
A Hardware-efficient Variable-length FFT Processor

for Low-power Applications

Yifan Bo∗, Renfeng Dou∗, Jun Han∗ and Xiaoyang Zeng∗

∗State-Key Lab of ASIC and System, Fudan University, Shanghai, 200433, China.

E-mail: {11212020001, junhan}@fudan.edu.cn

Abstract—The fast Fourier transformation (FFT) is a key
operation in digital signal processing (DSP) systems and has
been studied intensively to improve the performance. Nowadays,
embedded DSP systems require low energy consumption to
prolong the life cycle, which raises stringent power limitation
for FFT processing. Meanwhile, sufficient signal-to-quantization-
noise ratio (SQNR) is a basic requirement in these systems. In
this paper, a modified data scaling scheme as well as trounding
method is employed to improve the SQNR performance. There-
fore word-length can be reduced and energy is saved accordingly.
Memory-based architecture is chosen to support variable-length
FFT processing. Also, constant multiplier array is introduced
in the datapath to reduce the power dissipation with a slight
increase of area. The proposed processor can perform 64 - 8192-
point FFT processing. The core area is 2.29 mm2 and the power
consumption is 67.9 mW at 100MHz. Besides, the SQNR of 55.4
dB and 33.3 dB are achieved for 64-point and 8192-point FFT
respectively.

I. INTRODUCTION

In recent years, researches on wearable and implanted

medical devices have attracted more and more attention. These

devices share a common feature of low energy consumption

in order to prolong their life cycle. As a result, low power

or even ultra-low power design techniques become more and

more crucial, especially in biomedical systems and wireless

micro-sensor networks [1].

Many biomedical signal processing systems and methods

have been presented to deal with various signals for different

applications. Karlen classifies sleep/wake states based on car-

diorespiratory signals [2]. Tseng analyses heart rate variability

(HRV) [3], which is an indicator of cardiovascular health.

A system for biomedical spectrum analysis is proposed by

Nie [4]. Among those systems and methods, the fast Fourier

transform (FFT), converting signal from the time domain to

the frequency domain, is used for biosignal analysis and can be

one of the most energy consuming tasks. Reducing the data

word-length for FFT decreases the energy consumption but

leads to a loss of signal-to-quantization-noise ratio (SQNR).

Therefore, one challenge for biomedical signal systems design

is to lower the energy consumption of FFT while preserving

reasonable SQNR. Of course, low energy consumption and

high SQNR are also required by many other applications

of FFT, such as orthogonal frequency division multiplexing

(OFDM) systems for digital communication [5] [6]. In par-

ticular, OFDM systems need the FFT implementation that

uses a shorter word-length as well as meets both SQNR and

throughput requirements [7].

In this paper, we propose a low-power FFT design consider-

ing both algorithm and architecture. Compared to the tradition-

al scaling method [8], the proposed modified method uses four

scaling factors after the first stage of FFT computation based

on radix-4 algorithm. Therefore this method has a distinct

advantage for signals with a large crest factor, i.e., the ratio

between peak and mean value of the input, like ECG signals.

Also, trounding strategy [9], a compromise between truncation

and rounding, is employed to improve the SQNR performance.

Besides, we implement a tailored constant multiplier array

within the butterfly unit. An index determination mechanism

is introduced to decide whether the butterfly unit uses the

constant multiplier array or complex multipliers during the

computation. Thus, the power consumption of datapath is

reduced with a slight increase in total number of gates.

The rest of this paper is organized as follows. Section II de-

scribes the methods aiming at improving SQNR performance,

including modified data scaling mechanism and the trounding

strategy. The overall architecture of FFT processor and the

design of tailored constant multiplier array are presented in

Section III. Section IV summarizes and compares the perfor-

mance with other works. Finally, the conclusion is given in

Section V.

II. FFT ALGORITHM

For a given sequence x(n), the N -point discrete Fourier

transform (DFT) is defined as

X(k) =

N−1∑

n=0

x(n)Wnk
N , k = 0...N − 1 (1)

Wnk
N is known as the twiddle factor, that is

Wnk
N = e−j 2πnk

N = cos(
2πnk

N
)− j sin(

2πnk

N
) (2)

The direct implementation of (1) has a computational com-

plexity of O(N2). By using the symmetry and periodicity

properties of the twiddle factors [10], the FFT algorithm can

reduce the complexity to O(N logr N), where r is the radix

of FFT processing. Radix-4 implementation is widely used

because it can save about 25% of total complex multiplica-

tions compared to radix-2 computation and the hardware cost

is much less than higher radix implementation. Meanwhile,

according to Chang’s work [11], the decimation in frequency

(DIF) algorithm has better SQNR performance than that of

decimation in time (DIT) because most of nontrival twiddle

Radix-2
Radix-4

-1

-1 -j

-1

-1

WN
k

WN
2k

WN
k

x(0)

x(1)

x(2)

x(3)

X(0)

X(2)

X(1)

X(3)

Fig. 1. Radix-4/2 mixed-radix butterfly.

factors are concentrated in the later stages of FFT processing.

Thus, this paper employs a radix-4/2 DIF butterfly unit. Mixed-

radix is used to cover all 2n-point FFTs. As shown in Fig. 1,

the butterfly unit can calculate either one radix-4 computation

or two radix-2 operations.

A. Modified Data Scaling Method

Overflows and round-off errors in the arithmetic units lead

to the degradation of accuracy. Obviously, overflows produce

more severe impairment since the number loses its most

significant bits. In contrast, round-off errors cause lost in the

least significant bits. Thus, data scaling methods are widely

used in prior works to prevent overflows so as to improve

the SQNR performance [1] [12] [13]. Generally, the scaling

methods employ one or a few scaling factors for a whole stage

of FFT processing. Ickes’s work [1] uses just one scaling factor

in a FFT stage. It is determined by the maximum value of the

intermediate results in the stage. The accuracy of this method

will be strongly affected when dealing with signals having

a large crest factor. It is because the maximum value after

computation can be several times larger than the rest values.

Therefore, in order to scale the maximum value, grave round-

off errors will occur when scaling the rest values. The dynamic

scaling approach in [12] is based on a prefetch buffer that

divides a whole stage’s complex numbers into several blocks.

Each block has a scaling factor so as to reduce the round-off

errors. However, this method requires many internal storage

elements as well as extra reshuffle operations between stages.

The proposed modified data scaling method employs four

scaling factors after the first stage of FFT computation. Com-

pared to the traditional scaling mechanism [1], only three

additional comparators and a few registers are needed to

support our method. No extra storage element or reshuffle

operation is required. As shown in Fig. 2, take 64-point FFT

processing as an example. The butterfly computation in the

first stage has four outputs, each of which is located in dif-

ferent blocks. Therefore, after the first stage, the intermediate

data can be divided into four blocks, i.e., [0, N
4
−1], [N

4
, N

2
−1],

[N
2
, 3N

4
− 1], and [3N

4
, N − 1], where N means the transform

size. Since these four blocks are independent of each other

during the sequential computation, it is reasonable to use one

scaling factor within each block. Data are scaled according to

corresponding scaling factor when operated during the later

stages of FFT processing.

S
calin

g
facto

r0
S

calin
g

facto
r1

S
calin

g
facto

r2
S

calin
g

facto
r3

Fig. 2. Modified data scaling method for 64-point FFT processing.

B. Trounding Strategy

The quantization loss is unavoidable in DSP systems accord-

ing to the effect of finite word-length. During FFT processing,

the product of multiplier usually requires twice as many bits as

the input number. Quantization loss occurs in the multiplica-

tion operations in the butterfly unit if the product is represented

with the original word-length of input. Generally, truncation

and rounding are the two ways to shorten the word-length.

Truncation means simply removing several least significant

bits (LSBs). In contrast, rounding is a more accurate method

since it truncates the number after an addition operation.

However, the additional adder will increase the critical path

delay and energy consumption. Trounding strategy [9] turns

out to be a compromise between truncation and rounding. As

shown in Fig. 3, an OR gate is employed so that trounding

MSB

MSB

LSB

LSB

Before trounding

After trounding

Fig. 3. Trounding strategy.

64 128 256 512 1024 2048 4096 8192

25

30

35

40

45

50

55

60

S
Q

N
R

(d
B

)

Transform size

Traditional data scaling

using truncation

Modified data scaling

using trounding

Fig. 4. SQNR comparison between traditional data scaling using truncation
and modified data scaling using trounding.

preserves information from the truncated part though it only

affects the LSB. Its accuracy can be approximately equal to

the rounding method with little hardware cost.

Fig. 4 shows the SQNR comparison between traditional

data scaling using truncation and modified data scaling using

trounding. Up to 9 dB SQNR improvement is achieved by

employing trounding and the proposed modified data scaling

method using ECG signal inputs. Thus, less word-length is

needed since our method can provide higher SQNR, which

helps lower the overall energy consumption.

III. ARCHITECTURE OF FFT PROCESSOR

A. Architectural Overview

The overall architecture of proposed FFT processor is shown

in Fig. 5. It consists of the address generator, radix-4/2

DIF butterfly unit, scaling factors generator, data RAM, and

twiddle factor ROM. The data RAM employs four 2048-word

two-port SRAM modules to support up to 8192-point FFT

processing. Four scaling factors are produced by the scaling

Bank0

Bank1

Bank2

Bank3

Data RAM
Butterfly unit

(radix-4/2 DIF)

Twiddle

factor

ROM

Address

generator

Scaling

factors

generator

Waddr

Addr0

Addr1

Addr2

Addr3

Scale_en

Scaling

factors

Din0

Din1

Din2

Din3

Dout0

Dout1

Dout2

Dout3

W0 W1 W2

Fig. 5. Overall architecture of proposed FFT processor.

TABLE I
SCHEDULING OF THE TWIDDLE FACTORS

k 1 2 3 4 5 6 7 8

W
k
64 W

1
64 W

2
64 W

3
64 W

4
64 W

5
64 W

6
64 W

7
64 W

8
64

W
2k
64 W

2
64 W

4
64 W

6
64 W

8
64 W

6
64 W

4
64 W

2
64 W

0
64

W
3k
64 W

3
64 W

6
64 W

7
64 W

4
64 W

1
64 W

2
64 W

5
64 W

8
64

factors generator according to the outputs of butterfly unit.

Data are scaled by right shifters in the data RAM [1].

B. Tailored Constant Multiplier Array

Constant Multipliers, composed of several adders and

shifters, are widely used to reduce the datapath power dis-

sipation [14]–[16]. Generally, they are introduced either in

small transform size parallel FFT processor [14] or in pipeline

architecture which can decompose a long transform size into

N-dimensional small FFTs [15] [16]. Unlike those previous

works, the proposed tailored constant multiplier array can only

support a part of twiddle factor multiplications during the FFT

calculation. Thus, both constant multipliers and three complex

multipliers are implemented in the radix-4 butterfly unit. With

an index determination mechanism, the FFT processor is able

to decide which ones to be used during the computation.

The power consumption of butterfly unit can save about 20%

compared to pure complex multipliers based butterfly unit.

The twiddle factors of the proposed tailored constant multi-

plier array are W k
64

, where k ∈ [1, 8]. By using the symmetry

feature in the complex plane [15], these constant multipliers

are enough to support W
p
64

-related multiplication, where p

is from 0 to 63. According to Fig. 1, three twiddle factors,

namely W k
64

, W 2k
64

, W 3k
64

, are needed simultaneously in the

butterfly unit. Table I shows the scheduling of these three

twiddle factors in the tailored constant multiplier array after

using the mapping table mentioned in [15]. Obviously, they

have different values from each other except for k = 4
and 8. Therefore, additional constant multiplier 4 and 8 are

employed in the proposed FFT processer. Fig. 6 illustrates the

architecture of the tailored constant multiplier array. It can

Constant 1

Constant 2

Constant 3

Constant 4

Constant 4

Constant 5

Constant 6

Constant 7

Constant 8

Constant 8

M

U

X

M

U

X

Sgn() M

U

X

Sgn() M

U

X

Sgn() M

U

X

Din0

Din1

Din2

Dout0

Dout1

Dout2

Fig. 6. The constant multiplier array architecture.

compute three complex multiplications at the same time using

ten constant multipliers following with swapping the real and

imaginary parts and choosing the appropriate sign.

During FFT calculation, the index determination mechanism

can detect whether the twiddle factors fall within the range of

W k
64

according to the index provided by address generator. If

they do, then the tailored constant multiplier array is used.

Otherwise, three complex multipliers are activated to perform

nontrivial multiplication.

IV. RESULTS AND COMPARISON

The proposed FFT processor is designed in Verilog HDL

and synthesized by Synopsys’s Design Compiler, using the

standard SMIC 130nm technology. The proposed design can

perform 64 - 8192-point FFT processing on 2×11-bit complex

data with a core area of 2.29 mm2. The power consumption

is 67.9 mW at 100MHz, obtained by power simulation tool

Primetime PX. Also, the SQNR of 55.4 dB and 33.3 dB are

achieved for 64-point and 8192-point FFT respectively.

A comparison of performance with previous works is listed

in Table II. “Normalized energy per FFT point” and “nor-

malized area” [17] are introduced to reflect the energy and

area efficiency. Obviously, our design is better than [18] [19]

in terms of normalized energy and area. Although our design

occupies a little larger area than [20], the energy per FFT point

is about 2.7 times lower than it. As for [17], it achieves better

energy efficiency than our design while its core area is much

large than ours.

V. CONCLUSIONS

In this paper, a hardware-efficient, low-power variable-

length FFT design is proposed. A modified data scaling

method and the trounding strategy are employed to improve

TABLE II
COMPARISON OF PERFORMANCE FOR VARIABLE-LENGTH FFT DESIGN

[18] [19] [20] [17] Proposed

Technology 250nm 350nm 180nm 180nm 130nm

Voltage 2.5V 3.3V 1.8V 1.8V 1.2V

FFT Size 8-4096 64-2048 2K/4K/8K 128-1024 64-8182

Frequency 200MHz 60MHz
79MHz

@8K-point
51MHz 100MHz

Area 11.42mm2 6.67mm2 3.56mm2 1.47mm2 2.29mm2

Power
400mW

@1K-point
574mW

67mW

@8K-point
33.3mW 67.9mW

Normalized

Energy1
2.38nJ 8.30nJ

3.26nJ

@8K-point

0.84nJ

@1K-point
1.19nJ

Normalized

Area2
×10

3
3.86 0.42 0.23 0.75 0.28

1 Normalized Energy per FFT point = Power×Execution Time
FFT size×(V oltage/1.2V)2

2 Normalized Area = Area
FFT size×(Technology/130)2

the SQNR performance. Meanwhile, a tailored constant multi-

plier array is implemented to reduce the power consumption of

datapath. The proposed processor can perform 64 - 8192-point

FFT processing and occupies an area of 2.29 mm2. The power

consumption is 67.9 mW at 100MHz. Besides, the SQNR of

55.4 dB and 33.3 dB are achieved for 64-point and 8192-point

FFT respectively.

REFERENCES

[1] N. J. Ickes, “A micropower DSP for sensor applications,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2008.

[2] W. Karlen, C. Mattiussi, and D. Floreano, “Sleep and wake classification
with ECG and respiratory effort signals,” IEEE Trans. Biomed. Circuits

Syst., vol. 3, no. 2, pp. 71 –78, 2009.
[3] S.-Y. Tseng and W.-C. Fang, “An effective heart rate variability processor

design based on time-frequency analysis algorithm using windowed
lomb periodogram,” in Proc. IEEE BioCAS, Nov. 2010, pp. 82 –85.

[4] Z. Nie, L. Wang, W. Chen, T. Zhang, and Y. Zhang, “A low power
biomedical signal processor ASIC based on hardware software code-
sign,” in Proc. IEEE EMBS, 2009, pp. 2559 –2562.

[5] Y. Chen, Y.-W. Lin, Y.-C. Tsao, and C.-Y. Lee, “A 2.4-Gsample/s DVFS
FFT processor for MIMO OFDM communication systems,” IEEE J.

Solid-State Circuits, vol. 43, no. 5, pp. 1260 –1273, May 2008.
[6] S.-N. Tang, C.-H. Liao, and T.-Y. Chang, “An area- and energy-efficient

multimode FFT processor for WPAN/WLAN/WMAN systems,” IEEE

J. Solid-State Circuits, vol. 47, no. 6, pp. 1419 –1435, 2012.
[7] Y. Chen, Y.-C. Tsao, Y.-W. Lin, C.-H. Lin, and C.-Y. Lee, “An indexed-

scaling pipelined FFT processor for OFDM-based WPAN applications,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 2, pp. 146 –150,
Feb. 2008.

[8] T. Lenart and V. Owall, “A 2048 complex point fft processor using a
novel data scaling approach,” in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS’03), vol. 4. IEEE, 2003, pp. IV–45.
[9] http://www.xilinx.com/univ/teaching materials/dsp primer/sample/

lecture notes/FPGAArithmetic word.pdf, Aug. 2007.
[10] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation

of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[11] W.-H. Chang and T. Nguyen, “On the fixed-point accuracy analysis of fft
algorithms,” IEEE Trans. Signal Processing, vol. 56, no. 10, pp. 4673–
4682, 2008.

[12] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A dynamic scaling FFT processor
for DVB-T applications,” IEEE J. Solid-State Circuits, vol. 39, no. 11,
pp. 2005 – 2013, Nov. 2004.

[13] E. Bidet, D. Castelain, C. Joanblanq, and P. Senn, “A fast single-
chip implementation of 8192 complex point FFT,” IEEE J. Solid-State

Circuits, vol. 30, no. 3, pp. 300 –305, Mar. 1995.
[14] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point fourier transform

chip for high-speed wireless lan application using ofdm,” IEEE J. Solid-

State Circuits, vol. 39, no. 3, pp. 484–493, 2004.
[15] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A 1-gs/s fft/ifft processor for uwb

applications,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1726–
1735, 2005.

[16] S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-gs/s fft processor for
ofdm-based wpan applications,” IEEE Trans. Circuits Syst. II, Exp.

Briefs, vol. 57, no. 6, pp. 451–455, 2010.
[17] C.-M. Chen, C.-C. Hung, and Y.-H. Huang, “An energy-efficient par-

tial fft processor for the ofdma communication system,” IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 57, no. 2, pp. 136–140, 2010.
[18] G. Zhong, F. Xu, and A. N. Willson Jr, “A power-scalable reconfigurable

fft/ifft ic based on a multi-processor ring,” IEEE J. Solid-State Circuits,
vol. 41, no. 2, pp. 483–495, 2006.

[19] J.-C. Kuo, C.-H. Wen, C.-H. Lin, and A.-Y. Wu, “Vlsi design of a
variable-length fft/ifft processor for ofdm-based communication system-
s,” EURASIP journal on Applied signal processing, vol. 2003, pp. 1306–
1316, 2003.

[20] Y.-J. Cho, C.-L. Yu, T.-H. Yu, C.-Z. Zhan, and A.-Y. A. Wu, “Efficient
fast fourier transform processor design for dvb-h system,” in Proc.

VLSI/CAD Symposium, 2007.

