
αKanren

A Fresh Name in Nominal Logic Programming

William E. Byrd and Daniel P. Friedman
Department of Computer Science, Indiana University, Bloomington, IN 47408

{webyrd,dfried}@cs.indiana.edu

Abstract
We present αKanren, an embedding of nominal logic pro-
gramming in Scheme. αKanren is inspired by αProlog and
MLSOS, and allows programmers to easily write inter-
preters, type inferencers, and other programs that must
reason about scope and binding. αKanren subsumes the
functionality, syntax, and implementation of miniKanren,
itself an embedding of logic programming in Scheme.

We present the complete implementation of αKanren,
written in portable R5RS Scheme. In addition to the im-
plementation, we provide introductions to miniKanren and
αKanren, and several example programs, including a type
inferencer for the simply typed λ-calculus.

Categories and Subject Descriptors D.1.6 [Program-
ming Techniques]: Logic Programming; D.1.1 [Program-
ming Techniques]: Applicative (Functional) Programming

General Terms Languages

Keywords αKanren, αProlog, MLSOS, Scheme, miniKan-
ren, logic programming, nominal logic, nominal unification

1. Introduction
We present a complete implementation in R5RS Scheme
of αKanren, which extends the miniKanren logic program-
ming language (Byrd and Friedman 2006) with operators
for nominal logic programming. αKanren was inspired by
αProlog (Cheney 2004; Cheney and Urban 2004) and ML-
SOS (Lakin and Pitts 2007), and their use of nominal logic
(Pitts 2003) to solve a class of problems more elegantly than
is possible with conventional logic programming. The pur-
pose of this paper is to present a readily understandable
and hackable embedding of nominal logic programming in
portable Scheme, along with a self-contained introduction
to nominal logic programming.

Like αProlog and MLSOS, αKanren allows programmers
to explicitly manage names and bindings, making it easier to
write interpreters, type inferencers, and other programs that
must reason about scope. αKanren also eases the burden

Revised February, 2008, with earlier version appearing in Proceed-
ings of the 2007 Workshop on Scheme and Functional Programming,
available as Université Laval Technical Report DIUL-RT-0701

of implementing a language from its structural operational
semantics, since the requisite side-conditions can often be
trivially encoded in nominal logic.

A standard class of such side conditions is to state that a
certain variable name cannot occur free in a particular ex-
pression. It is a simple matter to check for free occurrences of
a variable name in a fully-instantiated term, but in a logic
program the term might contain unbound logic variables.
At a later point in the program those variables might be
instantiated to terms containing the variable name in ques-
tion. Also, when the writer of semantics employs the equality
symbol, the writer generally has in mind that two terms are
the same, but what they really mean is that the two terms
are the same up to α-equivalence, as in the variable hygiene
convention popularized by Barendregt (1984). As functional
programmers, we would never quibble with the statement:
λx.x = λy.y, yet without the implicit assumption that one
can rename variables using α-conversion, we would have to
forego this obvious equality. And again, if either expression
contains an unbound logic variable, it is impossible to per-
form a full parallel tree walk to determine if the two expres-
sions are α-equivalent: at least part of the tree walk must be
deferred until one or both expressions are fully instantiated.

We proceed as follows. Section 2 provides a brief review of
miniKanren, an embedding of logic programming in Scheme;
miniKanren is similar to standard Prolog in that it does
not include nominal logic operators. In Section 3, we extend
miniKanren to arrive at the αKanren language, and explain
how these extensions correspond to the ideas of nominal
logic programming. We give several example programs and
their results, including non-naive β-substitution and a type
inferencer for the simply typed λ-calculus. In Section 4 we
define the nominal unifier, which is the heart of nominal logic
programming. In the appendices we define and demonstrate
a simple pattern matcher, followed by the remainder of the
αKanren implementation.

1

2. miniKanren Refresher
αKanren extends miniKanren, an embedding of logic pro-
gramming in Scheme. In this section we briefly review
the miniKanren language; readers already familiar with
miniKanren can safely skip to Section 3, while those wish-
ing to learn more about the language should see Byrd and
Friedman (2006) (from which this refresher was adapted)
and Friedman et al. (2005).

Our code uses the following typographic conventions.
Lexical variables are in italic, forms are in boldface,
and quoted symbols are in sans serif. By our convention,
names of relations end with a superscript o—for example
subst o, which is entered as substo. Relational operators do
not follow this convention: ≡ (entered as ==), conde (en-
tered as conde), and exist (changed from fresh, since we
use fresh in the next section). Similarly, (run5 (q) body)
and (run∗ (q) body) are entered as (run 5 (q) body) and
(run* (q) body), respectively.

miniKanren extends Scheme with three operators: ≡,
conde, and exist. There is also run, which serves as an
interface between Scheme and miniKanren, and whose value
is a list.

exist, which syntactically looks like lambda, introduces
new variables into its scope; ≡ unifies two terms. Thus

(exist (x y z) (≡ x z) (≡ 3 y))

would associate x with z and y with 3. This, however, is not
a legal miniKanren program—we must wrap a run around
the entire expression.

(run1 (q) (exist (x y z) (≡ x z) (≡ 3 y))) ⇒ (0)

The value returned is a list containing the single value 0 ;
we say that 0 is the reified value of the unbound variable
q . q also remains unbound in

(run1 (q) (exist (x y) (≡ x q) (≡ 3 y))) ⇒ (0)

We can get back other values, of course.

(run1 (y)
(exist (x z)

(≡ x z)
(≡ 3 y)))

(run1 (q)
(exist (x z)

(≡ x z)
(≡ 3 z)
(≡ q x)))

(run1 (y)
(exist (x y)

(≡ 4 x)
(≡ x y))

(≡ 3 y))

Each of these examples returns (3); in the rightmost exam-
ple, the y introduced by exist is different from the y intro-
duced by run. run can also return the empty list, indicating
that there are no values.

(run1 (x) (≡ 4 3)) ⇒ ()

We use conde to get several values—syntactically, conde

looks like cond but without ⇒ or else. For example,

(run2 (q)
(exist (x y z)

(conde

((≡ ‘(,x ,y ,z ,x) q))
((≡ ‘(,z ,y ,x ,z) q))))) ⇒

((0 1 2 0) (0 1 2 0))

Although the two conde clauses are different, the values
returned are identical. This is because distinct reified un-
bound logic variables are assigned distinct subscripts, in-
creasing from left to right—the numbering starts over again
from zero within each value, which is why the reified value
of x is 0 in the first value but 2 in the second value.

The superscript 2 denotes the maximum length of the re-
sultant list. If the superscript ∗ is used, then there is no
maximum imposed. This can easily lead to infinite loops:

(run∗ (q)
(let loop ()

(conde

((≡ #f q))
((≡ #t q))
((loop)))))

Had the ∗ been replaced by a non-negative integer n, then
a list of n alternating #f’s and #t’s would be returned. The
conde succeeds while associating q with #f, which accounts
for the first value. When getting the second value, the second
conde-clause is tried, and the association made between q
and #f is forgotten—we say that q has been renewed. In the
third conde-clause, q is renewed once again.

We now look at several interesting examples that rely on
any o, which tries g an unbounded number of times.

(define any o

(λ (g)
(conde

(g)
((any o g)))))

Consider the first example

(run∗ (q)
(conde

((any o (≡ #f q)))
((≡ #t q))))

which does not terminate because the call to any o succeeds
an unbounded number of times. If ∗ were replaced by 5,
then we would get (#t #f #f #f #f). (The user should not be
concerned with the order in which values are returned.)

Now consider

(run10 (q)
(any o

(conde

((≡ 1 q))
((≡ 2 q))
((≡ 3 q))))) ⇒

(1 2 3 1 2 3 1 2 3 1)

Here the values 1, 2, and 3 are interleaved; our use of any o

ensures that this sequence will be repeated indefinitely.
Even if some conde-clauses loop indefinitely, other

conde-clauses can contribute to the values returned by a
run expression. (We are not concerned with expressions
looping indefinitely, however.) For example,

(run3 (q)
(let ((never o (any o (≡ #f #t))))

(conde

((≡ 1 q))
(never o)
((conde

((≡ 2 q))
(never o)
((≡ 3 q)))))))

returns (1 2 3); replacing run3 with run4 would cause
divergence, however, since there are only three values, and
since never o would loop indefinitely.

2

3. Introduction to αKanren
αKanren extends the miniKanren language with two addi-
tional operators, fresh and # (entered as hash), and one
term constructor, ./ (entered as tie).

fresh, which syntactically looks like exist, introduces
new noms into its scope. (Noms are also called “names” or
“atoms”, overloaded terminology which we avoid.) Concep-
tually, a nom represents a variable name1; however, a nom
behaves more like a constant than a variable, since it only
unifies with itself or with an unbound variable.

(run∗ (q) (fresh (a) (≡ a a))) ⇒ (0)

(run∗ (q) (fresh (a) (≡ a 5))) ⇒ ()

(run∗ (q) (fresh (a b) (≡ a b))) ⇒ ()

(run∗ (q) (fresh (b) (≡ b q))) ⇒ (a0)

A reified nom is subscripted in the same fashion as a
reified variable, but a is used instead of an underscore ()—
hence the (a0) in the final example above. fresh forms can
be nested, which may result in noms being shadowed.

(run∗ (q)
(exist (x y z)

(fresh (a)
(≡ x a)
(fresh (a b)

(≡ y a)
(≡ ‘(,x ,y ,z ,a ,b) q))))) ⇒

((a0 a1 0 a1 a2))

Here a0 , a1 , and a2 represent different noms, which will not
unify with each other.

./ is a term constructor used to limit the scope of a nom
within a term (any value that can contain variables and
noms).

(define-syntax ./
(syntax-rules ()

((a t) ‘(tie ,a ,t))))

Terms constructed using ./ are called binders. In the term
created by the expression (./ a t), all occurrences of the nom
a within term t are considered bound. We refer to the term t
as the body of (./ a t), and to the nom a as being in binding
position. The ./ constructor does not create noms; rather, it
delimits the scope of noms, already introduced using fresh.

For example, consider this run∗ expression.

(run∗ (q)
(fresh (a b)

(≡ (./ a ‘(foo ,a 3 ,b)) q))) ⇒
((tie a0 (foo a0 3 a1)))

The tagged list (tie a0 (foo a0 3 a1)) is the reified value
of the term constructed using ./. (The tag name tie is
a pun—the bowtie ./ is the “tie that binds.”) The nom
whose reified value is a0 occurs bound within the term
(tie a0 (foo a0 3 a1)) while a1 occurs free in that same term.

introduces a freshness constraint (henceforth referred
to as simply a constraint). The expression (# a t) asserts
that the nom a does not occur free in term t—if a occurs
free in t , then (# a t) fails. Furthermore, if t contains an
unbound variable x , and some later unification involving x
results in a occurring free in t , then that unification fails.

(run∗ (q) (fresh (a) (≡ ‘(3 ,a #t) q) (# a q))) ⇒ ()

1 Less commonly, a nom represents a non-variable entity. For
example, a nom may represent a channel name in the π-calculus—
see Cheney (2004) for details.

(run∗ (q) (fresh (a) (# a q) (≡ ‘(3 ,a #t) q))) ⇒ ()

(run∗ (q) (fresh (a b) (# a (./ b a)))) ⇒ ()

(run∗ (q) (fresh (a) (# a (./ a a)))) ⇒ (0)

(run∗ (q)
(exist (x y z)

(fresh (a)
(# a x)
(≡ ‘(,y ,z) x)
(≡ ‘(,x ,a) q)))) ⇒

((((0 1) a0) : ((a0 . 0) (a0 . 1))))

In the fourth example, the constraint (# a (./ a a)) is not
violated because a does not occur free in (./ a a). In the
final example, the partial instantiation of x causes the con-
straint introduced by (# a x) to be “pushed down” onto
the unbound variables y and z . The answer comprises two
parts, separated by a colon and enclosed in an extra set of
parentheses: the reified value of ((y z) a) and a list of reified
constraints indicating that a cannot occur free in either y
or z .

The notion of a constraint is prominent in the standard
definition of α-equivalence (Stoy 1979):

λa.M ≡α λb.[b/a]M where b does not occur free in M .

In αKanren this constraint is expressed as (# b M). We
shall revisit the connection between constraints and α-
equivalence shortly.

We now extend the standard notion of unification to that
of nominal unification (Urban et al. 2004), which equates α-
equivalent binders. Consider this run∗ expression.

(run∗ (q) (fresh (a b) (≡ (./ a a) (./ b b)))) ⇒ (0)

Although a and b are distinct noms, (≡ (./ a a) (./ b b))
succeeds. According to the rules of nominal unification, the
binders (./ a a) and (./ b b) represent the same term, and
therefore unify.

The reader may suspect that, as in the definition of α-
equivalence given above, nominal unification uses substitu-
tion to equate binders

(./ a a) ≡α (./ b [b/a]a)

however, this is not the case.
Unfortunately, naive substitution does not preserve α-

equivalence of terms, as shown in the following example
given by Urban et al. (2004). Consider the α-equivalent
terms (./ a b) and (./ c b); replacing all free occurrences of
b with a in both terms yields (./ a a) and (./ c a), which
are no longer α-equivalent.

Rather than using capture-avoiding substitution to ad-
dress this problem, nominal logic uses the simple and el-
egant notion of a nom swap. Instead of performing a uni-
directional substitution of a for b, the unifier exchanges all
occurrences of a and b within a term, regardless of whether
those noms appear free, bound, or in the binding posi-
tion of a ./-constructed binder. Applying the swap (a b) to
(./ a b) and (./ c b) yields the α-equivalent terms (./ b a)
and (./ c a).

When unifying (./ a a) and (./ b b) in the run∗ expres-
sion above, the nominal unifier first creates the swap (a b)
containing the noms in the binding positions of the two
terms. The unifier then applies this swap to (./ a a), yield-
ing (./ b b) (or equivalently, applies the swap to (./ b b),
yielding (./ a a)). Obviously (./ b b) unifies with itself, ac-

3

cording to the standard rules of unification, and thus the
nominal unification succeeds.

Of course, the terms being unified might contain unbound
variables. In the simple example

(run∗ (q) (fresh (a b) (≡ (./ a q) (./ b b)))) ⇒ (a0)

the swap (a b) can be applied to (./ b b), yielding (./ a a).
The terms (./ a a) and (./ a q) are then unified, associ-
ating q with a. However, in some cases a swap cannot be
performed until a variable has become at least partially in-
stantiated. For example, in the first call to ≡ in

(run∗ (q)
(fresh (a b)

(exist (x y)
(≡ (./ a (./ a x)) (./ a (./ b y)))
(≡ ‘(,x ,y) q))))

the unifier cannot apply the swap (a b) to either x or y ,
since they are both unbound. (The unifier does not generate
a swap for the outer binders, since they have the same nom
in their binding positions.)

Nominal unification solves this problem by introducing
the notion of a suspension, which is a record of delayed swaps
that may be applied later. We represent a suspension using
the susp data structure, which comprises a list of suspended
swaps and a variable.

(susp ((an bn) . . . (a1 b1)) x)

The swaps are deferred until the variable x is instantiated (at
least partially); at this point the swaps are applied to the
instantiated portion of the term associated with x . Swaps
are applied from right to left; that is, the result of applying
the swaps to a term t can be determined by first exchanging
all occurrences of noms a1 and b1 within t , then exchanging
a2 and b2 within the resulting term, and continuing in this
fashion until finally exchanging an with bn.

Now that we have the notion of a suspension, we can
define equality on binders (adapted from Urban et al. 2004):

(./ a M) and (./ b N) are α-equivalent if and only
if a and b are the same nom and M is α-equivalent
to N , or if (susp ((a b)) M) is α-equivalent to N and
(# b M).

The side condition (# b M) is necessary, since if b occurred
free in M , then b would be inadvertently captured (and
replaced with a) by the suspension (susp ((a b)) M).

Having defined equality on binders, we can examine the
result of the previous run∗ expression.

(run∗ (q)
(fresh (a b)

(exist (x y)
(≡ (./ a (./ a x)) (./ a (./ b y)))
(≡ ‘(,x ,y) q)))) ⇒

((((susp ((a0 a1)) 0) 0) : ((a0 . 0))))

The first call to ≡ applies the swap (a b) to the unbound
variable y , and then associates the resulting suspension
(susp ((a b)) y) with x . Of course, the unifier could have
applied the swap to x instead of y , resulting in a symmetric
answer. The freshness constraint states that the nom a can
never occur free within y , as required by the definition of
binder equivalence.

Here is a translation of a quiz presented in Urban et al.
(2004), demonstrating some of the finer points of nominal
unification.

(run∗ (q)
(fresh (a b)

(exist (x y)
(conde

((≡ (./ a (./ b ‘(,x ,b))) (./ b (./ a ‘(,a ,x)))))
((≡ (./ a (./ b ‘(,y ,b))) (./ b (./ a ‘(,a ,x)))))
((≡ (./ a (./ b ‘(,b ,y))) (./ b (./ a ‘(,a ,x)))))
((≡ (./ a (./ b ‘(,b ,y))) (./ a (./ a ‘(,a ,x))))))

(≡ ‘(,x ,y) q)))) ⇒
((a0 a1)
(0 (susp ((a0 a1)) 0))
((0 (susp ((a1 a0)) 0)) : ((a1 . 0))))

The first conde clause fails, since x cannot be associated
with both a and b. The second clause succeeds, associating x
with a and y with b. The third clause applies the swap (a b)
to (./ a (a x)), yielding (tie b (b (susp ((a b)) x))). This
term is then unified with (./ b (b y)), associating y with
the suspension (susp ((b a)) x). The fourth clause should
look familiar—it is similar to the previous run∗ expression.

We can interpret the successful unification of binders
(./ a a) and (./ b b) as showing that the λ-calculus terms
λa.a and λb.b are identical, up to α-equivalence. We need not
restrict our interpretation to λ terms, however, since other
scoping mechanisms have similar properties. For example,
the same successful unification also shows that ∀a.a and
∀b.b are equivalent in first-order logic, and similarly, that
∃a.a and ∃b.b are equivalent.

We can tag terms in order to disambiguate their interpre-
tation. For example, this program shows that λa.λb.a and
λc.λd.c are equivalent.

(run∗ (q)
(exist (t u)

(fresh (a b c d)
(≡ ‘(lam ,(./ a ‘(lam ,(./ b ‘(var ,a))))) t)
(≡ ‘(lam ,(./ c ‘(lam ,(./ d ‘(var ,c))))) u)
(≡ t u)))) ⇒

(0)

Of course, not all λ-calculus terms are equivalent.

(run∗ (q)
(exist (t u)

(fresh (a b c d)
(≡ ‘(lam ,(./ a ‘(lam ,(./ b ‘(var ,a))))) t)
(≡ ‘(lam ,(./ c ‘(lam ,(./ d ‘(var ,d))))) u)
(≡ t u)))) ⇒

()

Here (≡ t u) fails, showing that λa.λb.a and λc.λd.d are not
α-equivalent.

3.1 Non-naive Substitution

We now consider a simple, but useful, nominal logic pro-
gram adapted from Cheney and Urban (2004) that performs
capture-avoiding substitution (that is, β-substitution). subst o

implements the relation [new/a]e = out where e, new , and
out are tagged lists representing λ-calculus terms, and where
a is a nom representing a variable name. (We refer the in-
terested reader to Cheney and Urban for a full description
of subst o.)

4

(define subst o

(λ (e new a out)
(conde

((≡ ‘(var ,a) e) (≡ new out))
((exist (y)

(≡ ‘(var ,y) e)
(≡ ‘(var ,y) out)
(# a y)))

((exist (rator ratorres rand randres)
(≡ ‘(app ,rator ,rand) e)
(≡ ‘(app ,ratorres ,randres) out)
(subst o rator new a ratorres)
(subst o rand new a randres)))

((exist (body bodyres)
(fresh (c)

(≡ ‘(lam ,(./ c body)) e)
(≡ ‘(lam ,(./ c bodyres)) out)
(# c a)
(# c new)
(subst o body new a bodyres)))))))

The first subst o example shows that [b/a]λa.ab ≡α λc.cb.

(run∗ (q)
(fresh (a b)

(subst o

‘(lam ,(./ a ‘(app (var ,a) (var ,b)))) ‘(var ,b) a q))) ⇒
((lam (tie a0 (app (var a0) (var a1)))))

Naive substitution would have produced λb.bb instead.
This second example shows that [a/b]λa.b ≡α λc.a.

(run∗ (x)
(fresh (a b)

(subst o ‘(lam ,(./ a ‘(var ,b))) ‘(var ,a) b x))) ⇒
((lam (tie a0 (var a1))))

Naive substitution would have produced λa.a.

3.2 Type Inferencer for Simply Typed λ-calculus

Let us consider a second non-trivial αKanren example: a
type inferencer for the simply typed λ-calculus (also adapted
from Cheney and Urban 2004). typ o relates a λ-calculus
term e to its type te in type environment g .

(define typ o

(λ (g e te)
(conde

((exist (x)
(≡ ‘(var ,x) e)
(lookup o x te g)))

((exist (rator trator rand trand)
(≡ ‘(app ,rator ,rand) e)
(≡ ‘(→ ,trand ,te) trator)
(typ o g rator trator)
(typ o g rand trand)))

((exist (ê tê trand ĝ)
(fresh (b)

(≡ ‘(lam ,(./ b ê)) e)
(≡ ‘(→ ,trand ,tê) te)
(# b g)
(≡ ‘((,b . ,trand) . ,g) ĝ)
(typ o ĝ ê tê)))))))

The lookup o helper relation finds the type tx associated with
the type variable x in the current type environment g .

(define lookup o

(λ (x tx g)
(exist (a d)

(≡ ‘(,a . ,d) g)
(conde

((≡ ‘(,x . ,tx) a))
((exist (x̂ tx̂)

(≡ ‘(,x̂ . ,tx̂) a)
(# x x̂)
(lookup o x tx d)))))))

The first typ o example shows that λc.λd.c has type
(α → (β → α)).

(run∗ (q)
(fresh (c d)

(typ o ’() ‘(lam ,(./ c ‘(lam ,(./ d ‘(var ,c))))) q))) ⇒
((→ 0 (→ 1 0)))

The second example shows that self-application doesn’t
type check, since the nominal unifier uses the occurs check
(Lloyd 1987).

(run∗ (q)
(fresh (c)

(typ o ’() ‘(lam ,(./ c ‘(app (var ,c) (var ,c)))) q))) ⇒
()

The final example is the most interesting, since it searches
for terms that inhabit the type (int → int).

(run2 (q) (typ o ’() q ’(→ int int))) ⇒
((lam (tie a0 (var a0)))
(lam (tie a0 (app (lam (tie a1 (var a1))) (var a0)))))

The first two terms found are λb.b and λb.(λa.a)b.
This ends the introduction to αKanren. For additional

simple examples of nominal logic programming, we suggest
Cheney (2004), Cheney and Urban (2004), Urban et al.
(2004), and Lakin and Pitts (2007), which are also excellent
choices for understanding the theory of nominal logic. Next
we discuss our implementation of nominal unification.

4. Nominal Unification
Nominal unification occurs in two distinct phases: the first
processes equations, while the second processes constraints.
The first phase takes a set of equations ε and transforms
it into a substitution σ and a set of unresolved constraints
δ. The second phase combines the unresolved constraints
with the previously resolved constraints, which have both
been brought up to date using apply-subst. Then, the unifier
transforms these combined constraints into a set of resolved
constraints ∇, and returns the list (σ ∇) as a package.

Nominal unification uses several data structures. A set
of equations ε is represented as a list of pairs of terms.
A substitution σ is represented as an association list of
variables to terms. A set of constraints δ is represented as a
list of pairs associating noms to terms; a ∇ is a δ in which
all terms are unbound variables. In a substitution, a variable
may have at most one association. In a δ (and therefore in
a ∇) a nom may have multiple associations.

We represent a variable as a suspension containing an
empty list of swaps. Several functions reconstruct suspen-
sions that represent variables. However, our implementation
of nominal unification assumes that variables can be com-
pared using eq?.

In order to ensure that a variable is always eq? to itself,
regardless of how many times it is reconstructed, we use a
letrec trick: a suspension representing a variable contains a

5

procedure of zero arguments (a thunk) that, when invoked,
returns the suspension, thus maintaining the desired eq?-
ness property. (In the text we conflate variables with their
associated thunks.)

(define var
(λ ()

(letrec ((s (list ’susp ’() (λ () s))))
s)))

unify attempts to solve a set of equations ε in the con-
text of a package (σ ∇). unify applies σ to ε, and then calls
apply-σ-rules on the resulting set of equations. apply-σ-rules
either successfully completes the first phase of nominal uni-
fication by returning a new σ and δ, or invokes the failure
continuation fk , a jump-out continuation similar to Lisp’s
catch (Steele Jr. 1990).

(define unify
(λ (ε σ ∇ fk)

(let ((ε (apply-subst σ ε)))
(mv-let ((σ̂ δ) (apply-σ-rules ε fk))

(unify# δ (compose-subst σ σ̂) ∇ fk)))))

mv-let, defined in Appendix B, deconstructs a list of values.
In the second phase of nominal unification, unify# calls

apply-subst to bring ∇ and δ up to date, then passes their
union to apply-∇-rules.

(define unify#
(λ (δ σ ∇ fk)

(let ((δ (apply-subst σ δ))
(∇ (apply-subst σ ∇)))

(let ((δ (δ-union ∇ δ)))
‘(,σ ,(apply-∇-rules δ fk))))))

apply-σ-rules is a recursive function whose only task is
to combine results returned by σ-rules. σ-rules takes two
arguments: a single equation and the rest of the equations. If
σ-rules fails, then apply-σ-rules invokes fk , and the result of
unify is #f. Each successful call to σ-rules returns a new set
of equations ε, a new σ, and a set of (unresolved) constraints
δ. Successive calls to σ-rules resolve the equations in ε until
there are no equations left.

(define apply-σ-rules
(λ (ε fk)

(cond
((null? ε) ‘(,empty-σ ,empty-δ))
(else
(let ((eqn (car ε)) (ε (cdr ε)))

(mv-let ((ε σ δ) (or (σ-rules eqn ε) (fk)))

(mv-let ((σ̂ δ̂) (apply-σ-rules ε fk))

‘(,(compose-subst σ σ̂) ,(δ-union δ̂ δ)))))))))

apply-∇-rules is similar to apply-σ-rules, but takes con-
straints instead of equations, and combines the results re-
turned by ∇-rules.

(define apply-∇-rules
(λ (δ fk)

(cond
((null? δ) empty-∇)
(else
(let ((c (car δ)) (δ (cdr δ)))

(mv-let ((δ ∇) (or (∇-rules c δ) (fk)))
(δ-union ∇ (apply-∇-rules δ fk))))))))

empty-σ, empty-δ, and empty-∇ are defined in Appendix A.
In both σ-rules and ∇-rules we use untagged? to distin-

guish untagged pairs from specially tagged pairs that repre-
sent binders, noms, and suspensions.

(define untagged?
(λ (x)

(not (memv x ’(tie nom susp)))))

Here are the transformation rules of the nominal unifica-
tion algorithm, derived from the rules in Urban et al. (2004).
(σ-rules relies on pmatch, which is defined in Appendix B.)

(define σ-rules
(λ (eqn ε)

(pmatch eqn
((,c . ,ĉ)
(guard (not (pair? c)) (equal? c ĉ))
‘(,ε ,empty-σ ,empty-δ))
(((tie ,a ,t) . (tie ,â ,t̂))
(guard (eq? a â))
‘(((,t . ,t̂) . ,ε) ,empty-σ ,empty-δ))

(((tie ,a ,t) . (tie ,â ,t̂))
(guard (not (eq? a â)))
(let ((û (apply-π ‘((,a ,â)) t̂)))

‘(((,t . ,û) . ,ε) ,empty-σ ((,a . ,t̂)))))
(((nom) . (nom))
(guard (eq? (car eqn) (cdr eqn)))
‘(,ε ,empty-σ ,empty-δ))

(((susp ,π ,x) . (susp ,π̂ ,x̂))
(guard (eq? (x) (x̂)))
(let ((δ (map (λ (a) ‘(,a . ,(x)))

(disagreement-set π π̂))))
‘(,ε ,empty-σ ,δ)))

(((susp ,π ,x) . ,t)
(guard (not (occurs

√
(x) t)))

(let ((σ ‘((,(x) . ,(apply-π (reverse π) t)))))
‘(,(apply-subst σ ε) ,σ ,empty-δ)))

((,t . (susp ,π ,x))
(guard (not (occurs

√
(x) t)))

(let ((σ ‘((,(x) . ,(apply-π (reverse π) t)))))
‘(,(apply-subst σ ε) ,σ ,empty-δ)))

(((,t1 . ,t2) . (,t̂1 . ,t̂2))
(guard (untagged? t1) (untagged? t̂1))
‘(((,t1 . ,t̂1) (,t2 . ,t̂2) . ,ε) ,empty-σ ,empty-δ))

(else #f))))

Clauses two and three in σ-rules implement α-equivalence
of binders, as defined in Section 3. Clause five unifies two
suspensions that have the same variable; in this case, σ-rules
creates as many new freshness constraints as there are noms
in the disagreement set (defined below) of the suspensions’
swaps. Clauses six and seven are similar: each clause unifies a
suspension containing a variable x and a list of swaps π with
a term t . σ-rules creates a substitution associating x with
the result of applying the swaps in π to t in reverse order,
with the newest swap in π applied first. This substitution is
applied to the context ε.

apply-π, below, applies a list of swaps π to a term v .

(define apply-π
(λ (π v)

(pmatch v
(,c (guard (not (pair? c))) c)
((tie ,a ,t) (./ (apply-π π a) (apply-π π t)))
((nom)
(let loop ((v v) (π π))

(if (null? π) v (apply-swap (car π) (loop v (cdr π))))))
((susp ,π̂ ,x)
(let ((π ‘(,@π . ,π̂)))

(if (null? π) (x) ‘(susp ,π ,x))))
((,a . ,d) ‘(,(apply-π π a) . ,(apply-π π d))))))

6

If v is a nom, then π’s swaps are applied, with the oldest
swap applied first. If v is a suspension with a list of swaps π̂
and variable x , then the swaps in π are added to the swaps
in π̂. If this list is empty, then x ’s suspension is returned;
otherwise, a new suspension is created with those swaps.

(define apply-swap
(λ (swap a)

(pmatch swap
((,a1 ,a2)
(cond

((eq? a a2) a1)
((eq? a a1) a2)
(else a))))))

The ∇-rules are much simpler than the σ-rules. In the
second clause, the nom â in the binding position of the
binder is the same as a, so a can never appear free in t .
In the fifth clause, the list of swaps π in the suspension are
applied, in reverse order, to the nom a, yielding another
nom. ∇-rules then adds a new constraint associating this
nom with the suspension’s variable.

(define ∇-rules
(λ (d δ)

(pmatch d
((,a . ,c)
(guard (not (pair? c)))
‘(,δ ,empty-∇))

((,a . (tie ,â ,t))
(guard (eq? â a))
‘(,δ ,empty-∇))

((,a . (tie ,â ,t))
(guard (not (eq? â a)))
‘(((,a . ,t) . ,δ) ,empty-∇))

((,a . (nom))
(guard (not (eq? a (cdr d))))
‘(,δ ,empty-∇))

((,a . (susp ,π ,x))
‘(,δ ((,(apply-π (reverse π) a) . ,(x)))))

((,a . (,t1 . ,t2))
(guard (untagged? t1))
‘(((,a . ,t1) (,a . ,t2) . ,δ) ,empty-∇))

(else #f))))

Finding the disagreement set of two lists of swaps π
and π̂ requires forming a set of all the noms in those
lists, then applying both π and π̂ to each nom a in this
set. If (apply-π π a) and (apply-π π̂ a) produce different
noms, then a is in the disagreement set. (filter and remove-
duplicates are defined in Appendix A.3.)

(define disagreement-set
(λ (π π̂)

(filter
(λ (a) (not (eq? (apply-π π a) (apply-π π̂ a))))
(remove-duplicates

(append (apply append π) (apply append π̂))))))

The occurs
√

is what one might expect.

(define occurs
√

(λ (x v)
(pmatch v

(,c (guard (not (pair? c))) #f)
((tie ,t) (occurs

√
x t))

((nom) #f)
((susp ,x̂) (eq? (x̂) x))
((,x̂ . ,ŷ) (or (occurs

√
x x̂) (occurs

√
x ŷ)))

(else #f))))

4.1 Substitutions

compose-subst’s definition is taken from Lloyd (1987). It
takes two substitutions σ and τ , and constructs a new
substitution σ̂ in which each association (x . v) in σ is
replaced by (x . v̂), where v̂ is the result of applying τ to
v . Any association in τ whose variable has an association in
σ̂ is then filtered from τ . Also, any association of the form
(x . x) is filtered from σ̂. These filtered substitutions are
then appended.

(define compose-subst
(λ (σ τ)

(let ((σ̂ (map
(λ (a) ‘(,(car a) . ,(apply-subst τ (cdr a))))
σ)))

(append
(filter (λ (a) (not (assq (car a) σ̂))) τ)
(filter (λ (a) (not (eq? (car a) (cdr a)))) σ̂)))))

Next we define apply-subst. In the suspension case, apply-
subst applies the list of swaps π to a variable, or to its
binding.

(define apply-subst
(λ (σ v)

(pmatch v
(,c (guard (not (pair? c))) c)
((tie ,a ,t) ‘(tie ,a ,(apply-subst σ t)))
((nom) v)
((susp ,π ,x) (apply-π π (get (x) σ)))
((,x . ,y) ‘(,(apply-subst σ x) . ,(apply-subst σ y))))))

get , which is defined in Appendix A.3, finds the binding
of a variable in a substitution or returns the variable if no
binding exists.

4.2 δ-union

Finally we define δ-union, which forms the union of two δ’s.

(define δ-union

(λ (δ δ̂)
(pmatch δ

(() δ̂)

((,d . ,δ) (if (term-member? d δ̂)

(δ-union δ δ̂)

(cons d (δ-union δ δ̂)))))))

(define term-member?
(λ (v v∗)

(pmatch v∗

(() #f)
((,v̂ . ,v∗)
(or (term-equal? v̂ v) (term-member? v v∗))))))

(define term-equal?
(λ (u v)

(pmatch ‘(,u ,v)
((,c ,ĉ) (guard (not (pair? c)) (not (pair? ĉ)))
(equal? c ĉ))

(((tie ,a ,t) (tie ,â ,t̂))
(and (eq? a â) (term-equal? t t̂)))

(((nom) (nom)) (eq? u v))
(((susp ,π ,x) (susp ,π̂ ,x̂))
(and (eq? (x) (x̂)) (null? (disagreement-set π π̂))))

(((,x . ,y) (,x̂ . ,ŷ))
(and (term-equal? x x̂) (term-equal? y ŷ)))

(else #f))))

7

Recall that δ denotes a set of unresolved constraints,
where a constraint is a pair of a nom a and a term t . δ-
union uses term-member? , which uses term-equal? when
comparing two constraints. The definition of term-equal?
is straightforward except when comparing two suspensions,
in which case their variables must be the same, and the
disagreement set of their lists of swaps must be empty.

5. Conclusion
αKanren and αProlog, and perhaps to a lesser extent,
MLSOS, are all based on the nominal logic programming
paradigm. Nominal programming languages based on func-
tional programming include FreshML (Shinwell et al. 2003)
and Cαml (Pottier 2006).

We have presented an implementation of αKanren,
an embedding of nominal logic programming in Scheme.
αKanren allows programmers to easily write interpreters,
type inferencers, and other programs that must reason about
scope and binding. αKanren subsumes the functionality,
syntax, and implementation of miniKanren, itself an em-
bedding of logic programming in Scheme. Our goal in creat-
ing αKanren has been to make available a simple, concise,
and readily understandable implementation of a nominal
logic programming language. We hope that others will be
inspired to use and extend αKanren, and in the process be-
come familiar with the powerful tools provided by nominal
logic.

Acknowledgments
The original miniKanren implementation was developed
with Oleg Kiselyov and Chung-chieh Shan, with additional
tweaking by Mitch Wand; the code in Appendix A is based
on that of miniKanren. We are grateful to Oleg Kiselyov
for his pmatch pattern matcher. We thank Christian Ur-
ban and James Cheney for their insightful comments on
an early draft of this paper, and Joe Near for reading the
final draft. We owe our interest in nominal logic to Roshan
James, Michael Adams, and Amr Sabry. We also thank the
anonymous referees for their helpful remarks, and Danny
Dubé for encouraging us to submit to the Scheme Work-
shop. Once again, we have found Dorai Sitaram’s excellent
SLATEX package invaluable for typesetting our code.

References
Henk Barendregt. The Lambda Calculus, its Syntax and

Semantics. Number 103 in Studies in Logic and the
Foundations of Mathematics. North-Holland, 1984.

William E. Byrd and Daniel P. Friedman. From variadic
functions to variadic relations: A miniKanren perspective.
In Robby Findler, editor, Proceedings of the 2006 Scheme
and Functional Programming Workshop, University of
Chicago Technical Report TR-2006-06, pages 105–117,
2006.

James Cheney. Nominal Logic Programming. PhD thesis,
Cornell University, August 2004.

James Cheney and Christian Urban. αProlog: A logic
programming language with names, binding and α-
equivalence. In Bart Demoen and Vladimir Lifschitz, edi-
tors, Proceedings of the 20th International Conference on
Logic Programming, ICLP 2004, volume 3132 of Lecture
Notes in Computer Science, pages 269–283, Saint-Malo,
France, September 6–10, 2004. Springer.

Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov.
The Reasoned Schemer. The MIT Press, Cambridge, MA,
2005.

Erik Hilsdale and Daniel P. Friedman. Writing macros in
continuation-passing style. In Scheme and Functional
Programming 2000, September 5, 2000.

Ralf Hinze. Deriving backtracking monad transformers. In
Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, ICFP ’00, Mon-
treal, Canada, September 18–21, 2000, pages 186–197.
ACM Press, 2000.

Matthew R. Lakin and Andrew M. Pitts. A metalan-
guage for structural operational semantics. In Marco T.
Morazán and Henrik Nilsson, editors, Draft Proceedings
of 8th Symposium on Trends in Functional Programming,
pages 1–16, 2007.

John Wylie Lloyd. Foundations of logic programming.
Springer Verlag, New York, second extended edition,
1987.

David B. MacQueen, Philip Wadler, and Walid Taha. How
to add laziness to a strict language without even being
odd. In Proceedings of the 1998 ACM Workshop on ML,
pages 24–30, September 1998. Baltimore, MD.

Eugenio Moggi. Notions of computation and monads. In-
formation and Computation, 93(1):55–92, 1991.

Andrew M. Pitts. Nominal logic, a first order theory of
names and binding. Inf. Comput., 186(2):165–193, 2003.

François Pottier. Cαml Reference Manual. INRIA, 2006-12-
14 edition, December 2006.

Mark R. Shinwell, Andrew M. Pitts, and Murdoch Gabbay.
FreshML: programming with binders made simple. In
Colin Runciman and Olin Shivers, editors, Proceedings of
the Eighth ACM SIGPLAN International Conference on
Functional Programming, ICFP 2003, Uppsala, Sweden,
August 25–29, 2003, pages 263–274. ACM Press, 2003.

Guy L. Steele Jr. COMMON LISP: The language. Digital
Press, second edition, 1990.

Joseph E. Stoy. Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory. The MIT
Press, 1979.

Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay.
Nominal unification. Theor. Comput. Sci., 323(1-3):473–
497, 2004.

Philip Wadler. How to replace failure by a list of successes:
A method for exception handling, backtracking, and pat-
tern matching in lazy functional languages. In Jean-
Pierre Jouannaud, editor, Proceedings of the Second Con-
ference on Functional Programming Languages and Com-
puter Architecture, volume 201 of Lecture Notes in Com-
puter Science, pages 113–128, Nancy, France, Septem-
ber 16–19, 1985. Springer-Verlag.

Philip Wadler. The essence of functional programming. In
Conference Record of the Nineteenth ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 1–14, Albuquerque, New Mexico, January,
1992. ACM Press.

8

A. αKanren Implementation
Our αKanren implementation comprises three kinds of op-
erators: the interface operator run; goal constructors ≡, #,
conde, exist, and fresh, which take a package implicitly ;
and functions such as reify, and the already defined unify
and unify#, which take a package explicitly.

A goal g is a function that maps a package p to an ordered
sequence p∞ of zero or more packages. (For clarity, we notate
λ as λG when creating such a function g .)

(define-syntax λG

(syntax-rules () (((p) e) (λ (p) e))))

Because a sequence of packages may be infinite, we repre-
sent it not as a list but as a p∞ , a special kind of stream that
can contain either zero, one, or more packages (Hinze 2000;
Wadler 1985). We use #f to represent the empty stream of
packages. If p is a package, then p itself represents the stream
containing just p. To represent a stream containing multiple
packages, we use (choice p f), where p is the first package
in the stream, and where f is a thunk that, when invoked,
produces the remainder of the stream. (For clarity, we notate
λ as λF when creating such a function f .) To represent an
incomplete stream, we use (inc e), where e is an expression
that evaluates to a p∞—thus inc creates an f .

(define-syntax λF

(syntax-rules () ((() e) (λ () e))))

(define-syntax choice
(syntax-rules () ((a f) (cons a f))))

(define-syntax inc
(syntax-rules () ((e) (λF () e))))

A singleton stream p is the same as (choice p (λF () #f)).
However, for the goals that return only a single package,
using this special representation of a singleton stream avoids
the cost of unnecessarily building and taking apart pairs,
and creating and invoking thunks.

To ensure that the values produced by these four kinds
of p∞ ’s can be distinguished, we assume that a package is
never #f, a function, or a pair whose cdr is a function. To
discriminate among these four cases, we define case∞ .

(define-syntax case∞

(syntax-rules ()

((a∞ (() e0) ((f̂) e1) ((â) e2) ((a f) e3))
(pmatch a∞

(#f e0)

(,f̂ (guard (procedure? f̂)) e1)
(,â (guard (not

(and (pair? â)
(procedure? (cdr â)))))

e2)
((,a . ,f) e3)))))

The interface operator run uses take (defined below) to
convert an f to an even stream (MacQueen et al. 1998).
The definition of run places an artificial goal at the tail of
g0 g . . . ; this artificial goal reifies the variable x using the
final package p produced by running the goals g0 g . . . in
the empty package ‘(,empty-σ ,empty-∇).

(define-syntax run
(syntax-rules ()

((n (x) g0 g . . .)
(take n (λF ()

((exist (x) g0 g . . .
(λG (p) (cons (reify x p) ’())))

‘(,empty-σ ,empty-∇)))))))

Wrapping the reified value in a list allows #f to appear as a
value.

If the first argument to take is #f, then take returns the
entire stream of reified values as a list, thereby providing the
behavior of run∗. The and expressions within take detect
this #f case.

(define take
(λ (n f)

(if (and n (zero? n))
’()
(case∞ (f)

(() ’())
((f) (take n f))
((a) a)
((a f) (cons (car a)

(take (and n (− n 1)) f)))))))

run∗ is trivially defined in terms of run.

(define-syntax run∗

(syntax-rules ()
(((x) g0 g . . .)
(run #f (x) g0 g . . .))))

We represent the empty substitution, along with the
empty unresolved and resolved constraint sets, as the empty
list.

(define empty-σ ’())

(define empty-δ ’())

(define empty-∇ ’())

A.1 Goal Constructors

The simplest goal constructors are ≡ and #; the goals they
create return either a singleton stream or an empty stream.

(define ≡
(λ (u v)

(unifier unify ‘((,u . ,v)))))

(define #
(λ (a t)

(unifier unify# ‘((,a . ,t)))))

(define unifier
(λ (fn set)

(λG (p)
(mv-let ((σ ∇) p)

(call/cc (λ (fk) (fn set σ ∇ (λ () (fk #f)))))))))

To take the conjunction of goals, we define exist, a
goal constructor that first lexically binds variables built by
var, and then combines successive goals using bind∗. The
goal constructor fresh is identical to exist, except that it
lexically binds noms instead of variables.

(define-syntax exist
(syntax-rules ()

(((x . . .) g0 g . . .)
(λG (p)

(inc
(let ((x (var)) . . .)

(bind∗ (g0 p) g . . .)))))))

(define-syntax fresh
(syntax-rules ()

(((a . . .) g0 g . . .)
(λG (p)

(inc
(let ((a (nom ’a)) . . .)

(bind∗ (g0 p) g . . .)))))))

9

(define nom
(λ (a)

‘(nom ,(symbol�string a))))

bind∗ is short-circuiting: since the empty stream is rep-
resented by #f, any failed goal causes bind∗ to immediately
return #f. bind∗ relies on bind (Moggi 1991; Wadler 1992),
which applies the goal g to each element in the stream p∞ .
The resulting p∞ ’s are then merged using mplus, which com-
bines a p∞ and an f to yield a single p∞ . (bind is similar to
Lisp’s mapcan but uses mplus (not append) to interleave the
values of streams.)

(define-syntax bind∗

(syntax-rules ()
((e) e)
((e g0 g . . .)
(let ((a∞ e))

(and a∞ (bind∗ (bind a∞ g0) g . . .))))))

(define bind
(λ (a∞ g)

(case∞ a∞

(() #f)
((f) (inc (bind (f) g)))
((a) (g a))
((a f) (mplus (g a) (λF () (bind (f) g)))))))

(define mplus
(λ (a∞ f)

(case∞ a∞

(() (f))

((f̂) (inc (mplus (f) f̂)))
((a) (choice a f))

((a f̂) (choice a (λF () (mplus (f) f̂)))))))

To take the disjunction of goals we define conde, a
goal constructor that combines successive conde-lines using
mplus∗, which in turn relies on mplus. We use the same
implicit package p for each conde-line. To avoid unwanted
divergence, we treat the conde-lines as a single inc stream.

(define-syntax conde

(syntax-rules ()
(((g0 g . . .) (g1 ĝ . . .) . . .)
(λG (p)

(inc (mplus∗ (bind∗ (g0 p) g . . .)
(bind∗ (g1 p) ĝ . . .)
. . .))))))

(define-syntax mplus∗

(syntax-rules ()
((e) e)
((e0 e . . .) (mplus e0 (λF () (mplus∗ e . . .))))))

A.2 Reification

reify takes a variable x and a package p, and returns the
value associated with x in p (along with any relevant con-
straints), first replacing all variables and noms with symbols
representing those entities. A constraint (a . y) is relevant
if both a and y appear in the value associated with x . We
call this process of turning an αKanren value into a Scheme
value reification.

The first cond clause in the definition of refiy below
returns only the reified value associated with x , when there
are no relevant constraints. The else clause returns both the
reified value of x and the reified set of relevant constraints;
we have arbitrarily chosen the colon ‘:’ to separate the reified
value from the list of reified constraints.

(define reify
(λ (x p)

(mv-let ((σ ∇) p)
(let∗ ((v (get x σ)) (s (reify-s v)) (v (walk∗ v s)))

(let ((∇ (filter (λ (a)
(and (symbol? (car a))

(symbol? (cdr a))))
(walk∗ ∇ s))))

(cond
((null? ∇) v)
(else ‘(,v : ,∇))))))))

reify-s is the heart of the reifier. reify-s takes an arbitrary
value v , and returns a substitution that maps every distinct
nom and variable in v to a unique symbol. The trick to
maintaining left-to-right ordering of the subscripts on these
symbols is to process v from left to right, as can be seen
in the last pmatch clause. When reify-s encounters a nom
or variable, it determines if we already have a mapping
for that entity. If not, reify-s extends the substitution with
an association between the nom or variable and a new,
appropriately subscripted symbol.

(define reify-s
(letrec

((r-s (λ (v s)
(pmatch v

(,c (guard (not (pair? c))) s)
((tie ,a ,t) (r-s t (r-s a s)))
((nom ,n)
(cond

((assq v s) s)
((assp nom? s)
⇒ (λ (p)

(cons ‘(,v . ,(reify-n (cdr p))) s)))
(else (cons ‘(,v . a.0) s))))

((susp ())
(cond

((assq v s) s)
((assp var? s)
⇒ (λ (p)

(cons ‘(,v . ,(reify-n (cdr p))) s)))
(else (cons ‘(,v . .0) s))))

((susp ,π ,x)
(r-s (x) (r-s π s)))

((,a . ,d) (r-s d (r-s a s)))))))
(λ (v)

(r-s v ’()))))

walk∗ applies a special substitution s, which maps noms
and variables to symbols, to an arbitrary value v .

(define walk∗

(λ (v s)
(pmatch v

(,c (guard (not (pair? c))) c)
((tie ,a ,t) ‘(tie ,(get a s) ,(walk∗ t s)))
((nom) (get v s))
((susp ()) (get v s))
((susp ,π ,x) ‘(susp ,(walk∗ π s) ,(get (x) s)))
((,a . ,d) ‘(,(walk∗ a s) . ,(walk∗ d s))))))

10

(define var?
(λ (x)

(pmatch x
((susp ()) #t)
(else #f))))

(define nom?
(λ (x)

(pmatch x
((nom) #t)
(else #f))))

reify-n returns a symbol representing an individual vari-
able or nom; this symbol always ends with a period followed
by a non-negative integer.

(define reify-n
(λ (a)

(let ((str∗ (string�list (symbol�string a))))
(let ((c∗ (memv #\. str∗)))

(let ((rn (string�number (list�string (cdr c∗)))))
(let ((n-str (number�string (+ rn 1))))

(string�symbol
(string-append

(string (car str∗)) "." n-str))))))))

A.3 Familiar Helpers

The auxiliaries below are generally useful functions that
might be part of any library.

(define get
(λ (x s)

(cond
((assq x s) ⇒ cdr)
(else x))))

(define assp
(λ (p s)

(cond
((null? s) #f)
((p (car (car s))) (car s))
(else (assp p (cdr s))))))

(define filter
(λ (p s)

(cond
((null? s) ’())
((p (car s)) (cons (car s) (filter p (cdr s))))
(else (filter p (cdr s))))))

(define remove-duplicates
(λ (s)

(cond
((null? s) ’())
((memq (car s) (cdr s)) (remove-duplicates (cdr s)))
(else (cons (car s) (remove-duplicates (cdr s)))))))

A.4 Impure Control Operators:

For completeness, we define three additional αKanren goal
constructors not used in this paper: project, which can
be used to access the values of variables, and conda and
condu, which can be used to prune the search tree of a
program. The examples from chapter 10 of The Reasoned
Schemer (Friedman et al. 2005) demonstrate how conda

and condu can be useful, and the pitfalls that await the
unsuspecting reader.

(define-syntax project
(syntax-rules ()

(((x . . .) g0 g . . .)
(λG (p)

(mv-let ((σ ∇) p)
(let ((x (get x σ)) . . .)

(bind∗ (g0 p) g . . .)))))))

(define-syntax conda

(syntax-rules ()
(((g0 g . . .) (g1 ĝ . . .) . . .)
(λG (p)

(inc (if a ((g0 p) g . . .) ((g1 p) ĝ . . .) . . .))))))

(define-syntax if a

(syntax-rules ()
(() #f)
(((e g . . .) b . . .)
(let loop ((a∞ e))

(case∞ a∞

(() (if a b . . .))
((f) (inc (loop (f))))
((a) (bind∗ a∞ g . . .))
((a f) (bind∗ a∞ g . . .)))))))

(define-syntax condu

(syntax-rules ()
(((g0 g . . .) (g1 ĝ . . .) . . .)
(λG (p)

(inc (ifu ((g0 p) g . . .) ((g1 p) ĝ . . .) . . .))))))

(define-syntax ifu

(syntax-rules ()
(() #f)
(((e g . . .) b . . .)
(let loop ((a∞ e))

(case∞ a∞

(() (ifu b . . .))
((f) (inc (loop (f))))
((a) (bind∗ a∞ g . . .))
((a f) (bind∗ a g . . .)))))))

B. pmatch
In this appendix we describe pmatch, a simple pattern
matcher written by Oleg Kiselyov. Let us first consider a
simple example of pmatch.

(define h
(λ (x y)

(pmatch ‘(,x . ,y)
((,a . ,b) (guard (number? a) (number? b)) (+ a b))
((. ,c) (guard (number? c)) (∗ c c))
(else (∗ x x)))))

(list (h 1 2) (h ’w 5) (h 6 ’w)) ⇒ (3 25 36)

In this example, a dotted pair is matched against three
different kinds of patterns.

In the first pattern, the value of x is lexically bound to a
and the value of y is lexically bound to b. Before the pattern
match succeeds, however, an optional guard is run within the
scope of a and b. The guard succeeds only if x and y are
numbers; if so, then the sum of x and y is returned.

The second pattern matches against a pair, provided that
the optional guard succeeds. If so, the value of y is lexically
bound to c, and the square of y is returned.

11

If y is not a number, then the third and final clause is
tried. An else pattern matches against any value, and never
includes a guard. In this case, the clause returns the square
of x , which must be a number in order to avoid an error at
runtime.

Below is the definition of pmatch, which is implemented
using continuation-passing-style macros (Hilsdale and Fried-
man 2000).

(define-syntax pmatch
(syntax-rules (else guard)

(((op arg . . .) cs . . .)
(let ((v (op arg . . .)))

(pmatch v cs . . .)))
((v) (if #f #f))
((v (else e0 e . . .)) (begin e0 e . . .))
((v (pat (guard g . . .) e0 e . . .) cs . . .)
(let ((fk (λ () (pmatch v cs . . .))))

(ppat v pat
(if (and g . . .) (begin e0 e . . .) (fk))
(fk))))

((v (pat e0 e . . .) cs . . .)
(let ((fk (λ () (pmatch v cs . . .))))

(ppat v pat (begin e0 e . . .) (fk))))))

(define-syntax ppat
(syntax-rules (quote unquote)

((v kt kf) kt)
((v () kt kf) (if (null? v) kt kf))
((v (quote lit) kt kf)
(if (equal? v (quote lit)) kt kf))

((v (unquote var) kt kf) (let ((var v)) kt))
((v (x . y) kt kf)
(if (pair? v)

(let ((vx (car v)) (vy (cdr v)))
(ppat vx x (ppat vy y kt kf) kf))

kf))
((v lit kt kf) (if (equal? v (quote lit)) kt kf))))

The first clause ensures that the expression whose value
is to be pmatched against is evaluated only once. The
second clause returns an unspecified value if no other clause
matches.

The remaining clauses represent the three types of pat-
terns supported by pmatch. The first is the trivial else
clause, which matches against any datum, and which be-
haves identically to an else clause in a cond expression.
The other two clauses are identical, except that the first one
includes a guard containing one or more expressions—if the
datum matches against the pattern, the guard expressions
are evaluated in left-to-right order. If a guard expression
evaluates to #f, then it is as if the datum had failed to match
against the pattern: the remaining guard expressions are ig-
nored, and the next clause is tried. The expression (fk) is
evaluated if the pattern it is associated with fails to match,
or if the pattern matches but the guard fails.

ppat does the actual pattern matching over constants
and pairs. The wild-card pattern matches against any
value; the second pattern matches against the empty list;
the third pattern matches against a quoted value; and the
fourth pattern matches against any value, and binds that
value to a lexical variable with the specified identifier name.
The fifth pattern matches against a pair, tears it apart,
and recursively matches the car of the value against the
car of the pattern. If that succeeds, the cdr of the value is
recursively matched against the cdr of the pattern. (We use

let to avoid building long car/cdr chains.) The last pattern
matches against constants, including symbols.

Here is the definition of h after expansion.

(define h
(λ (x y)

(let ((v ‘(,x . ,y)))
(let ((fk (λ ()

(let ((fk (λ () (∗ x x))))
(if (pair? v)

(let ((vx (car v)) (vy (cdr v)))
(let ((c vy))

(if (number? c) (∗ c c) (fk))))
(fk))))))

(if (pair? v)
(let ((vx (car v)) (vy (cdr v)))

(let ((a vx))
(let ((b vy))

(if (and (number? a) (number? b))
(+ a b)
(fk)))))

(fk))))))

There are four kinds of improvements that should be
resolved by the compiler. First, vx is not used in the top
definition of fk , so it should not get a binding. Second, the
binding to a and b should be parallel let bindings. Third,
where c is bound, could have been where vy is bound,
and where a and b are bound, could have been where vx
and vy are bound, respectively. Fourth, thunk creation is
unnecessary where no guard is present.

The mv-let macro can be defined using pmatch.

(define-syntax mv-let
(syntax-rules ()

((((x . . .) e) b0 b . . .) (pmatch e ((,x . . .) b0 b . . .)))))

(mv-let ((x y z) (list 1 2 3))
(+ x y z))

⇒ 6

12

