and is considered to be a 16-bit signed integer.

The second operand is expanded to 32 bits before
the subtraction by propagating the sign-bit value
through the 16 high-order bit positions.

Subtraction is considered to be performed by
adding the one’s complement of the expanded sec-
ond operand and a low-order one to the first oper-
and. All 32 bits of both operands participate, as in
ADD. If the carry out of the sign-bit position and
the carry out of the high-order numeric bit position
agree, the difference is satisfactory; if they disagree,
an overflow occurs. The overflow causes a program
interruption when the fixed-point overflow mask bit
is one.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2)

Fixed-Point Overflow

Subtract Logical

SLR Rp,Ry [RR]
1F Ry | Ry
0 8 12 15
SL Ry,D2(X2,B2) [RX]
5F Ry | X5 By D,
0 8 12 16 20 3

General Instructions 143

The second operand is subtracted from the first oper-
and, and the difference is placed in the first-
operand location. The occurrence of a carry out of
the sign position is recorded in the condition code.

Logical subtraction is considered to be performed
by adding the one’s complement of the second oper-
and and a low-order one to the first operand. All 32
bits of both operands participate, without further
change to the resulting sign bit. The instruction dif-
fers from SUBTRACT in the meaning of the condi-
tion code and in the absence of the interruption for
overflow.

If a carry out of the sign position occurs, the left-
most bit of the condition code is made one. In the
absence of a carry, the bit is made zero. When the
sum is zero, the rightmost bit of the condition code
is made zero. For a nonzero sum, the bit is made
one.

Resulting Condition Code:

0 -

1 Difference is not zero, with no carry
2 Difference is zero, with carry

3 Difference is not zero, with carry

Program Exceptions:

Access (fetch, operand 2 of SL only)

Programming Note

The use of the one’s complement and the low-order
one instead of the two’s complement of the second
operand results in the recognition of carry when
subtracting zero or the maximum negative number.
A zero difference cannot be obtained without a car-
ry out of the sign position.

Supervisor Call

SvC [RR]

0A 1

0 8 15

The instruction causes a supervisor-call interruption,
with the I field of the instruction providing the inter-
ruption code.

The contents of bit positions 8-15 of the instruc-
tion, with eight high-order zeros appended, are
placed in the supervisor-call interruption code that is
stored in the course of the interruption. The old
PSW is stored at location 32, and a new PSW is ob-
tained from location 96. The instruction is valid in
both the problem and supervisor states.

144 System/370 Principles of Operation

Condition Code:
The code remains unchanged in the old PSW.

Program Exceptions:
None

Test and Set

TS Da(B2) [S]
93 /// B2 D2
0 8 ///1 6 20 31

The leftmost bit (bit position 0) of the byte located

at the second-operand address is used to set the con-
| dition code, and then the entire addressed byte is set

to all ones. Bits 8-15 of the instruction are ignored.

The byte in storage is set to all ones as it is
fetched for the testing of bit position 0. No access by
another CPU is permitted to this location between
the moment of fetching and the moment of storing
all ones.

A serialization function is performed before the
byte is fetched and again after the storing of all
ones. CPU operation is delayed until all previous
accesses by this CPU to main storage have been
completed, as observed by channels and other
CPUs, and then the byte is fetched. No subsequent
instructions or their operands are accessed by this
CPU until the all-ones value has been placed in main
storage, as observed by channels and other CPUs.

Resulting Condition Code:

0 Leftmost bit of byte specified is zero
1 Leftmost bit of byte specified is one
2 -

3 -

Program Exceptions:
Access (fetch and store, operand 2)

Programming Note

TEST AND SET can be used for controlled sharing
of a common storage area by more than one pro-
gram. To accomplish this, bit position O of a byte
must be designated as the control bit. The desired
interlock can be achieved by establishing a program
convention in which a zero in the bit position indi-
cates that the common area is available but a one
means that the area is being used. Each using pro-
gram then must examine this byte by means of
TEST AND SET before making access to the com-
mon area. If the test sets condition code 0O, the area
is available for use; if it sets condition code 1, the

area cannot be used. Because TEST AND SET per-
mits no other CPU access to the test byte between
the moment of fetching (for testing) and the mo-
ment of storing all ones (setting), the possibility is -
eliminated of a second program’s testing the byte
before the first program is able to set it.

It should be noted that TEST AND SET does not
interlock against storage accesses by channels.

Test Under Mask

™ Di(B1).I [S1]

91 I B4 D,

N

0 8 16 20 3

The state-of the first-operand bits selected by a mask
is used to set the condition code.

The byte of immediate data, I, is used as an
eight-bit mask. The bits of the mask are made to
correspond one for one with the bits of the character
in storage specified by the first-operand address.

A mask bit of one indicates that the storage bit is
to be tested. When the mask bit is zero, the storage
bit is ignored. When all storage bits thus selected
are zero, the condition code is made 0. The code is
also made 0 when the mask is all zeros. When the
selected bits are all ones, the code is made 3; other-
wise, the code is made 1. The character in storage is
not changed.

Access exceptions associated with the storage
operand are recognized for one byte, even when the
mask is all zeros.

Resulting Condition Code:

0 Selected bits all zeros; or the mask is all zeros
1 Selected bits mixed zeros and ones

2 -

3 Selected bits all ones

Program Exceptions:
Access (fetch, operand 1)

Translate
TR Di(L,B1),D2(B2) [SS]

DC L By | Dy | B D}:I
0 8 16 20 "’;32 3627

The eight-bit bytes of the first operand are used as
arguments to reference the list designated by the
second-operand address. Each eight-bit function

byte selected from the list replaces the correspond-
ing argument in the first operand.

The L field applies only to the first operand.

The bytes of the first operand are selected one by
one for translation, proceeding left to right. Each
argument byte is added to the initial second-operand
address. The addition is performed following the
rules for address arithmetic, with the argument byte
treated as an eight-bit unsigned integer and extended
with high-order zeros. The sum is used as the ad-
dress of the function byte, which then replaces the
original argument byte.

The operation proceeds until the first-operand
field is exhausted. The lisf is not altered unless an
overlap occurs.

When the operands overlap, the result is obtained
as if each result byte were stored immediately after
the corresponding function byte is fetched.

Condition Code:
The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store, oper-
and 1)

Programming Notes
The instruction TRANSLATE may be used to con-
vert data from one code to another code.

Another purpose for which the instruction may be
used is to rearrange data. This may be accomplished
by placing a pattern in the destination area, by desig-
nating the pattern as the first operand of TRANS-
LATE, and by designating the data that is to be re-
arranged as the second operand. Each byte of the
pattern contains an eight-bit number specifying the
byte destined for this position. Thus, when the in-
struction is executed, the pattern selects the bytes of
the second operand in the desired order.

Because the eight-bit argument byte is added to
the initial second-operand address to obtain the ad-
dress of a function byte, the list may contain 256
bytes. In cases where it is known that not all eight-
bit argument values will occur, it is possible to re-
duce the size of the list.

The fetch and subsequent store accesses to a par-
ticular byte in the first-operand field do not neces-
sarily occur one immediately after the other.

Translate and Test
TRT Dy(L,B1),D2(B2) [SS]

lll' llll
DD L By | Dy | By | Dy '

0 8 16 20 32 36

General Instructions 145

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

The eight-bit bytes of the first operand are used as
arguments to reference the list designated by the
second-operand address.

The L field applies only to the first operand.

Each eight-bit function byte thus selected from
the list is used to determine the continuation of the
operation. When the function byte is a zero, the
operation proceeds by fetching and translating the
next argument byte. When the function byte is
nonzero, the operation is completed by inserting the
related argument address in general register 1 and by
inserting the function byte in general register 2.

The bytes of the first operand are selected one by
one for translation, proceeding from left to right.
The first operand remains unchanged in storage.
Fetching of the function byte from the list is per-
formed as in TRANSLATE. The function byte re-
trieved from the list is inspected for the all-zero
combination.

When the function byte is zero, the operation
proceeds with the next operand byte. When the first-
operand field is exhausted before a nonzero function
byte is encountered, the operation is completed by
setting condition code 0. The contents of general
registers 1 and 2 remain unchanged.

When the function byte is nonzero, the related
argument address is inserted in the low-order 24 bits
of general register 1. This address points to the ar-
gument last translated. The high-order eight bits of
register 1 remain unchanged. The function byte is
inserted in the low-order eight bits of general regis-
ter 2. Bits 0-23 of register 2 remain unchanged.

Condition code 1 is set when one or more argu-
ment bytes remain to be translated. Condition code
2 is set if the last function byte is the only nonzero

byte.

Resulting Condition Code:

0 All function bytes are zero

1 Nonzero function byte before the first operand
field is exhausted

2 The last function byte is the only nonzero byte

3 -

Program Exceptions:
Access (fetch, operands 1 and 2)

Programming Note

The instruction TRANSLATE AND TEST may be
used to scan the first operand for characters with
special meaning. The second operand, or list, is set
up with all-zero function bytes for those characters
to be skipped over and with nonzero function bytes
for the characters to be detected.

146 System/370 Principles of Operation

Unpack
UNPK Diy(L4,B1),D2(12,B2) [SS]

F3 Ly [L2 | By | Dy | By | D
0 8 12 16 20" 32 36 47

The format of the second operand is changed from
packed to zoned, and the result is placed in the first-
operand location.

The digits and sign of the packed operand are
placed unchanged in the first-operand location, using
the zoned format. Zones with coding of 1111 are
supplied for all bytes except the low-order byte,
which receives the sign of the packed operand. The
operand sign and digits are not checked for valid
codes.

The result is obtained as if the fields were pro-
cessed right to left. The second operand is extended
with high-order zero digits before unpacking, if nec-
essary. If the first-operand field is too short to con-
tain all significant digits of the second operand, the
remaining high-order digits are ignored.

When the operands overlap, the result is obtained
as if the operands were processed one byte at a time
and each result byte were stored immediately after
the necessary operand byte is fetched. The entire
rightmost second-operand byte is used in forming
the first result byte. For the remainder of the field,
information for two result bytes is obtained from a
single second-operand byte, and the high-order digit
of the byte remains available and is not refetched.
Thus, two result bytes are stored immediately after
fetching a single operand byte.

Condition Code:
The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; store, operand 1)

Programming Notes

A field that is to be unpacked can be destroyed by
improper overlapping. If it is desired to save storage
space for unpacking by overlapping the operand
fields, the low-order position of the first operand
must be to the right of the low-order position of the
second operand by the number of bytes in the sec-
ond operand minus two. If only one or two bytes are

-to be unpacked, the low-order positions of the two

operands may coincide.

Contents

Data Format .
Zoned Format
Packed Format .
Number Representation
Instructions . .
ADD DECIMAL .
COMPARE DECIMAL .
DIVIDE DECIMAL .
EDIT . .o
EDIT AND MARK .
MULTIPLY DECIMAL . .
SHIFT AND ROUND DECIMAL .
SUBTRACT DECIMAL
ZERO AND ADD

Decimal instructions provide arithmetic, shifting, and
editing operations on decimal data. These instruc-
tions constitute the decimal feature.

Data Format

Decimal operands reside in main storage and may be
in either the zoned or packed format.

Zoned Format

7/

z N z N b4 N [2Z/s N

yi
7 4

In the zoned format, the rightmost four bits of a
byte are called the numeric (N) and normally com-
prise a code representing a decimal digit. The left-
most four bits of a byte are called the zone (Z), ex-
cept for the rightmost byte of the field, where these
bits may be treated either as a zone or as a sign (S)
code.

Packed Format

v -

In the packed format, each byte contains two deci-
mal digits (D), except for the rightmost byte, which
contains a sign to the right of a decimal digit. The
digit and sign codes each comprise four bits.
Arithmetic and shifting are performed with oper-
ands in the packed format and generate results in
the packed format. Decimal numbers in the zoned
format are represented as part of an alphameric char-
acter set, which includes also alphabetic and special

Decimal Instructions

. 147

. 147

. 147

. 148

. 148

. 149

. 149

. 149

. . 1580
T . 182
. 163

. 163

. 154

. 165

characters. The zoned format is usually produced by
source-document input devices, such as a card read-
er, and is usually used for printing decimal data on
an output device.

The instructions MOVE ZONES and MOVE
NUMERICS are provided for operating on data in
the zoned format. Two instructions are provided for
converting data between the zoned and packed for-
mats: the PACK instruction transforms zoned data
into packed data, and UNPACK performs the re-
verse transformation. These four instructions are not
part of the decimal feature and are described in the
chapter ""General Instructions.” The instructions
EDIT and EDIT AND MARK may also be used to
change data from the packed to the zoned format.

Decimal operands occupy fields in main storage
that start on a byte boundary. For all decimal in-
structions other than EDIT and EDIT AND MARK,
the operands are in the packed format and are com-
posed of one to sixteen 8-bit bytes. For the two edit-
ing instructions, operands of up to 256 bytes in
length can be designated.

For the decimal arithmetic instructions, the
lengths of the two operands specified in the instruc-
tion need not be the same. If necessary, the oper-
ands are considered to be extended with zeros to
the left of the high-order digit. Results, however,
never exceed the first-operand field size as specified
in the instruction. When a carry or high-order signif-
icant digits are lost because the first-operand field is
too small, a program interruption for decimal over-
flow occurs, provided the decimal-overflow mask bit
is one. For the two editing instructions, only one
operand (the pattern) has an explicitly specified
length; the other operand (the source) is considered

Decimal Instructions 147

to have as many digits as necessary for the comple-
tion of the operation.

The operand fields in decimal instructions, other
than EDIT and EDIT AND MARK, should not ov-
erlap at all or should have coincident rightmost
bytes. In ZERO AND ADD, the field may also over-
lap in such a manner that the rightmost byte of the
first operand is to the right of the rightmost byte of
the second operand. For these cases of proper over-
lap, the result is obtained as if operands were pro-
cessed right to left. Because the code configurations
for digits and signs are verified during the perform-
ance of the arithmetic, improperly overlapping fields
are recognized as data exceptions. In editing, over-
lapping operands yield unpredictable results.

During the execution of a decimal instruction, all
bytes of the operands are not necessarily accessed
concurrently, and the fetch and store accesses to a
single location do not necessarily occur one immedi-
ately after the other. Furthermore, for decimal in-
structions, intermediate values may be placed in the
result field that may differ from the original operand
and final result values. Thus, an instruction such as
ADD DECIMAL cannot be safely used to update a
shared location in main storage when the possibility
exists that another CPU may also be updating that
location.

Number Representation
Packed decimal numbers are represented as right-
aligned true integers with a plus or minus sign.

The digits 0-9 have the binary encoding 0000-
1001. The codes 1010-1111 are invalid as digit

codes and are interpreted as sign codes, with 1010,
1100, 1110, and 1111 recognized as plus and with
1011 and 1101 recognized as minus. The codes
0000-1001 are invalid as sign codes. A data excep-
tion is recognized when an invalid code is detected.
The operation is terminated, except when the sign
position contains an invalid sign code, in which case
the operation is suppressed.

Although alternate encoding of the sign in an
operand is accepted, the preferred sign codes are
always generated for the results of decimal arithme-
tic and shifting operations (for the first-operand field
of ADD DECIMAL, DIVIDE DECIMAL, MULTI-
PLY DECIMAL, SHIFT AND ROUND DECI-
MAL, SUBTRACT DECIMAL, and ZERO AND
ADD). These codes are plus, 1100, and minus,
1101. They are provided even when the operand
value is otherwise unchanged, such as when adding
zero to a number or when shifting the field by a zero
amount. The editing instruction, as well as UN-
PACK, generates the zone code 1111.

Instructions

The decimal instructions and their mnemonics, for-
mats, and operation codes are listed in the following
table. The table also indicates when the condition
code is set and the exceptions in operand designa-
tions, data, or results that cause a program interrup-
tion.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designation for the IBM System/370 assembly
language are shown with each instruction. For ADD
DECIMAL, for example, AP is the mnemonic and

Name Mnemonic Characteristics Code
ADD DECIMAL AP S8 PD A D DF ST FA
COMPARE DECIMAL CP SS PD A D F9
DIVIDE DECIMAL DP SS PD A SP D DK ST FD
EDIT ED S8 PD A D ST DE
EDIT AND MARK EDMK SS PD A D R ST DF
MULTIPLY DECIMAL MP SSs PD A SP D ST FC
SHIFT AND ROUND DECIMAL SRP SS PD A D DF ST FO
SUBTRACT DECIMAL SP SS PD A D DF ST FB
ZERO AND ADD ZAP SS PD A D DF ST F8
Explanation:
A Acces.; exceptions PD Decimal feature
C Condition code is set R PER general register alteration event
D Data exception SP Specification exception
DF Decimal-overflow exception SS SS instruction format
DK Decimal-divide exception ST PER storage alteration event

Decimal Instruction Summary

148 System/370 Principles of Operation

Di1(Ly, By), D2(12, B2) the operand designation.
Programming Note

The moving and logical comparing instructions may
also be used in decimal calculations.

Add Decimal

AP Dy(L1,B1),D2(L2,By) [SS]
FA L, Ly B, D, B, D;:I
0 8 12 16 20 s 32 36 ‘a7

The secend operand is added to the first operand,
and the sum is placed in the first-operand location.

Addition is algebraic, taking into account the
signs and all digits of both operands. All sign and
digit codes are checked for validity. If necessary,
high-order zeros are supplied for either operand.
When the first-operand field is too short to contain
all significant digits of the sum, a decimal overflow
occurs, and a program interruption is taken, provid-
ed that the decimal-overflow mask bit is one.

Overflow has two possible causes. The first is the
loss of a carry out of the high-order digit position of
the result field. The second cause is an oversized
result, which occurs when the second-operand field
is larger than the first-operand field and significant
result digits are lost. The field sizes alone are not an
indication of overflow.

The first-operand and second-operand fields may
overlap when their low-order bytes coincide; there-
fore, it is possible to add a number to itself.

The sign of the sum is determined by the rules of
algebra. When the operation is completed without an
overflow, a zero sum has a positive sign, but when
high-order digits are lost because of an overflow, a
zero sum may be either positive or negative, as de-
termined by what the sign of the correct sum would
have been.

Resulting Condition Code:
0 Sum is zero

1 Sum is less than zero

2 Sum is greater than zero
3 Overflow

Program Exceptions:

Operation (if the decimal feature is not installed)

Access (fetch, operand 2; fetch and store, oper -
and 1)

Data

Decimal Overflow

Compare Decimal

CP Di(L1,B1),D2(12,B2) [SS]

F9 L, | Ly | By D, | B, D;]

0 8 12 16 20 32 36 47

The first operand is compared with the second, and
the condition code indicates the comparison result.

Comparison is algebraic, taking into account the
sign and all digits of both operands. All sign and
digit codes are checked for validity, and any valid
plus or minus sign is considered equal to any other
valid plus or minus sign, respectively. If the fields are
unequal in length, the shorter is extended with high-
order zeros. A field with a zero value and positive
sign is considered equal to a field with a zero value
but negative sign. Neither operand is changed as a
result of the operation. Overflow cannot occur in
this operation.

The first-operand and second-operand fields may
overlap when their low-order bytes coincide. It is
possible, therefore, to compare a number with itself.

Resulting Condition Code:
0 Operands equal

1 First operand is low

2 First operand is high

3 -

Program Exceptions:

Operation (if the decimal feature is not installed)
Access (fetch, operands 1 and 2)
Data

Divide Decimal

DP Di(L1,B1),D2(L2,By) [SS}
FD Liy | L2 | B | D1 | B Dzj:l
0 8 12 16 2032 36 a7

The dividend (the first operand) is divided by the
divisor (the second operand) and replaced by the
quotient and remainder.

The quotient field is placed leftmost in the first-
operand field. The remainder field is placed right-
most in the first-operand field and has a size equal to
the divisor size. Together, the quotient and remain-
der occupy the entire dividend field; therefore, the
address of the quotient field is the address of the
first operand. The size of the quotient field in eight-
bit bytes is L1-L3, and the length code for this field
is one less (L1-L2-1). When the divisor length code
is larger than seven (15 digits and sign) or larger

Decimal Instructions 149

than or equal to the dividend length code, a specifi-
cation exception is recognized. The operation is sup-
pressed, and a program interruption occurs.

The dividend, divisor, quotient, and remainder are
all signed integers, right-aligned in their fields. The
sign of the quotient is determined by the rules of
algebra from dividend and divisor signs. The sign of
the remainder has the same value as the dividend
sign. These rules are true even when the quotient or
remainder is zero.

Overflow cannot occur. A quotient larger than the
number of digits allowed is recognized as a decimal-
divide exception. The operation is suppressed, and a
program interruption occurs. The divisor and divi-
dend remain unchanged in their storage locations.

The divisor and dividend fields may overlap only
if their low-order bytes coincide.

Condition Code: The code remains unchanged.

Program Exceptions:

Operation (if the decimal feature is not installed)

Access (fetch, operand 2; fetch and store, oper -
and 1)

Specification

Data

Decimal Divide

Programming Notes
The maximum dividend size is 31 digits and sign.
Since the smallest remainder size is one digit and
sign, the maximum quotient size is 29 digits and sign.
The condition for a decimal divide exception can
be determined by a trial subtraction. The leftmost
digit of the divisor field is aligned with the leftmost-
less-one digit of the dividend field. When the divisor,
so aligned, is less than or equal to the dividend, a
divide exception is indicated.
A decimal-divide exception occurs if the dividend
does not have at least one leading zero.

Edit
ED Dy(L,B1),D2(B2) [SS]

DE L B1 D1 Bz DZ
0 8 16 20" 32 36 47

The format of the source (the second operand) is
changed from packed to zoned, and is modified un-
der control of the pattern (the first operand). The
edited result replaces the pattern.

Editing includes sign and punctuation control, and
the suppressing and protecting of leading zeros. It

150 System/370 Principles of Operation

also facilitates programmed blanking of all-zero
fields. Several fields may be edited in one operation,
and numeric information may be combined with
text.

The length field applies to the pattern (the first
operand). The pattern has the zoned format and may
contain any character. The source (the second oper-
and) has the packed format. The leftmost four bits
of a source byte must specify a decimal digit code
(0000-1001); a sign code (1010-1111) is recognized
as a data exception and causes a program interrup-
tion. The rightmost four bits may specify either a
sign or a decimal digit.

The result is obtained as if both operands were
processed left to right one byte at a time. Overlap-
ping pattern and source fields give unpredictable
results.

During the editing process, each character of the
pattern is affected in one of three ways:

1. It is left unchanged.

2. It is replaced by a source digit expanded to
zoned format.

3. It is replaced by the first character in the pat-
tern, called the fill character.

Which of the three actions takes place is deter-
mined by one or more of the following: the type of
the pattern character, the state of the significance
indicator, and whether the source digit examined is
Zero.

Pattern Characters: There are four types of pattern
characters: digit selector, significance starter, field
separator, and message character. Their coding is as
follows:

Name Code
Digit selector 0010 0000
Significance starter 0010 0001
Field separator 0010 0010
Message character Any other

The detection of either a digit selector or a signifi-
cance starter in the pattern causes an examination to
be made of the significance indicator and of a source
digit. As a result, either the expanded source digit or
the fill character, as appropriate, is selected to re-
place the pattern character. Additionally, encounter-
ing a digit selector or a significance starter may
cause the significance indicator to be changed.

The field separator identifies individual fields in a
multiple-field editing operation. It is always replaced
in the result by the fill character, and the significance
indicator is always off after the field separator is
encountered.

Message characters in the pattern are either re-
placed by the fill character or remain unchanged in
the result, depending on the state of the significance
indicator. They may thus be used for padding, punc-
tuation, or text in the significant portion of a field or
for the insertion of sign-dependent symbols.

Fill Character: The fill character is obtained from
the pattern as part of the editing operation. The first
character of the pattern is used as the fill character.
The fill character can have any code and may con-
currently specify a control function. If this character
is a digit selector or significance starter, the indicated
editing action is taken after the code has been as-
signed to the fill character.

Source Digits: Each time a digit selector or signifi-
cance starter is encountered in the pattern, a new
source digit is examined for placement in the pattern
| field. The source digit either is given a zone and
replaces the pattern character or is disregarded.

The source digits are selected one byte at a time,
and a source byte is fetched for inspection only once
during an editing operation. Each source digit is ex-
amined only once for a zero value. The leftmost four
bits of each byte are examined first, and the right-
most four bits, when they represent a decimal-digit
code, remain available for the next pattern character
that calls for a digit examination. When the leftmost
four bits contain an invalid digit code, the operation
is terminated. At the time the left digit of a source
byte is examined, the rightmost four bits are checked
for the existence of a sign code. When a sign code is
encountered in the four rightmost bit positions, these
bits are not treated as a decimal-digit code, and a
new source byte is fetched from storage for the next
pattern character that calls for a source-digit exami-
nation.

When the source digit is stored in the result, its
code is expanded from the packed to the zoned for-
mat by attaching the zone code 1111.

Significance Indicator: The significance indicator,
by its on or off state, indicates the significance or
nonsignificance, respectively, of subsequent source
digits or message characters. Significant source digits
replace their corresponding digit selectors or signifi-
cance starters in the result. Significant message char-
acters remain unchanged in the result.

The significance indicator, by its on or off state,
indicates also the negative or positive value, respec-
tively, of the source and is used as one factor in the
setting of the condition code.

The indicator is set to the off state, if not already
so set, at the start of the editing operation, after a

field separator is encountered, or after a source byte
is examined that has a plus code in the rightmost
four bit positions. Any of the codes 1010, 1100,
1110, and 1111 is considered a plus code.

The indicator is set to the on state, if not already
so set, when a significance starter is encountered
whose source digit is a valid decimal digit, or when a
digit selector is encountered whose source digit is a
nonzero decimal digit, and if in both instances the
source byte does not have a plus code in the right-
most four bit positions.

In all other situations, the indicator is not
changed. A minus sign code has no effect on the
significance indicator.

Result Characters: The field resulting from an edit-
ing operation replaces and is equal in length to the
pattern. It is composed from pattern characters, fill
characters, and zoned source digits.

If the pattern character is a message character and
the significance indicator is on, the message charac-
ter remains unchanged in the result. If the pattern
character is a field separator or if the significance
indicator is off when a message character is encoun-
tered in the pattern, the fill character replaces the
pattern character in the result.

If the digit selector or significance starter is en-
countered in the pattern with the significance indica-
tor off and the source digit zero, the source digit is
considered nonsignificant, and the fill character re-
places the pattern character. If a digit selector or
significance starter is encountered with either the
significance indicator on or with a nonzero decimal
source digit, the source digit is considered signifi-
cant, is zoned, and replaces the pattern character in
the result.

Result Condition: All digits examined are tested for
the code 0000. The sign of the last field edited and
whether all source digits in the field contain zeros
are recorded in the condition code at the completion
of the editing operation.

The condition code is made 0 when the last field
is zero, that is, when all source digits examined since
the last field separator are zeros. When the pattern
has no digit selectors or significance starters, the
source is not examined, and the condition code is
made 0. Similarly, the condition code is made 0
when the last character in the pattern is a field sepa-
rator or when no digit selector or significance starter
is encountered beyond the last field separator.

When the last field edited is nonzero and the sig-
nificance indicator is on, the condition code is made
1 to indicate a result field less than zero.

Decimal Instructions 151

When the last field edited is nonzero and the sig-
nificance indicator is off, the condition code is made
2 to indicate a result field is greater than zero.

Summary: The following table summarizes the func-
tions of the editing operation. The leftmost four
columns list all the significant combinations of the
four conditions that can be encountered in the execu-
tion of an editing operation. The rightmost two
columns list the action taken for each case -- the

type of character placed in the result field and the
new setting of the significance indicator.

Resulting Condition -Céode:
0 Last field is zero
1 Last field is less than zero

2 Last field is greater than zero
3 -

Program Exceptions:

Operation (if the decimal feature is not installed)

Access (fetch, operand 2; fetch and store, oper-
and 1)

Data

Programming Notes

As a rule, the source is shorter than the pattern be-
cause for each source digit a zone and numeric are
inserted in the result.

The total number of digit selectors and signifi-
cance starters in the pattern must equal the number

-of source digits to be edited.

If the fill character is a blank, if no significance
starter appears in the pattern, and if the source is all
zeros, the editing operation blanks the result field.

The resultant condition code indicates whether or
not the last field is all zeros, and, if nonzero, reflects
the state of the significance indicator. The signifi-
cance indicator reflects the sign of the source field
only if the last source byte examined contains a sign
code in the low-order digit position. For multiple-
field editing operations, the condition code reflects
the sign and value only of the field following the last
field separator.

Edit and Mark

EDMK Dy(L,B1),D2(B2) [SS]
DF L B, D,y B, D,
0 8 16 20 "3 36 ‘a7
Results

Conditions State of Significance
Previous State of Source Low-Order Source Result Indicator at End of

Pattern Character Significance Indicator Digit Digit Is a Plus Sign Character Digit Examination
Digit selector off 0 * fill character off
1-9 no source digit on
19 yes source digit off
on 0-9 no source digit on
0-9 yes source digit off
Significance starter off 0 no fill character on
0 yes fill character off
19 no source digit on
19 yes source digit off
on 0-9 no source digit on
09 yes source digit off
Field separator * b b fitl character off
Message character off ** *x fill character off
on ** o message character on

Explanation:

* No effect on result character and new state of significance indicator

** Not applicable because source digit not examined

Summary of EDIT Functions

152 System/370 Principles of Operation

The format of the source (the second operand) is
changed from packed to zoned and is modified un-
der control of the pattern (the first operand).

The address of each first significant result charac-
ter is recorded in general register 1. The edited result
replaces the pattern.

The instruction EDIT AND MARK is identical to
EDIT, except for the additional function of inserting
the address of the result character in bit positions

8-31 of general register 1 whenever the result charac-

ter is a zoned source digit and the significance indi-
cator was off before the examination. The use of
general register 1 is implied. The contents of bit po-
sitions 0-7 of the register are not changed.

Resulting Condition Code:

0 Last field is zero

1 Last field is less than zero

2 Last field is greater than zero
3 -

Program Exceptions:

Operation (if the decimal feature is not installed)

Access (fetch, operand 2; fetch and store, oper -
and 1)

Data

Programming Note

The instruction EDIT AND MARK facilitates the
programming of floating currency-symbol insertion.
The character address inserted in general register 1 is
one more than the address where a floating
currency-sign would be inserted. The instruction
BRANCH ON COUNT (BCTR), with zero in-the
R3 field, may be used to reduce the inserted address
by one.

The character address is not stored when signifi-
cance is forced. To ensure that general register 1
contains a valid address when significance is forced,
it is necessary to place into the register beforehand
the address of the pattern character that immediately
follows the significance starter.

Multiply Decimal

MP Di(L1,B1),D2(L2,B2) [SS]
FC L, | |8 | Dy |8 | Dy
0 8 12 16 20 32 36 a7

The product of the multiplier (the second operand)
and the multiplicand (the first operand) replaces the
multiplicand .

The multiplier size is limited to fifteen digits and
sign and must be less than the multiplicand size.
Length code La, larger than seven, or larger than or

equal to the length code Ly, is recognized as a speci-
fication exception. The operation is suppressed, and
a program interruption occurs.

The multiplicand must have at least as many bytes
of high-order zeros as the multiplier field size, in
bytes; otherwise, a data exception is recognized, the
operation is terminated, and a program interruption
occurs. This definition of the multiplicand field en-
sures that no product overflow can occur. The maxi-
mum product size is 31 digits. At least one high-
order digit of the product field is zero.

All operands and results are treated as signed
integers, right-aligned in their field. The sign of the
product is determined by the rules of algebra from
the multiplier and multiplicand signs, even if one or
both operands are zero.

The multiplier and product fields may overlap
only if their low-order bytes coincide.

Condition Code:
The code remains unchanged.

Program Exceptions:

Operation (if the decimal feature is not installed)

Access (fetch, operand 2; fetch and store, oper -
and 1)

Specification

Data

Shift and Round Decimal

SRP Dy(L1,B1),D2(B2).I3 [SS]
FO L1 l3 B1 D1 82 D2
0 8 12 16 20 32 364

The first operand is shifted in the direction and for
the number of digit positions specified by the
second-operand address, and, when shifting to the
right is specified, is rounded by the rounding factor,
13.

The second-operand address, specified by the By,
and D3 fields, is not used to address data; its low-
order six bits are the shift value, and the remainder
of the address is ignored.

Second -Operand Address :

Shift
Value

0 26 31

The shift value is a six-bit signed binary integer,
indicating the direction and the number of digit posi-
tions to be shifted. Positive shift values specify

Decimal Instructions 153

shifting to the left. Negative shift values, which are
represented in two’s-complement notation, specify
shifting to the right. The following are examples of
the interpretation of shift values:

Shift Valuq Amount and Direction
o11111 31 digits to the left
000001 One digit to the left
000000 No shift

111111 One digit to the right
100000 32 digits to the right

The Ly, By, and Dy fields are interpreted in the
same manner as in the SS format with two length
fields. The result replaces the first operand and is
not stored outside the field specified by the address
and length.

The first operand is considered to be in the
packed decimal format. Only its digit portion is shift-
ed; the sign position does not participate in the shift-
ing. Zeros are supplied for the vacated digit positions.

For right shift, the contents of the I3 field, bit
positions 12-15, are used as a rounding factor. The
first operand is rounded by decimally adding the
rounding factor to the leftmost digit to be shifted out
and by propagating the carry, if any, to the left. The
result of this addition is then shifted right. Both the
first operand and the rounding factor are considered
positive quantities for the purpose of this addition.
No overflow results from the propagation of a carry
since all digits resulting from the addition participate
in the shift. Except for validity checking and the
participation in rounding, the digits shifted out of the
low-order digit position are ignored and are lost.

In the absence of overflow, the sign of a zero
result is made positive. Otherwise, the sign of the
result is the same as the original sign, but the code is
the preferred sign code.

A data exception is recognized when the first
operand does}%ot have valid sign and digit codes or
when the rounding factor does not have a valid digit
code. The validity of first-operand codes is checked
even when no shift is specified, and the validity of
the rounding factor is checked even when no addi-
tion for rounding takes place. The operation is termi-
nated, except when the sign position contains an
invalid sign code, in which case the operation is sup-
pressed.

When one or more significant digits are shifted
out of the high-order digit positions during left shift,
a decimal overflow occurs and results in a program
interruption, provided that the decimal overflow
mask bit is one. Overflow cannot occur on right
shift or when no shifting is specified.

154 System/370 Principles of Operation

Resulting Condition Code:
0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:

Operation (if the decimal feature is not installed)
Access (fetch and store, operand 1)

Data

Decimal overflow

Programming Note

SHIFT AND ROUND can be used for shifting up to
31 digit positions left and up to 32 digit positions
right. This is sufficient to clear all digits of any deci-
mal field even when rounding in right shift is speci-
fied.

Note that when the Bj field is zero, the six-bit
value, bits 26-31 of the second-operand address, is
obtained directly from bits 42-47 of the instruction.

Subtract Decimal

SP Di1(L1,B1).D2(L2,B2) [SS]
FB Ly | Ly | By | D, | B, D%:l
0 8 12 16 20 32 3 ‘@

The second operand is subtracted from the first oper-
and, and the difference is placed in the first-operand
location.

Subtraction is algebraic, taking into account the

signs and all digits of both operands. The execution
of SUBTRACT DECIMAL is identical to that of
ADD DECIMAL, except that the sign of the second
operand, if negative, is treated as positive, and, if
positive, is treated as negative.

The sign of the difference is determined by the
rules of algebra. When the operation is completed
without an overflow, a zero difference has a positive
sign, but when high-order digits are lost because of
an overflow, a zero difference may be either positive
or negative, as determined by what the sign of the
correct difference would have been.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:

Operation (if the decimal feature is not installed)

Access (fetch, operand 2; fetch and store, oper -
and 1)

Data

Decimal Overflow

Programming Note

The operands of SUBTRACT DECIMAL may over-
lap when their low-order bytes coincide, even when
their lengths are unequal. This property may be used
to set to zero an entire field or the low-order part of
a field.

Zero and Add

ZAP Djy(L1,B1),D2(L2,B2) [SS]

F8 t, | L, | By | D, | By D;,:I
7 /’

0 8 12 16 20 32 36 47

The second operand is placed in the first-operand
location.

The operation is equivalent to an addition to zero.
A zero result is positive. When high-order digits are
lost because of overflow, a zero result has the sign of
the second operand.

Only the second operand is checked for valid sign
and digit codes. Extra high-order zeros are supplied
if needed. When the first-operand field is too short
to contain all significant digits of the second oper-
and, a decimal overflow occurs and results in a pro-
gram interruption, provided that the decimal over-
flow mask bit is one.

The first-operand and second-operand fields may
overlap when the rightmost byte of the first-operand
field is coincident with or to the right of the right-
most byte of the second operand. In this case the
result is obtained as if the operands were processed
right to left.

Resulting Condition Code:
0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:

Operation (if the decimal feature is not installed)
Access (fetch, operand 2; store, operand 1)
Data

Decimal Overflow

Decimal Instructions 155

Contents

Data Format . P
Guard Digit
Number Representation
Normalization
Instructions . ..
ADD NORMALIZED
ADD UNNORMALIZED
COMPARE
DIVIDE
HALVE
LOAD ..
LOAD AND TEST .
LOAD COMPLEMENT .
LOAD NEGATIVE .
LOAD POSITIVE
LOAD ROUNDED .
MULTIPLY .
STORE Lo
SUBTRACT NORMALIZED
SUBTRACT UNNORMALIZED

The floating-point instructions are used to perform
calculations on operands with a wide range of mag-
nitude and to yield results scaled to preserve preci-
sion.

A floating-point number consists of a signed ex-
ponent, represented by the characteristic, and a
signed fraction. The quantity expressed by this
number is the product of the fraction and the num-
ber 16 raised to the power of the exponent. The
exponent is expressed in excess-64 binary notation
(see ""Number Representation''); the fraction is ex-
pressed as a hexadecimal number having a radix
point to the left of the high-order digit.

To avoid unnecessary storing and loading opera-
tions for results and operands, four floating-point
registers are provided. The floating-point instruc-
tions provide for the loading, rounding, adding, sub-
tracting, comparing, multiplying, dividing, and stor-
ing, as well as the sign control, of short, long, and
extended operands. Short operands generally provide
faster processing and require less storage than long
or extended operands. On the other hand, long and
extended operands provide greater precision in com-
putation. Operations may be either register to regis-
ter or storage to register.

For addition, subtraction, multiplication, and divi-
sion, instructions are provided that generate normal-
ized results. Normalized results preserve the highest

Floating-Point Instructions

- 1567
- 168
- 159
- 159
- 160
- 160
. 162
. 163
. 163
. 164
. 165
. 165
. 165
. 166
. 166
. 166
. 167
. 168
. 169
. 169

precision in the operation. For addition and subtrac-
tion, instructions are also provided that generate
unnormalized results. Normalized and unnormalized
operands may be used in any floating-point opera-
tion.

The condition code is set as a result of all sign-
control, add, subtract, and compare operations.

The rounding and extended-operand instructions
are part of the extended-precision floating-point
feature. The other floating-point instructions and the
registers are part of the floating-point feature.

Data Format

Floating-point data occupies a fixed-length format,
which may be either a four-byte (short) format, an
eight-byte (long) format, or a 16-byte (extended)
format. The short and long formats may be designat-
ed as operands both in main storage and in the
floating-point registers, whereas the extended for-
mats can be designated only in the floating-point
registers.

The floating-point registers are numbered 0, 2, 4,
and 6. Designation of an odd-numbered register in
the Ry or R field of a floating-point instruction
causes the operation to be suppressed and a program
interruption for specification exception to occur.

Floating-Point Instructions 157

Short Floating-Point Number

"yl
7/

Characteristic

w

6-Digit Fraction

yi
7 /

01 8 31

Long Floating-Point Number

vy
7 /

v

Characteristic 14-Digit Fraction
o A

01 8 63

Extended Floating-Point Number

vy

S| Characteristic High-Order Half of 28-Digit Fraction
’ ° . 63
////////// Low-Order Half of 28-Digit Fraction
/ .
> 2 127

In the short and long formats, the first bit is the
sign bit (S). The subsequent seven bit positions are
occupied by the characteristic. The following field
contains the fraction, which, depending on the for-
mat, consists of six or 14 hexadecimal digits.

Short floating-point numbers occupy only the
leftmost 32 bit positions of a floating-point register.
When a floating-point register is used as the source
of a short floating-point number, the rightmost 32
bit positions of the register are ignored. When a
floating-point register is used as the destination of a
short floating-point number, the rightmost 32 bit
positions of the register remain unchanged.

An extended floating-point number has a 28-digit
fraction and consists of two long floating-point num-
bers in consecutive floating-point registers. Two
pairs of floating-point registers can be used as
sources of extended operands or destinations of ex-
tended results: registers 0, 2 and registers 4, 6. The
designation of any other register pair causes the op-
eration to be suppressed and a program interruption
for a specification exception to occur.

The two long floating-point numbers comprising
an extended floating-point number are called the
high-order and low-order parts. The high-order part
may be any long floating-point number. If it is nor-
malized, the extended number is considered normal-
ized. The characteristic of the high-order part is the
characteristic of the extended number, and the sign
of the high-order part is the sign of the extended
number.

The fraction field of the low-order part contains
the 14 low-order hexadecimal digits of the 28-digit
extended fraction. The sign and characteristic of the
low-order part of an extended operand are ignored,
the value of the number being assumed such as if the

158 System/370 Principles of Operation

sign of the low-order part were the same as that of
the high-order part, and the characteristic of the
low-order part were 14 less than that of the high-
order part. In extended results, the sign of the low-
order part is made the same as that of the high-order
part, and, unless the result is a true zero, the low-
order characteristic is made 14 less than the high-
order characteristic. When the subtraction of 14
causes the low-order characteristic to become less
than zero, it is made 128 larger than its correct val-
ue. Exponent-underflow is indicated only when the
high-order characteristic underflows.

The entire set of floating-point functions is availa-
ble for short and long operands. These instructions
generate a result that has the same format as the
sources, except that in the case of MULTIPLY, a
long product is produced from a short multiplier and
multiplicand. For extended operands, instructions
are provided for normalized addition, subtraction,
and multiplication. Additionally, two multiplication
instructions are provided that generate an extended
product from a long multiplier and multiplicand.

The rounding instructions provide for rounding from
extended to long format and from long to short fqr—
mat.)

Programming Note

A long floating-point number can be extended to the
extended format by appending any long floating-
point number having a zero fraction, including a true
zero. Conversion from the extended to the long for-
mat can be accomplished by truncation or by means
of LOAD ROUNDED.

In the absence of an exponent overflow or expo-
nent underflow, the long floating-point number con-
stituting the low-order part of an extended result
correctly expresses the value of the low-order part of
the extended result when the characteristic of the
high-order part is 14 or higher. This relation is true
also when the result is a true zero. When the high-
order characteristic is less than 14 but the number is
not & true zero, the low-order part, when addressed
as a long floating-point number, does not have the
correct characteristic value.

Guard Digit

Although final results have six fraction digits in the
short format, 14 fraction digits in the long format,
and 28 fraction digits in the extended format, inter-
mediate results in ADD NORMALIZED, SUB-
TRACT NORMALIZED, ADD UNNORMAL-
IZED, SUBTRACT UNNORMALIZED, COM-
PARE, HALVE, and MULTIPLY may have one
additional low-order digit. This low-order digit, the

guard digit, increases the precision of the final re- -
sult.

Number Representation

The fraction of a floating-point number is expressed
in hexadecimal digits. The radix point of the fraction
is assumed to be immediately to the left of the high-
order fraction digit. The fraction is considered to be
multiplied by a power of 16. The characteristic por-
tion, bits 1-7 of the floating-point formats, indicates
this power. The bits within the characteristic field
can represent numbers from O through 127. To ac-
commodate large and small magnitudes, the charac-
teristic is formed by adding 64 to the actual expo-
nent. The range of the exponent is thus -64 through
+63. This technique produces a characteristic in
excess-64 notation.

Both positive and negative quantities have a true
fraction, the sign being indicated by the sign bit. The
number is positive or negative, depending on wheth-
er the sign bit is zero or one, respectively.

The range covered by the magnitude (M) of a
normalized floating-point number is:

In the short format:

1665 < M < (1-166) x 1663
In the long format:

1665 < M < (1-16-14) x 1663
In the extended format:

1665 < M < (1-16-28) x 1663
In all formats, approximately:

54x10 <M < 7.2x 107

A number with a zero characteristic, zero frac-
tion, and plus sign is called a true zero. When an
extended result is made a true zero, both the high-
order and low-order parts are made true zero.

A true zero may arise as the result of an arithme-
tic operation because of the particular magnitude of
the operands. A result is forced to be true zero when
(1) an exponent underflow occurs and the exponent-
underflow mask bit in the PSW is zero, (2) the result
fraction of an addition or subtraction operation is
zero and the significance mask bit in the PSW is
zero, or (3) the operand of HALVE, one or both
operands of MULTIPLY, or the dividend in DI-
VIDE has a zero fraction.

When a program interruption due to exponent
underflow occurs, a true zero fraction is not forced;
instead, the fraction and sign remain correct, and the
characteristic is 128 too large. When a program in-
terruption due to the significance exception occurs,
the fraction remains zero, the sign is positive, and
the characteristic remains correct. The exponent-
overflow and exponent-underflow exceptions do not
cause a program interruption when the result has a

zero fraction. When a divisor has a zero fraction,
division is omitted, and a program interruption for a
floating-point-divide exception occurs. In addition
and subtraction, an operand with a zero fraction or
characteristic participates as a normal number.

The sign of a sum, difference, product, or quo-
tient with zero fraction is positive. The sign of a
zero fraction resulting from other operations is es-
tablished by the rules of algebra from the operand
signs.

Normalization

A quantity can be represented with the greatest pre-
cision by a floating-point number of given fraction
length when that number is normalized. A normal-
ized floating-point number has a nonzero high-order
hexadecimal fraction digit. If one or more high-order
fraction digits are zero, the number is said to be un-
normalized. The process of normalization consists of
shifting the fraction left, one digit at a time, until the
high-order hexadecimal digit is nonzero and reducing
the characteristic by the number of hexadecimal
digits shifted. For extended results, the entire frac-
tion participates in the normalization; therefore, the
low-order part may or may not appear to be a nor-
malized long number, depending on the value of the
fraction. A number with a zero fraction cannot be
normalized, and its characteristic therefore remains
unchanged when normalization is called for.

Normalization usually takes place when the inter-
mediate arithmetic result is changed to the final re-
sult. This function is called postnormalization. In
performing multiplication and division, the operands
are normalized before the arithmetic process. This
function is called prenormalization.

Floating-point operations may be performed with
or without normalization. Most operations are per-
formed only with normalization. Addition and sub-
traction with short or long operands may be speci-
fied either way.

When an operation is performed without normali-
zation, high-order zeros in the result fraction are not
eliminated. The result may or may not be normal-
ized, depending upon the original operands.

In both normalized and unnormalized operations,
the initial operands need not be in normalized form.
Also, intermediate fraction results are shifted right
when an overflow occurs, and the intermediate frac-
tion result is truncated to the final result length after
the shifting, if any.

Programming Note

Since normalization applies to hexadecimal digits,
the three high-order bits of the fraction of a normal-
ized number may be zero.

Floating-Point Instructions 159

Instructions

The floating-point instructions and their mnemonics,
formats, and operation codes follow. The table indi-
cates when the condition code is set and the excep-
tions in operand designations, data, or results that
cause a program interruption.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designation for the IBM System/370 assembly
language are shown with each instruction. For a
register-to-register operation using LOAD (short),
for example, LER is the mnemonic and Ry,R3 the
operand designation.

Mnemonics for the floating-point instructions
have an "R'" as the last letter when the instruction is
in the RR format. For instructions where all oper -
ands are the same length, certain letters are used to
represent operand-format length and normalization,
as follows:

E short normalized

U short unnormalized

D long normalized

W long unnormalized

X extended normalized

Add Normalized

AER Ry Rz
[RR, Short Operands]

3A R, | Ry

0 8 12 15

AE Ry,D2(X2,B2)
[RX, Short Operands]

7A R, Xy B, D,

0 8 12 16 20 31

ADR Rip,R2
[RR, Long Operands]

2A R4 Ry

0 8 12 156

AD Ry,D2(X2,By)
{RX, Long Operands]

6A Ry | X2 | By Dy

160 System/370 Principles of Operation

AXR Ri.R2
[RR, Extended Operands]

36 Ry Ry,

0 8 12 156

The second operand is added to the first operand,
and the normalized sum is placed in the first-
operand location.

Addition of two floating-point numbers consists
in characteristic comparison and fraction addition.
The characteristics of the two operands are com-
pared, and the fraction accompanying the smaller
characteristic is shifted right, with its characteristic
increased by one for each hexadecimal digit of shift
until the two characteristics agree.

When an operand is shifted right during align-
ment, the leftmost hexadecimal digit of the field
shifted out is retained as a guard digit. The operand
that is not shifted is considered to be extended with
a low-order zero. Both operands are considered to
be extended with low-order zeros when no align-
ment shift occurs. The fractions are then added alge-
braically to form an intermediate sum.

The short intermediate-sum fraction consists of
seven hexadecimal digits and a possible carry. The
long intermediate-sum fraction consists of 15 hexa-
decimal digits and a possible carry. The extended
intermediate-sum fraction consists of 29 hexadeci-
mal digits and a possible carry. If a carry is present,
the sum is shifted right one digit position, and the
characteristic is increased by one.

After the addition, the intermediate sum is shifted
left as necessary to form a normalized number, pro-
vided the fraction is not zero. Vacated low-order
digit positions are filled with zeros, and the charac-
teristic is reduced by the number of hexadecimal
digits of shift. The intermediate-sum fraction is sub-
sequently truncated to the proper result-fraction
length.

The sign of the sum is determined by the rules of
algebra, unless all digits of the intermediate-sum
fraction are zero, in which case the sign is made plus.

An exponent-overflow exception is recognized
when a carry from the high-order position of the
intermediate-sum fraction causes the characteristic
of the normalized sum to exceed 127. The operation
is completed by making the characteristic 128 less
than the correct value, and a program interruption
for exponent overflow occurs. The result is normal-
ized, the sign and fraction remain correct, and, for
AXR, the low-order characteristic remains correct.

An exponent-underflow exception exists when the
characteristic of the normalized sum is less than zero
and the fraction is not zero. If the exponent-

Name Mnemonic Characteristics Code
ADD NORMALIZED (extended) AXR RR C XP SP V) E LS 36
ADD NORMALIZED (long) ADR RR C FpP SP U E LS 2A
ADD NORMALIZED (iong) AD RX C FP A SP V] E LS 6A
ADD NORMALIZED (short) AER RR C FP SP V] E LS 3A
ADD NORMALIZED (short) AE RX C FP A SP U E LS 7A
ADD UNNORMALIZED (long) AWR RR C FP SP E LS 2E
ADD UNNORMALIZED (long) AW RX € FP A SP E LS 6E
ADD UNNORMALIZED (short) AUR RR C FP SP E LS 3E
ADD UNNORMALIZED (short) AU RX C FP A SP E LS 7E
COMPARE (long) CDR RR C FP SP 29
COMPARE (long) CcD RX C FP A SP 69
COMPARE (short) CER RR C FP SP 39
COMPARE (short) CE RX C FP A sP 79
DIVIDE (long) DDR RR FP SP V) E FK 2D
DIVIDE (tong) DD RX FP A SP V] E FK 6D
DIVIDE (short) DER RR FP SP V] E FK 3D
DIVIDE (short) DE RX FP A SP V] E FK 7D
HALVE (long) HDR RR FP SP U 24
HALVE {short) HER RR FP SP V] 34
LOAD (long) LDR RR FP SP 28
LOAD (long) LD RX FP A SP 68
LOAD (short) LER RR FP SP 38
LOAD (short) LE RX FP A SP 78
LOAD AND TEST (long) LTDR RR C FP SP 22
LOAD AND TEST (short) LTER RR C FP SP 32
LOAD COMPLEMENT (long) LCDR RR C FP SP 23
LOAD COMPLEMENT (short) LCER RR C FP sP 33
LOAD NEGATIVE (long) LNDR RR C FP SP 21
LOAD NEGATIVE (short) LNER RR C FP SP 31
LOAD POSITIVE (long) LPDR RR C FP sP 20
LOAD POSITIVE (short) LPER RR C FP SP 30
LOAD ROUNDED (extended to long) LRDR RR XP sP E 25
LOAD ROUNDED (long to short) LRER RR XpP SP E 35
MULTIPLY (extended) MXR RR XP SP 8] E 26
MULTIPLY (long) MDR RR FP SP U E 2C
MULTIPLY (long) MD RX FP A SP U E 6C
MULTIPLY (long to extended) MXDR RR XpP SP U E 27
MULTIPLY (long to extended) MXD RX XP A SP U E 67
MULTIPLY (short to long) MER RR FP SP U E 3C
MULTIPLY (short to long) ME RX FP SP U E 7C
STORE (long) STD RX FP A SP ST 60
STORE (short) STE RX FP A SP ST 70
SUBTRACT NORMALIZED (extended) SXR RR C XP SP u E LS 37
SUBTRACT NORMALIZED (long) SDR RR C FP SP U E LS 28
SUBTRACT NORMALIZED (long) sD RX C FP A SP [V} E LS 6B
SUBTRACT NORMALIZED (short) SER RR C FP SP U E LS 38
SUBTRACT NORMALIZED (short) SE RX C FP A SP V] E LS 78
SUBTRACT UNNORMALIZED (long) SWR RR C FP SP E LS 2F
SUBTRACT UNNORMALIZED (iong) SW RX C FpP A SP E LS 6F
SUBTRACT UNNORMALIZED (short) SUR RR C FP SP E LS 3F
SUBTRACT UNNORMALIZED (short) suU RX C FP A SP E LS 7F
Explanation: ;
A Access exceptions RR RR instruction format
c Condition code is set RX RX instruction format §
E Exponent-overflow exception SP Specification exception);
FK Floating-point divide exception ST PER storage alteration’event
FP Fioating-point feature V] Exponent underflow exception
LS Significance exception XP Extended-precision floating-point feature
Floating-Point-Instruction Summary

Floating-Point Instructions

161

underflow mask bit is one, the operation is complet-
ed by making the characteristic 128 larger than the
correct value. The result is normalized, and the sign
and fraction remain correct. A program interruption
for exponent underflow then takes place. When ex-
ponent underflow occurs and the exponent-
underflow mask bit is zero, a program interruption
does not take place; instead, the operation is com-
pleted by making the result a true zero. For AXR,
exponent underflow is not recognized when the low-
order characteristic is less than zero, but the high-
order characteristic is zero or above.

A significance exception exists when the
intermediate-sum fraction, including the guard digit,
is zero. If the significance mask bit is one, the
intermediate-sum characteristic remains unchanged
and becomes the characteristic of the result. No nor-
malization occurs, and a program interruption for
significance takes place. If the significance mask bit
is zero, the program interruption does not occur;
instead, the result is made a true zero.

The Ry field for AER, AE, ADR, and AD, and
the R field for AER and ADR must designate regis-
ter 0, 2, 4, or 6. The Ry and R fields for AXR must
designate register O or 4. Otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:

Operation (if the floating-point feature is not
installed, or, for AXR, if the extended-
precision floating-point feature is not installed)

Access (fetch, operand 2 of AE and AD only)

Specification

Exponent Overflow

Exponent Underflow

Significance

Programming Note
Interchanging the two operands in a floating-point
addition does not affect the value of the sum.

162 System/370 Principles of Operation

Add Unnormalized

AUR Ri,R;
[RR, Short Operands]
3E R 1 R 2
0 8 12 15

AU Ry,D2(X3,B2)
[RX, Short Operands]

7E R, X, B, D,
0 8 12 16 20 31
AWR Ri,R2
[RR, Long Operands]
2E Ry | R,
0 8 12 15

AW R1,D2(X2,B2)
[RX, Long Operands]

6E R, X2 B, D2

0 8 12 16 20 31

The second operand is added to the first operand,
and the unnormalized sum is placed in the first-
operand location.

The execution of ADD UNNORMALIZED is
identical to that of ADD NORMALIZED, except
that, after the addition, the intermediate-sum frac-
tion is truncated to the proper result-fraction length
without performing normalization. Leading zeros are
not eliminated in the result fraction, exponent under-
flow cannot occur, and the guard digit does not par-
ticipate in the recognition of significance exception.
A significance exception is recognized when the
intermediate-sum fraction, not including the guard
digit, is zero.

The Ry and R fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is recog-
nized.

Resulting Condition Code:
0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:
Operation (if the floating-point feature is not
installed)
Access (fetch, operand 2 of AU and AW only)
Specification
Exponent Overflow
Significance

Compare

CER Ry,Ry
[RR, Short Operands]

39 R, Ry

0 8 12 15

CE Ri1,D2(X2,B2)
[RX, Short Operands]

79 R1 X2 BZ D2
0 8 12 16 20 31
CDR Rip,Ry
[RR, Long Operands]
29 Ry | Rz
0 8 12 15

CD Ry1,D2(X2,B2)
[RX, Long Operands]

69 Ry | X3 | B2 D,

0 8 12 16 20 31

The first operand is compared with the second op-
erand, and the condition code is set to indicate the
result.

Comparison is algebraic, taking into account the
sign, fraction, and exponent of each number. An
equality is established by following the rules for nor-
malized floating-point subtraction. When the inter-
mediate sum, including the guard digit, is zero, the
operands are equal. An exponent inequality is not
decisive for magnitude determination since the frac-
tions may have different numbers of leading zeros.
Neither operand is changed as a result of the opera-
tion.

An exponent-overflow, exponent-underflow, or
significance exception cannot occur.

The Ry and R fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is recog-
nized.

Resulting Condition Code:
0 Operands are equal

1 First operand is low

2 First operand is high

3 -

Program Exceptions:
Operation (if the floating-point feature is not
installed)
Access (fetch, operand 2 of CE and CD only)
Specification

Programming Note

Numbers with zero fractions compare equal even
when they differ in sign or characteristic.

Divide

DER Ri,R2
[RR, Short Operands]

3D Ry | Ry

0 8 12 15

DE Ry,D2(X2,B2)
[RX, Short Operands]

7D Ri | X2 | B2 Dy
0 8 12 16 20 31
DDR Rig,Ry
[RR, Long Operands]
2D Ry | Rz
0 8 12 15

DD R1,D2(X2,B2)
[RX, Long Operands]

6D Ry | X2 | By D,

0 8 12 16 20 31

The first operand (the dividend) is divided by the
second operand (the divisor) and replaced by the
normalized quotient. No remainder is preserved.

Floating-point division consists in characteristic
subtraction and fraction division. The operands are
prenormalized, and the difference between the divi-
dend and divisor characteristics of the normalized
operands, plus 64, is used as the characteristic of the
intermediate quotient.

All dividend and divisor fraction digits participate
in forming the fraction of the quotient. Postnormal-

Floating-Point Instructions 163

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

izing the intermediate quotient is never necessary,
but a right-shift of one digit position may be called
for. The intermediate-quotient characteristic is ad-
justed for the shift. The intermediate-quotient frac-
tion is subsequently truncated to the proper result-
fraction length.

The sign of the quotient is determined by the
rules of algebra, unless the quotient is made a true
zero, in which case the sign is made plus.

An exponent-overflow exception is recognized
when the final-quotient characteristic exceeds 127
and the fraction is not zero. The operation is com-
pleted, and a program interruption occurs. The result
is normalized, the sign and fraction remain correct,
and the characteristic is 128 less than the correct
value.

An exponent-underflow exception exists when the
characteristic of the normalized quotient is less than
zero and the fraction is not zero. If the exponent-
underflow mask bit is one, a program interruption
occurs. The result is normalized, its sign and fraction
remain correct, and the characteristic is made 128
larger than the correct value. If the exponent under-
flow mask bit is zero, a program interruption does
not take place; instead, the operation is completed
by making the quotient a true zero.

Exponent underflow is not signaled when an op-
erand characteristic becomes less than zero during
prenormalization or the intermediate-quotient char-
acteristic is less than zero, but the final quotient can
be expressed without encountering exponent under-
flow.

A floating-point divide exception is recognized
when the divisor fracticn is zero. The operation is
suppressed, and a program interruption for floating-
point divide occurs.

When the dividend fraction is zero, the quotient is
made a true zero, and a possible exponent overflow
or exponent underflow is not recognized. A division
of zero by zero, however, causes the operation to be
suppressed and an interruption for floating-point
divide to occur.

The Ry and R fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is recog-
nized.

Condition Code:
The code remains unchanged.

Program Exceptions:
Operation (if the floating-point feature is not
installed)
Access (fetch, operand 2 of DD and DE only)
Specification
Exponent Overflow

164 System/370 Principles of Operation

Exponent Underflow
Floating-Point Divide

Halve
HER Ri,R;
[RR, Short Operands]
34 R, | Ry
0 8 12 15
HDR Rg,Ry
[RR, Long Operands}
24 R, | Ry
0 8 12 15

The second operand is divided by 2, and the normal-
ized quotient is placed in the first-operand location.

The fraction of the second operand is shifted right
one bit position, placing the contents of the low-
order bit position into the high-order bit position of
the guard digit and introducing a zero into the high-
order bit position of the fraction. The intermediate
result is subsequently normalized, and the normal-
ized quotient is placed in the first-operand location.
The guard digit participates in the normalization.

The sign of the quotient is the same as that of the
second operand, unless the quotient is made a true
zero, in which case the sign is made plus.

An exponent-underflow exception exists when the
characteristic of the normalized quotient is less than
zero and the fraction is not zero. If the exponent-
underflow mask bit is one, a program interruption
occurs. The result is normalized, its sign and fraction
remain correct, and the characteristic is made 128
larger than the correct value. If the exponent under-
flow mask bit is zero, program interruption does not
take place; instead, the operation is completed by
making the quotient a true zero.

When the fraction of the second operand is zero,
the result is made a true zero, and no exceptions are
recognized.

The Ry and R fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is recog-
nized.

Condition Code:
The code remains unchanged.

Program Exceptions:

Operation (if the floating-point feature is not
installed)

Specification

Exponent Underflow

Programming Notes

With short and long operands, the halve operation is
identical to a divide operation with the number 2 as
divisor. Similarly, the result of HDR is identical to
that of MD or MDR with one-half as a multiplier.
No multiply operation corresponds to HER, since no
multiply operation produces short results.

The result of HALVE is replaced by a true zero
only when the second-operand fraction is zero, or
when exponent underflow occurs with the exponent-
underflow mask set to zero. When the fraction of the
second operand is zero, except for the low-order bit
position, the low-order one is shifted into the guard
digit position and participates in the postnormaliza-
tion.

Load

LER R1,R2
[RR, Short Operands]

38 Ry | Ry

0 8 12 15

LE Ry,D2(X2,B2)
[RX, Short Operands]

78 Ry | X, | B, D,

0 8 12 16 20 31

LDR RiR2
[RR, Long Operands]

28 Ry R,

0 8 12 15

LD Ry,D2(X2,B2)
[RX, Long Operands]

68 Ry | Xa By D,

0 8 12 16 20 31

The second operand is placed unchanged in the first-
operand location.

The Ry and Ry fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is recog-
nized.

Condition Code:
The code remains unchanged.

Program Exceptions:

Operation (if the floating-point feature is not
installed)

Access (fetch, operand 2 of LE and LD only)

Specification

Load and Test

LTER Ry,Ry
[RR, Short Operands}

32 Ry R,

0 8 12 15

LTDR R 1Ry
[RR, Long Operands]

22 Ry | Ry

0 8 12 15

The second operand is placed unchanged in the first-
operand location, and its sign and magnitude are
tested to determine the setting of the condition code.

The Ry and R fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is recog-
nized.

Resulting Condition Code:
0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:

Operation (if the floating-point feature is not
installed)
Specification

Programming Note

When the same register is specified as the first-
operand and second-operand location, the operation
is equivalent to a test without data movement.

Load Complement

LCER R 1,R2
[RR, Short Operands]

33 R, R,

Floating-Point Instructions 165

LCDR Ri,R2
[RR, Long Operands]

23 R4 Ra

0 8 12 156

The second operand is placed in the first-operand
location with the sign changed to the opposite value.

The sign bit is inverted, even if the fraction is
zero. The characteristic and fraction are not
changed.

The Ry and R fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is recog-
nized.

Resulting Condition Code:
0 Result fraction is zero
1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:

Operation (if the floating-point feature is not
installed)

Specification
Load Negative

LNER R1,R3
[RR, Short Operands]

31 Ry | Ry
0 8 12 15
LNDR Rt,Ry
[RR, Long Operands]
21 Ry Ry
0 8 12 15

The second operand is placed in the first-operand
location with the sign made minus.

The sign bit is made one, even if the fraction is
zero. The characteristic and fraction are not
changed.

The Ry and Ry fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is recog-
nized.

166 System/370 Principles of Operation

Resulting Condition Code:
0 Result fraction is zero

1 Result is less than zero
2 .

3 .

Program Exceptions:

Operation (if the floating-point feature is not
installed)
Specification

Load Positive

LPER R,Ry
[RR, Short Operands]

30 Ry | Rz

0 8 12 156

LPDR Ri,R;
[RR, Long Operands]

20 Ri | Ry

0 8 12 156

The second operand is placed in the first-operand
location with the sign made plus.

The sign bit is made zero. The characteristic and
fraction are not changed.

The Ry and R fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is recog-
nized.

Resulting Condition Code:
0 Result fraction is zero

1 -

2 Result is greater than zero
3 -

Program Excepti)om:

Operation (if the floating-point feature is not
installed)

Specification
Load Rounded

LRER Ry,Ry
[RR, Long Operand 2, Short Operand 1]

35 Ry | R
0 8 12 15

LRDR Ry,Rz
[RR, Extended Operand 2, Long Operand 1]

25 R4 Ry

0 8 12 15

The second operand is rounded to the next smaller
format, and the result is placed in the first-operand
location.

Rounding consists in adding a one in bit position
32 or 72 of the long or extended second operand,
respectively, and propagating the carry, if any, to the
left. For both cases, the sign of the fraction is ig-
nored, and addition is performed as if the fractions
were positive.

If rounding causes a carry out of the high-order
digit position of the fraction, the fraction is shifted
right one digit position, and the characteristic is in-
creased by one.

The sign of the result is the same as the sign of
the second operand. No normalization takes place.

An exponent-overflow exception is recognized
when shifting the fraction right causes the character-
istic to exceed 127. The operation is completed by
loading a number whose characteristic is 128 less
than the correct value, and a program interruption
for exponent overflow occurs. The result is normal-
ized, and the sign and fraction remain correct.

Exponent-underflow and significance exceptions
cannot occur.

The Rj field must designate register 0, 2, 4, or 6;
the R field of LRER must designate register 0, 2, 4,
or 6; and the R field of LRDR must designate reg-
ister O or 4. Otherwise, a specification exception is
recognized.

Condition Code:
The code remains unchanged.

Program Exceptions:

Operation (if the extended-precision floating-
point feature is not installed)

Specification

Exponent Overflow

Multiply

MER R1,R2
[RR, Short Muitiplier and Multiplicand,
Long Product]

3C R, R,

0 8 12 15

ME R31,D2(X2,B2)
[RX, Short Multiplier and Multiplicand,
Long Product]

7C Ry | X3 B, D,

0 8 12 16 20 31

MDR Ri,R2
[RR, Long Operands]

2C R, Ra

0 8 12 15

MD Ry,D2(X2,B2)
[RX, Long Operands]

6C Ry | X | By D,

0 8 12 16 20 31

MXDR R1,R2
[RR, Long Multiplier and Multiplicand,
Extended Product]

27 R, Rz

0 8§ 12 15

MXD Ry,D2(X2,B2)
[RX, Long Multiplier and Multiplicand,
Extended Product]

67 Ry | X2 | By D,

0 8 12 16 20 31

MXR Ryg,Rp
[RR, Extended Operands]

26 Ry | R

0 8 12 15

The normalized product of the second operand (the
multiplier) and the first operand (the multiplicand) is
placed in the first-operand location.

Floating-Point Instructions 167

Multiplication of two floating-point numbers con-
sists in exponent addition and fraction multiplica-
tion. The operands are prenormalized, and the sum
of the characteristics of the normalized operands,
less 64, is used as the characteristic of the intermedi-
ate product.

The product of the fractions is developed such
that the result has the exact fraction product truncat-
ed to the proper result-fraction length. When the
result is normalized without requiring any postnor-
malization, the intermediate-product fraction is trun-
cated to the result-fraction length, and the
intermediate-product characteristic becomes the
final product characteristic. When the intermediate-
product fraction has one leading zero digit, it is shift-
ed left one digit position, bringing the contents of
the guard-digit position into the low-order position
of the result fraction, and the intermediate-product
characteristic is reduced by one. The intermediate-
product fraction is subsequently truncated to the
result-fraction length.

For MER and ME, the multiplier and multipli-
cand have six-digit fractions, and the product frac-
tion has the full 14 digits of the long format, with the
two low-order fraction digits always zero. For MDR
and MD, the multiplier and multiplicand fractions
have 14 digits, and the result product fraction is
truncated to 14 digits. For MXDR and MXD, the
multiplier and multiplicand fractions have 14 digits,
with the multiplicand occupying the high-order part
of the first operand; the result product fraction con-
tains 28 digits and is an exact product of the operand
fractions. For MXR, the multiplier and multiplicand
fractions have 28 digits, and the result product frac-
tion is truncated to 28 digits.

The sign of the product is determined by the rules
of algebra, unless all digits of the product fraction
are zero, in which case the sign is made plus.

An exponent-overflow exception is recognized
when the characteristic of the normalized product
exceeds 127 and the fraction of the product is not
zero. The operation is completed by making the
characteristic 128 less than the correct value. If, for
extended results, the low-order characteristic also
exceeds 127, it, too, is decreased by 128. The result
is normalized, and the sign and fraction remain cor-
rect. A program interruption for exponent overflow
then occurs.

Exponent overflow is not recognized if the
intermediate-product characteristic exceeds 127 but
is brought within range by normalization.

An exponent-underflow exception exists when the
characteristic of the normalized product is less than
zero and the fraction of the product is not zero. If
the exponent-underflow mask bit is one, the opera-

168 System/370 Principles of Operation

tion is completed by making the characteristic 128
larger than the correct value, and a program inter-
ruption for exponent underflow occurs. The result is
normalized, and the sign and fraction remain correct.
If the exponent-underflow mask bit is zero, program
interruption does not take place; instead, the opera-
tion is completed by making the product a true zero.
For extended results, exponent underflow is not
recognized when the low-order characteristic is less
than zero but the high-order characteristic is zero or
above.

Exponent underflow is not recognized when the
characteristic of an operand becomes less than zero
during prenormalization, but the characteristic of the
normalized product is within range.

When either or both operand fractions are zero,
the result is made a true zero, and no exceptions are
recognized.

The Ry field for MER, ME, MDR, and MD, and
the Rj field for MER, MDR, and MXDR must des-
ignate register 0, 2, 4, or 6. The Ry field for MXDR,
MXD, and MXR, and the R field for MXR must
designate register 0 or 4. Otherwise, a specification
exception is recognized.

Condition Code:
The code remains unchanged.

Program Exceptions:

Operation (if the floating-point feature is not
installed, or, for MXDR, MXD, and MXR, if
the extended-precision floating-point feature is
not installed)

Access (fetch, operand 2 of ME, MD, and MXD
only)

Specification

Exponent Overflow

Exponent Underflow

Programming Note

Interchanging the two operands in a floating-point
multiplication does not affect the value of the prod-
uct.

Store

STE Ry,D2(X2,B2)
[RX, Short Operands]

70 Ry | X2 | By D2

0 8 12 16 20 31

STD R1,D2(X2,B2)
[RX, Long Operands]

60 Ry X2 | By D,

0 8 12 16 20 31

The first operand is placed unchanged at the second-
operand location.

The Ry field must designate register 0, 2, 4, or 6;
otherwise, a specification exception is recognized.

Condition Code:
The code remains unchanged.

Program Exceptions:

Operation (if the floating-point feature is not
installed)

Access (store, operand 2)

Specification

Subtract Normalized

SER R1,R»
[RR, Short Operands]

3B Ri | Ry

0 8 12 156

SE Ry,D2(X2,B2)
[RX, Short Operands]

78 Ry Xy By D,

0 8 12 16 20 31

SDR Ri,R2
[RR, Long Operands]

28 Ry. R2

0 8 12 15

SD R1,D2(X3,B2)
[RX, Long Operands]

6B R1 Xy B, Dy

SXR Rip,R2

[RR, Extended Operands|
37 Ri | Ry

0 8 12 15

The second operand is subtracted from the first oper-
and, and the normalized difference is placed in the
first-operand location.

The execution of SUBTRACT NORMALIZED is
identical to that of ADD NORMALIZED, except
that the second operand participates in the operation
with its sign bit inverted.

The Ry field of SER, SE, SDR, and SD, and the
R, field of SER and SDR must designate register O,
2,4, or 6. The Ry and Ry fields of SXR must desig-
nate register 0 or 4. Otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:
0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:

Operation (if the floating-point feature is not
installed, or, for SXR, if the extended-precision
floating-point feature is not installed)

Access (fetch, operand 2 of SE and SD only)

Specification

Exponent Overflow

Exponent Underflow

Significance

Subtract Unnormalized

SUR R,R2
[RR, Short Operands]|
3F Ry | Ra
0 8 12 15

SU Ry,D2(X2,B2)
[RX, Short Operands|

7F Ri | X5 | By D,

0 8 12 16 20 31

Floating-Point Instructions 169

SWR Ry,Rp
[RR, Long Operands]

2F Ry Ra

0 8 12 156

SW Ry,D2(X2,B2)
[RX, Long Operands]

6F Ry | X2 | By D,

0 8 12 16 20 31

The second operand is subtracted from the first oper-
and, and the unnormalized difference is placed in
the first-operand location.

The execution of SUBTRACT UNNORMAL-
IZED is identical to that of ADD UNNORMAL-

170 System/370 Principles of Operation

IZED, except that the second operand participates in
the operation with its sign bit inverted.

The Ry and R fields must designate register 0, 2,
4, or 6; otherwise, a specification exception is recog-
nized.

Resulting Condition Code:
0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:

Operation (if the floating-point feature is not
installed)

Access (fetch, operand 2 of SU and SW only)

Specification

Significance

Machine-Check Handling

Contents

Machine-Check Detection A
Recovery Mechanisms . 172
Redundancy Correction 172
CPU Retry . 172
Unit Deletion . 172
Handling of Machine Checks . 172
Handling of Invalid CBC in Storage . 172
Programmed Validation of Storage . . 173
Handling of Invalid CBC in Keys in Storage . . 173
Handling of Invalid CBC in Registers . . 173
Validation of Registers . . 173
Check-Stop State . . 175
Machine-Check lnterruptnon Condmons . . 175
Repressible Conditions . . 175
Exigent Conditions . . 175
Machine-Check Interruption . 175
Interruption Action . . 175
Point of Interruption . 176
Machine-Check Logout . . e Y X 4
Machine-Check Extended Interrupnon Informatnon e v 2
Machine-Check Interruption Code. . 178
Subclass . . 178

Time of Interruptlon Occurrence . . 179
Storage Error Type . T ic]
Machine-Check Interruption Code Valudlty Blts180
Machine-Check Extended Logout Length . 181
Machine-Check Control Registers . . 181
Control Register 14 . . 181
Check-Stop Control . 181
Logout Controls . . 181
Machine-Check Subclass Masks . 182
Control Register 15 . . 182
Summary of Machine-Check Maskmg . 183

The System/370 machine-check handling mecha-
nism provides extensive machine-malfunction detec-
tion to ensure the integrity of system operation, auto-
matic recovery from some malfunctions, and report-
ing by means of a machine-check interruption to
assist in maintenance and repair and in program
damage-assessment and recovery.

Machine-Check Detection

Machine-check detection mechanisms may take
many forms, especially in control functions for arith-
metic and logical processing, addressing, sequencing,
and execution. For program-addressable informa-
tion, detection is normally accomplished by encoding
redundancy into the information in such a manner
that most failures in the retention or transmission of
the information will result in an invalid code. The
encoding normally takes the form of one or more
redundancy bits appended to a group of information
bits. These redundancy bits are referred to as "check

bits." The group of data bits and the associated
check bits are called the "checking block."

The inclusion of a single check bit in the checking
block allows the detection of any single-bit failure
within the checking block. In this arrangement, the
checking bit is sometimes referred to as a "parity
bit." In other arrangements, a group of check bits is
included, increasing the checking power and, in some
cases, providing sufficient redundancy to permit
both detection and correction.

For checking purposes, the entire content of a
checking block, including the redundancy, is called a
"checking block code' (CBC). When a CBC com-
pletely meets the checking requirements (that is, no
failure is detected), it is said to be valid. When both
detection and correction are provided and a CBC is
not valid but satisfies the checking requirements for
correction (the failure is correctable), it is said to be
near-valid. When a CBC does not satisfy the check-
ing requirements (the failure is uncorrectable), it is
said to be invalid.

Machine-Check Handling 171

Recovery Mechanisms

Three mechanisms may be used to provide recovery
from machine-detected malfunctions: redundancy
correction, retry, and unit deletion.

Redundancy Correction

When sufficient redundancy is included in circuitry,
or in a checking block, failures can be corrected. For
example, circuitry can be triplicated, with a voting
circuit to take two out of three, thus correcting a
single failure. An arrangement for redundancy cor-
rection of failures of one order and for detection of
failures of a higher order is called error checking and
correction (ECC). Normally, ECC allows detection
of double-bit failures and correction of single-bit
failures.

CPU Retry

In models with CPU-retry capability, information
about the state of the machine is saved periodically.
The point in the processing to which this saving of
information pertains is referred to as a ""hardware
checkpoint." When a malfunction is detected, re-
covery is attempted by returning the machine state
to that existing at the latest hardware checkpoint and
proceeding from that point. The interval between
checkpoints is model-dependent. In some cases, sev-
eral checkpoints are established within a single
instruction; in others, checkpoints are established
only at the beginning of instructions, or even less
frequently.

Unit Deletion

In some models, malfunctions in certain transparent
units of the system can be circumvented by discon-
tinuing the use of the unit. Examples of cases where
transparent-unit deletion may be used include the
disabling of all or a portion of a cache or of a
translation-lookaside buffer (TLB).

Handling of Machine Checks

A machine check can be caused only by a machine
malfunction and never by data or instructions. This
is ensured during the power-on sequence by initializ-
ing the machine controls to a valid state and by plac-
ing valid CBC in the programmable registers, in the
keys in storage, and, if it is volatile, also in main
storage.

Specification of an unavailable system compo-
nent, such as a storage unit, channel, or I/O device,
does not cause a machine-check indication. Instead,
such a condition is indicated by the appropriate pro-
gram or /O interruption or code setting.

172 System/370 Principles of Operation

A machine-check is indicated whenever the result
of an operation could be affected by information
with invalid CBC, or when any other malfunction
makes it impossible to establish reliably that an oper-
ation can be, or has been, performed correctly.

When information with invalid CBC is fetched
but is not used, the condition may or may not be
indicated. In order to guarantee system integrity,
however, CBC is preserved as invalid unless the
contents of the entire checking block are replaced in .
the operation.

Depending on the model, and on the type of mal-
function, a malfunction detected during an I/O op-
eration may cause a machine-check interruption
condition, may result in an I/O-error condition, or
both. I/O-error conditions are indicated by an I/0
interruption or by the appropriate condition code
setting during the execution of an I/O instruction.
When a CCW or data with invalid CBC is fetched
from storage but is not used in an I/O operation, it
depends on the model whether the condition is re-
ported.

When a machine malfunction is detected, the ac-
tion taken depends upon the nature of the malfunc-
tion and the situation in which it occurs. In some
cases an automatic hardware recovery mechanism
may be invoked. When the recovery attempt is un-
successful, or if a recovery mechanism does not ex-
ist, a damage condition is said to exist. Machine-
check conditions may be reported as machine-check
interruptions or I/O interruptions, or they may cause
the CPU to enter the check-stop state.

Handling of Invalid CBC in Storage
When a checking block contains an invalid CBC and
an attempt is made to store into the block without
replacing the entire block, the data in the block
(including the check bits) is regenerated by the stor-
age unit, and no new data is entered into the block.
Normally the contents of the block can only be
changed by presenting an entire block of data to be
entered on one storage cycle.

The size of the main-storage checking block de-
pends on the model. When the main-storage check-
ing block consists of multiple bytes and contains an
invalid CBC, special procedures are necessary to
restore or place new information into the block. The
restoring of a valid CBC in a storage location is
called storage validation. Validation of storage is
provided as a program function and is also provided
with the system clear-manual operation.

A checking block with invalid CBC is never vali-
dated under programming control unless the entire
contents of the checking block are replaced. Even
when an instruction, or an I/O input operation,

specifies that the entire contents of a checking block
are to be replaced, validation may or may not occur,
depending on the operation and the model. Storage
validation during the IPL input operations follows
the same rules as for normal input operations.

Programmed Validation of Storage

Execution of the instruction MOVE (MVC) or
MOVE LONG (MVCL) validates the main-storage
area containing the first operand when the following
conditions are satisfied:

« The first-operand field and second-operand
field participating in the operation do not over-
lap.

« The first-operand field starts on a boundary of a
checking block and is an integral number of
checking blocks in length.

« For MVCL, the second-operand field, if nonze-
ro in length, starts on a boundary of a checking
block and, if it is shorter than the first-operand
field, is an integral number of checking blocks
in length.

An interruption or stopping of the CPU during
execution of MVCL does not affect the validation
function performed.

Handling of Invalid CBC in Keys in

Storage
Depending on the model, each key in storage may
consist of a single checking block, or the protection
bits and the change and reference bits may be in
separate checking blocks. Invalid CBC on the key in
storage is ignored in storing or fetching with a zero
protection key. References to main storage to which
protection does not apply are treated as if a protec-
tion key of zero is used for the reference. This in-
cludes such references as channel references during
the IPL procedure, implicit references such as in
timer updating and interruption action, and DAT
table accesses. The key in storage is validated by
SET STORAGE KEY.

The table ""Handling of Invalid CBC in Keys in
Storage" describes the action taken when the key in
storage has invalid CBC.

Handling of Invalid CBC in Registers
During a machine-check interruption, the contents
of the general, floating-point, and control registers,
and of the CPU timer and clock comparator if they
are installed, are stored at fixed locations in main
storage. Invalid CBC detected during this operation
does not result in additional machine-check-
interruption conditions; instead, the accuracy of the
information stored is indicated by the appropriate

setting of the validity bits in the machine-check-
interruption code. On some models, registers with
invalid CBC will be automatically validated during
the interruption. On other models, programmed vali-
dation is required. The TOD clock and the prefix
register are not stored during the machine-check
interruption and are not validated.

On those models in which registers are not auto-
matically validated as part of the machine-check
interruption, a register with invalid CBC will not
cause a machine-check interruption condition unless
the contents of the register are actually used. In
these models, each register may consist of one or
more checking blocks, but multiple registers are not
included in a single checking block. When only a
portion of a register is accessed, invalid CBC in the
unused portion of the same register may cause a
machine-check interruption condition. For example,
invalid CBC in the right half of a long operand of a
floating-point register may cause a machine-check
interruption condition if a LOAD (LE) operation
attempts to replace the left half, or short form, of
the register.

Invalid CBC associated with the check-stop con-
trol bit (control register 14, bit 0) and with the asyn-
chronous fixed-logout control bit (control register
14, bit 9) will cause the CPU either to immediately
enter check-stop state or to assume that bits 0 and 9
have their initialized values of one and zero, respec-
tively.

Invalid CBC associated with the prefix register
cannot be safely reported by the machine-check
interruption, since the interruption itself requires
that the prefix value be applied to convert real ad-
dresses to the corresponding absolute addresses.
When the check-stop control bit (control register 14,
bit 0) is one, invalid CBC in the prefix register caus-
es the CPU to immediately enter the check-stop
state. When the check-stop control bit is zero, inval-
id CBC in the prefix register either may cause the
CPU fo enter the check-stop state or may generate a
system damage condition, depending on the model.

Validation of Registers

On those models which do not validate registers
during a machine-check interruption, the following
instructions will cause validation of a register, pro-
vided the information in the register is not used be-
fore the register is validated. Other instructions,
although they replace the entire contents of a regis-
ter, do not necessarily cause validation.

General registers are validated by BRANCH
AND LINK (BAL, BALR), LOAD (LR), and
LOAD ADDRESS (LA). LOAD (L) and LOAD
MULTIPLE (LLM) validate if the operand is on a

Machine-Check Handling 173

Type of Reference

Set Storage Key
Insert Storage Key

Reset Reference Bit

Fetch, Nonzero Protection Key

Store, Nonzero Protection Key

Fetch, Zero Protection Key

Store, Zero Protection Key

Action Taken on Invalid CBC

For Protection Bits

Complete; validate,

PD; preserve.

PD or complete;
preserve.

MC; preserve.

MC1; preserve.

Complete; preserve.

Complete; preserve.

For Reference and
Change Bits

For Protection Bits and
Reference and Change Bits

Complete; validate.

PD in EC mode, PD or
complete in BC mode;
preserve.

PD; preserve.

MC or complete;
preserve.

MC or complete;
preserve or correct.

Complete; preserve.

Complete; preserve or

Complete; validate.
PD; preserve.

PD; preserve.

MC; preserve.
MC1; preserve.

Complete; preserve.

Complete; preserve.

Explanation:

correct.

Complete The condition does not cause termination of the execution of the instruction and, unless an unrelated
condition prohibits it, the execution of the instruction is completed, ignoring the error condition.
No machine-check damage conditions are generated, but recovery-report conditions may be generated.

PD A machine-check instruction processing damage or system damage condition is recognized.

MC Same as PD for CPU references, but an /O reference may result in the following combinations of

1/0 interruption and machine-check interruption.

a) Channel control check and no machine-check interruption.

b) Channel control check and a recovery report.
c) External damage and no 1/O interruption.
d) System damage and no I/Q interruption.

Validate The entire key is set to the new value with valid CBC.
Preserve The contents of the entire checking block having invalid CBC are left unchanged.
Correct The reference and change bits are set to one with valid CBC.

1

2

The contents of the main-storage location are not changed.

On models with separate checking blocks for protection bits and for change and reference bits; the protection

bits are preserved, and the change and reference bits may be corrected or preserved.

Handling of Invalid CBC in Keys in Storage

word boundary, and LOAD HALFWORD (LH)
validates if the operand is on a halfword boundary.

Floating-point registers are validated by LOAD
(LDR) and, if the operand is on a doubleword
boundary, by LOAD (LD).

Control registers may be validated either singly or
in groups by using the instruction LOAD CON-
TROL (LCTL).

The CPU timer and clock comparator are validat-
ed by SET CPU TIMER (SPT) and SET CLOCK
COMPARATOR (SCKCQC), respectively.

The TOD clock is validated by SET CLOCK
(SCK) if the TOD clock security switch is in the
enable-set position.

174 System/370 Principles of Operation

Programming Note

To provide for a model-independent machine-check
first-level-interruption handler, registers must be
validated before they are used. Examples: START
1/0, SET SYSTEM MASK, and SET CLOCK
should not be executed until control register 0
(containing block-multiplexing control, SSM-
suppression control, and TOD clock synchronization
control bits), is validated. MONITOR CALL should
not be issued until control register 8, containing the
monitor class masks, is validated. Extended channel
masks, external masks, and machine-check controls
should be validated before the associated interrup-
tions are allowed. The clock comparator and CPU
timer should be validated before clock-comparator
and CPU-timer interruptions are allowed.

Check-Stop State

In certain situations it is impossible or undesirable to
continue operation when a machine error occurs. In
these cases, the CPU may enter the check-stop state.

When the CPU is in the check-stop state, the
condition is indicated by an error indicator, an audi-
ble signal, or both. The system indicator is off, but
the state of the manual indicator depends on the
model. The exact indication of check-stop state is
model-dependent and is described in the System
Library (SL) publication for the CPU.

The machine enters the check-stop, state only as a
result of exigent conditions. The machine may be
removed from the check-stop state by CPU reset.

When the CPU is in the check-stop state, instruc-
tions and interruptions are not executed. The inter-
val timer is not updated, and channel operations may
be suspended. The TOD clock is not normally affect-
ed by check-stop state. The CPU timer may or may
not run in check-stop state, depending on the error
and the model. The CPU cluster meter does not run,
and the clock-out and metering-out lines are down.
The stop key and start key are not operative during
this state.

In a multiprocessing system, a CPU entering the
check-stop state generates a request for a
malfunction-alert external interruption to all CPUs
configured to this CPU.

Machine-Check Interruption
Conditions

Equipment malfunctions and other conditions re-
sponsible for machine-check interruptions are re-
ferred to as machine-check interruption conditions.
Two major types of conditions are identified: exigent
conditions and repressible conditions.

Repressible Conditions

Repressible conditions are those in which the se-
quential processing capability of the CPU has not
been affected. Repressible conditions can be delayed
until the completion of the current instruction, and
in most cases, even longer, without affecting the
integrity of the CPU operation. Repressible condi-
tions are of three types: recovery, alert, and repress-
ible damage. Each has one or more subclasses as
follows:

A hardware malfunction successfully corrected or
circumvented without loss of system integrity is
called a recovery condition. Depending on the model
and the type of malfunction, some recovery condi-
tions may be discarded and not reported. Recovery
conditions that are reported are grouped in one sub-
class, system recovery.

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

A machine-check interruption condition not di-
rectly related to a hardware malfunction is called an
alert condition. The alert conditions contain two
subclasses: degradation and warning.

A hardware malfunction resulting in the loss of
integrity of a process in the system but not directly
affecting the sequential CPU operation is called a
repressible damage condition. Repressible damage
conditions are divided into three subclasses, identify-
ing the process affected: timer damage, timing-
facility damage, and external damage.

Exigent Conditions

Exigent conditions are those in which direct damage
has occurred to the CPU operation, and the current
instruction or interruption cannot safely continue.
Exigent conditions are divided into two subclasses:
instruction-processing damage, and system damage.
Malfunctions which cannot be isolated to a specific
process are indicated as system damage.

Machine-Check Interruption

The machine-check interruption provides a means of
reporting equipment malfunction and certain exter-
nal disturbances, and it supplies the program with
information about the extent of the resultant damage
and the location and nature of the cause.

Interruption Action
A machine-check interruption causes the PSW re-
flecting the point of interruption to be stored as the
machine-check old PSW at location 48; extended
machine-check interruption information is stored,
consisting of the information in all the control regis-
ters, general registers, floating-point registers, CPU
timer, clock comparator, a region code, and a failing
storage address. Then the machine-check interrup-
tion code (MCIC) of eight bytes is stored. A new
PSW is fetched from location 112. Additionally,
sometime before the storing of the machine-check
interruption code, one or several machine-check
logouts may have occurred. The machine-generated
addresses to reference the old and new PSW, the
interruption code and extended interruption informa-
tion, and the fixed logout area are all real addresses.
The extended machine-check logout address is also a
real address. If the machine-check interruption code
cannot be stored successfully or the new PSW can-
not be fetched successfully, the CPU enters the
check-stop state if the check-stop control bit is one.
A machine-check interruption due to a repressible
machine-check condition can occur only when both
PSW bit 13 and the associated subclass mask are
ones. A repressible machine-check interruption does
not terminate the execution of the current instruc-

Machine-Check Handling 175

tion; the interruption is taken after the execution of
the current instruction has come to its normal ending
and the associated program or supervisor-call inter-
ruption, if any, has been taken. No program or
supervisor-call interruptions are eliminated. If the
repressible machine-check condition occurs during
the execution of a system function such as a timer
update, the machine-check interruption takes place
after the system function has been completed.

A machine-check interruption due to an exigent
machine-check condition can occur only when PSW
bit 13 is one. The interruption terminates the execu-
tion of the current instruction and may eliminate the
program and supervisor-call interruptions, if any,
that would have occurred as a result of continuing
execution of the instruction. Proper execution of the
interruption steps, including the storing of the old
PSW and diagnostic information, depends on the
nature of the maifunction. When an exigent
machine-check condition occurs during the execu-
tion of a system function, such as a timer update, the
sequence is not necessarily completed.

When PSW bit 13 is zero and an exigent machine-
check condition is generated, subsequent action de-
pends on the state of the check-stop control bit, bit
0 of control register 14. When the check-stop con-
trol bit is zero, the machine-check condition is held
pending, and an attempt is made to complete the
execution of the current instruction and to proceed
with the next sequential instruction. When the
check-stop control bit is one, processing stops imme-
diately, and the CPU enters the check-stop state.
Depending on the model and the severity of the er-
ror, the CPU may enter the check-stop state even
when the check-stop control bit is zero.

Similarly, if, during the execution of an interrup-
tion due to one exigent machine-check condition,
another exigent machine-check condition is detected,
subsequent action depends on the state of the check-
stop control bit. If the check-stop control bit is one,
the CPU enters the check-stop state; if the bit is
zero, an attempt is made to proceed with the condi-
tion held pending for subsequent interruption. If an
exigent machine-check condition is detected during
an interruption due to a repressible machine-check
condition, system damage is also reported.

Exigent machine-check conditions held pending
while the check-stop control bit is zero remain pend-
ing and do not cause the CPU to enter the check-
stop state if the check-stop control bit is subsequent-
ly set to one.

If a repressible machine-check condition is detect-
ed with the CPU disabled for the associated
machine-check interruption condition, the condition
is held pending. If a system-recovery condition is

176 System/370 Principles of Operation

detected during the execution of the interruption
procedure due to a previous machine-check condi-
tion, the system-recovery condition may be com-
bined with the other conditions, discarded, or held
pending. The CPU never enters the check-stop state
because of a repressible machine-check condition.

Only one machine-check interruption condition is
held pending for each subclass, regardiess of the
number of conditions that may have been detected.

Machine-check interruptions can be initiated only
by an interruption condition in a subclass for which
the CPU is enabled. Conditions in other subclasses
which are pending may also be indicated in the same
interruption even though the CPU is not enabled for
those subclasses. All conditions which are indicated
are then cleared.

Machine-check interruption conditions are han-
dled in the same manner in both the running and
wait states. In the wait state, a machine-check inter-
ruption condition for which the CPU is enabled
causes an immediate interruption.

Machine checks which occur while processing is
in the instruction-step mode are handled in the same
manner as in process mode; that is, normal recovery,
logout, and machine-check interruptions occur when
allowed. Machine checks occurring during a manual
operation such as system reset, set IC, or store, may
generate a system-recovery condition. If damage has
been caused which is not corrected or not circum-
vented, the CPU enters the check-stop state.

Every reasonable attempt is made to limit the
side-effects of any machine-check condition and the
associated interruption. Normally, I/O and external
interruptions, as well as the progress of I/0O data
transfer and the updating of the timer, remain unaf-
fected. The malfunction, however, may affect these
activities, and, if the currently active PSW has bit 13
set to one, the machine-check interruption may ter-
minate the process of switching PSWs that is due to
another type of interruption. In these cases, system
damage will be indicated.

Point of Interruption
Because of the checkpoint capability in models with
machine retry, the interruption resulting from an
exigent machine-check interruption condition may
indicate a point in the recovery cycle which is prior
to the error. Additionally, the model may have some
choice as to which point in the recovery cycle the
interruption will indicate, and, in some cases, the
status which can be marked as valid depends on the
point chosen.

The point in the processing which is indicated by
the interruption and used as a reference point by the
machine to determine and indicate the validity of the

status stored is referred to as the "point of interrup-
tion."

Only certain points in the processing may be used
as a point of interruption. For repressible machine
checks the point of interruption must be after one
unit of operation is completed, including the associ-
ated program or supervisor-call interruption, if appli-
cable, and before the next unit of operation is begun.

Exigent machine-check conditions which are de-
layed (disallowed and presented later when allowed)
can occur only at the same points of interruption as
repressible machine-check conditions. When an exi-
gent machine-check condition is not delayed, the
point of interruption may also be after the unit of
operation is completed but before the associated
program or supervisor-call interruption occurs. In
this case, a valid PSW is defined as that which would
have been stored in the old PSW for the program or
supervisor-call interruption. Even though all status
may be indicated as valid, damage has occurred be-
cause the associated interruption is lost.

Programming Note

When an exigent machine-check condition occurs,
the point of interruption which is chosen affects the
amount of damage which must be indicated. An at-
tempt is made, when possible, to choose a point of
interruption which permits the minimum indication
of damage. In general, the preference is the interrup-
tion point immediately preceding the error. When a
point of interruption is chosen which is after an as-
sociated program or supervisor-call interruption, the
damage has not been isolated to a particular pro-
gram, and system damage is indicated.

When all the status information stored as a result
of an exigent machine-check condition does not
reflect the same point, an attempt is made when
possible to choose the point of interruption so that
the instruction address which is stored in the
machine-check old PSW is valid.

Machine-Check Logout

The storing of model-dependent information in main
storage as a result of a machine check is referred to
as a machine-check logout. Machine-check logouts
are of four different types: synchronous fixed logout,
asynchronous fixed logout, synchronous machine-
check extended logout, and asynchronous machine-
check extended logout.

When a machine-check logout occurs during the
machine-check interruption it is called
"synchronous." If a machine-check logout occurs
without a machine-check interruption, or if the log-
out and the interruption are separated by instruction

processing or by instruction retry, then the logout is
called "asynchronous."

Machine-check-logout information can be placed
in either or both of two areas. One area, the 96-byte
area starting at location 256, is called the "fixed-
logout area.”" Additionally, a machine-check
extended-logout area (MCEL) is defined. The start-
ing location of the MCEL area is specified by the
contents of control register 15. The existence and
length of the machine-check extended logout are
model-dependent.

To preserve the initial machine-check conditions,
some models perform an asynchronous logout before
invoking automatic CPU recovery action. Depending
on the model, logout may occur before recovery,
after recovery, or at both times. If logout occurs at
both times it may be into the same portion or two
different portions of the logout area.

Machine-Check Extended Interruption

Information

The machine-check extended interruption informa-
tion consists of seven fields, which are stored at
machine-check interruption time. Each of these
fields has a validity bit associated with it in the
machine-check interruption code. If for any reason
the machine cannot store one of these fields or can-
not store the field validly, the associated validity bit
is set to zero.

Timing Facilities: When the system-timing facilities
are present, any machine-check interruption causes
the contents of the clock comparator and CPU timer
to be placed in storage as part of the machine-check
extended interruption information. The contents of
the clock comparator are stored in the doubleword
starting at location 224. The contents of the CPU
timer are placed in the doubleword starting at loca-
tion 216.

Failing-Storage Address: When a storage error un-
corrected, storage error corrected, or key in storage
error uncorrected has been indicated, the failing-
storage address is stored in bits 8-31 of the word at
location 248. Bits 0-7 of the word are set to zeros.
In the case of storage errors, the failing-storage ad-
dress may point to any byte within the checking
block. For key in storage error uncorrected, the
failing-storage address may point to any address
within the 2,048-byte block of storage associated
with the key in storage that is in error. When an
error is detected in more than one location before
the interruption, the failing-storage address may
point to any of the failing locations. The address
stored is an absolute address; that is, the value

Machine-Check Handling 177

stored is the address that is used to reference storage
after dynamic address translation and prefixing, if
any, have been applied.

Region Code: The word at location 252 contains
model-dependent information which more specifical-
ly defines the location of the error. For example, it
may contain a model-dependent address of the unit
causing an external damage or recovery report.

Register Save Area: On all machine-check interrup-
tions, the addressable registers are saved sequentially
in storage. Floating-point registers 0, 2, 4, and 6 are
stored starting at location 352; when the floating-
point feature is not installed, these locations are left
unchanged. General registers 0-15 are stored start-
ing at location 384, and control registers 0-15 are
stored starting at location 448. The information
stored for control-register positions not associated
with an installed feature is unpredictable.

Machine-Check Interruption Code
The machine-check interruption code (MCIC) is an
eight-byte field starting at location 232 and has the
format shown in the illustration.

Bits in the machine-check interruption code which
are not assigned, or not implemented by a particular
model, are stored as zeros.

Subclass

Bits 0-5, 7, and 8 identify the machine-check condi-
tions causing the interruption. At least one bit will
be stored as a one in the subclass field. When multi-
ple errors have occurred, several bits may be set to
ones.

System Damage (SD): Bit 0, when one, indicates
that damage has occurred which cannot be isolated
to one or more of the less severe machine-check
damage subclasses.

Instruction Processing Damage (PD): Bit 1, when
one, indicates that a malfunction has been detected
in the processing of instructions. The exact meaning
of bit 1 depends on the setting of the backed-up bit,
bit 14.

When the backed-up bit is one, a valid instruction
address stored in the machine-check old PSW, and
the other machine status saved, point to the begin-
ning of a unit of operation prior to the point at
which the damage would have occurred. When the
backed-up bit is one and all status is indicated as
valid, the machine has successfully returned to a
checkpoint prior to the malfunction, and no damage
has yet occurred.

When the backed-up bit is zero, a valid instruc-
tion address points to the beginning of an instruction
containing a unit of operation beyond the damaged
unit of operation. For damage to be indicated as
instruction processing damage, the damaged instruc-
tion and the point of interruption must not be sepa-
rated by an interruption or by a LOAD PSW instruc-
tion, and the extent of the damage must fall within
one or more of the following categories:

1. The damaged area still contains invalid CBC.

2. The damaged area lies within the destination
operand of the instruction.

3. The damaged area lies within the general regis-
ters, floating-point registers, control registers,
or PSW.

System Recovery (SR): Bit 2, when one, indicates
that malfunctions were detected but have been suc-
cessfully corrected or circumvented without the loss
of system integrity. CPU-detected malfunctions are
reported as system recovery only if the CPU success-
fully completes the operation or unit of operation in
which the malfunction was detected. Some I/0O-
detected damage conditions may result in a system
recovery condition in addition to the 1/O interrup-
tion. The indication of system recovery does not

S PSTCE D S S WMPTIFR FGCLS

DDRDDD(OjGW|[OOOOO]BD|EC O|P S MAAC|[OIP RRGT

0 7 9 14 16 20 27 31
cl|cC .

000000O0O0OOOOOCOO|T!|C Machine-Check Extended Logout Length

32 46 48 63

Bits 0-5,7,8 Subclass

Bits 14-15 Time of interruption occurrence

Bits 16-18 Storage errors

Bits 20-31, 46, 47
Bits 6, 9-13, 19, 26, 32-45

Validity indicators
Not assigned, stored as zeros

Machine Check Interruption-Code Format

178 System/370 Principles of Operation

imply storage logical validity, or that the fields stored
as a result of the machine-check interruption are
valid. The presence and extent of the system re-
covery capability depend on the model.

Timer Damage (TD): Bit 3, when one, indicates
that damage has occurred to the interval timer or to
location 80.

Timing Facility Damage (CD): Bit 4, when one,
indicates that damage has occurred to either the
time-of-day clock, the CPU timer, or the clock com-
parator. The timing-facility-damage machine-check
condition is set whenever any of the following oc-
curs:

1. The time-of-day clock enters the not-
operational state.

2. The time-of-day clock enters the error state.

3. The time-of-day clock is not in the error state,
and the STORE CLOCK instruction encoun-
ters an error which results in setting condition
code 2. This condition also sets instruction
processing damage.

4. The CPU timer is in error, and the CPU is ena-
bled for CPU-timer interruptions. On some
models, this condition may be recognized even
when the CPU is not enabled for CPU-timer
interruptions.

5. The CPU timer is in error, and STORE CPU
TIMER is executed. This condition also sets
instruction processing damage.

6. The clock comparator is in error, and the CPU
is enabled for clock-comparator interruptions.
On some models, this condition may be recog-
nized even when the CPU is not enabled for
clock-comparator interruptions.

7. The clock comparator is in error, and STORE
CLOCK COMPARATOR is executed. This
condition also sets instruction processing dam-
age.

External Damage (ED): Bit 5, when one, indicates
that damage has occurred to a channel, channel con-
troller, switching unit, or other unit external to the
CPU, or to a storage unit during operations not di-
rectly associated with the CPU. Channel-detected
malfunctions are reported as external damage only
when the channel is unable to report the malfunction
by using the I/0O interruption. Depending on the
model and on the type and extent of the error, an
external damage condition may be indicated as sys-
tem damage instead of external damage.

Degradation (DG): Bit 7, when one, indicates that
continuous degradation of system performance,
more serious than that indicated by system recovery,
has occurred. Degradation may be reported when
system-recovery conditions exceed a machine pre-
established threshold or when unit deletion has oc-
curred. The presence and extent of the degradation-
report capability depends on the model.

Warning (W): Bit 8, when one, indicates that dam-
age is imminent in some part of the system (for ex-
ample, that power is about to fail, or that a loss of
cooling is occurring). Whether warning conditions
are recognized depends on the model.

Time of Interruption Occurrence

Bits 14 and 15 of the machine-check interruption
code indicate when the interruption occurred in rela-
tion to the error.

Backed Up (B): Bit 14, when one, indicates that
the point of interruption is at a hardware checkpoint
before the point of error. This bit is meaningful only
when instruction processing damage is also set to
one. The presence and extent of the capability to
indicate a backed-up condition depends on the mod-
el.

Programming Note

The backed-up situation is reported as instruction-
processing damage rather than system recovery be-
cause the malfunction has not been circumvented
and damage would have occurred if instruction pro-
cessing had continued.

Delayed (D): Bit 15, when one, indicates that some
or all of the machine-check conditions were delayed
in being reported because the CPU was disabled for
that type of interruption at the time the error was
detected.

Storage Error Type

Bits 16-18 of the machine-check interruption code
are used to indicate invalid CBC or near-valid CBC
detected in main storage or invalid CBC in a key in
storage. The failing-storage address field, when indi-
cated as valid, identifies an address within the stor-
age checking block or within the 2,048-byte block
associated with the key in storage. The portion of
the system affected by an invalid CBC is indicated in
the subclass field of the machine-check interruption
code. I/O-detected storage errors, when indicated as
1/0 interruptions, may not result in a machine-check
interruption or may be reported as system recovery.
CBC errors in storage or in the key in storage that

Machine-Check Handling 179

are detected on prefetched or unused data may or
may not be reported, depending on the model.

Storage Error Uncorrvected (SE): Bit 16, when one,
indicates that a checking block in main storage con-
tains invalid CBC.

Storage Error Corrected (SC): Bit 17, when one,
indicates that a checking block in main storage con-
tained near-valid CBC and that the data portion of
the information has been corrected before being
used by the CPU or channel. Depending on the
model, the contents of the checking block in main
storage may or may not have been restored to valid
CBC. The presence and extent of the storage-error-
correction capability depends on the model.

Key in Storage Error Uncorrected (KE): Bit 18,
when one, indicates that a key in storage contains
invalid CBC.

Programming Note

The storage-error-type bits do not in themselves
indicate the occurrence of damage because the error
detected may not have affected the result. The sub-
class bits indicate, in conjunction with the storage-
error-type bits, the area affected by the storage er-
ror.

Machine-Check Interruption Code Validity Bits

Bits 20-3 1:and bits 46 and 47 of the machine-check
interruption code are validity bits. Each bit indicates
the validity of a particular field in main storage.
With the exception of the storage logical validity bit
(bit 31), each bit is associated with a field stored
during the machine-check interruption. When a va-
lidity bit is one, it indicates that this specific field is
valid with respect to the indicated point of interrup-
tion and that no error was detected when the data
was stored. When the bit is zero, one or more of the
following conditions may have occurred: the original
information was incorrect, the original information
had invalid CBC, additional malfunctions were de-
tected during the storing of the information, or none
or only part of the information was stored. Even
though the information is unpredictable, the machine
will attempt, when possible, to ensure that the in-
formation in storage has valid CBC and thus reduce
the possibility of additional machine checks being
caused.

PSW EMWP Validity (WP): Bit 20, when one,
indicates that bits 12-15 of the machine-check old
PSW are correct.

180 System/370 Principles of Operation

PSW Masks and Key Validity (MS): Bit 21, when
one, indicates that all PSW bits other than the inter-

ruption code, ILC, EMWP, instruction address, con-
dition code, and program mask of the machine-check
old PSW are correct.

Program Mask and Condition Code Validity
(PM): Bit 22, when one, indicates that the program
mask and condition code in the machine-check old
PSW are correct.

Instruction Address Validity (IA): Bit 23, when one,
indicates that the instruction address in the old PSW
is correct.

Failing-Storage Address Valid (FA): Bit 24, when
one, indicates that a correct failing-storage address
has been stored. The presence and extent of the
capability to indicate the failing-storage address de-
pend on the model. When no storage errors are re-
ported, that is, bits 16-18 of the machine-check in-
terruption code are zeros, the failing-storage address
is meaningless, even though it may be indicated as
valid.

Region Code Valid (RC): Bit 25, when one, indi-
cates that a correct region code has been stored. The
presence of the region code depends on the model.

Floating-Point Registers Valid (FP): Bit 27, when
one, indicates that the contents of the floating-point
register save area reflect the correct state of the
floating-point registers at the point of interruption.
When the floating-point feature is not installed, this
bit is set to zero.

General Registers Valid (GR): Bit 28, when one,
indicates that the contents stored in the general reg-
ister save area reflect the correct state of the general
registers at the point of interruption.

Control Registers Valid (CR): Bit 29, when one,
indicates that the contents stored in the control reg-
ister save area reflect the correct state of the control
registers at the point of interruption.

Logout Valid (LG): Bit 30, when one, indicates
that the CPU extended logout information was cor-
rectly stored.

Storage Logical Validity (ST): Bit 31, when one,
indicates that the contents of those storage locations
which are modified by the instruction processing
stream contain the correct information relative to the
point of interruption. That is, all stores prior to the

point of interruption are completed, and all stores, if
any, beyond the point of interruption are suppressed.
When a store prior to the point of interruption is
suppressed because of an invalid CBC, the storage
logical validity bit may be indicated as one, provided
that the invalid CBC is preserved as invalid.

CPU Timer Valid: Bit 46, when one, indicates that
the CPU timer is not in error and that the contents
stored in the CPU-timer save area (location 216)
reflect the correct state of the CPU timer at the time
the interruption occurred.

Clock Comparator Valid: Bit 47, when one, indi-
cates that the clock comparator is not in error and
that the contents stored in the clock-comparator
save area (location 224) reflect the correct state of
the clock comparator.

Programming Note

The validity bits must be used in addition to the sub-
class indication and time-of-occurrence bits in order
to determine the extent of the damage caused by the
machine-check condition. The four PSW validity
bits, the three register validity bits, the two timing
facility validity bits, and the storage logical validity
bit must all be ones in addition to one of the follow-
ing in order to indicate that no damage has yet oc-
curred to the system:

« All of the damage subclass bits (0, 1, 3, 4, 5)
are Zeros.

« Instruction processing damage is the only dam-
age subclass bit which is one, the backed-up bit
is one, and the delayed bit is zero.

Machine-Check Extended Logout Length

Bits 48-63 of the machine-check interruption code
contain a 16-bit binary value indicating the length in
bytes of the information most recently stored in the
extended logout area, starting at the location speci-
fied by the machine-check extended logout pointer.
When no extended logout has occurred, this field is
set to zero.

Programming Note

When asynchronous machine-check extended log-
outs are permitted (control register 14, bit 8 is one),
more than one extended logout may have occurred.

The length stored on interruption does not necessari-
ly indicate the longest logout which has occurred.

Machine-Check Control Registers
Control Register 14

<

WA F
ML L

[« N"Ne]

S I R DE
L L MMM)
3 4 10

Control register 14 contains mask bits that specify
whether certain conditions can cause machine-check
interruptions and control bits that determine when a
logout may occur. With the exception of bit 0, which
is provided on all models, each of the bits is neces-
sarily provided only if the associated function is pro-
vided.

Check-Stop Control

The check-stop control bit (CS), which is bit O of
control register 14, controls the system action taken
when an exigent machine-check condition occurs
under one of the following two-conditions:

1. When the CPU is disabled for machine-check
interruptions (that is, PSW bit 13 is zero).

2. When a second exigent machine-check condi-
tion occurs during the process of storing the
machine-check interruption ¢ode, storing the
machine-check old PSW, or fetching the
machine-check new PSW during a machine-
check intetruption.

If the check-stop control bit is one and either
condition occurs, the machine enters the check-stop
state; if the check-stop control bit is zéto, the ma-
chine may attempt to cortinue or may enter the
check-stop state, depending on the type of error and
the model. The check-stop control bit is initialized to
one. If damage occurs to control register 14, the
check-stop control bit is assumed to be one.

Logout Controls

Synchronous Machine-Check Extended Logout Con-
trol (SL): Bit 1 of control register 14 controls the
logout action during a machine-check interruption. If
the bit is one, the machine-check extended logout
area may be changed during the interruption; if the
bit is zero, the area may be changed only under con-
trol of the asynchronous machine-check extended
logout control bit (bit 8 of control register 14). Bit 1
of control register 14 is initialized to one.

Machine-Check Handling 181

Input/Output Extended Logout Control (IL): Bit 2
of control register 14, when one, permits channel
logout into the 1/0 extended logout area as part of
an I/0 interruption. When the I/0 extended logout
mask is zero, I/O extended logouts cannot occur.
This bit is initialized to zero.

Asynchronous Machine-Check Extended Logout
Control (AL): Bit 8 of control register 14, in con-
junction with PSW bit 13, controls asynchronous
change of the machine-check extended logout area.
When this bit and PSW bit 13 are both ones, the
machine may change the machine-check extended
logout area at any time. This bit is initialized to zero.

Asynchronous Fixed Logout Control (FL): Bit 9 of
control register 14, when one, permits the fixed log-
out area to be changed at any time. When this bit is
zero, the fixed logout area may be changed only
during a machine-check interruption or during an
1/0 interruption. This bit is initialized to zero.

Programming Notes

The maximum logout information is obtained by
setting both the synchronous and asynchronous
machine-check extended logout control bits to ones.
Both of these bits must be zeros to prevent any
changes to the machine-check extended logout area.
When asynchronous machine-check extended logout
is allowed, use of the machine-check extended log-
out area may produce unpredictable results.

When the asynchronous fixed logout control bit is
one, program use of the fixed logout area should be
restricted to the fetching of data from this area.
Store operations or channel programs reading into
the fixed logout area may cause machine checks or
undetected errors if the store occurs during CPU
retry. Note that this is an exception to the rule
that programming errors do not cause machine-
check indications.

Machine-Check Subclass Masks

Bits 4-7 of control register 14, in conjunction with
PSW bit 13, control various machine-check subclass
conditions. When PSW bit 13 is one and the subclass
mask is one, the associated condition initiates a
machine-check interruption. If the subclass mask is
zero, the associated condition does not initiate an

182 System/370 Principles of Operation

interruption, but the condition may be presented
with another condition which initiates the interrup-
tion. All conditions presented are then cleared.

Recovery Report Mask (RM): Bit 4 of control reg-
ister 14 controls recovery-interruption conditions.
This bit is initialized to zero.

Degradation Report Mask (DM): Bit 5 of control
register 14 controls degradation-interruption condi-
tions. This bit is initialized to zero.

External Damage Report Mask (EM): Bit 6 of con-
trol register 14 controls the following machine-check-
interruption conditions: timer damage, timing facility
damage, and external damage. This bit is initialized
to one.

Warning Mask (WM): Bit 7 of control register 14

controls all warning conditions. This bit is initialized
to zero.

Control Register 15

Machine-Check Extended Logout
Address

0 8 2 A

Bits 8-28 of control register 15, with three low-order
zeros appended, specify the starting location of the
machine-check extended logout area. The contents
of control register 15 are initialized by setting bit 22
to one and ali other bits to zeros, which specifies a
starting address of 512 (decimal). The machine-
check extended logout address is a real address.

When a model provides machine-check extended
logout, control register 15 is implemented.

Programming Note

The availability and extent of the machine-check
extended logout area differs among models and, for
any particular model, may depend on the features or
engineering changes installed. In order to provide for
such variations, the program should determine the
extent of the logout by means of STORE CPU ID
whenever a storage area for the extended logout is to
be assigned. A length of zero in the MCEL field
indicates that no MCEL is provided.

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

Summary of Machine-Check Masking

Action When CPU Disabled for Condition

Subclass Condition Subclass Mask Check-Stop Control = 0 Check-Stop Control = 1

SD System Damage - P* Check stop

PD Instruction Processing Damage — p* Check stop

TD Timer Damage EM P P

CD Timing Facilities Damage EM P P

SR System Recovery RM Y Y

ED External Damage EM P P

DG Degradation DM P P

W Warning WM P P
Explanation:

P Indication held pending.
Y indication may be held pending or may be discarded.

* In this situation, the system integrity may have been lost, and the system cannot be considered dependable.

Machine-Check Condition Masking

SMCEL Control AMCEL Control

PSW Bit 13 CR 14 Bit 1 CR 14 Bit 8 Machine-Check Extended Logout Action
0 X X No MCEL
1 0 0 No MCEL
1 1 0 MCEL may occur only during machine-check interruption.1
1 0 1 MCEL may occur at any time.2
1 1 1 MCEL may occur at any time.
AFL Control Fixed Logout Action
0 CPU portion of fixed logout area may be changed only during machine-check interruption.1
1 CPU portion of fixed logout area may be changed at any time.

Explanation:
X Indicates the same action occurs whether the bit is zero or one.
1

2

Logout prior to instruction retry is not permissible in this state even though recovery reports are enabled.
In some models the AMCEL mask bit is ignored, and no logout occurs in this state.

Machine-Check Logout Control

Control Register 14 State of Bit on Initial
Bit Description Bit Position Program Reset
Ccs Check-stop control 0 1
SL Synchronous MCEL mask 1 1
1L I0EL control 2 0
RM Recovery report mask 4 0
DM Degradation report mask 5 0
EM External damage report mask 6 1
WM Warning mask 7 0
AL Asynchronous MCEL control 8 0
FL Asynchronous fixed logout control 9 0

Machine-Check Control Register Bits

Machine-Check Handling 183

Input/Output Operations

Contents

Attachment of Input/Output Devices e £214)
Input/Output Devices186
Control Units18
Channels . . . D k27
Modes of Operatlon D £ 72
Typesof Channels188
System Operation . . e i]
Compatibility of Operatnon e R X
Control of Input/Output Devices19
Input/Output Device Addressing192
States of the Input/Output System192
Resetting of the Input/Output System 194
1/0 SystemReset19
/0 Selective Reset . . . e K13
Effect of Reset on a Working Dev:ce e £ 1)
Reset Upon Malfunction 195
ConditionCode19
Instruction Formats197
List of Instructions197
CLEARLI/O .198
HALTDEVICE19
HALTI/O L. o202
STARTI/O4 V4
START |/O FAST RELEASE L. e oo .. 204
STORE CHANNELID206
TEST CHANNEL20
TEST I/0 L.208
Input/Output Instructnon Excepﬂon Handlmg e e L2710
Execution of Input/Output Operations20
Blocking of Data - 0
Channel Address Word20
Channel Command Word21
Command Code . . . A 4
Designation of Storage Area & 14
Chaining . . o~ <
Data Chammg A K<
Command Chaining.21
Skipping . . . - 1
Program- Controlled Interruptlon21
Channel Indirect Data Addressing A [)
Commands O2
Write - £
Read . . & £
Read Backward T £
Control . -o 219
Sense ., . . Lo s 219
Transfer in Channel .2
Command Retry .o . 4 |
Conclusion of Input/Output Operatlons e o222
Types of Conclusion
Conclusion at Operation Inltlatlon e e 222
Immediate Operations222
Conclusion of Data Transfer . . .o223
Termination by HALT 1/O or HALT DEVICE L. ..., 224
Termination by CLEARI/O22
Termination Due to Equipment Malfunctlon22
Input/Output Interruptions226
Interruption Conditions226

Input/OQutput Operations 185

Conclusion of Input/Output Operations (continued)

Priority of Interruptions . 227
Interruption Action . .228
Channel Status Word . 228
Unit Status Conditions . . 229
Attention . . 229
Status Modifier . . 229
Control Unit End . 230
Busy 230
Channel End . . 231
Device End . 232
Unit Check . 232
Unit Exception . . . 233
Channel Status Conditions 233
Program-Controlled Interruption . . 233
Incorrect Length. . 233
Program Check . 234
Protection Check . 234
Channel Data Check. . 235
Channel Control Check . . 235
Interface Control Check . 235
ChainingCheck 235
Contents of Channel Status Word . e e e 235
Information Provided by Channel StatusWord235
Protection Key . 236
Command Address . . 236
Count . . 236
Status . . 237
Channel Logout . . . 238
1/O Communications Area . . 239

The transfer of information to or from main storage,
other than to or from the central processing unit or
by means of the direct control path, is referred to as
an input or output operation. An input/output (1/0)
operation involves the use of an 1/0 device.
Input/output devices perform I/O operations under
control of control units, which are attached to the
central processing unit (CPU) by means of channels.
This portion of the manual describes the program-
med control of I/0 devices by the channels and by
the CPU. Formats are defined for the various types
of 1/0 control information. The formats apply to all
I/0 operations and are independent of the type of
1/0 device, its speed, and its mode of operation.
The formats described include provisions for
functions unique to some I/0O device types, such as
an erase gap on a magnetic tape unit. The way in
which a device makes use of the format is defined in
the System Library (SL) or Systems Reference Li-
brary (SRL) publication for the particular device.

Attachment of Input/Output Devices

Input/Qutput Devices

Input/output devices provide external storage and a
means of communication between data processing
systems or between a system and its environment.

186 System/370 Principles of Operation

Input/output devices include such equipment as card
readers, card punches, magnetic tape units, direct-
access-storage devices (disks and drums),
typewriter-keyboard devices, printers, teleprocessing
devices, and sensor-based equipment.

Most types of 1/0 devices, such as printers, card
equipment, or tape devices, deal directly with exter-
nal media, and these devices are physically distin-
guishable and identifiable. Other types consist only
of electronic equipment and do not directly handle
physical recording media. The channel-to-channel
adapter, for example, provides a channel-to-channel
data transfer path, and the data never reaches a phys-
ical recording medium outside main storage. Similar-
ly, the IBM 2702 Transmission Control handles
transmission of information between the data
processing system and a remote station, and its input
and output are signals on a transmission line. Fur-
thermore, in this latter case, the 2702 may be time-
shared for concurrent operation of a number of re-
mote stations, and the 2702 is distinguished as a
particular I/0 device only during the time period
associated with the operation on the corresponding
remote station.

An input/output device ordinarily is attached to
one control unit and is accessible from one channel.
Switching equipment is available to make some de-
vices accessible to two or more channels by switch-

ing devices between control units and control units
between channels. The time required for switching
occurs during device selection time and may be ig-
nored.

Control Units

A control unit provides the logical capabilities neces-
sary to operate and control an I/O device, and
adapts the characteristics of each device to the

standard form of control provided by the channel.

In most configurations, communication between
the control unit and the channel takes place over the
1/0 interface. The control unit accepts control sig-
nals from the channel, controls the timing of data
transfer over the 1/0 interface, and provides indica-
tions concerning the status of the device.

The 1/0 device attached to the control unit may
be designed to perform only certain limited opera-
tions, or it may perform many different operations.
A typical operation is moving the recording medium
and recording data. To accomplish these functions,
the device needs detailed signal sequences peculiar
to the type of device. The control unit decodes the
commands received from the channel, interprets
them for the particular type of device, and provides
the signal sequence required for execution of the
operation.

A control unit may be housed separately, or it
may be physically and logically integral with the 1/0
device or the CPU. In the case of most electrome-
chanical devices, a well-defined interface exists be-
tween the device and the control unit because of the
difference in the type of equipment the control unit
and the device contain. These electromechanical
devices often are of a type where only one device of
a group attached to a control unit is required to op-
erate at a time (magnetic tape units or disk-access
mechanisms, for example), and the control unit is
shared among a number of 1/0 devices. On the oth-
er hand, in some electronic I/0 devices such as the
channel-to-channel adapter, the control unit does
not have an identity of its own.

From the user’s point of view, most functions
performed by the control unit can be merged with
those performed by the I/O device. Therefore, this
manual normally does not make specific mention of
the control unit function; the execution of I/O oper-
ations is described as if the 1/O devices communi-
cated directly with the channel. Reference is made to
the control unit only when emphasizing a function
performed by it or when sharing of the control unit
among a number of devices affects the execution of
1/0 operations.

Channels

The channel directs the flow of information between
1/0 devices and main storage. It relieves the CPU of
the task of communicating directly with the devices
and permits data processing to proceed concurrently
with I/0 operations.

The channel provides a standard interface for
connecting different types of 1/O devices to the
CPU and to main storage. It accepts control infor -
mation from the CPU in the format supplied by the
program and changes it into a sequence of signals
acceptable to a control unit. After the operation with
the device has been initiated, the CPU is released for
other work, and the channel assembles or disassem-
bles data and synchronizes the transfer of data bytes
over the interface with main-storage cycles. To ac-
complish this, the channel maintains and updates an
address and a count that describe the destination or
source of data in main storage. Similarly, when an
1/0 device provides signals that should be brought
to the attention of the program, the channel trans-
forms the signals to information that can be used in
the CPU.

The channel contains common facilities for the
control of I/0O operations. When these facilities are
provided in the form of separate autonomous equip-
ment designed specifically to control I/O devices,
1/0O operations are completely overlapped with the
activity in the CPU. The only main-storage cycles
required during 1/O operations in such channels are
those needed to transfer data and control informa-
tion to or from the final locations in main storage.
These cycles do not interfere with the CPU program,
except when both the CPU and the channel concur-
rently attempt to refer to the same main storage.

Alternatively, the system may use the facilities of
the CPU for controlling I/O devices. When the CPU
and the channel, or the CPU, channel, and control
unit, share common facilities, I/O operations cause
interference to the CPU, varying in intensity from
occasional delay of a CPU cycle to a complete lock-
out of CPU activity. The intensity depends on the
extent of sharing and on the 1/0 data rate. The
sharing of the facilitics, however, is accomplished
automatically, and the program is not affected by
CPU delays, except for an increase in execution
time.

Modes of Operation
An 1/0 operation occurs in one of two modes: burst
or byte interleave.

In burst mode, the I/O device monopolizes the
1/0 interface and channel and stays logically con-
nected to the channel for the transfer of a burst of
information. No other device can communicate over

Input/Output Operations 187

the interface during the time a burst is transferred.
The burst can consist of a few bytes, a whole block
of data, a sequence of blocks with associated control
and status information (the block lengths may be
zero), or a channel status condition which monopol-
izes the channel.

Some channels can tolerate an absence of data
transfer’ during a burst-mode operation, such as oc-
curs when reading a long gap on tape, for not more
than approximately one-half minute. Equipment
malfunction may be indicated when an absence of
data transfer exceeds this time.

In byte-interleave mode, the facilities in the chan-
nel may be shared by a number of concurrently op-
erating 1/0 devices. In this mode all /O operations
are split into short intervals of time during which
only a segment of information is transferred over the
interface. During such an interval, only one device is
logically connected to the channel. The intervals
associated with the concurrent operation of multiple
1/0 devices are sequenced in response to demands
from the devices. The channel controls are occupied
with any one operation only for the time required to
transfer a segment of information. The segment can
consist of a single byte of data, a few bytes of data,
a status report from the device, or a control se-
quence used for initiation of a new operation.

A short burst of data can be handled in either
byte-interleave or burst mode. The distinction be-
tween a short burst occurring in the byte-interleave
mode and an operation in the burst mode is in the
length of the bursts. A channel that can operate in
either mode determines its mode of operation by
"time-out." Whenever the burst causes the device to
be connected to the channel for more than approxi-
mately 100 microseconds, the channel is considered
te be operating in the burst mode.

Ordinarily, devices with a high data transfer rate
operate with the channel in burst mode, and slower
devices run in byte-interleave mode. Some control
units have a manual switch for setting the mode of
operation.

Operation in burst and byte-interleave modes is
differentiated because of the way the channels re-
spond to I/0 instructions. A channel operating a
device in the burst mode appears busy to new I/O
instructions, whereas a channel operating one or
more devices in the byte-interleave mode is available
for initiating an operation on another device. If a
channel that can operate in either mode happens to
be communicating with an I/0 device at the instant
a new 1/0 instruction is issued, action on the in-
struction is delayed by the channel until the current
mode of operation is established by time-out. A new
I/0 operation is initiated only after the channel has

188 System/370 Principles of Operation

serviced all outstanding requests for data transfer
from devices previously placed in operation.

Types of Channels

A system can be equipped with three types of chan-
nels: selector, byte-multiplexer, and block-
multiplexer. Channels are classified according to
their capability for multiplexing and to the modes of
operation they can sustain. A byte-multiplexer chan-
nel can operate either in byte-interleave mode or in
burst mode, depending on the device. A selector
channel operates only in burst mode and allows no
multiplexing. A block-multiplexer channel operates
only in burst mode and can allow multiplexing be-
tween blocks.

The channel facilities required for sustaining a
single I/O operation are termed a subchannel. The
subchannel consists of the channel storage used for
recording the addresses, count, and any status and
control information associated with the I/O opera-
tion. The capability of a channel to permit multiplex-
ing depends upon whether it has more than one sub-
channel.

The selector channel has one subchannel and
always forces the 1/0 device to transfer data in the
burst mode. The burst extends over the whole block
of data, or, when command chaining is specified,
over the whole sequence of blocks. The selector
channel cannot perform any multiplexing and there-
fore can be involved in only one data-transfer opera-
tion at a time. In the meantime, other I/0O devices
attached to the channel can be executing previously
initiated operations that do not involve communica-
tion with the channel, such as backspacing tape.
When the selector channel is not executing an opera-
tion or a chain of operations and is not processing an
interruption, it monitors the attached devices for
status information.

The byte-multiplexer channel contains multiple
subchannels and can operate in either byte-
interleave or burst mode. In byte-interleave mode,
more than one device may operate concurrently,
each on a separate subchannel. In burst mode, only
one device on the channel may be transferring data.
The mode of operation is determined by the I/0O
device, and the mode can change at any time. The
data transfer associated with an operation can occur
partially in the byte-interleave mode and partially in
the burst mode.

The block-multiplexer channel has multiple sub-
channels and always forces the I/0 device to trans-
fer data in burst mode. When multiplexing is al-
lowed on the block-multiplexer channel, the burst is
forced to extend only over the block of data. Multi-
plexing is permitted between blocks of data when

command chaining is specified or when command
retry is performed. Whether or not multiplexing oc-
curs between blocks depends on the state of the
block-multiplexing control bit, the design of the I/0
device, and, on some models, whether the subchan-
nel is shared or nonshared.

The multiplexing capability of a block-multiplexer
channel is under control of the block multiplexing
control bit, bit 0 of control register 0. When this bit
is zero, multiplexing is inhibited, and when it is one,
multiplexing is allowed.)

Whether a block-multiplexer channel executes an
1/0 operation with multiplexing inhibited or allowed
is determined by the state of the block multiplexing
control bit at the time the operation is initiated by
START I/0 or START I/O FAST RELEASE and
applies to that operation until the involved subchan-
nel becomes available.

Both byte-multiplexer and block-multiplexer
channels vary in the number of subchannels they
contain. When multiplexing, they can sustain concur-
rently one 1/0 operation per subchannel, provided
that the total load on the channel does not exceed its
capacity. Each subchannel appears to the program as
an independent selector channel, except in those
aspects of communication that pertain to the physi-
cal channel (for example, individual subchannels on
a multiplexer channel are not distinguished as such
by the TEST CHANNEL instruction or by the
masks controlling I/O interruptions from the chan-
nel). When a multiplexer channel is not servicing an
1/0 device, it monitors its devices for data and for
interruption conditions.

When a multiplexer channel is transferring data in
burst mode, the subchannel associated with the burst
operation monopolizes the data-transfer facilities of
the channel. Other subchannels on the multiplexer
channel cannot respond to requests from devices
until the burst is completed.

Subchannels on a multiplexer channel may be
either nonshared or shared.

A subchannel is referred to as nonshared if it is
associated and can be used only with a single I/O
device. A nonshared subchannel is used with devices
that do not have any restrictions on the concurrency
of channel program operations, such as the IBM
3211 Printer Model 1 or one drive of a 3330 Disk
Storage.

A subchannel is referred to as shared if data
transfer to or from a set of devices implies the use of
the same subchannel. Only one device associated
with a shared subchannel may be involved in data
transmission at a time. Shared subchannels are used
with devices, such as magnetic tape units or some
disk-access mechanisms, that share a control unit.

For such devices, the sharing of the subchannel does
not restrict the concurrency of I/O operations since
the control unit permits only one device to be in-
volved in a data-transfer operation at a time. I/O
devices may share a control unit without necessarily
sharing a subchannel. For example, each transmis-
sion line attached to the IBM 2702 Transmission
Control is assigned a nonshared subchannel, al-
though all of the transmission lines share the com-
mon control unit.

Programming Note

A block-multiplexer channel can be made to operate
as a selector channel by the appropriate setting of
the block multiplexing control bit. However, since a
block-multiplexer channel inherently can interleave
the execution of multiple I/O operations and since
the state of the block multiplexing control bit can be
changed at any time, it is possible to have one or
more operations that permit multiplexing and an
operation that inhibits multiplexing being executed
simultaneously by a channel.

Therefore, to ensure complete compatibility with
selector channel operation, all operational subchan-
nels on the block-multiplexer channel must be avail-
able or operating with multiplexing inhibited when
the use of that channel as a selector channel is be-
gun. All subsequent operations should then be initi-
ated with the block multiplexing control bit inhibit-
ing multiplexing.

System Operation

Input/output operations are initiated and controlled
by information with three types of formats: instruc-
tions, channel command words (CCWs), and orders.
Instructions are decoded by the CPU and are part of
the CPU program. CCWs are decoded and executed
by the channels and I/O devices, and initiate 1I/0O
operations, such as reading and writing. One or more
CCWs arranged for sequential execution form a
channel program. Both instructions and CCWs are
fetched from main storage and their formats are
common for all types of 1/0 devices, although the
modifier bits in the command code of a CCW may
specify device-dependent conditions for the execu-
tion of an operation at the device.

Functions peculiar to a device, such as rewinding
tape or positioning the access mechanism on a disk
drive, are specified by orders. Orders are decoded
and executed by I/O devices. The control informa-
tion specifying an order may appear in the modifier
bits of a control-CCW command code, may be trans-
ferred to the device as data during a control or write
operation, or may be made available to the device by
other means.

Input/Output Operations 189

The CPU program initiates I/O operations with
the instruction START 1/0 or START I/0 FAST
RELEASE. These instructions identify the channel
and device and cause the channel to fetch the chan-
nel address word (CAW) from a fixed location in
main storage. The CAW contains the protection key
and designates the location in main storage from
which the channel subsequently fetches the first
CCW. The CCW specifies the command to be execu-
ted and the storage area, if any, to be used.

When the CAW has been fetched, some channels
consider the execution of START 1/0 FAST RE-
LEASE complete. The results of the execution of
the instruction to that point are indicated by setting
the condition code in the program status word
(PSW) and, under certain conditions, by storing
pertinent information in the channel status word
(CSW).

If the channel is not operating in burst mode and
if the subchannel associated with the addressed 1/0
device is available, the channel attempts to select the
device by sending the address of the device to all
control units attached to the channel. A control unit
that recognizes the address connects itself logically
to the channel and responds to its selection by re-
turning the address of the selected device. The chan-
nel subsequently sends the command code part of
the CCW over the interface, and the device responds
with a status byte indicating whether it can execute
the cornmand.

At this time, the execution of START I/0 and of
START 1/0 FAST RELEASE, if not previously
considered complete, is completed . The results of
the attempt to initiate the execution of the command
are indicated by setting the condition code in the
PSW and, under certain conditions, by storing perti-
nent information in the CSW.

If the operation is initiated at the device and its
execution involves transfer of data, the subchannel is
set up to respond to service requests from the device
and assumes further control of the operation. In the
case of operations that do not require any data to be
transferred to or from the device, the device may
signal the end of the operation immediately on re-
ceipt of the command code.

An 1/0 operation may involve transfer of data to
one storage area, designated by a single CCW, or to
a number of noncontiguous storage areas. In the
latter case, generally a list of CCWs is used for exe-
cution of the I/0 operation, each CCW designating a
contiguous storage area, and the CCWs are said to
be coupled by data chaining. Data chaining is speci-
fied by a flag in the CCW and causes the channel to
fetch another CCW upon the exhaustion or filling of
the storage area designated by the current CCW.,

190 System/370 Principles of Operation

The storage area designated by a CCW fetched on
data chaining pertains to the I/O operation already
in progress at the I/0 device, and the 1/0 device is
not notified when a new CCW is fetched. Provision
is made in the CCW format for the programmer to
specify that, when the CCW is decoded, the channel
request an I/0O interruption as soon as possible,
thereby notifying the CPU program that chaining
has progressed to a particular CCW in the channel
program.

To complement the dynamic address translation
facility available in the CPU, which can make data
stored in more than one noncontiguous page of main
storage appear as one storage area, channel indirect
data addressing is available. A flag in the CCW spec-
ifies that an indirect-data-address list is to be used to
designate the storage areas for that CCW. Each time
the boundary of a 2,048-byte block of storage is
reached, the list is referenced to determine the next
block of storage to be used. By extending the stor-
age addressing capabilities of the channel, channel
indirect data addressing permits essentially the same
CCW sequences to be used for a program running
with dynamic address translation in the CPU that
would be used if it were operating with equivalent
contiguous real storage.

The concluding of an I/0 operation normally is
indicated by two conditions: channel end and device
end. The channel-end condition indicates that the
1/0 device has received or provided all data associ-
ated with the operation and no longer needs channel
facilities. The device-end signal indicates that the
1/0 device has concluded exccution of the opera-
tion. The device-end condition can occur concur-
rently with the channel-end condition or later.

Operations that keep the control unit busy after
releasing channel facilities may, under certain condi-
tions, cause a third type of signal. This signal, called
control unit end, may occur only concurrently with
or after channel end and indicates that the control
unit has become available for initiation of another
operation.

The conditions signaling the concluding of an 1/0
operation can be brought to the attention of the
program by I/0 interruptions or, when the CPU is
disabled for I/O interruptions from the channel, by
programmed interrogation of the 1/0 device. In
either case, these conditions cause storing of the
CSW, which contains additional information con-
cerning the execution of the operation. At the time
the channel-end condition is generated, the channel
identifies to the program the last CCW used and
provides its residual byte count, thus indicating the
extent of main storage used. Both the channel and
the device can provide indications of unusual condi-

tions with channel end. The control-unit-end and
device-end conditions can be accompanied by error
indications from the device.

Facilities are provided for the program to initiate
execution of a chain of I/0 operations with a single
START 1/0 or START 1/0 FAST RELEASE.
When the chaining flags in the current CCW specify
command chaining and no unusual conditions have
been detected in the operation, the receipt of the
device end signal causes the channel to fetch a new
CCW and to initiate a new command at the device.
A chained command is initiated by means of the
same sequence of signals over the I/O interface as
the first command specified by START 1/0 or
START I/O FAST RELEASE. The ending signals
occurring at the concluding of an operation caused
by a CCW specifying command chaining are not
made available to the program when another opera-
tion is initiated by the command chaining; the chan-
nel continues execution of the channel program. If,
however, an unusual condition has been detected,
the ending signals cause suppression of command
chaining and a termination of the channel program.

Conditions that initiate I/O interruptions are
asynchronous to activity in the CPU, and more than
one condition can occur at the same time. The chan-
nel and the CPU establish priority among the condi-
tions so that only one interruption request is pro-
cessed at a time. The conditions are preserved in the
1/0 devices or subchannels until accepted by the
CPU.

Execution of an 1/0 operation or chain of opera-
tions thus involves up to four levels of participation:

1. Except for the effects caused by the integration
of CPU and channel equipment, the CPU is
busy for the duration of execution of START
I/0 or START I/0 FAST RELEASE, which
lasts at most until the addressed I/0 device
responds to the first command.

2. The subchannel is busy with the execution
from the initiation of the operation at the I/0
device until the channel-end condition for the
last operation of the command chain is accept-
ed by the CPU.

3. The control unit may remain busy after the
subchannel has been released and may gener-
ate the control-unit-end condition when it be-
comes free.

4. The I/0 device is busy from the initiation of
the first operation until the device-end condi-
tion associated with the operation is accepted
or cleared by the CPU.

A pending device-end condition causes the associ-
ated device to appear busy, but normally does not
affect the state of any other part of the system. A

pending control-unit-end condition normally blocks
communications through the control unit to any de-
vice attached to it, and a pending channel-end condi-
tion normally blocks all communications through the
subchannel.

Compatibility of Operation

The organization of the I/O system provides for a
uniform method of controlling I/O operations. The
capability of a channel, however, depends on its use
and on the CPU model to which it is attached.
Channels are provided with different data-transfer
capabilities, and an 1/0O device designed to transfer
data only at a specific rate (a magnetic tape unit or a
disk storage, for example) can operate only on a
channel that can accommodate at least this data rate.

The data rate a channel can accommodate de-

pends also on the way the 1/0 operation is programmed.

The channel can sustain its highest data rate

when no data chaining is specified. Data chaining
reduces the maximum allowable rate, and the extent
of the reduction depends on the frequency at which
new CCW:s are fetched and on the address resolu-
tion of the first byte in each new main-storage area.
Furthermore, since in most instances the channel
may share main storage with the CPU and other
channels, activity in the rest of the system affects the
accessibility of main storage and, hence, the instan-
taneous load the channel can sustain.

In view of the dependence of channel capacity on
programming and on activity in the rest of the sys-
tem, an evaluation of the ability of elements in a
specific I/O configuration to function concurrently
must be based on a consideration of both the data
rate and the way the I/O operations are programmed.
Two systems employing identical complements of
1/0 devices may be able to execute certain programs
in common, but it is possible that other programs
requiring, for example, data chaining, may not run
on one of the systems because of the increased load
caused by the data chaining.

Control of Input/Output Devices

| The CPU controls I/0 operations by means of eight
I/0 instructions: START 1/0, START I/0O FAST
RELEASE, TEST I/0, CLEAR 1I/O, HALT I/0,
HALT DEVICE, TEST CHANNEL, and STORE
CHANNEL ID.

The instruction TEST CHANNEL and STORE
CHANNEL ID address a channel; they do not ad-

| dress an I/O device. The other six I/O instructions

address a channel and a device on that channel.

Input/Output Operations 191

Input/Output Device Addressing

An I/0 device and the associated access path are
designated by an 1/0 address. The 1/0 address is a
16-bit binary number and consists of two parts: a
channel address in the eight high-order bit positions
and a device address in the eight low-order bit posi-
tions.

The channel-address field provides for identifying
up to 256 channels. Channel 0 is a byte-multiplexer
channel; channels numbered 1-255 may be either
multiplexer or selector channels.

The number and type of channels available, as
well as their address assignment, depend on the sys-
tem model and the particular installation.

The device address identifies the particular I/0O
device and control unit on the designated channel.
The address identifies, for example, a particular
magnetic tape drive, disk-access mechanism, or
transmission line. Any number in the range 0-255
can be used as a device address, providing facilities
for addressing up to 256 devices per channel. An
exception is some byte-multiplexer channels that
provide fewer than the maximum configuration of
subchannels and hence eliminate the corresponding
unassignable device addresses.

Devices that do not share a control unit with oth-
er devices may be assigned any device address in the
range 0-255, provided the address is not recognized
by any other control unit. Logically, such devices are
not distinguishable from their control unit, and both
are identified by the same address.

Devices sharing a control unit (for example, mag-
netic tape drives or disk-access mechanisms) are
assigned addresses within sets of contiguous num-
bers. The size of such a set is equal to the maximum
number of devices that can share the control unit, or
16, whichever is smaller. Furthermore, such a set
starts with an address in which the number of low-
order zeros is at least equal to the number of bit
positions required for specifying the set size. The
high-order bit positions of an address within such a
set identify the control unit, and the low-order bit
positions designate the device on the control unit.

Control units designed to accommodate more than
16 devices may be assigned nonsequential sets of ad-
dresses, each set consisting of 16, or the number re-
quired to bring the total number of assigned addresses
equal to the maximum number of devices attachable
io the control unit, whichever is smaller. The address-
ing facilities are added in increments of a set so that
the number of device addresses assigned to a control
unit does not exceed the number of devices attached
by more than 15.

192 System/370 Principles of Operation

The control unit does not respond to any address
outside its assigned set or sets. For example, if a
control unit is designed to control devices having
only bits 0000-1001 in the low-order positions of
the device address, it does not recognize addresses
containing 1010-1111 in these bit positions. On the
other hand, a control unit responds to all addresses
in the assigned set, regardless of whether the device
associated with the address is installed. For example,
the IBM 3830 Storage Control Model 2, with four
disk units installed, responds to all of the 16 address-
es within the set assigned to it. If no control unit
responds to an address, the 1/O device appears not
operational. If a control unit responds to an address
for which no device is installed, the absent device
appears in the not-ready state.

Input/output devices accessible through more
than one channel have a distinct address for each
path of communications. This address identifies the
channel and the control unit. For sets of devices
connected to two or more control units, the portion
of the address identifying the device on the control
unit is fixed, and does not depend on the path of
communications.

Except for the rules described, the assignment of
channel and device addresses is arbitrary. The as-
signment is made at the time of installation, and the
addresses normally remain fixed thereafter.

States of the Input/Output System

The state of the I/O system identified by an 1/0
address depends on the collective state of the chan-
nel, subchannel, and I/0 device. Each of these com-
ponents of the I/O system can have up to four
states, as far as the response to an I/O instruction is
concerned. These states are listed in the following
table. The name of the state is followed by its abbre-
viation and a brief definition.

A portion of the I/O system that is available,
interruption-pending, or working is called
"operational." A portion of the I/O system that is
interruption-pending, working, or not-operational is
called "not available."

In the case of a multiplexer channel, the channel
and subchannel are easily distinguishable and, if the
channel is operational, any combination of channel
and subchannel states is possible. Since the selector
channel can have only one subchannel, the channel
and subchannel are functionally coupled, and certain
states of the channel are related to those of the sub-
channel. In particular, the working state can occur
only concurrently in both the channel and subchan-
nel and, whenever an interruption condition is pend-

Name Abbreviation and Definition

Channel

Available A None of the following states

Interruption pending I Interruption immediately available from channel
Working w Channel operating in burst mode

Not operational N Channel not operational

Subchannel

Available A None of the following states

Interruption pending | Information for CSW available in subchannel
Working W Subchannel executing an operation

Not operational N Subchannel not operational

1/0 Device

Available A None of the following states

Interruption pending I Interruption condition pending in device
Working w Device executing an operation

Not operational N Device not operational

Input/Output System States

ing in the subchannel, the channel also is in the same
state. The channel and subchannel, however, are not
synonymous, and an interruption condition not asso-
ciated with data transfer, such as attention, does not
affect the state of the subchannel. Thus, the sub-
channel may be available when the channel has an
interruption condition pending. Consistent distinc-
tion between the subchannel and channel permits
selector and multiplexer channels to be covered uni-
formly by a single description.

The device referred to in the preceding table in-
cludes both the device proper and its control unit.
For some types of devices, such as magnetic tape
units, the working and the interruption-pending
states can be caused by activity in the addressed
device or control unit. A '"not available" shared con-
trol unit imposes its state on all devices attached to
the control unit. The states of the devices are not
related to those of the channel and subchannel.

When the response to an I/O instruction is deter-
mined on the basis of the states of the channel and
subchannel, the components further removed are not
interrogated. Thus, ten composite states are identi-
fied as conditions for the execution of the I/0 in-
struction. Each composite state is identified in the
following discussion by three alphabetic characters;
the first character position identifies the state of the
channel, the second identifies the state of the sub-
channel, and the third refers to the state of the de-
vice. Each character position can contain A, I, W, or
N, denoting the state of the component. The symbol
X in place of a letter indicates that the state of the
corresponding component is not significant for the
execution of the instruction.

Available (AAA): The addressed channel, subchan-
nel, control unit, and 1/0 device are operational, are

not engaged in the execution of any previously initi-
ated operations, and do not contain any pending
interruption conditions.

Interruption Pending in Device (AAI) or Device
Working (AAW): The addressed channel and sub-
channel are available. The addressed control unit or
I/0 device is executing a previously initiated opera-
tion or contains a pending interruption condition.
These situations are possible:

1. The device is executing an operation, such as
rewinding tape or seeking on a disk file, after
signaling the channel-end condition.

2. The control unit associated with the device is
executing an operation, such as backspacing
file on a magnetic tape unit, after signaling the
channel-end condition.

3. The device or control unit is executing an oper-
ation on another subchannel or channel.

4. The device or control unit contains the device-
end, control-unit-end, or attention condition or
a channel-end condition associated with a ter-
minated operation.

Device Not Operational (AAN): The addressed
channel and subchannel are available. The addressed
1/0 device is not operational. A device appears not
operational when no control unit recognizes the ad-
dress. This occurs when the control unit is not pro-
vided in the system, when power is off in the control
unit, or when the control unit has been logically
switched off the I/O interface. The not-operational
state is indicated also when the control unit is pro-
vided and is designed to attach the device, but the
device has not been installed and the address has not
been assigned to the control unit (for example, the
second set of lines on the IBM 2702 Transmission

Input/Output Operations 193

Control). See also "Input/Output Device Address-
. "
ing.

If the addressed device is not installed or has been
logically removed from the control unit, but the as-
sociated control unit is operational and the address
has been assigned to the control unit (for example,
access mechanism 7 on the IBM 3830 Storage Con-
trol that has only access mechanisms 0-3 installed)
the device is said to be not-ready. When an instruc-
tion is addressed to a device in the not-ready state,
the control unit responds to the selection and indi-
cates unit-check whenever the not-ready state pre-
cludes a successful execution of the operation. See
"Unit Check."

Interruption Pending in Subchannel (AIX): The
addressed channel is available. An interruption con-
dition is pending in the addressed subchannel be-
cause of the concluding of the portion of the opera-
tion involving the use of channel facilities. The sub-
channel is in a position to provide information for a
complete CSW. The interruption condition can indi-
cate concluding of an operation at the addressed 1/0
device or at another device on the subchannel. The
state of the addressed device is not significant, ex-
cept when TEST 1/0 is addressed to the device as-
sociated with the concluded operation, in which case
the CSW contains status information provided by
the device.

The state AIX does not occur on the selector
channel. On the selector channel, the existence of an
interruption condition in the subchannel immediately
causes the channel to assign to this condition the
highest priority for I/O interruptions and, hence,
leads to the state IIX.

Subchannel Working (AWX): The addressed chan-
nel is available. The addressed subchannel is execut-
ing a previously initiated operation or chain of oper-
ations and has not yet received the channel end for
the last operation. The state of the addressed device
is not significant, except when HALT I/0 or HALT
DEVICE is issued. During HALT I/0 and HALT
DEVICE, the state of the device may be interrogat-
ed and will then be indicated in either the CSW or
the condition code.

The subchannel-working state does not occur on
the selector channel since all operations on the selec-
tor channel are executed in the burst mode and
cause the channel to be in the working state
(WWX).

194 System/370 Principles of Operation

Subchannel Not Operational (ANX): The addressed
channel is available. The addressed subchannel on
the multiplexer channel is not operational. A sub-
channel is not operational when it is not provided in
the system. This state cannot occur on the selector
channel.

Interruption Pending in Channel (IXX): The ad-
dressed channel is not working and has established
which device will cause the next I/O interruption
from this channel. The state where the channel con-
tains a pending interruption condition is distin-
guished only by the instruction TEST CHANNEL.
This instruction does not cause the subchannel and
I/0 device to be interrogated. The other I/0O in-
structions, with the exception of STORE CHAN-
NEL ID, consider the channel available when it con-
tains a pending interruption condition. A channel
with a pending interruption condition may be con-
sidered to be working by the instruction STORE
CHANNEL ID. When the channel assigns priority
for interruptions among devices, the interruption
condition is preserved in the I/O device or subchan-
nel. (See "'Interruption Conditions.")

Channel Working (WXX): The addressed channel
is operating in the burst mode. In the case of the
multiplexer channel, a burst of bytes is currently
being handled. In the case of the selector channel, an
operation or a chain of operations is currently being
executed, and the channel end for the last operation
has not yet been reached. The states of the ad-
dressed device and, in the case of the multiplexer
channel, of the subchannel are not significant. De-
pending on the channel type and system model,
TEST 1/0 and HALT DEVICE may consider the
channel to be available when the channel is working
with a device other than the addressed device.

Channel Not Operational (NXX): The addressed
channel is not operational. A channel is not opera-
tional when it is not provided in the system, when
power is off in the channel, or when it is not config-
ured to the CPU. The states of the addressed 1/0
device and subchannel are not significant.

Resetting of the Input/QOutput System
Two types of resetting can occur in the I/0 system:
an I/0 system reset and an 1/0 selective reset. The

response of each type of I/0O device to the two kinds
of reset is specified in the SL and SRL publications
for the device.

I/0O System Reset

The I/0 system reset is performed when the CPU to
which the channel is configured performs a program
reset, initial-program reset, system-clear reset, or
power-on reset, when a power-on sequence is per-
formed by the channel, and, under certain condi-
tions, when a channel detects equipment malfunc-
tions.

I/0 system reset causes the channel to conclude
operations on all subchannels. Status information
and all interruption conditions in all subchannels are
reset, and all operational subchannels are placed in
the available state. The channel signals system reset
to all I/O devices attached to it.

I/O Selective Reset

The 1/0 selective reset is performed by some chan-
nels when they detect certain equipment malfunc-
tions.

1/0 selective reset causes the channel to signal
selective reset to the device that is connected to the
channel at the time the malfunction is detected. No
subchannels are reset.

Effect of Reset on a Working Device

If the device is currently communicating over the
1/0 interface, the device immediately disconnects
from the channel. Data transfer and any operation
using the facilities of the control unit are immediate-
ly concluded, and the I/O device is not necessarily
positioned at the beginning of a block. Mechanical
motion not involving the use of the control unit,
such as rewinding magnetic tape or positioning a
disk-access mechanism, proceeds to the normal
stopping point, if possible. The device appears in the
working state until the termination of mechanical
motion or the inherent cycle of operation, if any,
whereupon it becomes available. Status information
in the device and control unit is reset, but an inter-
ruption condition may be generated upon completing
any mechanical operation.

Reset Upon Malfunction

The type of reset executed in the channel depends
on the type of malfunction and the channel. When a
reset occurs upon malfunction, the program is alert-
ed by an interruption or, when the malfunction is
detected during the execution of an I/O instruction,
by the setting of the condition code. In either case
the CSW identifies the condition. The device ad-
dressed by the I/0 instruction is not necessarily the
device that is reset. In channels sharing equipment
with the CPU, malfunctioning detected by the chan-
nel may be indicated by a machine-check interrup-
tion, which may or may not be followed by an 1/0

interruption. When no I/0 interruption takes place,
a CSW is not stored, and a device is not identified.
The method of identifying malfunctions depends on
the model.

Condition Code

The results of certain tests by the channel and de-
vice, and the original state of the addressed part of
the I/0 system are used during the execution of an
1/0 instruction to set one of four condition codes in
the PSW. The condition code is set at the time the
execution of the instruction is concluded, that is, the
time the CPU is released to proceed with the next
instruction. The condition code ordinarily indicates
whether or not the channel has performed the in-
struction and, if not, the reason for the rejection. In
the case of START I/0 FAST RELEASE executed
independently of the device, a condition code 0 may
be set that is later superseded by a deferred condi-
tion code stored in the CSW. Branch-on-condition
operations following an operation that sets the con-
dition code use the code for decision-making.

The following table lists the conditions identified
and the corresponding condition codes for each I/O
instruction. The states of the I/O system and associ-
ated abbreviations were previously defined in
"States of the Input/Output System." The digits in
the table represent the decimal value of the code.
The instructions START I/0 and START 1I/0
FAST RELEASE can set code 0 or 1 for the AAA
state, depending on the type of operation initiated.
Equipment malfunctions and programming errors
generally cause condition code 1 to be set and the
CSW to be stored.

The available condition is indicated only when no
errors are detected during the execution of the I/0
instruction.

When a subchannel on the multiplexer channel
contains a pending interruption condition (state
AIX), the I/0 device associated with the concluded
operation normally is in the interruption-pending
state. When the channel detects during the execu-
tion of TEST 1/0 that the device is not operational,
condition code 3 is set. Similarly, condition code 3 is
set when HALT 1/0 or HALT DEVICE is ad-
dressed to a subchannel in the working state (state
AWX), but the device turns out to be not operation-
al.

Error conditions, including all equipment or pro-
gramming errors detected by the channel or the 1/0
device during execution of the I/O instruction, gen-
erally cause the CSW to be stored. On some models,
however, a channel equipment error may cause a
machine-check interruption but no I/0 interruption
to occur, with no storing of the CSW. Three types of

Input/Output Operations 195

Condition Code Settings

*

*

The entries in this column indicate the condition-code
setting when the CLRIO function is executed.

Whenever condition code 1 is set, the CSW or its status
portion is stored at location 64 during execution of the
instruction.

When CLEAR 1/0 encounters the WXX state, either
condition code 2 is set, or the channel is treated as
available and the condition code is set according to the
state of the subchannel. When the channel is treated as
available, the condition codes for the WXX states are the
same as for the AXX states.

***A condition code 1 (with the CSW stored) or 2 may be

#

set, depending on the channel.

The condition code depends on the state of the subchannel,
the channel type, and the system model. If the sub-
channel is not operational, a condition code 2 or 3 is set.

If the subchannel is available or working with the

addressed device, a condition code 2 is set. Otherwise, a
condition code O or 2 is set.

When a ““device not operational’’ response is received in
selecting the addressed device, condition code 3 is set.

START I/O FAST RELEASE may cause the same
condition code to be set as for START 1/0 or may cause
condition code O to be set.

Condition-Code Settings for I/O States and Instructions

€ITors can occur:

Channel Equipment Error: The channel can detect
the following equipment errors during execution of
START I/0, START 1/O FAST RELEASE, TEST
1/0, CLEAR I/0O, HALT 1/0, and HALT DE-
VICE:

1. The device address that the channel received
on the interface during initial selection either
has a parity error or is not the same as the one

196 System/370 Principles of Operation

Conditions 1/0 State §:8F TIO cLRIO! HIO HDV ~ TCH STIDC

Available AAA 0,1*@ 0 0 1* 1* 0 0
Interruption pending in device AAl 1@ 1* 0 1* 1* 0 0
Device working AAW 1*@ 1* 0 1* i* 0 0
Device not operational AAN 3@ 3 0 3 3 0 0
Interruption pending in subchannel AlIX

For the addressed device 2 1* 1* 0 0 0

For another device 2 2 0 0 0 0 0
Subchannel working AWX

With the addressed device 2 2 1 1 1%# 0 0

With another device 2 2 0 1*# 0 0 0
Subchannel not operational ANX 3 3 3 3 3 0 0
Interruption pending in channel IXX See Note 1 ##
Channel working WXX

With the addressed device 2 2 *x 2 + 2 ##

With another device 2 2e ** 2 # 2 ##
Channel not operational NXX 3 3 3 3 3 3 3
Explanation:
1

+ The condition code depends on the 1/Q interface sequence, the
channel type, and the system model. If the channel ascertains
that the device received the signal to terminate, a condition code
1 is set and the CSW stored. Otherwise, a condition code 2 is
set.

When the channel is unable to store the channel 1D because of
the working or interruption pending state, a condition code 2
is set. If the working or interruption pending state does not
preclude storing the channel ID, a condition code O is set.

e If the subchannel is interruption pending for the addressed
device, condition code 1 may be set depending on the channel
type.

Note: For the purpose of executing START 1/0, START /O
FAST RELEASE, TEST 1/0, CLEAR I/O, HALT DEVICE, and
HALT 1/0, a channel containing a pending interruption condition
appears the same as an available channel, and the condition-code
setting depends on the states of the subchannel and device. The
condition codes for the | XX states are the same as for the AXX
states, where the Xs represent the states of the subchannel and the
device. Asan example, the condition code for the |AW state is
the same as for AAW.

the channel sent out. Some device other than
the one addressed may be malfunctioning.

2. The unit-status byte that the channel received
on the interface during initial selection has a
parity error.

3. A signal from the 1/O device occurred at an
invalid time or had invalid duration.

4. The channel detected an error in its control
equipment. (This is also true for STORE
CHANNEL ID and TEST CHANNEL.)

The channel may perform an 1/0 selective reset
or an I/O system reset or may generate a halt signal,
depending on the type of error and the model. If a
CSW is stored, channel control check or interface
control check is indicated, depending on the type of
error. v

Channel Programming Error: The channel can de-
tect the following programming errors during execu-
tion of START 1/0 or START I/0 FAST RE-
LEASE. All of the error conditions are indicated
during START I/0, and during START 1/0 FAST
RELEASE when it is executed as START 1/0, by
the condition-code setting and by the status portion
of the CSW. When the SIOF function is performed,
the first two error conditions are indicated as for
START I/0, and the remaining conditions are indi-
cated in a subsequent interruption.

. Invalid CCW address specification in CAW.

. Invalid CAW format.

. Invalid CCW address in CAW.

. First-CCW location protected against fetching.

. First CCW specifies transfer in channel.

. Invalid command code in first CCW.

. Invalid count in first CCW.

. Invalid format for first CCW.

. If channel indirect data addressing (CIDA) was
specified, an invalid data address specification
in the first CCW.

10. If CIDA was specified, an invalid data address
in the first CCW.,
11. If CIDA was specified, the first-IDAW loca-
tion protected against fetching.
12. If CIDA was specified, invalid format for the
first IDAW.
The CSW indicates program check, except for
items 4 and 11, for which protection check is indi-
cated.

Nelio REN e Y D e

Device Error: Programming or equipment errors
detected by the device during the execution of
START I/0, or START I/O FAST RELEASE are
indicated by unit check or unit exception in the
CSW.

The conditions responsible for unit check and unit
exception for each type of I/O device are detailed in
the SL or SRL publication for the device.

Instruction Formats
Al 1/0 instructions use the following S format:

Op Code By Dy

0 16 20 31

Except for STORE CHANNEL ID, bit positions
8-14 of these instructions are ignored. Bit position
15 is ignored by the instruction TEST CHANNEL
but is decoded as part of the operation code for
START I/0O, START 1/0 FAST RELEASE, TEST
1/0, CLEAR I/0O, HALT 1/0, and HALT DE-
VICE.

The second-operand address specified by the By
and D3 fields is not used to designate data, but in-
stead is used to identify the channel and I/O device.
Address computation follows the rules of address
arithmetic. The address has the following format:

Channel Device

0 16 24 31

Bit positions 0-7 are not part of the address. Bit
positions 8-15, which constitute the high-order por-
tion of the three-byte address, are ignored. Bit posi-
tions 16-23 of the sum contain the channel address,
while bit positions 24-31 identify the device on the
channel and, additionally in the case of the multi-
plexer channel, the subchannel.

All I/ 0 instructions cause a serialization function
to be performed. CPU operation is delayed until all
previous CPU accesses to main storage have been
completed, as observed by channels and other
CPUs, and then the addressed channel is selected.
No subsequent instructions or their operands are
accessed until the execution of the I/0 instruction
has been completed.

Nofte: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic oper-
and designation for the IBM System/370 assembly
language are shown with each instruction. In the
case of START 1/0, for example, SIO is the mne-
monic and Dy(B,) the operand designation.

List of Instructions

The mnemonics, format, and operation codes of the
1/0 instructions follow. The table also indicates that
all I/0 instructions cause a program interruption
when they are encountered in the problem state, and
that all I/O instructions set the condition code.

Programming Note

The instructions START 1I/0, START I/0O FAST
RELEASE, TEST I/0O, CLEAR 1/0, HALT 1/0,
HALT DEVICE, and STORE CHANNEL ID cause
a CSW to be stored. To prevent the contents of the
CSW stored by the instruction from being destroyed
by an immediately following I/O interruption, the
CPU must be disabled for all I/O interruptions be-
fore START I/0, START 1/0 FAST RELEASE,

Input/Output Operations 197

TEST 1/0, CLEAR 1/0O, HALT 1/0, HALT DE-
VICE, and STORE CHANNEL ID are issued and
must remain disabled until the information in the
CSW provided by the instruction has been acted
upon or stored elsewhere for later use.

Clear 1/0
CLRIO Dy(Bjy) [S]
9D01 By D,
0 16 20 31

Either a TIO or CLRIO function is performed, de-
pending on the channel and the block-multiplexing
control: control register 0, bit 0. The TIO function is
performed when the CLRIO function is not imple-
mented by the channel or when the block-
multiplexing control bit is zero.

The TIO function is described in the definition of
the instruction TEST 1/0.

Bits 8-14 of the instruction are ignored. Bit posi-
tions 16-31 of the second-operand address identify
the channel, subchannel, and I/0 device to which
the instruction applies.

The CLRIO function causes the current operation
with the addressed device to be discontinued and the
state of the operation at the time of the discontinua-
tion to be indicated in the stored CSW.

When the subchannel is available, interruption
pending with another device, or working with anoth-
er device, no channel action is taken, and condition
code 0 is set. Channels not capable of determining

subchannel states while in the working state may
instead set condition code 2.

When the subchannel is either working with the
addressed device or in the interruption-pending state
with the addressed device, the CLRIO function
causes the channel to discontinue the operation with
the addressed device by storing the status of the
operation in the CSW and making the subchannel
available. When the channel is working with the
addressed device, the instruction causes the device to
be signaled to terminate the current operation. Some
channels may, instead, indicate busy and cause no
channel action.

When any of the following conditions occurs, the
CLRIO function causes the CSW at location 64 to
be stored. The contents of the entire CSW pertain to
the I/O device addressed by the instruction.

1. The channel is in the available or interruption-
pending state, and the subchannel contains an
interruption-pending condition for the ad-
dressed device or is working with the addressed
device. The protection-key, command-address,
and count fields describe the state of the opera-
tion at the time of the execution of the instruc-
tion.

2. The channel is working with the addressed
device. The protection-key, command-address,
and count fields describe the state of the opera-
tion at the time the instruction is executed.
(Some channels alternatively indicate busy un-
der this condition.)

3. The channel is working with a device other
than the one addressed, and the subchannel
contains an interruption-pending condition for

Name Mnemonic Characteristics Code
CLEAR /0O CLRIO S C M o9D01*
HALT DEVICE HDV S C M 9EO01*
HALT 1/0O HIO S C M 9EO0*
START I/O SI0 S C ™M 9C00*
START /O FAST RELEASE SIOF) (o] M 9Co1*
STORE CHANNEL ID STIDC [Cc M B203
TEST CHANNEL TCH S c M 9F00+
TEST 1/0O TIO S C M 9D00*
Explanation:

C Condition code is set.
Privileged-operation exception.
S instruction format.

0 =2

Bits 8-14 of the operation code are ignored.

R

Bits 8-15 of the operation code are ignored.

Input/Qutput-Instruction Summary

198 System/370 Principles of Operation

the addressed device or is working with the
addressed device. The protection-key,
command-address, and count fields describe
the state of the operation at the time CLEAR
1/0 is executed. (Some channels alternatively
indicate busy under these conditions.)

4. The channel detected an equipment error dur-
ing the execution of the instruction. The CSW
identifies the error condition. The states of the
channel and the 1/O operations in progress are
unpredictable. The limited channel logout, if
stored, indicates a sequence code of 000.

When CLEAR 1/0 cannot be executed because

of a pending-logout condition that affects the opera-
tional capability of the channel, a full CSW is stored.
The fields in the CSW are all set to zeros, with the
exception of the logout-pending and channel-control-
check bits, which are set to ones. No channel logout
is associated with this status.

Program Exceptions:
Privileged operation

Resulting Condition Code:
0 No operation in progress for the
addressed device
1 CSW stored
2 Channel busy
3 Not operational

The condition code set by the CLRIO function
for all possible states of the I/0 system is shown
graphically as follows. The condition code set when
CLEAR 1/0 causes the TIO function to be per-
formed is shown graphically in the definition of the
instruction TEST 1/0.

Programming Note

Since some channels cause a condition code 2 to be
set when the instruction is received and the channel
is in the working state, it may be useful to issue a
halt instruction and then CLEAR 1/0O to the desired
address. Using HALT DEVICE will ensure that
condition code 2 is received on the CLEAR I/O
only when the channel is working with a device oth-
er than the one addressed. Using HALT 1/0 will
ensure that the current working state, if any, is termi-
nated without regard for the address.

Because of the inability of CLEAR 1I/0 to termi-
nate operations on some channels when in the work-
ing state, the instruction is not a suitable substitute
for HALT I/O or HALT DEVICE.

The combination of HALT DEVICE followed by
CLEAR I/0 can be used to clear out all activity on
a channel by executing the two instructions for all
device addresses on the channel.

Halt Device

HDV D2(B2) [S]

9EO01

B,y D,

0 16 20 31

The current I/O operation at the addressed 1/0
device is terminated. The subsequent state of the
subchannel depends on the type of channel. HALT
DEVICE is executed only when the CPU is in the
supervisor state. Bits 8-14 of the instruction are
ignored.

A | W+ WH, N

Channel } } { 1'_”_! 3 {
A 1# 1H#F WEWHE N A 1# 1FE WE WHEN A I I1HE WE WH N
Subch | | I | | | | i | ; ! ﬁ| | | !] | 1 LTJ
ubehanne "0 0 "1 o 1370 0o 1r 0 a3 F T H T R

A Available
| Interruption pending

1# = Interruption pending for a device other than
the one addressed
I#=lInterruption pending for the addressed device
W Working
W+# = Working with a device other than the one
addressed
WH= Working with the addressed device
N Not operational
* CSW stored

Condition Codes Set by CLEAR I/0

+ In the W#AX, WA #X, and WAW#X states, a
condition code O or 2 may be set, depending on the
channel.

1 In the WAH# X, WANVH X, and WH# XX states, a
condition code 1 {with the CSW stored) or 2 may be set,
depending on the channel.

+tt In the W#NX state, a condition code 2 or 3 may be set,

depending on the channel.

Note: Underscored codes pertain to conditions that can occur
only on the multiplexer channel.

Input/Output Operations 199

Bits 16-31 of the second-operand address identify
the channel, the subchannel, and the 1/0 device to
which the instruction applies.

When the channel is either available or in the
interruption pending state with the subchannel avail-
able or working with the addressed device, HALT
DEVICE causes the addressed device to be selected
and to be signaled to terminate the current opera-
tion, if any. If the subchannel is working with the
addressed device, HALT DEVICE also causes the
subchannel to be set up to signal termination of the
device operation the next time the device requests or
offers a byte of data, if any. Chaining, if indicated in
the subchannel, is suppressed. If the subchannel is
available, the subchannel is not affected.

When the channel is either available or in the
interruption pending state with the subchannel either
working with a device other than the one addressed
or in the interruption pending state, no action is tak-
en.

When the channel is working in burst mode with
the addressed device, data transfer across the I/0
interface for the operation is immediately terminat-
ed, and the device immediately disconnects from the
channel. Chaining, if indicated in the subchannel, is
suppressed.

When the channel is working in burst mode with a
device other than the one addressed, and the sub-
channel is available, in the interruption pending
state, or working with a device other than the one
addressed, no action is taken. If the subchannel is
working with the addressed device, the subchannel is
set up to signal termination of the device operation
the next time the device requests or offers a byte of
data, if any. Chaining, if indicated in the subchannel,
is suppressed.

When the channel is working in burst mode with a
device other than the one addressed and the sub-
channel is not operational, is in the interruption
pending state, or is working with a device other than
the one addressed, the resulting condition code may,
in some channels, be determined by the subchannel
state.

Termination of a burst operation by HALT DE-
VICE on a selector channel causes the channel and
subchannel to be placed in the interruption pending
state. Generation of the interruption condition is not
contingent on the receipt of a status byte from the
device. When HALT DEVICE causes a burst opera-
tion on a byte-multiplexer channel to be terminated,
the subchannel associated with the burst operation
remains in the working state until the device pro-
vides ending status, whereupon the subchannel en-
ters the interruption pending state. The termination
of a burst operation by HALT DEVICE on a block-

200 System/370 Principles of Operation

multiplexer channel may, depending on the model
and the type of subchannel, take place as for a selec-
tor channel or may allow the subchannel to remain
in the working state until the device provides ending
status.

When any of the three conditions numbered be-
low occurs, HALT DEVICE causes the 16-bit unit-
and channel-status portion of the CSW to be re-
placed by a new set of status bits. The contents of
the other fields of the CSW are not changed. The
CSW stored by HALT DEVICE pertains only to the
execution of HALT DEVICE and does not describe
under what conditions the I/O operation at the ad-
dressed subchannel is terminated. The extent of data
transfer, and the conditions at the termination of the
operation at the subchannel, are provided in the
CSW associated with the interruption condition
caused by the termination. The three conditions are:

1. The addressed device is selected and signaled
to terminate the current operation, if any. The
CSW then contains zeros in the status field
unless a machine malfunction is detected.

2. The control unit is busy and the device cannot
be given the signal to terminate the operation.
The CSW unit-status field contains the busy
and status modifier bits. The channel-status
field contains zeros unless a machine malfunc-
tion is detected.

3. The channel detects a machine malfunction
during the execution of HALT DEVICE. The
status bits in the CSW then identify the error
condition. The state of the channel and the
progress of the I/O operation are unpredicta-
ble.

When HALT DEVICE cannot be executed be-
cause of a pending logout condition which affects
the operational capability of the channel or subchan-
nel, a full CSW is stored. The fields in the CSW are
all set to zeros, with the exception of the logout-
pending bit and the channel control check bit, which
are set to ones. No channel logout is associated with
this status.

When HALT DEVICE causes data transfer over
the I/0 interface to be terminated, the control unit
associated with the operation remains unavailable
until the data-handling portion of the operation in
the control unit is concluded. Concluding of this
portion of the operation is signaled by the generation
of channel end. This may occur at the normal time
for the operation, or earlier, or later, depending on
the operation and type of device. If the control unit
is shared, all devices attached to the control unit
appear in the working state on that channel until the
channel end condition is accepted by the CPU. The
1/0 device executing the terminated operation re-

mains in the working state until the end of the inher-
ent cycle of the operation, at which time device end
is generated. If blocks of data at the device are de-
fined, as in read-type operations on magnetic tape,
the recording medium is advanced to the beginning
of the next block.

When HALT DEVICE is issued at a time when
the subchannel is available and no burst operation is
in progress, the effect of the HALT DEVICE signal
depends partially on the type of device and its state.
In all cases, the HALT DEVICE signal has no effect
on devices that are not in the working state or are
executing a mechanical operation in which data is
not transferred across the I/0 interface, such as
rewinding tape or positioning a disk access mecha-
nism. If the device is executing a type of operation
that is unpredictable in duration, or in which data is
transferred across the 1/0 interface, the device in-
terprets the signal as one to terminate the operation.
Pending attention or device end conditions at the
device are not reset.

Program Exceptions:
Privileged operation

Resulting Condition Code:
0 Subchannel busy with another device
or interruption pending
1 CSW stored
2 Channel working
3 Not operational

The condition code set by HALT DEVICE for all
possible states of the I/0 system is shown graphical-

ly. See "States of the Input/Output System' for a
detailed definition of the A, I, W, and N states.

Programming Note
Some selector and byte-multiplexer channels de-
signed prior to the defining of HALT DEVICE (for
example, the 2860), will execute HALT DEVICE as
HALT 1/0. A program can ensure complete com-
patibility between HALT DEVICE and HALT 1/0
on such channels by observing the following conven-
tions:
1. On a byte-multiplexer channel, do not issue
HALT DEVICE to a multiplexing device when
a burst operation is in progress on the channel.

2. On a byte-multiplexer channel, do not issue
HALT DEVICE to a device on a shared sub-
channel while that subchannel is working with
a device other than the one addressed.

3. On a selector channel in the working state, do
not issue HALT DEVICE to any device other
than the one with which the channel is work-
ing.

The execution of HALT DEVICE always causes
data transfer across the 1/0 interface for the ad-
dressed device to be terminated. The condition code
and the CSW (when stored) indicate whether the
control unit was signaled to terminate its operation
during the execution of the instruction. If the control
unit was not signaled to terminate its operation, the
condition code and the CSW (when stored) imply
the conditions under which the execution of a HALT
DEVICE for the same address will cause the control
unit to be signaled to terminate.

A | Wi W# N
Channel ' = I ' t—
r f l e 'a!
Subchannel A | ! l‘.Nﬁ wit L P |W*= i =N =A LA Ny
I glgl |_3_| lplg igli"r'zlij
Control Unit llA!‘!WgNjJ A '!WJ|N4 LA! W [N l l.__{-—(.—-l-—-{A W N
— Device 1% 1* 1* 3 1* 1% 1* 3 1% 1% 1* '3 rirar 3

A Available
1 Interruption pending
w Working

W# = Working with a device other than the
one addressed

W# = Working with the addressed device
N Not operational
CSW stored

*

Condition Codes Set by HALT DEVICE

@ In the W#XX state, either condition code 1 (with CSW stored) or
condition code 2 may be set, depending on the channel and the
conditions in the channel. Condition code 1 (with CSW stored) can be
set only if the control unit has received the signal to terminate.

+ In the W#IX and W£W#X states, either condition code 0 or 2 may be
set, depending on the channel and the conditions in the channel.

$ In the W#NX state, either condition code 2 or 3 may be set, depending.
on the channel type and system model.

Note: Underscored condition codes pertain to conditions that can occur

only on the multiplexer channel.

Input/Output Operations 201

Condition Code 0 indicates that HALT DE-
VICE cannot signal the control unit until an inter-
ruption condition on the same subchannel is cleared.

Condition Code 1 with Control-Unit-Busy Sta-
tus in the CSW indicates that HALT DEVICE
cannot signal the control unit until the control-unit-
end status is received from that control unit.

Condition Code 1 with Zeros in the Status
Field of the CSW indicates that the addressed
device was selected and signaled to terminate the
current operation, if any.

Condition Code 2 indicates that the control unit
cannot be signaled until the end of a busy condition
in the channel. The end of the busy condition can
be detected by noting an interruption from the chan-
nel or by noting the results of repeatedly executing
HALT DEVICE.

Condition Code 3 indicates that manual interven-
tion is required to allow HALT DEVICE to signal
the control unit to terminate.

Halt 1/0
HIO Dy(By) [S]
9E00 B, D,
0 16 20 31

Execution of the current 1/O operation at the ad-
dressed I/0 device, subchannel, or channel is termi-
nated. The subsequent state of the subchannel de-
pends on the type of channel. The instruction HALT
1/0 is executed only when the CPU is in the supervi-
sor state. Bits 8-14 of the instruction are ignored.

Bits 16-31 of the second-operand address identify
the channel, and, when the channel is not working,
identify the subchannel and the 1/0 device to which
the instruction applies.

When the channel is either available or in the
interruption pending state, with the subchannel ei-
ther available or working, HALT I/0 causes the
addressed device to be selected and to be signaled to
terminate the current operation, if any. If the sub-
channel is available, its state is not affected. If, on
the byte-multiplexer channel, the subchannel is
working, data transfer is immediately terminated, but
the subchannel remains in the working state until the
device provides the next status byte, whereupon the
subchannel is placed in the interruption pending
state.

When HALT I/0 is issued to a channel operating
in the burst mode, data transfer for the burst opera-
tion is terminated, and the device performing the
burst operation is immediately disconnected from

202 System/370 Principles of Operation

the channel. The subchannel and I/O device address
in the instruction, in this case, is ignored.

The termination of a burst operation by HALT
1/0 on the selector channel causes the channel and
subchannel to be placed in the interruption pending
state. Generation of the interruption condition is not
contingent on the receipt of a status byte from the
device. When HALT 1/0 causes a burst operation
on the byte-multiplexer channel to be terminated,
the subchannel associated with the burst operation
remains in the working state until the device pro-
vides channel end, whereupon the subchannel enters
the interruption pending state. The termination of a
burst operation by HALT 1/0 on a block-
multiplexer channel may, depending on the model
and the type of subchannel, take place as for a selec-
tor channel or may allow the subchannel to remain
in the working state until the device provides ending
status.

On the byte-multiplexer channel operating in the
byte-interleave mode, the device is selected and the
instruction executed only after the channel has ser-
viced all outstanding requests for data transfer for
previously initiated operations, including the opera-
tion to be halted. If the control unit does not accept
the HALT I/0O signal because it is in the not opera-
tional or control-unit-busy state, the subchannel, if
working, is set up to signal termination of device
operation the next time the device requests or offers
a byte of data. If command chaining is indicated in
the subchannel and the device presents status next,
chaining is suppressed.

When the addressed subchannel has a pending
interruption condition, with the channel in the avail-
able or interruption pending state, HALT 1/0 does
not cause any action.

When any of the following conditions occurs,
HALT I/0 causes the status portion, bit positions
32-47, of the CSW to be replaced by a new set of
status bits. The contents of the other fields of the
CSW are not changed. The CSW stored by HALT
1/0 pertains only to the execution of HALT I/0
and does not describe under what conditions the I/0
operation at the addressed subchannel is concluded.
The extent of data transfer, and the conditions at the
termination of the operation at the subchannel, are
provided in the CSW associated with the interrup-
tion condition due to the termination.

1. The addressed device has been selected and
signaled to terminate the current operation.
The CSW contains zeros in the status field un-
less an equipment error is detected.

2. The channel attempted to select the addressed
device, but the control unit could not accept
the HALT I/O signal because it is executing a

previously initiated operation or has pending
an interruption condition associated with a de-
vice other than the one addressed. The signal
to terminate the operation has not been trans-
mitted to the device, and the subchannel, if in
the working state, has been set up to signal
termination the next time the device identifies
itself. The CSW unit-status field contains the
busy and status modifier bits. The channel-
status field contains zeros unless an equipment
error is detected.

3. The channel detected an equipment malfunc-
tion during the execution of HALT I/0. The
status bits in the CSW identify the error condi-
tion. The state of the channel and the progress
of the 1/0 operation are unpredictable.

When HALT I/0 cannot be executed because of

a pending logout condition which affects the opera-
tional capability of the channel or subchannel, a full
CSW is stored. The fields in the CSW are all set to
zeros, with the exception of the logout-pending bit
and the channel control check bit, which are set to
ones. No channel logout is associated with this sta-
tus.

When HALT 1/0 causes data transfer to be termi-
nated, the control unit associated with the operation
remains unavailable until the data-handling portion
of the operation in the control unit is terminated.
Termination of the data-transfer portion of the oper-
ation is signaled by the generation of channel end,
which may occur at the normal time for the opera-
tion, earlier, or later, depending on the operation and
type of device. If the control unit is shared, all de-
vices attached to the control unit appear in the

working state until the channel end condition is ac-
cepted by the CPU. The 1/0 device executing the
terminated operation remains in the working state
until the end of the inherent cycle of the operation,
at which time device end is generated. If blocks of
data at the device are defined, such as reading on
magnetic tape, the recording medium is advanced to
the beginning of the next block.

When HALT I/0 is issued at a time when the
subchannel is available and no burst operation is in
progress, the effect of the HALT I/0O signal depends
on the type of device and its state and is specified in
the SL or SRL publication for the device. The
HALT 1/0 signal has no effect on devices that are
not in the working state or are executing an opera-
tion of a fixed duration, such as rewinding tape or
positioning a disk-access mechanism. If the device is
executing a type of operation that is variable in du-
ration, the device interprets the signal as one to ter-
minate the operation. Pending attention or device
end conditions at the device are not reset.

Program Exceptions:
Privileged operation

Resulting Condition Code:

0 Interruption pending in subchannel

1 CSW stored

2 Burst operation terminated

3 Not operational

The condition code set by HALT 1/0 for all pos-
sible states of the I/O system is shown graphically as
follows. See 'States of the Input/Output System"
for a detailed definition of the A, I, W, and N states.

Channel !

Subchanne! t —t

I (W N
I2]3‘I

Control Unit

— Device Pe T Tya T

Available
Interruption pending
Working

Not operational
CSW stored

H *r23 - >

a condition code 3 is set.

When a device-not-operational response is received in selecting the addressed device,

Note: Underscored condition codes pertain to conditions that can occur only on the

multiplexer channel.

Condition Codes Set by HALT 1/0

Input/Output Operations 203

Programming Note

The instruction HALT I/O provides the program a
means of terminating an I/O operation before all
data specified in the operation has been transferred
or before the operation at the device has reached its
normal ending point. It permits the program to im-
mediately free the selector channel for an operation
of higher priority. On the byte-multiplexer channel,
HALT 1/0 provides a means of controlling real-time
operations and permits the program to terminate
data transmission on a communication line.

Start I/0
SIO Dz(By) [S]
9Cc00 B, D,
) 16 20 31

Start I1/0 Fast Release

SIOF D»(By) [S]

9co1 By D,

0 16 20 31

A write, read, read backward, control, or sense oper-
ation is initiated with the addressed I/O device and
subchannel. The instruction is executed only when
the CPU is in the supervisor state. Bits 8-14 of the
instruction are ignored.

Either an SIO or SIOF function is performed,
depending on the instruction, the channel, and the
block-multiplexing control: control register 0, bit 0.
The SIO function causes the operation to be initiated
only after the device is selected. The SIOF function
causes the operation to be initiated independently of
the device. The instruction START I/0 always caus-
es the SIO function to be performed, as does
START 1/0 FAST RELEASE when block multi-
plexing is not specified. When block multiplexing is
specified, START I/0 FAST RELEASE, depending
on the channel, may cause either the SIO or the
SIOF function to be performed.

Bits 16-31 of the second-operand address identify
the channel, subchannel, and I/O device to which
the instruction applies. The CAW, at location 72,
contains the protection key for the subchannel and
the address of the first CCW. This CCW specifies
the operation to be performed, the main-storage area
to be used, and the action to be taken when the op-
eration is completed.

204 System/370 Principles of Operation

For the SIO function, the I/0O operation is initiat-
ed if the addressed 1/0 device and subchannel are
available, the channel is available or is in the inter-
ruption pending state, and errors or exceptional con-
ditions have not been detected. The I/0 operation is
not initiated when the addressed part of the 1/O
system is in any other state or when the channel or
device detects any error or exceptional condition
during execution of the instruction.

For the SIOF function, the I/O operation is initi-
ated if the subchannel is available, the channel is
available or is in the interruption-pending state, and
errors or exceptional conditions have not been de-
tected. The 1/0 operation is not initiated when the
subchannel and channel are in any other state or
when the channel or device detects any error or ex-
ceptional condition during execution of the instruc-
tion. The device state or device-detected errors are
not relevant during instruction execution but are
indicated in a CSW stored during a subsequent inter-
ruption.

When the channel is either available or in the
interruption-pending state and the subchannel is
available before the execution of the instruction, the
following conditions cause a CSW to be stored, in a
manner determined by whether an SIO or SIOF func-
tion is performed. The SIO function causes the sta-
tus portion of the CSW to be replaced by a new set
of status bits. The status bits pertain to the device
addressed by the instruction. The contents of the
other fields of the CSW are not changed. When the
SIOF function is performed, the first condition caus-
es the same action as for the SIO function. The re-
maining conditions will be indicated in a subsequent
interruption, during which the entire CSW will be
stored.

1. The channel detects a programming error in the
contents of the CAW or detects an equipment
error during execution of the instruction. The
CSW identifies the error condition. The
channel-end and busy bits are off, unless, for
the SIO function, the error was detected after
the device was selected, and the device was
found to be busy, in which case the busy bit, as
well as any bits indicating pending interruption
conditions, are on. The interruption conditions
indicated in the CSW have been cleared at the
device. The 1/0 operation has not been initiat-
ed. No interruption conditions are generated at
the 1/0 device or subchannel. The state of the
PCI bit in the CSW is unpredictable.

2. The channel detects a programming error asso-
ciated with the first CCW or, if CIDA is speci-
fied, with the first IDAW; or, for the SIOF
function, the channel detects an equipment

error after completion of the instruction. The
CSW identifies the error condition. The
channel-end and busy bits are off, unless the
error was detected after the device was select-
ed, and the device was found to be busy, in
which case the busy bit, as well as any bits in-
dicating pending interruption conditions, are
on. The interruption conditions indicated in
the CSW have been cleared at the device. The
I/0 operation has not been initiated. No inter-
ruption conditions are generated at the 1/0
device or subchannel. The state of the PCI bit
in the CSW is unpredictable.

3. An immediate operation was executed, and

either (1) no command chaining is specified
and no command retry occurs, or (2) chaining
is suppressed because of unusual conditions
detected during the operation. The CSW con-
tains the channel-end bit and any other indica-
tions provided by the channel or the device.
The busy bit is off. The I/O operation has
been initiated, but no information has been
transferred to or from the storage area desig-
nated by the CCW. No interruption conditions
are generated at the subchannel, and the sub-
channel is available for a new I/0O operation. If
device end is not indicated, the device remains
busy, and a subsequent device-end condition is
generated. The CSW contains the PCI bit if
specified in the first CCW.

4. The I/0 device contains a pending interruption

condition, or the control unit contains a pend-
ing interruption condition for the addressed
device. The CSW unit-status field contains the
busy bit, identifies the interruption condition,
and may contain other bits provided by the
device or control unit. The interruption condi-
tion is cleared. The channel-status field indi-
cates any error conditions detected by the chan-
nel and contains the PCI bit if specified in the
first CCW.

5. The I/O device or the control unit is executing

a previously initiated operation, or the control
unit has pending an interruption condition asso-
ciated with a device other than the one ad-
dressed. The CSW unit-status field contains
the busy bit or, if the control unit is busy, the
busy and status-modifier bits. The channel-
status field indicates any error conditions de-
tected by the channel and contains the PCI bit
if specified in the first CCW. When the SIOF
function is performed, the control unit busy
condition may cause the same action as the
SIO function.

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

6. The 1/0 device or control unit detected an
equipment or programming error during the
initiation, or the addressed device is in the not-
ready state. The CSW identifies the error con-
dition. The channel-end and busy bits are off,
unless the device was found to be busy, in
which case the busy bit, as well as any bits in-
dicating pending interruption conditions, are
on. The interruption conditions indicated in
the CSW have been cleared at the device. The
1/0 operation has not been initiated. No inter-
ruption conditions are generated at the I/0O
device or subchannel. The CSW contains the
PCI bit if specified in the first CCW.

When the SIO or SIOF function cannot be execut-
ed because of a pending logout condition which af-
fects the operational capability of the channel or
subchannel, a full CSW is stored. The fields in the
CSW are all set to zeros, with the exception of the
logout-pending bit and the channel control check bit,
which are set to ones. No channel logout is associat-
ed with this status.

When the SIOF function causes condition code 0
to be set and subsequently a condition is encoun-
tered which would have caused a condition code 1 to
be set had the function been SIO, a deferred-
condition-code-1 1/O interruption condition is gener-
ated. In the resulting I/O interruption, a full CSW
is stored, and the deferred condition code appears
in the CSW.

On the byte-multiplexer channel, both the SIO
and SIOF functions cause the addressed device to be
selected and the operation to be initiated only after
the channel has serviced all outstanding requests for
data transfer for previously initiated operations.

Program Exceptions:

Privileged operation

Resulting Condition Code:

0 I/0 operation initiated and channel proceeding
with its execution

1 CSW stored

2 Channel or subchannel busy

3 Not operational

The condition code set by START I/0 and
START I/0 FAST RELEASE for all possible states
of the I/O system is shown graphically as follows.
See '"'States of the Input/Output System'' for a de-
tailed definition of the A, I, W, and N states.

Input/Output Operations 205

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

| A 1 ! (W N
Channel) T t ! {
2 3
A | W | N A I W N
Subchannel } +—t—F—]
2'2'3 22 '3
Control Unit }A|l| =W1|N_§ }All |WIN{
or Device # 1'@ 1*@ 30 + 1*@ '1*@ 3@
A Available # o When a nonimmediate 1/O operation has been initiated,
| Interruption pending and the channel is proceeding with its execution, condition
w Working code O is set.
N . [e When an immediate operation has been initiated, and no
N ot operationa command chaining or command retry is taking place; or the
*

CSW stored

When the SIOF function is performed, condition
code 0 is set. The other condition code shown
will be specified as a deferred condition code.

5]

Note: Underscored condition codes pertain to
conditions that can occur only on the multiplexer channel.

device is not ready; or an error condition has been detected
by the control unit or device, for the SIO function condition
code 1 is set, and the CSW is stored. For the SIOF function
condition code O is set, and a deferred condition code 1
interruption condition is generated.

Condition Codes Set by START I/O and START I/O FAST RELEASE

Programming Notes

The advantage of START I/0O FAST RELEASE
over START I/0 is that less CPU time is required
for the execution of the instruction. For a START
I/0 instruction the device must be selected and
it must determine if the command and device condi-
tions allow the initiation of the operation prior to the
setting of the condition code, which allows the CPU
to proceed to the next instruction. When the START
I/0 FAST RELEASE instruction is used, the con-
dition code is set and the CPU proceeds to its next
instruction as soon as the control unit indicates it
is capable of communicating with the channel. Thus,
the CPU is freed for other activity earlier. A dis-
advantage, however, is that if a deferred condition
code is presented, the resultant CPU execution
time may be greater than that required in executing
STARTI/0.

When the channel detects a programming error
during execution of the SIO function and the ad-
dressed device contains an interruption condition,
with the channel and subchannel in the available
state, the instruction may or may not clear the inter-
ruption condition, depending on the type of error
and the model. If the instruction has caused the de-
vice to be interrogated, as indicated by the presence
of the busy bit in the CSW, the interruption condi-
tion has been cleared, and the CSW contains pro-
gram or protection check, as well as the status from
the device.

Two major differences exist between START I/0
and START 1/0 FAST RELEASE:

1. Nonchained immediate commands on certain
channels (that is, those which execute START

206 System/370 Principles of Operation

1/0 FAST RELEASE independently of the
device) result in a condition code O for START
I/0 FAST RELEASE when the block-
multiplexing control bit is set to one, whereas
condition code 1 is set for START I/0. See
also programming note 2 following ''Command
Retry."

2. Condition code 0 is set by these certain chan-
nels for START I/0 FAST RELEASE when
the block-multiplexing control bit is set to one,
even though the addressed device is not avail-
able or the command is rejected by the device.
The device information will be supplied by
means of an interruption.

Store Channel ID

STIDC D3(Bj) [S]

B203 Bz D,
0 16 20 31

Information identifying the designated channel is
stored in the four-byte field at location 168.

STORE CHANNEL ID is executed only when
the CPU is in the supervisor state.

Bits 16-23 of the second-operand address identify
the channel to which the instruction applies. Bit posi-
tions 24-31 of the address are ignored.

The format of the information stored at location
168 is:

Type Channel Model Number

™~

Maximum IOEL Length

Bits 0-3 specify the channel type. When a channel
can operate as more than one type, the code stored
identifies the channel type at the time the instruction
is executed. The following codes are assigned:

0000 Selector
0001 Byte multiplexer
0010 Block multiplexer

Bits 4-15 identify the channel model. When the
channel model is implied by the channel type and the
CPU model, zeros are stored in the field.

Bits 16-31 contain the length in bytes of the long-
est I/0 extended logout that can be stored by the
channel during an I/O interruption. If the channel
never stores logout information using the IOEL
pointer, then this field is set to zero.

When the channel detects an equipment malfunc-
tion during the execution of STORE CHANNEL
ID, the channel causes the status portion, bits 32-47,
of the CSW to be replaced by a new set of status
bits. With the exception of the channel control check
bit (bit 45), which is stored as a one, all bits in the
status field are stored as zeros. The contents of the
other fields of the CSW are not changed.

When STORE CHANNEL ID cannot be execut-
ed because of a pending logout condition which af-
fects the operational capability of the channel, a full
CSW is stored. The fields in the CSW are all set to
zero, with the exception of the logout-pending bit
and the channel control check bit, which are set to
ones. No channel logout is associated with this sta-
tus.

Program Exceptions:
Privileged operation

Resulting Condition Code:

0 Channel ID correctly stored

1 CSW stored

2 Channel activity prohibited storing ID
3 Not operational

The condition code set by STORE CHANNEL
ID for all possible states of the I/O system is shown
graphically as follows. See 'States of the
Input/Output System" for a detailed definition of
the A, I, W, and N states.

Channel { } t i
F t 3

Available

Interruption pending

Working

Not operational

When the channel is unable to store the channel 1D because
of its working state or because it contains a pending inter-
ruption condition, a condition code 2 is set. If the working
or interruption pending state does not preclude the storing
of the channel ID, a condition code O is set.

®wzs >

Condition Codes Set by STORE CHANNEL ID

Test Channel

TCH Dy(Bj) [S]

9F00 By D,

0 16 20 31

The condition code in the PSW is set to indicate the
state of the addressed channel. The state of the
channel is not affected, and no action is caused. Bits
8-15 of the instruction are ignored.

The instruction TEST CHANNEL is executed
only when the CPU is in the supervisor state.

Bits 16-23 of the second-operand address identify
the channel to which the instruction applies. Bit posi-
tions 24-31 of the address are ignored.

The instruction TEST CHANNEL inspects only
the state of the addressed channel. It tests whether
the channel is operating in the burst mode, is aware
of any outstanding interruption conditions from its
devices, or is not operational. When the channel is
operating in the burst mode and contains a pending
interruption condition, the condition code is set as
for operation in the burst mode. When none of these
conditions exist, the available state is indicated. No
device is selected and, on the multiplexer channel,
the subchannels are not interrogated.

Program Exceptions:
Privileged operation

Resulting Condition Code:

0 Channel available

1 Interruption or logout condition pending in

channel

2 Channel operating in burst mode

3 Channel not operational

The condition code set by TEST CHANNEL for
all possible states of the addressed channel is shown

Input/Output Operations 207

graphically as follows. See ''States of the
Input/Output System'' for a detailed definition of
the A, I, W, and N states.

Channel —_A ! } W } N —|
0 1 2 3

A Available

| Interruption pending

w Working

N Not operational

Condition Codes Set by TEST CHANNEL

Test I/0
TIO Dy(B2) [S]
9D00 B, Dy
0 16 20 31

The state of the addressed channel, subchannel, and
device is indicated by setting the condition code in
the PSW and, under certain conditions, by storing
the CSW. Pending interruption conditions may be
cleared. Bits 8-14 of the instruction are ignored.

The instruction TEST 1/0 is executed only when
the CPU is in the supervisor state.

Bits 16-31 of the second-operand address identify
the channel, subchannel, and I/0 device to which
the instruction applies.

The TIO function is performed by the instruction
TEST I/0 and, on some channels and under certain
circumstances, by CLEAR 1/0.

When the channel is operating in burst mode and
the addressed subchannel contains a pending inter-
ruption condition, the TIO function causes condition
code 1 or 2 to be set, depending on the channel type
and system model. If condition code 1 is set, the
CSW is stored at location 64 to identify the interrup-
tion condition, and the interruption condition is
cleared.

When the condition in the following paragraph
occurs with the channel either available or in the
interruption pending state, or, on some channels, in
the working state, the TIO function causes the CSW
to be stored. The contents of the entire CSW pertain
to the I/O device addressed by the instruction.

The subchannel contains a pending interrup-
tion condition due to a terminated operation at
the addressed device. The CSW identifies the
interruption condition, and the interruption
condition is cleared. The protection key, com-
mand address, and count fields contain the fi-

208 System/370 Principles of Operation

nal values for the 1/0 operation, and the status
may include other bits provided by the channel
and the device. The interruption condition in
the subchannel is not cleared, and the CSW is
not stored if the channel is in the working state
and has not yet accepted the interruption con-
dition from the device.

When any of the following conditions occurs with
the channel either available or in the interruption-
pending state, the TIO function causes the CSW to
be stored. The contents of the entire CSW pertain to
the 1/0 device addressed by the instruction.

1. The subchannel is available, and the I/O device
contains a pending interruption condition or
the control unit contains a pending control unit
end for the addressed device. The CSW unit-
status field identifies the intefruption condition
and may contain other bits provided by the
device or control unit. The interruption condi-
tion is cleared. The busy bit in the CSW is off.
The other fields of the CSW contain zeros un-
less an equipment error is detected.

2. The subchannel is available, and the I/O device
or the control unit is executing a previously
initiated operation or the control unit has a
pending interruption condition associated with
a device other than the one addressed. The
CSW unit-status field contains the busy bit or,
if the control unit is busy, the busy and status
modifier bits. Other fields of the CSW contain
zeros unless an equipment error is detected.

3. The subchannel is available, and the 1/0 device
or channel detected an equipment error during
execution of the instruction or the addressed
device is in the not-ready state and does not
have any pending interruption condition. The
CSW identifies the error conditions. If the de-
vice is not ready, unit check is indicated. No
interruption conditions are generated at the
1/0 device or the subchannel.

When TEST 1/0 cannot be executed because of a
pending logout condition which affects the opera-
tional capability of the channel or subchannel, a full
CSW is stored. The fields in the CSW are all set to
zeros, with the exception of the logout-pending bit
and the channel-control-check bit, which are set to
ones. No channel logout is associated with this sta-
tus.

When the TIO function is used to clear an inter-
ruption condition from the subchannel and the chan-
nel has not yet accepted the condition from the de-
vice, the function causes the device to be selected
and the interruption condition in the device to be
cleared. During certain I/O operations, some types
of devices cannot provide their current status in re-

sponse to TEST I/O. Some tape control units, for
example, are in such a state when they have provid-
ed the channel end condition and are executing the
backspace-file operation. When TEST I/0 is issued
to a control unit in such a state, the unit-status field
of the CSW contains the busy and status modifier
bits, with zeros in the other CSW fields. The inter-
ruption condition in the device and in the subchan-
nel is not cleared.

On some types of devices, such as the 2702
Transmission Control, the device never provides its
current status in response to TEST 1/0, and an in-
terruption condition can be cleared only by permit-
ting an I/O interruption. When TEST 1/0 is issued
to such a device, the unit-status field contains the
status modifier bit, with zeros in the other CSW
fields. The interruption condition in the device and
in the subchannel, if any, is not cleared.

However, at the time the channel assigns the
highest priority for interruptions to a condition asso-
ciated with an operation at the subchannel, the chan-
nel accepts the status from the device and clears the
corresponding condition at the device. When the
TIO function is addressed to a device for which the
channel has already accepted the interruption condi-
tion, the device is not selected, and the condition in
the subchannel is cleared regardless of the type of
device and its present state. The CSW contains unit
status and other information associated with the
interruption condition.

On the byte-multiplexer channel, the TIO func-
tion causes the addressed device to be selected only
after the channel has serviced all outstanding re-

quests for data transfer for previously initiated opera-
tions.

Program Exceptions:
Privileged operation

Resulting Condition Code:
0 Awvailable
1 CSW stored
2 Channel or subchannel busy
3 Not operational

The condition code set by the TIO function for all
possible states of the 1/0 system is shown graphical-
ly as follows. See "States of the Input/Output Sys-
tem" for a detailed definition of the A, I, W, and N
states.

Programming Notes

Disabling the CPU for I/0O interruptions provides
the program a means of controlling the priority of
I/0 interruptions selectively by channels. The priori-
ty of devices attached on a channel is fixed and can-
not be controlled by the program. The instruction
TEST I/0 permits the program to clear interruption
conditions selectively by 1/0 device.

When a CSW is stored by the TIO function, the
interface-control-check and channel-control-check
indications may be due to a condition already exist-
ing in the channel or due to a condition created by
the TIO function. Similarly, presence of the unit
check bit in the absence of channel end, control unit
end, or device end bits may be due to a condition
created by the preceding operation, the not-ready

Channel b A 1 : 4 wt g"‘;# |LN?J‘
Subchannel : A =|¢:l#=W+N,f {lae:l#:w:N}A I# I#IWJ'NJ
2 11 23 2 1+ 23 2 2 @ 2 2
Control Unit :A:'=W=Nl }A W=N]|
or Device o 1* 1* 3 0 1* 3
A Available
I Interruption pending
I1# Interruption pending for a device other than the one addressed
1# Interruption pending for the addressed device
w Working
W# Working with a device other than the one addressed
W#H Working with the addressed device
N Not operational
* CSW stored
@ In the W#1 #X state, either condition code 1 may be set with the CSW stored, or condition

code 2 may be set, depending on the channel and the conditions in the channel.

Note: Underscored condition codes pertain to conditions that can occur
only on the multiplexer channel.

Condition Codes Set by TEST I/0

Input/Output Operations 209

state, or an equipment error detected during the
execution of TEST 1/0. The instruction TEST I/0
cannot be used to clear a pending interruption condi-
tion due to the PCI flag while the subchannel is in
the working state.

Input/Output Instruction Exception
Handling

Before the channel is signaled to execute an [/O
instruction, the instruction is tested for validity by
the CPU. Exceptional conditions detected at this
time cause a program interruption. When the inter-
ruption occurs, the current PSW is stored as the pro-
gram old PSW and is replaced by the program new
PSW. The interruption code in the old PSW identi-
fies the cause of the interruption.

The following exception may cause a program
interruption:

Privileged Operation: An 1/0 instruction is encoun-
tered when the CPU is in the problem state. The
instruction is suppressed before the channel has been
signaled to execute it. The CSW, the condition code
in the PSW, and the state of the addressed subchan-
nel and 1/0 device are not affected by the attempt
to execute an I/0 instruction while in the problem
state.

Execution of Input/Output Operations

The channel can execute six commands: write,
read, read backward, control, sense, and transfer in
channel. Each command except transfer in channel
initiates a corresponding 1/0O operation. The term
"I/0 operation" refers to the activity initiated by a
command in the I/O device and associated subchan-
nel. The subchannel is involved with the execution
of the operation from the initiation of the command
until the channel-end signal is received or, in the
case of command chaining, until the device-end sig-
nal is received. The operation in the device lasts until
device end occurs.

Blocking of Data

Data recorded by an I/0 device may be divided into
blocks. The length of a block depends on the device;
for example, a block can be a card, a line of printing,
or the information recorded between two consecu-
tive gaps on magnetic tape.

The maximum amount of information that can be
transferred in one 1/0 operation is one block. An
1/0 operation is terminated when the associated
main storage area is exhausted or the end of the
block is reached, whichever occurs first. For some
operations, such as writing on a magnetic tape unit

210 System/370 Principles of Opcration

or at an inquiry station, blocks are not defined, and
the amount of information transferred is controlled
only by the program.

Channel Address Word

The channel address word (CAW) specifies the stor-
age protection key and the address of the first CCW
associated with START I/0 or START I/O FAST
RELEASE. The channel refers to the CAW only
during the execution of START I/0 or START I/0
FAST RELEASE. The CAW is fetched from real
location 72 of the CPU issuing the instruction. The
pertinent information thereafter is stored in the sub-
channel, and the program is frec to change the con-
tents of the CAW. Fetching of the CAW by the
channel does not affect the contents of the location.

The CAW has the following format:

Key 10000 CCW Address

0 4 8 31

The fields in the CAW are allocated for the fol-
lowing purposes:

Protection Key: Bits 0-3 form the protection key for
all commands associated with START I/O and
START 1/0 FAST RELEASE. This key is matched
with a key in storage whenever a reference is made
to main storage during an I/0 operation.

CCW Address: Bits 8-31 designate the location of
the first CCW in absolute main storage.

Bit positions 4-7 of the CAW must contain zeros.
The three low-order bits of the command address
must be zeros to specify the CCW on integral
boundaries for doublewords. If any of these restric-
tions is violated or if the CCW address specifies a
location protected against fetching or outside the
main storage of the particular installation, START
[/0 and START 1/0 FAST RELEASE cause the
status portion of the CSW to be stored with the pro-
tection check or program-check bit on. In this event,
the I/0 operation is not initiated.

Programming Note

Bit positions 4-7 of the CAW, which presently must
contain zeros, may in the future be assigned for the
control of new functions. It is therefore recommend-
ed that these bit positions not be set to one for the
purpose of obtaining an intentional program-check
indication.

Channel Command Word

The channel command word (CCW) specifies the
command to be executed and, for commands initiat-
ing I/0 operations, it designates the storage area
associated with the operation and the action to be
taken whenever transfer to or from the area is com-
pleted. The CCWs can be located anywhere in main
storage, and more than one can be associated with a
START I/0 or START 1/0 FAST RELEASE.

The first CCW is fetched during the execution of
START I/O or START I/0 FAST RELEASE being
executed as START I/0O. When START 1/0 FAST
RELEASE is executed independently of the device,
the first CCW is fetched subsequent to the execution
of START I/0 FAST RELEASE. Each additional
CCW in the sequence is obtained when the opera-
tion has progressed to the point where the additional
CCW is needed. Fetching of the CCWs by the chan-
nel does not affect the contents of the location in
main storage.

The CCW has the following format:

Command 4
Code Data Address ,
0 8 31 7
/I
Flags 00 /////// Count
) 7
7 32 38 40 48 63

The fields in the CCW are allocated for the follow-
ing purposes:

Command Code: Bits 0-7 specify the operation to
be performed.

Data Address: Bits 8-31 specify the location of an
eight-bit byte in absolute main storage. It is the first
location referred to in the area designated by the
CCW.

Chain-Data (CD) Flag: Bit 32, when one, specifies
chaining of data. It causes the storage area designat-
ed by the next CCW to be used with the current
operation.

Chain-Command (CC) Flag: Bit 33, when one, and
when the CD flag is zero, specifies chaining of com-
mands. It causes the operation specified by the com-
mand code in the next CCW to be initiated on nor-
mal completion of the current operation.

Suppress-Length-Indication (SLI) Flag: Bit 34 con-
trols whether an incorrect-length condition is to be
indicated to the program. When this bit is one and
the CD flag is zero, the incorrect-length indication is
suppressed. When both the CC and SLI flags are
one, command chaining takes place regardless of the
presence of an incorrect-length condition.

Skip (SKIP) Flag: Bit 35, when one, specifies sup-
pression of transfer of information to storage during
a read, read backward, or sense operation.

Program-Controlled-Interruption (PCI) Flag: Bit
36, when one, causes the channel to generate an
interruption condition when the CCW takes control
of the channel. When bit 36 is zero, normal opera-
tion takes place.

Indirect Data Address (IDA) Flag: Bit 37, when
one, specifies indirect data addressing. (The flag is
valid in both BC and EC modes.)

Count: Bits 48-63 specify the number of eight-bit
byte locations in the storage area designated by the
CCwW.

Bit positions 38-39 of every CCW other than one
specifying transfer in channel must contain zeros.
Additionally, if indirect addressing is specified, bits
30-31 of the CCW must be zeros, indicating a word
boundary, and bits 0-7 of the first entry of the indi-
rect data address list must be zeros. (See '"Channel
Indirect Data Addressing.') Otherwise, a program-
check condition is generated. When the first CCW
designated by the CAW does not contain the re-
quired zeros, the I/O operation is not initiated, and
the status portion of the CSW with the program-
check indication is stored during execution of
START 1/0 or, if being executed as START 1/0,
START 1/0 FAST RELEASE. Detection of this
condition during data chaining causes the I/O device
to be signaled to conclude the operation. When the
absence of these zeros is detected during command
chaining or subsequent to the execution of START
1/0 FAST RELEASE, the new operation is not
initiated, and an interruption condition is generated.

The contents of bit positions 40-47 of the CCW
are ignored.

Programming Note

Bit positions 38-39 of the CCW, which presently
must contain zeros, may in the future be assigned for
the control of new functions. It is therefore recom-
mended that these bit positions not be set to one for
the purpose of obtaining a program-check indication.

Input/Output Operations 211

Command Code

The command code, bit positions 0-7 of the CCW,
specifies to the channel and the I/0 device the oper-
ation to be performed. A detailed description of each
command appears under ""Commands."

The two low-order bits or, when these bits are 00,
the four low-order bits of the command code identi-
fy the operation to the channel. The channel distin-
guishes among the following four operations:

Output forward (write, control)

Input forward (read, sense)

Input backward (read backward)

Branching (transfer in channel)

The channel ignores the high-order bits of the
command code.

Commands that initiate I/O operations (write,
read, read backward, control, and sense) cause all
eight bits of the command code to be transferred to
the I/O device. In these command codes, the high-
order bit positions contain modifier bits. The modifi-
er bits specify to the device how the command is to
be executed. They may cause, for example, the de-
vice to compare data received during a write opera-
tion with data previously recorded, and they may
specify such conditions as recording density and
parity. For the control command, the modifer bits
may contain the order code specifying the control
function to be performed. The meaning of the modi-
fier bits depends on the type of 1/O device and is
specified in the SL or SRL publication for the de-
vice.

The command-code assignment is listed in the
following table. The symbol x indicates that the bit
position is ignored; m identifies a modifier bit.

Code Command
XXXX 0000 Invalid
mmmm 0100 Sense
XXXX 1000 Transfer in Channel
mmmm 1100 Read Backward
mmmm mmO01 Write
mmmm mm10 Read

mmmm mm11 Control

Whenever the channel detects an invalid com-
mand code during the initiation of a command, the
program-check condition is generated. When the
first CCW designated by the CAW contains an in-
valid command code, the status portion of the CSW
with the program-check indication is stored during
execution of START 1/0 or, if being executed as
START I/0, START I/0 FAST RELEASE. When
the invalid code is detected during command chain-
ing or subsequent to the execution of START I/0
FAST REILEASE, the new operation is not initiated,
and an interruption condition is generated. The com-

212 System/370 Principles of Operation

mand code is ignored during data chaining, unless it
specifies transfer in channel.

Designation of Storage Area

Note: For a description of the storage area associat-
ed with a CCW when channel indirect data address-
ing is invoked, see ''Channel Indirect Data Address-
ing."

The main-storage area associated with an I/O
operation is defined by one or more CCWs. A CCW
defines an area by specifying the address of the first
eight-bit byte to be transferred and the number of
consecutive eight-bit bytes contained in the area.
The address of the first byte appears in the data-
address field of the CCW. The number of bytes con-
tained in the storage area is specified in the count
field.

In write, read, control, and sense operations stor-
age locations are used in ascending order of address-
es. As information is transferred to or from main
storage, the address from the address field is incre-
mented, and the count from the count field is decre-
mented. The read-backward operation places data in
storage in a descending order of addresses, and both
the count and the address are decremented. When
the count reaches zero, the storage area defined by
the CCW is exhausted.

Any main-storage location available to the chan-
nel can be used in the transfer of data to or from an
1/0 device, provided that the location is not protect-
ed against the type of reference. Similarly, the
CCWs can be located in any part of available main
storage, provided the location is not protected
against a fetch-type reference. When the channel
attempts to refer to a protected location, the protec-
tion check condition is generated, and the device is
signaled to terminate the operation.

In the event the channel refers to a location not
provided in the system, the program-check condition
is generated. When the first CCW designated by the
CAW is at a nonexistent location, the 1/O operation
is not initiated, and the status portion of the CSW
with the program-check indication is stored during
the execution of START I/0 or START I/0 FAST
RELEASE being executed as START I/O. Invalid
data addresses, as well as any invalid CCW address-
es detected on chaining or subsequent to the execut-
ing of START I/0 FAST RELEASE, are indicated
to the program with the interruption conditions at
the conclusion of the operation or chain of opera-
tions.

During an output operation, the channel may
fetch data from the main storage before the time the
I/0 device requests the data. Any number of bytes

specified by the current CCW may be prefetched
and buffered. When data chaining during an output
operation, the channel may fetch the next CCW at
any time during the execution of the current CCW.
When the I/0 operation uses data and CCWs from
locations near the end of the available storage, such
prefetching may cause the channel to refer to loca-
tions that do not exist. Invalid addresses detected
during prefetching of data or CCWs do not affect
the execution of the operation and do not cause er-
ror indications until the I/O operation actually at-
tempts to use the information. If the operation is
concluded by the 1/0 device or by HALT 1/0,
HALT DEVICE, or CLEAR I/0 before the invalid
information is needed, the condition is not brought
to the attention of the program.

The count field in the CCW can specify any num-
ber of bytes up to 65,535. Except for a CCW specify-
ing transfer in channel, where the count field is
ignored, the count field may not contain the value
zero. Whenever the count field in the CCW initially
contains a zero, the program-check condition is gen-
erated. When this occurs in the first CCW designat-
ed by the CAW, the operation is not initiated, and
the status portion of the CSW with the program-
check indication is stored during execution of
START I/0 or START 1/0 FAST RELEASE being
executed as START 1I/0. When a count of zero is
detected during data chaining, the I/O device is sig-
naled to terminate the operation. Detection of a
count of zero during command chaining or subse-
quent to the execution of START I/0 FAST RE-
LEASE suppresses initiation of the new operation
and generates an interruption condition.

Chaining

When the channel has performed the transfer of
information specified by a CCW, it can continue the
activity initiated by START I/O or START I/0O
FAST RELEASE by fetching a new CCW. Such
fetching of a new CCW is calied chaining, and the
CCWs belonging to such a sequence are said to be
chained.

Chaining takes place between CCWs located in
successive doubleword locations in storage. It pro-
ceeds in an ascending order of addresses; that is, the
address of the new CCW is obtained by adding eight
to the address of the current CCW. Two chains of
CCWs located in noncontiguous storage areas can
be coupled for chaining purposes by a transfer-in-
channel command. All CCWs in a chain apply to the
I/0 device specified in the original START 1/0 or
START I/O FAST RELEASE.

Two types of chaining are provided: chaining of
data and chaining of commands. Chaining is con-

trolled by the chain-data (CD) and chain-command
(CC) flags in conjunction with the suppress-length-
indication (SLI) flag in the CCW. These flags speci-
fy the action to be taken by the channel upon the
exhaustion of the current CCW and upon receipt of
ending status from the device, as shown in the ac-
companying table.

The specificationt of chaining is effectively propa-
gated through a transfer-in-channel command. When
in the process of chaining a transfer-in-channel com-
mand is fetched, the CCW designated by the trans-
fer in channel is used for the type of chaining speci-
fied in the CCW preceding the transfer-in-channel.

The CD and CC flags are ignored in the transfer-
in-channel command.

Data Chaining

During data chaining, the new CCW fetched by the
channel defines a new storage area for the original
I/0 operation. Execution of the operation at the
I/0 device is not affected. When all data designated
by the current CCW has been transferred to main
storage or to the device, data chaining causes the
operation to continue, using the storage area desig-
nated by the new CCW. The contents of the
command-code field of the new CCW are ignored,
unless they specify transfer in channel.

Data chaining is considered to occur immediately
after the last byte of data designated by the current
CCW has been transferred to main storage or to the
device. When the last byte of the transfer has been
placed in main storage or accepted by the device, the
new CCW takes over the control of the operation
and replaces the pertinent information in the sub-
channel. If the device sends channel end after ex-
hausting the count of the current CCW but before
transferring any data to or from the storage area
designated by the new CCW, the CSW associated
with the concluded operation pertains to the new
CCW.

If programming errors are detected in the new
CCW or during its fetching, the error indication is
generated, and the device is signaled to conclude the
operation when it attempts to transfer data designat-
ed by the new CCW. If the device signals the
channel-end condition before transferring any data
designated by the new CCW, program check or pro-
tection check is indicated in the CSW associated
with the termination. The contents of the CSW per-
tain to the new CCW unless the address of the new
CCW is invalid, the location is protected against
fetching, or programming errors are detected in an
intervening transfer-in-channel command. A data

Input/Output Operations 213

Action in Channel upon Exhaustion of Count or Receipt of Channel End

Flags in Current

CCw Regular Operation
9_9 CC SLI Immediate Operation | I 1"t
0 0 0 End, — Stop, IL End, — End, IL
0 0 1 End, — Stop, — End, — End, —
0 1 0 Chain command Stop, IL Chain command End, IL
0 1 1 Chain command Chain command Chain command Chain command
1 0 0 End, — Chain data * End, IL
1 0 1 End, — Chain data * End, IL
1 1 0 End, — Chain data * End, IL
1 1 1 End, — Chain data * End, IL
Explanation:

| Count exhausted, end of block at device not reached.
I Count exhausted and channel end from device.
i Count not exhausted and channel end from device.

End The operation is terminated. If the operation is immediate
and has been specified by the first CCW associated with a
START 1/0, a condition code 1 is set, and the status
portion of the CSW is stored as part of the execution of the
START /0. In all other cases an interruption condition
is generated in the subchannel.

Stop The device is signaled to terminate data transfer, but the
subchannel remains in the working state until channel end
is received; at this time an interruption condition is
generated in the subchannel.

I Incorrect length is indicated with the interruption condition.

Channel Chaining Action

address referring to a nonexistent or protected area
causes an error indication only after the 1/0 device
has attempted to transfer data to or from the invalid
location.

Data chaining during an input operation causes
the new CCW to be fetched when all data designat-
ed by the current CCW has been placed in main
storage. On an output operation, the channel may
fetch the new CCW from main storage ahead of the
time data chaining occurs. Any programming errors
in the prefetched CCW, however, do not affect the
execution of the operation until all data designated
by the current CCW has been transferred to the I/0O
device. If the device concludes the operation before
all data designated by the current CCW has been
transferred, the conditions associated with the pre-
fetched CCW are not indicated to the program.

Only one CCW describing a data area may be
prefetched and buffered in the channel. If the pre-
fetched CCW specifies transfer in channel, only one
more CCW is fetched before the exhaustion of the
current CCW,

214 System/370 Principles of Operation

— Incorrect length is not indicated.

Chain The channel performs command chaining upon

command receipt of device end.

Chain data The channel immediately fetches a new CCW for
the same operation.

* The situation where the count is zero but data

chaining is indicated at the time the device
provides channel end cannot validly occur. When
data chaining is indicated, the channel fetches the
new CCW after transferring the last byte of data
designated by the current CCW but before the
device provides the next request for data or status
transfer. As a result, the channel recognizes the
channel end from the device only after it has
fetched the new CCW, which cannot contain a
count of zero unless a programming error has been
made.

Programming Note

Data chaining may be used to rearrange information
as it is transferred between main storage and an I/O
device. Data chaining permits blocks of information
to be transferred to or from noncontiguous areas of
storage, and, when used in conjunction with the
skipping function, data chaining enables the program
to place in main storage selected portions of a block
of data.

When, during an input operation, the program
specifies data chaining to a location into which data
has been placed under the control of the current
CCW, the channel, in fetching the next CCW, fetch-
es the new contents of the location. This is true even
if the location contains the last byte transferred un-
der the control of the current CCW. When a channel
program data-chains to a CCW placed in storage by
the CCW specifying data chaining, the input block is
said to be self-describing. A self-describing block
contains one or more CCWs that specify storage
locations and counts for subsequent data in the same
input block.

The use of self-describing blocks is equivalent to
the use of unchecked data. An I/O data-transfer

malfunction that affects validity of a block of in-
formation is signaled only at the completion of data
transfer. The error condition normally does not pre-
maturely terminate or otherwise affect the execution
of the operation. Thus, there is no assurance that a
CCW read as data is valid until the operation is com-
pleted. If the CCW thus read is in error, use of the
CCW in the current operation may cause subsequent
data to be placed in wrong locations in main storage
with resultant destruction of its contents, subject to
the control of the protection system.

Command Chaining

During command chaining, the new CCW fetched
by the channel specifies a new 1/0 operation. The
channel fetches the new CCW and initiates the new
operation upon the receipt of the device-end signal
for the current operation. When command chaining
takes place, the completion of the current operation
does not cause an 1/0 interruption, and the count
indicating the amount of data transferred during the
current operation is not made available to the pro-
gram. For operations involving data transfer, the
new command always applies to the next block of
data at the device.

Command chaining takes place and the new oper-
ation is initiated only if no unusual conditions have
been detected in the current operation. In particular,
the channel initiates a new I/O operation by com-
mand chaining upon receipt of a status byte contain-
ing only the following bit combinations: device end,
device end and status modifier, device end and chan-
nel end, device end and channel end and status modi-
fier. In the former two cases a channel end must
have been signaled before device end, with all other
status bits off. If a condition such as attention, unit
check, unit exception, incorrect length, program
check, or protection check has occurred, the se-
quence of operations is concluded, and the status
associated with the current operation causes an in-
terruption condition to be generated. The new CCW
in this case is not fetched. The incorrect-length con-
dition does not suppress command chaining if the
current CCW has the SLI flag on.

An exception to sequential chaining of CCWs
occurs when the I/O device presents the status-
modifier condition with the device-end signal. When
command chaining is specified and no unusual con-
ditions have been detected, the combination of
status-modifier and device-end bits causes the chan-
nel to fetch and chain to the CCW whose main-
storage address is 16 higher than that of the current
CCwW.

When both command and data chaining are used,
the first CCW associated with the operation speci-

fies the operation to be executed, and the last CCW
indicates whether another operation follows.

Programming Note

Command chaining makes it possible for the pro-
gram to initiate transfer of multiple blocks of data by
means of a single START I/0 or START 1/0 FAST
RELEASE. It also permits a subchannel to be set up
for execution of auxiliary functions, such as position-
ing the disk-access mechanism, and for data-transfer
operations without interference by the program at
the end of each operation. Command chaining, in
conjunction with the status-modifier condition, per-
mits the channel to modify the normal sequence of
operations in response to signals provided by the
1/0 device.

Skipping

Skipping is the suppression of main-storage refer-
ences during an I/0 operation. It is defined only for
read, read backward, and sense operations, and is
controlled by the skip flag, which can be specified
individually for each CCW. When the skip flag is
one, skipping occurs; when zero, normal operation
takes place. The setting of the skip flag is ignored in
all other operations.

Skipping affects only the handling of information
by the channel. The operation at the 1/0O device
proceeds normally, and information is transferred to
the channel. The channel keeps updating the count
but does not place the information in main storage.
Chaining is not precluded by skipping. In the case of
data chaining, normal operation is resumed if the
skip flag in the new CCW is zero.

No checking for invalid or protected data address-
es takes place during skipping.

Programming Note

Skipping, when combined with data chaining, per-
mits the program to place in main storage selected
portions of a block of information from an 1/0 de-
vice.

Program-Controlled Interruption
The program-controlled interruption (PCI) function
permits the program to cause an I/O interruption
during execution of an 1/O operation. The function
is controlled by the PCI flag in the CCW. The flag
can be on either in the first CCW specified by
START 1/0 or START 1/0O FAST RELEASE or in
a CCW fetched during chaining. Neither the PCI
flag nor the associated interruption affects the execu-
tion of the current operation.

Whenever the PCI flag in the CCW is on, the
channel attempts to interrupt the program. When the

Input/QOutput Operations 215

first CCW associated with an operation contains the
PCI flag, either initially or upon command chaining,
the interruption may occur as early as immediately
upon the initiation of the operation. The PCI flag in
a CCW fetched on data chaining causes the inter-
ruption to occur after all data designated by the pre-
ceding CCW has been transferred. The time of the
interruption, however, depends on the model and the
current activity in the system and may be delayed
even if the channel is not masked. No predictable
relation exists between the time the interruption due
to the PCI flag occurs and the progress of data
transfer to or from the area designated by the CCW,
but the fields within the CSW pertain to the same
instant of time.

If chaining occurs before the interruption due to
the PCI flag has taken place, the PCI condition is
carried over to the new CCW. This carryover occurs
both on data and command chaining and, in either
case, the condition is propagated through the trans-
fer in channel command. The PCI conditions are not
stacked; that is, if another CCW is fetched with a
PCI flag before the interruption due to the PCI flag
of the previous CCW has occurred, only one inter-
ruption takes place.

A CSW containing the PCI bit may be stored by
an interruption while the operation is still proceeding
or by an interruption, TEST 1/0, or CLEAR I/0
upon the termination of the operation. It cannot be
stored by TEST I/O while the subchannel is in the
working state.

When the CSW is stored by an interruption be-
fore the operation or chain of operations has been
concluded , the command address is eight higher
than the address of the current CCW, and the count
is unpredictable. All unit-status bits in the CSW are
zero. If the channel has detected any unusual condi-
tions, such as channel data check, program check, or
protection check by the time the interruption occurs,
the corresponding channel-status bit is on, although
the condition in the subchannel is not reset and is
indicated again upon the termination of the opera-
tion.

The presence of any unit-status bit in the CSW
indicates that the operation or chain of operations
has been concluded. The CSW in this case has its
regular format with the PCI bit added.

However, when the interruption condition due to
the PCI flag has been delayed until the operation at
the subchannel has been concluded, two interrup-
tions from the subchannel may still take place, with
the first interruption indicating and clearing the PCI
condition alone, and the second providing the CSW
associated with the ending status. Whether one or
two interruptions occur depends on the model and

216 System/370 Principles of Operation

on whether the PCI condition has been assigned the
highest priority for interruption at the time of con-
cluding. TEST 1/0 or CLEAR 1/0 addressed to the
device associated with an interruption condition in
the subchannel clears the PCI condition as well as
the one associated with the concluding,.

The setting of the PCI flag is inspected in every
CCW except those specifying transfer in channel,
where it is ignored. The PCI flag is also ignored
during initial program loading.

Programming Note

Since no unit-status bits are placed in the CSW asso-
ciated with the concluding of an operation of the
selector channel by HALT I/0 or HALT DEVICE,
the presence of a unit-status bit with the PCI bit is
not a necessary condition for the operation to be
concluded. When the selector channel contains the
PCI bit at the time the operation is conciuded by
HALT 1/0 or HALT DEVICE, the CSW associated
with the concluded operation is indistinguishable
from the CSW provided by an interruption during
execution of the operation.

Program-controlled interruption provides a means
of alerting the program of the progress of chaining
during an I/0O operation. It permits programmed
dynamic main-storage allocation.

Channel Indirect Data Addressing

Channel indirect data addressing (CIDA), a compan-
ion facility to dynamic address translation, provides
assistance in translating data addresses for I/0O oper-
ations. It permits a single channel command word to
control the transmission of data that spans noncontig-
uous pages in real main storage.

Channel indirect data addressing is specified by a
flag bit in the CCW which, when one, indicates that
the data address in the CCW is not used to directly
address data. Instead, the address points to a list of
words, called indirect-data-address words (IDAWSs),
each of which contains an absolute address designat-
ing a data area within a 2,048-byte block of main
storage.

When the indirect data addressing bit in the CCW
is one, bits 8-31 of the CCW specify the location of
the first indirect data address word (IDAW) to be
used for data transfer for the command. Additional
IDAWs, if needed for completing the data transfer
for the CCW, are in successive locations in storage.
The number of IDAWS required for a CCW is deter-
mined by the count field of the CCW and by the
data address in the initial IDAW. When, for exam-
ple, the CCW count field specifies 4,000 bytes and
the first IDAW specifies a location in the middle of a
2,048-byte block, three IDAWSs are required.

Each IDAW is used for the transfer of up to
2,048 bytes. The IDAW specified by the CCW can
designate any location. Data is then transferred, for
read, write, control, and sense commands, to or from
successively higher storage locations or, for a read
backward command, to successively lower storage
locations, until a 2,048-byte block boundary is
reached. The control of data transfer is then passed
to the next IDAW. The second and any subsequent
IDAWSs must specify, depending on the command,
the first or last byte of a 2,048-byte block. Thus, for
read, ‘write, control, and sense commands, these
IDAWS will have zeros in bit positions 21-31. For a
read backward command, these IDAWSs will have
ones in bit positions 21-31.

Except for the unique restrictions on the specifi-
cation of the data address by the IDAW, all other
rules for the data address, such as for protected stor-
age and invalid addresses, and the rules for data
prefetching, remain the same as when indirect data
addressing is not used.

A channel may prefetch any of the IDAWSs per-
taining to the current CCW. An IDAW takes control
of the data transfer when the last byte has been
transferred for the previous IDAW for that CCW.
Errors detected in prefetched IDAWs are not indi-
cated until the IDAW takes control of the data
transfer.

The format of the IDAW and the significance of
its fields are as follows:

00000000 Data Address

0 8 31

Bit positions 0-7 are reserved for future use and
must contain zeros. If any of the bits is detected to
be a one, a program-check status condition is gener-
ated, and the operation is terminated.

Bits 8-31 specify the location of the first byte to
be used in the data transfer. In the first IDAW for a
CCW, any location can be specified. For subsequent
IDAWSs, depending on the command, either the first
or the last location of a 2,048-byte block located on
a 2,048-byte boundary must be specified. For read,
write, control, and sense commands, the beginning
of the block must be specified, and bits 21-31 of the
IDAW will be zeros. For a read backward command,
the end of the block must be specified, and bits 21-
31 of the IDAW will be ones. Improper data ad-
dress specification causes the program-check status
conditions to be generated and causes the operation
to be terminated.

Commands

The following table lists the command codes for the
six commands and indicates which flags are defined
for each command. The flags are ignored for all
commands for which they are not defined.

Name Code Flags
Write MMMM MMO1 CD CcC SLI PClI IDA
Read MMMM MM10 CcD cC SLi SKIP PCI IDA
Read Backward MMMM 1100 CD CcC SL.I SKIP PCl IDA
Control MMMM MM11 cCDh CcC SLi PCI IDA
Sense MMMM 0100 CD cCC SLI SKIP PCI IDA
Transfer in Channel XXXX 1000

Explanation:

cD Chain data

cc Chain command

SLI Suppress length indication
SKIP Skip

PCI1 Program-controlled interruption
IDA Indirect data addressing

M Modifier bit

X Ignored

Channel Command Codes

Input/Output Operations 217

All flags have individual significance, except that
the CC and SLI flags are ignored when the CD flag
is on. The SLI flag is ignored on immediate opera-
tions, in which case the incorrect-length indication is
suppressed regardless of the setting of the flag. The
PCI flag is ignored during initial program loading.

Each command is described below with an illustra-
tion of its CCW format.

Programming Note

A malfunction that affects the validity of data trans-
ferred in an I/O operation is signaled at the end of
the operation by means of unit check or channel
data check, depending on whether the device
(control unit) or the channel detected the error. In
order to make use of the checking facilities provided
in the system, data read in an input operation should
not be used until the end of the operation has been
reached and the validity of the data has been
checked. Similarly, on writing, the copy of data in
main storage should not be destroyed until the pro-
gram has verified that no malfunction affecting the
transfer and recording of data was detected.

Write
,I
MMMMMMO1 Data Address
—
0 8 31’
“lelclsl/ el /
plc|L{//Aclp|oo Count
| / 1A /
L
32 35 40 48 63

A write operation is initiated at the I/0 device, and
the subchannel is set up to transfer data from main
storage to the 1/0 device. Data in storage is fetched
in an ascending order of addresses, starting with the
address specified in the CCW.

A CCW used in a write operation is inspected for
the CD, CC, SLI, PCI, and IDA flags. The setting of
the Skip flag is ignored. Bit positions 0-5 of the
CCW contain modifier bits.

Programming Note

When writing on devices for which block length is
not defined, such as a magnetic tape unit or an in-
quiry station, the amount of data written is con-
trolled only by the count in the CCW. Every opera-
tion terminated under count control causes the
incorrect-length indication, unless the indication is
suppressed by the SLI flag.

218 System/370 Principles of Operation

Read

/
MMMMMM10 Data Address

/
0 8 317
“Telcls]s]e|t //

pjciL|{|c|pjoo Count
Lip(l[A

" 32 40 48 63

A read operation is initiated at the I/O device, and
the subchannel is set up to transfer data from the
device to main storage. For devices such as magnetic
tape units, disk storage, and card equipment, the
bytes of data within a block are provided in the same
sequence as written by means of a write command.
Data in storage is placed in an ascending order of
addresses, starting with the address specified in the
CCW.

A CCW used in a read operation is inspected for
every one of the six flags--CD, CC, SLI, SKIP, PCI,
and IDA. Bit positions 0-5 of the CCW contain
modifier bits.

Read Backward

MMMM1100 Data Address
4
0 8 31
“lelcels|s|er|t
p|c|L|f|c|p|oo Count
, Llp|l | A /
32 40 48 63

A read-backward operation is initiated at the 1/0
device, and the subchannel is set up to transfer data
from the device to main storage. On magnetic tape
units, read backward causes reading to be performed
with the tape moving backwards. The bytes of data
within a block are sent to the channel in a sequence
opposite to that on writing. The channel places the
bytes in storage in a descending order of address,
starting with the address specified in the CCW. The
bits within an eight-bit byte are in the same order as
sent to the device on writing.

A CCW used in a read-backward operation is
inspected for every one of the six flags--CD, CC,

SLI, SKIP, PCI, and IDA. Bit positions 0-3 of the
CCW contain modifier bits.

Control
7
MMMMMM11 Data Address
/
0 8 EY)
,I
clcis / Pt 7
D|C|L Cc| D|oO Count
[1A /
32 40 48 63

A control operation is initiated at the 1/0 device,
and the subchannel is set up to transfer data from
main storage to the device. The device interprets the
data as control information. The control informa-
tion, if any, is fetched from storage in an ascending
order of addresses, starting with the address speci-
fied in the CCW. A control command may be used
to initiate at the 1/O device an operation not involv-
ing transfer of data -- such as backspacing or rewind-
ing magnetic tape or positioning a disk-access mech-
anism.

For many control functions, the entire operation
is specified by the modifier bits in the command
code, and the function is performed over the 1/0
interface as an immediate operation (see "'Immediate
Operations'). If the command code does not specify
the entire control function, the data-address field of
the CCW designates the location containing the
required additional information. This control informa-
tion may include an order code further specifying
the operation to be performed or an address, such as
the disk address for the seek function, and is trans-
ferred in response to requests by the device.

A control command code containing zeros for the
six modifier bits is defined as a no-operation. The
no-operation order causes the addressed device to
respond with channel end and device end without
causing any action at the device. The order can be
executed as an immediate operation, or the device
can delay the status until after the initial selection
sequence is completed. Other operations that can be
initiated by means of the control command depend
on the type of I/0O device. These operations and
their codes are specified in the SL or SRL publica-
tion for the device.

A CCW used in a control operation is inspected
for the CD, CC, SLI, PCI, and IDA flags. The set-
ting of the skip flag is ignored. Bit positions 0-5 of
the CCW contain modifier bits.

Programming Note

Since a CCW with a count of zero is invalid, the
program cannot use the CCW count field to specify
that no data be transferred to the I/0O device. Any
operation terminated before data has been trans-
ferred causes the incorrect-length indication, provided
the operation is not immediate and has not been
rejected during the initiation sequence. The
incorrect-length indication is suppressed when the

SLI flag is on.

Sense
x4
MMMMO100 Data Address
7/
0 8 31
L
/
clcl|s|s|r|i /
DCL:<CDOO / Count
|
) pl' A /
32 40 48 63

A sense operation is initiated at the I/O device, and
the subchannel is set up to transfer data from the
device to main storage. The data is placed in storage
in an ascending order of addresses, starting with the
address specified in the CCW.

Data transferred during a sense operation pro-
vides information concerning both unusual condi-
tions detected in the last operation and the status of
the device. The status information provided by the
sense command is more detailed than that supplied
by the unit-status byte and may describe reasons for
the unit-check indication. It may also indicate, for
example, if the device is in the not-ready state, if the
tape unit is in the file-protected state, or if magnetic
tape is positioned beyond the end-of-tape mark.

For most devices, the first six bits of the sense
data describe conditions detected during the last
operation. These bits are common to all devices hav-
ing this type of information and are designated as
follows:

Bit Designation

Command reject
Intervention required
Bus-out check
Equipment check
Data check

Overrun

OHRWN-=0

The following is the meaning of the first six bits:

Input/Output Operations 219

Command Reject: The device has detected & pro-
gramming error. A command has been received
which the device is not designed to execute, such as
read backward issued to a direct-access storage de-
vice, or which the device cannot execute because of
its present state, such as write issued to a file-
protected tape unit. Command reject is also indicat-
ed when the program issues an invalid sequence of
commands, such as write to a direct-access storage
device without previously designating the data block.

Intervention Required: The last operation could not
be executed because of a condition requiring some
type of intervention at the device. This bit indicates
conditions such as an empty hopper in a card punch
or the printer being out of paper. It is also turned on
when the addressed device is in the not-ready state,
is in test mode, or is not provided on the control
unit.

Bus Out Check: The device or the control unit has
received a data byte or a command code with an
invalid parity over the I/O interface. During writing,
bus-out check indicates that incorrect data has been
recorded at the device, but the condition does not
cause the operation to be terminated prematurely.
Parity errors on command codes and control infor-
mation cause the operation to be immediately termi-
nated and suppresses checking for command reject
and intervention required conditions.

Equipment Check: During the last operation, the
device or the control unit has detected equipment
malfunctioning, such as an invalid card hole count or
printer buffer parity error.

Data Check: The device or the control unit has
detected a data error other than those included in
bus-out check. Data check identifies errors associat-
ed with the recording medium and includes condi-
tions such as reading an invalid card code or detect-
ing invalid parity on data recorded on magnetic tape.
On an input operation, data check indicates that

incorrect data may have been placed in main storage.

The control unit forces correct parity on data sent to
the channel. On writing, this condition indicates that
incorrect data may have been recorded at the device.
Unless the operation is of a type where the error
precludes meaningful continuation, data errors on
reading and writing do not cause the operation to be
terminated prematurely.

220 System/370 Principles of Operation

Overrun: The channel has failed to respond on time
to a request for service from the device. Overrun can
occur when data is transferred to or from a nonbuf-
fered control unit operating with a synchronous me-
dium, and the total activity initiated by the program
exceeds the capability of the channel. When the
channel fails to accept a byte on an input operation,
the following data transferred to main storage may
be shifted to fill the gap. On an output operation,
overrun indicates that data recorded at the device
may be invalid. The overrun bit is also turned on
when the device receives the new command too late
during command chaining.

All information significant to the use of the device
normally is provided in the first two bytes. Any bit
positions following those used for programming in-
formation contain diagnostic information, which may
extend to as many bytes as needed. The amount and
the meaning of the status information are peculiar to
the type of I/0 device and are specified in the SL or
SRL publication for the device.

The basic sense command has zero modifier bits.
This command initiates a sense operation on all de-
vices and cannot cause the command-reject,
intervention-required, data-check, or overrun bits to
be turned on. If the control unit detects an equip-
ment malfunction, or invalid parity of the sense com-
mand code, the equipment-check or bus-out-check
bits are turned on, and unit check is indicated in the
unit-status byte.

Devices that can provide special diagnostic sense
information or can be instructed to perform other
special functions by use of the sense command, may
define modifier bits for the control of these func-
tions. The special sense operations may be initiated
by a unique combination of modifier bits, or a group
of codes may specify the same function. Any re-
maining sense command codes may be considered
invalid, thus causing the unit-check indication, or
may cause the same action as the basic sense com-
mand, depending upon the type of device.

The sense information pertaining to the last I/O
operation or unit action may be reset any time after
the completion of a sense command addressed to
that device. The sense information may also be reset
by any other command addressed to the control unit,
provided the busy bit is not included in the initial
status byte, except where the command is a TEST
I/0 or a no-operation and is addressed to the device
that causes the sense.

A CCW used in a sense operation is inspected for
every one of the six flags--CD, CC, SLI, SKIP, PCI,
and IDA. Bit positions 0-3 of the CCW contain
modifier bits.

l Transfer in Channel

4
//// 1000 CCW Address
0

31

£

I

32 63

The next CCW is fetched from the location in abso-
lute main storage designated by the data-address
field of the CCW specifying transfer in channel. The
transfer-in-channel command does not initiate any
1/0 operation at the channel, and the I/0 device is
not signaled of the execution of the command. The
purpose of the transfer-in-channel command is to
provide chaining between CCWs not located in adja-
cent doubleword locations in an ascending order of
addresses. The command can occur in both data and
command chaining.

The first CCW designated by the CAW may not
specify transfer in channel. When this restriction is
violated, no I/O operation is initiated, and the
program-check condition is generated. The error
causes the status portion of the CSW with the
program-check indication to be stored during the
execution of START 1I/0 or START I/0 FAST
RELEASE being executed as START I/0. When
START I/0 FAST RELEASE is executed inde-
pendently of the device, the error causes an I/O
interruption condition to be generated.

To address a CCW on integral boundaries for
doublewords, a CCW specifying transfer in channel
must contain zeros in bit positions 29-31. Further-
more, a CCW specifying a transfer in channel may
not be fetched from a location designated by an
immediately preceding transfer in channel. When
either of these errors is detected or when an invalid
address is specified in transfer in channel, the
program-check condition is generated. When the
transfer-in-channel command designates a CCW in a
location protected against fetéhing, the protection-
check condition is generated. Detection of these
errors during data chaining causes the operation at
the I/0O device to be terminated and an interruption
condition to be generated, whereas during command
chaining it causes only an interruption condition to
be generated.

The contents of the second half of the CCW, bit
positions 32-63, are ignored. Similarly, the contents
of bit positions 0-3 of the CCW are ignored.

Command Retry

Some channels have the capability to perform com-
mand retry, a channel and control-unit procedure
that causes a command to be retried without requir-
ing an I/0 interruption. This retry is initiated by the
control unit presenting either of two status-bit com-
binations by means of a special I/O interface se-
quence. When immediate retry can be performed, it
presents a channel-end, unit-check, and status-
modifier status bit combination, together with device
end. When immediate retry cannot be performed,
the presentation of device end is delayed until the
control unit is prepared. When the channel is not
capable of performing command retry, or when any
status bit other than device end accompanies the
requested command retry initiation, the retry is sup-
pressed, and an interruption condition is generated.
The CSW will contain the channel-end, unit-check,
and status-modifier status indications, along with
any other appropriate status.

During command retry, the channel action is simi-
lar to that taken when command chaining. Thus,
when command retry is performed, a START I/0
initiating an immediate operation for which com-
mand chaining is not indicated in the CCW causes a
condition code O, rather than condition code 1, to be
set. The subsequent termination of the command
execution causes an interruption condition to bé
created.

Programming Notes
The following possible results of a command retry
must be anticipated by the program:

1. A CCW containing a PCI may, if reiried be-
cause of command retry, cause multiple PCI
interruptions to occur.

2. A channel program consisting of a single, un-
chained CCW specifying an immediate com-
mand may cause a condition code 0 rather than
1 to be set. This setting of the condition code
occurs if the control unit signals command re-
try at the time initial status is presented to the
command. The channel program then causes a
later interruption upon completion of the oper-
ation.

3. If a CCW used in an operation is changed be-
fore that operation has been successfully com-
pleted, the results are unpredictable.

4. A CSW stored after the initiation of a retry but
prior to the presentation of device end, as
when a PCI interruption is taken, contains the
address of the command to be retried + 8.

5.1f a HALT 1/0, HALT DEVICE, or CLEAR
1/0 instruction is issued between the initiation
of a retry but prior to the presentation of de-

Input/Output Operations 221

vice end, the CSW contains the address of the
command to be retried + 8.

6. On a multiplexer channel, chained CCWs
which might ordinarily have been executed in a
burst, may, upon the occurrence of command
retry, cause multiplexing to occur, with the re-
sult that the channel becomes unexpectedly
available.

Conclusion of Input/Output
Operations

When the operation or sequence of operations initi-
ated by START [/O or START I/0 FAST RE-
LEASE is ended, the channel and the device gener-
ate status conditions. These conditions can be
brought to the attention of the program by means of
an 1/0 interruption, by TEST I/0 or CLEAR 1/0,
or, in certain cases, by START I/0 or START I/0
FAST RELEASE. The status conditions, as well as
an address and a count indicating the extent of the
operation sequence, are presented to the program in
the form of a channel status word (CSW).

Types of Conclusion

Normally an I/O operation at the subchannel lasts
until the device signals channel end. The channel-
end condition can be signaled during the sequence
initiating the operation, or later. When the channel
detects equipment malfunctioning or an I/0 system
reset is performed, the channel disconnects the de-
vice without receiving channel end. The program
can force a device to be disconnected prematurely
by issuing CLEAR 1/0, HALT I/O, or HALT DE-
VICE.

Conclusion at Operation Initiation

After the addressed channel and subchannel have
been verified to be in a state where START 1/0 or
START I/0 FAST RELEASE can be executed,
certain tests are performed on the validity of the
information specified by the program and on the
availability of the addressed control unit and I/0O
device. This testing occurs both during the execu-
tion of START 1/0, either during or subsequent to
the execution of START I/0 FAST RELEASE, and
during command chaining.

A data-transfer operation is initiated at the sub-
channel and device only when no programming or
equipment errors are detected by the channel and
when the device responds with zero status during the
initiation sequence. When the channel detects or the
device signals any unusual condition during the initi-
ation of an operation, the command is said to be
rejected.

222 System/370 Principles of Operation

Rejection of the command during the execution
of START I/0 or START I/O FAST RELEASE is
indicated by the setting of the condition code in the
PSW. Unless the device is not operational, the con-
ditions that precluded the initiation are detailed by
the portion of the CSW stored by START I/0 or
START I/0 FAST RELEASE. The device is not
started, no interruption conditions are generated,
and the subchannel is available subsequent to the
initiation sequence. The device is immediately avail-
able for the initiation of another operation, provided
the command was not rejected because of the busy
or not-operational condition.

When an unusual condition causes a command to
be rejected during initiation of an 1/0O operation by
command chaining, an interruption condition is gen-
erated, and the subchannel is not available until the
condition is cleared. The conditions are indicated to
the program by means of the corresponding status
bits in the CSW. The not-operational condition,
which during the execution of START I/0 and
sometimes during the execution of START I/0
FAST RELEASE causes condition code 3 to be set,
is indicated by means of the interface-control-check
bit. The new operation at the I/O device is not start-
ed.

When START I/0 FAST RELEASE is executed
by a channel independently of the addressed device,
tests on most program-specified information, on
control-unit and device availability, on control-unit
and device status, and on most error conditions are
performed subsequent to the execution of START
I/0 FAST RELEASE. Some conditions which
would have caused a condition code 1 or 3 to be set
had the instruction been START I/0 instead cause
an interruption condition to be generated. The CSW,
when stored, indicates that the interruption condi-
tion is a deferred condition code 1 or 3.

Immediate Operations

Instead of accepting or rejecting a command, the
1/0 device can signal the channel-end condition
immediately upon receipt of the command code. An
1/0 operation causing the channel-end condition to
be signaled during the initiation sequence is called an
"immediate operation."

When the first CCW designated by the CAW
during a START I/0O or START I/0O FAST RE-
LEASE executed as a START I/0 initiates an im-
mediate operation with command chaining not indi-
cated and command retry not occurring, no interrup-
tion condition is generated. If no command chaining
occurs, the channel-end condition is brought to the
attention of the program by causing START I/0 or
START I/0O FAST RELEASE to store the CSW

status portion, and the subchannel is immediately
made available to the program. The I/0 operation,
however, is initiated, and, if channel end is not ac-
companied by device end, the device remains busy.
Device end, when subsequently provided by the
device, causes an interruption condition to be gener-
ated.

An immediate operation initiated by the first
CCW designated by the CAW during a START I/0
FAST RELEASE executed independently of the
addressed device appears to the program as a non-
immediate command. That is, any status generated
by the device for the immediate command, or for a
subsequent command if command chaining occurs,
causes an interruption condition to be generated.

When command chaining is specified after an
immediate operation and no unusual conditions have
been detected during the execution, or when com-
mand retry occurs for an immediate operation, nei-
ther START 1/0 nor START 1/0 FAST RELEASE
causes the immediate storing of CSW status. The
subsequent commands in the chain are handled nor-
mally, and the channel-end condition for the last
operation generates an interruption condition even if
the device provides the signal immediately upon
receipt of the command code.

Whenever immediate completion of an I/O opera-
tion is signaled, no data has been transferred to or
from the device. The data address in the CCW is not
checked for validity.

Since a count of zero is not valid, any CCW spec-
ifying an immediate operation must contain a nonze-
ro count. When an immediate operation is executed,
however, incorrect length is not indicated to the
program, and command chaining is performed when
so specified.

Programming Note

Control operations for which the entire operation is
specified in the command code may be executed as
immediate operations. Whether the control function
is executed as an immediate operation depends on
the operation and type of device and is specified in
the SL or SRL publication for the device.

Conclusion of Data Transfer

When the device accepts a command, the subchannel
is set up for data transfer. The subchannel is said to
be working during this period. Unless the channel
detects equipment malfunctioning or the operation is
concluded by CLEAR 1/0, or, on the selector chan-
nel, the operation is concluded by CLEAR 1/0,
HALT 1/0, or HALT DEVICE, the working state
lasts until the channel receives the channel-end sig-
nal from the device. When no command chaining is

specified or when chaining is suppressed because of
unusual conditions, the channel-end condition causes
the operation at the subchannel to be terminated and
an interruption condition to be generated. The status
bits in the associated CSW indicate channel end and
the unusual conditions, if any. The device can signal
channel end at any time after initiation of the opera-
tion, and the signal may occur before any data has
been transferred.

For operations not involving data transfer, the
device normally controls the timing of the channel-
end condition. The duration of data transfer opera-
tions may be variable and may be controlled by the
device or the channel.

Excluding equipment errors, CLEAR 1/0, HALT
DEVICE, and HALT 1/0, the channel signals the
device to conclude data transfer whenever any of the
following conditions occurs:

The storage areas specified for the operation are

exhausted or filled.

Program-check condition is detected.

Protection-check condition is detected.

Chaining-check condition is detected.

The first of these conditions occurs when the
channel has stepped the count to zero in the last
CCW associated with the operation. A count of zero
indicates that the channel has transferred all infor-
mation specified by the program. The other three con-
ditions are due to errors and cause premature con-
cluding of data transfer. In either case, the conclud-
ing is signaled in response to a service request from
the device and causes data transfer to cease. If the
device has no blocks defined for the operation (such
as writing on magnetic tape), it concludes the opera-
tion and generates the channel-end condition.

The device can control the duration of an opera-
tion and the timing of channel end by blocking of
data. On certain operations for which blocks are
defined (such as reading on magnetic tape), the de-
vice does not provide the channel-end signal until
the end of the block is reached, regardless of wheth-
er or not the device has been previously signaled to
conclude data transfer.

Checking for the validity of the data address is
performed only as data is transferred to or from
main storage. When the initial data address in the
CCW is invalid, no data is transferred during the
operation, and the device is signaled to conclude the
operation in response to the first service request. On
writing, devices such as magnetic tape units request
the first byte of data before any mechanical motion
is started and, if the initial data address is invalid, the
operation is concluded before the recording medium
has been advanced. However, since the operation
has been initiated, the device provides channel end,

Input/Output Operations 223

and an interruption condition is generated. Whether
a block at the device is advanced when no data is
transferred depends on the type of device and is
specified in the SL or SRL publication for the de-
vice.

When command chaining takes place, the sub-
channel appears to be in the working state from the
time the first operation is initiated until the device
signals the channel-end condition of the last opera-
tion of the chain. On the selector channel, the device
executing the operation stays connected to the chan-
nel and the whole channel appears to be in the work-
ing state for the duration of the execution of the
chain of operations. On the multiplexer channel an
operation in the burst mode causes the channel to
appear to be in the Working state only for the dura-
tion of the transfer of the burst of data. If channel
end and device end do not occur concurrently, the
device disconnects from the channel after providing
channel end, and the channel can in the meantime
communicate with other devices on the interface.

Any unusual conditions cause command chaining
to be suppressed and an interruption condition to be
generated. The unusual conditions can be detected
by either the channel or the device, and the device
can provide the indications with channel end,
control-unit end, or device end. When the channel is
aware of the unusual condition by the time the
channel-end signal for the operation is received, the
chain is ended as if the operation during which the
condition occurred were the last operation of the
chain. The device-end signal subsequently is pro-
cessed as an interruption condition. When the device
signals unit check or unit exception with control-unit
end or device end, the subchannel terminates the
working state upon receipt of the signal from the
device. The channel-end indication in this case is not
made available to the program.

Termination by HALT I/0 or HALT DEVICE

The instructions HALT I/0 and HALT DEVICE
cause the current operation at the addressed channel
or subchannel to be immediately terminated. The
method of termination differs from that used upon
exhaustion of count or upon detection of program-
ming errors to the extent that termination by HALT
1/0 or HALT DEVICE is not necessarily contingent
on the receipt of a service request from the device.

When HALT I/0 is issued to a channel operating
in the burst mode, the channel issues the halt signal
to the device operating with the channel, regardless
of either the current activity in the channel and on
the interface or the address of the device. If the
channel is involved in the data-transfer portion of an
operation, data transfer is immediately terminated,

224 System/370 Principles of Operation

and the device is disconnected from the channel. If
HALT I/0 is addressed to a selector channel execu-
ting a chain of operations and the device has already
provided channel end for the current operation, the
instruction causes the device to be disconnected and
command chaining to be immediately suppressed.

When HALT DEVICE is issued to a channel
operating in burst mode, the halt signal is issued to
the device involved in the burst-mode operation only
if that device is the one to which the HALT DE-
VICE is addressed. If the operation thus terminated
is in the data-transfer portion of the operation, data
transfer is immediately terminated and the device is
disconnected from the channel. If the terminated
burst involves a selector channel executing a chain of
operations and the device has already provided
channel end for the current operation, HALT DE-
VICE causes the device to be disconnected and
command chaining to be immediately suppressed. If,
on a selector channel, the device involved in the
burst is not the one to which the HALT DEVICE is
addressed, no action is taken. If, on a multiplexer
channel, the device involved in the burst is not the
one to which the HALT DEVICE is addressed,
HALT DEVICE causes any operation for the ad-
dressed device to be terminated at the addressed
subchannel by suppressing any further data transfer
or command chaining for that device.

When HALT I/0 or HALT DEVICE is issued to
a channel not operating in the burst mode, the ad-
dressed device is selected, and the halt signal is is-
sued as the device responds. On a multiplexer chan-
nel, command chaining, if indicated in the subchan-
nel, is immediately suppressed.

The termination of an operation by HALT 1/0 or
HALT DEVICE on the selector channel results in
up to four distinct interruption conditions. The first
one is generated by the channel upon execution of
the instruction and is not contingent on the receipt
of status from the device. The command address and
count in the associated CSW indicate how much
data has been transferred, and the channel-status
bits reflect the unusual conditions, if any, detected
during the operation. If HALT 1/0 or HALT DE-
VICE is issued before all data specified for the oper-
ation has been transferred, incorrect length is indi-
cated, subject to the control of the SLI flag in the
current CCW. The execution of HALT 1/0 or
HALT DEVICE itself is not reflected in CSW sta-
tus, and all status bits in a CSW due to this interrup-
tion condition can be zero. The channel is available
for the initiation of a new I/O operation as soon as
the interruption condition is cleared.

The second interruption condition on the selector
channel occurs when the control unit generates the

channel-end condition. The selector channel handles
this condition as any other interruption condition
from the device after the device has been discon-
nected from the channel, and provides zeros in the
protection key, command address, count, and chan-
nel status fields of the associated CSW. The
channel-end condition is not made available to the
program when HALT I/0 or HALT DEVICE is
issued to a channel executing a chain of operations
and the device has already provided channel end for
the current operation.

Finally, the third and fourth interruption condi-
tions occur when control unit end, if any, and device
end are generated. These conditions are handled as
for any other I/O operation.

The termination of an operation by HALT 1/0 or
HALT DEVICE on a multiplexer channel causes the
normal interruption conditions to be generated. If
the instruction is issued when the subchannel is in
the data-transfer portion of an operation, the sub-
channel remains in the working state until channel
end is signaled by the device, at which time the sub-
channel is placed in the interruption-pending state. If
HALT I/0 or HALT DEVICE is issued after the
device has signaled channel end and the subchannel
is executing a chain of operations, the channel-end
condition is not made available to the program, and
the subchannel remains in the working state until the
next status byte from the device is received. Receipt
of a status byte subsequently places the subchannel
in the interruption-pending state.

The CSW associated with the interruption condi-
tion in the subchannel contains the status byte pro-
vided by the device and the channel, and indicates at
what point data transfer was terminated. If HALT
1/0 or HALT DEVICE is issued before all data
areas associated with the current operation have
been exhausted or filled, incorrect length is indicat-
ed, subject to the control of the SLI flag in the cur-
rent CCW. The interruption condition is processed
as for any other type of termination.

The termination of a burst operation by HALT
1/0 or HALT DEVICE on a block-multiplexer
channel may, depending on the model and the type
of subchannel, take place as for a selector channel or
may allow the subchannel to remain in the working
state until the device provides ending status.

Programming Note

The count field in the CSW associated with an oper-
ation terminated by HALT I/0 or HALT DEVICE
is unpredictable.

Termination by CLEAR I/O

The termination of an operation by CLEAR I/O
causes the subchannel information pertaining to the
current operation, if any, with the addressed device
to be stored in the CSW and the subchannel to be
set to the available state. Unless a channel check had
been detected prior to the execution of CLEAR 1/0
or occurs during the execution of CLEAR 1/0, the
contents of the CSW indicate the point at which the
channel program was terminated. The count field
and the incorrect length indication are, however,
unpredictable.

When CLEAR I/0 terminates an operation at a
subchannel in the interruption-pending state, up to
three subsequent interruption conditions related to
the operation can occur. Since CLEAR 1/0 causes
the subchannel to be made available, these interrup-
tion conditions will result in only the unit-status por-
tion of the CSW being stored.

The first interruption condition arises on a selec-
tor channel when channel-end status is presented to
the channel. This occurs only when the interruption-
pending status of the channel and subchannel at the
execution of CLEAR 1/0 were due to the previous
execution of HALT I/0 or HALT DEVICE.

The second and third interruption conditions arise
when control unit end, if any, and device end are
presented to the channel.

When CLEAR 1/0 terminates an operation at a
subchannel in the working state, up to four subse-
quent interruption conditions related to the opera-
tion can occur. For all of these conditions, only the
status portion of the CSW will be stored.

The first interruption condition arises on certain
channels when the terminated operation was in the
midst of data transfer. Since the device is not sig-
naled to terminate the operation during the execu-
tion of CLEAR 1/0 unless the channel is working
with the addressed device when the instruction is
received, the device may, subsequent to the CLEAR
1/0, attempt to continue the data transfer. The
channel responds by signaling the device to termi-
nate data transfer. Depending on the channel, the
need to signal the device to terminate data transfer
may be ignored or may be considered an interface
control check which creates an interruption condi-
tion. Only channel status is stored in the CSW.

The second interruption condition occurs when
channel-end status is received from the device. The
third and fourth conditions occur when control unit
end, if any, and device end are presented to the
channel. In these three cases, only unit status is
stored in the CSW.

Input/Output Operations 225

Termination Due to Equipment Malfunction

When channel equipment malfunctioning is detected
or invalid signals are received over the I/O interface,
the recovery procedure and the subsequent states of
the subchannels and devices on the channel depend
on the type of error and on the model. Normally, the
program is alerted to the termination by an I/0O in-
terruption, and the associated CSW indicates the
channel-control-check or interface-control-check
condition. In channels sharing common equipment
with the CPU, malfunctioning detected by the chan-
nel may be indicated by a machine-check interrup-
tion, in which case no CSW is stored. Equipment
malfunctioning may cause the channel to perform
the I/O-selective-reset or I/ O-system-reset function
or to generate the halt signal.

Input/Output Interruptions

Input/output interruptions provide a means for the
CPU to change its state in response to conditions
that occur in I/O devices or channels. These condi-
tions can be caused by the program or by an external
event at the device.

Interruption Conditions

The conditions causing requests for I/O interrup-
tions to be initiated are called I/O interruption con-
ditions. An I/O interruption condition can be
brought to the attention of the program only once
and is cleared when it causes an interruption. Alter-
natively, an I/O interruption condition can be
cleared by TEST 1/O or CLEAR 1/0, and condi-
tions generated by the I/0 device following the ter-
mination of the operation at the subchannel can be
cleared by START I/O or START I/0 FAST RE-
LEASE. The latter include the attention, device-
end, and control-unit-end conditions, and the
channel-end condition when provided by a device
after concluding of the operation.

The device attempts to initiate a request to the
channel for an interruption whenever it detects any
of the following conditions:

Channel end

Control-unit end

Device end

Attention

The channel may also, at command chaining, cre-
ate an interruption condition at the device, which
can be due to the following conditions:

Unit check

Unit exception

Busy indication from device

Program check

Protection check

226 System/370 Principles of Operation

When an operation initiated by command chain-
ing is terminated because of an unusual condition
detected during the command initiation sequence,
the interruption condition may remain pending with-
in the channel, or the channel may create an inter-
ruption condition at the device. An interruption
condition is created at the device in response to
presentation of status by the device and causes the
device subsequently to present the same status for
interruption purposes. The interruption condition at
the device may or may not be associated with unit
status. It the unusual condition is detected by the
device (unit check or unit exception) the unit-status
field of the associated CSW identifies the condition.
In the case of program and protection check, the
identification of the error condition is preserved in
the subchannel, and appears in the channel-status
field of the associated CSW. If the associated inter-
ruption condition has been queued at the device, the
device provides zero status for interruption purposes.
When command chaining takes place, channel end
and device end do not cause an interruption, and are
not made available.

An interruption condition caused by the device
may be accompanied by channel and other unit sta-
tus conditions. Furthermore, more than one inter-
ruption condition associated with the same device
can be cleared at the same time. As an example,
when the channel-end condition is not cleared at the
device by the time device end is generated, both
conditions may be indicated in the CSW and cleared
at the device concurrently.

However, at the time the channel assigns highest
priority for interruptions to a condition associated
with an operation at the subchannel, the channel
accepts the status from the device and clears the
condition at the device. The interruption condition
and the associated status indication are subsequently
preserved in the subchannel. Any subsequent status
generated by the device is not included with the con-
dition at the subchannel, even if the status is gener-
ated before the CPU accepts the condition.

The method of processing a request for interrup-
tion due to equipment malfunctioning depends on
the model. In channels sharing common equipment
with the CPU, malfunctioning detected by the chan-
nel may be indicated by causing a machine-check
interruption.

When the channel detects any of the following
conditions, it initiates a request for an I/O interrup-
tion without necessarily communicating with or hav-
ing received the status byte from the device:

« PCI flag in a CCW

« Execution of HALT I/0 or HALT DEVICE on
a selector channel

« Channel available interruption (CAI)
» A programming error associated with the CCW
or first IDAW following the SIOF function

The interruption conditions from the channel,
except for CAI, can be accompanied by other chan-
nel status indications, but none of the device status
bits is on when the channel initiates the interruption.

The channel available interruption (CAI) condi-
tion is provided on all block-multiplexer channels
and causes the entire CSW to be replaced by a new
set of bits. All fields of the CSW are set to zero.
The I/0 address stored in the /0 old PSW in BC
mode and in the I/O communications area in EC
mode contains a zero device address and a channel
address identifying the interrupting channel.

The channel generates the CAI condition only if

it previously had responded with a condition code 2
to an I/0O instruction other than HALT I/0 or
HALT DEVICE and if the busy condition thus indi-
cated no longer exists. When the busy condition
which caused condition code 2 was due to a subchan-
nel busy with a device other than the one addressed,
the concluding of the busy condition is not signaled
by a CAlL Since any other interruption condition
(except PCI) accomplishes the same function as
CAI, a pending CAI condition is reset upon the oc-

~currence of any interruption (except PCI) on that
channel. Some channels also reset a pending CAI
condition when another interruption condition
(except PCI) is cleared by a TEST I/O on the same
channel. The occurrence of another channel-busy
condition prior to the CAI causes the CAI condition
to be suspended until the busy condition is past.

Programming Note

The CALI is designed to inform the program that a
channel which previously indicated busy is no longer
busy. The CAI condition pending in a channel does
not cause the rejection of a subsequent START I/0
or START 1/0 FAST RELEASE but does cause a
condition code 1 to be returned to TEST CHAN-
NEL. The CAI can therefore be used as a tool for
keeping I/0 requests in sequence by using it in con-
junction with TEST CHANNEL. A channel which
responded with condition code 2 because of a chan-
nel busy condition does not subsequently respond
with a condition code 0 to a TEST CHANNEL with-
out clearing an interruption condition in the interim.

Priority of Interruptions

All requests for I/O interruption are asynchronous
to the activity in the CPU, and interruption condi-
tions associated with more than one 1/O device can
exist at the same time. The priority among requests

Page of GA22-70004
Revised September 1, 1975
By TNL: GN22-0498

is controlled by two types of mechanisms--one es-
tablishes the priority among interruption conditions
associated with devices attached to the same chan-
nel, and another establishes priority among requests
from different channels. A channel requests an 1/0
interruption only after it has established priority
among requests from its devices. The conditions
responsible for the requests are preserved in the
devices or channels until accepted by the CPU.

Assignment of priority to requests for interruption
associated with devices on any one channel is a
function of the type of channel, the type of interrup-
tion condition, and the position of the device on the
1/0 interface. A device’s position on the interface is
not related to its address.

The selector channel assigns the highest priority
to conditions associated with the portion of the op-
eration in which the channel is involved. These con-
ditions include channel end, program-controlled-
interruption, HALT I/0 or HALT DEVICE in the
channel, and errors prematurely concluding a chain
of operations. The selector channel cannot handle
any interruption conditions other than those due to
the PCI flag while operation is in progress.

As soon as the selector channel has cleared the
interruption conditions associated with data transfer
it starts monitoring devices for attention, control-
unit-end, and device-end conditions and for the chan-
nel-end condition associated with operations con-
cluded by HALT I/0O, HALT DEVICE, or CLEAR
I/0. The highest priority is assigned to the I/0O
device that first identifies itself on the interface.

On the byte-multiplexer channel the priority
among requests for interruption is based on response
from devices. The highest priority is assigned to the
device that first identifies itself with an interruption
condition or that requests service for data transfer
and contains the PCI condition in the subchannel.

The assignment of priority among interruption
conditions for a block-multiplexer channel differs
among models. Some block-multiplexer channels
assign priorities as done by the byte-multiplexer
channel. Others assign priorities in a manner which
appears random.

Except for conditions associated with concluding
of data transfer, the current assignment of priority
for interruption among devices on a channel may be
canceled when START 1/0, START 1/0O FAST
RELEASE, TEST 1I/0, CLEAR 1/0, HALT 1/0,
or HALT DEVICE is issued to the channel. When-
ever the assignment is canceled, the channel resumes
monitoring for interruption conditions and reassigns
the priority on completion of the activity associated
with the /0O instruction.

Input/Output Operations 227

Page of GA22-7000-4
Revised September 1, 1975
By TNL: GN22-0498

The assignment of priority among requests for
interruption from channels is based on the type of
channel and its address assignment. The priorities of
channels 1-15 are in the order of their addresses,
with channel 1 having the highest priority. The inter-
ruption priority of multiplexer channel O is not fixed,
and depends on the model and on the current activi-
ty in the channel. Its priority may be above, below,
or between those of channels 1-15.

Interruption Action

An I/0 interruption can occur only when the chan-
nel accommodating the device is not masked and
after the execution of the current instruction in the
CPU has been finished. If a channel has established
the priority among requests for interruption from
devices while the CPU was disabled for interruptions
from the channel, the interruption occurs immediate-
ly after the finishing of the instruction removing the
mask and before the next instruction is executed.
This interruption is associated with the highest prior-
ity condition on the channel. If interruptions are
allowed from more than one channel concurrently,
the interruption occurs from the channel having the
highest priority among those requesting interruption.

If the priority among interruption conditions has
not yet been established in the channel by the time
the interruption is allowed, the interruption does not
necessarily occur immediately after the finishing of
the instruction removing the mask. This delay can
occur regardless of how long the interruption condi-
tion has existed in the device or the subchannel.

The interruption causes the current program sta-
tus word (PSW) to be stored as the old PSW at loca-
tion 56 and causes the CSW associated with the
interruption to be stored at location 64. Subsequent-
ly, a new PSW is loaded from location 120, and
processing resumes in the state indicated by this
PSW. The I/0 device or, in the case of control-unit
end, the control unit causing the interruption is iden-
tified in BC mode by the channel address in bit posi-
tions 16-23 and by the device address in bit posi-
tions 24-31 of the old PSW. In EC mode, the I/0
device or control unit is identified in the I/0O-address
field (locations 186-187) of the I/O communica-
tions area (IOCA). The CSW associated with the
interruption identifies the condition responsible for
the interruption and provides further details about
the progress of the operation and the status of the
device.

Programming Note

When a number of 1/0 devices on a shared control
unit are concurrently executing operations such as
rewinding tape or positioning a disk-access mecha-

228 System/370 Principles of Operation

nism, the initial device-end signals generated on
completion of the operations are provided in the
order of generation, unless command chaining is
specified for the operation last initiated. In the latter
case, the control unit provides the device-end signal
for the last initiated operation first, and the other
signals are delayed until the subchannel is freed.
Whenever interruptions due to the device-end signals
are delayed either because the channel is masked

or the subchannel is busy, the original order of

the signals is destroyed.

Channel Status Word

The channel status word (CSW) provides to the
program the status of an I/O device or the indica-
tion of the conditions under which an I/O operation
has been concluded. The CSW is formed, or parts of
it-are replaced, in the process of 1/0 interruptions
and possibly during execution of START 1/0,
START 1I/0 FAST RELEASE, TEST 1/0, CLEAR
1/0, HALT 1/0, HALT DEVICE, and STORE
CHANNEL ID. The CSW is placed in main storage
at real location 64 of the CPU to which the channel
is configured, and is available to the program at this
location until the time the next I/O interruption
occurs or until another I/0 instruction causes its
contents to be replaced, whichever occurs first.

When the CSW is stored as a result of an I/0
interruption, the I/0 device is identified in BC mode
in the interruption code of the old PSW and in EC
mode in the I/O-address field of the I/O communi-
cations area (IOCA). The information placed in the
CSW by START I/0, START 1/0 FAST RE-
LEASE, TEST 1/0, CLEAR 1/0, HALT I/0, or
HALT DEVICE pertains to the device addressed by
the instruction.

The CSW has the following format:

Key [0 L] CC CCW Address
/
0 4 6 8 317
L
4
Unit Status Channel Status Count
F
32 40 48 63

The fields in the CSW are allocated as follows:

Protection Key: Bits 0-3 form the protection key
used in the chain of operations at the subchannel.

Logout Pending (L): Bit 5, when one, indicates that
an I/O instruction cannot be executed until a pend-
ing logout condition has been cleared. Bit 45, chan-
nel control check, will always be one when bit 5 is
one.

Deferred Condition Code (CC): Bits 6 and 7 indi-
cate whether conditions have been encountered sub-
sequent to the setting of a condition code 0 for
START I/0 FAST RELEASE that would have
caused a different condition code setting for START
I/0. The possible setting of these bits, and their
meanings, are as follows:

Setting Of
Bit 6 Bit 7 Meaning
0 0 Normal i/0 interruption
0 1 Deferred condition code is 1
1 0 (Reserved)
1 1 Deferred condition code is 3

CCW Address: Bits 8-31 form an absolute address
that is eight higher than the address of the last CCW
used.

Status: Bits 32-47 identify the conditions in the de-
vice and the channel that caused the storing of the
CSW. Bits 32-39, the unit status, are obtained over
the I/0 interface and indicate conditions detected
by the device or the control unit. Bits 40-47, the
channel status, are provided by the channel and indi-
cate conditions associated with the subchannel. Each
of the 16 bits represents one type of condition, as
follows:

Bit Designation

32 Attention

33 Status modifier

34 Control unit end

35 Busy

36 Channel end

37 Device end

38 Unit check

39 Unit exception

40 Program-controlled interruption
41 Incorrect length

42 Program check

43 Protection check

44 Channel data check

45 Channel control check
46 Interface control check
47 Chaining check

Count: Bits 48-63 form the residual count for the
last CCW used.

Unit Status Conditions

The following conditions are detected by the I/O
device or control unit and are indicated to the chan-
nel over the 1/0 interface. The timing and causes of
these conditions for each type of device are specified
in the SL or SRL publication for the device.

When the I/0 device is accessible from more
than one channel, status due to channel-initiated
operations is signaled to the channel that initiated
the associated I/0O operation. The handling of condi-
tions not associated with I/O operations, such as
attention or device end due to transition from the
not-ready to the ready state, depends on the type of
device and condition and is specified in the SL or
SRL publication for the device.

The channel does not modify the status bits re-
ceived from the 1/0 device. These bits appear in the
CSW as received over the interface.

Attention

Attention is generated when the device detects an
asynchronous condition that is significant to the
program. The condition is interpreted by the pro-
gram and is not associated with the initiation, execu-
tion, or concluding of an I/O operation.

The device can signal the attention condition to
the channel when no operation is in progress at the
1/0 device, control unit, or subchannel. Attention
can be indicated with device end upon completion of
an operation, and it can be presented to the channel
during the initiation of a new I/O operation. Other-
wise, the handling and presentation of the condition
to the channel depends on the type of device.

When the device signals attention during the initi-
ation of an operation, the operation is not initiated.
Attention accompanying device end causes com-
mand chaining to be suppressed.

Status Modifier
Status modifier is generated by the device when the
device cannot provide its current status in response
to TEST 1/0, when the control unit is busy, when
the normal sequence of commands has to be modi-
fied, or when command retry is to be initiated.
When the status-modifier condition is signaled in
response to TEST I/0 and the bit appears in the
CSW in the absence of any other status bit, presence
of the bit indicates that the device cannot execute
the instruction and has not provided its current sta-
tus. The interruption condition, which may be pend-
ing at the device or subchannel, has not been
cleared, and the CSW stored by TEST I/0 contains
zeros in the key, command address, and count fields.
The 2702 Transmission Control is an example of a
type of device that cannot execute TEST 1/0.
When the status-modifier bit appears in the CSW
together with the busy bit, it indicates that the busy
condition pertains to the control unit associated with

“the addressed I/0 device. The control unit appears

busy when it is executing a type of operation that
precludes the acceptance and execution of any com-

Input/Output Operations 229

mand or the instructions TEST I/0, HALT 1/0,
and HALT DEVICE or when it contains an inter-
ruption condition for a device other than the one
addressed. The interruption condition may be due to
control unit end, due to channel end following the
execution of CLEAR 1/0, or, on the selector chan-
nel, due to channel end following the execution of
HALT I/O or HALT DEVICE. The busy state oc-
curs for operations such as backspace tape file, in
which case the control unit remains busy after pro-
viding channel end, for operations concluded by
CLEAR 1/0, and for operations concluded on the
selector channel by HALT 1/0 or HALT DEVICE,
and temporarily occurs on the 2702 Transmission
Control after initiation of an operation on a device
accommodated by the control unit. A control unit
accessible from two or more channels appears busy
when it is communicating with another channel.

Presence of the status modifier and device end
means that the normal sequence of commands must
be modified. The handling of this set of bits by the
channel depends on the operation. If command
chaining is specified in the current CCW and no
unusual conditions have been detected, presence of
status modifier and device end causes the channel to
fetch and chain to the CCW whose main-storage
address is 16 higher than that of the current CCW.
If the I/O device signals the status modifier condi-
tion at a time when no command chaining is speci-
fied, or when any unusual conditions have been de-
tected, no action is taken in the channel, and the
status modifier bit is placed in the CSW.

Status modifier is presented in combination with
unit check and channel end to initiate the command
retry procedure.

Control Unit End
Control unit end indicates that the control unit has
become available for use for another operation.
The control-unit-end condition is provided only
by control units shared by I/0 devices or control
units accessible by two or more channels, and only
when one or both of the following conditions have
occurred:

1. The program had previously caused the control
unit to be interrogated while the control unit
was in the busy state. The control unit is con-
sidered to have been interrogated in the busy
state when a command or the instructions
TEST I/0O, HALT 1/0, or HALT DEVICE
had been issued to a device on the control unit,
and the control unit had responded with busy
and status modifier in the unit status byte. See
"Status Modifier."

230 System/370 Principles of Operation

2. The control unit detected an unusual condition
during the portion of the operation after chan-
nel end had been signaled to the channel. The
indication of the unusual condition accompa-
nies control unit end.

If the control unit remains busy with the execu-
tion of an operation after signaling channel end but
has not detected any unusual conditions and has not
been interrogated by the program, control unit end is
not generated. Similarly, control unit end is not pro-
vided when the control unit has been interrogated
and could perform the indicated function. The latter
case is indicated by the absence of busy and status
modifier in the response to the instruction causing
the interrogation.

When the busy state of the control unit is tempo-
rary, control unit end is included with busy and sta-
tus modifier in response to the interrogation even
though the control unit has not yet been freed. The
busy condition is considered to be temporary if its
duration is commensurate with the program time
required to handle an 1/O interruption. The 2702
Transmission Control is an example of a device in
which the control unit may be busy temporarily and
which includes control unit end with busy and status
modifier.

The control unit end condition can be signaled
with channel end, device end, or between the two.
When control unit end is signaled by means of an
1/0 interruption in the absence of any other status
conditions, the interruption may be identified by any
address assigned to the control unit. A pending con-
trol unit end causes the control unit to appear busy
for initiation of new operations.

Busy

Busy indicates that the I/O device or control unit
cannot execute the command or instruction because
it is executing a previously initiated operation or
because it contains a pending interruption condition.
The interruption condition for the addressed device,
if any, accompanies the busy indication. If the busy
condition applies to the control unit, busy is accom-
panied by status modifier.

The following table lists the conditions for devices
connected to only one channel when the busy bit
appears in the CSW and when it is accompanied by
the status-modifier bit. For devices shared by more
than one channel, operations related to one channel
may cause the control unit or device to appear busy
to the other channels.

CSW Status Stored By

Condition SI0 or SIOF# TIO CLRIO+ HIO or HDV /O Interrupt #

Subchannel available

DE or attention in device B, cl —,cl * * -, cl

Device working, CU available B B * * *
CU end or channel end in CU:

for the addressed device B, cl —, cl - * —, cl

for another device B, SM B, SM - * —,cl

CU working B, SM B, SM — * B, SM
Interruption pending in subchannel for the
addressed device because of:

chaining terminated by busy condition * B, cl —,cl * B, cl

other type of termination * —, cl —, cl * —, cl
Subchannel working

CU available * * — — *

CU working * * — B, SM *

Explanation:

B Busy bit appears in CSW.

¢l Interruption condition cleared; status appears in CSW.
CU Control unit.

DE Device end.

SM Status-modifier bit appears in CSW.

* CSW not stored, or 1/0 interruption cannot occur.

— Busy bit is off.

When a channet executes START 1/O FAST RELEASE as START 1/0, the CSW status
stored for the two instructions is identical. When START 1/0 FAST RELEASE is
executed independently of the device, the same status is stored by an 1/0 interruption

with the CSW also indicating deferred condition code 1.

Except when the 1/O interruption is caused by a deferred condition code 1 for

START I/0 FAST RELEASE.

+ The entries in this column apply only when the CLRIO function is executed. When
CLEAR 1/0 is executed as TEST /0, the entries in the TIO column apply.

Indications of Busy in CSW

Channel End

Channel end is caused by the completion of the por-
tion of an I/O operation involving transfer of data
or control information between the I/0 device and
the channel. The condition indicates that the sub-
channel has become available for use for another
operation.

Each I/O operation causes a channel-end condi-
tion to be generated, and there is only one Channel
End for an operation. The channel-end condition is
not generated when programming errors or equip-
ment malfunctions are detected during initiation of
the operation. When command chaining takes place,
only the channel end of the last operation of the
chain is made available to the program. The channel-
end condition is not made available to the program
when a chain of commands is prematurely concluded
because of an unusual condition indicated with con-
trol unit end or device end or during the initiation of
a chained command.

The instant within an I/O operation when chan-
nel end is generated depends on the operation and
the type of device. For operations such as writing on

magnetic tape, the channel-end condition occurs
when the block has been written. On devices that
verify the writing, channel end may or may not be
delayed until verification is performed, depending on
the device. When magnetic tape is being read, the
channel-end condition occurs when the gap on tape
reaches the read-write head. On devices equipped
with buffers, such as the IBM 3211 Printer Model 1,
the channel-end condition occurs upon completion
of data transfer between the channel and the buffer.
During control operations, channel end is generated
when the control information has been transferred to
the devices, although for short operations the condi-
tion may be delayed until completion of the opera-
tion. Operations that do not cause any data to be
transferred can provide the channel-end condition
during the initiation sequence.

A channel-end condition pending in the control
unit causes the control unit to appear busy for initia-
tion of new operations.

Channel end is presented in combination with
status modifier and unit check to initiate the com-

mand retry procedure.
Input/Output

Operations 231

Device End

Device end is caused by the completion of an I/O
operation at the device or, on some devices, by man-
ually changing the device from the not-ready to the
ready state. The condition normally indicates that
the 1/0 device has become available for use for an-
other operation.

Each 1I/0 operation causes a device-end condi-
tion, and there is only one device end to an opera-
tion. The device-end condition is not generated
when any programming or equipment malfunction is
detected during initiation of the operation. When
command chaining takes place, only the device end
of the last operation of the chain is made available to
the program unless an unusual condition is detected
during the initiation of a chained command, in which
case the chain is concluded without the device-end
indication.

The device-end condition associated with an I/0
operation is generated either simultaneously with the
channel-end condition or later. On data-transfer
operations on devices such as magnetic tape units,
the device concludes the operation at the time chan-
nel end is generated, and both device end and chan-
nel end occur together. On buffered devices, such as
an IBM 3211 Printer Model 1, the device-end condi-
tion occurs upon completion of the mechanical oper-
ation. For control operations, device end is generat-
ed at the completion of the operation at the device.
The operation may be completed at the time channel
end is generated or later.

When command chaining is specified in the sub-
channel, receipt of the device-end signal, in the ab-
sence of any unusual conditions, causes the channel
to initiate a new I/0 operation.

Unit Check

Unit check indicates that the 1/0 device or control
unit has detected an unusual condition that is de-
tailed by the information available to a sense com-
mand. Unit check may indicate that a programming
or an equipment error has been detected, that the
not-ready state of the device has affected the execu-
tion of the command or instruction, or that an ex-
ceptional condition other than the one identified by
unit exception has occurred. The unit-check bit
provides a summary indication of the conditions
identified by sense data.

An error condition causes the unit-check indica-
tion only when it occurs during the execution of a
command or TEST 1/0, or during some activity
associated with an I/0 operation. Unless the error
condition pertains to the activity initiated by a com-
mand and is of immediate significance to the pro-
gram, the condition does not cause the program to

232 System/370 Principles of Operation

be alerted after device end has been cleared; a mal-
function may, however, cause the device to become
not ready.

Unit check is indicated when the existence of the
not-ready state precludes a satisfactory execution of
the command, or when the command, by its nature,
tests the state of the device. When no interruption
condition is pending for the addressed device at the
control unit, the control unit signals unit check when
TEST 1/0 or the no-operation control command is
issued to a not-ready device. In the case of no-
operation, the command is rejected, and channel end
and device end do not accompany unit check.

Unless the command is designed to cause unit
check, such as rewind and unload on magnetic tape,
unit check is not indicated if the command is proper-
ly executed even though the device has become not
ready during or as a result of the operation. Similar-
ly, unit check is not indicated if the command can be
executed with the device not ready. The IBM 2150
Console, for example, accepts and executes the
alarm control order when the printer is not ready.
Selection of a device in the not-ready state does not
cause a unit-check indication when the sense com-
mand is issued, and whenever an interruption condi-
tion is pending for the addressed device at the con-
trol unit.

If the device detects during the initiation sequence
that the command cannot be executed, unit check is
presented to the channel and appears without chan-
nel end, control unit end, or device end. Such unit
status indicates that no action has been taken at the
device in tesponse to the command. If the condition
precluding proper execution of the operation occurs
after execution has been started, unit check is accom-
panied by channel end, control unit end, or device
end, depending on when the condition was detected.
Any errors associated with an operation, but detect-
ed after device end has been cleared, are indicated
by signaling unit check with attention.

Errors, such as invalid command code or invalid
command code parity, do not cause unit check when
the device is working or contains a pending interrup-
tion condition at the time of selection. Under these
circumstances, the device responds by providing the
busy bit and indicating the pending interruption con-
dition, if any. The command code invalidity is not
indicated.

Concluding of an operation with the unit-check
indication causes command chaining to be sup-
pressed.

Unit check is presented in combination with chan-
nel end and status modifier to initiate the command
retry procedure.

Programming Note

If a device becomes not ready upon completion of a
command, the ending interruption condition can be
cleared by TEST 1/0 without generation of unit
check due to the not-ready state, but any subsequent
TEST 1/0 issued to the device causes a unit-check
indication.

In order that sense indications set in conjunction
with unit check are preserved by the device until
requested by a sense command, some devices inhibit
certain functions until a command other than test
I/0 or no-operation is received. Furthermore, any
command other than sense, test I/0O, or no-
operation causes the device to reset any sense in-
formation. To avoid degradation of the device and
its control unit and to avoid inadvertent resetting of
the sense information, a sense command should be
issued immediately to any device signaling unit
check.

Unit Exception

Unit exception is caused when the I/0 device de-
tects a condition that usually does not occur. Unit
exception includes conditions such as recognition of
a tape mark and does not necessarily indicate an
error. It has only one meaning for any particular
command and type of device.

The unit-exception condition can, be generated
only when the device is executing an 1/0 operation,
or when the device is involved with some activity
associated with an I/O operation and the condition
is of immedicate significance to the program. If the
device detects during the initiation sequence that the
operation cannot be executed, unit exception is pre-
sented to the channel and appears without channel
end, control unit end, or device end. Such unit sta-
tus indicates that no action has been taken at the
device in response to the command. If the condition
precluding normal execution of the operation occurs
after the execution has been started, unit exception
is accompanied by channel end, control unit end, or
device end, depending on when the condition was
detected. Any unusual conditions associated with an
operation, but detected after device end has been
cleared, are indicated by signaling unit exception
with attention.

A command does not cause unit exception when
the device responds to the command during the ini-
tial selection with busy status.

Concluding an operation with the unit-exception
indication causes command chaining to be sup-
pressed.

Channel Status Conditions

The following conditions are detected and indicated
by the channel. Except for the conditions caused by
equipment malfunctioning, they can occur only while
the subchannel is involved with the execution of an
1/0 operation.

Program-Controlled Interruption
The program-controlled interruption condition is
generated when the channel fetches a CCW with the
program-controlled interruption (PCI) flag on. The
interruption due to the PCI flag takes place as soon
as possible after the CCW takes control of the opera-
tion but may be delayed an unpredictable amount of
time because of masking of the channel or other
activity in the system.

Detection of the PCI condition does not affect
the progress of the 1/O operation.

Incorrect Length

Incorrect length occurs when the number of bytes
contained in the storage areas assigned for the 1/0
operation is not equal to the number of bytes re-
quested or offered by the 1/0 device. Incorrect
length is indicated for one of the following reasons:

Long Block on Input: During a read, read-
backward, or sense operation, the device attempted
to transfer one or more bytes to storage after the
assigned storage areas were filled. The extra bytes
have not been placed in main storage. The count in
the CSW is zero.

Long Block on Output: During a write or control
operation the device requested one or more bytes
from the channel after the assigned main-storage
areas were exhausted. The count in the CSW is
zZero.

Short Block on Input: The number of bytes trans-
ferred during a read, read-backward, or sense opera-
tion is insufficient to fill the storage areas assigned to
the operation. The count in the CSW is not zero.

Short Block on Output: The device terminated a
write or control operation before all information
contained in the assigned storage areas was trans-
ferred to the device. The count in the CSW is not zero.

The incorrect-length indication is suppressed
when the current CCW has the SLI flag and does
not have the CD flag. The indication does not occur
for immediate operations and for operations rejected
during the initiation sequence.

Presence of the incorrect-length condition sup-
presses command chaining unless the SLI flag in the

Input/Output Operations 233

CCW is on or unless the condition occurs in an im-
mediate operation. See the table in the chaining
section of this manual for the effect of the CD, CC,
and SLI flags on the indication of incorrect length.

Programming Note
The setting of the incorrect-length indication is un-
predictable in the CSW stored during CLEAR 1/0.

Program Check

Program check occurs when programming errors are
detected by the channel. The condition can be due
to the following causes:

Invalid CCW Address Specification: The CAW or
the transfer-in-channel command does not designate
the CCW on integral boundaries for doublewords.
The three low-order bits of the CCW address are
not zero.

Invalid CCW Address: The channel has attempted
to fetch a CCW from a main-storage location which
is not available to the channel. An invalid CCW
address can occur in the channel because the pro-
gram has specified an invalid address in the CAW or
in the transfer-in-channel command or because on
chaining the channel attempts to fetch a CCW from
an unavailable location.

Invalid Command Code: The command code in the
first CCW designated by the CAW or in a CCW
fetched on command chaining has four low-order
zeros. The command code is not tested for validity
during data chaining.

Invalid Count: A CCW other than a CCW specify-
ing transfer in channel contains the value zero in bit
positions 48-63.

Invalid IDAW Address Specification: Channel indi-
rect data addressing is specified, and the data ad-
dress does not designate the first IDAW on an inte-
gral word boundary.

Invalid IDAW Address: The channel has attempted
to fetch an IDAW from a main-storage location
which is not available to the channel. An invalid
IDAW address can occur in the channel because the
program has specified an invalid address in a CCW
that specifies indirect data addressing or because the
channel, on sequentially fetching IDAWSs, attempts
to fetch from an unavailable location.

234 System/370 Principles of Operation

Invalid Data Address: The channel has attempted to
transfer data to or from a main-storage location
which is not available to the channel. An invalid
data address can occur in the channel because the
program has specified an invalid address in the
CCW, or in an IDAW, or because the channel, on
sequentially accessing storage, attempts to access an
unavailable location.

Invalid IDAW Specification: Bits 0-7 of the IDAW
are not all zeros, or the second or subsequent IDAW
does not specify the beginning or, for read-backward
operations, the ending byte of a 2,048-byte block.

Invalid CAW Format: The CAW does not contain
zeros in bit positions 4-7.

Invalid CCW Format: A CCW other than a CCW
specifying transfer in channel does not contain zeros
in bit positions 38-39.

Invalid Sequence: The first CCW designated by the
CAW specifies transfer in channel or the channel
has fetched two successive CCWs both of which
specify transfer in channel.

Detection of the program-check condition during
the initiation of an operation causes execution of the
operation to be suppressed. When the condition is
detected after the device has been started, the device
is signaled to conclude the operation the next time it
requests or offers a byte of data. The program-
check condition causes command chaining to be
suppressed.

Protection Check

Protection check occurs when the channel attempts a
storage access that is prohibited by the protection
mechanism. Protection applies to the fetching of
CCWs, IDAWSs, and output data, and to the storing
of input data. Storage accesses associated with each
1/0O operation are performed using the key provided
in the CAW associated with that operation.

When the protection-check condition occurs dur-
ing the fetching of a CCW that specifies the initia-
tion of an I/0 operation, or occurs during the fetch-
ing of the first IDAW, the operation is not initiated.
When protection check is detected after the device
has been started, the device is signaled to conclude
the operation the next time it requests or offers a
byte of data. The condition causes command chain-
ing to be suppressed.

Channel Data Check

Channel data check indicates that a machine error
has been detected in the information transferred to
or from main storage during an I/O operation, or
that a parity error has been detected on the data on
bus-in during an input operation. This information
includes the data read or written, as well as the in-
formation transferred as data during a sense or con-
trol operation. The error may have been detected
anywhere inboard of the I/0 interface: in the chan-
nel, in main storage, or on the path between the two.
Channel data check may be indicated for data with
an invalid checking block code (CBC) in main stor-
age when that data is referred to by the channel but
does not participate in the operation.

Whenever a parity error on I/O input data is indi-
cated by means of channel data check, the channel
forces correct parity on all data received over the
1/0 interface, and all data placed in main storage
has valid CBC. When, on an input operation, the
channel attempts to store less than a complete
checking block, and invalid CBC is detected on the
checking block in storage, the contents of the loca-
tion remain unchanged, with invalid CBC. On an
output operation, whenever a channel data check is
indicated, all bytes that came from a checking block
with invalid CBC have been transmitted on the in-
terface with parity errors.

A condition indicated as channel data check caus-
es command chaining to be suppressed, but does not
affect the execution of the current operation. Data
transfer proceeds to normal completion, if possible,
and an I/0 interruption condition is generated when
the device presents channel end. A logout may be
performed, depending on the channel. Accordingly,
the detection of the error may affect the state of the
channel and the device.

Channel Control Check

Channel control check is caused by any machine
malfunctioning affecting channel controls. The con-
dition includes invalid CBC on CCW and data ad-
dresses and invalid CBC on the contents of the
CCW. The condition also includes those channel-
detected errors associated with data transfer that are
not indicated as channel data check, as well as those
1/0 interface errors detected by the channel that are
not indicated as interface control check. Conditions
responsible for channel control check may cause the
contents of the CSW to to invalid and conflicting.
The CSW as generated by the channel has valid
CBC.

Detection of the channel-control-check condi