
Jean Berstel

Transductions and
Context-Free Languages

February 19, 2007

c© Jean Berstel 2006

c© Teubner-Verlag 1979



ii



Preface to the electronic edition

This electronic edition contains the first four chapters of the book which is no more
available. These are considered to be still relevant for students.

The following modifications to the printed versions appear.

Notational modifications

X, Y, Z → A,B,C
A,B,C → X, Y, Z
f, g, h → w, x, y

Improvements in English

achieves → completes
unicity → uniqueness
i.e. → that is
iff → if and only if
system of generators → set of generators
lexicographical → lexicographic

Improvements in proofs

Proof of Lemma II.3.2 has been simplified (argument of G. Cousineau).
The automaton of Example I.4.1 has been corrected.

Errors in proofs

Errors in exercises

Exercise III.8.3 has been removed since I am not sure it is correct as stated.
There exist several excellent introductions and presentationas of the modern

theory of automata, languages, machines, formal series, transductions.

Paris, Winter 2006 J. Berstel

iii



iv preface



Preface

This book present a theory of formal languages with main emphasis on rational
transductions and their use for the classification of context-free languages. The
level of presentation corresponds to that of beginning graduate or advanced un-
dergraduate work. Prerequisites for this book are covered by a “standard” first-
semester course in formal languages and automata theory, e.g. a knowledge of
Chapters 1–3 of Ginsburg (1966), or Chapters 3–4 of Hopcroft and Ullman (1969),
or Chapter 2 of Salomaa (1973), or Chapters 2 and 4 of Becker and Walter (1977)
would suffice. The book is self-contained in the sense that complete proofs are
given for all theorems stated, except for some basic results explicitly summarized
at the beginning of the text. Chapter IV and Chapters V–VIII are independent
from each other.

The subject matter is divided into two preliminary and six main chapters. The
initial two chapters contain a general survey of the “classical” theory of regular
and context-free languages with a detailed description of several special languages.
Chapter III deals with the general theory of rational transductions, treated in an
algebraic fashion along the lines of Eilenberg, and which will be used systematically
in subsequent chapters. Chapter IV is concerned with the important special case of
rational functions, and gives a full treatment of the latest developments, including
subsequential transductions, unambiguous transducers and decision problems.

The study of families of languages (in the sense of Ginsburg) begins with Chap-
ter V.(. . . )

The notes from which this book derives were used in courses at the University of
Paris and at the University of Saarbrücken. I want to thank Professor G. Hotz for
the opportunity he gave me to stay with the Institut für angewandte Mathematik
und Informatik, and for his encouragements to write this book. I am grateful to
the following people for useful discussions or comments concerning various parts
of the text: J.-M. Autebert, J. Beauquier, Ch. Choffrut, G. Cousineau, K. Es-
tenfeld, R. Linder, M. Nivat, D. Perrin, J.-F. Perrot, J. Sakarovitch, M. Soria, M.
Stadel, H. Walter. I am deeply indebted to M.-P. Schützenberger for his constant
interest in this book and for many fruitful discussions. Special thanks are due to
L. Boasson whose comments have been of an invaluable help in the preparation
of many sections of this book. I want to thank J. Messerschmidt for his careful
reading of the manuscript and for many pertinent comments, and Ch. Reutenauer
for checking the galley proofs. I owe a special debt to my wife for her active con-
tribution at each step of the preparation of the book, and to Bruno and Clara for
their indulgence.

Paris, Spring 1978 J. Berstel

v



vi preface



Contents

Preface to the electronic edition iii

Preface v

Chapter I Preliminaries 1
1 Some Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Monoids, Free Monoids . . . . . . . . . . . . . . . . . . . . . . . . . 1
3 Morphisms, Congruences . . . . . . . . . . . . . . . . . . . . . . . . 4
4 Finite Automata, Regular Languages . . . . . . . . . . . . . . . . . 7

Chapter II Context-Free Languages 15
1 Grammars, Languages, Equations . . . . . . . . . . . . . . . . . . . 15
2 Closure Properties, Iteration . . . . . . . . . . . . . . . . . . . . . . 23
3 Dyck Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Two Special Languages . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter III Rational Transductions 43
1 Recognizable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2 Rational Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3 Rational Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4 Rational Transductions . . . . . . . . . . . . . . . . . . . . . . . . . 56
5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6 Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7 Matrix Representations . . . . . . . . . . . . . . . . . . . . . . . . . 72
8 Decision Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter IV Rational Functions 83
1 Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2 Sequential Transductions . . . . . . . . . . . . . . . . . . . . . . . . 87
3 The Cross-Section Theorem . . . . . . . . . . . . . . . . . . . . . . 101
4 Unambiguous Transducers . . . . . . . . . . . . . . . . . . . . . . . 105
5 Bimachines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6 A Decidable Property . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography 125

Index 129

vii



viii Contents



Chapter I

Preliminaries

This chapter is a short review of some basic concepts used in the sequel. Its aim
is to agree on notation and terminology. We first consider monoids, especially free
monoids, and morphisms. Then a collection of definitions and results is given,
dealing with finite automata and regular languages.

1 Some Notations

N = {0, 1, 2, . . .} is the set of nonnegative integers. Z = {. . . ,−2,−1, 0, 1, . . .} is
the set of integers. Let E be a set. Then Card(E) is the number of its elements.
The empty set is denoted by ∅. If X, Y are subsets of E, then we write X ⊂ Y if
and only if x ∈ X =⇒ x ∈ Y , and X ( Y if X ⊂ Y and X 6= Y . Further

X \ Y = {x ∈ E | x ∈ X and x /∈ Y } .

A singleton is a subset of E consisting of just one element. If no confusion can
arise, we shall not distinguish elements of E from singletons. The set of all subsets
of E, that is the powerset of E is denotes by P(E) or 2E . With the preceding
convention, E ⊂ P(E).

The domain dom(α) of a partial function α : E → F is the set of elements
x in E for which α(x) is defined. α can be viewed as a (total) function from E
into P(F ), and with the convention F ⊂ P(F ), as a total function from E into
F ∪ {∅}. Then dom(α) = {x ∈ | α(x) 6= ∅}.

2 Monoids, Free Monoids

A semigroup consists of a set M and a binary operation on M , usually denoted by
multiplication, and which is postulated to be associative: For any m1, m2, m3 ∈M ,
m1(m2m3) = (m1m2)m3. A neutral element or a unit is an element 1M ∈ M (also
noted 1 for short) such that 1Mm = m1M = m for all m ∈M . A semigroup which
has a neutral element is a monoid . The neutral element of a monoid is unique.
Indedd, if 1′ is another neutral element, then 1′ = 11′ = 1.

Given two subsets X, Y of a monoid M , the product XY is defined by

XY = {z ∈M | ∃x ∈ X, ∃y ∈ Y : z = xy} . (2.1)

1



2 Chapter I. Preliminaries

This definition converts P(M) into a monoid with unit {1M}. A subset X of M
is a subsemigroup (submonoid) of M if X2 ⊂ X (1 ∈ X and X2 ⊂ X). Given any
subset X of M , the sets

X+ =
⋃

n≥1

Xn , X∗ =
⋃

n≥0

Xn ,

where X0 = {1} and Xn+1 = XnX, are a subsemigroup resp. a submonoid of
M . In fact, X+ (resp. X∗) is the least subsemigroup (resp. submonoid) for the
order of set inclusion containing X. It is called the subsemigroup (submonoid)
generated by X. If M = X∗ for some X ⊂ M , then X is a set of generators of
M . A monoid is finitely generated if it has a finite set of generators. The unary
operations X 7→ X+ and X 7→ X∗ on subsets of M are called the (Kleene) plus
and star operations. The formulas X+ = XX∗ = X∗X and X∗ = 1 ∪ X+. are
readily verified.

For any set A, the free monoid A∗ generated by A or with base A is defined as
follows. The elements of A∗ are n-tuples

u = (a1, a2, . . . , an) (n ≥ 0) (2.2)

of elements of A. If v = (b1, . . . , bm) is another element of A∗, the product uv is
by defined by concatenation, that is

uv = (a1, a2, . . . , an, b1, . . . , bm) .

This produces a monoid with the only 0-tuple 1 = () as neutral element. We shall
agree to write a instead of the 1-tuple (a). Thus (2.2) may be written as:

u = a1a2 · · ·an .

Because of this, u is called a word , a ∈ A is called a letter and A itself is called an
alphabet . By the convention a = (a), A can be considered as a subset of A∗. This
justifies the notation A∗, since indeed A∗ is the only submonoid of A∗ containing A.
Further, A+ = A∗ \ 1. In the sequel, and unless otherwise indicated, an alphabet
will be supposed to be finite and nonempty.

We shall use the following terminology concerning a free monoid A∗ generated
by an alphabet A. A (formal) language over A is any subset of A∗. The length |u|
of a word u ∈ A∗ is the number of letters composing it. The neutral element of
A∗ is called the empty word, and is noted 1 or ε. It is the only word of length 0.
Clearly |uv| = |u|+ |v|. If B ⊂ A, then |u|B is the number of occurrences of letters
b ∈ B in u. Thus

|u| =
∑

a∈A

|u|a .

The reversal of a word u = a1a2 · · ·an (n ≥ 0, ai ∈ A) is denoted by ũ or u ,̃ and
is defined by ũ = anan−1 · · ·a2a1. Clearly ˜̃u = u, 1̃ = 1, (uv)̃ = ṽũ. For X ⊂ A∗,
X̃ = {ũ | u ∈ X}. If Y ⊂ A∗, then (XY )̃ = Ỹ X̃, and (X∗)̃ = (Ã)∗.

Let u ∈ A∗. Then a word v is a factor of u if u = xvy for some x, y ∈ A∗. If
x = 1, then v is a prefix ; if y = 1, then v is a suffix of u. v is a proper factor



2. Monoids, Free Monoids 3

(proper prefix, proper suffix) of u if further v 6= u. A word v may occur at several
places as a factor of u. A fixed occurrence of v as a factor of u is called a segment .
This definition always refers to some previously defined factorization u = xvy. If
u = x′v′y′ is another factorization, then the segment v′ is contained in the segment
v if and only if x is a prefix of x′ and y is a suffix of y′. Finally, v is a subword of u
if u = w0a1w1 · · ·anwn, (n ≥ 0, a1, . . . , an ∈ A, w0, . . . , wn ∈ A∗) and v = a1 · · ·an.

Let M be a submonoid of A∗. Then X = (M \1)\(M \1)2 is a set of generators
of M , that is X∗ = M . Further X is minimal with this property, that is Y ∗ = M
implies Y ⊃ X. A submonoid M of A∗ is free with base Z if any word u ∈M has
one and only one factorization u = z1z2 · · · zn, with n ≥ 0 and z1, . . . , zn ∈ Z. The
base of a free submonoid M is unique and is equal to (M \ 1) \ (M \ 1)2. Thus
A∗ is free with base A. A base of a free submonoid is called a code. Examples of
codes are supplied by prefix and suffix sets. A subset X of A+ is prefix if and only
if XA+ ∩X = ∅, that is if X contains no proper prefix of some of its words, and
X is suffix if and only if A+X ∩X = ∅. X is bifix if it is both prefix and suffix.
Any prefix or suffix subset is a code.

Let M be any monoid, and let X, Y ⊂ M . The left and right quotients Y −1X
and XY −1 are the sets

Y −1X = {z ∈M |∃x ∈ X, ∃y ∈ Y, x = yz} ,

XY −1 = {z ∈M |∃x ∈ X, ∃y ∈ Y, x = zy} .

If M is a group and u, v ∈ M , then v−1u and uv−1 are always singletons. If M is
a free monoid, then uv−1 is non empty if and only if v is a suffix of u; thus uM−1

is the set of prefixes of u.
Sometimes, we shall need the notion of semiring. A semiring consists of a set

S and of two binary operations, called addition and multiplication, noted + and
·, and satisfying the following conditions:

(i) S is a commutative monoid for the addition (s+ t = t+s for all s, t ∈ S) with
neutral element 0;

(ii) S is a monoid for the multiplication;
(iii) the multiplication is distributive with respect to the addition:

s(t1 + t2) = st1 + st2 , (t1 + t2)s = t1s+ t2s for all s, t1, t2 ∈ S;

(iv) for all s ∈ S, 0 · s = s · 0 = 0 .

If M is a monoid, then P(M) is a semiring with set union for addition and the
multiplication (2.1).

Exercises

2.1 Let M1 and M2 be monoids. Show that the Cartesian product M1×M2 is a monoid
when multiplication is defined by (m1,m2)(m

′
1,m

′
2) = (m1m

′
1,m2,m

′
2).

2.2 Show that if S is a semiring, then the set Sn×n of square matrices of size n with
coefficients in S can be made a semiring, for addition and multiplication of matrices
induced by the operations in S.

2.3 Let M be a monoid, and let X,Y,Z ⊂M . Prove the following formulas: (XY )−1Z
= Y −1(X−1Z), (X−1Y )Z−1 = X−1(Y Z−1).



4 Chapter I. Preliminaries

2.4 Let A be an alphabet, X ⊂ A+, X 6= ∅. Show that X is prefix if and only if
X−1X = 1.

2.5 Let A be an alphabet, and let x, y ∈ A+. Show that the three following conditions
are equivalent:
(i) x = zr, y = zs for some word z and r, s ≥ 1;

(ii) xy = yx;
(iii) xm = yn for some m,n ≥ 1.

2.6 Two words x and y are conjugate if xz = zy for some word z. Show that this
equation holds if and only if x = uv, y = vu, z = (uv)ku for some words u, v and k ≥ 0.

2.7 A word x is primitive if and only if it is not a nontrivial power of another word,
that is if x = zn implies n = 1.

a) Show that any word x 6= 1 is a power of a unique primitive word.
b) Show that if x and y are conjugate, and x is primitive, then y is also primitive.

c) Show that if xz = zy and x 6= 1, then there are unique primitive words u, v and
integers p ≥ 1, k ≥ 0 such that x = (uv)p, y = (vu)p, z = (uv)ku.

3 Morphisms, Congruences

If M,M ′ are monoids, a (monoid) morphism α : M → M ′ is a function satisfying

α(m1m2) = α(m1)α(m2) for all m1, m2 ∈M (3.1)

α(1M) = 1M ′ .

Then clearly α(M) is a submonoid of M ′. If only (3.1) is postulated, then α is
called a semigroup morphism and α(M) is a subsemigroup of M ′. Unless otherwise
indicated, morphism always means monoid morphism. A morphism α : A∗ →M ′,
where A is an alphabet, is completely defined by the values α(a) of the letters
a ∈ A. We now review some formulas. Let α : M → M ′ be a function, and let
X, Y ⊂M , X ′, Y ′ ⊂M ′. Then

α(X ∪ Y ) = α(X) ∪ α(Y ) , α−1(X ′ ∪ Y ′) = α−1(X ′) ∪ α−1(Y ′) ,

α−1(X ′ ∩ Y ′) = α−1(X ′) ∩ α−1(Y ′) , α(α−1(X ′) ∩ Y ) = X ′ ∩ α(Y ) .

Next, if α is a semigroup morphism, then

α(XY ) = α(X)α(Y ) , α(X+) = (α(X))+ .

If α is a morphism, then α(X∗) = (α(X))∗.
Note that the formula α−1(X ′Y ′) = α−1(X ′)α−1(Y ′) is in general false. This

observation leads to the definition of particular morphisms, for which that formula
holds.

Let A,B be alphabets, and let α : A∗ → B∗ be a morphism. Then α is called

alphabetic if α(A) ⊂ B ∪ 1;
strictly alphabetic if α(A) ⊂ B;
continuous or ε-free if α(A) ⊂ B+;
a projection if B ⊂ A, and if α(b) = b for b ∈ B, and α(a) = 1 for a ∈ A \B.



3. Morphisms, Congruences 5

Thus projections are particular alphabetic morphisms. If α : A∗ → B∗ is an
alphabetic morphism, then

α−1(XY ) = α−1(X)α−1(Y ) , α−1(X+) = (α−1(X))+

for X, Y ⊂ B∗. For the proof, it suffices to show that α−1 : B∗ → P(A∗) is a
semigroup morphism. Define

C = {a ∈ A | α(a) = 1} = α−1(1) ∩A ;

Cb = {a ∈ A | α(a) = b} = α−1(b) ∩ A for b ∈ B .

Then

α−1(1) = C∗ , α−1(b) = C∗CbC
∗ (b ∈ B) .

If y = b1 · · · bn, (bi ∈ B), then

α−1(y) = C∗Cb1C
∗Cb2C

∗ · · ·C∗CbnC
∗ ;

Thus α−1(y1y2) = α−1(y1)α
−1(y2) for all y1, y2 ∈ B∗. This completes the proof.

Note that the formula α−1(X∗) = (α−1(X))∗ is only true if further α is continuous,
or if 1 ∈ X, that is if X∗ = X+.

We shall frequently use special morphisms called copies. Let α : A∗ → B∗ be
an isomorphism. Then α(A) = B. For each subset X of A∗, α(X) is called a copy
of X on B.

Another class of particular morphisms are substitutions. A substitution σ from
A∗ into B∗ is a (monoid) morphism from A∗ into P(B∗); thus σ verifies: σ(a) ⊂ B∗

for a ∈ A, and

σ(1) = 1 , σ(uv) = σ(u)σ(v) for u, v ∈ A∗ .

Thus, if α : B∗ → A∗ is an alphabetic morphism, the function α−1 is a substitution
if and only if α−1(1) = 1. A substitution σ is extended to P(A∗) by the convention

σ(X) =
⋃

x∈X

σ(x) (X ⊂ A∗) .

For sake of simplicity, we write σ : A∗ → B∗ for a substitution from A∗ into B∗. If
τ : B∗ → C∗ is another substitution, then the function τ ◦ σ from A∗ into P(C∗)
is a substitution.

Finally, we note that any finitely generated monoid is the homomorphic image
of a free monoid. Consider indeed a monoid M , and let S = {m1, . . . , mk} be a set
of generators of M . Set A = {a1, . . . , ak}, and define a morphism α : A∗ → M by
α(ai) = si for i = 1, . . . , k. Then α(A∗) = (α(A))∗ = S∗ = M . Clearly this result
remains true for any monoid if infinite alphabets are considered.

Let E and F be two sets. A relation over E and F is a subset θ of E ×F . For
(x, y) ∈ θ, we also write xθy, x ∼ y (mod θ) or x ≡ y (mod θ), or simply x ∼ y or
x ≡ y if no confusion can arise. If E = F , then θ is a relation over E. Relations
are ordered by (set) inclusion.



6 Chapter I. Preliminaries

Let M be a monoid. A congruence over M is an equivalence relation θ which
is compatible with the monoid operation, that is which satisfies

m1 ≡ m′
1(mod θ), m2 ≡ m′

2(mod θ) ⇒ m1m2 ≡ m′
1m

′
2(mod θ). (3.2)

For each m ∈M , the class of m mod θ is

[m]θ = {m′ ∈M | m ≡ m′ (mod θ)} .

Then (3.2) is equivalent to

[m1]θ[m2]θ ⊂ [m1m2]θ .

If θ is a congruence, then the function which associates to each m ∈M its class [m]θ
is a morphism from M onto the quotient monoid M/θ. Conversely, if α : M →M ′

is a morphism, then the relation θ defined by

m ∼ m′ (mod θ) if and only if α(m) = α(m′)

is a congruence. The number of equivalence classes of an equivalence relation θ is
the index of θ. The index is a positive integer or infinite.

Given a relation θ over a monoid M , the congruence θ̂ generated by θ is the
least congruence containing θ. The congruence θ̂ can be constructed as follows:
Define a relation θ1 on M by:

m ∼ m′ (mod θ1) if and only if m = uxv,m′ = uyv

and (x ∼ y (mod θ) or y ∼ x (mod θ)) .

Next define a relation θ∗1 by m ≡ m′ (mod θ∗1) if and only if there exist k ≥ 0
and m0, . . . , mk ∈ M such that m = m0, m

′ = mk and mi ∼ mi+1 (mod θ1) for
i = 0, . . . , k − 1. Then it is easily shown that θ∗1 = θ̂.

Example 3.1 Let A be an alphabet, and define a relation over A∗ by

ab ∼ ba for a, b ∈ A, a 6= b .

Let θ̂ be the congruence generated by this relation. Then u ≡ v (mod θ̂) if and
only if |u|a = |v|a for all a ∈ A. The quotient monoid A∗/θ̂ is denoted by A⊕ and
is called the free commutative monoid generated by A.

Exercises

3.1 Let M be a group, M ′ be a monoid, and let α : M → M ′ be a monoid morphism.
Show that α(M) is a group and that α is a group morphism (α(m−1) = (α(m)−1 for
m ∈M).

3.2 Give examples of morphisms α : A∗ → B∗ such that α−1(XY ) ) α−1(X)α−1(Y )
and α−1(X∗) ) (α−1(X))∗.

3.3 Let A,B be alphabets and let α : A∗ → B∗ be a morphism. Show that there are
an alphabet C, an injective morphism β : A∗ → C∗ and a projection γ : C∗ → B∗ such
that α = γ ◦ β.



4. Finite Automata, Regular Languages 7

3.4 Let A be an alphabet. Given X ⊂ A∗, the norm of X is the number

‖X‖ = 2−ω(A), where ω(X) = min{|u| | u ∈ X}, ω(∅) = ∞ .

If Y ⊂ A∗, the distance d(X,Y ) is the number

d(X,Y ) = ‖X \ Y ∪ Y \X‖ .

a) Show that ‖ ‖ and d are a norm and a distance in the usual topological sense, and
that d satisfies the ultrametric inequality: d(X,Y ) ≤ max{d(X,Z), d(Z, Y )}.
b) Let α : A∗ → B∗ be a morphism. Show that the mapping from P(A∗) into P(B∗)
defined by α is continuous for this topology if an only if α(A) ⊂ B+. (This is the reason
why an ε-free morphism is called continuous.)

3.5 Let A be an alphabet, and let L ⊂ A∗. The syntactic congruence θL of L is the
coarsest (greatest) congruence over A∗ which saturates L, that is such that u ∈ L,
u ≡ v (mod θL) implies v ∈ L. Show that

u ≡ v (mod θL) if and only if for all x, y ∈ A∗ : xuy ∈ L ⇐⇒ xvy ∈ L .

The quotient monoid Synt(L) = A∗/θL is called the syntactic monoid of L. Show that
Synt(L) = Synt(A∗ \ L).

3.6 Let M,N be monoids, α : M → N a morphism. Let X ⊂ M , Q ⊂ N , and set
Y = α(X), P = α−1(Q). Show that X−1P = α−1(Y −1Q).

4 Finite Automata, Regular Languages

In this section, we review some basic facts concerning finite automata, mainly in
order to fix notation and to allow references in later chapters. When the proofs
are omitted, they can be found in any of the books listed in the bibliography.

Definition A finite (deterministic) automaton A = 〈A,Q, q−, Q+, δ〉 consists of
an alphabet A, a finite set Q of states, an initial state q− ∈ Q, a set of final states
Q+ ⊂ Q, and a next state function δ : A×Q→ Q.

If no confusion can arise, we denote δ by a dot, and we write

A = 〈A,Q, q−, Q+〉

instead of the above notation. The next state function is extended to Q × A∗ by
setting

q · 1 = q (4.1)

q · ua = (q · u) · a u ∈ A∗, a ∈ A . (4.2)

Then the formula

q · uv = (q · u) · v u, v ∈ A∗ (4.3)



8 Chapter I. Preliminaries

1 2 3 4

b

a b

a

a

b

a

b

Figure I.1

is easily verified. A word u ∈ A∗ is recognized or accepted by A if and only if
q− · u ∈ Q+. The language recognized by A is

|A| = {u ∈ A∗ | q− · u ∈ Q+} . (4.4)

A language language L ⊂ A∗ is recognizable or regular if and only if L = |A| for
some finite automaton A.

Finite automata can be represented by a graph in the following way. Each state
q is represented by a vertex, and an edge labeled a is drawn from q to q′ if and
only if q · a = q′. The initial state has an arrow entering in it. Final states are
circled twice.

Example 4.1 Let A be defined by A = {a, b}, Q = {1, 2, 3, 4}, q− = 1, Q+ = {4},
and the next state function given by

a b
1 2 1
2 2 3
3 4 1
4 2 3

Then A is represented in Figure I.1. A word is recognized by A if and only if it
has aba as a suffix. Thus |A| = A∗aba.

The following result is known as Kleene’s Theorem.

Theorem 4.1 (Kleene 1956) The family of regular languages over A is equal to
the least family of languages over A containing the empty set and the singletons,
and closed under union, product and the star operation.

We shall see another formulation of this theorem in Section 2. Following closure
properties can be proved for regular languages.

Proposition 4.2 Regular languages are closed under union, product, the star and
the plus operation, intersection, complementation, reversal, morphism, inverse
morphism, regular substitution.

A substitution σ : A∗ → B∗ is called regular if and only if σ(a) is a regular
language for all a ∈ A.

There are several variations for the definition of finite automata. Thus in
a nondeterministic finite automaton, the next state function is a function from



4. Finite Automata, Regular Languages 9

Q × A into the subsets of Q. Thus q · a ⊂ Q for q ∈ Q, a ∈ A. This notation is
extended by defining first

Q′ · a =
⋃

q∈Q′

q · a for Q′ ⊂ Q . (4.5)

Then the next state function can be defined on Q×A∗ by (4.1) and (4.2), and (4.3)
is easily seen to hold. The language recognized by A is then

|A| = {u ∈ A∗ | q− · u ∩Q+ 6= ∅} .

Note that this definition agrees with (4.4) in the case where A is deterministic.
Note next that (4.5) can also be considered as the definition of the next state
function of a deterministic finite automaton B = 〈A,P, p−, P+〉, where P = P(Q).
With p− = {q−} and P+ = {Q′ ⊂ Q | Q′ ∩ Q+ 6= ∅}, it is easily seen that
|B| = |A|. Thus a language is regular if and only if it is recognized by some
nondeterministic finite automaton. Nondeterministic automata are represented
pictorially like deterministic automata, by drawing an edge labeled a from q to q′

whenever q′ ∈ q · a.

Example 4.2 Figure I.2 represents a nondeterministic finite automaton A, with
alphabet A = {a, b}. It is easily verified that |A| = A∗aba.

1 2 3 4

b

a

a b a

Figure I.2

Let A = 〈A,Q, q−, Q+〉 be a finite (deterministic) automaton. A state q is called
accessible if q− · u = q for at least one u ∈ A∗. A is accessible if all its states are
accessible. If A is not accessible, let P ⊂ Q be the set of accessible states of A.
Then q− ∈ P . Define B = 〈A,P, q−, P+〉 by P+ = P ∩ Q+, and by taking as next
state function the restriction to P of the next state function of A. Then |B| = |A|.
B is called the accessible part of A.

Given a finite automaton A = 〈A,Q, q−, Q+〉 , an equivalence relation called
the Nerode equivalence, noted ≡, is defined by

q ≡ q′ if and only if for all u ∈ A∗, q · u ∈ Q+ ⇐⇒ q′ · u ∈ Q+ .

This equivalence relation is easily shown to be right regular, that is to verify
q ≡ q′, w ∈ A∗ =⇒ q · w ≡ q′ · w. Hence a next state function can be defined on
the quotient set Q/≡ by [q] ·a = [q ·a] ([q] is the class of q in the equivalence). Let
L = |A|, and

A/≡ = 〈A,Q/≡, [q−], {[q] | q ∈ Q+}〉



10 Chapter I. Preliminaries

be the quotient automaton with the next state function defined above. Then it
can be shown that |A/≡| = |A|, and that the accessible part of A/≡ is the unique
automaton (up to a renaming of states) recognizing L having a minimal number of
states among all finite automata recognizing L. Therefore this automaton is called
the minimal automaton of the language L.

Another useful concept is the notion of semiautomaton. A semiautomaton
S = 〈A,Q, q−〉 is defined as a finite automaton, but without specifying the set
of final states. There is a language recognized by S for any subset Q′ ⊂ Q,
defined by |S(Q′)| = {u ∈ A∗ | q− · u ∈ Q′}. Semiautomata are used to rec-
ognize “simultaneously” several regular languages: Consider two (more generally
any finite number of) regular languages X, Y ⊂ A∗, and let A = 〈A,Q, q−, Q+〉,
B = 〈A,P, p−, P+〉 be finite automata with |A| = X, |B| = Y . Define a semiau-
tomaton S = 〈A,Q× P, (q−, p−)〉 by

(q, p) · a = (q · a, p · a) a ∈ A, (q, p) ∈ Q× P .

Then X = |S(Q+ × P )| and Y = |S(Q× P+)|. Usually only the accessible part of
S is conserved in this construction.

There exist several characterizations of regular languages. The first uses local
regular languages.

Definition A language K ⊂ A∗ is a local regular language if and only if there are
subsets U, V of A and W of A2 such that

K = (UA∗ ∩A∗V ) \ A∗WA∗ or K = 1 ∪ (UA∗ ∩ A∗V ) \ A∗WA∗

Clearly such a language is regular.
The terminology is justified by the following observation: In order to check that a

word w is in K, it suffices to verify that the first letter of w is in U , the last letter of w

is in V , and that no couple of consecutive letters of w is in W . These verifications are

all of local nature. The set W is called the set of forbidden transitions, and A2 \W is

called the set of authorized transitions.

Proposition 4.3 A language L ⊂ A∗ is regular if and only if there are an alphabet
C, a local regular language K ⊂ C∗, and a strictly alphabetic morphism α : C∗ →
A∗ such that α(K) = L.

Proof. By Proposition 4.2, α(K) is regular for a regular language K. Conversely,
let A = 〈A,Q, q−, Q+〉 be a finite automaton such that L = |A|. Define C by

C = {(q, a, q · a) | q ∈ Q, a ∈ A}

and define a morphism α : C∗ → A∗ by α((q, a, q · a)) = a. Then α is strictly
alphabetic. Next, let

U = {(q, a, q · a) | q = q−} , V = {(q, a, q · a) | q · a ∈ Q+} ,

W = {(q1, a1, q1 · a1)(q2, a2, q2 · a2) | q1 · a1 6= q2}

and set K = (UC∗ ∩ C∗V ) \ C∗WC∗. Then for n ≥ 1

c = (q1, a1, q1 · a1)(q2, a2, q2 · a2) · · · (qn, an, qn · an) ∈ K (4.6)



4. Finite Automata, Regular Languages 11

if and only if

q1 = q−, qi+1 = qi · ai i = 1, . . . , n− 1, qn · an ∈ Q+ . (4.7)

Consequently, α(c) = a1a2 · · ·an ∈ L. Conversely, if u = a1a2 · · ·an ∈ L, (n ≥
1, ai ∈ A), then there are states q1, . . . qn such that (4.7) holds, and in view of
(4.6), u ∈ α(K). Thus L = α(K) if 1 /∈ L. If L ∈ L, the same equality holds if the
empty word is added to K.

Another important characterization of regular languages is the following.

Proposition 4.4 A language L ⊂ A∗ is regular if and only if there exist a finite
monoid M , a morphism α : A∗ → M , and a subset R ⊂ M such that L = α−1(R).

Proof. We first show that the condition is necessary. Consider a finite automaton
A = 〈A,Q, q−, Q+〉 such that L = |A|. For each word w define a mapping w̄ :
Q → Q which associates to q ∈ Q the state q · w. For convenience, we write the
function symbol on the right of the argument. Thus (q)w̄ = q · w. Then

(q)ww′ = q · ww′ = (q · w) · w′ = (qw̄)w̄′ (4.8)

(q)1̄ = q · 1 = q . (4.9)

Let α be the function from A∗ into the (finite!) monoid QQ of all functions from
Q into Q defined by α(w) = w̄. Then α is a morphism in view of (4.8) and (4.9).
Next, define R ⊂ QQ by R = {m ∈ QQ | (q−)m ∈ Q+}. Then w ∈ L if and only if
q− · w ∈ Q+, thus if and only if α(w) ∈ R. Consequently, L = α−1(R).

Conversely, define a finite automaton A = 〈A,M, 1M , R〉 by setting

m · a = mα(a) m ∈M, a ∈ A .

Since α is a morphism, m · w = mα(w) for all w ∈ A∗. Consequently w ∈ |A| if
and only if 1Mα(w) = α(w) ∈ R, thus if and only if w ∈ α−1(R).

There exist several versions of the Iteration Lemma or Pumping Lemma for regular
languages. The most general formulation is perhaps the analogue of an Iteration
Lemma for context-free languages prove by Ogden (Lemma II.2.3). Let A be an
alphabet, and consider a word

w = a1a2 · · ·an (ai ∈ A) .

Then a position in w is any integer i ∈ {1, . . . , n}. Given a subset I of {1, . . . , n},
a position i is called marked with respect to I if and only if i ∈ I.

Lemma 4.5 (Ogden’s Iteration Lemma for Regular Languages) Let L ⊂ A∗ be
a regular language. Then there exists an integer N ≥ 1 such that, for any word
w ∈ L, and for any choice of at least N marked positions in w, w admits a
factorization w = xuy, (x, u, y ∈ A∗) such that

(i) u contains at least one and at most N marked positions;
(ii) xu∗y ⊂ L .



12 Chapter I. Preliminaries

Proof. Let A = 〈A,Q, q−, Q+〉 be a finite automaton recognizing L, and set N =
Card(Q). Let w = a1a2 · · ·an, (ai ∈ A) be a word in L, and consider a choice
I ⊂ {1, . . . , n} of at least N marked positions in w. Since Card(I) ≥ N , we have
n ≥ N . Let 1 ≤ i1 < i2 < · · · < iN ≤ n be the N smallest elements of I, and
define a factorization

w = z0z1 · · · zNzN+1

by

z0 = a1 · · ·ai1−1, z1 = ai1 , zk = aik−1+1 · · ·aik (k = 2, . . . , N),

zN+1 = aiN+1 · · ·an .

Then each zk (1 ≤ k ≤ N) contains exactly one marked position. Set

q0 = q− · z0, qk = qk−1 · zk (k = 1, . . . , N), q+ = qN · zN+1 .

By assumption q+ ∈ Q+. Next two among the N + 1 states q0, . . . , qN are equal.
Thus there exist i, j, with 0 ≤ i < j ≤ N such that qi = qj Define

x = z0z1 · · · zi, u = zi+1 · · · zj , y = zj+1 · · · zN+1 .

Then q− · x = q− · xu = q− · xum = qj for all m ≥ 1, whence q− · xumy = q+ for
all m ≥ 0 and xu∗y ⊂ L. Next x contains exactly j − i marked positions. Since
0 < j − i ≤ N , this proves the lemma.

If the marked positions in w are chosen to be consecutive, the same proof gives
the following

Corollary 4.6 Let L ⊂ A∗ be a regular language. Then there exists an integer
N ≥ 1 such that for any word w ∈ L, and for any factorization w = zvz′ with
|v| ≥ N , v admits a factorization v = xuy such that

(i) 0 < |u| ≤ N ;
(ii) zxu∗yz′ ⊂ L .

If B is a subset of A, and if the marked positions are chosen to be occurrences of
letters in B, we obtain

Corollary 4.7 Let L ⊂ A∗ be a regular language, and let B ⊂ A. Then there is
an integer N ≥ 1 such that for any w ∈ L, and for any factorization w = zvz′

with |v|B ≥ N , v admits a factorization v = xuy such that

(i) 0 < |u|B ≤ N ;
(ii) zxu∗yz′ ⊂ L .

Exercises

4.1 Let K be a local regular language, and let x, u, y be words. Show that if xuy, xu2y
∈ K, then xu+y ⊂ K.

4.2 Let K ⊂ A∗ be a regular language. Show that there are two integers N,M such
that if xuky ∈ K and k ≥ N , then xuk(uM )∗y ⊂ K.



4. Finite Automata, Regular Languages 13

4.3 (continuation of Exercise 3.5). Let L ⊂ A∗, and assume that L = α−1(P ) where α
is a morphism from A∗ onto a monoid M and P ⊂ M . Show that there is a morphism
β : M → Synt(L), and R ⊂ Synt(L), such that P = β−1(R). Show that L is regular
if and only if Synt(L) is finite. (Since Synt(L) = Synt(A∗ \ L), such a characterization
cannot exist for context-free languages. See Perrot and Sakarovitch 1977.)



14 Chapter I. Preliminaries



Chapter II

Context-Free Languages

The first section of this chapter contains the definitions of context-free or alge-
braic languages by means of context-free grammars and of systems of algebraic
equations. In the second section, we recall without proof several constructions and
closure properties of context-free languages. This section contains also the itera-
tion lemmas for context-free languages. The third section gives a description of
various families of Dyck languages. They have two definitions, as classes of certain
congruences, and as languages generated by some context-free grammars. The
section ends with a proof of the Chomsky-Schützenberger Theorem. Two other
languages, the Lukasiewicz language and the language of completely parenthesized
arithmetic expressions, are studied in the last section.

1 Grammars, Languages, Equations

In this section, we define context-free grammars and context-free languages. We
show how a system of equations can be associated to each context-free grammar
in such a way that the languages generated by the grammar are precisely the
minimal solution of the system of equations. For this reason, context-free languages
and more generally context-free grammars are also called algebraic grammars and
algebraic languages.

Definition A context-free or algebraic grammar G = 〈V,A,P〉 consists of an
alphabet V of variables or nonterminals, of an alphabet A, disjoint from V , of
terminal letters, and of a finite set P ⊂ V × (V ∪ A)∗ of productions.

A production (ξ, α) ∈ P is usually written in the form

ξ → α .

If ξ → α1, ξ → α2, . . . , ξ → αn are the productions of G having the same left side
ξ, they are grouped together by using one of the following notations

ξ → α1 | α2 | · · · | αn ξ → α1 + α2 + · · ·+ αn ξ → {α1, α2, . . . , αn} .

Clearly, the above definition is equivalent to another notation consisting of a triple

T,A,P, where T is the total alphabet and A is a subset of T . Then V = T \ A.

15



16 Chapter II. Context-Free Languages

Example 1.1 Let V = {ξ}, A = {a, b}, P = {ξ → ξξ, ξ → a}. Then the
productions can be written as ξ → ξξ + a.

Example 1.2 Let V = {ξ, ξa, ξb}, A = {a, b}, and let P be the set given by:

ξ → 1 + aξabξ + bξbaξ; ξa → 1 + aξabξa;

ξb → 1 + bξbaξb .

Let G = 〈V,A,P〉 be a context-free grammar, and let x, y be in (V ∪ A)∗. Then
we define

x →
G
y (1.1)

if and only if there are factorizations x = uξv, y = uαv, with ξ ∈ V , u, α, v ∈
(V ∪ A)∗ and ξ → α ∈ P. If no confusion can arise, we write x → y instead of
(1.1). For any p ≥ 0, define

x
p
→
G
y

if and only if there exist x0, x1, . . . , xp ∈ (V ∪ A)∗ such that

x = x0, y = xp, and xi−1 →
G
xi for i = 1, . . . , p .

(In particular x
0
→
G
x for any x ∈ (V ∪ A)∗.) The sequence

(x0, x1, . . . , xn)

is a derivation from x into y, and p is the length of the derivation. Finally, we
define

x
∗
→
G
y if and only if x

p
→
G
y for some p ≥ 0 ;

x
+
→
G
y if and only if x

p
→
G
y for some p > 0 .

In the first case, we say that x derives y in G, in the second case that x properly
derives y in G. If no confusion can arise, the index G is dropped. For any variable
ξ ∈ V , the language generated by ξ in G is

LG(ξ) = {w ∈ A∗ | ξ
∗
→ w} .

More generally, the language generated by x ∈ (V ∪A)∗ in G is

LG(x) = {w ∈ A∗ | x
∗
→ w} .

Clearly, LG(x) = {x} for x ∈ A∗. The language of sentential forms generated by
x ∈ (V ∪A)∗ in G is

L̂G(x) = {w ∈ (V ∪A)∗ | x
∗
→ w} .

Of course

LG(x) = L̂G(x) ∩ A∗ .



1. Grammars, Languages, Equations 17

As noted by Schützenberger (1961a), there is a close relation between the derivations
in a context-free grammar and derivations in an algebra. Recall that a derivation in an
algebra M is a linear function ∂ satisfying

∂(xy) = ∂(x) · y + x · ∂(y) x, y ∈M .

Given a grammar G = 〈V,A,P〉, define ∂ : (V ∪A)∗ → P((V ∪A)∗) by

y ∈ ∂(x) if and only if x →
G
y .

and for X ⊂ (V ∪A)∗, ∂(X) = ∪x∈X∂(x). Then (see Lemma 1.1 below) we have

∂(XY ) = ∂(X) · Y ∪X · ∂(Y ) .

Further

L̂G(X) = ∂∗(X) ,

where ∂∗(X) = ∪n≥0∂
n(X). Thus LG(x) = ∂∗(x) ∩A∗.

A context-free grammar G = 〈V,A,P〉 generates a language L ⊂ A∗ if and only
if L = LG(ξ) for some ξ ∈ V . Thus a grammar G generates Card(V ) languages,
not necessarily distinct.

Definition A language L is context-free or algebraic if there is some grammar G
that generates L. The set of all context-free languages of A∗ is denoted by Alg(A∗).

Example 1.1 (continued) The language generated by ξ is LG(ξ) = a+; further
L̂G(ξ) = {a, ξ}+.

Example 1.2 (continued) The language generated by ξa is the so-called restricted
Dyck language D′∗

1 over A, with opening parenthesis a, and closing parenthesis b
(see also Section 3); LG(ξb) is obtained from LG(ξa) by exchanging a and b. Finally,
LG(ξ) is the Dyck set over A, consisting in all words w such that |w|a = |w|b.

Let G = 〈V,A,P〉 be a context free grammar. The following lemma is very useful.

Lemma 1.1 Let x1, x2, y ∈ (V ∪ A)∗, and let p ≥ 0 be an integer. Then

x1x2
p
→ y

if and only if there are y1, y2 ∈ (V ∪A)∗, p1, p2 ≥ 0 such that

x1
p1
→ y1, x2

p2
→ y2, y = y1y2, p = p1 + p2 .

Proof. If x1
p1
→ y1 and x2

p2
→ y2, then

x1x2
p1
→ y1x2

p2
→ y1y2,

and thus x1x2
p
→ y.

Assume conversely that x1x2
p
→ y. If p = 0, there is nothing to prove. Arguing

by induction on p, suppose p > 0. Then

x1x2
p−1
−−→ z → y



18 Chapter II. Context-Free Languages

for some z ∈ (V ∪A)∗, and by induction there is a factorization

z = z1z2 with x1
q1
→ z1, x2

q2
→ z2, q1 + q2 = p− 1 .

Since z → y, there are ξ → α ∈ P and words u, v with

z = uξv, y = uαv .

If |uξ| ≤ |z1|, then z1 = uξū for some word ū. Thus setting

y1 = uαū, y2 = z2 ,

we obtain

y = y1y2, x1
1+q1
−−−→ y1, x2

q2
−→ y2 .

Otherwise, |ξv| ≤ |z2|, and a symmetric argument completes the proof.

Corollary 1.2 For any x1, x2 ∈ (V ∪ A)∗, LG(x1x2) = LG(x1)LG(x2).

Proof. By the preceding lemma, w ∈ LG(x1x2) if and only if there is a factorization
w = w1w2 such that w1 ∈ LG(x1), w2 ∈ LG(x2).

Since LG(1) = {1}, the mapping x 7→ LG(x) is a substitution from (V ∪ A)∗

into itself. We denote it by LG. The same is true for L̂G (Exercise 1.2).

Lemma 1.3 Let G = 〈V,A,P〉 be a context-free grammar, ξ ∈ V . Then

LG(ξ) =
⋃

ξ→α∈P

LG(α) = LG
(

{α | ξ → α ∈ P}
)

.

Proof. For ξ → α ∈ P, clearly LG(α) ⊂ LG(ξ). Conversely, let w ∈ LG(ξ). Since

w ∈ A∗, we have ξ
+
→ w. Thus there is a production ξ → α ∈ P such that

ξ → α
∗
→ w. Thus w ∈ LG(α).

Now we associate to each context-free grammar a system of equations. We
shall see that the minimal solution of the system of equations is formed of the
languages generated by the grammar. In certain special cases, the system has a
unique solution. This gives a characterization of context-free languages by systems
of equations.

Definition Let V = {ξ1, . . . , ξN} and A be two disjoint alphabets. A system of
algebraic equations is a set

ξi = Pi i = 1, . . . , N (1.2)

of equations, where P1, . . . , PN are finite subsets of (V ∪ A)∗. The letters ξi are
called the variables of the system.

The terminology comes from the analogy with systems of algebraic equations over,
say the field of real numbers. Such a system is given by a set of polynomial equations
Qi(y1, . . . , yN ) = 0, (i = 1, . . . , N). In the case where, in each Qi, there is a monomial yi,



1. Grammars, Languages, Equations 19

the system can be written in the form yi = Q′
i(y1, . . . , yN ), with each Q′

i a polynomial.
In the same manner, the sets Pi of (1.2) can be considered as “polynomials” by writing

Pi =
∑

α∈Pi

α

with coefficients in the Boolean semiring. The theory of systems of algebraic equations

over arbitrary semirings allows in particular to take into account the ambiguity of a

grammar. This is beyond the scope of the book. See Salomaa and Soittola (1978),

Eilenberg (1978).

The correspondence between systems of algebraic equations and context-free
grammars is established as follows. Given a context-free grammar G = 〈V,A,P〉,
number the nonterminals such that V = {ξ1, . . . , ξN} with N = Card(V ) and
define

Pi = {α | ξi ∈ P} i = 1, . . . , N .

Then (1.2) is the system of equations associated to G.
Conversely, the context-free grammar associated to (1.2) has as set of produc-

tions

P = {ξi → α | α ∈ Pi, 1 ≤ i ≤ N} .

We now define a solution of (1.2) as a vector X = (X1, . . . , XN) of languages
such that the substitution in Pi of the languages Xj to each occurrence of ξj yields
precisely the language Xi.

Formally, given (1.2), let X = (X1, . . . , XN) with Xi ⊂ (V ∪ A)∗ for i =
1, . . . , N . Define a substitution X from (V ∪ A)∗ into itself by

X(a) = {a} a ∈ A ;

X(ξi) = Xi i = 1, . . . , N .

Definition A vector X = (X1, . . . , XN) is a solution of the system of equations
(1.2) if and only if

X(Pi) = Xi i = 1, . . . , N . (1.3)

Example 1.1 (continued) The equation ξ = ξξ + a has the solution a+ since
a+ = a+a+ ∪ a and also the solutions A∗ and (V ∪ A)∗, since A∗ = A∗A∗ ∪ a and
similarly for the second set.

Example 1.2 (continued) As will be shown below, the vector (LG(ξ), LG(ξa),
LG(ξb)) is the unique solution of the system

ξ = 1 + aξabξ + bξbaξ , ξa = 1 + aξabξa , ξb = 1 + bξbaξb .

A system of equations (1.2) may have several, and even an infinity of solutions.
We order the solutions by setting, forX = (X1, . . . , XN), Y = (Y1, . . . , YN), X ⊂ Y
if and only if Xi ⊂ Yi for i = 1, . . . , N .



20 Chapter II. Context-Free Languages

Theorem 1.4 Let G be a context-free grammar, and let (1.2) be the system of
algebraic equations associated to G. The vector LG = (LG(ξ1), . . . , LG(ξN)) is the
minimal solution of (1.2).

The result contains a converse statement: given a system of algebraic equa-
tions, the components of the minimal solution are context-free languages. For this
reason, context-free languages are called algebraic languages. Note that only the
components of the minimal solution are claimed to be context-free. There are
solutions of systems which are not context-free (Exercise 1.4).

Proof. By definition, we have LG(x) = LG(x) for all x ∈ (V ∪A)∗. We shall verify
that the substitution LG satisfies (1.3). Indeed, in view of Lemma 1.3,

LG(Pi) =
⋃

α∈Pi

LG(α) = LG(ξi) i = 1, . . . N .

This shows that LG = (LG(ξ1), . . . , LG(ξN)) is a solution of (1.2). Next, let X =
(X1, . . . , XN) be another solution of (1.2). We show that

LG(x) ⊂ X(x) x ∈ (V ∪ A)∗ (1.4)

by induction on the length of the derivation of the words of LG(x). Let w ∈ LG(x).

If x
0
→ w, then x = w ∈ A∗ and w ∈ X(x). Assume now x

p
→ w and p > 0. There

exist a word y such that

x→ y
p−1
−−→ w ,

and factorizations x = uξiv, y = uαv such that ξi → α ∈ P. Since w ∈ X(y) by
induction, it follows that

w ∈ X(g) = X(u)X(α)X(v) ⊂ X(u)X(Pi)X(v) .

Since X(Pi) = Xi = X(ξi), we have

X(u)X(Pi)X(v) = X(uξiv) = X(x) .

Thus w ∈ X(x). From (1.4), we obtain

LG(ξi) ⊂ X(ξi) = Xi i = 1, . . . , N .

We now show that in some cases a system of algebraic equations has a unique
solution.

Definition An algebraic grammar G = 〈V,A,P〉 is strict if and only if for each
production ξ → α ∈ P, either α = 1 or α contains at least one terminal letter,
thus if and only if

α ∈ 1 ∪ (V ∪A)∗A(V ∪A)∗ .

A system of equations is strict if the associated grammar is strict.

By Greibach’s Normal Form Theorem, a strict grammar can be supplied for any

context-free language (see the books listed in the bibliography).



1. Grammars, Languages, Equations 21

Theorem 1.5 Let G = 〈V,A,P〉 be a context-free grammar. If G is strict, then
LG = (LG(ξ1), . . . , LG(ξN)) is the unique solution of the system of equations asso-
ciated to G.

Proof. Let (1.2) be the system of equations associated with G, and let X =
(X1, . . . , XN), Y = (Y1, . . . , YN) be two solutions of this system. We prove:

for i = 1, . . . , N , w ∈ Xi, |w| ≤ n implies w ∈ Yi (1.5)

by induction on n. This shows that X ⊂ Y , and X = Y by symmetry.
If 1 ∈ Xi = X(Pi), then 1 ∈ X(α) for some α ∈ Pi and since G is strict, this

implies α = 1. Thus 1 ∈ Pi and 1 ∈ Y (Pi) = Yi. Assume w ∈ Xi and |w| = n > 0.
As before, w ∈ X(α) for some α ∈ Pi. If α ∈ A∗, then α = w ∈ Pi and w ∈ Yi.
Thus suppose the contrary. Then

α = u0ξi1u1 · · ·ur−1ξirur

with r ≥ 1, u0, . . . , ur ∈ A∗, ξi1, . . . , ξir ∈ V . Therefore

w = u0v1u1 · · ·ur−1vrur

with vk ∈ X(ξik) = Xik for k = 1, . . . , r. Now u0u1 · · ·ur 6= 1 since G is strict.
Since r ≥ 1, |vk| < n for all k = 1, . . . , r and by the induction hypothesis, vk ∈
Yik = Y (ξik) for k = 1, . . . , r. Thus

w ∈ u0Y (ξi1)u1 · · ·ur−1Y (ξir)ur = Y (α) ⊂ Yi .

Note that the finiteness of the sets Pi was used in the proofs of neither Theo-
rem 1.4 nor 1.5. Thus these remain true if the sets Pi are infinite, provided gram-
mars with infinite sets of productions are allowed or alternatively, if the connections
with grammars are dropped in the statements. Thus especially Theorem 1.5 can
be used to prove uniqueness of the solution of equations (Exercise 1.5).

We conclude this section with a result that permits transformations of systems
of equations without changing the set of solutions. This is used later to show that
systems of equations which are not strict have a unique solution by transforming
them into strict systems.

Definition Two systems of equations

ξi = Pi (1 ≤ i ≤ N) and ξi = Qi (1 ≤ i ≤ N)

with the same set of variables are equivalent if they have the same set of solutions.

Proposition 1.6 (Substitution Lemma) Let

ξi = Pi i = 1, . . . , N (1.6)

be a system of equations. Assume that α = uξjv ∈ Pk for some j, k ∈ {1, . . . , N}
and some words u, v. Define Qi = Pi for i 6= k and Qk = (Pk \ α) ∪ uPjv. Then
(1.6) is equivalent to

ξi = Qi i = 1, . . . , N . (1.7)



22 Chapter II. Context-Free Languages

Example 1.1 (continued) Starting with ξ = P where P = a + ξξ, we single out
α = ξξ and form Q = P \ α ∪ ξP = a + ξξξ + ξa The substitution lemma claims
that the equation ξ = a + ξξξ + ξa is equivalent to the initial one.

Example 1.3 Let A = {a, b}, and consider the system

ξ = 1 + ηξ ; η = aξb .

Taking α = ηξ, and replacing η by aξb, yields the strict system

ξ = 1 + aξbξ ; η = aξb .

By the substitution lemma, the first system has a unique solution.

For the proof of Proposition 1.6, we need a technical lemma.

Lemma 1.7 Let B be an alphabet, and let X, Y, Z, L and M be subsets of B∗. If

L = X ∪ YMZ and M = X ∪ Y LZ

then L = M .

Proof If Y = ∅ or Z = ∅, then L = M = X. Next, if 1 ∈ Y and 1 ∈ Z, then by
the first equation M ⊂ YMZ ⊂ L, and similarly L ⊂ M , hence L = M . Thus
we may assume that 1 /∈ Y Z. Then 1 ∈ L if and only if 1 ∈ X, hence if and
only if 1 ∈ M . Arguing by induction on the length of words, consider w ∈ B∗,
|w| = p > 0, and assume w /∈ X. Then W ∈ L if and only if w ∈ YMZ, hence if
and only if w = yw′z with y ∈ Y , z ∈ Z, w′ ∈ M and |w′| < p. Thus w′ ∈ L and
w ∈ Y LZ ⊂ M . Similarly w ∈M implies w ∈ L. This proves the lemma.

Proof of Proposition 1.6. Let X = (X1, . . . , XN) be a solution of (1.6). By
definition, X(Pi) = Xi for i = 1, . . . , N . Thus

X(Qi) = Xi i = 1, . . . , N, i 6= k ,

X(Qk) = X(Pk \ α) ∪X(u)X(Pj)X(v) = X(Pk \ α) ∪X(α) = Xk ,

showing that X is a solution of (1.7).
Conversely, let Y = (Y1, . . . , YN) be a solution of (1.7). Then

Y (Pi) = Yi i = 1, . . . , N, i 6= k ,

Y (Pk) = Y (Pk \ α) ∪ Y (α) = Y (Pk \ α) ∪ Y (u)Y (ξj)Y (v)

= Y (Pk \ α) ∪ Y (u)Y (Qj)Y (v) (1.8)

If j 6= k, then Qj = Pj. Thus

Y (Pk) = Y (Pk \ α ∪ uPjv) = Y (Qj) = Yk

and Y is a solution of (1.6). If j = k, then by (1.8)

Y (Pk) = Y (Pk \ α) ∪ Y (u)Y (Qk)Y (v) ;

Y (Qk) = Y (Pk \ α) ∪ Y (u)Y (Pk)Y (v)

by definition. In view of Lemma 1.7, we have

Y (Pk) = Y (Qk) = Yk ;

thus Y is a solution of (1.6).



2. Closure Properties, Iteration 23

Exercises

1.1 A context-free grammar G = 〈V,A,P〉 is called proper if each production ξ → α ∈ P
verifies α /∈ 1∪V . A vector X = (X1, . . . ,XN ) of languages is called proper if 1 /∈ Xi for
i = 1, . . . , N . Prove that the system of equations associated to a proper grammar has a
unique proper solution.

1.2 Show that Corollary 1.2 remains true if LG is replaced by L̂G, and that Lemma 1.3
becomes false.

1.3 Show that the languages of sentential forms of a context-free grammar are context-
free.

1.4 Show that there are non context-free languages among the solutions of the equation
of Example 1.1.

1.5 Use Theorem 1.5 to show that the equation ξ = X ∪ ξY has the unique solution
XY ∗ provided 1 /∈ Y .

2 Closure Properties, Iteration

We recall here some closure properties of the family of context-free languages, and
also some iteration lemmas for these languages. We give no proof: we just recall
some constructions that will be used later. Proofs of the results stated here can
be found in standard books on formal languages (see Bibliography).

Theorem 2.1 Context-free languages are closed under union, product, star opera-
tion, reversal, morphism, inverse morphism, intersection with regular sets, context-
free substitution.

A context-free substitution is a substitution θ : A∗ → B∗ such that θ(a) is a
context-free language for each a ∈ A.

We now recall the usual constructions employed to prove closure under mor-
phism, inverse morphism, intersection with regular sets and substitution. Let
L ⊂ A∗ be an algebraic language, let G = 〈V,A,P〉 be an algebraic grammar and
let σ ∈ V be such that L = LG(σ).

a) Morphism Let ψ : A∗ → B∗ be a morphism. Extend ψ to a morphism from
(V ∪A)∗ into (V ∪B)∗ by setting ψ(ξ) = ξ for ξ ∈ V . Define a grammar

ψG = 〈V,B, ψP〉

by

ψP = {ξ → ψ(α) | ξ → α ∈ P} .

Then is is readily shown that

ψLG(ξ) = LψG(ξ) ξ ∈ V .

Thus ψL = LψG(σ) is a context-free language.



24 Chapter II. Context-Free Languages

b) Inverse alphabetic morphism Let φ : B∗ → A∗ be an alphabetic mor-
phism. As above, extend φ to (V ∪ B)∗ by setting φ(ξ) = ξ for ξ ∈ V . De-
fine C = {b ∈ B | φ(b) = 1} and T = B \ C. Finally, let ω be a new letter
(ω /∈ V ∪A ∪B). Define a grammar

φ−1G = 〈ω ∪ V,B,P ′〉

where

P ′ = P ′′ ∪
{

ω → 1 +
∑

c∈C

ωc
}

and where P ′′ is defined as follows: For ξ ∈ V , k ≥ 0, b1, b2, . . . , bk ∈ V ∪ T

ξ → ωb1ωb2ω · · ·ωbkω ∈ P ′′ ⇐⇒ ξ → φ(b1b2 · · · bk) ∈ P .

Since the restriction of φ to (V ∪ T )∗ is strictly alphabetic, P ′′ is finite. Next, it is
easy to prove that

φ−1LG(ξ) = Lφ−1(G)(ξ) ξ ∈ V ,

and Lφ−1(G)(ω) = C∗. Thus φ−1(L) is a context-free language. Any inverse mor-
phism can be factorized into an inverse alphabetic morphism, followed by the
intersection with a regular language, followed by a morphism. Thus closure under
arbitrary inverse morphism can be deduced from above and from the following
construction.

c) Intersection with a regular language Let K ⊂ A∗ be a regular language,
and A = 〈A,Q, q−, Q+〉 be a finite automaton such that K = |A|. Let σ̂ be a new
symbol, and define a grammar

GK = 〈σ̂ ∪ (Q× V ×Q), A,PK〉

where PK = P ′ ∪ P ′′, with

P ′′ = {σ̂ → (q−, σ, q+) | q+ ∈ Q+} ,

and P ′′ composed of the following productions: For k ≥ 0, ξ, η1, . . . , ηk ∈ V ,
u0, . . . , uk ∈ A∗, q, q′, q1, . . . , qk, q

′
1, . . . , q

′
k ∈ Q

(q, ξ, q′) → u0(q1, η1, q
′
1)u1(q2, η2, q

′
2) · · · (qk, ηk, q

′
k)uk ∈ P ′

if and only if

ξ → u0η1u1η2 · · · ηkuk ∈ P and

q · u0 = q1, q
′
i · ui = qi+1 (i = 1, . . . , k − 1), q′k · uk = q′ .

It is not difficult to show that

LGK
(q, ξ, q′) = LG(ξ) ∩Kq,q′ (q, q′ ∈ Q, ξ ∈ V )

where

Kq,q′ = {x ∈ A∗ | q · x = q′} .

Thus L ∩K = LGK
(σ̂).



2. Closure Properties, Iteration 25

d) Context-free substitution Let θ : A∗ → B∗ be a context-free substitution.
For each a ∈ A, let

Ga = 〈Va, B,Pa〉

be a context-free grammar such that θ(a) = LGa
(σa) for some σa ∈ Va. Clearly the

alphabets Va may be assumed pairwise disjoint and disjoint from V . Define a copy
morphism γ : (V ∪ A)∗ → (V ∪ {σa : a ∈ A})∗ by γ(ξ) = ξ for ξ ∈ V , γ(a) = σa
for a ∈ A, and let γG = 〈V, {σa : a ∈ A}, γP〉 be defined as in a). Let

H = 〈W,B,Q〉

be the grammar with W = V ∪
⋃

a∈A Va, Q = γP ∪
⋃

a∈A Pa. Then it can be shown
that

LH(ξ) = θ(LG(ξ)) ξ ∈ V .

Consequently θ(L) = LH(σ).
The iteration lemmas for context-free languages are not as accurate as the

corresponding lemmas for regular sets. It can be shown (Exercise 2.1) that a strict
analog of the iteration lemmas for regular languages does not exist. The most
frequently used iteration lemma is due to Bar-Hillel, Perles and Shamir.

Lemma 2.2 (Iteration Lemma for Algebraic Languages) Let L ⊂ A∗ be an alge-
braic language. There exists an integer N ≥ 1 such that any word w ∈ L with
|w| ≥ N admits a factorization w = xuyvz (x, u, y, v, z ∈ A∗) satisfying

(i) xunyvnz ∈ L for all n ≥ 0 ;
(ii) 0 < |uv| ≤ N .

There is some difficulty in the use of this lemma arising from the fact that
the position of the segments u and v in W cannot be predicted. The following
refinement of the above lemma states that at least the position of one of the two
segments can be located with some precision. The notion of marked position is
the same as in Section 4.

Lemma 2.3 (Ogden’s Iteration Lemma for Algebraic Languages) Let L ⊂ A∗ be
an algebraic language. There exists an integer N ≥ 1 such that any word w ∈ L,
and for any choice of at least N marked positions in w, w admits a factorization
w = xuyvz (x, u, y, v, z ∈ A∗) satisfying

(i) xunyvnz ∈ L for all n ≥ 0 ;
(ii) (each of x and u and y) or (each of y and v and z) contains at least one

marked position ;
(iii) uv contains at most N marked positions .

If all positions in w are marked, we obtain Lemma 2.2. Assume that N consec-
utive positions are marked, hence that a segment s of w has been distinguished.
Then (ii) implies that either u or v is a segment of s. Thus we have

Corollary 2.4 Let L ⊂ A∗ be an algebraic language. There exists an integer N
such that any word w ∈ L and for any factorization w = tst′ (t, s, t′ ∈ A∗) with
|s| ≥ N , w admits a factorization w = xuyvz (x, u, y, v, z ∈ A∗) satisfying



26 Chapter II. Context-Free Languages

(i) xunyvnz ∈ L for all n ≥ 0 ;
(ii) either u is a segment of s and |u| > 0 or v is a segment of s and |v| > 0 .

We do not prove these lemmas (see (Ogden 1968, Aho and Ullman 1972, Aute-
bert and Cousineau 1976)). The proof is on derivation trees and the lemmas are
in fact results on derivations in algebraic grammars. We give this version of the
lemma for later use.

Lemma 2.5 (Ogden’s Iteration Lemma for Algebraic Grammars) Let G = 〈V,A,
P〉 be an algebraic grammar. There exists an integer N such that, for any deriva-

tion ξ
∗
→ w with ξ ∈ V , w ∈ (V ∪A)∗, and for any choice of N marked positions

in w, there is a factorization w = xuyvz (x, u, y, v, z ∈ A∗) and η ∈ V such that

(i) ξ
∗
→ xηz, η

∗
→ uηv, η

∗
→ y ;

(ii) (x and u and y) or (y and v and z) contain at least one marked position ;
(iii) uv contains at most N marked positions .

Note that the integer N is independent of the nonterminal ξ. Note also that
the lemma is true for sentential forms as well as for words in A∗.

A context-free grammar G = 〈V,A,P〉 can be “reduced” in several ways. Let
σ ∈ V . Then G is:

reduced in σ if for each ξ ∈ V , LG(ξ) 6= ∅ and σ
∗
→ uξv for some words

u, v ∈ A∗ ,
strictly reduced in σ if G is reduced in σ and if further LG(ξ) is infinite for each

ξ ∈ V .

Lemma 2.6 Let L ⊂ A∗ be a context-free language. If L is nonempty, then L =
LG(σ) for some context-free grammar G = 〈V,A,P〉 which is reduced in σ. If L is
infinite, then G can be assumed to be strictly reduced in σ.

We only give the construction. Let L = LG(σ) for some context-free grammar

G = 〈V,A,P〉, and let V ′ be the set of ξ ∈ V such that LG(ξ) 6= ∅ and σ
∗
→ uξv

for some u, v ∈ A∗. If L 6= ∅, then σ ∈ V ′. Let G′ = 〈V ′, A,P ′〉, where P ′ = {ξ →
α ∈ P | ξ ∈ V ′, α ∈ (V ′ ∪ A)∗}. Then G′ is reduced in σ, and LG(ξ) = LG′(ξ) for
each ξ ∈ V ′.

Next, let V ′′ = {ξ ∈ V ′ | LG′(ξ) is infinite}, and define a grammar G′′ =
〈V ′′, A,P ′′〉 as follows. Let θ : (V ′ ∪A)∗ → (V ′′ ∪A)∗ be the substitution given by

θ(a) = a (a ∈ A), θ(ξ) = ξ (ξ ∈ V ′′), θ(ξ) = LG′(ξ) (ξ ∈ V ′ \ V ′′) ,

and set

P ′′ = {ξ → β | ξ → α ∈ P ′, β ∈ θ(α)} .

If L is infinite, then σ ∈ V ′′, G′′ is strictly reduced in σ, and LG′′(ξ) = LG′(ξ) for
each ξ ∈ V ′′.

Exercise

2.1 Show that Corollary 2.4 cannot be strengthened to assert the existence, for each
factorization w = tst′s′t′′ of w ∈ L of a factorization w = xuyvz satisfying (i) and such
that both u is a segment of s and v is a segment of s′.



3. Dyck Languages 27

3 Dyck Languages

The Dyck sets are among the most frequently cited context-free languages. In view
of the Chomsky-Schützenberger Theorem proved below, they are also the most
“typical” context-free languages. In Chapter VII, we shall see another formulation
of this fact: The Dyck languages are, up to four exceptions, generators of the cone
of context-free languages.

A Dyck language consists of “well-formed” words over a finite number of pairs
of parentheses. There are two (and in fact even four) families of Dyck languages
defined by different constraints on the use of parentheses. The restricted Dyck
languages D′∗

n , (n ≥ 1) are formed of the words over n pairs of parentheses which
are “correct” in the usual sense. Thus

( [ ( ) ( ) ] { } [ ] ) ( )

is a word of D′∗
3 . For the Dyck languages D∗

n, the interpretation of the parentheses
is different. Two parentheses of the same type are rather considered as formal
inverses for each other. A word is considered as “correct” if and only if successive
deletion of factors of associated parentheses (say of the form aā and āa) yields the
empty word. Thus

āaāab̄bāa

is a word of D∗
2. This interpretation is used for the construction of free groups.

Finally, Dn and D′
n are the sets of Dyck-primes and restricted Dyck-primes, that

is the words of D∗
n (resp. D′∗

n ) which are not product of two nonempty words of
D∗
n (resp. D′∗

n ).
The appropriate framework to formalize the definitions of D′∗

n and D∗
n are con-

gruences. We first give this definition, and prove then that the four families con-
sist of context-free languages. The section ends with a proof of the Chomsky-
Schützenberger Theorem.

Let n ≥ 1 be an integer, and let An = {a1, . . . , an}, Ān = {ā1, . . . , ān} be two
alphabets of n letters. Each couple ak, āk can be considered as a pair of parentheses
of the same type. Define Cn = An∪Ān. We introduce the following useful notation.
For c ∈ Cn, let

c̄ =

{

āk if c = ak ;

ak if c = āk .

Thus ¯̄c = c.

Definition The restricted Dyck congruence δ′n is the congruence of C∗
n generated

by

akāk ∼ 1 k = 1, . . . , n . (3.1)

The Dyck congruence δn is the congruence generated by (3.1) and by

ākak ∼ 1 k = 1, . . . , n . (3.2)



28 Chapter II. Context-Free Languages

Thus two words w and w′ are congruent modulo δ′n or modulo δn, and we write

w ≡ w′ (mod δ′n) or w ≡ w′ (mod δn)

if and only if w′ can be obtained from w by a finite number of insertions or deletions
of factors of the form akāk (resp. akāk or ākak).

Definition The restricted Dyck language D′∗
n is the class of 1 in the congruence

δ′n: D′∗
n = [1]δ′n . The Dyck language D∗

n is the class of 1 in the congruence δn:
D∗
n = [1]δn .

Clearly by definition both D′∗
n and D∗

n are submonoids of C∗
n.

Definition The set D′
n of restricted Dyck primes is

D′
n = (D′∗

n \ 1) \ (D′∗
n \ 1)2 .

The set of Dyck primes is Dn = (D∗
n \ 1) \ (D∗

n \ 1)2.

The notation is consistent since D′
n and Dn indeed generate the submonoids

D′∗
n and D∗

n (see Section I.2). In fact, we shall see that D′
n and Dn are bifix codes,

thus D′∗
n and D∗

n are free submonoids of C∗
n. In order to give a unified treatment,

we follow an idea of M.-P. Schützenberger and introduce a more general family
of congruences and languages. It will appear that the restricted and the general
Dyck languages are just extremal cases in the new formalism.

Definition Let I be a subset of {1, . . . , n}. The congruence δI is the congruence
generated by

akāk ∼ 1 (k = 1, . . . , n) and āiai ∼ 1 (i ∈ I) .

The language D∗
I is the class of the empty word in the congruence δI .

Clearly D∗
I is a submonoid of C∗

n, justifying thus the notation. Anyone of the
2n subsets of {1, . . . , n} defines a “Dyck-like” language. If I = ∅, then δI = δ′n and
D∗
I = D′∗

n ; if I = {1, . . . , n}, then δI = δn and D∗
I = D∗

n.
Our aim is to prove that D∗

I and DI = (D∗
I \ 1) \ (D∗

I \ 1)2 are context-free
languages for any I ⊂ {1, . . . , n}. For this, we first introduce a new relation. Let
u, v ∈ C∗

n, and set u 7−
I
− v if and only if there are x, y ∈ C∗

n such that u = xαy,
v = xy, and either α = akāk for some k ∈ {1, . . . , n} or α = āiai for some i ∈ I.
The reflexive and transitive closure 7−∗

I
− of 7−

I
− is called the Dyck reduction. Clearly,

if u 7−∗
I
− v, then |u| ≥ |v|, and |u| = |v| implies u = v. The congruence δI and the

reduction 7−∗
I
− are linked by

u ≡ v (mod δI)

if and only if there are k ≥ 0, u0, . . . , uk ∈ C∗
n such that

u0 = u, uk = v,

and

(up 7−I
− up+1 or up+1 7−I

− up) p = 0, . . . , k − 1 .



3. Dyck Languages 29

Thus u 7−∗
I
− v implies u ≡ v (modδI), but the converse is false.

A word is reduced mod δI if and only if it contains no factor of the form
akāk or āiai (i ∈ I). Thus u is reduced if and only if {v | u 7−

I
− v} = ∅. For

any word w ∈ C∗
n there is at least one reduced word u congruent to w (mod δI).

Usually, there are several ways to compute a reduced word. We shall prove that all
computations lead to the same reduced word which is unique. We follow Autebert
and Cousineau (1976) rather than the standard exposition as treated in Magnus
et al. (1966). Indeed, the presentation below is closer to the extensions to more
general congruences over free monoids as considered by Cochet and Nivat (1971),
Benois and Nivat (1972).

Example 3.1 For n = 2, I = {1, 2}, consider the word āaāab̄bāa. It can be
reduced to the empty word in at least the two following manners:

w = āaāab̄bāa w = āaāab̄bāa

w1 = āab̄bāa w′
1 = āab̄bāa

w2 = b̄bāa w′
2 = āaāa

w3 = āa w′
3 = āa

w4 = 1 w′
4 = 1

From now on, we write 7−− and 7−∗− instead of 7−
I
− and 7−∗

I
−.

Lemma 3.1 (Confluence Lemma) If w 7−∗− u1 and w 7−∗− u2, then there exists a
word v such that u1 7−

∗− v and u2 7−
∗− v.

Thus the lemma asserts the existence of a word v such that the following
diagram holds (Figure II.1). We first prove the lemma in a special case.

w

u1 u2

v

∗ ∗

∗ ∗

Figure II.1

Lemma 3.2 If w 7−− u1 and w 7−− u2, then there exists a word v such that
u1 7−

∗− v and u2 7−
∗− v.

Proof. There are words x1, y1, x2, y2 ∈ C∗
n and z1, z2 ∈ C2

n such that

w = x1z1y1 = x2z2y2, u1 = x1y1, u2 = x2y2 .

If |u1| = |u2|, then u1 = u2 and there is nothing to prove. Assume for instance
|u1| < |u2|. We distinguish two cases.

a) |u1| + 2 ≤ |u2|. Then u2 = u1z1t for some word t, thus w = z1z1tz2y2, and
v = z1tz2 satisfies u1 7−− v, u2 7−− v.



30 Chapter II. Context-Free Languages

b) |u1| + 1 = |u2|. The u2 = u1c for some letter c, hence z1 = cc̄ and z2 = c̄c.
(This implies that c = ai or c = āi with i ∈ I.) Thus w = x1cc̄cy2, and u1 =
x1cy2 = u2. Hence v = u1 satisfies the conditions.

Proof of Lemma 3.1 By induction on |w|. If |w| = 0, then u1 = w = u2 = 1, and
v = w satisfies the lemma. Assume |w| = p > 0. If |u1| = |w|, then u1 = w and
the lemma holds for v = u2. Thus we may suppose |u1| < p and similarly |u2| < p.
There exist two words v1, v2 with |v1| = |v2| = p− 2 such that

w 7−− v1 7−
∗− u1, w 7−− v2 7−

∗− u2 .

Thus, in view of Lemma 3.2, there is a word t such that

v1 7−
∗− t, v2 7−

∗− t .

Since v1 7−
∗− u1, v1 7−

∗− t and |v1| < p, by induction there is a word w1 such that

u1 7−
∗− w1, t 7−

∗− w1 .

Since v2 7−∗− u2, v2 7−∗− t 7−∗− w1 and |v2| < p, by induction there is a word v such
that

u2 7−
∗− v, w1 7−

∗− v .

This show that u1 7−
∗− w1 7−

∗− v and u2 7−
∗− v.

The construction of the proof is reflected in Figure II.2.

w

v1 v2

u1 t u2

w1

v

∗ ∗∗ ∗

∗
∗

∗

∗

Figure II.2

Corollary 3.3 Let u, v ∈ C∗
n; then u ≡ v (mod δI) if and only if there exists a

word w such that u 7−∗− w and v 7−∗− w.

Proof Assume u ≡ v (mod δI). Then there are k ≥ 0, u0, . . . , uk ∈ C∗
n such that

u0 = u, uk = v and

up 7−− up+1 or up+1 7−− up for p = 0, . . . , k − 1 .



3. Dyck Languages 31

If k = 0, then u = v and there is nothing to prove. Arguing by induction on k,
there is a word w1 such that

u1 7−
∗− w1 and v 7−∗− w1 .

If u0 7−− u1, then u0 7−∗− w1 and the corollary is true with w = w1. If u1 7−− u0,
there exists, by the Confluence Lemma, a word w2 such that u0 7−

∗− w2 and w1 7−
∗−

w2, whence v 7−∗− w2. The converse is obvious.

Remark The Confluence Lemma can be considered as a property of some binary rela-
tions: Let −∗− be the relation opposed to 7−∗−. Then the congruence δI is the least con-
gruence containing −∗− and 7−∗−. Corollary 3.3 states that δI is the product (of relations)
of 7−∗− and −∗−; the Confluence Lemma asserts the existence of a weak commutativity
property: the product of −∗− by 7−∗− is contained in the product of 7−∗− by −∗−.

We list two other corollaries

Corollary 3.4 If v is reduced and u ≡ v (mod δI), then u 7−∗− v.

Proof. By Corollary 3.3, there is a word w such that u 7−∗− w and v 7−∗− w. Since
v is reduced, v = w.

Corollary 3.5 Any class of the congruence δI contains exactly one reduced word.

Proof. It is clear that any class contains at least one reduced word. Assume u, v
are reduced and u ≡ v (mod δI). Then by Corollary 3.4 u 7−∗− v and v 7−∗− u, thus
u = v.

We denote by ρI(w) the unique reduced word congruent to w mod δI . If I = ∅,
we write ρ′ and if I = {1, . . . , n}, we write ρ instead of ρI . The language ρI(C

∗
n)

of reduced words is a local regular set, since

ρI(C
∗
n) = C∗

n \ C
∗
nVIC

∗
n ,

with

VI = {akāk | k = 1, . . . , n} ∪ {āiai | i ∈ I} .

The next lemma describes the words which reduce to a given word. It is the key
lemma for the proof that the languages D∗

I are context-free.

Lemma 3.6 Let x, w ∈ C∗
n, w = c1c2 · · · cm, (cp ∈ C∗

n). Then

x 7−∗− w

if and only if there exist y0, y1, . . . , ym ∈ C∗
n such that

x = y0c1y1c2 · · · ym−1cmym

and

y0 7−
∗− 1, y1 7−

∗− 1, . . . , ym 7−∗− 1 .



32 Chapter II. Context-Free Languages

Proof. The conditions are clearly sufficient. The proof of the converse is by induc-
tion on |x| − |w|. If |x| = |w|, then x = w; if |x| > |w|, then there exists x′ such
that |x′| = |x| − 2 and x 7−− x′ 7−∗− w. By induction,

x′ = y0c1y1c2 · · ·ym−1cmym

for some words yr with yr 7−
∗− 1, (r = 0, . . . , m). Next, there is a factorization

x = uzv, with x′ = uv ,

and z = akāk for some k ∈ {1, . . . , n} or z = āiai for some i ∈ I. Hence there is
an integer j, (0 ≤ j ≤ m) and a factorization yj = y′y′′, (y′, y′′ ∈ C∗

n) such that

u = y0c1 · · · cjy
′, v = y′′cj+1 · · · cmym .

Set tj = y′zy′′. Then tj 7−− yj 7−
∗− 1 and

x = y0c1 · · · cjtjcj+1 · · · cmym .

Theorem 3.7 The languageD∗
I is context-free. More precisely, D∗

I is the language
generated by the grammar GI with productions:

ξ → 1 +
n

∑

k=1

akξākξ +
∑

i∈I

āiξaiξ . (3.3)

First, we introduce the notation

BI = An ∪ {āi | i ∈ I} .

Thus BI = An if I = ∅, and BI = Cn if I = {1, . . . , n}.

Proof The grammar GI is strict. Thus it suffices to show that D∗
I is a solution of

the equation associated to (3.3). Assume w = cw′c̄w′′ with w′ ≡ w′′ ≡ 1 (mod δI)
and c ∈ BI . Then w ≡ cc̄ ≡ 1 (mod δI) and w ∈ D∗

I . This shows the inclusion

D∗
I ⊃ 1 ∪

⋃

1≤k≤n

akD
∗
I ākD

∗
I ∪

⋃

i∈I

āiD
∗
IaiD

∗
I .

Conversely, let w ∈ D∗
I , w 6= 1. Since 1 is reduced, w 7−∗− 1 by Corollary 3.4. Since

w 6= 1 there is a letter c ∈ BI such that w 7−∗− cc̄. By Lemma 3.6, w factorizes in

w = y0cy1c̄y2

with y0, y1, y2 ∈ D∗
I . If y0 = 1, then w ∈ cD∗

I c̄D
∗
I . If y0 6= 1, then |y0| < |w| and,

arguing by induction, y0 ∈ bD∗
I b̄D

∗
I for some b ∈ BI . Thus w ∈ bD∗

I b̄D
∗
IcD

∗
I c̄D

∗
I ⊂

bD∗
I b̄D

∗
I . This completes the proof.

We now investigate the language

DI = (D∗
I \ 1) \ (D∗

I \ 1)2 .

For c ∈ Cn, define

DI,c = DI ∩ cC
∗
n .



3. Dyck Languages 33

Proposition 3.8 (i) The language DI is bifix;
(ii) DI,c 6= ∅ if and only if c ∈ BI ;

(iii) if DI,c 6= ∅, then any w ∈ DI,c admits a unique factorization

w = cu1u2 · · ·umc̄ with m ≥ 0, u1, . . . , um ∈ DI \DI,c̄ .

Proof (i) Let w ∈ DI , and assume w = uv with u ∈ DI , v ∈ C∗
n. Then 1 ≡ uv ≡

v (mod δI), thus v ∈ D∗
I . Thus v = 1 by the definition of DI . This shows that DI

is prefix. A symmetric argument shows that DI is suffix.
(ii) Let w ∈ DI,c. Then w = cu for some word u. Since w 7−∗− 1, there is a letter

b ∈ BI such that w 7−∗− bb̄. In view of Lemma 3.6, w factorizes in w = y0by1b̄y2,
with y0, y1, y2 ∈ D∗

I . Since w ∈ DI , y0 = y2 = 1 and b = c. This proves the
assertion, since clearly DI,c 6= ∅ if c ∈ BI .

(iii) We just have seen that a word w ∈ DI,c factorizes in w = cy1c̄ with
y1 ∈ D∗

I . Thus either y1 = 1 or y1 = u1u2 · · ·um with u1, . . . , um ∈ DI . Assume
that up ∈ DI,c for some p. Then up = c̄yc for some y ∈ D∗

I , and

w = (cu1 · · ·up−1c̄)y(cup+1 · · ·umc̄) ∈ (D∗
I \ 1)2 ,

contrary to the definition of DI . The uniqueness is immediate since DI is a code.

By Proposition 3.8,

DI =
⋃

c∈BI

DI,c (3.4)

DI,c = c∆I,cc̄ (c ∈ BI) (3.5)

where ∆I,c is the submonoid of C∗
n generated by DI \DI,c̄:

∆I,c =
(

⋃

b∈BI\c̄

DI,b

)∗

. (3.6)

Finally, since DI generates D∗
I , we have

D∗
I = 1 ∪DID

∗
I . (3.7)

From Equations (3.4)–(3.7), we deduce the following grammar HI = 〈VI , Cn,PI〉.
Set

VI = {ξ, η} ∪ {ξc, ηc | c ∈ BI} ,

and let PI contain the productions:

ξ → 1 + ηξ ; η =
∑

c∈BI

ηc ; ηc = cξcc̄ ;

ξc = 1 +
(

∑

b∈BI\c̄

ηb

)

ξc (c ∈ BI) .



34 Chapter II. Context-Free Languages

By the Substitution Lemma, the system of equations associated to HI is equivalent
to

ξ = 1 +
∑

c∈BI

cξcc̄ξ ; ξc = 1 +
∑

b∈BI\c̄

bξbb̄ξc (c ∈ BI) (3.8)

η =
∑

c∈BI

ηc ; ηc = cξcc̄ ; (c ∈ BI) .

The equations (3.8) are strict, thus the system associated to HI has a unique
solution, and Equations (3.4)-(3.7) show that HI generates the various languages
related to the Dyck sets:

D∗
I = LHI

(ξ), DI = LHI
(η), DI,c = LHI

(ηc), ∆I,c = LHI
(ξc) .

Corollary 3.9 The languages DI are context-free.

If I = ∅, the grammar HI reduces, after short-cutting the ηz, to the grammar with
productions

ξ → 1 + ηξ ; η →
n

∑

k=1

akξāk .

Thus we have, for D′∗
n , D′

n, D
∗
n, Dn the following formulas:

D′∗
n = 1 ∪D′

nD
′∗
n ; D′

n =
⋃

1≤k≤n

akD
′∗
n āk ;

D∗
n = 1 ∪DnD

∗
n ; Dn =

⋃

c∈Cn

Dn,c ;

Dn,c = c∆n,cc̄ (c ∈ Cn) ; ∆n,c =
(

⋃

b∈Cn\c̄

Dn,b

)∗

(c ∈ Cn) .

It can be shown (Exercise 3.1) that D′∗
n is also generated by the grammar with

productions

ξ → ξξ +
n

∑

k=1

akξāk + 1 ,

and that D∗
n is generated by the grammar with productions

ξ → ξξ +

n
∑

k=1

akξāk +

n
∑

k=1

ākξak + 1 .

Let A
(∗)
n = C∗

n/δn be the quotient monoid; we denote by δn the canonical morphism

from C∗
n onto A

(∗)
n defined by δn(w) = [w]δn . For w = c1c2 · · · cm ∈ C∗

n, (ci ∈ Cn),
define w̄ = c̄mc̄m−1 · · · c̄1. Since

ww̄ ≡ w̄w ≡ 1 (mod δn) ,



3. Dyck Languages 35

A
(∗)
n is a group, and δn(w̄) = (δn(w))−1. In particular, δn(c̄) = (δn(c))

−1 for c ∈ Cn.

It can even be shown that A
(∗)
n is a free group (see Magnus et al. 1966). A

(∗)
n is

called the free group generated by An. Since each class [w]δn contains exactly one

reduced word ρ(w), there is a bijection from A
(∗)
n onto ρ(C∗

n) which associates to

any u ∈ A
(∗)
n the unique reduced word w such that u = δn(w). If no confusion can

arise, the index n will be omitted in the above notations.
Note that any word in A∗

n is already reduced. Thus A∗
n ⊂ ρ(C∗

n). It is sometimes

convenient to identify A∗
n with its image in A

(∗)
n . This identification allows use

of inverses and may simplify considerably certain formulations. However, it is
important not to confuse the product x−1y in A

(∗)
n , where x, y ∈ A∗

n, with the left

quotient operation defined in Section I.2: Viewed as an operation in A
(∗)
n , x−1y is

always a well-defined element of A
(∗)
n and x−1y = z ∈ A∗

n if and only if xz = y.
Viewed as an operation in A∗

n, x
−1y is either the empty set or a word in A∗

n,

according to x is not, or is a prefix of y. The embedding of A∗
n into A

(∗)
n will be

used only in Sections IV.2 and IV.6. In all other circumstances, x−1y should be
interpreted as the left quotient defined in Section I.2.

The Dyck languages are known by the Chomsky-Schützenberger Theorem. We
prove the following

Theorem 3.10 (Chomsky-Schützenberger Theorem) Let L ⊂ B∗ be an algebraic
language. Then there are an integer n ≥ 1, an alphabetic morphism φ : C∗

n → B∗,
and a local regular language K such that

L = φ(D∗
n ∩K) = φ(D′∗

n ∩K) = φ(Dn ∩K) = φ(D′
n ∩K) .

Proof. Assume the theorem proved in the case where 1 /∈ L. Then 1 /∈ K. Thus
setting K ′ = K ∪ 1, K ′ is still a local language and the theorem holds for L ∪ 1.
Thus we may assume 1 /∈ L.

The idea of the proof is simple: each production in a grammar generating L is
bracketed by a distinct pair of parentheses, and new letters are added to make the
new grammar generate a subset of D∗

n, and in fact of D′
n. Thus it has only to be

shown that none of the generated words is in D∗
n \D

′
n.

We assume that L is generated by a grammar G = 〈V,B,P〉 in quadratic form,
that is such that each production ξ → α ∈ P satisfies α ∈ B∪V 2. Such a grammar
can always be obtained (see e.g. the books listed in the bibliography). We set

V = {ξ1, . . . , ξN}, B = {b1, . . . , bq} ,

and define

An = B ∪ {ai,j,k, bi,j,k | i, j, k = 1, . . . , N}

∪ {di,s | i = 1, . . . , N, s = 1, . . . , q} ,

where the ai,j,k, bi,j,k, di,s are new letters. Thus n = 2N3 +Nq + q. Set Ān = {ā |
a ∈ An} and Cn = An∪Ān. Let H = 〈V, Cn,Q〉 be the grammar with the following
productions:

For i, j, k ∈ {1, . . . , N},

ξi → ai,j,kbi,j,kξj b̄i,j,kξkāi,j,k ∈ Q (3.9)



36 Chapter II. Context-Free Languages

if and only if

ξi → ξjξk ∈ P .

Further, for i ∈ {1, . . . , N}, s = 1, . . . q,

ξi → di,sbsb̄sd̄i,s ∈ Q (3.10)

if and only if

ξi → bs ∈ P .

For i = 1, . . . , N , set Mi = LH(ξi), and let φ : C∗
n → B∗ be the projection. Then

clearly

φ(Mi) = LG(ξi) .

We shall prove that

Mi = D∗
n ∩Ki = D′∗

n ∩Ki = Dn ∩Ki = D′
n ∩Ki i = 1, . . . , N (3.11)

where

Ki = (XiC
∗
n ∩ C

∗
nX̄i) \ C

∗
nY C

∗
n

is the local regular set defined by:

Xi = {ai,j,k | j, k = 1, . . . , N} ∪ {di,s | s = 1, . . . , q} ,

X̄i = {x̄ | x ∈ Xi} , C2
n \ Y = W1 ∪W2 ∪W3 ,

with

W1 = {ai,j,kbi,j,k | i, j, k = 1, . . . , N} ; (3.12)

W2 = {di,sbs, b̄sd̄i,s | i = 1, . . . , N, s = 1, . . . , q} ∪ {bsb̄s | s = 1, . . . , q}
(3.13)

W3 =
⋃

i,j,k

bi,j,kXj ∪ b̄i,j,kXk ∪ X̄j b̄i,j,k ∪ X̄kāi,j,k . (3.14)

a) Mi ⊂ D∗
n ∩Ki, (i = 1, . . . , N). Let indeed w ∈ Mi. Then either, by (3.10),

w = di,sbsb̄sd̄i,s

for some s ∈ {1, . . . , q}, and clearly w ∈ D∗
n ∩Ki, or by (3.9)

w = ai,j,kbi,j,kub̄i,j,kvāi,j,k

for some j, k ∈ {1, . . . , n} and u ∈ Mj, v ∈Mk. Arguing by induction, u ∈ D∗
n∩Kj ,

v ∈ D∗
n ∩Kk, thus w ∈ D∗

n and, in view of (3.12) and (3.14), w ∈ Ki.

b) D∗
n ∩Ki ⊂ D′∗

n ∩Ki, (i = 1, . . . , N). First, we verify

Dn,ā ∩ C
∗
n \ C

∗
nY C

∗
n = ∅ for ā ∈ Ān . (3.15)



3. Dyck Languages 37

Assume the contrary, and let w ∈ Dn,ā ∩C
∗
n \C

∗
nY C

∗
n be of minimal length. Then

|w| > 2 since āa ∈ Y . In view of Proposition 3.8(iii), w = āu1 · · ·uma, with
up ∈ Dn ∩ AnC

∗
nĀn, (p = 1, . . . , m) by the minimality of w. Since the first letter

of u1 is not barred, ā = b̄i,j,k for some indices i, j, k by (3.14). Thus, by (3.12), the
last letter of um is ai,j,k and um /∈ Dn ∩ AnC

∗
nĀn. This proves (3.15).

Now let w ∈ D∗
n ∩Ki, w = w1w2 · · ·wr with wp ∈ Dn ∩AnC

∗
nĀn for p = 1, . . . r

by (3.15). Then w1 ∈ XiC
∗
nX̄i for some i, thus if r > 1, the first letter of w2 would

be barred by (3.14). Thus r = 1 and w ∈ Dn. Next, if w begins with a letter di,s,
then w = di,sbsb̄sd̄i,s by (3.13) and w ∈ D′

n. Finally, if w begins with the letter ai,j,k,
then w = ai,j,kuāi,j,k for some u ∈ D∗

n and in view of (3.12), u = bi,j,kv1b̄i,j,kv2 for
some v1, v2 ∈ D∗

n. In view of (3.14), v1 ∈ Ki, v2 ∈ Kk, and arguing by induction,
v1 ∈ D′

n ∩Kj , v2 ∈ D′
n ∩Kk. Thus w ∈ D′

n.

c) D′
n ∩Ki ⊂ Mi, (i = 1, . . . , N). Let w ∈ D′

n ∩Ki. If w begins with a letter di,s,
then by (3.13) w = di,sbsb̄sd̄i,s and w ∈Mi by (3.10). Otherwise, w = ai,j,kuāi,j,k for
some indices j, k and u ∈ D′∗

n . By (3.12), u = bi,j,kv1b̄i,j,kv2 for some v1, v2 ∈ D′∗
n .

Moreover, v1 ∈ Kj and v2 ∈ Kk. Thus v1 ∈ D′∗
n ∩ Kj ⊂ D′

n ∩ Kj and similarly
v2 ∈ D′

n ∩Kk, by part b) of the proof. Therefore by induction v1 ∈ Mj , v2 ∈ Mk

and w ∈Mi by (3.9).
Thus we proved

Mi ⊂ D∗
n ∩Ki ⊂ D′

n ∩Ki ⊂Mi i = 1, . . . , N ,

and (3.11) follows.

Exercises

3.1 Show that for any I ⊂ {1, . . . , n}, D∗
I is the language generated by the grammar

with productions

ξ → ξξ +

n
∑

k=1

akξāk +
∑

i∈I

āiξai + 1 .

3.2 Same question as in Exercise 3.1, for the grammar

ξ → ξξ +

n
∑

k=1

akξξāk +
∑

i∈I

āiξξai + 1 .

3.3 (Magnus et al. (1966)) Define a function θI : C∗
n → C∗

n inductively as follows:
θI(1) = 1, θI(c) = c for c ∈ Cn, and if θI(w) = c1c2 · · · cm (ci ∈ Cn), then

θI(wc) =

{

c1c2 · · · cm−1 if cm ∈ BI and cm = c̄,

c1c2 · · · cmc otherwise.

Show that θI = ρI .

3.4 Show that ww′ ∈ D∗
n =⇒ w′w ∈ D∗

n.

3.5 Show that for each w ∈ C∗
n, the class [w]δI is a context-free language.



38 Chapter II. Context-Free Languages

3.6 For w ∈ C∗
n, define

‖w‖ = |w|An − |w|Ān
=

n
∑

k=1

|w|ak
− |w|āk

Show the following assertions:

a) w ∈ D∗
n =⇒ ‖w‖ = 0 .

b) w ∈ D′∗
n =⇒ ‖w′‖ ≥ 0 for each prefix w′ of w.

c) w ∈ D′
n =⇒ ‖w′‖ > 0 for each proper nonempty prefix w′ of w.

d) w ∈ D∗
1 ⇐⇒ ‖w‖ = 0 .

3.7 (Requires knowledge in ambiguity.) Show that the grammars HI are unambiguous.

3.8 Assume that the grammar G = 〈V,B,P〉 for L in the proof of the Chomsky-
Schützenberger Theorem is in Greibach Normal Form, that is ξ → α implies α ∈
B ∪BV ∪BV V .

a) Show that G can be transformed in such a way that for any two productions ξ → bβ,
ξ → b′β′ (b, b′ ∈ B), if b 6= b′, then β 6= β′.

b) Replace the productions of the form

ξi → bξjξk by ξi → ai,j,kξj āi,j,kξk

ξi → bξj by ξi → bi,j b̄i,jξj

ξi → b by ξi → did̄i

and prove that L = φ(D′∗
n ∩K) where K is a local regular set and where φ erases

barred letters, and replaces unbarred letters according to the above rules.

c) Show that each word in D′∗
n ∩ K ends by exactly one barred letter, and that no

word in D′∗
n ∩K contains a factor of more than two barred letters.

d) Show that any context-free language L can be represented in the form L = φ(D′∗
n ∩R)

with R local and φ ε-limited on R (that is k· |φ(w)| ≥ |w| for all w in R and for
some k > 0).

4 Two Special Languages

We present some properties of the Lukasiewicz language, and of the language of
completely parenthesized arithmetic expressions.



4. Two Special Languages 39

a) The Lukasiewicz language –L over A = {a, b} is the language generated by
the grammar with productions

ξ → aξξ + b .

Thus –L is the unique language satisfying

–L = a–L–L ∪ b . (4.1)

The first words of –L are

b, abb, aabbb, ababb, aaabbbb, aababbb, . . .

The language of Lukasiewicz is the simplest of a family of languages constructed
in order to write arithmetic expressions without parentheses (prefix or “polish”
notation). The letter a represents a binary operations, say +, and b represents the
operand. Thus the word abb represents the expression b+b, and aababbb represents
the expression ((b+ (b+ b)) + b).

For w ∈ A∗, define

‖w‖ = |w|a − |w|b .

Clearly ‖ww′‖ = ‖w‖ + ‖w′‖.

Proposition 4.1 Let w ∈ A∗. Then w ∈ –L if and only if w satisfies the two
following conditions:
(i) ‖w‖ = −1 ;
(ii) ‖w′‖ ≥ 0 for each proper prefix w′ of w.

Clearly, Proposition 4.1 implies that –L is prefix.

Proof. Let w ∈ –L. If w = b, then (i) and (ii) are satisfied. Assume |w| > 1. Then
by (4.1), w = auv with u, v ∈ –L. Thus ‖w‖ = 1 + ‖u‖ + ‖v‖ = −1. Next, let w′

be a proper prefix of w. If w′ = a, or if w′ is a proper prefix of au, then clearly
‖w′‖ ≥ 0. If w′ = auv′ and v′ is a proper prefix of v, then ‖w′‖ = ‖v′‖ ≥ 0.

Conversely, let w be a word satisfying (i) and (ii). If |w| = 1, then w = b ∈ –L.
Arguing by induction on |w|, assume |w| > 1. First note that by (ii) w begins
with the letter a. Thus w = aw′ for some w′. Next, since ‖w‖ = −1, there exists
a shortest nonempty prefix u of w′ such that ‖au‖ = 0. Set w = auv. Then
‖u‖ = −1, and for any nonempty proper prefix u′ of u, ‖u′‖ ≥ 0 by the minimality
assumption on u. Thus u ∈ –L. Next ‖v‖ = ‖w‖ = −1, and ‖v‖′ = ‖auv′‖ ≥ 0 for
any proper prefix v′ of v since w satisfies (ii). Thus v ∈ –L and w ∈ –L by (4.1).

Proposition 4.1 can be used to draw a pictorial representation of a word w in
–L. This is given by the graph of the function w′ 7→ ‖w′‖, where w′ ranges over the
prefixes of w. Thus, for w = aabaabbabbabaaabbbb, we obtain Figure II.3. Next,
consider the restricted Dyck language D′∗

1 over A, that is with a1 = a, ā1 = b.
Then D′∗

1 is defined by

D′∗
1 = 1 ∪ aD′∗

1 bD
′∗
1 .

Multiply this equation by b on the right. This gives

D′∗
1 b = b ∪ aD′∗

1 bD
′∗
1 b .

Thus D′∗
1 b is a solution of (4.1), and therefore D′∗

1 b = –L.



40 Chapter II. Context-Free Languages

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b−1

0

1

2

3

a a b a a b b a b b a a a b b b b

Figure II.3

Corollary 4.2 Let w ∈ A∗. Then w ∈ D′∗
1 if and only if w satisfies:

(i) ‖w‖ = 0 ;
(ii) ‖w′‖ ≥ 0 for each proper prefix w′ of w.

Recall that u and v are conjugate if and only if u = xy and v = yx for some words
x, y.

Proposition 4.3 Let u ∈ A∗ with ‖u‖ = −1. Then there exists one and only one
word v conjugate to u such that v ∈ –L.

Proof. We show first the uniqueness. Assume u = xy, v = yx ∈ –L, v 6= 1. Then
by Proposition 4.1, ‖x‖ ≥ 0, thus ‖u‖ = −1 = ‖x‖ + ‖v‖ ≥ ‖v‖, and v cannot be
a proper prefix of v. Thus x = 1 and u = v.

Next, let p = min{‖u′‖ | u′ proper prefix of u}. If p ≥ 0, then u ∈ –L. Assume
p < 0, and let x be the shortest prefix of u such that ‖x‖ = p. Write u = xy. Then

‖x′‖ ≥ p + 1 for any proper prefix x′ of x (4.2)

by the minimality of x. Next

‖y′‖ ≥ 0 for any proper prefix y′ of y (4.3)

since p ≤ ‖xy′‖ = p+ ‖y′‖ by definition of p and

‖y‖ = −1 − p ≥ 0 . (4.4)

Let v = yx. Then ‖v‖ = ‖u‖ = −1. Let v′ be a proper prefix of v. If v′ is a prefix
of y, then ‖v′‖ ≥ 0 by (4.3) and (4.4). Otherwise, v′ = yx′, where x′ is a proper
prefix of x, and ‖v′‖ = −1 − p + ‖x′‖ ≥ 0 by (4.2). In view of Proposition 4.1,
v ∈ –L.

b) The language of completely parenthesized arithmetic expressions E
over A = {a, b, c, d} is the language generated by the grammar with productions

ξ → aξbξc+ d .



4. Two Special Languages 41

Thus E is the unique language satisfying

E = aEbEc ∪ d . (4.5)

The first words of E are

d, adbdc, aadbdcbdc, adbadbdcc, aadbdcbadbdcc, . . .

The terminology is from Nivat (1967). Write indeed “(” for “a”, “)” for “c”, “+”
for “b” and “i” for “d”. The words listed above become

i, (i+ i), ((i+ i) + i), (i+ (i+ i)), ((i+ i) + (i+ i)), . . .

Consider the morphism that erases c and d. Then by (4.5) the image of E is the
language D′∗

1 over {a, b}. If b and c are erased, then the image of E is the language
–L over {c, d}. Thus E is closely related to these languages. In fact, we shall prove
later (Chapter VII) that the language E is a generator of the cone of context-free
languages.

Lemma 4.4 Let w ∈ E. Then

(i) |w|a = |w|b = |w|c = |w|d − 1 ;
(ii) If w′ is a proper nonempty prefix (resp. suffix) of w, then |w′|a > |w′|c (resp.

|w′|a < |w′|c).

The easy proof is left to the reader. Note that (ii) implies that the language E is
bifix.

Let η be the congruence over A∗ generated by the relation

adbdc ∼ d .

Theorem 4.5 The language E is equal to the class of d in the congruence η:
E = [d]η.

Proof. Clearly d ∈ [d]η. Let w ∈ E, w 6= d. Then w = aubvc for some u, v ∈ E
by (4.5). Arguing by induction, u ≡ v ≡ d (mod η), thus w ≡ adbdc ≡ d (mod η).
This shows the inclusion E ⊂ [d]η.

To show the converse inclusion, it suffices to prove that for any two words
w = udv and w′ = uadbdcv,

w ∈ E ⇐⇒ w′ ∈ E . (4.6)

We verify (4.6) by induction on |w| = |w′| − 4. If u = 1, then w ∈ E if and only
if w = d, and w′ = adbdc, since E is prefix. Thus we may assume u 6= 1. Suppose
w ∈ E. Then w = aw1bw2c for some w1, w2 ∈ E. Then either |ud| ≤ |aw1| or
|dv| ≤ |w2c|. In the first case, w1 = u1dv1 for u1 and v1 defined by au1 = u,
v = v1bw2c. By induction, w′

1 = u1adbdcv1 belongs to E. Thus aw′
1bw2c = w′ ∈ E

by (4.5). The second case is handled in the same way. Conversely, suppose w′ ∈ E.
Then

w′ = uadbdcv = aw′
1bw

′
2c



42 Chapter II. Context-Free Languages

for w′
1, w

′
2 ∈ E. If |aw′

1| = |uad|, then w′
1 = d since E is suffix, hence u = 1

contrary to the assumption. Thus either |uad| < |aw′
1| or |dvc| < |w′

2c|. It suffices
to consider the first case. Clearly, it implies that |uadbdc| ≤ |aw′

1|, thus w′
1 =

u′1adbdcv
′
1 with au′1 = u and v = v′1bw

′
2c. By induction, w1 = u′1dv

′
1 ∈ E, hence

aw1bw
′
2c = w ∈ E .

Theorem 4.5 admits the following

Corollary 4.6 Let u, u′ ∈ E. Then xuy ∈ E if and only if xu′y ∈ E.

Proof. xuy ≡ xu′y (mod η). Thus xuy ≡ d (mod η) if and only if xu′y ≡ d (mod η).

Exercises

4.1 Show that –L = [b]λ, where λ is the congruence over {a, b}∗ generated by the relation
abb ∼ b.

4.2 Let pn = Card(A2n+1 ∩ –L). Show that pn =
1

n+ 1

(

2n

n

)

. Show that pn = qn, where

qn = Card(A4n+1 ∩ E).



Chapter III

Rational Transductions

Rational transductions are defined by rational relations, that is rational subsets
of the product of two free monoids. The chapter therefore begins with two sec-
tions concerned with recognizable and rational subsets of an arbitrary monoid.
The next two sections contain the definition and basic properties of rational re-
lations and rational transductions. Examples of rational transductions are given
in Section 5. Then the machines realizing rational transductions are introduced.
Matrix representations of rational transductions are investigated in Section 7. In
the last section we show that most of the usual decision problems are unsolvable
for rational transductions.

1 Recognizable Sets

Kleene’s Theorem gives a characterization of the regular languages of a finitely
generated free monoid, but the theorem cannot be extended to arbitrary monoids.
Therefore we can investigate the class of monoids where Kleene’s theorem remains
true. An example of such a monoid was given by Amar and Putzolu (1965). A
wider family of semigroups where Kleene’s Theorem is partially true is formed by
the equidivisible semigroups of McKnight and Storey (1969). S. Eilenberg had the
idea, formulated for instance in (Eilenberg 1967), to distinguish in each monoid
two families of subsets, called the recognizable and the rational subsets. These
two families are of distinct nature and Kleene’s Theorem precisely asserts that
they coincide in finitely generated free monoids. Properties of regular languages
like closure properties can be proved some for recognizable subsets, others for the
rational subsets of a monoid. This gives also insight in the structure of regular
languages by showing from which of their two aspects originate their properties.

This section deals with recognizable, the next section with rational subsets
of a monoid. We are mainly interested in properties which are of later use for
rational transductions, but we also touch slightly on properties of rational subsets
of groups.

We want recognizable sets to be, in free monoids, exactly the languages recog-
nized by finite automata. Instead of a generalization of finite automata, we prefer
to use as definition a characterization via morphism into a finite monoid. This
simplifies the exposition.

Definition Let M be a monoid. A subset X of M is recognizable if there exist

43



44 Chapter III. Rational Transductions

a finite monoid N , a morphism α from M into N and a subset P of N such that
X = α−1(P ).

If this holds, then α(X) = P ∩ α(M), and consequently X = α−1(α(X)).
Next, α considered as a morphism onto α(M) is surjective, and X = α−1(Q)
with Q = P ∩ α(M). Thus we may assume that α is surjective in the above
definition. An equivalent condition for X ⊂M to be recognizable is the existence
of a congruence relation θ on M of finite index such that X is saturated for θ, that
is X is a union of equivalence classes of θ.

The set of all recognizable subsets of M is denoted by Rec(M).

Example 1.1 Let M be any monoid, and let N = {1} be the monoid consisting of
a single element. Let α be the unique morphism from M onto N . Then ∅ = α−1(∅)
and M = α−1(N). Thus M, ∅ ∈ Rec(M) for any monoid M .

Example 1.2 If M is a finite monoid, then any subset of M is recognizable.

Example 1.3 If M = A∗ and A is an alphabet, then X ∈ Rec(A∗) if and only if
X is recognized by a finite automaton (Proposition I.4.4).

Example 1.4 Consider the additive group Z of integers. Let α be a morphism
from Z onto a finite monoid N . Then α is a group morphism and N = α(Z) is a
finite group, thus N = Z/nZ for some integer n ≥ 1 (Exercise I.3.1). Consequently
N can be identified with the set {0, 1, . . . , n− 1}, and for p ∈ N , α−1(p) = p+nZ.
Thus for P ⊂ N , α−1(P ) =

⋃

p∈P p+ nZ. Conversely, any subset of Z of this form
is recognizable. It follows that X ∈ Rec(Z) if and only if X is a finite union of
arithmetic progressions. In particular, any nonempty recognizable subset of Z is
infinite.

Proposition 1.1 Let M be a monoid. Then Rec(M) is closed under union, in-
tersection and complementation.

Since ∅,M ∈ Rec(M), it follows that Rec(M) is a boolean algebra.
Proof. Let X ∈ Rec(M), let N be a finite monoid, let α : M → N be a sur-
jective morphism and let P be a subset of N such that X = α−1(P ). Then
M \ X = α−1(N \ P ). Thus M \ X ∈ Rec(M). This proves the closure under
complementation.

Next, let Y ∈ Rec(M), Y = β−1(Q), where β is a surjective morphism from
M onto some finite monoid N ′ and Q ⊂ N ′. Let N ′′ = N × N ′ be the product
monoid and define γ : M → N ′′ by γ(m) = (α(m), β(m)), m ∈ M . Then γ is a
morphism. Further γ(m) ∈ P ×Q if and only if α(m) ∈ P and β(m) ∈ Q, thus if
and only if m ∈ α−1(P ) ∩ β−1(Q). Consequently X ∩ Y = γ−1(P ×Q), and since
N ′′ is finite, X ∩ Y ∈ Rec(M). Thus Rec(M) is closed under intersection. Closure
under union follows from de Morgan’s rule.

Corollary 1.2 If X, Y ∈ Rec(M), then X \ Y ∈ Rec(M).

An important property of recognizable sets is the closure under inverse mor-
phisms.



1. Recognizable Sets 45

Proposition 1.3 Let M and M ′ be monoids, and let γ : M →M ′ be a morphism.
If X ′ ∈ Rec(M ′), then γ−1(X ′) ∈ Rec(M).

Proof. Let α : M ′ → N be a surjective morphism onto a finite monoid N , and let
P ⊂ N be such that X ′ = α−1(P ). Then γ−1(X ′) = β−1(P ), with β = α ◦γ. Thus
γ−1(X ′) ∈ Rec(M).

If the monoid M ′ in Proposition 1.3 is finitely generated, then M can be chosen
to be the free monoid generated by an alphabet. It follows that γ−1(X ′) is a regular
language.

Corollary 1.4 Let γ be an isomorphism from M onto M ′. Then X ∈ Rec(M) if
and only if γ(M) ∈ Rec(M ′).

The following example shows that the homomorphic image of a recognizable
set is not recognizable in general.

Example 1.5 Let A = {a, b}, and let γ : A∗ → Z be the morphism defined by
γ(w) = |w|a − |w|b (w ∈ A∗). Then {1} ∈ Rec(A∗), and γ({1}) = {0}. In view
of Example 1.4, {0} /∈ Rec(Z). This can also be seen by applying Proposition 1.3.
Assume indeed {0} ∈ Rec(Z). Then γ−1(0) is a recognizable subset of A∗, that is a
regular language. Since γ−1(0) = D∗

1, the Dyck language over A (Exercise II.3.6),
this yields a contradiction.

In general, the family Rec(M) is closed neither under product nor under star
operation. This is shown by the following example which is credited to S. Winograd
by Eilenberg (1974).

Example 1.6 Consider the additive group Z, and add to Z two new elements ε
and a. The set M = Z ∪ {ε, a} is a commutative monoid with addition extended
as follows:

ε+m = m (m ∈M), a+ a = 0, a+ x = x (x ∈ Z) .

Thus ε is the neutral element of M . We first show that {ε}, {a} ∈ Rec(M).
Consider indeed the commutative monoid N = {ε̄, ā, 0̄} with neutral element ε̄,
and with addition defined by 0̄ + 0̄ = 0̄ + ā = ā + ā = 0̄. Then α : M → N
given by α(ε) = ε̄, α(a) = ā, α(x) = 0̄, (x ∈ Z) is a morphism, and {ε} = α−1(ε̄),
{a} = α−1(ā). Next if X ∈ Rec(M), then X ∩ Z ∈ Rec(Z). Let indeed β be a
morphism from M onto a finite monoid N ′, let β1 be the restriction of β on Z, and
set N1 = β1(Z). If X = β−1(P ) for P ⊂ N ′, then

β−1
1 (P ∩N1) = β−1(P ∩N1) ∩ Z = β−1(P ) ∩ Z = X ∩ Z .

Consequently, X ∩ Z ∈ Rec(Z). Define now X = {a}. Then X ∈ Rec(M), and
X + X = {0}, X+ = {0, a}, X∗ = {0, ε, a}. None of these subsets is in Rec(M),
since otherwise their intersection with Z, that is {0} would be a recognizable subset
of Z in contradiction with Example 1.4.

The following theorem gives a description of the recognizable subsets of the
product of two monoids. Eilenberg (1974) attributes it to Mezei.



46 Chapter III. Rational Transductions

Theorem 1.5 (Mezei) Let M1,M2 be monoids and M = M1 ×M2. Then Y ∈
Rec(M) if and only if Y is a finite union of sets of the form X1 × X2, with
X1 ∈ Rec(M1) and X2 ∈ Rec(M2).

Proof. The condition is sufficient. Let indeed πi : M → Mi, (i = 1, 2) be the
canonical projections. If X1 ⊂M1, X2 ⊂M2, then

X1 ×X2 = (X1 ×M2) ∩ (M1 ×X2) = π−1
1 (X1) ∩ π

−1
2 (X2) .

Thus, if X1 ∈ Rec(M1), X2 ∈ Rec(M2), then X1 × X2 ∈ Rec(M) in view of
Propositions 1.3 and 1.1. Since Rec(M) is closed under union, Y ∈ Rec(M).

Conversely, assume Y ∈ Rec(M). Then there exists a finite monoid N , a
morphism β : M → N , and a subset P of N such that Y = β−1(P ). Consider the
morphisms αi : Mi → P defined by

α1(m1) = β(m1, 1), α2(m2) = β(1, m2)

and let γ : M → N ×N be the morphism defined by

γ(m1, m2) = (α1(m1), α2(m2)) .

In N ×N consider the set

Q = {(n1, n2) | n1n2 ∈ P} .

Then γ(m1, m2) ∈ Q if and only if α1(m1)α2(m2) ∈ P . Since

α1(m1)α2(m2) = β(m1, m2) ,

and since (m1, m2) ∈ Y if and only if β(m1, m2) ∈ P , it follows that Y = γ−1(Q).
Next γ−1(n1, n2) = α−1

1 (n1) × α−1
2 (n2), whence

Y =
⋃

(n1,n2)∈Q

γ−1(n1, n2) =
⋃

(n1,n2)∈Q

α−1
1 (n1) × α−1

2 (n2) .

Since the sets α−1
i (ni) are recognizable subsets of Mi, (i = 1, 2), the required

decomposition of Y is obtained.

Exercises

1.1 Let M ′ be a monoid, M a submonoid of M ′. Show that if X ′ ∈ Rec(M ′), then
X ′∩M ∈ Rec(M). Give an example showing that Rec(M) is in general not contained in
Rec(M ′), even if M ∈ Rec(M ′). (Hint (Perrin): Consider M = (ab+)∗ ∈ Rec({a, b}∗).)

1.2 Let M be a monoid. Define a finite automaton A over M by a finite set of states
Q, an initial state q−, a set of final states Q+ and a next state function Q ×M → Q
satisfying the following conditions

q · 1 = q (q ∈ Q)

q ·mm′ = (q ·m) ·m′ (q ∈ Q, m,m′ ∈M) .

The subset of M recognized by A is by definition |A| = {m ∈ M | q− ·m ∈ Q+}. Show
that X ∈ Rec(M) if and only if X is recognized by a finite automaton over M . (For
further discussion on these lines, see Walljasper (1970) and Vogel (1972).)



2. Rational Sets 47

1.3 Let G be a group. Show that X ∈ Rec(G) if and only if there exists an invariant
subgroup H of G of finite index (that is G/H is finite) such that X is a union of cosets
of H. Show that a subgroup of G is recognizable if and only if it is of finite index.

1.4 Let M be a monoid, X ∈ Rec(M). Show that for any Y ⊂ M , Y −1X = {m |
Y m ∩X 6= ∅} is a recognizable subset of M . (Hint: use Exercise I.3.6.)

2 Rational Sets

In this section, we study the rational subsets of a monoid and their relation to
recognizable subsets.

Definition Let M be a monoid. The family Rat(M) of rational subsets of M is
the least family R of subsets of M satisfying the following conditions:

(i) ∅ ∈ R , {m} ∈ R for all m ∈M ; (2.1)

(ii) if X, Y ∈ R, then X ∪ Y,XY ∈ R ; (2.2)

(iii) if X ∈ R, then X+ = ∪n≥1X
n ∈ R . (2.3)

In presence of (i) and (ii), the condition (iii) is equivalent to

(iii′) X ∈ R =⇒ X∗ ∈ R .

Assume indeed X+ ∈ R. Since {1} ∈ R by (i), it follows by (ii) that X∗ =
{1} ∪X+ ∈ R. Conversely, if X,X∗ ∈ R, then by (ii) X+ = XX∗ ∈ R.

Any subset X of M obtained from the singletons by a finite number of unions,
products and plus or star operations is in Rat(M). Moreover, the family of subsets
of M obtained in that way, together with the empty set satisfies conditions (i)–
(iii), and therefore is the family Rat(M). Thus a rational subset of M is either
empty or can be expressed, starting with singletons by a finite number of unions,
products, and plus or stars. Such an expression is called a rational expression. It
is the simplest way to show that a given set is rational.

Example 2.1 Any subset of a finite monoid is rational.

Example 2.2 Let A be an alphabet, and let A⊕ be the free commutative monoid
generated by A. We claim that X is a rational subset of A⊕ if and only if X is a
finite union of sets of the form

xy∗1y
∗
2 · · · y

∗
n (n ≥ 0, x, y1, . . . , yn ∈ A⊕) . (2.4)

Unions of sets (2.4) are also called semilinear . Clearly, any set of the form (2.4) is
rational, thus any semilinear set is rational. Next, if X, Y ⊂ A⊕, then (X ∪ Y )∗ =
X∗Y ∗, and (xy∗1y

∗
2 · · ·y

∗
n)

∗ = x∗y∗1y
∗
2 · · · y

∗
n. This shows that semilinear sets are

closed under the star operation. The empty set and the singletons are semilinear,
further semilinear sets are obviously closed under union and product. Thus any
rational set is semilinear. This proves that the semilinear sets are exactly the
rational subsets of A⊕.



48 Chapter III. Rational Transductions

Example 2.3 If A is an alphabet, then the rational subsets are, according to
Kleene’s Theorem, exactly the languages recognized by finite automata.

Thus Kleene’s Theorem can be formulated as follows:

Theorem 2.1 (Kleene) Let A be a (finite) alphabet. Then Rat(A∗) = Rec(A∗).

In view of this theorem, we also call regular languages indistinctly rational or
recognizable languages.

We now prove that rational sets are closed under morphism.

Proposition 2.2 Let M,M ′ be monoids, and let α : M → M ′ be a morphism.
If X ∈ Rat(M), then α(X) ∈ Rat(M ′). Further if α is surjective, then for any
X ′ ∈ Rat(M ′), there is a set X ∈ Rat(M) such that α(X) = X ′.

Proof. Let R be the family of subsets X of M such that α(X) ∈ Rat(M ′). Then
∅ ∈ R and {m} ∈ R for m ∈M . Next

α(X∪Y ) = α(X)∪α(Y ), α(XY ) = α(X)α(Y ), α(X+) = (α(X))+ (2.5)

for any subsets X, Y of M . Thus X, Y ∈ R implies that X ∪ Y,XY,X+ ∈ R.
Thus R satisfies conditions (2.1), (2.2), (2.3). Consequently R ⊃ Rat(M) and the
first statement is proved.

Consider now the family S of subsets X ′ of M ′ such that X ′ = α(X) for some
X ∈ Rat(M). Since α is surjective, {m′} ∈ S for all m′ ∈ M ′. Obviously ∅ ∈ S.
In view of (2.5), S is closed under union, product and the plus operation. Thus
S ⊃ Rat(M ′).

Corollary 2.3 Let α be an isomorphism from M onto M ′. Then X ∈ Rat(M) if
and only if α(X) ∈ Rat(M ′).

Note that the second part of Proposition 2.2 only claims the existence of a
rational set X such that α(X) = X ′ ∈ Rat(M ′). Obviously this does not imply
that any subset X of M with α(X) ∈ Rat(M ′) is rational. In particular, the
inverse image α−1(X ′) is generally not rational for rational subsets X ′ of M ′.

Example 2.4 Consider, as in Example 1.5 the alphabet A = {a, b} and the mor-
phism γ : A∗ → Z defined by γ(w) = |w|a − |w|b (w ∈ A∗). Then {0} ∈ Rat(Z),
and γ−1(0) = {w ∈ A∗ | |w|a = |w|b} = D∗

1 /∈ Rat(A∗).

Although Kleene’s Theorem is not true in arbitrary monoids, there is a weak-
ened version for finitely generated monoids.

Proposition 2.4 (McKnight 1964) Let M be a finitely generated monoid. Then
Rec(M) ⊂ Rat(M).

Proof. Since M is finitely generated, there exist an alphabet A and a surjective
morphism α : A∗ → M . Let X ∈ Rec(M). Then α−1(X) ∈ Rec(A∗) by Propo-
sition 1.3. By Kleene’s Theorem, α−1(X) ∈ Rat(A∗). In view of Proposition 2.2,
α(α−1(X)) = X ∈ Rat(M).

Proposition (2.4) is not true in monoids which are not finitely generated. Con-
sider indeed such a monoid M . Then M ∈ Rec(M), but M /∈ Rat(M) in view of
the following lemma.



2. Rational Sets 49

Lemma 2.5 Let M be a monoid. For any X ∈ Rat(M), there exists a finitely
generated submonoid M1 of M such that X ⊂M1.

Proof. Let R be the family of subsets X of M contained in some finitely generated
submonoid of M . Obviously ∅ ∈ R and {m} ∈ R for m ∈M . Next let X, Y ∈ R,
and let R, S be finite subsets of M such that X ⊂ R∗, Y ⊂ S∗. Then X ∪Y,XY ⊂
(R ∪ S)∗ and X∗ ⊂ R∗. Consequently X ∪ Y,XY,X∗ ∈ R and R ⊃ Rat(M).

Proposition 2.6 Let M be a monoid. If X ∈ Rat(M) and Y ∈ Rec(M), then
X ∩ Y ∈ Rat(M).

Proof. Let X be a rational subset of M . Then there exists a finitely generated
submonoid M1 of M such that X ⊂ M1, and consequently X ∈ Rat(M1). Next,
there is an alphabet A and a morphism α : A∗ → M that maps A∗ onto M1.
Thus by the second part of Proposition 2.2, there is a rational language X ′ ⊂ A∗

such that α(X ′) = X. Let Y be a recognizable subset of M . Then Y ′ = α−1(Y )
is a recognizable subset of A∗ by Proposition 1.3. In view of Kleene’s Theorem,
Z ′ = X ′ ∩ Y ′ is a regular, thus a rational language, and α(Z ′) ∈ Rat(M) by
Proposition 2.2. Since

α(Z ′) = α(X ′ ∩ α−1(Y )) = α(X ′) ∩ Y = X ∩ Y ,

it follows that X ∩ Y ∈ Rat(M).

The following example shows that the intersection of two rational sets is not
necessarily rational.

Example 2.5 Let M = {a}∗ × {b, c}∗, and consider the sets

X = (a, b)∗(1, c)∗ = {(an, bnck) | n, k ≥ 0} ,

Y = (1, b)∗(a, c)∗ = {(an, bkcn) | n, k ≥ 0} .

Clearly, X, Y ∈ Rat(M). Suppose that

Z = X ∩ Y = {(an, bncn) | n ≥ 0}

is rational, and define a morphism π : M → {b, c}∗ by π(a, 1) = 1, π(1, b) =
b, π(1, c) = c. Then π(Z) = {bncn | n ≥ 0} would be a rational subset of {b, c}∗ by
Proposition 2.2. Thus Z is not rational.

Sometimes the notion of starheight of a rational set is useful. Let M be a
monoid, and define inductively sets Rat0(M) ⊂ Rat1(M) ⊂ · · · by:

X ∈ Rat0(M) if and only if X is a finite subset of M ;

X ∈ Rath+1(M) if and only if X is a finite union of sets

of the form Y1Y2 · · ·Yn ,

where either Yi is a singleton or Yi = Z∗
i for some Zi ∈ Rath(M). It is readily

shown (Exercise 2.1) that

Rat(M) =
⋃

h≥0

Rath(M) .



50 Chapter III. Rational Transductions

The sets in Rath \ Rath−1 are said to have starheight h.
We use starheight in the proof of the following result which gives an interpre-

tation of rational sets in groups.

Theorem 2.7 (Anissimow and Seifert (1975)) Let G be a group, and let H be a
subgroup of G. Then H is finitely generated if and only if H is a rational subset
of G.

Proof. For any subset X of G, let 〈X〉 denote the subgroup generated by X, and
let X−1 = {x−1 | x ∈ X}. Then 〈X〉 = (X ∪ X−1)∗. This shows that a finitely
generated subgroup is rational.

In order to prove the converse, we first consider the following situation. Let X
be a subset of G such that

X = z1T
∗
1 z2T

∗
2 · · · znT

∗
nzn+1 (2.6)

with z1, . . . , zn+1 ∈ G, T1, . . . , Tn ⊂ G, and define

yi = z1z2 · · · zi i = 1, . . . , n+ 1 (2.7)

Si = yiTiy
−1
i i = 1, . . . , n

X ′ = yn+1 ∪ S1 ∪ · · · ∪ Sn . (2.8)

Then we claim:

〈X〉 = 〈X ′〉 . (2.9)

Indeed, observe that by (2.6), yn+1, y
−1
n+1 ∈ 〈X〉. Further

Si = (z1 · · · ziTizi+1 · · · zn+1)y
−1
n+1 .

Thus Si ⊂ 〈X〉, whence X ′ ⊂ 〈X〉 and 〈X ′〉 ⊂ 〈X〉. Next

S∗
i (yiTiy

−1
i )∗ = yiT

∗
i y

−1
i .

Since z1 = y1 and zi = y−1
i−1yi (2 ≤ i ≤ n + 1),

X = y1T
∗
1 y

−1
1 y2T

∗
2 y

−1
2 · · · ynT

∗
ny

−1
n yn+1 = S∗

1S
∗
2 · · ·S

∗
nyn+1 .

Thus X ⊂ 〈X ′〉, whence 〈X〉 ⊂ 〈X ′〉. This proves (2.9).
Consider now a subgroup H of G such that H ∈ Rat(G). Since H = 〈H〉, H

has a rational set of generators. We have to show that H has a set of generators
of starheight 0. Let R be the rational set of generators of minimal starheight h,
and assume h > 0. Then

R = X1 ∪X2 ∪ · · · ∪Xr ,

where each Xk, (1 ≤ k ≤ r) has the form (2.6), and at least one Xk has starheight
h. Set

R′ = X ′
1 ∪X

′
2 ∪ · · · ∪X ′

r ,



2. Rational Sets 51

where each X ′
k is deduced from Xk by (2.7) and (2.8). Then clearly R′ has

starheight h − 1. By (2.9), each Xk is contained in 〈R′〉, and conversely each
X ′
k is contained in R. Thus 〈R〉 = 〈R′〉 = H , and R′ is a set of generators of H of

starheight h − 1, in contradiction with the minimality of h. Thus h = 0 and the
theorem is proved.

In the case of free groups, a more precise description of rational sets can be
given. Consider an alphabet A = {a1, . . . , an}, let Ā = {ā | a ∈ A}, and set
C = A ∪ Ā. Let A(∗) be the free group generated by A (see Section II.3), and
let δ : C∗ → A(∗) be the canonical morphism. As already mentioned, there exists
an injection ι : A(∗) → C∗ which associates, to each element u ∈ A(∗), the unique
reduced word ι(u) = w ∈ ρ(C∗) such that δ(w) = u. The following result describes
a property of the mapping ρ.

Proposition 2.8 (Benois (1969)) Let K ⊂ C∗ be a regular language. Then the
language ρ(K) is also regular.

This theorem yields the following characterization of rational subsets of A(∗).

Theorem 2.9 (Benois (1969)) Let K ⊂ A(∗). Then K ∈ Rat(A(∗)) if and only if
ι(K) is a regular language.

Proof. Let K ∈ Rat(A(∗)). In view of Proposition 2.2, there exists a regular
language K ′ ⊂ C∗ such that δ(K ′) = K. Thus K ′′ = ρ(K ′) is regular by Proposi-
tion 2.8. Now ρ = ι ◦ δ, whence K ′′ = ι(K). Thus ι(K) is regular. Conversely, as-
sume ι(K) ∈ Rat(C∗). Then the homomorphic image δ(ι(K)) = K is in Rat(A(∗))
by Proposition 2.2.

The following corollary is interesting.

Corollary 2.10 (Fliess (1971)) Rat(A(∗)) is closed under intersection and com-
plementation.

Proof. It suffices to show closure under complementation. Let K ∈ Rat(A(∗)).
Then ι(K) ∈ Rat(C∗) by Theorem 2.9. Next ρ(C∗) is regular, thus ρ(C∗) \ ι(K) is
regular. Since ι(K) ⊂ ρ(C∗), it follows that δ(ρ(C∗)\ ι(K)) = A(∗) \K ∈ Rat(A(∗))
by Proposition 2.2.

It remains to prove Proposition 2.8. For this, we first establish a lemma derived
from (Fliess 1971). Consider an alphabet B, and let X ⊂ B∗ be an arbitrary
language. Define a function λX from B∗ into the subsets of B∗ as follows. For
w,w′ ∈ B∗, w′ ∈ λX(w) if and only if there exists a factorization

w = x0b1x1b2 · · ·xr−1brxr

with r ≥ 0, x0, x1, . . . , xr ∈ X, b1, . . . , br ∈ B such that

w′ = b1b2 · · · br .

Thus λX(w) consists of all subwords of w obtained by deleting, in w, factors in X
which are separated by letters.



52 Chapter III. Rational Transductions

Lemma 2.11 For any X ⊂ B∗, and for any regular language K ⊂ B∗, λX(K) is
a regular language.

Proof. Let A = 〈B,Q, q−, Q+〉 be a finite automaton recognizing K. Set Kp,q =
{w ∈ B∗ | p · w = q} for p, q ∈ Q. Let s /∈ Q, and let B = 〈B,Q ∪ s, s, Q′〉 be the
nondeterministic finite automaton with next state function define by

q ∈ p · b ⇐⇒ bX ∩Kp,q 6= ∅ b ∈ B , p, q ∈ Q ;

q ∈ s · b ⇐⇒ XbX ∩Kq−,q 6= ∅ b ∈ B , q ∈ Q .

Next, let

Q′ =

{

Q+ if X ∩K = ∅ ;

s ∪Q+ if X ∩K 6= ∅ .

Then clearly

λX(K) = |B| = {w ∈ B∗ | s · w ∩Q′ 6= ∅} .

Proof of Proposition 2.8. Choose in Lemma 2.11 X = D∗
n = ρ−1(1), and B = C.

Then for w ∈ C∗,

ρ(w) = λD∗

n
(w) ∩ ρ(C∗) .

Consequently, for K ∈ Rat(C∗), ρ(K) = λD∗

n
(K) ∩ ρ(C∗). Since ρ(C∗) is regular,

ρ(K) is a regular language.

Exercises

2.1 Show that Rat(M) =
⋃

h≥0 Rath(M). Compute Rath(A
⊕) for h ≥ 0.

2.2 Let G be a group. Show that K ∈ Rat(G) implies K−1 ∈ Rat(G).

2.3 Prove the following group theoretic result: let G be a finitely generated group, and
let H be a subgroup of G. If H is of finite index, then H is finitely generated (Hint. Use
Exercise 1.3.)

2.4 (Anissimow and Seifert (1975)) Prove the following theorem of Howson: The inter-
section of two finitely generated subgroups of a free group is again a finitely generated
subgroup.

2.5 Show that for any rational subset K of A(∗), δ−1(K) is a context-free language.
(Hint (Sakarovitch 1977). Write K = (K−1)−1 · 1 and use Exercise I.3.6.)

2.6 Show that in Proposition 2.8 and in the following statements, ρ can be replaced by
ρ′ and in fact by ρI as defined in Section II.3.



3. Rational Relations 53

3 Rational Relations

A relation can be considered as a subset of the Cartesian product of two sets, or as
a mapping from the first set into the set of subsets of the second. For the exposition
of rational transductions we use in this section the first, “static” aspect, and in the
next section the second, more “dynamic” point of view. Rational transductions
(more precisely rational relations) are defined as rational subsets of the product
of two monoids. Several characterizations are given. The examples are grouped in
Section 5.

Definition Let A and B be alphabets. A rational (resp. recognizable) relation
over A and B is a rational (resp. recognizable) subset of the monoid A∗ ×B∗.

The family Rec(A∗×B∗) of recognizable relations is described by Mezei’s The-
orem 1.5. More precisely, we have

Proposition 3.1
(i) Rec(A∗ × B∗) ( Rat(A∗ × B∗) ;
(ii) if X, Y ∈ Rec(A∗ × B∗), then XY ∈ Rec(A∗ ×B∗).

Thus, recognizable relations are closed under product. It follows from the proof
below that they are not closed under the star operation.

Proof. (i) Since A∗ × B∗ is a finitely generated monoid, then inclusion Rec(A∗ ×
B∗) ⊂ Rat(A∗ × B∗) follows from Proposition 2.4. To show that the inclusion is
proper, let a ∈ A, b ∈ B and consider X = (a, b)∗ = {(an, bn) | n ≥ 0}. Clearly
X is a rational relation. Assume X is recognizable, let C = {ā, b̄}, and consider
the morphism γ : C∗ → A∗ × B∗ defined by γ(ā) = (a, 1), γ(b̄) = (1, b). Then
γ−1(X) = {w ∈ C∗ | |w|ā = |w|b̄} is recognizable, thus a regular language. This
yields the contradiction.

(ii). In view of Mezei’s Theorem,

X =
n

⋃

i=1

Ri × Si , Y =
m
⋃

j=1

R′
j × S ′

j ,

with Ri, R
′
j ∈ Rat(A∗), Si, S

′
j ∈ Rat(B∗). Consequently

XY =
n

⋃

i=1

m
⋃

j=1

RiR
′
j × SiS

′
j ,

and RiR
′
j ∈ Rat(A∗), SiS

′
j ∈ Rat(B∗). By Mezei’s Theorem, XY ∈ Rec(A∗ ×B∗).

We extend the notion of copy defined in Section I.3 as follows: A∗ × B∗ is a
copy of A′∗ × B′∗ if A∗ is a copy of A′∗ and B∗ is a copy of B′∗. Then A∗ × B∗

and A′∗×B′∗ are isomorphic, and recognizable and rational relations are preserved
through isomorphism by Corollaries 1.4 and 2.3.

The following characterizations of rational relations are fundamental.
They allow to express rational relations by means of regular languages and

morphisms of free monoids, and thus rely the algebraic definition to more combi-
natorial notions. Further, we shall see later that in view of the theorem, a family



54 Chapter III. Rational Transductions

of languages is closed under rational transduction if and only if it is closed under
morphism, inverse morphism and intersection with regular sets.

Theorem 3.2 (Nivat (1968)) Let A and B be alphabets. The following conditions
are equivalent:

(i) X ∈ Rat(A∗ ×B∗) ;
(ii) There exist an alphabet C, two morphisms φ : C∗ → A∗, ψ : C∗ → B∗ and a

regular language K ⊂ C∗ such that

X = {(φz, ψz) | z ∈ K} ;

(iii) There exist an alphabet C, two alphabetic morphisms α : C∗ → A∗, β : C∗ →
B∗ and a regular language K ⊂ C∗ such that

X = {(αz, βz) | z ∈ K} ;

(iv) There exist an alphabet C, two alphabetic morphisms α : C∗ → A∗, β : C∗ →
B∗ and a local regular language K ⊂ C∗ such that

X = {(αz, βz) | z ∈ K} ;

If A ∩B = ∅, then (i) is equivalent to

(v) There exist a regular language K ⊂ (A ∪B)∗ such that

X = {(πAz, πBz) | z ∈ K} ,

where πA and πB are the projections of (A∪B)∗ onto A∗ and B∗ respectively.

A couple (φ, ψ) of morphisms φ : C∗ → B∗ and ψ : C∗ → A∗ is called a
bimorphism.

Proof. The implications (iv)⇒(iii)⇒(ii) are obvious. We prove (ii)⇒(i). Define
γ : C∗ → A∗ × B∗ by γz = (φz, ψz) (z ∈ C∗). Then γ is a morphism and
γ(K) = X. Since K ∈ Rat(C∗), X ∈ Rat(A∗ × B∗) by Proposition 2.2.

Next, we prove (iii)⇒(iv). There exist an alphabet C ′, an alphabetic morphism
γ : C ′∗ → C∗ and a local regular language K ′ ⊂ C ′∗ such that γ(K ′) = K (see for
instance Section I.4). Thus X = {(α(γz′), β(γz′)) | z′ ∈ K ′} and the morphisms
α ◦ γ, β ◦ γ are alphabetic.

Assume now A∩B = ∅, and define π : (A∪B)∗ → A∗×B∗ by πz = (πAz, πBz).
Obviously π is a surjective morphism. Thus, if X ∈ Rat(A∗ × B∗), there exists,
by the second part of Proposition 2.2, a regular language K ⊂ (A∪B)∗ such that
π(K) = X. This proves (i)⇒(v).

Conversely, if (v) holds, then π(K) = X ∈ Rat(A∗ × B∗) by the first part of
Proposition 2.2.

Finally, we prove (i)⇒(iii). Assume X ∈ Rat(A∗ × B∗). If A ∩ B = ∅, then
(iii) follows from (v). Otherwise, let A′∗ × B′∗ be a copy of A∗ × B∗ with A′ ∩
B′ = ∅, let ωA : A∗ → A′∗, ωB : B∗ → B′∗ be the copy isomorphisms and set
X ′ = {(ωAx, ωBy) | (x, y) ∈ X}. Then X ′ is a rational relation, and in view
of (v), X ′ = {(πA′z, πB′z) | z ∈ K} for some regular language K ⊂ (A′ ∪ B′)∗.
Consequently X = {((ω−1

A ◦ πA′)z, (ω−1
B ◦ πB′)z) | z ∈ K}.

Theorem 3.3 can be used to derive an iteration lemma for rational relations.



3. Rational Relations 55

Lemma 3.3 (Iteration Lemma for Rational Relations) Let X ⊂ A∗ × B∗ be a
rational relation. There exists an integer N ≥ 1 such that any (w,w′) ∈ A with
|w| + |w′| ≥ N admits a factorization

(w,w′) = (x, x′)(u, u′)(y, y′) x, u, y ∈ A∗ , x′, u′, y′ ∈ B∗

such that
(i) 0 < |u| + |u′| ≤ N ;
(ii) (x, x′)(u, u′)∗(y, y′) ⊂ X .

Proof. After a copy, we may assume A ∩ B = ∅, and by Theorem 3.2(v), X =
{(πAz, πBz) | z ∈ K} for some regular language K. Since |z| = |πAz| + |πBz|,
then lemma follows directly from the iteration lemmas for regular languages (see
Section I.4) applied to K.

Remark Several versions of the iteration lemma for regular languages can be
transposed to rational relations. Thus we may assume that in addition to (i) and
(ii), the following condition holds:

|x| + |x′| + |u| + |u′| ≤ N .

The definition of rational relations holds also for arbitrary monoids.

Definition Let M and M ′ be monoids. A rational relation over M and M ′ is a
rational subset of M ×M ′.

We shall see in the next section how this definition can be used to define
interesting rational transductions. Here we just note the following:

Proposition 3.4 Let M,M ′ be monoids. Then X is a rational relation over M
and M ′ if and only if there exists an alphabet C, two morphisms α : C∗ → M ,
β : C∗ →M ′ and a regular language K ⊂ C∗ such that X = {(αz, βz) | z ∈ K}.

Proof. Let X ∈ Rat(M ×M ′). Then X ⊂ N , in view of Lemma 2.5, where N is a
finitely generated submonoid of M ×M ′. Thus there exist an alphabet C, and a
morphism γ : C∗ →M ×M ′ such that γ(C∗) = N . Since X ∈ Rat(N), X = γ(K)
for some regular language K ⊂ C∗. Next define α : C∗ → M , β : C∗ → M ′ by
γz = (αz, βz), (z ∈ C∗). This yields the desired representation. The converse is
clear.

Exercises

3.1 Let M be a finitely generated, infinite monoid. Show that X = {(m,m) | m ∈ M}
is a rational and not a recognizable subset of M ×M .

3.2 Let A be an alphabet with at least two letters. Show that the relation R = {(w, w̃) |
w ∈ A∗} is not rational.

3.3 Give a counter example to the following version of the Iteration Lemma: For X ∈
Rat(A∗ × B∗) there is an integer N ≥ 1 such that for any (s, s′) ∈ X and for any
factorization

(s, s′) = (z1, z
′
1)(w,w

′)(z2, z
′
2) with |w| + |w′| ≥ N ,



56 Chapter III. Rational Transductions

(w,w′) admits a factorization (w,w′) = (x, x′)(u, u′)(y, y′) such that 0 < |u| + |u′| ≤ N
and

(z1, z
′
1)(x, x

′)(u, u′)∗(y, y′)(z2, z
′
2) ⊂ X .

3.4 A right linear system of equations over A∗×B∗ is a system of equations of the form

ξi =

N
∑

j=1

Ci,jξj +Di i = 1, . . . ,N ,

where Ci,j,Di ⊂ A∗ × B∗. The system is strict if and only if (1, 1) /∈ Ci,j for i, j =
1, . . . , N . A vector X = (X1, . . . ,XN ) of subsets of A∗ ×B∗ is a solution of the system
if and only if

Xi =

N
⋃

j=1

Ci,jXj ∪Di i = 1, . . . ,N ,

a) Show that a strict right linear system has a unique solution.

b) Show that R ⊂ A∗ ×B∗ is a rational relation if and only if R is a component of the
solution of a strict right linear system of equations with Ci,j,Di finite. (Hint. Use the
fact that a) and b) hold in free monoids and apply Nivat’s Theorem.)

4 Rational Transductions

The “static” notion of rational relation is now transformed into the “dynamic”
notion of rational transduction.

A transduction τ from A∗ to B∗ is a function from A∗ into the set P(B∗) of
subsets of B∗. For commodity, we write τ : A∗ → B∗. The domain dom(τ) and
the image im(τ) are defined by

dom(τ) = {x ∈ A∗ | τ(x) 6= ∅} ;

im(τ) = {y ∈ B∗ | ∃x ∈ A∗ : y ∈ τ(x)} .

The transduction τ is extended to a mapping from P(A∗) into P(B∗) by setting

τ(X) =
⋃

x∈A

τ(x) X ⊂ A∗ .

The graph of τ is the relation R defined by

R = {(x, y) ∈ A∗ × B∗ | y ∈ τ(x)} .

Conversely, for any relation R ⊂ A∗ × B∗, the transduction τ : A∗ → B∗ defined
by R is given by

τ(x) = {y ∈ B∗ | (x, y) ∈ R} .



4. Rational Transductions 57

Definition A transduction τ : A∗ → B∗ is rational if and only if its graph R is a
rational relation over A and B.

Let τ : A∗ → B∗ be a rational transduction, and let R ⊂ A∗ ×B∗ be the graph of
τ . The monoids A∗ ×B∗ and B∗ ×A∗ are isomorphic. Thus the relation

R−1 = {(y, x) | (x, y) ∈ R}

is rational, and the transduction τ−1 : B∗ → A∗ defined by R−1 is rational. τ−1 is
the inverse transduction of τ . Clearly

τ−1(Y ) = {x ∈ A∗ | τ(x) ∩ Y 6= ∅} Y ⊂ B∗ .

In general, τ(τ−1(Y )) 6= Y , and τ−1(τ(X)) 6= X, (X ⊂ A∗). The domain dom(τ)
and the image im(τ) are homomorphic images of the rational relation R, and
consequently are regular languages.

Let τ1, τ2 : A∗ → B∗ be rational transductions, and let R1, R2 be the graphs
of τ1 and τ2. We denote by τ1 ∪ τ2, τ1τ2 and τ+

1 the transductions with graphs
R1 ∪R2, R1R2, R

+
1 . Obviously these transductions are rational. They verify:

(τ1 ∪ τ2)(x) = τ1(x) ∪ τ2(x) ; (τ1τ2)(x) =
⋃

x1x2=x

τ1(x1)τ2(x2) ;

τ+
1 (x) =

⋃

{τ1(x1) · · · τn(xn) | n ≥ 1, x1 · · ·xn = x} .

If dom(τ1)∩dom(τ2) = ∅, we also write τ1+τ2 instead of τ1∪τ2. Finally, we associate
to τ : A∗ → B∗ a transduction τ̃ : A∗ → B∗ by setting τ̃(x) = (τ(x̃))̃ . Let R be
the graph of τ , and let R̃ be the graph of τ̃ . Then R̃ = {(x̃, ỹ) | (x, y) ∈ R}. The
formulas

(X ∪ Y )̃ = X̃ ∪ Ỹ ; (XY )̃ = Ỹ X̃ ; (X+)̃ = (X̃)+ (X, Y ⊂ A∗ ×B∗)

show that R̃ is rational if and only if R is rational. Thus the transduction τ̃ , the
reversal of τ is rational if and only if τ is rational.

Nivat’s Theorem proved in the preceding section can be formulated as follows
for rational transductions.

Theorem 4.1 (Nivat (1968)) Let A∗ and B∗ be alphabets. The following condi-
tions are equivalent:
(i) τ : A∗ → B∗ is a rational transduction;
(ii) There exist an alphabet C, two morphisms φ : C∗ → A∗, ψ : C∗ → B∗ and a

regular language K ⊂ C∗ such that

τ(x) = ψ(φ−1(x) ∩K) x ∈ A∗ ; (4.1)

(iii) There exist an alphabet C, two alphabetic morphisms α : C∗ → A∗, β : C∗ →
B∗ and a regular language K ⊂ C∗ such that

τ(x) = β(α−1(x) ∩K) x ∈ A∗ ;

(iv) There exist an alphabet C, two alphabetic morphisms α : C∗ → A∗, β : C∗ →
B∗ and a local regular language K ⊂ C∗ such that

τ(x) = β(α−1(x) ∩K) x ∈ A∗ ;



58 Chapter III. Rational Transductions

Further, if A ∩ B = ∅, then (i) is equivalent to

(v) There exist a regular language K ⊂ (A ∪B)∗ such that

τ(x) = πB(π−1
A (x) ∩K) x ∈ A∗ ;

where πA and πB are the projections of (A∪B)∗ onto A∗ and B∗ respectively.

From (4.1), we deduce immediately that

τ−1(y) = φ(ψ−1(y) ∩K) y ∈ B∗ .

It follows also from (4.1) that

τ(X) = ψ(φ−1(X) ∩K) X ⊂ A∗ .

Thus:

Corollary 4.2 Each rational transduction preserves rational and algebraic lan-
guages. That is, for each rational transduction τ , τ(X) is rational if X is rational,
and τ(X) is algebraic if X is algebraic.

Example 4.1 Let A = {a, b}, B = {c, d}, and consider the transduction τ : A∗ →
B∗ defined by

τ(x) =

{

∅ if x /∈ a+b∗ ;

(c+d)nc2md if x = anbm, n ≥ 1, m ≥ 0 .

Obviously, dom(τ) = a+b∗, im(τ) = (c+d)+(c2)∗d. We claim that the transductions
τ is rational. This can be shown in several ways. First, let R be the graph of τ .
Then

R = ({a} × c+d)+(b, c2)∗(1, d) ∈ Rat(A∗ ×B∗) .

Next, let C = {r, s, t, u} and define φ : C∗ → A∗, ψ : C∗ → B∗ by

φ(r)=a , φ(s) =1 , φ(t)=b , φ(u) =1 ;

ψ(r)=d , ψ(s) =c , ψ(t)=c2 , ψ(u) =d .

Let K = (s+r)+t∗u. Then φK = a+b∗, ψK = (c+d)+(c2)∗d. Further

φ−1(anbm) ∩K = (s+r)ntmu n ≥ 1, m ≥ 0 ,

thus τ(x) = ψ(φ−1(x) ∩K) for all x ∈ A∗.
Finally, since A ∩ B = ∅, we can represent τ by projections. Consider indeed

the regular language

K ′ = ac{c, dac}∗d(bc2)∗d ⊂ (A ∪ B)∗ .

Then πA(K ′) = aa∗b∗. Next, if x = anbm, (n ≥ 1, m ≥ 0), then

π−1
A (x) ∩K ′ = ac(c∗dac)n−1c∗d(bc2)md ,

πB(π−1
A (x) ∩K ′) = c(c∗dc)n−1c∗dc2md = (c+d)nc2md .



4. Rational Transductions 59

As for rational relations, the definition of rational transductions can be ex-
tended to arbitrary monoids.

Definition Let M,M ′ be monoids. A rational transduction τ : M → M ′ is a
function from M into P(M ′) such that the graph R = {(m,m′) | m′ ∈ τ(m)} of τ
is a rational subset of M ×M ′.

From Proposition 3.4, we immediately obtain:

Proposition 4.3 Let M,M ′ be monoids. A transduction τ : M →M ′ is rational
if and only if there exist an alphabet C, two morphisms α : C∗ →M , β : C∗ →M ′

and a rational language K ⊂ C∗ such that

τ(m) = β(α−1(m) ∩K) m ∈M .

If X ⊂M , then

τ(X) = β(α−1(X) ∩K) . (4.2)

Thus, if X is a recognizable subset of M , then α−1(X) is recognizable, hence
regular, α−1(X) ∩ K is regular, hence rational, and finally τ(X) is a rational
subset of M ′. Note that τ(X) is not necessarily recognizable, and that τ(X) is not
necessarily rational if X is rational. This follows from Examples 1.5 and 2.4 since
morphisms and inverse morphisms are particular rational transductions.

We now consider composition of rational transductions. If τ : M → M ′ and
τ ′ : M ′ →M ′′ are transductions, then the composition τ ′ ◦ τ : M → M ′′ is defined
by

(τ ′ ◦ τ)(m) = τ ′(τ(m)) =
⋃

m′∈τ(m)

τ ′(m′) .

First we settle the case of free monoids.

Theorem 4.4 (Elgot and Mezei (1965)) Let A,B,C be alphabets, and let τ :
A∗ → B∗ and τ ′ : B∗ → C∗ be rational transductions. Then the transduction
τ ′ ◦ τ : A∗ → C∗ is rational.

We first prove the theorem in a special case. The general case follows then from
the special case.

Lemma 4.5 Let A,B,C be three pairwise disjoint alphabets. Set A′ = A ∪ B,
C ′ = B ∪ C, D = A ∪ B ∪ C, and let

α : A′∗ → B∗ , β : C ′∗ → B∗ , α′ : D∗ → A′∗ , β ′ : D∗ → C ′∗

be the projections. Then β−1 ◦ α = β ′ ◦ α′−1.

Lemma 4.5 is represented in Figure III.1.
Proof. The mappings β−1 ◦ α and β ′ ◦ α′−1 are morphisms of the semigroup A′∗

into the (multiplicative) semigroup P(C ′∗). Thus it suffices to prove that they are
equal on A′ ∪ 1. First

β−1 ◦ α(1) = β−1(1) = C∗ , β ′ ◦ α′−1(1) = β ′(C∗) = C∗ .



60 Chapter III. Rational Transductions

(A ∪B ∪ C)∗

(A ∪B)∗ (B ∪ C)∗

B∗

α′ β′

β−1 ◦ α = β′ ◦ α′−1

α β

Figure III.1

Then, for a ∈ A, β−1 ◦ α(a) = β−1(1) = C∗ and β ′ ◦ α′−1(a) = β ′(C∗aC∗) = C∗.
Finally, if b ∈ B, then β−1◦α(b) = β−1(b) = C∗bC∗ and β ′◦α′−1(b) = β ′(C∗bC∗) =
C∗bC∗. This proves the lemma.

Proof of Theorem 4.4. After a copy if necessary, we may assume that the alphabet
A,B,C are pairwise disjoint. Set A′ = A ∪ B, C ′ = B ∪ C. In view of Nivat’s
Theorem, there exists a regular language K ⊂ A′∗ such that

τ(x) = α(π−1(w) ∩K) x ∈ A∗ , (4.3)

where π : A′∗ → A∗ and α : A′∗ → B∗ are the projections. Next, there is a regular
language M ⊂ C ′∗ such that

τ ′(y) = ω(β−1(y) ∩M) y ∈ B∗ , (4.4)

where β : C ′∗ → B∗ and ω : C ′∗ → C∗ are the projections. Thus we have
Figure III.2.

A′∗ A′∗ C ′∗ C ′∗

A∗ B∗ C∗

π

∩K

α β

∩M

ω

τ τ ′

Figure III.2

According to Lemma 4.5, β−1 ◦ α = β ′ ◦ α′−1 where D = A ∪B ∪C, and β ′, α′

are the projections of D∗ onto C ′∗ and A′∗ respectively. Thus the above diagram
can be completed to Figure III.3.

Next, setting τ ′′ = τ ′ ◦ τ , we have by (4.3), (4.4), for x ∈ A∗,

τ ′′(x) = ω
[

(β−1 ◦ α)(π−1(x) ∩K) ∩M
]

.

Since β−1 ◦ α = β ′ ◦ α′−1,

τ ′′(x) = ω
[

(β ′ ◦ α′−1)(π−1(x) ∩K) ∩M
]

= ω
[

β ′
(

(π ◦ α′)−1(x) ∩ α′−1(K)
)

∩M
]

.
(4.5)



4. Rational Transductions 61

D∗

A′∗ A′∗ C ′∗ C ′∗

A∗ B∗ C∗

α′ β′

π

∩K

α β

∩M

ω

τ τ ′

Figure III.3

Define ψ : ω ◦ β ′ : D∗ → C∗, φ : π ◦ α′ : D∗ → A∗, and set K ′ = α′−1(K),
M ′ = β ′−1(M), N = K ′ ∩M ′. Then (4.5) implies

τ ′′(x) = ω
[

β ′(φ−1(x) ∩K ′) ∩M
]

= ω
[

β ′(φ−1(x) ∩K ′ ∩M ′)
]

= ψ(φ−1(x) ∩N) .
(4.6)

Since N ⊂ T ∗ is a regular language, the transduction τ ′′ is rational by (4.6).

If M,M ′,M ′′ are arbitrary monoids, then the composition of two rational trans-
ductions τ : M →M ′ and τ ′ : M ′ →M ′′ is not necessarily rational.

Example 4.2 Let a, b, c be letters, M = a∗, M ′ = b∗ × c∗, M ′′ = {b, c}∗. Define
τ : M → M ′ and τ ′ : M ′ →M ′′ by

τ(an) = (bn, cn) , τ ′(bn, ck) = bnck (n, k ≥ 0) .

The graphs R and R′ of τ and τ ′ are:

R = (a, (b, c))∗ , R′ = ((b, 1), b)∗((1, c), c)∗ ,

thus τ and τ ′ are rational. Next

(τ ′ ◦ τ)(an) = bncn n ≥ 0 .

Since the image im(τ ′ ◦ τ) = {bncn | n ≥ 0} is not a regular language, τ ′ ◦ τ is not
rational.

Despite this example, we have

Proposition 4.6 Let M,M ′ be monoids, and let B be an alphabet. If τ : M → B∗

and τ ′ : B∗ →M ′ are rational transductions, then τ ′ ◦ τ is rational.

Proof. In view of Proposition 4.3,

τ(m) = β(α−1(m) ∩K) m ∈M

τ ′(y) = δ(γ−1(y) ∩ L) y ∈ B∗

where A,C are alphabets, K ∈ Rat(A∗), L ∈ Rat(Z∗), and

α : A∗ →M, β : A∗ → B∗, γ : C∗ → B∗, δ : C∗ → M ′



62 Chapter III. Rational Transductions

are morphisms. It follows that

(τ ′ ◦ τ)(m) = δ[(γ−1 ◦ β)(α−1(m) ∩K) ∩ L] m ∈M .

Since γ−1 ◦ β : A∗ → C∗ is the composition of two rational transductions, it is a
rational transduction by Elgot and Mezei’s Theorem. Thus

(γ−1 ◦ β)(x) = ψ(φ−1(x) ∩N) x ∈ A∗

for some alphabet D, morphisms ψ : D∗ → A∗, φ : D∗ → B∗ and some N ∈
Rat(D∗). Thus as in the proof of Theorem 4.4,

(τ ′ ◦ τ)(m) = (δ ◦ ψ)[(α ◦ φ)−1(m) ∩ (φ−1(K) ∩N ∩ ψ−1(L))] m ∈M ,

showing that τ ′ ◦ τ is rational.

It is natural to look for a generalization of rational transductions involving
context-free languages. This can be done by developing a theory of algebraic sets
in arbitrary monoids analogue to the theory of rational sets (see Eilenberg (1978),
also Exercises 4.5, 4.6). This yields an analogue of Nivat’s Theorem. We prefer in
this context to take that analogue as a definition.

Definition A transduction τ : A∗ → B∗ is algebraic if there exist an alphabet C∗,
two morphisms α : C∗ → A∗, β : C∗ → B∗ and a context-free language X ⊂ C∗

such that

τ(x) = β(α−1(x) ∩X) x ∈ A∗ .

It follows immediately that τ(L) is context-free if L ⊂ A∗ is regular, and it is easy
to see that τ(L) is not necessarily context-free if L is context-free. The following
result is proved in the same way as Theorem 4.4.

Proposition 4.7 Let τ : A∗ → B∗ and τ ′ : B∗ → C∗ be transductions. If one of
them is rational and the other is algebraic, then τ ′ ◦ τ is algebraic.

If both transductions are algebraic, then τ ′ ◦ τ is not necessarily algebraic.

Exercises

4.1 Give an example of a transduction τ : A∗ → B∗, and of subsets X ⊂ A∗, Y ⊂ B∗

such that τ−1(τ(X)) 6= X and τ(τ−1(Y )) 6= Y .

4.2 Prove Proposition 4.7.

4.3 Give an example of two algebraic transductions τ, τ ′ such that the composition τ ′ ◦τ
is not algebraic.

4.4 Consider the Dyck reduction ρ : C∗
n → C∗

n. Show that ρ is an algebraic transduction.
Show that ρ is not a rational transduction.



5. Examples 63

4.5 (Eilenberg (1978)) Let M be a monoid and let V be an alphabet disjoint from M .
The set M [V ] of words

w = m0ξ1m1 · · ·mk−1ξkmk

with k ≥ 0, m0, . . . ,mk ∈ M , ξ1, . . . , ξk ∈ V is a monoid when multiplication of w with
w′ = n0ζ1 · · · ζℓnℓ is defined by

ww′ = m0ξ1 · · · ξk(mkn0)ζ1 · · · ζℓnℓ .

An algebraic grammar G = 〈V,M,P〉 over M is given by a finite subset P of V ×M [V ].
Derivations are defined as in free monoids. The language LG(ξ) generated by ξ is the
set of all m ∈ M derived from ξ. Languages generated by algebraic grammars over M
are called algebraic subsets of M .
a) Show that for any algebraic grammar G = 〈V,M,P〉, there exists an algebraic gram-
mar G1 = 〈V,M1,P〉, where M1 is a finitely generated submonoid of M , such that
LG(ξ) = LG1(ξ) for all ξ ∈ V .
b) Show that X is an algebraic subset of M if and only if there exists an alphabet A, a
morphism φ : A∗ →M and a context-free language L ⊂ A∗ such that φ(L) = X.
c) Show that any rational subset of M is algebraic.
d) Show that a transduction τ : A∗ → B∗ is algebraic in the sense given in the text if
and only if its graph is an algebraic subset of A∗ ×B∗.

4.6 (continuation of 4.5) Show that in a free commutative monoid A⊕, any algebraic
subset is rational. (This is Parikh’s Theorem. For a proof, see Conway (1971), Ginsburg
(1966).) Show that the same result holds in any commutative monoid.

4.7 Nivat’s Theorem implies that morphisms and inverse morphisms can be represented
by means of projections, inverse projections, and intersection with regular sets. Give
such representations explicitly.

4.8 (Elgot and Mezei (1965)) Let τ : A∗ → B∗ be a rational transduction. Then
τ = τ0 + τ∞, where

τ0(x) = τ(x) τ∞(x) = ∅ if Card(τx) <∞ ;

τ0(x) = ∅ τ∞(x) = τ(x) if Card(τx) = ∞ .

Show that τ0, τ∞ are rational transductions.

4.9 LetM,M ′,M ′′ be finitely generated monoids, and let τ : M →M ′, τ ′ : M ′ →M ′′ be
transductions. Show that if one of them is recognizable (that is its graph is recognizable)
and the other is rational, then τ ′ ◦ τ : M → M ′′ is rational, and even recognizable,
provided M,M ′,M ′′ are free monoids. Show that if τ and τ ′ are recognizable, then τ ′ ◦τ
is always recognizable.

5 Examples

The explicit description of a rational transduction is a simple method to prove
that certain transformations preserve regular and context-free languages. Rational
transductions can also be used to prove that a given language is context-free, by



64 Chapter III. Rational Transductions

representing it as the image of a language “known” to be context-free. One of
the most important applications of rational transductions will be shown in later
chapters: They are used as a tool of comparison of subfamilies of the family of
context-free languages. The proof of the rationality of a given transduction is
frequently realized through one of the versions of Nivat’s Theorem, or else through
a rational expression for the graph of the transduction.

5.1 The identity mapping x 7→ x from A∗ into itself is a rational transduction.
This is straightforward by Nivat’s Theorem. The graph of this mapping is

∆ = {(x, x) | x ∈ A∗} =
(

⋃

a∈A

(a, a)
)∗

.

5.2 The rational constants τK : A∗ → B∗ defined for a fixed regular language
K ⊂ B∗ by τK(x) = K are rational. The graph of τK is A∗ ×K.

5.3 Any morphism, any inverse morphism is a rational transduction.

5.4 A rational substitution is a substitution σ : A∗ → B∗ such that σ(a) ∈ Rat(B∗)
for a ∈ A. The graph of σ is

(

⋃

a∈A

{a} × σ(a)
)∗

;

thus σ is a rational transduction.

5.5 The union (and of course the intersection) with a regular language is per-
formed by a rational transduction. LetK ⊂ A∗ be a regular language, and consider
the transduction w 7→ w ∪K from A∗ into A∗. Then its graph is ∆ ∪ (A∗ ×K).

5.6 The product with a rational language: let K ∈ Rat(A∗) and consider the
transduction w 7→ Kw for w ∈ A∗. Its graph is ({1} ×K)∆.

5.7 The (left or right) quotient by a rational language. Let K ⊂ A∗ be a rational
language. The transduction A∗ → A∗ defined by

w 7→ K−1w = {z ∈ A∗ | ∃u ∈ K : uz = w}

is the inverse of the transduction of Example 5.6, and consequently is rational.
(This proves that K−1L is context-free if L is a context-free language.)

5.8 The transduction τ : A∗ → A∗ with τ(x) = x−1K = {y ∈ A∗ | xy ∈ K} is
rational if K ⊂ A∗ is a regular language. Consider indeed its graph

R = {(x, y) | xy ∈ K} .

Let Ā = {ā | a ∈ A} be a copy of A, disjoint from A, set C = A ∪ Ā, and define
morphisms α, β, γ : C∗ → A∗ by

α(a) = a , β(a) = 1 , γ(a) = a a ∈ A ;

α(ā) = 1 , β(ā) = a , γ(ā) = a ā ∈ Ā .

Consider the regular language K ′ = γ−1(K) ∩ A∗Ā∗ ⊂ C∗. Any word z ∈ K ′

factorizes in a unique way into z = xy, (x ∈ A∗, y ∈ Ā∗). It follows that

R = {(αz, βz) | z ∈ K ′} .



5. Examples 65

5.9 The transduction A∗ → A∗ which associates to any word x ∈ A∗ the set of
its subwords (resp. factors, prefixes, suffixes) is rational. Let indeed Ā, C, α, γ be
as above. Then the set of subwords of x is α(γ−1(x)), the set of factors of x is
α(γ−1(x) ∩ Ā∗A∗Ā∗), etc. (Note that the set of prefixes of x is x(A∗)−1. Thus the
rationality of this transduction follows from Example 5.7.)

5.10 Let τ : A∗ → A∗ be defined for x = a1a2 · · ·an, (n ≥ 1, ai ∈ A) by τ(x) =
a1a3a5 · · · , and τ(1) = 1. With the notations of Example 5.8,

τ(x) = α(γ−1(x) ∩ [(AĀ)∗ ∪ (AĀ)∗A]) .

5.11 The transduction τ : a∗ → {b, c}∗ defined by

τ(an) =

{

bn n even ,

cn n odd ,

is rational. Indeed, its graph is (a2, b2)∗ ∪ (a, c)(a2, c2)∗.

5.12 According to Greibach (1973), the “hardest” context-free language is the
language L0 ⊂ A∗, with A = {a1, a2, ā1, ā2, /c, |,#} defined in the following way.
Set B = A \ #. Then x ∈ L0 if and only if either x = 1 or

x = u1|v1|w1#u2|v2|w2# · · ·#un|vn|wn ,

with u1, w1, . . . , un, wn ∈ B∗, v1, . . . , vn ∈ {a1, a2, ā1, ā2}
∗ and v1v2 · · · vn ∈ /cD′∗

2 .
In order to show that L0 is indeed context-free, consider two transductions τ, τ1 :
A∗ → A∗:

τ(z) = #B∗|z|B∗ τ1(z) = B∗|/cz|B∗ (z ∈ A∗) .

In view of Example 5.6, these transductions are rational. Consequently, the trans-
duction τ ′ = τ1τ

∗ is rational. Since L0 = 1 ∪ τ ′(D′∗
2 ), L0 is context-free.

5.13 The transduction A∗ → A∗ which associates to any x ∈ A∗ its reversal x̃
is not rational if Card(X) ≥ 2 since its graph {(x, x̃) | x ∈ A∗} is not a rational
relation (Exercise 3.2). (This is an example of an irrational relation that preserves
regular and context-free languages.)

All the transductions given above are unary operations. Some of the examples,
like product, union, etc. are binary operations. Thus we consider them now as
binary transductions.

5.14 The transduction (x, y) 7→ xy from A∗ × A∗ into A∗ is rational. Its graph is
indeed

X = {(a, 1, a) | a ∈ A}∗{(1, a, a) | a ∈ A}∗ .

5.15 The shuffle x ⊔⊔ y of two words x, y ∈ A∗ is defined as

x ⊔⊔ y ={x1y1 · · ·xnyn | x1, . . . , xn , y1, . . . , yn ∈ A∗,

x1 · · ·xn = x , y1 · · · yn = y} .

The transduction (x, y) 7→ x ⊔⊔ y is rational, since its graph is X∗, with X given
as in Example 5.14.



66 Chapter III. Rational Transductions

5.16 Finally, we show that addition of nonnegative integers in some fixed base
k ≥ 2 can be performed by a rational transduction. (For k = 1, this is done by
Example 5.14.)

Let k ≥ 2, and let k = {0, 1, . . . , k − 1}. The empty word of k∗ is denoted by
ε. For each x = a0a1 · · ·an, (ai ∈ k), let

〈x〉 =
n

∑

i=0

aik
n−i

be the integer represented by x in base k. Then 〈ε〉 = 0, and for any m ∈ N, there
is a unique x ∈ k∗ \ 0k∗ such that 〈x〉 = m. The transduction

⊕

: k∗ × k∗ → k∗

which associates to any (x, y) ∈ k∗ × k∗ the unique word z ∈ k∗ \ 0k∗ such that
〈z〉 = 〈x〉 + 〈y〉isrational. The construction is in three steps. The first step just
adds leading zeros in order to make the two arguments of the same length.

Consider a transduction

τ1 : k∗ × k∗ → (k× k)∗ .

In order to avoid confusion, elements of k × k are noted [a, b]. If x = a1a2 · · ·an,
y = b1b2 · · · bm, (ai, bi ∈ k), τ1(x, y) is defined to be equal either to

[0, 0]+[a1, 0] · · · [an−m, 0][an−m+1, b1] · · · [an, bm]

or to

[0, 0]+[0, b1] · · · [0, bm−n][a1, bm−n+1] · · · [an, bm]

according to n ≥ m or m ≥ n. Define R, S, T ⊂ k∗ × k∗ × (k× k)∗ by

S = {(ε, b, [0, b]) | b ∈ k}∗ ∪ {(a, ε, [a, 0]) | a ∈ k}∗ ,
T = {(a, b, [a, b] | a, b ∈ k}∗ , R = (ε, ε, [0, 0])+ST .

Then R is rational and is the graph of τ1. Next, we define

τ2 : (k× k)∗ → k∗

to perform the addition step: For

w = [a0, b0] · · · [an, bn] , a0 = b0 = 0 , x = a0 · · ·an , y = b0 · · · bn , (5.1)

τ2(w) will be the word z = c0 · · · cn such that 〈z〉 = 〈x〉+〈y〉. For this, we introduce
an auxiliary alphabet B = {0, 1} × k × k × k composed of quadruples [r, c, a, b].
During the computation, c+r·k represents the number a+b+1 or a+b+0, according
to the existence or not of a “carry” from a previous computation. Formally, we
define morphisms

φ : B∗ → (k× k)∗, ψ : B∗ → k∗



5. Examples 67

by

φ[r, c, a, b] = [a, b] ψ[r, c, a, b] = c [r, c, a, b] ∈ B .

Next, we define a local regular language

K = (UB∗ ∩B∗V ) \B∗WB∗

U = {[0, 1, 0, 0], [0, 0, 0, 0]} , V = {[r, c, a, b] | c+ rk = a+ b} ,

B2 \W = {[r, c, a, b][r′, c′, a′, b′] | c+ rk = a+ b+ r′} .

Then, for w given by (5.1),

φ−1(w) ∩K = [r0, c0, a0, b0] · · · [rn, cn, an, bn]

with an + bn = cn + krn, ai + bi + ri+1 = ci + kri (i = n− 1, . . . , 0, r0 = 0). Hence
ψ(φ−1(w) ∩K) = τ2(w) and τ2 is rational. The final step just deletes initial zeros
from the result. It is performed by the transduction

τ3 : k∗ → k∗ , τ3(z) = (0∗)−1z ∩ k∗ \ 0k∗

which is clearly rational. Thus, by Proposition 4.6, the transduction
⊕

= τ3◦τ2◦τ1
is rational.

(For further properties of arithmetic operations considered as rational trans-
ductions, see Eilenberg (1974) and Exercises 5.3, 5.4.)

Exercises

5.1 Let A = {a1, a2, . . . , ak}. Define an order on A∗ by

x <
ℓ
y ⇐⇒

{

y = xu for some u ∈ A+ or

x = uaiv, y = uajv
′ and i < j ;

this is the lexicographic order. The “radix” order is defined by

x <
r
y ⇐⇒







|x| < |y|

|x| = |y| and x <
ℓ
y .

Show that the four transductions from A∗ into itself which associate to x the sets

{y | y > x} (resp. {y | y < x})

are rational for both orders.

5.2 Show that a transduction τ : A∗ × B∗ → C∗ is rational if and only if there are an
alphabet D, three morphisms

α1 : D∗ → A∗ , α2 : D∗ → B∗ , β : D∗ → C∗

and a regular language K ⊂ D∗ such that

τ(x, y) = β(α−1
1 (x) ∩ α−1

2 (y) ∩K) (x, y) ∈ A∗ ×B∗ .

Show that for R ⊂ A∗, the transduction τ ′ : B∗ → C∗ given by τ ′(y) = τ(R × {y}),
(y ∈ B∗) is rational if R is regular, and is algebraic if R is context-free. Use this to
deduce Example 5.5 from Example 5.14.



68 Chapter III. Rational Transductions

5.3 Show that multiplication
⊗

from k∗ × k∗ into k∗ is not a rational transduction.
(Hint (Messerschmidt). Compute for k = 2 the language ⊗(10∗1 × 1∗).)

5.4 Show that for a fixed q ≥ 1, the multiplication by q:k∗ → k∗ which associates to
x ∈ k∗ the word x′ ∈ k∗ \ 0k∗ such that 〈x′〉 = q · 〈x〉 is rational.

5.5 Let A = {a, b}, and let σ be the congruence generated by baa ∼ abb. Show that the
transduction τ : A∗ → A∗ which associates to x the class [x]σ = {y | y ≡ x (mod σ)} is
rational. (Note that this is not true for all congruences: thus the result does not hold
for the Lukasiewicz congruence λ of Section II.4.)

6 Transducers

The machines realizing rational transductions are called transducers. As for trans-
ductions, transducers can be regarded either in a static or in a dynamic way. In
the first case, a transducer is a finite nondeterministic acceptor reading on two
tapes. It then recognizes the pairs of words of a rational relation. In the second
case, the automaton reads input words on one tape, and prints output words on a
second tape. The automaton thus realizes a rational transduction. Both aspects
clearly are equivalent. In the following presentation, we adopt the second point of
view which corresponds to the use of transductions as a tool for transformation of
languages.

Definition A itransducer T = 〈A,B,Q, q−, Q+, E〉 is composed of an input al-
phabet A, an output alphabet B, a finite set of states Q, an initial state q−, a set
of final states Q+, and a finite set of transitions or edges E satisfying

E ⊂ Q×A∗ ×B∗ ×Q . (6.1)

The terminology stems from Elgot and Mezei (1965) and Eilenberg (1974). Ginsburg

(1975) uses the term “a-transducer”, the letter “a” emphasizing the presence of accepting

states. Transductions are defined by means of transducers in the paper of Elgot and

Mezei (1965). They prove then that a transduction is realized by a transducer if and

only if its graph is a rational relation.

Transducers have a graphical representation very similar to the usual repre-
sentation of finite automata. Each state q is represented by a circle, labeled q
an to each transition e = (q, u, v, q′) is associated an arrow directed from q to q′

and labeled u/v. The initial state has an arrow entering in it, and final states are
doubly circled.

Example 6.1 Consider the transducer given by A = B = {a, b}, Q = {s, t}, q− =
s, Q+ = {t}, E = {(s, a2b, 1, s), (s, 1, 1, t), (t, a, a, t), (t, b, b, t)}. Its representation
is shown in Figure III.4.

We now introduce some additional definitions. Consider the free monoid E∗

generated by the set E of transitions. The empty word of E∗ is denoted by ε.
Given a word

e = (p1, u1, v1, q1) · · · (pn, un, vn, qn) , (6.2)



6. Transducers 69

s t

a2b/1

1/1

b/b

a/a

Figure III.4

the label of e is the pair of words |e| = (x, y) defined by x = u1 · · ·un, y = v1 · · · vn.
By convention, |ε| = (1, 1). Clearly the function e 7→ |e| is a morphism from
E∗ into A∗ × B∗ which can be decomposed into two morphisms α : E∗ → A∗,
β : E∗ → B∗ defined by |e| = (αe, βe). αe and βe are the input label and the
output label of e. The word e given by (6.2) is a path or a computation in T from
p1 to qn if and only if qi = pi+1, (i = 1, . . . , n− 1). For p, q ∈ Q, Λ(p, q) is the set
of all paths from p to q. By convention, ε ∈ Λ(p, p) for all p ∈ Q. We extend the
notation by setting

Λ(p,Q′) =
⋃

q∈Q′

Λ(p, q) Q′ ⊂ Q .

Finally, define

T (p, q) = {|e| : e ∈ Λ(p, q)}, T (p,Q′) = {|e| : e ∈ Λ(p,Q′)} .

A path e from p to q is successful if p = q− and q ∈ Q+. Thus the set of all
successful paths is Λ(q−, Q+).

Definition The transduction |T | : A∗ → B∗ realized by T is defined by

|T |(x) = {y ∈ B∗ | (x, y) ∈ T (q−, Q+)} . (6.3)

Thus y ∈ |T |(x) if and only if there exists a successful path in T with label (x, y).
With the morphisms α and β, (6.3) can be reformulated as

|T |(x) = β(α−1(x) ∩ Λ(q−, Q+)) . (6.4)

Example 6.1 (continued) The set of successful paths is

Λ(s, t) = (s, a2b, 1, s)∗(s, 1, 1, t){(t, a, a, t), (t, b, b, t)}∗ .

The set of labels of successful paths is

T (s, t) = (a2b, 1)∗{(a, a), (b, b)}∗

The transduction τ realized by the transducer is

τ(x) = K−1x with K = (a2b)∗ .



70 Chapter III. Rational Transductions

Theorem 6.1 A transduction τ : A∗ → B∗ is rational if and only if τ is realized
by a transducer.

Proof. Let T = 〈A,B,Q, q−, Q+, E〉 be a transducer. The rationality of |T | follows
immediately from (6.4), provided Λ(q−, Q+) is a regular language. To show this, it
suffices to show that the set Λ(p, q) of all paths from p to q is regular. This follows
from the fact that

Λ(p, q) = Ω ∪ (UpE
∗ ∩ E∗Vq) \ E

∗WE∗ ,

where

Up = {(q1, u, v, q2) ∈ E | q1 = p} , Vq = {(q1, u, v, q2) ∈ E | q2 = q} ,

W = {(q1, u1, v1, q
′
1)(q2, u2, v2, q

′
2) ∈ E2 | q′1 6= q′2} , Ω = Λ(p, q) ∩ {ε} .

Conversely, let τ : A∗ → B∗ be rational transduction. After a copy, we may assume
A ∩ B = ∅. Thus

τ(x) = πB(π−1
A (x) ∩K) x ∈ A∗ ,

with K ⊂ (A∪B)∗ a regular language and πA, πB the projections of (A∪B)∗ onto
A∗ and B∗. Let A = 〈A ∪ B,Q, q−, Q+〉 be the finite automaton recognizing K,
and define a transducer

T = 〈A,B,Q, q−, Q+, E〉

E = {(q, πA(c), πB(c), q · c) | q ∈ Q, c ∈ A ∪B} . (6.5)

Then T realizes τ .

We easily obtain the following corollary

Corollary 6.2 Any rational transduction τ : A∗ → B∗ can be realized by a trans-
ducer T = 〈A,B,Q, q−, Q+, E〉 such that

E ⊂ Q× (A ∪ {1}) × (B ∪ {1}) ×Q (6.6)

and further Q+ consists of a single state q+ 6= q−, and (p, u, v, q) ∈ E implies
p 6= q+ and q 6= q−.

Proof. The condition (6.6) is fulfilled with E satisfying (6.5). Next, add to Q two
new states q0 and q1, and to T the new transitions

{(q0, u, v, q′) | (q−, u, v, q
′) ∈ E}

{(q, u, v, q1) | (q, u, v, q′) ∈ E and q′ ∈ Q+}

and

(q0, 1, 1, q1) if q− ∈ Q+ .

Let T ′ be the transducer obtained in this way with initial state q0 and unique final
state q1. Then obviously τ = |T ′|.



6. Transducers 71

Remark If τ(1) = ∅, then (6.6) can be replaced by

E ⊂ (Q× A× {1} ×Q) ∪ (Q× {1} ×B ×Q) .

Note that the proof of Theorem 6.1, and equation (6.4) give an effective pro-
cedure to construct a transducer from a bimorphism and conversely. For the con-
struction of the bimorphism, it is frequently easier to take as alphabet the set of
labels of transitions instead of the set of transitions itself.

Example 6.1 (continued) Consider the alphabet C composed of the three “let-
ters” a2b/1, a/a, b/b. Define morphisms φ, ψ from C∗ into A∗ by φ(u/v) = u,
ψ(u/v) = v. Then

T (s, t) = {(φz, ψz) | z ∈ R} with R = (a2b/1)∗{a/a, b/b}∗ .

Example 6.2 Consider the transduction τ : A∗ → B∗ with A = {a, b}, B = {c, d}
of Example 4.1 defined by

τ(x) =

{

∅ if x /∈ a+b∗ ;

(c+d)nc2md if x = anbm, n ≥ 1, m ≥ 0 .

With the notations of this example, a finite nondeterministic automaton for K =
(s+r)+t∗u is given in Figure III.5. Thus we obtain the following transducer realiz-

1 2 3 4

s

r

s

r

t

u

Figure III.5

ing τ (Figure III.6).

1 2 3 4

1/c

a/d

1/c

a/d

b/c2

1/d

Figure III.6

Exercise

6.1 Let T be a transducer realizing a transduction τ . Show how finite automata recog-
nizing dom(τ) and im(τ) can be obtained from T .



72 Chapter III. Rational Transductions

7 Matrix Representations

Matrix representations are another equivalent definition of rational transductions.
They constitute a compact formulation of transducers, obtained by grouping in one
matrix all output words corresponding to a fixed input word by considering all pairs
of states. The multiplication of matrices corresponds then to the concatenation of
paths in the transducer, and to the union of sets of output words of these paths.

Let S be a semiring, and let Q be a finite set. Then the set SQ×Q of all Q×Q-
matrices with entries in S is again a semiring for addition and multiplication of
matrices induces by the operations in S (see Section I.2). The identity matrix is
denoted by I.

Let A be an alphabet. A morphism µ : A∗ → SQ×Q is a monoid morphism
from A∗ into the multiplicative monoid SQ×Q. Thus

µ(xy) = µ(x)µ(y) x, y ∈ A∗ (7.1)

µ(1) = I . (7.2)

If only (7.1) is verified, then µ is a semigroup morphism. In this case, µ(A∗) =
{µ(x) | x ∈ A∗} is a monoid of Q × Q-matrices with neutral element µ1, and µ1
is idempotent (µ1 · µ1 = µ1) by (7.1). We are interested here in matrices whose
entries are regular languages over the alphabet B. Thus the semiring S is Rat(B∗).
Consequently, the identity matrix I is given by

Ip,q =

{

1 if p = q ;

∅ otherwise.

For simplicity, we frequently write 0 instead of ∅.

Definition A matrix representation M = 〈µ,Q, q−, Q+〉 from A∗ into B∗ is com-
posed of a finite set of states Q, an initial state q−, a set of final states Q+, and
a semigroup morphism µ : A∗ → Rat(B∗)Q×Q. The transduction |M| : A∗ → B∗

realized by M is defined by

|M|(x) =
⋃

q∈Q+

µxq−, q . (7.3)

For p, q ∈ Q, note µp,q the transduction w → µwp, q. Then (7.3) can be written as

|M| =
⋃

q∈Q+

µq−,q .

Example 7.1 Let A be an alphabet and a0 ∈ A. Set Q = {1, 2}, and define a
monoid morphism µ : A∗ → Rat(B∗)2×2 by

µa =

[

0 0
0 a

]

a ∈ A \ a0, µa0 =

[

0 1
0 a0

]

.

Then

µx =

[

0 0
0 x

]

if x /∈ a0A
∗, x 6= 1 ,



7. Matrix Representations 73

and

µx =

[

0 y
0 x

]

if x = a0y .

Thus for M = 〈µ,Q, 1, {2}〉, |M|(x) = µx1, 2 = a−1
0 x, (x ∈ A∗).

Theorem 7.1 A transduction τ : A∗ → B∗ is rational if and only if there exists
a matrix representation M = 〈µ,Q, q−, Q+〉 realizing τ . Then the following hold:

(i) if τ(1) = 0 or τ(1) = 1, then µ can be chosen to be a monoid morphism;
(ii) Q+ can be assumed to consist of a single state q+ 6= q−, and µxq, q− =

µxq+, q = 0 for all x ∈ A+, q ∈ Q.
(iii) if τ(1) = 0, both (i) and (ii) can be satisfied simultaneously.

Note that µ cannot always be chosen to be a monoid morphism. Indeed in this
case τ(1) =

⋃

q∈Q+
µ1q−,q is equal to 1 or 0 according to q− ∈ Q+ or q− /∈ Q+.

The fact that semigroup morphisms are necessary is equivalent to the possibility
for transducers to have transitions with the empty word as input label. This
complicates the proof of the theorem.

Proof. We first prove the existence of a matrix representation. Let T = 〈A,B,Q,
q−, Q+, E〉 be a transducer realizing τ . In view of Corollary 6.2, we may suppose
that Q+ = {q+}, q+ 6= q−,

E ⊂ Q× (A ∪ {1}) × B∗ ×Q ,

and moreover (q, u, v, q′) ∈ E implies q′ 6=−, q 6=+. Let α : E∗ → A∗ and β : E∗ →
B∗ be the input and output morphism as defined in the preceding section. Then

τ(x) = β(α−1(x) ∩ Λ(q−, q+)) . (7.4)

Next note that for p, q ∈ Q,

Λ(p, q) =
⋃

r∈Q

Λ(p, r)Λ(r, q) .

Since α is an alphabetic morphism by the assumption on E, we have α−1(xy) =
α−1(x)α−1(y) for x, y ∈ A∗. Consequently

α−1(xy) ∩ Λ(p, q) =
⋃

r∈Q

(α−1(x) ∩ Λ(p, r))(α−1(y) ∩ Λ(r, q)) ; (7.5)

Define a mapping µ : A∗ → P(B∗)Q×Q by

µxp,q = β(α−1(x) ∩ Λ(p, q)) p, q ∈ Q, x ∈ A∗ . (7.6)

In view of (7.5), µ is a semigroup morphism, and by (7.6), µxp,q is a regular
language. Let M = 〈µ,Q, q−, q+〉. Then by (7.4)

|M|(x) = µxq−,q+ = τ(x) .



74 Chapter III. Rational Transductions

This proves the existence of a matrix representation. Further, since Λ(q, q−)∩E+ =
Λ(q+, q) ∩E

+ = ∅ for q ∈ Q by the assumptions on T , condition (ii) holds. Next,
define the (monoid) morphism µ̄ by

µ̄x = µx (x ∈ A+) , µ̄1 = I .

and M̄ = 〈µ̄, Q, q−, q+〉. Since q− 6= q+, |M̄| = τ in the case where τ(1) = 0. This
proves (i) in that case and proves also (iii). It remains to prove (i) in the case
where τ(1) = 1. For this, consider µ given by (7.6), let q0 /∈ Q, set P = q0 ∪Q and
define

µ′ : A∗ → Rat(B∗)P×P

by µ′1 = I and

µ′xp,q =











µxp,q if p, q ∈ Q ;

µxq−,q if p = q0, q ∈ Q ;

0 otherwise .

(x ∈ A+)

Then µ′ is easily seen to be a morphism, and

τ(x) = µ′xq0,q+ ∪ µ′xq0,q0 (x ∈ A∗) .

Thus τ is realized by the matrix representation 〈µ′, P, q0, {q0, q+}〉.
Conversely, let τ : A∗ → B∗ be the transduction realized by a matrix represen-

tation M = 〈µ,Q, q−, Q+〉. In order to prove the rationality of τ , we proceed in
several steps.

First, we show that Q+ can be assumed to consist of a single state q+ 6= q−.
Let indeed s /∈ Q, set P = s ∪ Q and define a semigroup morphism ν : A∗ →
Rat(B∗)P×P for u ∈ 1 ∪A by

νup,q = µup,q (p, q ∈ Q)

νus,q = µus,s = 0 (q ∈ Q)

νuq,s = ∪p∈Q+µuq,p (q ∈ Q) .

Then these formulas hold for any word x ∈ A∗. This is obvious for the two first
formulas; the third follows by induction from:

ν(xy)q,s =
⋃

r∈Q

µxq,rνyr,s =
⋃

p∈Q+

⋃

r∈Q

µxq,rµyr,p =
⋃

p∈Q+

µ(xy)q,p .

Thus

τ(x) =
⋃

p∈Q+

µxq−,p = νxq−,s .

Consequently, we may assume Q+ = {q+} and q+ 6= q−. Next, define the monoid
morphism µ̄ : A∗ → Rat(B∗)Q×Q by µ̄a = µa (a ∈ A). Then µ̄xq−,q+ = µxq−,q+ =
τ(x) for x ∈ A+, and µ̄1q−,q+ = ∅. Thus

τ = τ1 ∪ τ̄ ,



7. Matrix Representations 75

where τ̄ is the transduction realized by 〈µ̄, Q, q−, q+〉, and where τ1 : A∗ → B∗

is defined by τ1(1) = µ1q−,q+ ∈ Rat(B∗) and τ1(x) = ∅ for x ∈ A+. Since τ1 is
obviously a rational transduction, it suffices to show that τ̄ is rational.

Thus we may assume that µ is a monoid morphism and τ(1) = 0. Let C =
Q× A×Q and define a strictly alphabetic morphism φ : C∗ → A∗ by

φ((p, a, q)) = a .

Let

K =
[

(q− × A×Q)C∗ ∩ C∗(Q× A× q+)
]

\ C∗WC∗

with

W = {(q, a, q′)(p, b, p′) ∈ C2 | q′ 6= p} .

Then K is a local regular language, φ−1(1) ∩ K = ∅, and for x = a1a2 · · ·an,
(ai ∈ A),

φ−1(x) ∩K = {(q−, a1, q1)(q1, a2, q2) · · · (qn−1, an, q+) | q1, . . . , qn−1 ∈ Q} .

(7.7)

Define a rational substitution σ : C∗ → A∗ by

σ((p, a, q)) = µap,q .

Then

σ(φ−1(1) ∩K) = ∅ = τ(1) (7.8)

and, in view of (7.7),

σ(φ−1(x) ∩K) = µxq−,q+τ(x) (x ∈ A+) (7.9)

Consequently, τ is a composition of rational transductions and therefore is rational.

The proof of Theorem 7.1 yields the following corollary which is another vari-
ation of Nivat’s Theorem.

Corollary 7.2 Let τ : A∗ → B∗ be a transduction with τ(1) = 0 or τ(1) = 1.
Then τ is rational if and only if there exist an alphabet C, a strictly alphabetic
morphism φ : C∗ → A∗, a rational substitution σ : C∗ → B∗ and a local regular
language K ⊂ C∗ such that

τ(x) = σ(φ−1(x) ∩K) (x ∈ A∗) . (7.10)

Proof. Let τ be given by (7.10). Then τ is rational. Conversely, the conclusion
holds if τ(1) = 0 in view of (7.8) and (7.9). If τ(1) = 1, then it suffices to replace
the language K of the preceding proof by K ∪ 1.



76 Chapter III. Rational Transductions

1 2 3 4

1/c

a/d

1/c

a/d

b/c2

1/d

Figure III.7

Example 7.2 Consider for A = {a, b}, B = {c, d}, the transducer of Example 6.2
(Figure III.7). Formula 7.6 gives the following semigroup morphism µ:

µ1 =









1 c+ 0 0
0 c∗ 0 0
0 0 1 d
0 0 0 1









µa =









c+d c+dc+ 0 0
c∗d c∗dc+ c∗d c∗d2

0 0 0 0
0 0 0 0









µb =









0 0 0 0
0 0 0 0
0 0 c2 c2d
0 0 0 0









Theorem 7.1 shows a relationship between rational transductions and formal power

series. In the terminology of Eilenberg (1974) or Salomaa and Soittola (1978), a trans-

duction τ : A∗ → B∗ is rational if and only if the formal power series
∑

x∈A∗ τ(x) · x

with coefficients in the semiring Rat(B∗) is recognizable. The following theorem is the

analogue to a well-known characterization of recognizable formal power series.

Proposition 7.3 A transduction τ : A∗ → B∗ is rational if and only if there exist
a finite set Q, a monoid morphism µ : A∗ → Rat(B∗)Q×Q, a row Q-vector λ, a
column Q-vector ρ with entries in Rat(B∗) such that

τ(x) = λµxρ (x ∈ A∗) . (7.11)

Proof. Let τ be given by (7.11). Then

τ(x) =
⋃

p,q∈Q

λpµxp,qρq .

By Theorem 7.1, the transductions µp,q : x 7→ µxp,q are rational. Since λp, ρq are
regular languages, the transductions µp,q : x 7→ λpµxp,qρq are rational. Thus τ is
rational.

Conversely, let τ be realized by the matrix representation M = 〈ν, P, q−, {q+}〉
with q− 6= q+. Let s /∈ P , set Q = s ∪ P and define a monoid morphism µ : A∗ →
Rat(B∗)Q×Q by

µap,q = νap,q p, q ∈ P
µap,q = ∅ p = s or q = s

(a ∈ A)

Then clearly

µxp,q =

{

νxp,q p, q ∈ P

∅ p = s or q = s
(x ∈ A+) .

Next, define the Q-vectors λ and ρ by

λs = (ν1)q−,q+ ; ρs = {1} , λq− = {1} , ρq+ = {1} ,

λq = ρq = ∅ otherwise .



7. Matrix Representations 77

Then

λµ1ρ = λρ = λsρs = τ(1) , λµxρ = λq−µxq−,q+ρq+ = τ(x) , x ∈ A+ .

Example 7.3 Let A = {a}, B = {b, c}, Q = {1, 2, 3, 4}, and let µ be the monoid
morphism defined by

µa =









0 b 0 0
b 0 0 0
0 0 0 c
0 0 c 0









λ = [1, 0, 1, 0] ρ =









1
0
0
1









A simple computation shows that

λµan =

{

[bn, 0, cn, 0] if n is even;

[0, bn, 0, cn] if n is odd.

Thus

λµanρ =

{

bn n even;

cn n odd.

We conclude this section by considering a useful technical notion.

Definition Let M = 〈µ,Q, q−, Q+〉 be a matrix representation from A∗ into B∗.
Then M is trim if the following condition is satisfied. For any q ∈ Q, there exist
x, y ∈ A∗, q+ ∈ Q+ such that

µxq−,q 6= ∅ and µyq,q+ 6= ∅ . (7.12)

Proposition 7.4 Let τ : A∗ → B∗ be a transduction with dom(τ) 6= ∅, and let
M = 〈µ,Q, q−, Q+〉 with µ a monoid morphism be a matrix representation realizing
τ . Then there exists a trim matrix representation M′ = 〈ν, P, q−, P+〉 realizing τ
with P ⊂ Q and P+ = Q+ ∩ P .

Proof. Let P ⊂ Q be the set of states such that (7.12) holds. Since dom(τ) 6= ∅
and µ is a monoid morphism, we have q− ∈ P and P+ = Q+ ∩ P 6= ∅. Moreover,
for any q ∈ Q+, q ∈ P+ if and only if µzq−,q 6= ∅ for at least one word z ∈ A∗.
Consequently

|M| =
⋃

q∈Q+

µq−,q =
⋃

q∈P+

µq−,q . (7.13)

Define a monoid morphism ν : A∗ → Rat(B∗)P×P by

νap,q = µap,q p, q ∈ P, a ∈ A .

In order to prove the desired result, it suffices to show that

νxp,q = µxp,q p, q ∈ P, x ∈ A∗ . (7.14)



78 Chapter III. Rational Transductions

since then, in view of (7.13)

|M′| =
⋃

q∈P+

νq−,q =
⋃

q∈P+

µq−,q = |M| .

To show (7.14), we first verify that for p, q ∈ P , r ∈ Q \ P ,

µxp,r = ∅ or µyr,q = ∅ (7.15)

for any pair of words x, y. Assume the contrary. Then there exist words x, y such
that both µxp,r 6= ∅ and µyr,q 6= ∅. Since p ∈ P , there is a word x′ such that
µx′q−,p 6= ∅, and similarly µy′q,q+ 6= ∅ for some word y′ and some q+ ∈ Q+. But then
∅ 6= µx′q−,pµxp,r ⊂ µx′xq−,r and ∅ 6= µyr,qµy

′
q,q+

⊂ µyy′r,q+, and by (7.12), r ∈ P
contrary to the assumption. This proves (7.15).

Now (7.14) is true if |x| ≤ 1. Arguing by induction, let z ∈ A∗, a ∈ A. Then
for p, q ∈ P ,

(µxa)p,q =
⋃

r∈Q

µxp,rµar,q =
⋃

r∈P

µxp,rµar,q

by (7.15). Consequently

(µxa)p,q =
⋃

r∈P

νxp,rνar,q = (νxa)p,q .

Exercises

7.1 Show that M = 〈µ,Q, q−, Q+〉 is trim if and only if for any q ∈ Q, there exist
q+ ∈ Q+ and x, y ∈ A∗ with |x|, |y| ≤ CardQ such that µxq−,q 6= ∅ and µyq,q+ 6= ∅.

7.2 A transduction τ : A∗ → B∗ is faithful if τ−1(y) is finite for all y ∈ B∗, and is
continuous if τ(x) ⊂ B+ for x ∈ A+. Show that a rational transduction τ : A∗ → B∗ is
faithful and continuous if and only if

τ(x) = ψ(φ−1(x) ∩K) x ∈ A∗

for some alphabet C, K ∈ Rat(C∗), φ : C∗ → A∗ a morphism and ψ : C∗ → B∗ a strictly
alphabetic morphism. (Hint: Apply Corollary 7.2 to τ−1.) Show that the composition
of two faithful (continuous) transductions is still faithful (continuous).

7.3 Let R be the least family of subsets of A∗×B∗ closed under union, product and the
plus operation, and containing ∅, {(1, 1)} and the relations {(u, b)} for u ∈ 1∪A, b ∈ B.

a) Show that RS,SR ∈ R for all R ∈ R such that (1, 1) /∈ R and S ∈ Rat(A∗ ×B∗).

b) Show that R ∈ R if and only if the transduction with graph R is rational, faithful
and continuous.



8. Decision Problems 79

8 Decision Problems

We show in this section that most of the usual questions are undecidable for rational
transductions. We shall see in the next chapter that some of these questions become
decidable for rational functions. The results of this section are mainly from Fischer
and Rosenberg (1968).

The proof of undecidability are “relative” in the following sense: We give (with-
out proof) a particular undecidable problem (Post’s Correspondence Problem) and
we prove that some property is undecidable by showing that the existence of a
decision problem for this property would imply a decision procedure for the Cor-
respondence Problem.

Post’s Correspondence Problem Given an alphabet A with at least two let-
ters, and given two sequences

x1, x2, . . . , xp , and y1, u2, . . . , yp (8.1)

of words of A∗, decide whether there exists indices i1, i2, . . . , ik, (k > 0) such that

xi1xi2 · · ·xik = yi1yi2 · · · yik . (8.2)

Theorem 8.1 Post’s Correspondence Theorem. Post’s Correspondence Problem
is undecidable.

For a proof, see for instance Davis (1958) or Schnorr (1974). The theorem means
that there exists no algorithm that has as input two sequences (8.1), and yields as
output “yes” or “no” according to the existence or the non-existence of a sequence
i1, i2, . . . , ik such that (8.2) holds.

First we give two decidable properties. As usual for decision problems, the
word “given” in the statement should be interpreted to mean that an explicit
description of the object, here of the rational relation R is provided. This can be
done in the present context by a rational expression, by a matrix representation, by
a transducer or by a bimorphism. From the constructions of the previous sections,
it should be clear that any of the above descriptions of a rational relation can be
obtained effectively from another one.

Proposition 8.2 Given a rational relation R ⊂ A∗ × B∗, it is decidable whether
R is empty and whether R is finite.

Proof. R is empty if and only if one of the two projections πA(R) and πY (R) on A∗

and Y ∗ is empty, and R is finite if and only if both are finite. Each projection is a
regular language, and an explicit description of these languages is readily obtained
from an effective description of R. Since emptiness and finiteness are decidable for
regular languages, the conclusion follows.

We now prove a lemma which will be of use later. Let A = {a, b}, let B be an
alphabet, and let u1, . . . , up ∈ B∗. Define

U = {(ab, u1), (ab
2, u2), . . . , (ab

p, up)} .

Clearly U , hence U∗ is a rational relation over A and B.



80 Chapter III. Rational Transductions

Lemma 8.3 The relation (A∗ × B∗) \ U+ is rational.

Usually, Rat(A∗ × B∗) is not closed under complementation, thus Lemma 8.3 has
to be proved.

Proof. We show that W = (A∗ × B∗) \ U+ is rational by writing W as a union of
four rational relations. First the relation H composed of all (x, y) ∈ A∗ ×B∗ such
that

x /∈ {ab, ab2, . . . , abp}+

is rational and even recognizable since

H = (A∗ \ {ab, ab2, . . . , abp}+) × Y ∗ .

Next

(x, y) ∈W and (x, y) /∈ H

if and only if

x = abi1abi2 · · ·abir for some r > 0, 1 ≤ i1, . . . , ir ≤ p (8.3)

and

y 6= ui1ui2 · · ·uir . (8.4)

Now (8.4) holds if and only if one of the three following conditions hold

|y| < |ui1ui2 · · ·uir | (8.5)

|y| > |ui1ui2 · · ·uir | (8.6)

|y| = |ui1ui2 · · ·uir |, (8.7)

and there is a factorization y = y′zy′′ and k ∈ {1, . . . , p} with

|y′| = |ui1 · · ·uik−1
|, |z| = |uik |, h 6= uik , |y

′′| = |uik+1
· · ·uir | .

Define the following relations which are clearly rational:

F =

p
⋃

i=1

abi × B|ui| ; G =

p
⋃

i=1

abi × (B|ui| \ ui) = F \ U ;

D =

p
⋃

i=1

abi × B|ui|B+ = F · (1 × B+) ; C =

p
⋃

i=1

abi ×Bi ,

with

Bi = {u ∈ B∗ | |u| < |ui|} .

Then CF = FC, DF = FD, and

{(x, y) | (x, y) verifies (8.3) and (8.5)} = C+F ∗ ;

{(x, y) | (x, y) verifies (8.3) and (8.6)} = D+F ∗ ;

{(x, y) | (x, y) verifies (8.3) and (8.7)} = F ∗GF ∗ .

Thus

W = H ∪ C+F ∗ ∪D+F ∗ ∪ F ∗GF ∗ ∈ Rat(A∗ ×B∗) .



8. Decision Problems 81

Theorem 8.4 Let A,B be alphabets with at least two letters. Given rational re-
lations X, Y ⊂ A∗ × B∗, it is undecidable to determine whether

(i) X ∩ Y = ∅;
(ii) X ⊂ Y ;
(iii) X = Y ;
(iv) X = A∗ ×B∗;
(v) (A∗ ×B∗) \X is finite;
(vi) X is recognizable.

Proof. We assume that A contains exactly two letters, and set A = {a, b}. Consider
two sequences

u1, u2, . . . , up and v1, v2, . . . , vp (8.8)

of words of B∗ and define

U = {(ab, u1), . . . , (ab
p, up)} , V = {(ab, v1), . . . , (ab

p, vp)} .

Then U+, V + are rational relations, and by the preceding lemma, Ū = (A∗×B∗)\
U+ and V̄ = (A∗ × B∗) \ V + are rational relations.

(i) Let X = U+, Y = V +. Then X ∩ Y 6= ∅ if and only if there exist integers
i1, . . . , ik such that ui1 · · ·uik = vi1 · · · vik , thus if and only if the Correspondence
Problem 8.8 has a solution. Thus if the emptiness X ∩ Y = ∅ would be decidable,
Post’s Correspondence Problem would be decidable. This proves (i).

(ii) Let X = U+, Y = V̄ . Then X ⊂ Y if and only if U+ ∩ V + = ∅. Thus (ii)
follows from (i).

(iii) is a consequence of (iv) since A∗ ×B∗ is rational.
(iv) LetX = Ū∪V̄ . ThenX = A∗×B∗ if and only if A∗×B∗\X = U+∩V + = ∅.

Thus (iv) is undecidable by (i).
(v) Let again X = Ū ∪ V̄ . Then (m, u) ∈ A∗ × B∗ \ X if and only if there

exist i1, . . . , ir such that m = abi1 · · ·abir and u = ui1 · · ·uir = vi1 · · · vir . Thus
(m, u) ∈ A∗×B∗ \X implies (mk, uk) ∈ A∗×B∗ \X for any k ≥ 1. Consequently,
A∗ ×B∗ \X is finite if and only if A∗ ×B∗ \X is empty, and the last property is
undecidable.

(vi) Let again X = Ū ∪ V̄ . Then X is recognizable if and only if A∗×B∗ \X =
U+ ∩V + is recognizable since Rec(A∗×B∗) is closed under complementation. We
shall see that U+∩V + is recognizable if and only if U+∩V + = ∅. Assume U+∩V +

recognizable. Then by Mezei’s Theorem

U+ ∩ V + = P1 ×Q1 ∪ · · · ∪ Pℓ ×Qℓ

for P1, . . . , Pℓ ∈ Rat(A∗), Q1, . . . , Qℓ ∈ Rat(B∗). Next assume (m, u) ∈ U+ ∩ V +.
Then (mk, uk) ∈ U+ ∩V + for k ≥ 1, thus there exist integers r, s, (r > s ≥ 1) such
that

(mr, ur), (ms, us) ∈ Pj ×Qj

for some j, (1 ≤ j ≤ ℓ). Then (ms, ur) ∈ Pj × Qj , but (ms, ur) /∈ U+ ∩ V + since
s 6= r. Thus U+ ∩ V + = ∅, and (vi) follows from (i).



82 Chapter III. Rational Transductions

Exercises

8.1 Show that all properties of Theorem 8.4 are decidable for recognizable relations.

8.2 Let M = 〈µ,Q, q−, Q+〉 : A∗ → B∗ be a matrix representation. Show that a trim
matrix representation realizing |M| can effectively be constructed.

8.3 ) (continuation of Exercise 4.8) Assume that a rational transduction τ : A∗ → B∗

is effectively given. Show that the rational transductions τ0 and τ∞ can be computed
effectively.



Chapter IV

Rational Functions

The present chapter deals with rational functions, that is rational transductions
which are partial functions. Rational functions have remarkable properties. First,
several decision problems become solvable. This is shown in Section 1. Then there
exist special representations, called unambiguous representations for rational func-
tions. They are defined by the property that there exist at most one successful
path for each input word. Two different methods for constructing unambiguous
representations are given in Sections 3 and 4, the first by means of a cross-section
theorem due to Eilenberg, the second through so-called semimonomial representa-
tions and due to Schützenberger. Section 2 is concerned with sequential functions
which are a particular case of rational functions. In Section 5, bimachines are de-
fined as composition of a left sequential followed by a right sequential function. In
Section 6, we prove that it is decidable whether a rational function is sequential.

1 Rational Functions

In this section, rational functions are defined and some examples are given. Further
a decidability result is proved. A more detailed description of rational functions
will be given in Sections 4 and 5.

Definition A rational function α : A∗ → B∗ is a rational transduction which is a
partial function, that is such that Card(αw) ≤ 1 for all w ∈ A∗.

In order to simplify statements and proofs, we first make a general observation.
Given a transduction

τ : A∗ → B∗

define two transductions τ1, τ+ : A∗ → B∗ by

τ1(1) = τ(1) ; τ+(1) = ∅ ;

τ1(w) = ∅ ; τ+(w) = τ(w) w ∈ A+ .

Then τ = τ1∪τ+ (and even τ = τ1+τ+), and τ is rational if and only if τ1 and τ+ are
rational. Further, any transduction τ ′ : A∗ → B∗ with τ ′+ = τ+ is rational if and
only if τ is rational and τ ′(1) is a rational language. Thus, rational transductions
can always be considered “up to the value τ(1)”. Therefore we stipulate that in this

83



84 Chapter IV. Rational Functions

chapter, τ(1) is always equal to ∅ or {1}. Then, according to Theorem III.7.1, the
morphism of a matrix representation M = 〈µ,Q, q−, Q+〉 realizing τ can always
be chosen to be a monoid morphism.

Further, we recall that if τ(1) = 0, then we may assume that Q+ = {q+} and
q+ 6= q−, and that µwq,q− = µwq+, q = 0 for w ∈ A∗, q ∈ Q. As a result of the
above discussion we thus may assume that this relation also holds if τ(1) = 1,
and that Q+ = {q−, q+}. Then indeed τ(1) = µ1q−,q− = 1, and τ(w) = µwq−,q+ if
w ∈ A+.

A matrix representation which satisfies the above conditions and which is trim
is called normalized . Normalization clearly is effective.

Proposition 1.1 Let τ : A∗ → B∗ be the transduction realized by a normalized
matrix representation M = 〈µ,Q, q−, Q+〉. Then τ is a partial function if and only
if Card(µwp,q) ≤ 1 for any w ∈ A∗, (p, q ∈ Q).

Proof. If the conclusion holds, then Card(µwq−,q+) ≤ 1 for any w ∈ A+, thus
Card(τ(w)) ≤ 1 for any w ∈ A∗. Conversely, assume that Card(µwp,q) ≥ 2 for
some w ∈ A∗, (p, q ∈ Q). Then w ∈ A+ since µ1 is the identity matrix. Since M
is trim, µzq−,p 6= ∅ and µz′q,q+ 6= ∅ for some z, z′ ∈ A∗. Then

τ(zwz′) = µ(zwz′)q−,q+ ⊃ µzq−,pµwp,qµz
′
q,q+

,

and Card τ(zwz′) ≥ 2.

Let α : A∗ → B∗ be a rational function realized by a normalized matrix
representation M = 〈µ,Q, q−, Q+〉. Then we associate to M the transducer
T = 〈A,B,Q, q−, Q+, E〉 with

E = {(p, a, µap,q, q) | p, q ∈ Q, a ∈ A, µap,q 6= 0} .

Thus E ⊂ Q×A×B∗ ×Q, and for any (p, a, q) ∈ Q×A×Q, there is at most one
z ∈ B∗ such that (p, a, z, q) ∈ E. Conversely, if E satisfies these conditions then
the formula

µap,q =

{

z if (p, x, z, q) ∈ E ;

0 otherwise

defines a matrix representation M = 〈µ,Q, q−, Q+〉. The transducer T and the
matrix representation M are called associated, and we sometimes identify them.
Thus we speak about a normalized transducer, of a path in a matrix representation
and so on.

Example 1.1 Let α : a∗ → {b, c}∗ be given by

α(an) =

{

bn n even;

cn n odd.

Then α is a rational transduction (Example III.7.3), hence a rational function.



1. Rational Functions 85

1

2

3

a/b

a/1

a/1

a/b

Figure IV.1

Example 1.2 Let A = {a}, B = {b}, and consider the transducer in Figure IV.1
corresponding to the matrix

µa =





0 b 1
0 0 1
0 0 b





The transduction α realized by this transducer is given by α(1) = 0 and α(an) =
bn−1, (n ≥ 1); hence α is a rational function.

Example 1.3 (Choffrut) Let again A = {a}, B = {b}, and consider the trans-
ducer in Figure IV.2. Let α be the transduction realized. It is easy to see that
there are 3 nonempty paths from state 1 to itself without internal node 1. They
are of length 3 and 4 and have labels (a3, b6) and (a4, b8). Thus, if α(an) 6= ∅, then
α(an) = b2n, and thus α is a partial function. Further dom(α) = 1∪ a3 ∪ a4 ∪ a6a∗.

1 2 3 4
a/b a/b4 a/b

a/b3

a/b3

a/b2

Figure IV.2

The above example shows that it is not always easy to determine whether the
transduction realized by a transducer is a (partial) function. However, this prop-
erty has been shown to be decidable by Schützenberger (1975) (see also Blattner
and Head (1977)):

Theorem 1.2 Let τ : A∗ → B∗ be a transduction realized by a normalized matrix
representation M = 〈µ,Q, q−, q+〉, and let m = Card(Q). Then τ is a rational
function if and only if Card(µwp,q) ≤ 1 for all p, q ∈ Q and all w ∈ A∗ with
|w| ≤ 1 + 2m(m− 1).

Proof. By Proposition 1.1 the condition is necessary. Assume the converse is false.
Then, still by Proposition 1.1, Card(µwp,q) ≥ 2 for some w ∈ A+ and p, q ∈ Q.
Choose a word w of minimal length such that Card(µwp,q) ≥ 2 for some p, q ∈ Q.
Then |w| > 1 + 2m(m − 1). Set w = a1 · · ·an with a1, . . . , an ∈ A. There is a



86 Chapter IV. Rational Functions

sequence of n + 1 pairs of states (qj , q
′
j),(j = 0, . . . , n) such that q0 = q′0 = p,

qn = q′n = q, and such that with

uj = (µaj)qj−1,qj , vj = (µaj)q′j−1,q
′

j
,

the words u = u1 · · ·un and v = v1 · · · vn are two distinct elements of µwp,q. Since
w has been chosen of minimal length, qj 6= q′j for j = 1, . . . , , n−1. Indeed, assume
qj = q′j for some j. Then either u1 · · ·uj 6= v1 · · · vj or uj+1 · · ·un 6= vj+1 · · · vn.
Next, since n− 1 > 2m(m− 1), there are three indices 1 ≤ i < j < k ≤ n− 1 such
that

(qi, q
′
i) = (qj , q

′
j) = (qk, q

′
k) . (1.1)

Define

w1 = a1 · · ·ai , w2 = ai+1 · · ·aj , w3 = aj+1 · · ·ak , w4 = ak+1 · · ·an ;

x1 = u1 · · ·ui , x2 = ui+1 · · ·uj , x3 = uj+1 · · ·uk , x4 = uk+1 · · ·un ;

y1 = v1 · · · vi , y2 = vi+1 · · · vj , y3 = vj+1 · · · vk , y4 = vk+1 · · · vn .

Then by (1.1)

x1x4, y1y4 ∈ µ(w1w4)p,q ; x1x2x4, y1y2y4 ∈ µ(w1w2w4)p,q ;

x1x3x4, y1y3y4 ∈ µ(w1w3w4)p,q .

By the minimality of w, we have

x1x4 = y1y4 , x1x2x4 = y1y2y4 , x1x3x4 = y1y3y4 . (1.2)

We shall deduce from (1.2) that u = v, in contradiction with the assumption. By
symmetry, we may suppose |x1| ≤ |y1|, hence y1 = x1z for some z ∈ B∗. Then
the first of the equations (1.2) implies x4 = zy4. Reporting this in the two other
equations (1.2) yields x2z = zy2 and x3z = zy3. It follows that

u = x1x2x3x4 = x1x2x3zy4 = x1x2zy3y4 = x1zy2y3y4 = v .

Given two rational functions α, β : A∗ → B∗, we write α ⊂ β if α(w) 6= 0 =⇒
α(w) = β(w), (w ∈ A∗).

Corollary 1.3 Given two rational functions α, β : A∗ → B∗, it is decidable
whether α ⊂ β, and whether α = β.

Proof. Clearly α ⊂ β if and only if the two following conditions hold:

(i) dom(α) ⊂ dom(β) ;

(i) α ∪ β is a rational function.

Condition (i) is decidable since dom(α) and dom(β) are regular languages. Con-
dition (ii) is decidable by the previous theorem. Next α = β if and only if α ⊂ β
and β ⊂ α, thus equality of functions is decidable.



2. Sequential Transductions 87

Exercises

1.1 Show that it is decidable whether a rational function α is recognizable (that is its
graph is a recognizable relation).

1.2 Show that it is decidable, for rational functions α, β : A∗ → B∗, whether there exists
a word w ∈ A∗ such that α(w) = β(w).

2 Sequential Transductions

For practical purposes, a rational transduction is required not only to be a partial
function, but also to be computable in some sequential way. Such a model is pro-
vided by sequential transductions. In fact, transducers which are used for instance
in compilation are more general, since there is usually an output after the lecture
of the last letter of the input word. In order to fit into the model of sequential
transducers, the input word is frequently considered to be followed by some “end
marker”. Another way to describe this situation is to add a supplementary output
function to a sequential transducer. This is the definition of the subsequential
transducers.

In this section, we define sequential and subsequential transductions, and give
a “machine independent”characterization of these particular rational functions.
Sequential transductions are among the oldest concepts in formal language theory.
For a complete exposition, see Eilenberg (1974). Subsequential transductions are
defined in Schützenberger (1977). A systematic exposition can be found in Choffrut
(1978).

Definition A left sequential transducer (or sequential transducer for short) L con-
sists of an input alphabet A, an output alphabet B, a finite set of states Q, an initial
state q− ∈ Q, and of two partial functions

δ : Q× A→ Q , λ : Q×A→ B∗

having the same domain and called the next state function and the output function
respectively.

We usually denote δ by a dot, and λ by a star. Thus we write q · a for δ(q, a)
and q ∗ a for λ(q, a). Then L is specified by

L = 〈A,B,Q, q−〉 .

With the conventions of Section I.1, Q can be considered as a subset of P(Q), and
q · a is undefined if and only if q · a = ∅ (or q · a = 0 by writing 0 for ∅). Further
0 · a = 0 for all a ∈ A. Thus, the next state function can also be viewed as a total
function from Q∪ {0}×A into Q∪ {0}, and 0 can be considered as a new, “sink”
state.

A sequential transducer is called a generalized sequential machine (gsm) by Eilenberg

(1974) and Ginsburg (1966).



88 Chapter IV. Rational Functions

The next state function and the output function are extended to Q × A∗ by
setting, for w ∈ A∗, a ∈ A

q · 1 = q ; q · (wa) = (q · w) · a ;

q ∗ 1 = 1 ; q ∗ (wa) = (q ∗ w)((q · w) ∗ a) .
(2.1)

The parentheses in (2.1) can be omitted without ambiguity. We agree that con-
catenation has higher priority than the dot, and that the dot has higher priority
than the star. For x, y ∈ A∗, (q ∈ Q), the following formulas hold

q · xy = (q · x) · y ; (2.2)

q ∗ xy = (q ∗ x)(q · x ∗ y) . (2.3)

Indeed (2.2) is clear, and (2.3) is proved by induction on |y|: the formula is obvious
for |y| = 0. If y = za with z ∈ A∗, a ∈ A, then

q ∗ xy = q ∗ xza = (q ∗ xz)(q · xz ∗ a)

= (q ∗ x)(q · x ∗ z)((q · x) · z ∗ a) = (q ∗ x)(q · x ∗ za)

= (q ∗ x)(q · x ∗ y) .

The partial function |L| : A∗ → B∗ realized by L is defined by

|L|(w) = q− ∗ w (w ∈ A∗) .

Definition A partial function α : A∗ → B∗ is a (left) sequential transduction or
(left) sequential function if α = |L| for some sequential transducer L.

If α = |L| with L as above, then

α(1) = 1 (2.4)

α(xy) = α(x)(q− · x ∗ y) . (2.5)

By (2.4), dom(α) is nonempty. Say that a partial function α : A∗ → B∗ preserves
prefixes if (2.4) holds and if further

α(xy) 6= 0 =⇒ α(xy) ∈ α(x)B∗ .

Then by (2.5) a sequential function preserves prefixes. Not that this is a rather
strong constraint. In particular, the domain of such a function is prefix-closed,
that is it contains the prefixes of its elements. Of course, this is due to the lack of
final states.

To each sequential transducer L = 〈A,B,Q, q−〉 we associate a transducer
T = 〈A,B,Q, q−, Q+, E〉 by setting Q+ = Q and

E = {(q, a, q ∗ a, q · a) | q ∈ Q, a ∈ A, q · a 6= 0} .

Then clearly |L| = |T |. Thus

Proposition 2.1 Any sequential function is rational.

Example 2.1 Any morphism is a sequential function.



2. Sequential Transductions 89

q−

a/c

b/d

a/c, b/c

a/d, b/d

Figure IV.3

Example 2.2 Let A = {a, b}, B = {c, d}, and define α : A∗ → B∗ by

α(x) =

{

c|x| if x ∈ aA∗ ,

d|x| otherwise.

Then α is a sequential function realized by the following transducer (Figure IV.3).

Example 2.3 The function τ : a∗ → {b, c}∗ defined by

τ(an) =

{

bn n even;

cn n odd.

is rational, but not sequential, since it does not preserve prefixes.

Sometimes, it is useful to have some “reversal” of a left sequential transducer.

Definition A right sequential transducer R = 〈A,B,Q, q−〉 is given by the objects
A,B,Q, q− which have the same meaning as for left sequential transducers, and
by two partial functions

A×Q→ Q ; A×Q→ B∗

which have same domain, called next state and output function and denoted by a
dot and by a star respectively.

As above, these functions are extended to A∗ ×Q by setting

1 · q = q ; aw · q = a · (w · q) ;

1 ∗ q = 1 ; aw ∗ q = (a ∗ w · q)(w ∗ q) .

Then the “reversal” of formulas (2.3) and (2.4) hold:

xy · q = x · (y · q) ; xy ∗ q = (x ∗ y · q)(y ∗ q) . (x, y ∈ A∗)

The partial function |R| realized by R is defined by

|R|(x) = x ∗ q− (x ∈ A∗) ;

and a partial function realized by a right sequential transducer is called a right
sequential transduction or a right sequential function.



90 Chapter IV. Rational Functions

Proposition 2.2 Let α : A∗ → B∗ be a partial function, and define β : A∗ → B∗

by β(w) = [α(w̃)]∼, (w ∈ A∗). Then α is left sequential if and only if β is right
sequential.

Proof. Note first that α(w) = [β(w̃)]∼, (w ∈ A∗). Thus it suffices to show that if
α is right or left sequential, then β is left or right sequential. Assume that α is
realized by some right sequential transducer R = 〈A,B,Q, q−〉, and define a left
sequential transducer L = 〈A,B,Q, q−〉 by setting

q · a = a · q ; q ∗ a = (a ∗ q)∼ .

Then

q · w = w̃ · q and q ∗ w = (w̃ ∗ q)∼ .

since by induction, for z ∈ A∗, a ∈ A,

q · za = (q · z) · a = a · (z̃ · q) = (za)∼ · q ,

q ∗ za = (q ∗ z)(q · z ∗ a) = (z̃ ∗ q)∼(a ∗ z̃ · q)∼

= [(a ∗ z̃ · q)[z̃ ∗ q)]∼ = [(za)∼ ∗ q]∼ .

Thus |L(w)| =
[

|R|(w̃)
]∼

for all w ∈ A∗, and β = |L|.

Corollary 2.3 A right sequential function is rational.

Proof. Let α : A∗ → B∗ be a right sequential function, and let β be defined by
β(w) = [α(w̃)]∼. Then β is sequential, hence rational, and its graph S is a rational
relation. Let R be the graph of α. Then R = {(x̃, ỹ) | (x, y) ∈ S}, and R is
rational (see Section III.4).

Example 2.2 (continued) The function α is not right sequential since it does not
preserve suffixes.

Example 2.3 (continued) For the same reason, the function τ is not right se-
quential.

Example 2.4 The basic step for addition in some base k is realized (see Exam-
ple III.5.16) by a function α which associates, to two words u, v ∈ k∗ of the same
length, the shortest word w such that 〈u〉 + 〈v〉 = 〈w〉. The number 〈u〉 can be
defined, for u = a0a1 · · ·an, (ai ∈ k) either as in Example III.5.16, or by

〈u〉 = a0 + a1k + · · ·+ ank
n .

This is the “reversal interpretation” which is more convenient when the input is
read from left to right, as will be done here. Since u and v have the same length,
α can be considered as a function α : k∗ × k∗ → k∗. If v = b0b1 · · · bn, then the
argument of α is x = (a0, b0)(a1, b1) · · · (an, bn). For simplicity, we write indistinctly
α(u, v) or α(x). By Example III.5.16, α is known to be rational, but α is neither
left nor right sequential. Consider for instance k = 2. Then

α(11, 10) = w1 = 001 α(11111, 10010) = w2 = 000101 .



2. Sequential Transductions 91

q− q

(1, 1)/0

(0, 0)/1

(0, 0)/0
(0, 1)/1
(1, 0)/1

(0, 1)/0
(1, 0)/0
(1, 1)/1

Figure IV.4

The word x1 = (1, 1)(1, 0) is both a prefix and a suffix of x2 = (1, 1)(1, 0)(1, 0)
(1, 1)(1, 0), but w1 is neither a prefix nor a suffix of w2. Now consider the following
(left) sequential transducer (Figure IV.4) and let β be the sequential function
realized. Then

α(x) =

{

β(x) if q− · x = q−;

β(x)1 if q− · x = q.

Thus α is “almost” a sequential function. This leads to the following definition.

Definition A (left) subsequential transducer S = 〈A,B,Q, q−, ρ〉 is composed of
a sequential transducer 〈A,B,Q, q−〉 and of a partial function ρ : Q → B∗. The
partial function |S| : A∗ → B∗ realized by S is defined by

|S|(x) = (q− ∗ x)ρ(q− · x) . (2.6)

A subsequential function is a partial function realized by some subsequential trans-
ducer.

According to the discussion at the beginning of this section, ρ(q− · x) has the
value 0 in (2.6) whenever q− · x = 0.

Example 2.4 (continued) The function α is subsequential with ρ(q−) = ε, ρ(q) =
1.

Example 2.5 Any sequential function is subsequential: it suffices to define ρ(q)
to be the empty word for all q ∈ Q.

Example 2.6 Any partial function with finite domain is subsequential (this is not
true for sequential functions). Consider indeed α : A∗ → B∗ and suppose dom(α)
is finite. We define a subsequential transducer S = 〈A,B,Q, q−, ρ〉 as follows:
Q = dom(α)(A∗)−1 is the set of prefixes of words in dom(α); q− = 1. The next
state and the output functions are defined for u ∈ Q, a ∈ A by

u · a =

{

ua if ua ∈ Q;

0 otherwise
u ∗ a =

{

1 if ua ∈ Q;

0 otherwise

Finally

ρ(u) =

{

α(u) if u ∈ dom(α);

0 otherwise
u ∈ Q .

Then clearly α = |S|.



92 Chapter IV. Rational Functions

Example 2.7 The function τ of Example 2.3 is not subsequential. Assume indeed
that τ = |S| for S as in the definition and set K = max{|ρ(q)| : ρ(q) 6= 0, q ∈ Q}.
Let n be even. Then

|S|(an) = (q− ∗ an)ρ(q− · an) = bn

|S|(an+1) = (q− ∗ an)(q− · an ∗ a)ρ(q− · an+1) = cn+1

If n > K, then w = q− ∗ an is not the empty word, and w ∈ b+ ∩ c+, which is
impossible.

Proposition 2.4 A subsequential function is rational.

Proof. Consider a subsequential transducer S = 〈A,B,Q, q−, ρ〉 and define a mor-
phism µ : A∗ → Rat(B∗)Q×Q by

µap,q =

{

p ∗ a if p · a = q;

0 otherwise.
(a ∈ A) (2.7)

Then an obvious induction shows that (2.7) still holds when a is replaced by a
word w ∈ A∗. Next consider ρ as a column Q-vector, and define a row vector λ by

λq =

{

1 if q = q−;

0 otherwise.

Then

λµwρ =
⋃

q∈Q

µwq−,qρ(q) = (q− ∗ w)ρ(q− · w) = |S|(w) .

Thus |S| is rational by Proposition III.7.3.

Note that the matrices µw of the preceding proof are row monomial, that is for each
p ∈ Q, there is at most one q ∈ Q such that µwp,q 6= 0. Thus the transductions w 7→
µwq−,q for q ∈ Q have disjoint domains, and the same holds for the transductions
w 7→ µwq−,qρ(q).

Proposition 2.5 Let α : A∗ → B∗ and β : B∗ → C∗ be subsequential functions.
Then β ◦ α : A∗ → C∗ is subsequential. If further α and β are sequential (right
sequential), then β ◦ α is sequential (right sequential).

Proof. Consider two subsequential transducers

S = 〈A,B,Q, q−, ρ〉, T = 〈B,C, P, p−, σ〉

realizing α and β respectively. Elements of the product P ×Q are noted [p, q] for
easier checking. Define

T ◦ S = 〈A,C, P ×Q, [p−, q−], ω〉

[p, q] · a = [p · (q ∗ a), q · a] (2.8)

[p, q] ∗ a = p ∗ (q ∗ a) p ∈ P, q ∈ Q, a ∈ A (2.9)

ω([p, q]) = (p ∗ ρ(q))σ(p · ρ(q)) . (2.10)



2. Sequential Transductions 93

We prove that (2.8) and (2.9) remain true if a is replaced by a word w ∈ A∗. This
is clear for x = 1. Arguing by induction, consider x = za, with z ∈ A∗, a ∈ A, and
set

w = q ∗ z , w′ = q · z ∗ a .

Then ww′ = q ∗ za = q ∗ x by (2.3). Next

[p, q] · x = [p · (q ∗ z), q · z] · a = [p · w, q · z] · a

= [p · w · (q · z ∗ a), q · z · a]

= (p · ww′, q · za] = [p · (q ∗ x), q · x] .

[p, q] ∗ x = ([p, q] ∗ z)([p, q] · z ∗ a) = (p ∗ (q ∗ z))([p · (q ∗ z), q · z] ∗ a)

= (p ∗ w)([p · w, q · z] ∗ a)

= (p ∗ w)(p · w ∗ (q · z ∗ a)) = (p ∗ w)(p · w ∗ w′) = p ∗ ww′

= p ∗ (q ∗ x) .

Finally

ω([p−, q−] · x) = ω([p− · (q− ∗ x), q− · x])

= (p− · (q− ∗ x) ∗ ρ(q− · x))σ(p− · (q− ∗ x) · ρ(q− · x))

= (p− · (q− ∗ x) ∗ ρ(q− · x))σ(p− · α(x)) .

Consequently

|T ◦ S|(x) = ([p−, q−] ∗ x)ω([p−, q−] · x)

= (p− ∗ (q− ∗ x))(p− · (q− ∗ x) ∗ ρ(q− · x))σ(p− · α(x))

= (p− ∗ (q− ∗ x)ρ(q− · x))σ(p− · α(x))

= (p− ∗ α(x)σ(p− · α(x)) = β(α(x)) .

Thus |T ◦S| = β ◦α. If both α and β are sequential, then ρ and σ can be assumed
to have always the value 1. Then by (2.10), ω([p, q]) = (p∗1)σ(p·1) = 1 and β◦α is
sequential. For right sequential functions, the result follows from Proposition 2.2.

If one of the two partial functions α and β is left sequential and the other
is right sequential, then β ◦ α is a rational function. It is quite remarkable that
conversely any rational function can be factorized as a composition of a left and a
right sequential function. This will be proved in Section 5.

A sequential function preserves prefixes. We show now that a subsequential
function which preserves prefixes is sequential.

Proposition 2.6 Let α : A∗ → B∗ be a partial function. Then α is sequential if
and only if the following conditions hold:

(i) α is subsequential;
(ii) α preserves prefixes.

Proof. Clearly, the conditions are necessary. Conversely, assume that α satisfies
(i) and (ii), and consider a subsequential transducer S = 〈A,B,Q, q−, ρ〉 realizing



94 Chapter IV. Rational Functions

α. We first put S into some standard form. Consider a state q ∈ Q. If q is not
accessible, that is if there is no word u such that q− · u = q, then the state q can
clearly be deleted. Thus we may assume that all states are accessible. Next, if
ρ(q) = 0, then α(u) = 0 for all u ∈ A∗ such that q− · u = q, and further α(uv) = 0
for all v ∈ A∗ since α preserves prefixes. Consequently, if the next state function
and the output function are modified be setting q′·a = 0, q′∗a = 0 for all (q′, a) such
that q′ · a = q, then the new subsequential transducer realizes the same function.
Thus q can be deleted (since it is no longer accessible), and consequently we can
assume that ρ(q) 6= 0 for all q ∈ Q.

Next, we claim that for all q ∈ Q, a ∈ A, there exists λ(q, a) ∈ B∗ ∪ {∅} such
that

ρ(q)λ(q, a) = (q ∗ a)ρ(q · a) (2.11)

λ(q, a) 6= 0 ⇐⇒ q ∗ a 6= 0 . (2.12)

Indeed, (2.12) follows from (2.11) since ρ(q) 6= 0 for all q ∈ Q. Next, in order to
prove (2.11), let u be a word such that q− · u = q. If q ∗ a 6= 0 then

α(ua) = (q− ∗ u)(q ∗ a)ρ(q · a) 6= 0 ,

and since α preserves prefixes,

α(ua) = α(u)y = (q− ∗ u)ρ(q)y

for some word y ∈ B∗. Thus

ρ(q)y = (q ∗ a)ρ(q · a)

showing that y is independent of u. We define

λ(q, a) =

{

y if q ∗ a 6= 0;

0 otherwise.

Then λ has the same domain as the output function of S.
Consider now the sequential transducer L = 〈A,B,Q, q−〉 with the same next

state function as S, and with output function λ. We claim that α = |L|, that is
that α(x) = λ(q−, x) for x ∈ A∗. By (ii), this holds for x = 1. If x = za with
z ∈ A∗, a ∈ A, then

λ(q−, x) = λ(q−, z)λ(q− · z, a) = α(z)λ(q− · z, a)

= (q− ∗ z)ρ(q− · z)λ(q− · z, a)

= (q− ∗ z)(q− · z ∗ a)ρ(q− · za) = α(za) .

Subsequential functions preserve prefixes only if they are sequential. However,
they satisfy a property which is closely related to the preservation of prefixes.
Consider indeed a subsequential transducer S = 〈A,B,Q, q−, ρ〉, and let α = |S|.
If u1, u2 ∈ dom(α) are “near” in the sense that u1 = uv1, u2 = uv2 and |v1| + |v2|
is “small”, then α(u1) and α(u2) are also near, since

α(uvi) = (q− ∗ u)(q− · u ∗ vi)ρ(q− · uvi) i = 1, 2 ,



2. Sequential Transductions 95

and the length of the words (q− · u ∗ vi)ρ(q− · uvi) are bounded by some function
of |v1| and |v2|. This observation expresses some topological property. In order to
explain it, we introduce some definitions.

For words u, v ∈ A∗, we define

u ∧ v = the greatest common prefix of u and v .

More generally, if X is a nonempty language, define

∧

X = the longest word which is a prefix of all words in X .

The notation is justified by the following remark: Define a relation � by: u � v if and

only if u is a prefix of v. Then � is a partial order, sometimes called the “prefix order”.

Since u � v if and only if u ∧ v = u, A∗ is a semi-lattice, and u ∧ v is the greatest lower

bound of u and v.

Definition The (left) distance of u and v is the number

‖u, v‖ = |u| + |v| − 2|u ∧ v| .

Thus, ‖u, v‖ is the sum of the length of those words which remain when the greatest
common prefix of u and v is erased. In order to verify that we get a distance, we
first observe that ‖u, v‖ = 0 if and only if |u|+ |v| = 2|u∧v|. Since |u∧v| ≤ |u|, |v|,
this is equivalent to |u ∧ v| = |u| = |v|, that is to u = v. Next, we verify that

‖u, v‖ ≤ ‖u, w‖+ ‖w, v‖ u, v, w ∈ A∗ .

A straightforward computation shows that this inequality is equivalent to

|u ∧ w| + |w ∧ v| ≤ |w| + |u ∧ v| .

Since u∧w and v ∧w are prefixes of w, either u∧w is a prefix of v ∧w, thus of u
and of v, and |u∧w| ≤ |u∧v| or v∧w is a prefix of u and of v, and |v∧w| ≤ |u∧v|.
Both cases give the desired inequality.

From |u ∧ v| ≤ |u|, |v|, we obtain immediately

∣

∣|u| − |v|
∣

∣ ≤ ‖u, v‖ u, v ∈ A∗ . (2.13)

Another useful inequality is the following: if X ⊂ A∗, X 6= ∅, and w =
∧

X, then

‖w, u‖ ≤ max
x,y∈X

‖x, y‖ u ∈ X . (2.14)

Indeed, for any u ∈ X, there is some v ∈ X such that u∧v = w (since otherwise w
would be a proper prefix of all u′∧ v, (v ∈ X) for some u′ ∈ X, thus of all v ∈ X).
Consequently ‖w, u‖ = ‖u ∧ v, u‖ ≤ ‖v, u‖ ≤ maxx,y∈X ‖x, y‖.

Definition A partial function α : A∗ → B∗ has bounded variation if and only if
for all k ≥ 0, there exists K ≥ 0 such that

u, v ∈ dom(α), ‖u, v‖ ≤ k =⇒ ‖α(u), α(v)‖ ≤ K .



96 Chapter IV. Rational Functions

Example 2.8 A subsequential function has bounded variation. Let indeed α =
|S| with S = 〈A,B,Q, q−, ρ〉, and set

M = max{|q ∗ a| : q ∈ Q, a ∈ A, q ∗ a 6= 0} ,

N = max{|ρ(q)| : q ∈ Q, ρ(q) 6= 0} .

If uv ∈ dom(α), then α(uv) = (q− ∗ u)(q− · u ∗ v)ρ(q− · uv). Thus |α(uv)| ≤
|q− ∗ u| + |v| ·M +N . Let k ≥ 0, and define K = k ·M + 2N . If u1, u2 ∈ dom(α)
and ‖u1, u2‖ ≤ k, then u1 = uv1, u2 = uv2, with |v1| + |v2| ≤ k. Consequently
α(uv1) = (q− ∗ u)w1, α(uv2) = (q− ∗ u)w2 and

‖α(uv1), α(uv2)‖ ≤ |w1| + |w2| ≤ (|v1| + |v2|)M + 2N ≤ K .

Note that for M ′ = max(M, 2N), we have a stronger inequality:

‖α(u1), α(u2)‖ ≤M ′(1 + ‖u1, u2‖) .

The following result gives a characterization of subsequential functions.

Theorem 2.7 (Choffrut (1978)) Let α : A∗ → B∗ be a partial function. Then α
is subsequential if and only if

(i) α has bounded variation;
(ii) for all L ∈ Rat(B∗), α−1(L) ∈ Rat(A∗).

This theorem is an extension of a characterization of sequential functions:

Theorem 2.8 (Ginsburg and Rose (1966)) Let α : A∗ → B∗ be a partial function.
Then α is sequential if and only if

(i) α preserves prefixes;
(ii) there exists an integer M such that, for all u ∈ A∗, a ∈ A:

ua ∈ dom(α), α(ua) = α(u)y imply |y| ≤M ;

(iii) for all rational languages L ⊂ B∗, α−1(L) is a rational language.

Proof. In order to deduce Theorem 2.8 from Theorem 2.7, it suffices to show that
α has bounded variation. The desired conclusion then follows by Proposition 2.6.
Let k ≥ 0, and let uv1, uv2 ∈ dom(α) be such that v1 ∧ v2 = 1, and ‖uv1, uv2‖ =
|v1| + |v2| ≤ k. Then α(uv1) = α(u)y1, α(uv2) = α(u)y2 and, by (ii), |y1| < |v1|M ,
|y2| < |v2|M . Consequently ‖α(uv1), α(uv2)‖ ≤ |y1| + |y2| ≤ kM .

Proof of Theorem 2.7. This proof is an adaptation of the proof of the Ginsburg-
Rose Theorem, as given for instance in Ginsburg (1966) or in Eilenberg (1974).
Since a subsequential function verifies (i) and (ii), we have to prove that these
conditions are sufficient.

The proof is in four parts. We first associate to α a finite set R of partial
functions from A∗ into B∗. We then prove that a certain family Xr, (r ∈ R) of
subset of A∗ is composed of regular languages. This enables us to construct a
machine realizing α, which works like a subsequential transducer excepted that
the output function has its values in the free group B(∗) generated by B. The last



2. Sequential Transductions 97

step consists in replacing this transducer by a sequential transducer satisfying our
definition. We use the following abbreviation:
If C is an alphabet and n ≥ 0 is an integer, then

C(n) = 1 ∪ C ∪ · · · ∪ Cn = C∗ \ CnC+ .

Let α : A∗ → B∗ satisfy (i) and (ii). Then dom(α) = α−1(B∗) is a regular language
by (ii). Let N be the number of states of a finite automaton recognizing dom(α).
Then we note, for later reference, that

uA∗ ∩ dom(α) 6= ∅ if and only if uA(N−1) ∩ dom(α) 6= ∅ . (2.15)

Indeed, if uv ∈ dom(α) and |v| ≥ N , then there exists, by the Iteration Lemma
for Regular Languages, a word v′ such that |v′| < |v| and uv′ ∈ dom(α).

For u ∈ A∗, define

J(u) = {v ∈ A(N) | α(uv) 6= ∅}

and define a partial function β : A∗ → B∗ by

β(u) =

{

0 if J(u) = ∅;
∧

{α(uv) | v ∈ J(u)} otherwise.

Thus β(u) 6= 0 if and only if J(u) 6= ∅ if and only if uA(N) ∩ dom(α) 6= ∅. In this
case there exists, for v ∈ J(u), a word ru(v) ∈ B∗ such that

α(uv) = β(u)ru(v) (2.16)

and further there are words v1, v2 ∈ J(u) such that

ru(v1) ∧ ru(v2) = 1 . (2.17)

(Note that (2.17) holds even if J(u) is a singleton v since then ru(v) = 1.) We
complete the definition by setting ru(v) = 0 for v ∈ A(N) \ J(u). Thus, for any
u ∈ A∗, there is a partial function ru from A(N) into B∗ satisfying (2.16), with
dom(ru) = J(u). Further α(u) 6= 0 if and only if 1 ∈ J(u) if and only if ru(1) 6= 0.

a) We prove that there exists an integer M such that max{|ru(v)| : v ∈
dom(ru)} ≤M for all u ∈ A∗. For this, consider v1, v2 ∈ J(u). Then ‖uv1, uv2‖ ≤
|v1 + |v2| ≤ 2N . In view of condition (i), there exists an integer M such that

‖α(uv1), α(uv2)‖ ≤M v1, v2 ∈ J(u) .

Consequently, by (2.14),

|ru(v) = ‖β(u), α(uv)‖ ≤ max
v1,v2∈J(u)

‖α(uv1), α(uv2)‖ ≤M

for all v ∈ J(u). Thus each ru is a partial function A(N) → B(M) and the set

Ru = {ru | u ∈ A∗}

as a subset of the finite set of all partial function from A(N) into B(M) is itself
finite. We note 0 the partial function A(N) → B(M) with empty domain.



98 Chapter IV. Rational Functions

b) For r ∈ R, define Xr = {u ∈ A∗ | ru = r}. We claim: the languages Xr are
rational. To prove this, define for i = 0, . . . , 2M and z ∈ BM :

Di,z = {y ∈ B∗ : |y| ≡ i (mod 2M + 1) and (y ∈ B∗z or z ∈ By)} .

(Note that there is at most one y ∈ Di,z such that z ∈ B∗y.) Clearly the language
Di,z is rational. Consider a fixed r ∈ R and define

Lv,i,z = [α−1(Di,zr(v))]v
−1 for v ∈ dom(r)

Kv = [A∗ \ dom(α)]v−1 for v ∈ A(N) \ dom(r) .

By (ii), these languages are rational. Set

K =
⋂

v∈A(N)\dom(r)

Kv ; Li,z
⋂

v∈dom(r)

Lv,i,z ; Yr = K ∩
(

2M
⋃

i=0

⋃

z∈BM

Li,z

)

.

Then Yr is a rational language. We show that Yr = Xr, which proves the claim.
Consider first u ∈ Yr. We must show that ru = r. There exist i ∈ {0, . . . , 2M},

z ∈ BM such that u ∈ K ∩ Li,z. Thus if v ∈ dom(r), α(uv) ∈ Di,zr(v), and if
v ∈ A(N)\dom(r), then α(uv) = 0. Thus dom(r) = dom(ru). If r = 0, then r = ru.
Next if dom(r) is a singleton v, then since r = ru′ for some u′ ∈ A∗, r(v) = 1 by
the remark following (2.17), and r = ru. Thus assume Card(dom(r)) ≥ 2. Then
for each v ∈ dom(r), there is a word yv ∈ Di,z such that

α(uv) = β(u)ru(v) = yvr(v) , (2.18)

and it suffices to show that yv = β(u) for v ∈ dom(r). Let v, v′ ∈ dom(r). By
(2.13), we have

|yv| − |yv′| = |α(uv)| − |α(uv′)| + |r(v′)| − |r(v)|

≤ ‖α(uv), α(uv′)‖ +M ≤ 2M ,

thus
∣

∣|yv| − |yv′ |
∣

∣ ≤ 2M . Since further |yv| ≡ |yv′ | (mod 2M + 1), it follows that
|yv| = |yv′| for all v, v′ ∈ dom(r). Let n be the common length of the words yv
(v ∈ dom(r)).

Since r = ru′ for some u′ ∈ A∗, there exist, by (2.17), words v1, v2 ∈ dom(r)
such that r(v1) ∧ r(v2) = 1. Consider (2.18) for these words. This shows that
|β(u)| ≤ n. Next, let v1, v2 be two words in dom(r) such that ru(v1) ∧ ru(v2) = 1.
By (2.18) there are words y1, y2 of the same length such that

ru(v1) = y1r(v1) , ru(v2) = y2r(v2) .

Therefore |y1| = |y2| ≤ M and y1, y2 are both suffixes of z. Thus y1 = y2. Since
ru(v1) ∧ ru(v2) = 1, y1 = y2 = 1 and |β(u)| = n. Thus u ∈ Xr.

Conversely, let u ∈ Xr. If r = ru = 0, then Li,z = A∗ for all i and all z, and
clearly u ∈ K. Thus u ∈ Yr in this case. Thus assume dom(r) 6= ∅, and let i be the
integer such that 0 ≤ i ≤ 2M and |β(u)| ≡ i (mod 2M + 1). Next let z be either
the unique suffix of length M of β(u) if |β(u)| ≥M , or any word in BM ∩B∗β(u)
otherwise. Then α(uv) ∈ Di,zr(v) for any v ∈ dom(r), and consequently u ∈ Li,z.
Since clearly u ∈ K, we have u ∈ Yr.



2. Sequential Transductions 99

c) Let S ′ = 〈A,Q′, q−〉 be an accessible semiautomaton recognizing simultane-
ously all Xr for r ∈ R (for the construction, see Section I.4). Then for each r ∈ R,
there is a subset Qr of Q′ such that

Xr = |S ′(Qr)| = {u ∈ A∗ | q− · u ∈ Qr} .

Clearly the Qr are pairwise disjoint and Q′ = ∪r∈RQr. Next set

R+ = {r ∈ R | r(1) 6= 0} Q+ = ∪r∈R+Qr .

Then 0 /∈ R+ and dom(α) = |S ′(Q+)|. Observe that

u ∈ X0 ⇐⇒ q− · u ∈ Q0 ⇐⇒ β(u) = 0 (2.19)

and that further, in view of (2.15),

u ∈ X0 ⇐⇒ uA∗ ∩ dom(α) = ∅ ⇐⇒ uA(N−1) ∩ dom(α) = ∅ . (2.20)

Thus u ∈ X0 implies uA∗ ⊂ X0 (in other terms, X0 is a right ideal). Thus q ∈ Q0

implies q · x ∈ Q0 for all x ∈ A∗, and further q− /∈ Q0 since otherwise α = 0 and
there is nothing to prove.

Define S = 〈A,Q, q−〉 by setting Q = Q′ \ Q0, and by defining the next state
function of S to be the partial function obtained by restriction of the next state
function of S ′ to Q. Thus q · a = 0 in S if and only if q · a ∈ Q0 in S ′. Then for
q ∈ Qr ⊂ Q, a ∈ A:

q · a = 0 if and only if dom(α) ∩ aA(N−1) = ∅ . (2.21)

Indeed, let u ∈ A∗ be such that q− · u = q. Then by (2.20), q · a = 0 if and only if
uaA(N−1) ∩ dom(α) = ∅, and this holds if and only if dom(r) ∩ aA(N−1) = ∅.

After these preliminaries, we now construct a subsequential transducer realizing
α, but with output function into the free group B(∗) generated by B. (Since each
word in B∗ is reduced, B∗ can be identified with its image in B(∗), and hence B∗

can be viewed as a submonoid of B(∗). In particular, if u, v ∈ B∗ then u−1v is
always a well defined element of B(∗), and u−1v is in B∗ if and only if u is a prefix
of v. See also II.3.) Consider a new state q0, and extend the next state function
of S be setting

q0 · a = q− · a (a ∈ A) .

Next define

q0 ∗ a = β(a) (a ∈ A) ,

and for q ∈ Qr, a ∈ A,

q ∗ a =

{

0 if q · a = 0;

r(av)r′(v)−1 if q · a ∈ Qr′ , v ∈ dom(r) ∩ aA(N−1) .

First we verify that the definition is correct. If q · a = q′ ∈ Qr′, then dom(r) ∩
aA(N−1) 6= ∅ by (2.20). Thus if u ∈ A∗ is such that q− · u = q, then for v ∈
dom(r) ∩ aA(N−1),

0 6= α(uav) = β(u)r(av) = β(ua)r′(v) , (2.22)



100 Chapter IV. Rational Functions

showing first that r′(v) 6= 0, and next that r(av)r′(v)−1 = β(u)−1β(ua) is an
element of B(∗) which is independent of the choice of v in dom(r)∩ aA(N−1). Thus
the next state function and the output function have the same domain. We claim:

q0 ∗ u = β(u) u ∈ A+ . (2.23)

This holds for |u| = 1. Arguing by induction, consider u ∈ A+, a ∈ A. If β(u) = 0,
then u ∈ X0, and ua ∈ X0. Consequently q0 ∗ ua = 0 = β(ua) by (2.19). If
β(u) 6= 0, then q0 · u = q for some q ∈ Qr, (r ∈ R \ 0). Then by (2.22),

q0 ∗ ua = β(u)(q ∗ a) =

{

0 if q · a = 0

β(u)β(u)−1β(ua) otherwise.

Since by (2.19) q · a = 0 if and only if β(ua) = 0, (2.23) is proved. Finally define
ρ : q0 ∪Q→ B∗ by ρ(q0) = α(1) and

ρ(q) =

{

0 if q /∈ Q+

r(1) if q ∈ Qr and r ∈ R+.
q ∈ Q

Then (q0 ∗ u)ρ(q0 · u) = α(u) for all u ∈ A∗.
d) It remains to transform the above transducer into a subsequential transducer

which agrees with our definition. For q ∈ Q ∪ q0, set

Uq = {u ∈ A∗ | q0 · u = q}

σ(q) = the longest suffix common to the words q0 ∗ u (u ∈ Uq).

Then for all u ∈ Uq, there is a word θ(u) such that β(u) = q0 ∗ u = θ(u)σ(q).
Extend the definition by setting θ(u) = 0 whenever q0 · u = 0. Then θ : A∗ → B∗

is a partial function with the same domain as β. Let q ∈ Q ∪ q0, and let u ∈ Uq,
and suppose that there is a letter a such that q · a 6= 0. Then

q0 ∗ ua = θ(u)σ(q)(q ∗ a) = θ(ua)σ(q · a) .

Since q0 ∗ u, q0 ∗ ua ∈ B∗, and q ∗ a ∈ B(∗), there are words x, y, z ∈ B∗ such that
θ(u)σ(q) = xz, z−1y = q∗a. The last relation shows that z, y are independent of the
choice of u in Uq. Thus z is a common suffix to all q0 ∗ u for u ∈ Uq. Consequently
σ(q) = tz for some t ∈ B∗, and σ(q)(q ∗ a) = w ∈ A∗ with w = tzz−1y = ty. Thus

θ(u)w = θ(ua)σ(q · a) u ∈ Uq .

Assume |w| < |σ(q · a)|. Then the words θ(u) have a nonempty common suffix, in
contradiction with the definition of σ(q). Thus |w| ≥ |σ(q ·a)|, and there is a word
λ(q, a) ∈ B∗ such that

θ(u)λ(q, a) = θ(ua) (u ∈ Uq) . (2.24)

Define λ(q, a) = 0 whenever q · a = 0, and consider S equipped with the output
function λ. λ and the next state function have the same domain, further λ(q0, 1) =



3. The Cross-Section Theorem 101

1 and by (2.24) θ(u) = λ(q0, u) for all u ∈ A∗. Define τ : Q ∪ q0 → B∗ by
τ(q) = σ(q)ρ(q). Then

α(u) = β(u)ρ(q0 · u) = λ(q0, u)τ(q0 · u) u ∈ A∗ ,

and α is realized by the sequential transducer S = 〈A,Q ∪ q0, q0, τ〉 with output
function λ.

Remark Consider a partial function α : A∗ → B∗ realized by a “generalized” se-
quential transducer defined as a sequential transducer, but with an output function
from A∗ into the free group B(∗). Such a transducer can erase suffixes of an already
computed output word, and can replace it by another word. The last part of the
preceding proof shows that such a transducer can be simulated by a subsequential
transducer working without erasing, that is α is subsequential.

Exercises

2.1 Let α : A∗ → B∗ be a partial function, and let # be a new symbol. Show that α
is subsequential if and only if there exists a sequential function β : (A ∪ #)∗ → B∗ such
that α(u) = β(u#) for all u ∈ A∗.

2.2 Let α1, α2 : A∗ → B∗ be sequential functions. Show that if α1 ∪ α2 is a partial
function, then α1 ∪ α2 is sequential. Show that α1 ∪ α2 is not necessarily subsequential
if α1, α2 are subsequential.

2.3 Let α : A∗ → B∗ be a subsequential function, and let R ⊂ A∗ be a rational language.
Show that the restriction α|R is subsequential.

3 The Cross-Section Theorem

The following theorem is due to Eilenberg (1974). It will be used in the next
section in order to construct special representations for rational functions.

Theorem 3.1 (Cross-Section Theorem) Let α : A∗ → B∗ be a morphism. For
any rational language X ⊂ A∗, there exists a rational language Y ⊂ X such that
α maps Y bijectively onto α(X).

Set Z = α(X). The theorem asserts that in each class X ∩ α−1(z), (z ∈ Z) a
unique word uz can be chosen in such a way that the language Y = {uz | z ∈ Z}
is rational. The language Y is called a cross-section of α on X. We shall see
that the proof is effective. Thus given α and X, a cross-section of α on X can be
constructed effectively.
Proof. We shall factorize α in morphisms of special form. Therefore we first verify
that if β : B∗ → C∗ is a second morphism, and if the conclusion holds for α and
β, it also holds for β ◦ α : A∗ → C∗. Indeed, let X ⊂ A∗ be rational, and let Y be
a rational cross-section of α on X. Set Z = α(X) = α(Y ), and let T ⊂ B∗ be a
rational cross-section of β on Z. Define U = Y ∩ α−1(T ). Then U is rational, α
is injective on U , and α(U) = T . Since β is injective on T , it follows that β ◦ α



102 Chapter IV. Rational Functions

is injective on U . Further β ◦ α(U) = β(T ) = β(Z) = β ◦ α(X). Thus U is a
cross-section of β ◦ α on X.

Next note that if α is injective, the conclusion holds trivially by taking Y = X.
Since any morphism α : A∗ → B∗ can be factorized into α = β ◦γ, where γ : A∗ →
C∗ is injective and β : C∗ → B∗ is alphabetic, it suffices to consider the case where
α is alphabetic. Further, any alphabetic morphism factorizes into projections and
strictly alphabetic morphisms. Thus it suffices to consider the following two cases:

A = {a1, . . . , an} , B = {a1, . . . , an−1} (n ≥ 2)

α(ai) = ai , i = 1, . . . , n− 1

α(an) = an−1 or α(an) = 1 .

Define the lexicographical order on A∗ by setting u < v if either one of the following
cases holds

v = uw ,with w 6= 1 or u = xaiy , v = xajy
′ , with i < j.

Next define a transduction τ : A∗ → A∗ by setting

τ(u) = {v | v > u and α(v) = α(u)} ,

and set

Y = X \ τ(X) .

Thus for each u ∈ X, the smallest element of α−1α(u)∩A is selected, and Y is the
set of all elements so selected, thus Y is a cross-section of α on X.

an−1/an

V V

an/an−1

an−1/an

Figure IV.5

1/an

V 1/an

V

V

an/1

1/an

Figure IV.6

To prove that Y is rational, it suffices to show that the transduction τ is
rational. This will be done by constructing transducers realizing τ . If α(an) = an−1,



3. The Cross-Section Theorem 103

we define a transducer by Figure IV.5 with V = {ai/ai | i = 1, . . . , n}. If α(an) = 1,
then we consider the transducer in Figure IV.6. Then it is easily seen that these
transducers realize τ .

Note that any morphism can be factorized into an injective morphism followed
by a projection (Exercise I.3.3). Thus in the above proof, the case α(an) = an−1

can be skipped. We conserved it since in the construction of unambiguous rep-
resentations for rational functions, precisely this case appears, and it is easier to
handle directly than through an additional decomposition.

We emphasize the fact that the cross-section Y can be obtained effectively from
X. Assume α(an) = an−1. Then we can proceed as follows. Let b and c be new
letters, define C = A ∪ {b, c}, and let φ, ψ : C∗ → A∗ be the morphisms

φ(ai) = ψ(ai) = ai , i = 1, . . . , n

φ(b) = ψ(c) = an−1 , φ(c) = ψ(b) = an .
(3.1)

Then for X ⊂ A∗,

τ(X) = ψ(φ−1(X) ∩K)

where K is the rational language over C recognized by the automaton in Fig-
ure IV.7. Thus, if X is given by a finite automaton, finite automata recognizing
φ−1(X), φ−1(X) ∩K, τ(X) and X \ τ(X) can be effectively constructed.

b

A C

Figure IV.7

Example 3.1 Let A = {a, b} and let α : A∗ → a∗ be the morphism given by
α(a) = α(b) = a. Further, let X ⊂ A∗ be given by Figure IV.8. The lexicographical
order is given here by a < b. Then

τ(X) = bA+

and the desired cross-section is

Y = X \ τ(X) = aba∗ ∪ b .

Example 3.2 Let A = {a, b, c, d}, and let α : A∗ → a∗ be the morphism given by
α(A) = a, and let X ⊂ A∗ be recognized by Figure IV.9. Thus

X =
[

(bdb ∪ bc ∪ cb)a
]∗
.

Define a factorization α = α3 ◦ α2 ◦ α1:

A∗ α1−→ {a, b, c}∗
α2−→ {a, b}∗

α3−→ a∗



104 Chapter IV. Rational Functions

1

2

3
b

a b

a

Figure IV.8

1 2 3 4
b d b

c

c

a

Figure IV.9

by α1(d) = c, α2(c) = b, α3(b) = a, the other letters being unchanged. We compute
a cross-section of α on X.

First

X1 = α(X) =
[

(bcb ∪ bc ∪ cb)a
]∗
,

and α1 is injective on X. Next

X2 = α2(X1) =
[

(b3 ∪ b2)a
]∗
.

We have b < c, and

X ′
1 =

[

(bcb ∪ bc)a
]∗
⊂ X1

is a rational cross-section of α2 on X1. Then

X3 = α2(X2) =
[

a4 ∪ a3
]∗
.

Since a < b, the construction of the proof yields

X ′
2 = (b2a)∗(1 ∪ b3a ∪ (b3a)2)

as a rational cross-section of α3 on X2. By backward computation

X ′′
1 = X ′

1 ∩ α
−1
2 (X ′

2) = (bca)∗(1 ∪ bcba ∪ (bcba)2)

is a rational cross-section of α3 ◦ α2 on X1, and

Y = X ∩ α−1
1 (A′′

1) = (bca)∗(1 ∪ bdba ∪ (bdba)2)

is a rational cross-section of α on X.



4. Unambiguous Transducers 105

Exercise

3.1 Replace α in Example 3.1 by α(a) = α(b) = b, and compute a cross-section of α on
X.

4 Unambiguous Transducers

We use the Cross-Section Theorem to construct particular representations for ra-
tional functions. An alternative construction is also presented which allows a direct
computation of these representations.

In this section, a transducer

T = 〈A,B,Q, q−, Q+, E〉

is assumed to satisfy the two conditions

E ⊂ Q×A× B∗ ×Q , (4.1)

(p, a, z, q), (p, a, z′, q) ∈ E =⇒ z = z′ . (4.2)

Definition The transducer T is called unambiguous if any word x ∈ A∗ is the
input label of at most one successful path e in T .

Let τ be the transduction realized by T . If T is unambiguous and if x ∈ dom(τ),
then there exists a successful path e in T with input label x. Let y be the output
label of e. Then τ(x) = y. Thus

Proposition 4.1 The transduction realized by an unambiguous transducer is a
partial function.

Conversely, we have

Theorem 4.2 (Eilenberg (1974)) Let τ : A∗ → B∗ be a rational function (with
τ(1) = 0 or τ(1) = 1). Then there exists an unambiguous transducer realizing τ .

Proof. By Corollary III.7.2, there are an alphabet C, a strictly alphabetic mor-
phism α : C∗ → A∗, a rational substitution σ : C∗ → B∗ and a regular language
K ⊂ C∗ such that

τ(x) = σ(α−1(x) ∩K) x ∈ A∗ .

Clearly we may assume C minimal, that is each letter c ∈ C has at least one
occurrence in a word in α−1(A∗) ∩K. Then σ is a morphism, since τ is a partial
function.

Since dom(τ) = α(K), there exists, by the Cross-Section Theorem, a rational
language R ⊂ K that maps bijectively onto dom(τ). Let

A = 〈C,Q, q−, Q+〉



106 Chapter IV. Rational Functions

be a finite automaton recognizing R, and define

T = 〈A,B,Q, q−, Q+, E〉

E = {(q, αc, σc, q · c) | q ∈ Q, c ∈ C} .

Note that T satisfies (4.1) and (4.2). Indeed, since α is strictly alphabetic, αc ∈ A
for c ∈ C. Next consider two paths

e = (q−, u1, v1, q1) · · · (qn−1, un, vn, q)

e′ = (q−, u
′
1, v

′
1, q

′
1) · · · (qm−1, u

′
m, v

′
m, q

′)

and let ci, c
′
j ∈ C be such that αci = ui, (1 ≤ i ≤ n), αc′j = u′j, (1 ≤ j ≤ m).

Assume that e and e′ have the same input label x = αz = αz′ with z = c1 · · · cn,
z′ = c′1 · · · c

′
m. Since z, z′ ∈ R and α is injective on R, it follows that z = z′ and

e = e′. This shows that T is unambiguous.

Corollary 4.3 Let τ : A∗ → B∗ be a rational function. Then there exists a
normalized unambiguous transducer realizing τ .

Proof. Let T = 〈A,B,Q, q−, Q+, E〉 be an unambiguous transducer realizing τ .
Add two new states q0, q1 to Q, and the transitions

{(q0, a, z, q) | (q−, a, z, q) ∈ E} ∪ {(q, a, z, q1) | (q, a, z, q+) ∈ E, q+ ∈ Q+}

to E. Take q0 as a new initial state and {q1} or {q0, q1} as final states, according
to τ(1) = 0 or = 1. Next the resulting transducer can be made trim by deleting
unnecessary states. Clearly it is unambiguous.

Example 4.1 Consider a left sequential transducer. Any path starting at the
initial state is successful, and two distinct successful paths have distinct input
labels. Thus any left sequential transducer is unambiguous.

Example 4.2 Let A = {a}, B = {b, c}, and consider the transducer in Fig-
ure IV.10 realizing the function

τ(an) =

{

bn n even;

cn n odd

The transducer is unambiguous since if n is even the only sucessful path leads
to state 3, and if n is odd the only successful path leads to state 2.

Example 4.3 Consider the transducer of Example 1.2 (Figure IV.11). This trans-
ducer is ambiguous. Take as alphabet C the labels of the transitions: C =
{(a/b), (a/1)}, and consider the morphism α : C∗ → a∗ defined by α((a/b)) =
α((a/1)) = a. Then up to a renaming, we are in the situation of Example 3.1.
Thus Y = (a/b)(a/1)(a/b)∗ ∪ (a/1) is a suitable cross-section, giving the unam-
biguous transducer in Fig IV.12.



4. Unambiguous Transducers 107

1

3

2

a/b

a/c

a/b

a/b

a/c

a/c

Figure IV.10

1

2

3

a/b

a/1

a/1

a/b

Figure IV.11

Example 4.4 Consider the ambiguous transducer of Example 1.3 (Figure IV.13).
Take again the alphabet C = {(a/b), (a/b2), (a/b3), (a/b4)} and the morphism α
mapping all letters onto a. Then, after a renaming, we are in the situation of
Example 3.2. Thus the language

Y =
[

(a/b)(a/b3)(a/b2)
]∗

∪
(

1 ∪ (a/b)(a/b4)(a/b)(a/b2)

∪
[

(a/b)(a/b4)(a/b)(a/b2)
]2)

is a suitable cross-section. This gives the unambiguous transducer in Figure IV.14.
The simpler transducer in Figure IV.15 cannot be obtained in that way.

Let T = 〈A,B,Q, q−, Q+, E〉 be a transducer satisfying (4.1) and (4.2). Define
a matrix representation M = 〈µ,Q, q−, Q+〉 by

µap,q =

{

z if (p, a, z, q) ∈ E;

0 otherwise.

Proposition 4.4 Assume T trim. Then T is unambiguous if and only if M
satisfies the two conditions

(i) For p, q ∈ Q, x, x′ ∈ A∗, there is at most one r ∈ Q such that µxp,r 6= 0 and
µx′r,q 6= 0.

1 2 3

4

a/b

a/1

a/1
a/b

Figure IV.12



108 Chapter IV. Rational Functions

1 2 3 4
a/b a/b4 a/b

a/b3

a/b3

a/b2

Figure IV.13

0 1 2 3 4 5 6 7 8

910

a/b a/b4 a/b a/b2 a/b a/b4 a/b a/b2

a/b

a/b3

a/b2

Figure IV.14

(ii) dom(µq−,q1) ∩ dom(µq−,q2) = ∅ for q1, q2 ∈ Q+, q1 6= q2.

Proof. If T is unambiguous, then (ii) is clearly satisfies. Next, since T is trim,
for any p, q ∈ Q, there are z, z′ ∈ A∗ such that µzq−,p 6= 0, µh′q,q+ 6= 0 for some
q+ ∈ Q+. Thus if (i) fails for some p, q ∈ Q, x, x′ ∈ A∗, then zxx′z′ is the input
label of at least two successful paths.

Conversely, consider two paths e1 and e2 from q− to some final states q1 and q2,
and assume they have the same input label x. Then q1 = q2 by (ii), and e1 = e2
by (i).

If M is normalized, then (ii) is satisfied by definition. Thus the unambiguity
of T is equivalent to condition (i).

Definition A morphism µ satisfying condition (i) of Proposition 4.4 is called
unambiguous .

Example 4.5 If the matrices µx, (x ∈ A∗) are row monomial, then µ is unam-
biguous. Similarly, if the matrices µx, (x ∈ A∗) are column monomial, then µ is
unambiguous.

An unambiguous morphism µ : A∗ → Rat(B∗)Q×Q is called a (0, 1)-morphism
(Schützenberger (1976), Nivat (1968)) for the following reason. Associate to each matrix
µx, (x ∈ A∗) a Q×Q-matrix θµx with integral entries by

θµxp,q =

{

1 if µxp,q 6= 0;

0 otherwise.

0 1 2 3 4 5 6
a/b2 a/b2 a/b2 a/b2 a/b2 a/b2

a/b2

Figure IV.15



4. Unambiguous Transducers 109

Then θ is a morphism if and only if µ is unambiguous. Thus the product of two such

matrices, computed in NQ×Q, is still a matrix with entries 0 or 1.

Row monomial and column monomial matrix morphisms are special cases of a
more general construction.

Definition Let µ : A∗ → P(B∗)Q×Q be a morphism. Then µ is called semimono-
mial if the set Q is of the form Q = V × P , and if, for any a ∈ A, the following
hold:

(i) For any v ∈ V , there is at most one v′ ∈ V such that the submatrix

(µa)v×P,v′×P = (µa(v,p),(v′,p′))p,p′∈P

is nonzero.
(ii) any submatrix (µa)v×P,v′×P is column monomial.

Thus the matrix µa, considered as a V × V matrix, whose entries are P ×
P -matrices is a row monomial matrix, and each of the P × P -block is column
monomial. Clearly, the product of two semimonomial matrices with the same
index set V × P is also semimonomial.

Example 4.6 For V = {1, 2, 3} and P = {1, 2, 3}, the following matrix is semi-
monomial.





























0
0 b 1
0 0 0
0 0 0

0

0 0
0 0 0
0 0 1
0 0 0

0 0
0 0 0
0 0 0
0 0 b





























Any semimonomial morphism µ is unambiguous. Consider indeed two words
x, x′ and assume

µx(v,p)(v′ ,p′) 6= 0 and µ′
(v′,p′)(v′′,p′′) 6= 0 .

Then v′ is uniquely determined by v in view of condition (i), and p′ is uniquely
determined by p′′ in view of (ii).

The following theorem asserts the existence of a semimonomial representation
for any rational function.

Theorem 4.5 (Schützenberger (1976)) Let τ : A∗ → B∗ be a rational function.
Then there exists a matrix representation M = 〈µ,Q, q−, Q+〉 realizing τ such that
µ is semimonomial and

τ =
∑

q+∈Q+

µq−,q+ .



110 Chapter IV. Rational Functions

Recall that we use the symbol
∑

when the domains dom(µq−,q+) are disjoint.

Proof. Let M = 〈µ,Q, q−, Q+〉 be a normalized matrix representation realizing τ .
The proof is in two steps. First, the usual power set algorithm for the determiniza-
tion of an automaton is employed to obtain the set V . Then, “unnecessary” entries
in the matrices µa, (a ∈ A) are deleted to get the row monomial part.

Let V be the family of subsets of Q defined by

v ∈ V ⇐⇒ ∃x ∈ A∗ : v = {q ∈ Q | µxq−,q 6= 0} .

Thus v ∈ V if and only if v is the set of states accessible in M by paths starting
in q− and with input label x. A “next state” function V ×A→ V is defined by

v · a = {q′ ∈ Q | ∃q ∈ v, µaq,q′ 6= 0} .

This function is extended to V × A∗ by setting, as usual, v · 1 = v, v · ax =
(v · x) · a,(x ∈ A∗, a ∈ A). Then clearly

v · xy = (v · x) · y x, y,∈ A∗ .

For each v ∈ V , a ∈ A, define a Q × Q-matrix µ̄va in the following way. Set
v′ = v · a, and for each q′ ∈ v′, let p(q′) be an arbitrary element of v such that
µap(q′),q′ 6= 0. Then

(µ̄va)q,q′ = 0 q ∈ Q, q′ /∈ v′ ; (4.3)

(µ̄va)q,q′ =

{

µap(q′),q′ if q = p(q′);

0 if q 6= p(q′).
q′ ∈ v′ . (4.4)

By definition µ̄va is column monomial. It is obtained from µa by deleting all but
one nonempty element in each column q′ ∈ v′, and by setting equal to zero the
other columns.

Next, let S = V ×Q, and define the morphism

λ : A∗ → Rat(B∗)S×S

by blocks for v, v′ ∈ V , a ∈ A:

(λa)v×Q,v′×Q =

{

0 if v′ 6= v · a;

µ̄va if v′ = v · a.

Then the matrices λa are semimonomial. Further if x = a1a2 · · ·ar, (r ≥ 1, ai ∈ A),
then clearly

(λx)v×Q,v′×Q =

{

0 if v′ 6= v · x;

µ̄va1µ̄v2a2 · · · µ̄vr
ar if v′ = v · x.

(4.5)

where v2 = v · a1, . . . , vr = vr−1 · ar−1 and v′ = vr · ar.
Next, we prove that for v− = {q−}, x ∈ A+, v = v− · x,

λx(v−,q−),(v,q) = µxq−,q q ∈ Q . (4.6)



4. Unambiguous Transducers 111

For |x| = 1, (4.6) results from (4.4). Arguing by induction, let x = ya with y ∈ A+,
a ∈ A, and let v′ = v− · y. Then v = v′ · a, and

(λya)(v−,q−),(v,q) =
⋃

r∈v′

µyq−,r(λa)(v′,r),(v,q)

since (λy)(v−,q−),(v′,r) = µyq−,r = 0 for r /∈ v′. Next if q /∈ v, then (µ̄v′a)r,q = µar,q =
0 for r ∈ v′ and µxq−,q = 0. Thus (4.6) holds if q /∈ v. If q ∈ v, then there is a
unique p ∈ v′ such that (µ̄v′a)p,q = µap,q 6= 0. Thus

(λx)(v−,q−),(v,q) = µyq−,p µap,q = µxq−,q .

This proves (4.6). Finally, set V+ = {v ∈ V | q+ ∈ v} and let

S+ =

{

V+ × {q+} if Q+ = {q+};

(V+ × {q+}) ∪ (v−, q−) if Q+ = {q−, q+}.

Then (λ1)(v−,q−),S+
= 0 or 1 according to (v−, q−) /∈ S+ or (v−, q−) ∈ S+, and for

x ∈ A+:

(λx)(v−,q−),S+
=

⋃

v∈V+

λx(v−,q−),(v,q+) = µxq−,q+ . (4.7)

Indeed, (4.7) holds if v− ·x ∈ V+ (by (4.6)). If v− ·x /∈ V+, that is if q+ /∈ v− ·x, then
µxq−,q+ = 0 and (λx)(v−,q−),S+

= 0 by (4.5). Since there is at most one v ∈ V+ such
that v = v− · x for any x ∈ A+, the functions λ(v−,q−),(v,q+) have disjoint domains.
This completes the proof.

Example 4.7 Consider the rational function α : a∗ → b∗ of Example 4.3, with
matrix

µa =





0 b 1
0 0 1
0 0 b





We first compute V : v1 = v− = {1}, v2 = v1 · a = {2, 3}, v3 = v2 · a = {3} = v3 · a.
The matrices µ̄i (we write µ̄i instead of µ̄vi

) are:

µ̄1a =





0 b 1
0 0 1
0 0 0



 µ̄2a =





0 0 0
0 0 1
0 0 0



 or µ̄2a =





0 0 0
0 0 0
0 0 b



 µ̄3a =





0 0 0
0 0 0
0 0 b





Thus, there are two possible choices for µ̄2: each choice yields another matrix λa:

λa =





0 µ̄1a 0
0 0 µ̄2a
0 0 µ̄3a





With the first matrix µ̄2a, the matrix αa is the matrix of Example 4.6. Next,
V+ = {v2, v3}. Thus S+ = {(v2, 3), (v3, 3)}. In the usual notation, these are the
columns 6 and 9. For both morphisms λ, the row with index (v−, 1) of λan is:

(0, 0, 0; 0, b, 1; 0, 0, 0) n = 1 ;

(0, 0, 0; 0, 0, 0; 0, 0, bn−1) n ≥ 2 .



112 Chapter IV. Rational Functions

1

5

9

6

a/b

a/1

a/1

a/b

Figure IV.16

Note that λ is not trim. The trim transducer associated to λ for the first choice of
µ̄2a is given in Figure IV.16. Thus we get the same transducer as in Example 4.3.

Semimonomial morphisms are particular unambiguous morphisms. Clearly, an
unambiguous morphism is not necessarily semimonomial. There is nevertheless
an interesting relation between unambiguous and semimonomial morphisms: any
unambiguous morphism can be obtained from some semimonomial morphism by
choosing in that morphism some fixed rows and by collapsing columns. This yields
some procedure for constructing unambiguous morphisms.

Definition Let µ : A∗ → Rat(B∗)Q×Q and λ : A∗ → Rat(B∗)S×S be two mor-
phisms. Then µ is summed up from λ if there exist two functions ℓ : Q → S and
c : Q→ 2S such that

µxp,q = λxℓ(p),c(q)

(

⋃

r∈c(q)

λxℓ(p),r

)

(p, q ∈ Q, x ∈ A+) .

Thus µ is obtained from λ by conserving just one row of λ for each p ∈ Q, and
by summing up elements of that row according to some rule which is independent
from p.

Proposition 4.6 Let M = 〈µ,Q, q−, Q+〉 be a trim matrix representation from
A∗ into B∗. If µ is unambiguous, then µ is summed up from some semimonomial
morphism.

Proof. Assume µ is unambiguous. We shall verify that µ can be extracted from
the semimonomial morphism λ constructed in the proof of Theorem 4.5. We keep
the notations of that proof. First, we claim that for the matrix µ̄va defined by
(4.3) and (4.4), we have

(µ̄a)q,q′ =

{

µaq,q′ if q ∈ v, q′ ∈ Q;

0 if q /∈ v, q′ ∈ Q.
(4.8)

Thus µ̄va and µa have the same rows with index q ∈ v. Indeed, (µ̄va)q,q′ = 0 for
q /∈ v by (4.4), and (µ̄va)q,q′ = µaq,q′ = 0 for q ∈ v, q′ ∈ Q \ v′ by definition of
v′ = v · a. Next, for any q′ ∈ v′, there exists a unique p ∈ v such that µap,q′ 6= 0,
since for any x such that v− · x = v, one has µxq,p 6= 0 and µap,q′ 6= 0, and thus
p is unique by Proposition 4.4(i). Therefore (µ̄va)p,q′ = µap,q′ for that p, and
(µ̄va)q,q′ = µaq,q′ = 0 for all q ∈ v \ p. Thus (4.8) is proved.



4. Unambiguous Transducers 113

Next, we prove that for x ∈ A+, v ∈ V , v′ = v · x,

(λx)(v,p),(v′,q) =

{

µxp,q if p ∈ v, q ∈ Q;

0 i p /∈ v, q ∈ Q.
(4.9)

For |x| = 1, (4.9) holds by (4.8) in view of the definition of λ. Arguing by induction,
let x = ya with y ∈ A+, a ∈ A, v′′ = v · y, thus v′ = v′′ · a. Then clearly

(λx)(v,p),(v′,q) = 0 if p /∈ v, q ∈ Q .

Thus assume p ∈ v. Then

(λx)(v,p),(v′,q) =
⋃

r∈Q

(λy)(v,p),(v′′,r)(λa)(v′′,r),(v′,q) ,

and since (λa)(v′′,r),(v′,q) = 0 if r /∈ v′′, it follows from (4.8) that

(λx)(v,p),(v′,q) =
⋃

r∈v′′

µyp,rµar,q = µxp,q .

Note that in view of (4.5)

λx(v,p)(v′ ,q) = 0 if v′ 6= v · x (p, q ∈ Q) .

Thus it follows from (4.9) that

µxp,q =
⋃

v′∈V

λx(v,p)(v′ ,q) (p ∈ v) . (4.10)

Now define a function ℓ : Q → S as follows. For any p ∈ Q, choose a v ∈ V such
that p ∈ v and set ℓ(p) = (v, p). Such a v exists since µ is trim. Next, define c by

c(q) = {(v′, q) | v′ ∈ V } .

Then by (4.10)

µxp,q = λxℓ(p),c(q) .

For a more exhaustive treatment of related questions, especially in connection
with codes, see Boë (1976), Césari (1974), Perrin and Schützenberger (1977).

Exercises

4.1 Compute the trim transducer associated to the second of the two semimonomial
morphisms λ of Example 4.7.

4.2 Use Exercise 3.1 to give a second unambiguous transducer for the transduction of
Example 4.3, and compare with the transducer of Exercise 4.1.

4.3 A partial function β : A∗ → C∗ is length preserving if βx 6= 0 implies |x| = |βx|.
Show that any rational function α : A∗ → B∗ can be written in the form α = γ ◦β, where
β : A∗ → C∗ is a length preserving rational function and γ : C∗ → B∗ is a morphism.



114 Chapter IV. Rational Functions

4.4 Let M be a monoid. The family of unambiguous rational subsets of M is the least
family of subsets of M containing ∅ and the singletons {m}, (m ∈M) and closed under
the following operations: unambiguous union, unambiguous product, unambiguous star.
(A union X∪Y is unambiguous if X∩Y = ∅. A productXY is unambiguous if x, x′ ∈ X,
y, y′ ∈ Y , xy = x′y′ imply x = x′ and y = y′. A star X∗ is unambiguous if X∗ a free
submonoid freely generated by X.)
Show that if α : A∗ → B∗ is a rational function, then the graph of α is an unambiguous
rational subset of A∗ ×B∗.

4.5 (Choffrut) Show that for any rational function α : A∗ → B∗, there is a rational
subset X of dom(α) such that α maps bijectively X onto α(A∗) = im(α). (This is an
extension of the Cross-Section Theorem to rational functions.)

4.6 (Choffrut) Show that for any rational function α : A∗ → B∗, there exists a rational
function β : B → A∗ such that α ◦β : α(A∗) → α(A∗) is the identity function (Hint: Use
Exercise 4.5).

4.7 (Choffrut) Use the previous exercise to show that if α : A∗ → B∗ and β : B∗ → C∗

are partial functions, and if α and β ◦ α and β are rational, then the restriction β|α(A∗)

is rational. Show that if β ◦ α and β are rational, then α needs not to be rational.

5 Bimachines

Bimachines are, in some sense, simultaneously left sequential and right sequential
transducers. We show that a partial function is rational if and only if it is re-
alized by a bimachine, and use this fact to prove that any rational function can
be obtained as the composition of a left sequential function followed by a right
sequential function.

Definition A bimachine B = 〈Q, q−, P, p−, γ〉 over A and B is composed of two
finite sets of states Q,P , two initial states q− ∈ Q, p− ∈ P , of two partial next
state functions Q×A→ Q and A×P → P denoted by dots, and a partial output
function γ : Q× A× P → B∗.

The next state functions are extended to Q×A∗ and A∗ × P in the usual way by
setting

q · 1 = 1, 1 · p = p

q · (xa) = (q · x) · a (ax) · p = a · (x · p)

for q ∈ Q, p ∈ P , x ∈ A∗, a ∈ A. Next the output function γ is extended to
Q× A∗ × P by

γ(q, 1, p) = 1 ;

γ(q, xa, p) = γ(q, x, a · p)γ(q · x, a, p)

for x ∈ A∗, a ∈ A, q ∈ Q, p ∈ P . Then it is easily verified that

γ(q, xy, p) = γ(q, x, y · p)γ(q · x, y, p) (x, y ∈ A∗).



5. Bimachines 115

and if x = a1a2 · · ·an, (ai ∈ A), then

γ(q, x, p) = γ(q, a1, a2 . . . an · p)γ(q · a1, a2, a3 . . . an · p)

· · · γ(q · a1 . . . an−1, an, p) .

The partial function A∗ → B∗ realized by B is defined by

|B|(x) = γ(q−, x, p−) .

If P = {p−}, then B is, up to considerations concerning the domains, a left sequen-
tial transducer. Similarly, if Q = {q−}, then B is a right sequential transducer.

Bimachines were introduced by Schützenberger (1961b). See also Nivat (1968).

Example 5.1 Let α : a∗ → {b, c}∗ be given by

α(an) =

{

bn if n is even;

cn if n is odd.

Consider P = {p−, p1}, Q = {q−, q1} and define the next state functions by a ·p− =
p1, a · p1 = p−, and q− · a = q1, q1 · a = q−. Further, let γ be givens by the table

p− p1

q− c b
q1 b c

Then a simple calculation shows that α(an) = γ(q−, a
n, p−) for n ≥ 0.

Note that in the above definition, no assumption was made about the domains
of the next state functions and γ. Call a bimachine state complete if both next
state functions Q× A→ Q and A× P → P are total functions.

Theorem 5.1 (Eilenberg (1974)) Let α : A∗ → B∗ be a partial function with
α(1) = 1. Then α is rational if and only if it is realized by some bimachine over
A and B.

We shall see that a rational function can always be realized by a state complete
bimachine.

Proof. Let B = 〈Q, q−, P, p−, γ〉 be a bimachine over A and B, define S = Q × P
and consider the transducer T with set of states S, and set of transitions E ⊂
S × A×B∗ × S given by:

((q, p), a, z, (q′, p′)) ∈ E

if and only if q · a = q′, p = a · p′, and z = γ(q, a, p′) 6= 0. Consider any path

((q1, p1), a1, z1, (q
′
1, p

′
1)) · · · ((qn, pn), an, zn, (q

′
n, p

′
n))

in T , with x = a1a2 · · ·an, y = z1z2 · · · zn. Then clearly q1 · x = q′n, p1 = x · p′n,
and y = γ(q1, x, p

′
n). For any q ∈ Q, p ∈ P , define the rational transduction

τq,p : A∗ → B∗ by

τq,p(x) = y



116 Chapter IV. Rational Functions

if and only if there is a path from (q−, p) to (q, p−) with input label x and output
label y, and set τq,p(x) = 0 otherwise. Then τq,p(x) = y 6= 0 if and only if
y = γ(q−, x, p−), and

α =
∑

(q,p)∈S

τq,p .

Thus α is a rational function.
Conversely, let α be realized by an unambiguous normalized matrix representa-

tion M = 〈µ,Q, q−, {q−, q+}〉. Define two families V,W of subsets of Q as follows:

v ∈ V ⇐⇒ ∃x ∈ A∗ : v = {q ∈ Q | µxq−,q 6= 0} ;

w ∈W ⇐⇒ ∃x ∈ A∗ : w = {q ∈ Q | µxq,q+ 6= 0} .

Then define functions V ×A→ V , A×W →W as follows:

v · a = {q′ ∈ Q | ∃q ∈ v : µaq,q′ 6= 0} v ∈ V ;

a · w = {q′ ∈ Q | ∃q ∈ w : µaq′,q 6= 0} w ∈W .

Extend them to words in the usual way by setting:

v · 1 = v , v · (xa) = (v · x) · a ;

1 · w = w , (ax) · w = a · (x · w)

for x ∈ A∗, a ∈ A. Then clearly for x ∈ A∗

v · x = {q′ ∈ Q | ∃q ∈ v : µxq,q′ 6= 0} v ∈ V ;

x · w = {q′ ∈ Q | ∃q ∈ w : µxq′,q 6= 0} w ∈W .
(5.1)

Next, we prove

Card(v ∩ w) ≤ 1 for v ∈ V, w ∈W . (5.2)

Assume indeed that r, r′ ∈ v ∩ w. By definition, there exists a word x such that
µxq−,r 6= 0, µxq−,r′ 6= 0, and similarly there exists y ∈ A∗ such that µyr,q+ 6= 0,
µyr′,q+ 6= 0. Then r = r′ by Proposition 4.4.

Define a partial function

γ : V × A∗ ×W → B∗

by

γ(v, 1, w) = 1

and for x ∈ A∗,

γ(v, x, w) =

{

0 if v ∩ x · w = ∅ or v · x ∩ w = ∅;

µxp,q if v ∩ x · w = p and v · x ∩ w = q.
(5.3)

We claim

γ(v, zz′, w) = γ(v, z, z′ · w)γ(v · z, z′, w) z, z′ ∈ A∗ . (5.4)



5. Bimachines 117

Clearly, (5.4) holds if z = 1 or z′ = 1. Thus we may assume z, z′ ∈ A+. Next, if
v∩zz′ ·w = ∅ or v ·zz′∩w = ∅, then both sides of (5.4) are empty. If p = v∩zz′ ·w
and q = v · zz′ ∩ w, then by definition γ(v, zz′, w) = µzz′p,q 6= 0. Since µ is
unambiguous, there is exactly one r ∈ Q such that

µzz′p,q = µzp,rµz
′
r,q . (5.5)

Thus, by (5.1) r ∈ v · z and r ∈ z′ ·w. Consequently r = v · z ∩ z′ ·w by (5.2), and
therefore g(v, z, z′ · w) = µzp,r and γ(v · z, z′, w) = µz′r,q. Thus (5.4) follows from
(5.5).

Define v− = {q−}, w+ = {q+}. Then in view of (5.4),

B = 〈V, v−,W,w+, γ〉

is a bimachine over A and B, and by construction B is state complete. Next let
x ∈ A+. Then by (5.1)

q+ ∈ v− · x ⇐⇒ µxq−,q+ 6= 0 ⇐⇒ q− ∈ x · w+ ⇐⇒ x ∈ dom(α) .

Thus (5.3) implies

γ(v−, x, w+) = µxq−,q+ (x ∈ A+) .

Since

γ(v−, 1, w+) = 1 ,

it follows that α = |B|.

We conclude this section by the following nice “decomposition theorem”.

Theorem 5.2 (Elgot and Mezei (1965)) Let α : A∗ → B∗ be a partial function
with α(1) = 1. The α is rational if and only if there are a left sequential function
λ : A∗ → C∗ and a right sequential function ρ : C∗ → B∗ such that α = ρ ◦ λ.
Moreover λ can be chosen to be total and length preserving (that is |λ(x)| = |x| for
all x ∈ A∗).

Thus in order to compute α(x) for some x ∈ A∗, one first reads x sequentially
from left to right and transforms it into a word y by some left sequential transducer;
then the resulting word y is read from right to left and transformed into α(x) by
a right sequential transducer.

Proof. If α = ρ ◦ λ, then α is a partial function and α is rational since the
composition of two rational transductions is a rational transduction.

Conversely, consider a bimachine B = 〈Q, q−, P, p−, γ〉 over A and B realizing
α. We may assume that B is state complete, that is the next state functions
Q×A→ Q and A×P → P are total. Set C = Q×A, and define a left sequential
transducer

L = 〈A,C,Q, q−〉



118 Chapter IV. Rational Functions

as follows. The next state function of L is the next state function Q× A → Q of
B, and for q ∈ Q, a ∈ A,

q ∗ a = (q, a) .

Define λ = |L|. Then λ is length preserving. Next define a right sequential
transducer

R = 〈C,B, P, p−〉

by

(q, a) ∗ p = γ(q, a, p)

(q, a) · p =

{

0 if γ(q, a, p) = 0;

a · p otherwise,

where a ·p is the next state of p in B. Thus the next state function and the output
function of R have the same domain. Set ρ = |R|.

Let x = a1a2 · · ·an, (n ≥ 1, ai ∈ A). Then

λ(x) = (q− ∗ a1)(q− · a1 ∗ a2) · · · (q− · a1a2 · · ·an−1 ∗ an)

= (q−, a1)(q1, a2) · · · (qn−1, an) ,

where qi = q− · a1a2 · · ·ai for i = 1, . . . , n− 1. Consequently,

ρ(λ(x)) = λ(x) ∗ p− = ((q−, a1) ∗ pn−1)((q1, a2) ∗ pn−2)

· · · ((qn−2, an−1) ∗ p1)((qn−1, an) ∗ p−)

where pi = (qn−i, an−i+1) · · · (qn−1, an) · p− for i = 1, . . . , n− 1. Thus

ρ(λ(x)) = γ(q−, a1, pn−1) · · · γ(qn−1, an, p−) = α(x) .

(This computation holds also if α(x) = 0 with the usual convention that a ·0 = 0.)
Thus α = ρ ◦ λ, and the theorem is proved.

Exercises

5.1 Prove that a partial function α : A∗ → B is rational if and only if α = λ ◦ ρ, where
ρ : A∗ → C∗ is a right sequential function and λ : C∗ → B∗ is left sequential.

5.2 Let a, b be letters. A partial function α : a∗ → b∗ can be viewed as a partial function
α : N → N by identifying a word with its length. Show that α : N → N is rational if
and only if α = α1 + · · · + αn, where each αi is a partial function with domain riN + si,
(ri, si ∈ N) given by αi(rin+ si) = r′in+ s′i (n ∈ N) for some r′i, s

′
i ∈ N.



6. A Decidable Property 119

6 A Decidable Property

In this section, we continue the investigation of sequential and subsequential func-
tions started in Section 2.

Theorem 6.1 (Choffrut (1977)) Given a matrix representation M from A∗ into
B∗, it is decidable whether |M| is subsequential, and whether |M| is sequential.

According to Proposition III.7.4 (and Exercise III.8.3), M can be supposed
to be trim. In view of Theorem 1.2, it is decidable whether |M| is a rational
function. Further, the results of Section 4 show that then an unambiguous repre-
sentation realizing |M| can effectively be constructed. Thus we may assume that
the representation M in Theorem 6.1 is unambiguous and normalized.

We use the notations and definitions of Section 2. We consider B∗ as a sub-
monoid of the free group B(∗), according to the discussion of Section II.3. Let
M = 〈µ,Q, q−, Q+〉 be an unambiguous normalized matrix representation from
A∗ into B∗, and set α = |M|. Then in particular Q+ = {q−, q+} or Q+ = {q+},
according to 1 ∈ dom(α) or 1 /∈ dom(α). First, we define a property on M which
will appear to express that α has bounded variation.

Definition Two states q1, q2 ∈ Q are twinned if and only if for all x, u ∈ A∗ the
following condition holds

0 6= y1 = µxq−,q1 , 0 6= z1 = µuq1,q1
0 6= y2 = µxq−,q2 , 0 6= z2 = µuq2,q2

}

=⇒ y1z1y
−1
1 = y2z2y

−1
2 (6.1)

M has the twinning property if any two states are twinned.

A pair x, u ∈ A∗ which satisfies the hypotheses of (6.1) is called admissible for
q1, q2. The conclusion of (6.1) can be formulated as follows without use of inverses.

Proposition 6.2 Let y1, y2, z1, z2 ∈ B∗. Then

y1z1y
−1
1 = y2z2y

−1
2 (6.2)

if and only if one of the following conditions is verified:

(i) z1 = z2 = 1 ;

(ii) z1 6= 1 6= z2 and there exists t ∈ B∗ such that either

(ii.1) y2 = y1t and tz2 = z1t ; or
(ii.2) y1 = y2t and tz1 = z2t .

Proof Assume (i) holds. Then (6.2) is obvious. Next, suppose for instance (ii.1).
Then y2z2y

−1
2 = y1tz2t

−1y−1
1 = y1z1tt

−1y−1
1 = y1z1y

−1
1 .

Conversely, suppose that (6.2) holds. Then z1 = 1 if and only if z2 = 1.
Thus assume z1 6= 1, z2 6= 1, and let y be the longest common prefix of y1 and
y2. Set y1 = ys1, y2 = ys2. Then (6.2) becomes s1z1s

−1
1 = s2z2s

−1
2 . If s1 = 1,

then (ii.1) holds with t = s2; if s2 = 1, then (ii.2) holds with t = s1. If both
s1, s2 6= 1, then they differ by their initial letter by definition of y. Thus the
equation s1z1s

−1
1 = s2z2s

−1
2 implies z1 = z2 = 1, contrary to the assumption.



120 Chapter IV. Rational Functions

Example 6.1 Consider the following unambiguous normalized transducer (Fig-
ure IV.17). The function α : a∗ → {b, c, d}∗ realized by this transducer is given
by

α(1) = 1 ; α(a2n) = d(cb)n , n ≥ 1 ; α(a2n+1) = d(cb)n+1 , n ≥ 0 .

In order to verify that the matrix representation M associated to the transducer

1 2 3 4
a/dcb

a/c

a/b

a/b

a/dcb

a/dc

Figure IV.17

has the twinning property, it suffices to show that the states 2 and 3 are twinned.
For this, let x = a2n+1, u = a2m be an admissible pair for 2, 3. Then y1 = µx1,2 =
d(cb)n, z1 = µu2,2 = (cb)m, and y2 = µx1,3 = dc(bc)n = d(cb)nc = y1t with
t = c, and z2 = µu3,3 = (bc)m, whence tz2 = z1t. Thus y1z1y

−1
1 = y2z2y

−1
2 by

Proposition 6.2, and 2, 3 are twinned.

We note the following corollary.

Corollary 6.3 Let y1, y2, z1, z2 ∈ B∗. If y1z
k
1y

−1
1 = y2z

k
2y

−1
2 for some k > 0, then

y1z1y
−1
1 = y2z2y

−1
2 .

Proof. We may assume z1, z2 6= 1 and for instance |y2| ≥ |y1|. Then there exists,
in view of Proposition 6.2, a word t ∈ B∗ such that y2 = y1t and tzk2 = zk1 t.
We prove that this implies tz2 = z1t by induction on |t|, the case |t| = 0 being
immediate. If |t| ≤ |z1|, then z1 = ts for some word s, hence tzk2 = (ts)kt = t(st)k.
Therefore z2 = st and tz2 = tst = z1t. If |t| > |z1|, then t = z1t

′ for some t′.
Next tzk2 = z1t

′zk2 = zk1z1t
′, thus t′zk2 = zk1 t

′ and t′z2 = z1t
′ by induction. Thus

tz2 = z1t.

We note also that if y1z1y
−1
1 = y2z2y

−1
2 , then for all r1, r2

‖y1z1r1, y2z2r2‖ ≤ ‖y1r1, y2r2‖ (6.3)

Indeed, (6.3) is obvious if z1 = z2 = 1. Otherwise, we may assume by Propo-
sition 6.2 that for instance y2 = y1t, and tz2 = z1t for some word t. Then
y2z2 = y1z1t, and consequently |y1z1r1 ∧ y2z2r2| ≥ |y1z1|. This proves (6.3).

Proposition 6.4 The following two conditions are equivalent:

(i) M has the twinning property;
(ii) α has bounded variation.



6. A Decidable Property 121

Proof. Assume that M has the twinning property. Let n be the number of states
of Q. Consider an integer k ≥ 0, and define

K = max{‖α(x1), α(x2)‖ : x1, x2 ∈ dom(α), ‖x1, x2‖ ≤ k, |x1∧x2| ≤ n2} .

Note that ‖x1, x2‖ ≤ k and |x1 ∧ x2| ≤ n2 imply |x1| + |x2| ≤ k + 2n2. Thus K is
finite. We prove that ‖x1, x2‖ ≤ k and x1, x2 ∈ dom(α) imply: ‖α(x1), α(x2)‖ ≤ K.
This holds by definition if |x1 ∧ x2| ≤ n2. Arguing by induction on |x1 ∧ x2|, we
assume |x1 ∧ x2| > n2. Then there exist words s, v1, v2 with s = x1 ∧ x2, xi = svi,
i = 1, 2, |s| > n2. Consider the successful paths in M with input labels x1 and
x2. Since |s| > n2, there exists a factorization s = wuv, |u| > 0, and two states
q1, q2 such that α(xi) = yiziri, where yi = µwq−,qi, zi = µuqi,qi, ri = µ(vvi)qi,q+,
(i = 1, 2).

Since q1 and q2 are twinned, we have by (6.3)

‖α(x1), α(x2)‖ ≤ ‖y1r1, y2r2‖ = ‖α(x′1), α(x′2)‖

where x′1 = wvv1, x
′
2 = wvv2 ∈ dom(α). Further x′1 ∧ x′2 = wv is strictly shorter

than s. Consequently ‖α(x1), α(x2)‖ ≤ K and α has bounded variation.
Conversely, let q1, q2 be two states in M, and consider a pair x, u of words which

is admissible for q1, q2, that is satisfying the hypotheses of (6.1). Since M is trim,
there are words v1, v2 ∈ A∗ such that ri = (µvi)qi,q+ 6= 0 for i = 1, 2. Consequently
xumvi ∈ dom(α) for m ≥ 0, i = 1, 2. Next ‖xumv1, xu

mv2‖ = ‖v1, v2‖, and since α
has bounded variation, there exists an integer K such that

‖y1z
m
1 r1, y2z

m
2 r2‖ ≤ K m ≥ 0 .

Consequently, there exist words s1, s2, with |s1| + |s2| ≤ K such that si is a suffix
of yiz

m
i ri (i = 1, 2) for an infinity of exponents m. In particular, there are integers

p ≥ 0, k > 0 such that

y1z
p
1r1s

−1
1 = y2z

p
2r2s

−1
2 ; (6.4)

y1z
k+p
1 r1s

−1
1 = y2z

k+p
2 r2s

−1
2 . (6.5)

(6.5) can be written as:

y1z
k
1y

−1
1 y1z

p
1r1s

−1
1 = y2z

k
2y

−1
2 y2z

p
2r2s

−1
2 .

In view of (6.4), this implies:

y1z
k
1y

−1
1 = y2z

k
2y

−1
2 ,

and by Corollary 6.3, y1z1y
−1
1 = y2z2y

−1
2 . Thus q1 and q2 are twinned. This

completes the proof.
The following proposition provides the main argument for the proof of Theo-

rem 6.1.

Proposition 6.5 Let n = Card(Q). Then M has the twinning property if and
only if for all q1, q2 ∈ Q, (6.1) holds for all pairs x, u ∈ A∗ with |xu| ≤ 2n2.



122 Chapter IV. Rational Functions

Proof. We argue by induction on |xu|, that is we assume that (6.1) holds for all
q1, q2 ∈ Q, and for all pairs x′, u′ of words admissible for q1, q2 such that |x′u′| <
|xu|. Consider q1, q2 ∈ Q, and consider a pair x, u of words such that the hypotheses
of (6.1) hold. Clearly we may assume |xu| > 2n2 and |u| > 0. Thus either |x| > n2

or |u| > n2. If |x| ≥ n2 + 1, then there exist a factorization x = x1vx2, with v 6= 1,
and p1, p2 ∈ Q, r1, s1, t1, r2, s2, t2 ∈ B∗ such that y1 = r1s1t1, y2 = r2s2t2 and

r1 = µ(x1)q−,p1 , s1 = µvp1,p1 , t1 = µ(x2)p1,q1 ,

r2 = µ(x1)q−,p2 , s2 = µvp2,p2 , t2 = µ(x2)p2,q2 .

Thus x1, v is an admissible pair for p1, p2 and x1x2, u is an admissible pair for q1, q2.
Consequently by induction

r1s1r
−1
1 = r2s2r

−1
2 and r1t1z1t

−1
1 r−1

1 = r2t2z2t
−1
2 r−1

2

Hence

y1z1y
−1
1 = (r1s1r

−1
1 )(r1t1z1t

−1
1 r−1

1 )(r1s
−1
1 r−1

1 )

= r2s2t2z2t
−1
2 s−1

2 r−1
2 = y2z2y

−1
2 .

Next assume |u| ≥ n2+1. Then similarly there exist a factorization u = u1vu2 with
v 6= 1, and p1, p2 ∈ Q, r1, s1, t1, r2, s2, t2 ∈ B∗ such that z1 = r1s1t1, z2 = r2s2t2
and

r1 = µ(u1)q1,p1 , s1 = µvp1,p1 , t1 = µ(u2)p1,q1 ,

r2 = µ(u1)q1,p2 , s2 = µvp2,p2 , t2 = µ(u2)p2,q2 .

If u2 = 1, then p1 = q1, p2 = q2, t1 = t2 = 1. Thus (x, u1) and (x, v) are admissible
pairs for q1, q2, and by induction

y1r1y
−1
1 = y2r2y

−1
2 and y1s1y

−1
1 = y2s2y

−1
2 .

Then

y1z1y
−1
1 = y1r1s1y

−1
1 = (y1r1y

−1
1 )(y1s1y

−1
1 )

= (y2r2y
−1
2 )(y2s2y

−1
2 ) = y2z2y

−1
2 .

Finally, if u2 6= 1, then x, u1u2 is an admissible pair for q1, q2 and xu1, v is an
admissible pair for p1, p2. By induction

y1r1t1y
−1
1 = y2r2t2y

−1
2 and y1r1s1r

−1
1 y−1

1 = y2r2s2r
−1
2 y−1

2 .

It follows that

y1z1y
−1
1 = y1r1s1t1y

−1
1 = (y1r1s1r

−1
1 y−1

1 )(y1r1t1y
−1
1 )

= (y2r2s2r
−1
2 y−1

2 )(y2r2t2y
−1
2 ) = y2r2s2t2y

−1
2 = y2z2y

−1
2 .

Proposition 6.6 If M has n states and has the twinning property, then α pre-
serves prefixes if and only if α(1) = 1 and for any x ∈ A∗ with |x| ≤ n2, and for
any a ∈ A, α(xa) 6= 0 implies α(xa) ∈ α(x)B∗.



6. A Decidable Property 123

Proof. The conditions are obviously necessary. Conversely, let x ∈ A∗, a ∈ A such
that xa ∈ dom(α). Arguing by induction, we may assume |x| > n2. There exists
a factorization x = x1vx2 with v 6= 1, and q1, q2 ∈ Q, y1, z1, r1, y2, z2, r2 ∈ B∗ such
that

α(x) = y1z1r1 , α(xa) = y2z2r2 ,

y1 = µ(x1)q−,q1 , z1 = µvq1,q1 , r1 = µ(x2)q1,q+ ,

y2 = µ(x1)q−,q2 , z2 = µvq2,q2 , r2 = µ(x2a)q2,q+ ,

It follows that α(x1x2) = y1r1, α(x1x2a) = y2r2. Since M has the twinning
property, and since x1, v is an admissible pair for q1, q2,

y1z1y
−1
1 = y2z2y

−1
2 . (6.6)

Next, since |x1x2| < |x|, there is a word u ∈ B∗ such that

y2r2 = α(x1x2a) = α(x1x2)u = y1r1u . (6.7)

Combining (6.6) and (6.7), we obtain

α(xa) = y2z2r2 = y2z2y
−1
2 y2r2 = y1z1y

−1
1 y1r1u = y1z1r1u = α(x)u .

Proof of Theorem 6.1. Since α is realized by M, α is rational. Consequently
α−1 : A∗ → B∗ is a rational transduction and by Corollary III.4.2, α−1 preserves
rational languages. Thus in view of Theorem 2.7, α is subsequential if and only
if α has bounded variation, and by Proposition 6 this holds if and only if M has
the twinning property which is decidable by Proposition 6.5. Thus it is decidable
whether α is subsequential. Further, α is sequential if and only if M has the
twinning property and α preserves prefixes. By Proposition 6.6, this is decidable.
Thus the proof is complete.



124 Bibliography



Bibliography

Expository texts on formal languages include Autebert and Cousineau (1976),
Ginsburg (1966), Becker and Walter (1977), Eilenberg (1974), Ginsburg (1966),
Hopcroft and Ullman (1969), Hotz (1968, 1969), Hotz and Claus (1972), Maurer
(1977), Salomaa (1969, 1973). Salomaa (1973) contains a list of books on formal
languages and automata theory up to March 1972. Ginsburg (1975) is a tratise
on AFL theory. For rational tranductions and rational functions, see Eilenberg
(1974).

Aho A. V and Ullman J. D . The theory of parsing, translation, and compiling.
Vol. I: Parsing. Prentice-Hall Inc., Englewood Cliffs, N. J., 1972. Prentice-Hall
Series in Automatic Computation.

Amar V and Putzolu G . Generalizations of regular events. Information and
Control, 8:56–63, 1965. ISSN 0890-5401.

Anissimow A. W and Seifert F. D . Zur algebraischen Charakteristik der durch
kontext-freie Sprachen definierten Gruppen. Elektron. Informationsverarbeit.
Kybernetik, 11(10–12):695–702, 1975. ISSN 0013-5712.

Autebert J.-M and Cousineau G . Théorie des automates et des langages formels:
I. Les languages algébriques. Institut de Programmation, Université de Paris,
1976.

Becker H and Walter H . Formale Sprachen. Vieweg, Braunschweig, 1977. Eine
Einführung, Skriptum für Hörer aller Fachrichtungen ab 3. Semester, Uni-Text.

Benois M . Parties rationnelles du groupe libre. C. R. Acad. Sci. Paris Sér. A-B,
269:A1188–A1190, 1969.

Benois M and Nivat M . Congruences parfaites et quasi-parfaites. In Séminaire
Dubreil, 25e année 1971-72. Inst. H. Poincaré, Université de Paris, 1972.

Blattner M and Head T . Single-valued a-transducers. J. Comput. System Sci.,
156(3):310–327, 1977. ISSN 0022-0000.

Boë J.-M . Représentations des monöıdes. Applications à la théorie des codes.
Thèse de 3e cycle, Université de Montpellier, 1976.

Césari Y . Sur l’application du théorème de Suschkewitsch à l’étude des codes
rationnels complets. In Automata, languages and programming (Second Col-
loq., Univ. Saarbrücken, Saarbrücken, 1974), pages 342–350. Lecture Notes in
Comput. Sci., Vol. 14. Springer-Verlag, Berlin, 1974.

125



126 Bibliography

Choffrut C . Une caractérisation des fonctions séquentielles et des fonctions sous-
séquentielles en tant que relations rationnelles. Theoret. Comput. Sci., 5(3):
325–337, 1977. ISSN 0304-3975.

Choffrut C . Contribution à l’étude de quelques familles remarquables de fonctions
rationnelles. Thèse d’état, niversité Paris VII, Paris, 1978.

Cochet Y and Nivat M . Une généralisation des ensembles de Dyck. Israel J.
Math., 9:389–395, 1971. ISSN 0021-2172.

Conway J. H . Regular Algebra and Finite Machines. Chapman and Hall, 1971.

Davis M . Computability and unsolvability. McGraw-Hill Series in Information
Processing and Computers. McGraw-Hill Book Co., Inc., New York, 1958.

Eilenberg S . Algèbre catégorique et théorie des automates. Institut Henri Point-
caré, Université de Paris, 1967.

Eilenberg S . Automata, Languages, and Machines. Vol. A. Academic Press [A
subsidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974. Pure
and Applied Mathematics, Vol. 58.

Eilenberg S . Automata, Languages, and Machines. Vol. C, 1978. in preparation.

Elgot C. C and Mezei J. E . On relations defined by generalized finite automata.
IBM J. Res. Develop, 9:47–68, 1965. ISSN 0018-8646.

Fischer P. C and Rosenberg A. L . Multitape one-way nonwriting automata. J.
Comput. System Sci., 2:88–101, 1968. ISSN 0022-0000.

Fliess M . Deux applications de la représentation matricielle d’une série rationnelle
non commutative. J. Algebra, 19:344–353, 1971. ISSN 0021-8693.

Ginsburg S . The Mathematical Theory of Context-Free Languages. McGraw-Hill
Book Co., New York, 1966.

Ginsburg S . Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland Publishing Co., Amsterdam, 1975. Fundamental Studies in
Computer Science, Vol. 2.

Ginsburg S and Rose G. F . A characterization of machine mappings. Canad. J.
Math., 18:381–388, 1966. ISSN 0008-414X.

Greibach S. A . The hardest context-free language. SIAM J. Comput., 2:304–310,
1973. ISSN 1095-7111.

Hopcroft J. E and Ullman J. D . Formal languages and their relation to automata.
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

Hotz G . Automatentheorie und formale Sprachen. Band I. Turingmaschinen und
rekursive Funktionen. B. I.-Hochschulskripten, Band 821 821a. Bibliographis-
ches Institut, Mannheim, 1968. Ausgearbeitet von Hermann Walter.



Bibliography 127

Hotz G . Automatentheorie und formale Sprachen. Band II: Endliche Auto-
maten. B. I.-Hochschulskripten, Band 822/822a. Bibliographisches Institut,
Mannheim, 1969. Ausgearbeitet von Hermann Walter.

Hotz G and Claus V . Automatentheorie und formale Sprachen. Band III. For-
male Sprachen. B.I.-Hochschulskripten, No. 823a. Bibliographisches Institut,
Mannheim, 1972.

Kleene S. C . Representation of events in nerve nets and finite automata. In
Automata studies, Annals of mathematics studies, no. 34, pages 3–41. Princeton
University Press, Princeton, N. J., 1956.

Magnus W , Karrass A , and Solitar D . Combinatorial Group Theory: Presen-
tations of groups in terms of generators and relations. Interscience Publishers
[John Wiley & Sons, Inc.], New York-London-Sydney, 1966.

Maurer H . Theoretische Grundlagen der Programmiersprachen. Theorie der
Syntax. B.I.-Hochschultaschenbücher, Band 404. Bibliographisches Institut,
Mannheim, 1977.

McKnight, Jr. J. D . Kleene quotient theorems. Pacific J. Math., 14:1343–1352,
1964. ISSN 0030-8730.

McKnight, Jr. J. D and Storey A. J . Equidivisible semigroups. J. Algebra, 12:
24–48, 1969. ISSN 0021-8693.

Nivat M . Transductions des langages de Chomsky. Thèse d’état, Université de
Paris, 1967.

Nivat M . Transductions des langages de Chomsky. Ann. Inst. Fourier (Grenoble),
18(fasc. 1):339–455, 1968. ISSN 0373-0956.

Ogden W . A helpful result for proving inherent ambiguity. Math. Systems Theory,
2:191–194, 1968. ISSN 0025-5661.

Perrin D and Schützenberger M.-P . Codes et sous-monöıdes possédant des mots
neutres. In Theoretical computer science (Third GI Conf., Darmstadt, 1977),
volume 48 of Lecture Notes in Comput. Sci., pages 270–281. Springer-Verlag,
Berlin, 1977.

Perrot J.-F and Sakarovitch J . A theory of syntactic monoids for context-free
languages. In Information processing 77 (Proc. IFIP Congr., Toronto, Ont.,
1977), pages 68–72. IFIP Congr. Ser., Vol. 7. North-Holland, Amsterdam, 1977.

Sakarovitch J . Sur les groupes infinis, considérés comme monöıdes syntaxiques de
langages formels. In Séminaire d’Algèbre Paul Dubreil, 29ème année (Paris,
1975–1976), pages 168–179. Lecture Notes in Math., 586. Springer, Berlin,
1977.

Salomaa A . Theory of automata. International Series of Monographs in Pure and
Applied Mathematics, Vol. 100. Pergamon Press, Oxford, 1969.



128 Bibliography

Salomaa A . Formal languages. Academic Press [Harcourt Brace Jovanovich Pub-
lishers], New York, 1973. ACM Monograph Series.

Salomaa A and Soittola M . Automata-theoretic aspects of formal power series.
Springer-Verlag, New York, 1978. ISBN 0-387-90282-1. Texts and Monographs
in Computer Science.

Schnorr C.-P . Rekursive Funktionen und ihre Komplexität. B. G. Teubner,
Stuttgart, 1974. Teubner Studienbücher: Informatik, Leitfäden der ange-
wandten Mathematik und Mechanik LAMM, Band 24.

Schützenberger M.-P . Some remarks on Chomsky’s context-free languages. Quar-
terly Progress Report of the Research Lab. of Electronics, MIT, 68:155–170,
1961a.

Schützenberger M.-P . A remark on finite transducers. Information and Control,
4:185–196, 1961b. ISSN 0890-5401.

Schützenberger M.-P . Sur les relations rationnelles. In Automata theory and formal
languages (Second GI Conf., Kaiserslautern, 1975), volume 33 of Lecture Notes
in Comput. Sci., pages 209–213. Springer-Verlag, Berlin, 1975.

Schützenberger M.-P . Sur les relations rationnelles entre monöıdes libres. Theoret.
Comput. Sci., 3(2):243–259, 1976. ISSN 0304-3975.

Schützenberger M.-P . Sur une variante des fonctions séquentielles. Theoret.
Comput. Sci., 4(1):47–57, 1977. ISSN 0304-3975.

Vogel H . Zur Theorie des rationalen und deterministischen Mengen. Technical
Report 18, Gesellschaft Math. Datenverarb., 1972.

Walljasper S. J . Nondeterministic automata and effective languages. Ph. d.,
University of Iowa, 1970.



Index 129

Index

accessible state, 9
addition, 66, 90
algebraic

— grammar, 15, 63
— language, 17
— subset, 63
— transduction, 62

alphabet, 2
alphabetic morphism, 4
automaton

accessible part, 9
finite, 7, 46
minimal, 10
nondeterministic, 8
semi-, 10, 99

bifix code, 3
bimachine, 114

state complete, 115
bimorphism, 54
bounded variation, 95

code
bifix, prefix, suffix, 3

computation, 69
congruence, 6

saturated, 44
syntactic, 7

context-free
— grammar, 15
— language, 17
— substitution, 23

continuous
morphism, 4
transduction, 78

copy, 5, 53
cross-section, 101

derivation, 16
length of a, 16
proper, 16

distance
— of languages, 7
— of words, 95

Dyck
— congruence, 27
— language, 28
— language, restricted, 27
— primes, 28
— reduction, 28

equations
algebraic, 18
equivalent, 21
right linear, 56
solution of, 19
system of, 18

factor, proper, 2
faithful transduction, 78
free

— commutative monoid, 6
— group, 35
— monoid, 2

function
(left) sequential, 88
length preserving, 113, 117
rational, 83
right sequential, 89
subsequential, 91
— with bounded variation, 95

grammar
algebraic, context-free, 15, 63
proper, 23
reduced, 26
strict, 20
strictly reduced, 26

input label, 69
inverse transduction, 57
iteration lemma for

— algebraic grammars, 25



130 Index

— algebraic languages, 25
— rational relations, 55
— regular languages, 11

label, 69
input, 69
output, 69

language, 2
– of arithmetic expressions, 40
— of sentential forms, 16
algebraic, context-free, 17
local regular, 10
Lukasiewicz, 39
recognizable, 8
regular, 8

length
— of a word, 2
— preserving function, 117
— preserving function, 113

local regular language, 10
Lukasiewicz language, 39

marked position, 11
matrix representation, 72

— with twinning property, 119
normalized, 84
trim, 77

minimal automaton, 10
monoid, 1

quotient –, 6
syntactic, 7

morphism, 4
alphabetic, 4
continuous, ε-free, 4
semigroup, 4, 72
semimonomial, 109
strictly alphabetic, 4
summed up, 112
unambiguous, 108
(0, 1)-, 108

nondeterministic automaton, 8
norm of a language, 7
normalized matrix representation,

84

output label, 69

path

successful, 69
prefix, 2
prefix code, 3
production, 15
projection, 4

quotient monoid, 6
quotient, left, right, 3

rational
— expression, 47
— function, 83
— relation, 53, 55
— subsets, 47
— transduction, 57, 59

recognizable
— relation, 53
— subset, 43
— transduction, 63

recognizable language, 8
reduced grammar, 26
regular language, 8
regular substitution, 8
relation, 5

rational, 53, 55
recognizable, 53

restricted Dyck language, 28
reversal

— of a transduction, 57
right linear system of equations,

56
right sequential

— function, 89
— transduction, 89
— transducer, 89

segment, 3
semiautomaton, 10, 99
semigroup, 1
semilinear subset, 47
semimonomial morphism, 109
semiring, 3
sequential

— function, 88
— transducer, 87
— transduction, 88

shuffle, 65
starheight, 50
strict grammar, 20



Index 131

strictly alphabetic morphism, 4
strictly reduced grammar, 26
subsequential function, 91
subsequential transducer, 91
subset

algebraic, 63
rational, 47
recognizable, 43
semilinear, 47
unambiguous rational, 114

substitution, 5
context-free, 23
regular, 8

subword, 3
successful path, 69
suffix, 2
suffix code, 3
syntactic

— congruence, 7
— monoid, 7

transducer
right sequential, 89
sequential, 87
subsequential, 91
unambiguous, 105

transduction, 56
algebraic, 62
continuous, 78
faithful, 78
inverse, 57
recognizable, 63
reversal, 57
right sequential, 89
sequential, 88

transitions, authorized, forbidden,
10

trim matrix representation, 77
twinned states, 119
twinning property, 119

unambiguous
— morphism, 108
— rational subset, 114
— transducer, 105

variable, 15

word, 2

conjugate, 4
primitive, 4


