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Abstract. M-tree is a dynamic access method suitable to index generic
“metric spaces”, where the function used to compute the distance be-
tween any two objects satisfies the positivity, symmetry, and triangle
inequality postulates. The M-tree design fulfills typical requirements of
multimedia applications, where objects are indexed using complex fea-
tures, and similarity queries can require application of time-consuming
distance functions. In this paper we describe the basic search and man-
agement algorithms of M-tree, introduce several heuristic split policies,
and experimentally evaluate them, considering both I/O and CPU costs.
Results also show that M-tree performs better than R∗-tree on high-
dimensional vector spaces.

1 Introduction

Among the many research challenges which the incoming multimedia (MM) era
entails – including data placement, presentation, synchronization, etc. – content-
based retrieval plays a dominant role [GR95]. Fast retrieval from large MM repos-
itories of images, sounds, texts, and videos, which better satisfy the information
needs of users is becoming a compelling requisite for medical, scientific, legal,
and art applications, to say a few. To this end, MM objects are first charac-
terized by means of relevant features (shapes, textures, patterns, and colors for
images [FEF+94, VM95], loudness and harmonicity for sounds [WBKW96], shots
and objects’ trajectories for videos, etc.), then similarity queries – exact-match
queries are not appropriate for content-based retrieval – are issued to retrieve
the objects which are most similar to a query object. This process thus requires
a distance function to measure the similarity of feature values.

The intrinsic multi-dimensional nature of features has suggested using spa-
tial access methods (SAMs), such as R-tree [Gut84] and its variants [SRF87,
BKSS90], to support similarity queries. However, applicability of SAMs is lim-
ited by two major factors:

1. for indexing purposes, objects are to be represented by means of feature
values in a vector space of dimensionality Dim;
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2. the distance function has to be an Lp norm, such as the Euclidean (L2) or
Manhattan (L1) distance.1

The second restriction rules out the possibility of using distance functions which
account for correlation (or “cross-talk”) between feature values, such as the Ma-
halanobis distance used to compare images from their color histograms [FEF+94].2

From a performance point of view, it has to be remarked that SAMs have been
designed by assuming that comparison of feature values has a negligible CPU cost
with respect to disk I/O. Since this is not always the case in MM applications,
SAMs may turn to be CPU-bound when indexing high-dimensional spaces.

A more recent and general approach to the “similarity indexing” problem
has led to the development of so-called metric trees [Uhl91]. Metric trees only
consider relative distances of objects to organize and partition the search space,
and just require the distance function to be a metric, which allows the triangle
inequality property to be applied (see Section 2). Although the effectiveness of
metric trees has been clearly demonstrated [Chi94, Bri95, BO97], current designs
suffer from being intrinsically static, which limits their applicability in dynamic
database environments. Contrary to SAMs, known metric trees have only tried
to reduce the number of distance computations, paying no attention to I/O costs.

The M-tree is a balanced paged metric tree, which has been explicitly de-
signed to act as a dynamic database access method [ZCR96]. Since the design of
M-tree aims to combine advantages of metric trees and database access meth-
ods, performance optimization concerns both CPU (distance computations) and
I/O costs. Besides dynamicity, M-tree differs from previous metric trees in that
it does not dictate a specific algorithm to organize the indexed objects, rather
only general principles are specified and details are encapsulated in the imple-
mentation of maintenance methods. This approach makes the M-tree a flexible
structure, able to balance between construction and search costs.

In this article, after presenting the basic M-tree principles and algorithms
(Section 3), in Section 4 we discuss alternative algorithms for implementing
the split method, which manages node overflow. Section 5 presents experimen-
tal results obtained from the prototype M-tree we have built within the GiST
framework [HNP95]. It is shown that good performance levels are attained in the
processing of similarity queries, and that M-tree outperforms R∗-tree in high-
dimensional vector spaces.

2 Preliminaries

Indexing a metric space aims to efficiently support similarity queries, whose
purpose is to retrieve DB objects which are most similar to a query object, and
where the (dis)similarity of any two objects is measured by a specific metric d.
Formally, a metric space is a pair, M = (D, d), where D is a domain of feature

1 The Lp distance is defined as Lp(x, y) =
(∑Dim

j=1
| x[j]− y[j] |p

)1/p

.

2 The Mahalanobis distance is
√
(x − y)T C−1(x − y), where C is a covariance matrix.



values – the indexing keys – and d is a total (distance) function with the following
properties:3

(i) d(Ox, Oy) = d(Oy, Ox) (symmetry)
(ii) 0 < d(Ox, Oy) < ∞ (Ox �= Oy), and d(Ox, Ox) = 0 (non negativity)
(iii) d(Ox, Oy) ≤ d(Ox, Oz) + d(Oz, Oy) (triangle inequality)

Example 1. Consider a 2-D shape, Ox = {Ox,i}, represented as a set of relevant
points (e.g. high curvature points) [HKR93]. The Hausdorff metric computes
the distance of two sets of points, Ox and Oy, as:

dH(Ox, Oy) = max{h(Ox, Oy), h(Oy, Ox)}
where h(Ox, Oy) = maxi minj Lp(Ox,i, Oy,j) is the maximum Lp distance from
a point of Ox to any point of Oy.

Example 2. The Levenshtein (edit) distance of two strings, dL(Ox, Oy), is a met-
ric which counts the minimal number of symbols that have to be inserted,
deleted, or substituted, to transform Ox into Oy (e.g. dL(head, tail) = 4).

The two most important types of similarity queries are the range query , where
a minimum similarity (maximum distance) value is specified, and the k nearest
neighbors query , where the cardinality of the result set is an input parameter.
Range query: Given a query object Q ∈ D and a maximum search distance
r(Q), the range query range(Q, r(Q)) selects all the indexed objects Oj such that
d(Oj , Q) ≤ r(Q). ✷

k nearest neighbors (k-NN) query: Given a query object Q ∈ D and an
integer k ≥ 1, the k-NN query NN(Q, k) selects the k indexed objects which have
the shortest distance from Q, according to the distance function d. ✷

There have already been some attempts to tackle the difficult metric space
indexing problem. The Vantage Point (VP) tree [Chi94] partitions a data set
according to the distances the objects have with respect to a reference (vantage)
point. The median value of such distances is then used as a separator to partition
objects into two balanced subsets, to which the same procedure can be recursively
applied. The MVP-tree [BO97] uses multiple vantage points. In this way, given,
say, 2 vantage points, the metric space gets partitioned into 22 regions. The
MVP-tree also makes use of pre-computed distances to speed up the search
and to reduce the number of distance computations at query execution time.
The GNAT design [Bri95] applies a different – so-called generalized hyperplane
[Uhl91] – partitioning style. According to the basic formulation of this strategy,
two reference objects are chosen, and the data set is split by assigning each object
to the closest reference object. Again, this procedure is recursively applied up
to the desired granularity level.

Since all above designs build the index in a top-down way, the tree is not
guaranteed to stay balanced in case of insertions and deletions, thus requiring
costly reorganizations to prevent performance degradation.
3 In order to simplify the presentation, we sometimes refer to Oj as an object, rather
than as the feature value of the object itself.



3 The M-tree

The M-tree organizes the objects into fixed-size nodes,4 which correspond to
regions of the metric space. Nodes of the M-tree can store up to M entries – this
is the capacity of the nodes. For each indexed DB object, one entry with format

entry(Oj) = [ Oj, oid(Oj), d(Oj , P (Oj)) ]

is stored in a leaf node. In entry(Oj), oid(Oj) is the identifier of the object
which resides on a separate data file,5 Oj are the feature values of the object
(i.e., Oj ∈ D), and d(Oj , P (Oj)) is the distance between Oj and P (Oj), the
parent object of Oj (see below).

An entry in an internal (non-leaf) node stores a feature value, Or, also called
a routing object , and a covering radius, r(Or) > 0. The entry for routing object
Or includes a pointer, ptr(T (Or)), to the root of sub-tree T (Or) – the covering
tree of Or – and d(Or, P (Or)), the distance from the parent object:6

entry(Or) = [ Or, ptr(T (Or)), r(Or), d(Or, P (Or)) ]

The semantics of the covering radius is captured by the following

Property 1 The covering radius of a routing object, Or, satisfies the inequality
d(Oj , Or) ≤ r(Or), for each object Oj stored in the covering tree of Or.

A routing object thus defines a region in the metric space M, centered on Or

and with radius r(Or), and Or is the parent of each object Oj stored in the node
referenced by ptr(T (Or)), i.e. Or ≡ P (Oj) (see Figure 1). This implies that the
M-tree organizes the metric space into a set of, possibly overlapping, regions, to
which the same principle is recursively applied.

r(Or)Or
Oj

Or

ptr(T(Or))

Oj

r(Or)

Fig. 1. A routing object, Or, has a covering radius, r(Or), and references a
covering tree, T (Or).

4 Nothing would prevent using variable-size nodes, as it is done in the X-tree [BKK96].
For simplicity, however, we do not consider this possibility here.

5 Of course, the M-tree can also be used as a primary organization, with the whole
objects stored in the leaf nodes.

6 This is undefined for entries in the root node.



3.1 How M-tree Grows

As any other dynamic balanced tree, M-tree grows in a bottom-up fashion. The
overflow of a node N is managed by allocating a new node, N ′, at the same level
of N , partitioning the M + 1 entries among the two nodes, and then posting
(promoting) relevant information to the parent node, Np. When the root splits,
a new root is created and the M-tree grows by one level. The Split method is
concisely described as follows:

Split(N: M-tree node; E: M-tree entry)

{ let N be the set of entries of node N, including the new entry E;

if N is not the current M-tree root

then let Op be the parent object of N, stored in the Np node;

Allocate a new node N ′;
Promote(N,Op1,Op2);

Partition(N,Op1,Op2,N1,N2);

Store in node N entries in N1 and in node N ′ entries in N2;

if N is the current root

then { Allocate a new root node, Np;

Store entry(Op1) and entry(Op2) in Np; }
else { Replace entry(Op) with entry(Op1) in Np;

if node Np is full

then Split(Np, entry(Op2))

else store entry(Op2) in Np; }}

The Promote method chooses, according to some specific criterion, two rout-
ing objects, Op1 and Op2 , to be inserted into the parent node, Np. The Partition
method partitions the (M + 1) entries of the overflown node (the N set) into
two disjoint subsets, N1 and N2, which are then stored in nodes N and N ′,
respectively. A specific implementation of Promote and Partition defines what
we call a split policy . Unlike other (static) metric tree designs, each relying on a
specific criterion to organize objects, M-tree offers the possibility of implement-
ing alternative split policies, which can be tuned depending on application needs
(see Section 4).

Every split policy has to respect the semantics of covering radii, as specified
by Property 1. If the split node, N , is a leaf, this is guaranteed by setting

r(Op1) = max{d(Oj , Op1)|Oj ∈ N1}

In general, the covering radius of a routing object pointing to a leaf equals the
maximum distance between the routing object itself and the objects in the leaf.

When the split involves an internal node, N , each entry Oj in N1 has a
non-null covering radius, r(Oj). By setting

r(Op1) = max{d(Oj , Op1) + r(Oj)|Oj ∈ N1}

it is guaranteed, by the triangle inequality property, that no object in T (Op1)
can be distant from Op1 more than r(Op1). Figure 2 shows this in the case
M = (
2, L2), i.e. the real plane with the Euclidean distance.
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Fig. 2. Split of an internal node on the (
2, L2) metric space.

3.2 Processing Similarity Queries

The M-tree algorithms for processing similarity queries aim to reduce the num-
ber of accessed nodes as well as the number of distance computations. This is
particularly relevant when the search turns to be CPU- rather than I/O-bound,
which might be the case for computationally intensive distance functions. For
this purpose, all the (pre-computed) distances stored in the M-tree nodes, i.e.
d(Or, P (Or)) and r(Or), are used.

Range Queries The query range(Q, r(Q)) selects all the DB objects such
that d(Oj , Q) ≤ r(Q). Algorithm RangeSearch starts from the root node and
recursively traverses all the paths which cannot be excluded from leading to
qualifying objects.

RangeSearch(N: M-tree node, Q: query object, r(Q): search radius)

{ let Op be the parent object of node N;

if N is not a leaf

then { for each entry(Or) in N do:

if | d(Op, Q)− d(Or, Op) |≤ r(Q) + r(Or)
then { Compute d(Or, Q);

if d(Or, Q) ≤ r(Q) + r(Or)
then RangeSearch(*ptr(T (Or)),Q,r(Q)); }}

else { for each entry(Oj) in N do:

if | d(Op, Q)− d(Oj , Op) |≤ r(Q)
then { Compute d(Oj , Q);

if d(Oj , Q) ≤ r(Q)
then add oid(Oj) to the result; }}}

Since, when accessing node N , the distance between Q and Op, the parent
object of N , has already been computed, it is possible to prune a sub-tree without
having to compute any new distance at all. The condition applied for pruning is
as follows.

Lemma1. If d(Or, Q) > r(Q) + r(Or), then, for each object Oj in T (Or), it is
d(Oj , Q) > r(Q). Thus, T (Or) can be safely pruned from the search.



In fact, since d(Oj , Q) ≥ d(Or, Q) − d(Oj , Or) (by the triangle inequality) and
d(Oj , Or) ≤ r(Or) (by def. of covering radius), it is d(Oj , Q) ≥ d(Or, Q)−r(Or).
Since, by hypothesis, it is d(Or, Q)− r(Or) > r(Q), the result follows.

In order to apply Lemma 1, the d(Or, Q) distance has to computed. This can
be avoided by taking advantage of the following result.

Lemma2. If | d(Op, Q) − d(Or, Op) |> r(Q) + r(Or), then d(Or, Q) > r(Q) +
r(Or).

This is a direct consequence of the triangle inequality, which guarantees that
both d(Or, Q) ≥ d(Op, Q)−d(Or, Op) and d(Or, Q) ≥ d(Or, Op)−d(Op, Q) hold
(see Figure 3). The same optimization principle is applied to leaf nodes as well.
Experimental results (see Section 5) show that this technique can save up to
40% distance computations. The only case where distances are necessarily to be
computed is when dealing with the root node, for which Op is undefined.

Q

r(Q)d(Op,Q)

Or

r(Or)

Op

a)

Or

r(Or)d(Or,Op)

Q

r(Q)

Op

b)

d(Or,Op) d(Op,Q)

Fig. 3. The figure shows how Lemma 2 is used to avoid computing dis-
tances. Case a): d(Or, Q) ≥ d(Op, Q) − d(Or, Op) > r(Q) + r(Or); Case b):
d(Or, Q) ≥ d(Or, Op)− d(Op, Q) > r(Q) + r(Or).

Nearest Neighbor Queries The k-NN Search algorithm retrieves the k near-
est neighbors of a query object Q – it is assumed that at least k objects are
indexed by the M-tree. We use a branch-and-bound technique, quite similar to
the one designed for R-trees [RKV95], which utilizes two global structures: a
priority queue, PR, and a k-elements array, NN, which, at the end of execution,
will contain the result.

PR is a queue of pointers to active sub-trees, i.e. sub-trees where qualifying
objects can be found. With the pointer to (the root of) sub-tree T (Or), a lower
bound, dmin(T (Or)), on the distance of any object in T (Or) from Q is also kept.
The lower bound is

dmin(T (Or)) = max{d(Or, Q)− r(Or), 0}
since no object in T (Or) can have a distance from Q less than d(Or, Q)− r(Or).
These bounds are used by the ChooseNode function to extract from PR the next
node to be examined. Since the pruning criterion of k-NN Search is dynamic –



the search radius is the distance between Q and its current k-th nearest neighbor
– the order in which nodes are visited can affect performance. The heuristic cri-
terion implemented by the ChooseNode function is to select the node for which
the dmin lower bound is minimum. Other criteria do not lead to a better perfor-
mance, according to our experimental observations.

ChooseNode(PR: priority queue): M-tree node

{ let dmin(T (O
∗
r )) = min{dmin(T (Or))}, considering all the entries in PR;

Remove the entry [ptr(T (O∗
r )),dmin(T (O

∗
r ))] from PR;

return *ptr(T (O∗
r )); }

At the end of execution, the i-th entry of the NN array will have value NN[i] =
[oid(Oj),d(Oj , Q)], with Oj being the i-th nearest neighbor of Q. The distance
value in the i-th entry is denoted as di, so that dk is the largest distance value
in NN. Clearly, dk plays the role of a dynamic search radius, since any sub-tree
for which dmin(T (Or)) > dk can be safely pruned.

Entries of the NN array are initially set to NN[i] = [ ,∞] (i= 1, . . . , k),
i.e. oid’s are undefined and di = ∞. As the search starts and (internal) nodes
are accessed, the idea is to compute, for each sub-tree T (Or), an upper bound,
dmax(T (Or)), on the distance of any object in T (Or) from Q. The upper bound
is set to

dmax(T (Or)) = d(Or, Q) + r(Or)

Consider the simplest case k = 1, two sub-trees, T (Or1) and T (Or2), and assume
that dmax(T (Or1)) = 5 and dmin(T (Or2)) = 7. Since dmax(T (Or1)) guarantees
that an object whose distance from Q is at most 5 exists in T (Or1), T (Or2)
can be pruned from the search. The dmax bounds are inserted in appropriate
positions in the NN array, just leaving the oid field undefined. The k-NN Search
algorithm is given below.

k-NN Search(T: M-tree root node, Q: query object, k: integer)

{ PR = [T, ];

for i = 1 to k do: NN[i] = [ ,∞];

while PR �= ∅ do:

{ Next Node = ChooseNode(PR);

k-NN NodeSearch(Next Node,Q,k); }}
The k-NN NodeSearch method implements most of the search logic. On an

internal node, it first determines active sub-trees and insert them into the PR
queue. Then, if needed, it calls the NN Update function (not specified here) to
perform an ordered insertion in the NN array and receives back a (possibly new)
value of dk. This is then used to remove from PR all sub-trees for which the dmin

lower bound exceeds dk. Similar actions are performed in leaf nodes. In both
cases, the optimization to reduce the number of distance computations, which
uses the pre-computed distances from the parent object, is applied.

k-NN NodeSearch(N: M-tree node, Q: query object, k: integer)

{ let Op be the parent object of node N;

if N is not a leaf

then { for each entry(Or) in N do:

if | d(Op, Q)− d(Or, Op) |≤ dk + r(Or)



then { Compute d(Or, Q);
if dmin(T (Or)) ≤ dk

then { add [ptr(T (Or)),dmin(T (Or))] to PR;

if dmax(T (Or)) < dk

then { dk = NN Update([ ,dmax(T (Or))]);
Remove from PR all entries

for which dmin(T (Or)) > dk; }}}}
else { for each entry(Oj) in N do:

if | d(Op, Q)− d(Oj , Op) |≤ dk

then { Compute d(Oj , Q);
if d(Oj , Q) ≤ dk

then { dk = NN Update([oid(Oj),d(Oj , Q)]);
Remove from PR all entries

for which dmin(T (Or)) > dk; }}}}

3.3 Inserting Objects

The Insert algorithm recursively descends the M-tree to locate the most suitable
leaf node for accommodating a new object, On, possibly triggering a split if the
leaf is full. The basic rationale to determine the “most suitable” leaf node is
to descend, at each level of the tree, along a sub-tree, T (Or), for which no
enlargement of the covering radius is needed, i.e. d(Or, On) ≤ r(Or). In case
multiple sub-trees with this property exist, the one for which object On is closest
to Or is chosen. This heuristic criterion tries to obtain well-clustered sub-trees,
which has a beneficial effect on performance.

If no routing object for which d(Or, On) ≤ r(Or) exists – thus a covering
radius has to be enlarged – our choice is to minimize the increase of the covering
radius, that is, d(Or, On)−r(Or). This is tightly related to the heuristic criterion
that suggests to minimize the overall “volume” covered by routing objects in the
current node. Algorithm Insert summarizes above arguments.

Insert(N: M-tree node, entry(On): M-tree entry)

{ let N be the set of entries in node N;

if N is not a leaf

then { let Nin = set of entries such that d(Or, On) ≤ r(Or);
if Nin �= ∅
then let entry(O∗

r) ∈ Nin: d(O∗
r , On) is minimum;

else { let entry(O∗
r) ∈ N: d(O∗

r , On)− r(O∗
r ) is minimum;

let r(O∗
r ) = d(O∗

r , On); }
Insert(*ptr(T (O∗

r )),entry(On)); }
else { if N is not full

then store entry(On) in N
else Split(N,entry(On)); }}

4 Split Policies

The “ideal” split policy should select the two objects to be promoted, Op1 and
Op2 , and partition entries in such a way that the two so-obtained regions would



have minimum “volume” and minimum “overlap”. Both criteria aim to improve
the effectiveness of search algorithms, since having small (low volume) regions
leads to well-clustered trees and reduces the amount of indexed dead space –
space where no object is present – and having small (possibly null) overlap
between regions reduces the number of paths to be traversed for answering a
query.

The minimum-volume criterion leads to devise split policies which try to
minimize the values of the covering radii, whereas the minimum-overlap require-
ment suggests that, for fixed values of the covering radii, the distance between
the two chosen reference objects should be maximized.7

Besides above requirements, which are quite “standard” also for spatial access
methods [BKSS90], the possible high CPU cost of computing distances should
also be taken into account. This suggests that even näıve policies (e.g. a random
choice of routing objects), which however execute few distance computations,
are worth considering.

4.1 Choosing the Routing Objects

The Promotemethod determines, given a set of entries, N , two objects to be pro-
moted and stored into the parent node (see Section 3.1). The specific algorithms
we consider can first be classified according to whether or not they “confirm”
the parent object in its role.

Definition 3. A confirmed split policy chooses one of the two objects to be
promoted, say Op1 , to be the parent object itself, Op, of the split node.

In other terms, a confirmed split policy just “extracts” a region, centered on the
second routing object, Op2 , from the region which will still remain centered on
Op. In general, this simplifies split execution and reduces the number of distance
computations.

The alternatives we describe for implementing Promote are only a selected
subset of the whole set we have experimentally evaluated. Other policies are
described in [CPRZ97].

m RAD The “minimum (sum of) RADii” algorithm is the most complex in terms
of distance computations. It considers all possible pairs of objects and, after
partitioning the set of entries, promotes the pair of objects for which the
sum of covering radii, r(Op1) + r(Op2), is minimum.

RANDOM This variant simply selects in a random way the reference object(s).
Although this does not appear to be a “smart” strategy, it is fast and its
performance can be used as a reference for other policies.

SAMPLING This is the RANDOM policy, but iterated over a sample of objects of size
s > 1. For each of the s(s − 1)/2 pairs of objects in the sample, entries are
distributed and potential covering radii established. The pair for which the

7 Note that, without a detailed knowledge of the distance function, it is impossible to
quantify the exact amount of overlap of two non-disjoint regions in a metric space.



resulting sum of covering radii, r(Op1)+r(Op2), is minimum is then selected.
In case of confirmed promotion, only s different distributions are tried. The
sample size in our experiments was set to 1/10-th of node capacity.

M LB DIST The acronym stands for “Maximum Lower Bound on DISTance”.
This policy differs from previous ones in that it only uses the pre-computed
stored distances. In the confirmed version, where Op1 ≡ Op, the algorithm
determines Op2 as the farthest object from Op, that is

d(Op2 , Op) = max
j

{d(Oj , Op)}

When Op1 �= Op, the two promoted objects are chosen so that

d(Op1 , Op) = min
j

{d(Oj , Op)} (Op1 �= Op)

d(Op2 , Op) = max
j

{d(Oj , Op)}

The distance between the two routing objects is then guaranteed to be at
least d(Op2 , Op)−d(Op1 , Op), and no other choice can lead to a higher bound.

4.2 Distribution of the Entries

Given a set of entries N and the two routing objects Op1 and Op2 , the problem is
how to efficiently partition N into two subsets, N1 and N2. For this purpose we
consider two basic strategies. The first one is based on the idea of the generalized
hyperplane decomposition [Uhl91] and leads to unbalanced splits, whereas the
second obtains a balanced distribution. They can be shortly described as follows.

Generalized Hyperplane: Assign each object Oj ∈ N to the nearest routing
object, that is, if d(Oj , Op1) ≤ d(Oj , Op2) then assign Oj to N1, else assign
Oj to N2.

Balanced: Compute d(Oj , Op1) and d(Oj , Op2) for all Oj ∈ N . Repeat until N
is empty:
– Assign to N1 the nearest neighbor of Op1 in N and remove it from N ;
– Assign to N2 the nearest neighbor of Op2 in N and remove it from N .

Depending on data distribution and on how the routing objects are chosen, an
unbalanced split policy can lead to a better objects’ partitioning, because of the
additional degree of freedom one obtains. In particular, it has to be remarked
that, while obtaining a balanced split with spatial access methods forces the
enlargement of regions along only the necessary dimensions, in a metric space
the consequent increase of the covering radius would propagate to all the “di-
mensions”.

An intermediate behavior can be obtained by combining the two above algo-
rithms and setting a minimum threshold on node utilization. If at least m ≤ M/2
entries per node are required, the Balanced distribution can be applied to the
first 2m objects, after which Generalized Hyperplane could be used. In the
following, however, we do not investigate the effects of this variant.



5 Performance Evaluation

In this section we provide experimental results on the performance of M-tree on
synthetic data sets, as obtained from the procedure described in [JD88, appendix
H] which generates normally-distributed clusters in a Dim-D vector space. Un-
less otherwise stated, the number of clusters is 10, the variance is σ2 = 0.1, and
clusters’ centers are uniformly distributed, with Figure 4 showing a 2-D sample.
Our implementation is based on the GiST C++ package [HNP95], and uses a
constant node size of 4 KBytes. This implies that the node capacity, M , is in-
versely related to the dimensionality of the indexed data set. Finally, distance is
evaluated using the L∞ metric, i.e. L∞(Ox, Oy) = maxDim

j=1 {| Ox[j] − Oy[j] |},
which leads to hyper-cubic search (and covering) regions.

0
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Fig. 4. A sample data set used in the experiments.

5.1 Balanced vs. Unbalanced Split Policies

We first compare the performance of the Balanced and Generalized Hyperplane
implementations of the Partition method (see Section 4.2). Table 1 shows the
overhead of a balanced policy with respect to the corresponding unbalanced one
to process range queries with side Dim

√
0.04 (Dim = 2, 10) on 104 objects. Similar

results were obtained also for larger dimensionalities and for all the policies not
shown here. In the table, as well as in all other figures, a “confirmed” split policy
is identified by the suffix 1, whereas 2 designates a “non-confirmed” policy (see
Definition 3).

RANDOM 1 SAMPLING 1 M LB DIST 1 RANDOM 2 m RAD 2

Dim = 2 volume ovh. 4.60 4.38 3.90 4.07 1.69
dist. ovh, I/O ovh. 2.27, 2.11 1.97, 1.76 1.93, 1.57 2.09, 1.96 1.40, 1.30

Dim = 10 volume ovh. 1.63 1.31 1.49 2.05 2.40
dist. ovh, I/O ovh. 1.58, 1.18 1.38, 0.92 1.34, 0.91 1.55, 1.39 1.69, 1.12

Table 1. Balanced vs. unbalanced split policies.

The first value in each entry pair refers to distance computations (CPU cost)
and the second value to page reads (I/O costs). The most important observation



is that Balanced leads to a considerable CPU overhead and also increases I/O
costs. This depends on the total volume covered by an M-tree – the sum of the
volumes covered by all its routing objects – as shown by the “volume overhead”
lines in the table. For instance, on 2-D data sets, using Balanced rather than
Generalized Hyperplane with the RANDOM 1 policy leads to an M-tree for which
the covered volume is 4.60 times larger. Because of these results, in the following
all the split policies are based on Generalized Hyperplane.

5.2 Building and Searching: The Effect of Dimensionality

We now consider how the dimensionality of the data set influences the perfor-
mance of M-tree. The number of indexed objects is 104 in all the graphs.

In general, as Figures 5 and 6 show, the number of distance computations
decreases with growing dimensionalities, whereas I/O costs have an inverse trend.
The explanation is that increasing Dim reduces the node capacity, and so the
number of distances computed by the insertion and split algorithms, but leads
to larger trees (see also Figure 12). The reduction of distance computations is
particularly evident for m RAD 2, whose CPU split costs grow with the square of
node capacity. In general, the fastest split policy is RANDOM 2, while the slowest
is m RAD 2.
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Performance on 10-NN query processing is summarized in Figures 7 and 8,
where number of page I/O’s and distance selectivities are shown, respectively –
distance selectivity is just the ratio of computed distances to the total number
of objects.

It can be observed that policies based on “non-confirmed” promotion, such as
m RAD 2 and RANDOM 2, perform better that “confirmed” policies as to I/O costs,
especially on high-dimensional data where they can save up to 25% I/O’s. This
can be attributed to the better object clustering that such policies can obtain.
As to distance selectivity, differences emerge only with high values of Dim, and
favor m RAD 2 and M LB DIST 1.
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A surprising observation concerns the rather comparable performances of
RANDOM 2 and m RAD 2 policies, the latter being supposed to lead to much better
results. After a careful analysis, we observed that m RAD 2 often leads to very
unbalanced entry distributions and to highly unbalanced covering radii, which
has the negative effect that one of the two radii originating from a split can have
a high value, thus negatively affecting the search performance.

In order to exert a better control on the values of covering radii, we exper-
imented with alternative objective functions. To this end, we introduced the
mS RAD 2 policy, which minimizes the squared sum of radii (r(Op1)

2 + r(Op2)
2),

and mM RAD 2, which minimizes the maximum of r(Op1) and r(Op2). Figures
9 and 10 indeed show that I/O and CPU costs for processing 10-NN queries
when using mM RAD 2 are consistently better than those obtained from m RAD 2
and mS RAD 2. Since these three split policies exhibit similar building costs, in
subsequent analyses we only retain mM RAD 2, and discard the other two policies.
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As to the “quality” of tree construction, measured by the total covered vol-
ume, Figures 11 shows that the best results are obtained from “non-confirmed”
policies. It is interesting to observe that minimal volume is obtained from mM RAD 2,
which also enjoys the best search performance, but this policy leads to trees



which are also the largest ones (only M LB DIST 1 generates more nodes), as
Figure 12 demonstrates.
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5.3 The Influence of Data Set Size

A major challenge in the design of M-tree was to ensure scalability with respect
to the size of the indexed data set. This addresses both aspects of efficiently
building the tree and of performing well on similarity queries.

In Figures 13 and 14 we present the average number of I/O operations and
distance computations per inserted object, for 2-D data sets whose size varies in
the range 104 ÷ 105. Both figures show a logarithmic trend, which is typical of
tree-like indices and is mainly due to the increasing height of the tree.
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Similarly, Figures 15 and 16 show that both I/O and CPU 10-NN search costs
grow logarithmically with the number of indexed objects, proving that M-tree
scales well in the data set size, and that the dynamic management algorithms
do not deteriorate the quality of the search.
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As to the relative behaviors of split policies, figures show that “cheap” policies
(e.g. RANDOM and M LB DIST 1) are penalized by the high node capacity (M =
120) which arises when indexing 2-D points. Indeed, the higher M is, the more
effective “complex” split policies are. This is because the number of alternatives
for objects’ promotion grows as M2, thus for high values of M the probability
that cheap policies perform a good choice considerably decreases.

A related aspect concerns the performance of “confirmed” random policies
(RANDOM 1 and SAMPLING 1) with respect to the corresponding “non-confirmed”
versions (RANDOM 2 and SAMPLING 2). Even if non-confirmed policies consider
a larger number of alternatives8 this is not enough to outperform confirmed
policies. The explanation is as follows. When testing only a few alternatives,
there is a low chance to select “good” new routing objects (see above). Confirmed
policies just reduce the chance of such bad choices, since it can be argued that
confirming the parent object in its role is a not too bad alternative.

5.4 Comparing M-tree with R∗-tree

The final set of experiments we present compares M-tree with R∗-tree [BKSS90],
as implemented in the GiST package.9 Although M-tree has a wider applicability
range than R∗-tree, we believe it is also important to contrast its performance
on “traditional” domains where spatial access methods can be used as well. For
the sake of clarity, in the following we will only consider three split policies for
the M-tree: RANDOM 2, M LB DIST 1, and mM RAD 2.

Results in Figures 17 and 18 compare I/O and CPU costs, respectively, to
build R∗-trees and M-trees. The trend of the graphs for R∗-trees confirms what
already observed about the influence of node capacity (see Figures 5 and 6).

8 If the sample size is s = M/10 = 12, SAMPLING 2 evaluates s(s − 1)/2 = 66 alterna-
tives out of 7140, whereas SAMPLING 1 considers only s = 12 cases.

9 In an earlier version of the paper, we also considered performance of R-trees. This
has been dropped here, since we discovered that the GiST implementation of R-tree
includes some bugs, which makes results quite unreliable.
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Figures 19 and 20 show the search costs for range queries with side Dim
√
0.01.

It can be observed that I/O costs for R∗-tree are higher than those of all M-
tree variants. In order to present a fair comparison of CPU costs, Figure 20
also shows, for each M-tree split policy, a graph (labelled (non opt)) where the
optimization for reducing the number of distance computations (see Lemma 2) is
not applied. Graphs show that this optimization is highly effective, saving up to
40% distance computations (similar results were also obtained for NN-queries).
Note that, even without such an optimization, M-tree is almost always more
efficient than R∗-tree.
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Figures 21 and 22 show, respectively, normalized I/O and CPU costs per
retrieved object for processing range queries when the volume varies in the range
10−10 ÷ 10−1 on the 20-D vector space. In order to fairly compare the access
methods, we did not use any optimization in the M-tree search algorithm for
reducing the number of distances to be computed. Both figures show that the
overall behavior of the M-tree is better than that of the R∗-tree, regardless of
the query volume and of the split policy.

Finally, we consider the effect of changing data set distribution. To this end,
we varied the number of clusters in the range 1÷ 10, 000, while fixing the data



0.1

1

10

100

1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

I/O
s 

pe
r 

ob
je

ct

Query volume

RANDOM_2
mM_RAD_2

M_LB_DIST_1
R*-Tree

Fig. 21. I/O costs per retrieved ob-
ject, as a function of the query volume.

1

10

100

1000

1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

di
st

an
ce

 c
om

pu
ta

tio
ns

 p
er

 o
bj

ec
t

Query volume

RANDOM_2
mM_RAD_2

M_LB_DIST_1
R*-Tree

Fig. 22. Distance computations per
retrieved object, as a function of the
query volume.

set size to 10, 000 20-D points. The number of points in each cluster is, therefore,
10, 000 divided by the number of clusters: when the number of clusters is 1, points
are all cluttered in a single sphere, while, when the number of clusters is 10, 000,
points are uniformly distributed in the unit hypercube. Again, to present a fair
comparison, we used for M-tree the search algorithm without any optimization.

Figures 23 and 24 show the number of I/O operations and the distance
selectivity, respectively, for processing range queries with side 20

√
0.01. It can

be seen that M-tree performs considerably better when the distribution of the
data set is less uniform, and that only with a high number of (scarcely populated)
clusters R∗-tree outperforms M-tree as to CPU costs.

Note that the behavior for number of clusters = 1 is essentially due to the
fact that the query retrieves almost all the indexed objects, thus visiting all the
nodes of the tree.
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6 Conclusions

The M-tree is a new access method able to index dynamic data sets from generic
metric spaces. In this paper we have analyzed several heuristic split policies and
have experimentally evaluated them on high-dimensional vector spaces. Results
show that a split policy can be chosen so as to determine a good tradeoff between
the costs of building and the costs of searching the M-tree, as well as to balance
CPU (distance computations) and I/O costs. We can summarize our observations
as follows:

– Best search performances are obtained with the mM RAD 2 policy, which min-
imizes the maximum value of the two covering radii resulting from a split.

– A “non-confirmed” split policy performs better than the corresponding “con-
firmed” version when node capacity is low (i.e. space dimensionality is high).

– M-tree outperforms R∗-tree on high-dimensional vector spaces, especially
when data distribution is not uniform.

– The optimization used by M-tree search algorithms for reducing the number
of distances to be computed is highly effective, saving up to 40% computa-
tions.

Our current work is still trying to gain more insights on the behaviors on split
policies, in order to come out with a set of “design guidelines” to assist M-tree
users in choosing the most appropriate algorithm for the application at hand. For
instance, we would like to be able to determine the “right” sample size for the
SAMPLING policy as a function of the indexed data set. Finally, we are applying
M-tree to some difficult real-world problems, such as fingerprint identification
and protein matching.
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