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Abstract

This paper describes a real-time feature-based stereo SLAM system that is ro-

bust and accurate in a wide variety of conditions –indoors, outdoors, with dy-

namic objects, changing light conditions, fast robot motions and large-scale

loops. Our system follows a parallel-tracking-and-mapping strategy: a tracking

thread estimates the camera pose at frame rate; and a mapping thread updates a

keyframe-based map at a lower frequency. The stereo constraints of our system

allow a robust initialization –avoiding the well-known bootstrapping problem in

monocular systems– and the recovery of the real scale. Both aspects are essen-

tial for its practical use in real robotic systems that interact with the physical

world.

In this paper we provide the implementation details, an exhaustive evalua-

tion of the system in public datasets and a comparison of most state-of-the-art

feature detectors and descriptors on the presented system. For the benefit of

the community, its code for ROS (Robot Operating System) has been released.
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1. Introduction

A robust and accurate self-localization and mapping of the surrounding areas

is an essential competence to perform robotic tasks autonomously in a wide

variety of applications and scenarios. Due to the sensor noise, constructing and

updating the map of an unknown environment has to be done simultaneously

with the estimation of the robot pose within it. Such problem is usually referred

with the acronym SLAM, standing for Simultaneous Localization and Mapping,

and has been the object of active research during the last two decades.

Most of the early works on SLAM made use of a laser rangefinder as the

main sensor [1], in combination with wheel odometry. More recently, visual

sensors –either passive [2] or active [3]– have become the dominant choice. The

odometric information has become less relevant, making visual SLAM suitable

for other applications like Augmented and Virtual Reality. The affordable,

small and light now-a-day cameras can provide high resolution data in real-time.

Their range is unlimited –at the assumable price of a large depth uncertainty for

small parallax pixels–, in contrast to the range limits of laser sensors. Moreover,

cameras are passive sensors and therefore do not interfere with each other, and

unlike Structured light range sensors (SLRS), they can be used in both indoor

and outdoor environments. These characteristics make cameras the best choice

for a general multi-purpose mobile robotic platform.

For the above reasons, visual SLAM has become one of the most studied

topics in the latest decade. And nowadays it is possible to achieve robust and

accurate visual SLAM results in real time. However, some significant challenges

remain, particularly for monocular configurations –namely highly dynamic en-

vironments or fast camera motions. In these scenarios a stereo cameras offers

a higher degree of robustness. Triangulating the depth from a single view –and

hence initializing points with small uncertainty– allows to initialize the system

robustly and augment the map with undelayed low-uncertainty depth informa-

tion. In addition a stereo setting allows to recover the real scale and avoid the

scale drift. While a monocular-inertial combination (e.g., [4]) can also be used
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to extract the real scale of the scene, the reader should notice that the two

sensor settings are complementary. Inertial sensors are not reliable in periods

of constant velocity motion. Stereo cameras, on the other hand, are equivalent

to monocular ones in low-parallax configurations –large scene depths compared

to its baseline. A stereo-inertial combination (as in [5]) can be used to avoid

their individual limitations. RGB-D sensors also provide the real scale of the

scene for SLAM and have the added value of dense depth measurements (for

example, [6]). However, the depth measurements are range-limited and they

cannot work under direct sunlight, so they are limited to indoor scenes and lack

the generality of stereo cameras.

In this work we present a real-time SLAM system using a stereo camera,

henceforth referred to as S-PTAM. Stereo cameras allow to match the same

visual point-landmarks on a pair of synchronized views, recovering their real

depth accurately if the parallax is high. As the robot moves through the envi-

ronment it is possible to track the visual landmarks frame after frame, improve

their depth estimation and track the robot pose. In the experiments of this

paper, the stereo setting plays a key role in some challenging cases of dynamic

objects and changing lighting conditions.

Feature-based visual SLAM approaches rely on the quality and quantity of

local image features. On the one hand, the accuracy of the localization heavily

depends on the homogeneous deployment of features in images and the ability

to track them for long periods, even from different points of view and lighting

conditions. On the other hand, if the number of points in the map grows too

quickly, it may slow down the whole system. To be able to keep the response

of the system under real-time constraints, images have to be dropped or other

parts of the system, like optimization routines, must use less computational

resources. Currently, there exist several local image feature extractors. A fea-

ture extractor is a combination of a salient point (called keypoint) detection

procedure and a computation of a unique signature (called descriptor) for each

such a detected point. The most commonly used detectors are SIFT [7], SURF

[8], STAR [9], GFTT [10], FAST [11], AGAST [12], and the relatively recently
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proposed ORB [13], while among the most used descriptors we can mention

SIFT, SURF, ORB, BRIEF [14], BRISK [15], and LATCH [16]. In this work,

we also evaluate the impact of different state-of-the-art feature extractors on the

performance of the visual SLAM localization method to find the best option.

Following the approach of Parallel Tracking and Mapping (PTAM) [17], S-

PTAM divides the problem into two main parallel tasks: camera tracking and

map optimization. These tasks run in two different threads, only sharing the

map between them. The tracking thread matches features, creates new points

and estimates the camera pose for every new frame, and the mapping thread

iteratively refines the nearby point-landmarks that compose the map.

S-PTAM was developed to achieve a flexible, robust and accurate stereo

SLAM system. Its main characteristics can be summarized as follows:

• The SLAM problem is heavily parallelized achieving real-time perfor-

mance, whilst minimizing inter-thread dependency.

• The stereo constraints are used for point initialization, mapping and track-

ing, improving the accuracy and robustness of the system.

• Real-time loop detection and correction are included in the system. The

loop detection is performed using appearance-based image matching and

the loop correction by optimizing a pose graph representation of the map.

• A maintenance process that runs in an independent thread iteratively

refines the map (Bundle Adjustment) in a local co-visible area, improving

global consistency.

• Although the method works with the only input of a stereo sequence,

wheel odometry can also be used for further accuracy and robustness.

• Binary features are used to describe visual point-landmarks, thus reducing

the storage requirements and the matching cost.
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The implementation of S-PTAM is open source and publically available1. It

is built upon the ROS (Robot Operating System) framework to ease distribution

and integration. This paper builds on our previous work [18], being the addi-

tional contributions: 1) a more extended and detailed description of the whole

system, 2) the design and implementation of a real-time loop closure algorithm,

3) an assessment of the impact of most state-of-the-art image feature extrac-

tors on the performance of the system and 4) a more extended and exhaustive

evaluation of the system in several public datasets.

2. Related Work

Although SLAM in general and stereo SLAM in particular are two broad

topics with a vast extent of associated bibliography, we will describe here the

main research lines and the works that are more related to ours.

[19], [20] and [21] can be considered some of the earliest works on stereo

SLAM. The first one estimates an edge map from a trinocular sensor. The

second one estimates a piece-wise planar reconstruction of a room-sized scenario

from some dozens stereo pairs. And the third one, a seminal work, estimates

a sparse map of SIFT features. [22] describes an active stereo SLAM that uses

an Extended Kalman Filter (EKF). Filtering was the main approach for SLAM

on its early days, and in addition to the EKF the particle filters [23, 24] were

another popular choice. [25] is an example of a stereo SLAM based on particle

filters.

The progress in stereo SLAM algorithms has gone hand in hand with other

visual settings, in particular with the monocular ones. Based on the EKF

feature-based monocular SLAM of [2] –the first one demonstrating real time in

room-sized scenes–, [26] proposed a formulation using a stereo camera. They

incorporate an inverse depth point parametrization [27], a joint compatibility

test [28] for the rejection of spurious matches and a submapping strategy [29]

1http://github.com/lrse/sptam
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to estimate robust, accurate and larger maps (e.g., of building halls or squares).

EKF-based approaches were demonstrated to be inconsistent in the long

term due to the integration of the linearization errors [30]. A decade later [31]

showed that they are also less efficient –in terms of information processing per

time unit– than a parallel tracking and mapping approach, the latest becom-

ing the dominant algorithm to the current days. PTAM [17] is one of the first

and most representative systems on this line, originally designed for small Aug-

mented Reality applications. This system divides the tracking and mapping

estimation into two separate threads, exploiting the availability of multi-core

processors. The first thread tracks the camera motion at every frame assuming

a known map. The second thread estimates a 3D map for a subset of keyframes

at a lower frame rate, which allows the use of non-linear batch optimization

techniques such as Bundle Adjustment [32] –a gold standard in Structure from

Motion.

Stereo Visual Odometry (VO) presents a tight relation with stereo SLAM.

The former aims only to local consistency and the latter to global consistency,

but both use similar methods in many of its parts. The parallel tracking and

mapping approach and the non-linear local optimization are present in most of

the best performing stereo VO systems (e.g., [33]).

The stereo SLAM research has focused on the last decade on a higher ro-

bustness, a higher accuracy and larger maps, with small variations in the funda-

mentals –with the exceptions detailed on the two last paragraphs of this section.

FrameSLAM [34], for example, addresses global localization for large trajecto-

ries (up to 10 km in real-time) using stereo in combination with GPS and IMU

sensors in some experiments. It uses stereo VO to estimate the incremental

motion while a pose graph models the global pose. The pose graph is built by

marginalizing the point features and even some of the poses, resulting in what

they call a skeleton, that allows a fast global optimization while the camera is

localized with the local map.

Pose graphs are present in the main stereo SLAM works in order to reduce

the complexity while keeping the global structure. RSLAM [35] models the map
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as a sequence of relative poses and the landmarks in their local camera frames.

To provide an accurate local map RSLAM uses an active region of frames (the

most closest frames in terms of distance) to perform Bundle Adjustment. The

active region defines the landmarks visible from the current frame. Representing

the local environment around the robot consists in projecting the active region

into the current frame. Landmarks with base frames (where the landmarks 3-D

coordinates are kept) belonging to poses from the active region are projected

into the current frame by composing the transforms along the edges. In this

framework, loop closure consists in creating a new edge that can then be used to

transfer 3-D landmark estimates into the current frame and therefore evaluate

their projection in the image. Accordingly, the system does not provide a global

map consistency.

[36] proposes a double window optimization approach instead of the common

active window approach allowing to deal with loopy camera motions. In a loopy

camera motion the number of keyframes at the boundary is relatively large with

respect to the total number of keyframes within the active window, and fixing

them hampers convergence. The double window optimization approach deal

with this kind of movements defining an inner window and an outer window.

The inner window uses point-pose constraints and it is supported by the outer

window which uses pose-pose constraints. In this way, while the inner window

serves to model the local area as accurately as possible, the pose-graph in the

outer window acts to stabilise the periphery.

ORB-SLAM2 [37] is the more representative feature-based SLAM nowadays.

It updates the PTAM framework by making several state-of-the-art additions to

obtain a more robust and accurate performance in larger scenarios. Among oth-

ers the system uses [38] for loop closure detection, [39] to update the pose graph

accounting for the monocular scale drift, and the covisibility map technique

proposed in [36] for large trajectories.

Our system S-PTAM is a feature-based stereo and inherits the best prac-

tices of the above referenced works. We use local Bundle Adjustment in the

neighborhood of the current frame to have a locally consistent feature map for
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accurate tracking and a pose graph modelling the global structure to correct

the drift if we revisit places. The main difference of S-PTAM with the above

system is that we initialize the map features in the tracking thread at frame

rate, resulting in a higher resilience in fast camera motions and the capability of

the creation of map points during loop closing optimizations. Mainly because of

these features, but also partly to other implementation details, we outperform

several state-of-the-art baselines in public databases.

Recently, visual SLAM and visual odometry started using direct methods

[40] that minimize the photometric error of high-gradient pixels (in contrast to

the geometric error of salient pixels in the image) in order to estimate the map

and camera poses. As its key benefit, these algorithms are able to estimate more

dense maps than the traditional feature-based ones described above. Their ac-

curacy should be better, as they integrate the information of more pixels and

avoid the artifacts that the feature extraction process might produce. However,

[41] reported a higher accuracy for state-of-the-art feature-based methods, pos-

sibly due to the lower maturity of the direct approach. Notice that the results

in the KITTI dataset [42] agree with this latest paper and the accuracy of the

best direct SLAM method [43] is still lower than the one of ORB-SLAM2 [37]

and our work S-PTAM.

Early direct SLAM/VO works used a stereo setting [44, 45]. Other works

using a monocular camera have produced fully dense and accurate maps with

a TV-regularization of the photometric solution [46] or the addition of scene

priors and learned patterns [47]. Some other works estimate a semidense map

of the highest-gradient pixels to avoid the large errors produced by the TV-

regularization in low-gradient areas (e.g., [43]). Currently, the best representa-

tive of direct SLAM using stereo cameras is [48].

3. Notation

SE(3) transformation T =

R t

0 1

. R stands for a rotation matrix and

t for a translation vector. T is a transformation belonging to the Lie Group,
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SE(3), the group of rigid-body motions in 3D. In particular, we use ECW as

the transformation which represents a camera pose that transforms a point in

world coordinates frame xW =
[
xWyWzW1

]>
to a point in camera coordinates

frame xC =
[
xCyCzC1

]>
, that is:

xC = ECWxW. (1)

Motion matrix noted with M , is a 4× 4 matrix (belongs to SE(3)) which

represents the changes in camera pose by left-multiplication, ECW = MCECW
prev.

In Lie Groups, the motion matrix M could be represented by a six-vector

µ = (tx, ty, tz, θ
roll, θpitch, θyaw), where the first three elements correspond to

translation and the last three elements correspond to rotation angles. The mo-

tion vector µ and motion matrix M are related by:

M = exp(µ) = e
∑6

j=1 µjGj , (2)

where Gj with j = 1 · · · 6 are the group generator matrices. They result from

the partial derivatives of motion matrices with respect to the motion parameters

evaluated in µ = 0, that is ∂M
∂µj

= Gj . For further information on Lie Groups

the reader is referred to [49].

Measurement noted with letter z =

u
v

, is the true 2D position that

matches with the projected 3D point on the camera’s image plane.

Map point noted with p, is an ordered pair
(
xW,d

)
which contains the 3D

point xW and its associated descriptor d.

Stereo keyframe noted with letter K, is a stereo pair of images with the

associated stereo camera pose.

Map is defined as the set of map points and the set of stereo keyframes.

A point in camera reference frame xC, projects into the image asû

v̂

 = P
(
xC
)
. (3)

We project the 3D points in the image plane using the well-known pinhole
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camera model

P
(
xC
)

=

fu 0 u0

0 fv v0



xC

zC

yC

zC

1

 =

 fuxC

zC + u0
fvy

C

zC + v0

 , (4)

where we assume that the images are rectified, fu and fv are the focal length

in the horizontal and vertical coordinates, and [u0, v0]> is the image position of

the principal point.

4. Method

Figure 1 shows a scheme of the main components and the computation flow

of S-PTAM.

Our system defines the global reference frame at the camera pose in the first

frame of the sequence. An initial map is estimated by matching and triangu-

lating salient point features in the first stereo pair. For every frame after the

tracking thread estimates the 6DOF pose for each stereo frame by minimizing

the re-projection error between the projected map points and their correspon-

dences. The system selects a subset of keyframes that will be used in a second

thread to estimate the map at a lower rate. The map points are triangulated

from the stereo matches of each keyframe, and added to the map. The map-

ping thread is constantly minimizing the local re-projection error by refining all

the map points and the stereo poses using Bundle Adjustment. We use a pose

graph to maintain the global consistency of the map. Point correspondences are

actively searched between keyframes in order to strengthen the constraints of

the pose graph. The map is a shared resource between tracking, mapping and

loop closing threads.

To deal with the accumulated errors in large trajectories, S-PTAM runs a

loop closure detection in a third thread. This thread searches for loop closure

candidates using the visual appearance of features. We confirm the potential

candidates by a robust motion estimation from features correspondences. This
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relative motion estimation is then added to the pose graph, that is optimized

to accommodate such constraint.

The next sections of this paper provide a more detailed explanation of each

component of the system.

Image Left

Feature

Extraction

Image Right

Feature

Extraction

Tracking

Matching

Pose refinement

Keyframe

selection

Points Creation

Map

Local Mapping

Find New

Measurements

Bundle Adjustment

Remove bad Points

Keyframe

Pose

Prediction

Loop Closing

Loop

Detection

Compute Relative

Transformation

Loop

Validation

Loop

Correction

Figure 1: S-PTAM overview.

4.1. Feature extraction and description

S-PTAM relies on matching local image features for localization and map-

ping. The pose of each stereo frame is estimated from the correspondences

between the 3D map features and the 2D image features. Every local feature

that does not have a map correspondence is triangulated from the stereo matches

and added to the map. The mapping system also searches for correspondences
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between keyframes and map points. The viewpoint invariance and the cost are

the two key aspects for local features in SLAM, as wide-baseline matching im-

proves the accuracy and a high extraction/description cost reduces the budget

for other tasks.

For the present system, the GFTT [10] algorithm was selected to detect the

image key-points, and the BRISK [15] extractor to describe their features. This

combination of feature detector and descriptor algorithms was chosen based on

a thorough evaluation of state-of-the-art feature detectors and descriptors –see

the details in section 6.2.

4.2. Pose Tracking

Our pose tracking thread consists of 4 sequential steps.

4.2.1. Matching

We project each map point inside the viewing frustum of the predicted stereo

pose and search for the match in a neighborhood of the point. A reasonable

prediction of the current camera pose is necessary in order to perform such

projection. In our case, dead-reckoning based on wheel odometry is used, since

it is available in most ground based robotic vehicles. If it were not, a decaying

velocity model can be used instead. Matching between map points and features

is carried out comparing the descriptors. As binary descriptors are used, the

Hamming-distance is calculated. If the distance is below a given threshold the

match is valid, otherwise it is discarded.

4.2.2. Pose refinement

In order to estimate the current camera pose ECW in the global reference

frame W , we compose the previous camera pose ECW
prev with the relative motion

MC in the local camera frame

ECW = MCECW
prev, (5)

To find the relative motion MC we use the following equation

Jµ = ∆z
(
µprev

)
(6)
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where µ is composed of the relative motion parameters in vector form µ =

(tx, ty, tz, θroll, θpitch, θyaw)>, ∆z is the re-projection error (only depending on

the camera motion µ, as we consider the map fixed), and J is the Jacobian

of the re-projection error with respect to the camera motion parameters. Each

element Jij of the Jacobian is computed as

Jij =
∂∆zi(µ)

∂µj
=

∂

u
v


i

− P
(

exp(µ)ECW
prevx

W
i

)
∂µj

(7)

= −
∂P
(
xC
i

)
∂xC

i

∂xC
i

∂µj
, (8)

where

∂P
(
xC
i

)
∂xC

i

=

 fuzC 0 − fux
C

zC2

0 fv
zC − fvy

C

zC2

 (9)

and
∂xC

i

∂µj
= GjE

CW
prevx

W
i . (10)

The motion vector µ is found by solving the equation (6). In order to do this,

given a set S = {z1, . . . ,zN} of matched measurements, the new value for µ is

obtained by minimizing an objective function as follows

µ′ = argmin
µ

∑
i∈S

ρ
(
J iµ−∆zi(µprev)

)
, (11)

where ρ(.) is the Huber function used to reduce the effect of outliers. The

minimization in (11) is performed using the well-known Levenberg-Marquardt

algorithm.

4.2.3. Keyframes selection and map points creation

Once the current pose is estimated, a frame is selected to be a keyframe

if the number of tracked points is less than 90% of the points tracked in the

last keyframe. If so, the remaining unmatched features from the stereo pair

are triangulated to create new map points. Other visual SLAM systems (like
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PTAM [17]) create new map points once the keyframe is processed by the map-

ping thread that may not be immediate, depending on the level of congestion,

potentially causing a tracking failure. In contrast, S-PTAM immediately cre-

ates and incorporates the new points into the map after the tracking step to

avoid the loss of potential map matches on the upcoming frames. Finally, the

keyframe is queued into the map refinement thread, to be processed as soon as

possible.

4.3. Local Mapping

This section details the stereo mapping algorithm that uses multiview and

stereo constraints to refine the estimated map (keyframe poses and salient

points’ positions). Our system follows mainly the local mapping approach pre-

sented in [17], extending it with the stereo constraints.

The refinement of the camera poses (keyframe map) and the 3D points (point

cloud map) is done with a particular case of least squares estimation called Bun-

dle Adjustment, that minimizes the re-projection error of every point in every

image. The problem can be stated as follows: given an initial set of N keyframe

poses {E1, . . . ,EN}, an initial set of M 3D points xW =
{
xW
1 , . . . ,x

W
M

}
and a

family of measurement sets {S1, . . . , SN}, where each set Sj contains the mea-

surement zij of the i-th point in the j-th keyframe, the simultaneous estimation

of the multiple cameras and the point cloud is achieved by solving

J

µ
x

 = ∆z
(
µprev,x

W
prev

)
, (12)

where

∆z
(
µ,xW

)
= z − P

(
exp(µ)ECW

prevx
W
)

(13)

is the reformulated re-projection error where the dependence of the 3D point

is included. In a way analogous to the minimization used in (4.2.2), we must
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minimize the double summation in (14)

{
µ′j=2···N ,x

′W
i=1···M

}
= argmin
{{µ},{xW}}

N∑
j=1

∑
i∈Sj

ρσT
(ψji) , (14)

where

ψji = J ji

 µj
xW
i

−∆zi
(
µprev,j ,x

W
prev,i

)
.

Observe that µ1 is fixed during the Bundle Adjustment refinement. This is

because the first keyframe is given zero uncertainty, as it defines the world

reference frame. Given that the vector of parameters is divided into two groups

(cameras and points) the Jacobian can be decomposed as

J =
[
∂∆z(µ,xW)

∂µ

∂∆z(µ,xW)
∂xW

]
.

The computation of the Jacobian is performed as follows. The part cor-

responding to the camera pose has the form given by (7), whereas the part

corresponding to the point cloud parameters have the form

J ji =
∂∆z(µj ,x

W
i )

∂xW
i

(15)

=

∂

u
v


i

− P
(

exp(µj)E
CjW
prev x

W
i

)
∂xW

i

(16)

= −
∂P
(
x
Cj

i

)
∂x

Cj

i

∂x
Cj

i

∂xW
i

. (17)

The first partial derivative is given by (9) and the second partial derivative

results from

∂x
Cj

i

∂xW
i

=
∂
(
MCjECjW

prev x
W
i

)
∂xW

i

= R. (18)

To this point, we have addressed the Bundle Adjustment multi-view constraints

in one of the stereo images (without loss of generalization, the left one). Adding

the stereo constraint slightly differs from the above. The relative motion between

the left and the right cameras is fixed, so we can obtain the pose of the right
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camera from the left camera using

ERW = ERLMLELW
prev. (19)

Now, we can use the right camera measurements to add stereo constraints to

Bundle Adjustment. These constraints are given by

zR = PR
(
ERLMLELW

prevx
W
)
. (20)

Summing up, a 3D-2D point constraint is modelled with (4) for the left camera

and with equation (20) for the right camera. The Jacobian rows related to the

right camera measurements have the form

JR
ji =

∂∆zR(µj ,x
W
i )

∂xW
i

(21)

=

∂

uR
vR


i

− PR
(
ERL exp(µj)E

LjW
prev x

W
i

)
∂xW

i

(22)

=

 fuzR 0 − fux
R

zR2

0 fv
zR−

fvy
R

zR2

RRLR. (23)

Notice that, if the stereo camera is rectified, then the transformation between

cameras is a pure translation in the x-axis (baseline) and the intrinsic parameters

are the same, therefore yL = yR and zL = zR and (21) can be rewritten as

JR
ji =

 fuzL 0 − fux
R

zL2

0 fv
zL −

fvy
L

zL2

R. (24)

Finally the Jacobian can be expressed as

J ji =


fu
zL 0 − fux

L

zL2

0 fv
zL −

fvy
L

zL2

fu
zL 0 − fux

R

zL2

R. (25)

4.4. Loop Closure

Handling large environments requires a system capable of recognizing already-

visited places and optimizing the map and the trajectory, in order to reduce the
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accumulated drift and maintain a globally consistent map model. To accom-

plish this task, the process is divided into three phases: the detection of revisited

places, the estimation of the relative transformation and the loop correction.

In the detection phase, the keyframes provided by the local mapping are

described by a bag-of-binary-words using a previously trained visual vocabulary.

The computed bag-of-binary-words are used to create a keyframe database as

proposed in [50]. For each new keyframe the database is queried to obtain those

previously added keyframes that are similar in terms of appearance.

If a loop closure candidate is found, the relative transformation between the

queried keyframe and the loop candidate keyframe is estimated. This transfor-

mation will serve to measure the accumulated error and to validate the proposed

loop determined by the matched keyframes.

Once a loop has been considered valid, a correction is propagated among

all the keyframes of the loop providing an initial seed for a later pose graph

optimization obtaining a more accurate solution that reduces the accumulated

drift error.

4.4.1. Loop detection

Loop detection is achieved making use of the efficient appearance-based

method proposed in [38]. Each new keyframe Ki is described as a bag-of-

words vector vi and the keyframe database is queried scoring any previously

added vj that shares words with vi following the normalized similarity score:

η (vi,vj) =
s (vi,vj)

s (vi,vi−1)
,

where vi−1>0 is the bag of words representation of the previous inserted key-

frame, and the similarity score between two bags of words s(vi,vj) is an L1-score

which lies in [0, 1]:

s (vi,vj) = 1− 1

2

∣∣∣∣ vi
|vi|
− vj
|vj |

∣∣∣∣
In the case that the highest normalized similarity score exceeds a predefined

threshold, its respective keyframe is considered a match and a potential loop

candidate.
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4.4.2. Map points matching and geometric verification

Once the current keyframe KC has been successfully matched with a loop

candidate keyframe K`, the relative transformation TCCC` existing between

KC and K` must be computed. This transformation will be used to perform

the correction on the detected loop. In order to be avoid false positive loops,

an initial estimation of the relative transformation, along with the set of map

points inliers associated, are computed in a first step. An initial transforma-

tion between the matched keyframes is computed performing RANSAC with a

P3P (Perspective-3-Point) solver [51] over 3D-2D correspondences established

between map points observed by KC and features extracted in K`. If the per-

centage of inliers exceeds a given threshold then the detected loop is considered

valid and a general PnP (Perspective-n-Point) solver [52] is used, over the inlier

matches, to estimate a more accurate relative transformation. The resulting

TCCC` is finally refined with a non-linear optimization.

4.4.3. Loop correction and keyframes optimization

At first, the loop correction process estimates an initial update using the

computed relative transformation. This correction is performed by propagating

the TCCC` transformation through the keyframes between KC and K`.

Let {ECCW, . . . ,ECj+1W,ECjW, . . . ,EC`W} the keyframes poses belonging

to the detected loop, the propagation is defined by:

ECCW
prop = TCCC`EC`W

ECjW
prop = Interpolatej

(
ECjW,ECjCj+1ECj+1W

prop

)
EC`W
prop = EC`W,

where the low index prop refers to the camera poses after the propagation.

Interpolatej (∗, ∗) performs a linear pose interpolation between the non-corrected

and corrected camera pose ofKj according to its distance to where the loop was

detected. In this way, keyframes closer to the current keyframe (and therefore

closer to the loop point) will be corrected more strongly, whereas the correction

for the keyframes located farther from the loop point will be smoothed. This
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was achieved in practice using quaternion representation and spherical linear

interpolation (Slerp).

After the initial loop correction, a pose graph optimization is carried out

to get a more accurate solution. At last, each point on the map is corrected

by applying the same transformation that was applied to its original keyframe

from where it was triangulated.

4.4.4. Map update and components synchronization

To allow the system to operate in real time along with the loop correction

extension, two properties must take place:

• The tracking thread must remain operational at real time being able to

work with any map point needed and create new keyframes if required.

• The local mapping thread must be able to perform the bundle adjustment

over keyframes and map points inside a defined sliding window.

To ensure these two properties, after a loop has been validated, the most

recent subset of keyframes selected by the mapping thread is defined as the safe

mapping window. Then, the initial loop correction propagation and pose graph

optimization are performed over an internal copy of all the keyframes present.

Thereafter, the map update process is divided into three stages:

• Update corrected keyframes and map points outside of the defined map-

ping window.

• Update corrected keyframes and map points inside the defined mapping

window applying any optimization that may have been introduced by the

local bundle adjustment since the start of the loop closing process.

• Correct any keyframe created and added to the map after the internal

copy has been made. This correction is achieved applying the same rigid

transformation that has been applied for the correction of the current

keyframe.
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The tracking and mapping threads need to be paused only during the last two

stages, where only a small fraction of the map is updated. After the map update,

the only remaining part is to notify, to the pose predictor, the transformation

that must be applied to the ongoing trajectory.

Throughout the process, the tracking may encounter map points that are

being actively corrected by the loop closing process, but it is expected that the

tracking dismisses those map points while projecting and matching.

5. Implementation Details

In this section we explain in detail some relevant implementation decisions

that allow the system to run in real time on a mobile platform, minimizing the

impact on the pose estimation accuracy.

As keypoint detection and extraction is time consuming, the feature pro-

cessing for each image of the stereo pair is split into two parallel threads.

Another bottleneck of the tracking phase is matching map points to recently

extracted features. Since the map size scales linearly with the traveled distance,

checking all points becomes infeasible on the long run. Because of this, only the

map points that are in a covisibility area are considered. The covisibility area,

for an incoming frame, is determined by all the points that are shared among

near keyframes. These keyframes are those that observed the points tracked

by the previous frame. Then, this map points are filtered by camera frustum

culling. Points initialized from a very different point of view (more than 45

degrees) are also discarded.

The remaining map points are projected onto the image plane to check for

matches against the detected features. To speed up this process, detected fea-

tures are grouped by spatial hashing into grid cells. The matching of a map

point is then restricted to the features inside a neighborhood around its pro-

jection. For valid matches, the descriptors stored in map points are updated

with image features descriptors. The update of map points descriptors allows

to track them for a longer period of time.
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Global map optimization through Bundle Adjustment becomes prohibitive

for large scale environments. Consequently we perform only local optimizations.

The Local Bundle Adjustment (LBA) only refines a fixed number of queued key-

frames, along a set of already refined nearby keyframes, and the corresponding

subset of visible map points. Unlike PTAM, which runs LBA once for each sin-

gle keyframe, S-PTAM grabs up to ten queued keyframes to avoid starvation.

Our experiments show that the queue size never exceeds four keyframes.

We use the library DBoW2 library [38] for loop closure, configured with the

threshold α = 0.3, temporal consistency k = 0 and no geometric check. A visual

vocabulary of 6 levels with 10 clusters per level was trained with a combination

of indoor and outdoor image sequences from the MIT Stata Center Dataset [53]

and the Málaga Urban Dataset [54] with a total of 10 thousand images.

The openGV library [55] was used for solving the pose estimation needed for the

loop correction with a central absolute variant of the methods aforementioned.

A detected loop is validated if 80% of the 3D-2D correspondences were found

as inliers.

The g2o (General Graph Optimization) library [56] was used to perform

Levenberg-Marquardt minimization during tracking, Bundle Adjustment and

pose graph optimization after loop closure. Other graph optimization libraries,

Vertigo [57, 58] and GTSAM [59], were considered as alternative to g2o. In [56] is

shown a comparison between g2o and GTSAM library. The comparison showed

that g2o outperform GTSAM. On the other hand, Vertigo is an extension of

g2o and GTSAM which can solve pose graph optimization problems even with

the presence of false positive loop closures. During the experimentation with S-

PTAM no false positive loop closure occurs (given the strong validation process

carried out during the loop detection), and thus the use of Vertigo was dismissed.

The source code was built upon the ROS framework, in order to promote

its usage by the robotics research community.
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6. Experiments

6.1. Error metric

To assess the final impact of the different experiment configurations on the

accuracy of S-PTAM, we extend a commonly used metric [60, 42] specifically

designed for evaluating the performance of SLAM systems.

Let xk be the estimated pose at frame k and x∗k the corresponding ground

truth pose. Let us note the set of differences (or motions) between two frames

of a sequence as δi,j = xj 	 xi, where ⊕ is the standard motion composition

operator and 	 it’s inverse [61]. Analogously δ∗i,j = x∗j 	 x∗i .

The relative error commited between frames i and j becomes δi,j	δ∗i,j , and

the aforementioned metric is defined as the root–mean–square error (RMSE)

over δ. It differs from the original metric [60] by taking the square root, which

helps in interpreting numerical results, since the measurement units are the same

as for the data. Morover, to obtain meaningful numerical results, we need to

sepparate the translational εt and rotational εθ part of this errors, since they are

different in nature, separation which was also suggested by the original authors

[60]:

εt =

√
1

N

∑
i, j

trans
(
δi,j 	 δ∗i,j

)2
εθ =

√
1

N

∑
i, j

rot
(
δi,j 	 δ∗i,j

)2
where N is the number of relative displacements δi,j . In practice, the inverse

motion composition operation between two poses xj	xi can be computed from

the corresponding transformation matrices representing each pose, namely T xi

and T xj
as

xi 	 xj = T−1xj
T xi

This equations intentionally leave open the choice of which relative displace-

ments δi,j are included in the metric. As discussed by the original authors
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[60], the choices will highlight different properties of the data. In our case,

we strive for local consistency, which is better highlighted by taking displace-

ments as small as possible. Therefore relative displacements are taken between

consecutive frames, yielding:

εt =

√
1

N

∑
k

trans
(
δk,k+1 	 δ∗k,k+1

)2
εθ =

√
1

N

∑
k

rot
(
δk,k+1 	 δ∗k,k+1

)2

6.2. Evaluation of feature extractors

In this section, we assess the impact of image feature extractors on the per-

formance of the S-PTAM system in terms of pose accuracy and computational

requirements. Although the evaluation is performed using the S-PTAM system,

the obtained results can be generalized for other stereo feature-based SLAM

systems.

An image feature extractor can usually be split into two phases, detection

and description. The feature detector is used to find salient areas in the image,

while the feature descriptor captures and synthesizes the information in a local

neighbourhood of the selected area. A brief overview of the most commonly

used feature extractor and descriptor algorithms, which were considered for

comparison, is presented below.

STAR – A modified version of the CenSurE (Center Surrounded Extrema) [9]

detector, which is computationally less demanding at the expense of lower

precision.

FAST – Features from Accelerated Segment Test [11] is a feature detector

focused on lowering the computational cost.

AGAST – Adaptive and Generic Accelerated Segment Test, a corner detec-

tor based on FAST. Unlike FAST, AGAST does not have to be trained
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for a specific scene, but it dynamically adapts to the environment while

processing an image [12].

GFTT – A detector focused on selecting features relevant to motion tracking

by analyzing the amount of information they provide for that particular

task [10].

BRIEF – Binary Robust Independent Elementary Features [14] is a descriptor

that describes an image area using a number of intensity comparisons of

random pixel pairs. It is saved as a binary string, which reduces the

computational complexity of the subsequent matching.

ORB – Oriented FAST and Rotated BRIEF [13] is another attempt to achieve

a scale and rotation invariant BRIEF, as a computationally efficient alter-

native to SIFT and SURF. It uses a modified version of the FAST detector

to achieve low computational cost, computing orientation information in

the process.

BRISK – Binary Robust Invariant Scalable Keypoints [15] is a scale and rota-

tion invariant version of BRIEF, but unlike BRIEF, it uses a deterministic

comparison pattern.

LATCH – Learned Arrangements of Three Patch Codes is a binary descriptor

extractor which compute each value descriptor vector through the com-

parison of patches instead of solely pixels as BRIEF or BRISK extractors.

By comparing patches, visual information with more spatial information

support is considered for each of the descriptor’s bits, and their values are

therefore less sensitive to noise [16].

Given the high computational cost of SIFT and SURF feature extractors,

they are not considered here, since the system is expected to run in real time.

The ORB descriptor relies on its own detector (ORB). For each of the BRIEF,

BRISK and LATCH descriptors, the combination with GFTT, FAST, AGAST

24



and STAR detectors are considered. This amounts to thirteen detector–descriptor

pairs that are evaluated in the present work.

The experiments are performed over the KITTI Vision Benchmark Suite [42],

which provides a reliable ground truth for several training sequences. The stereo

camera mounted on the front has a 60 cm baseline and a resolution of 1344×391

pixels and runs at a frame rate of 10 Hz. The training sequences sums up to

23.000 stereo frames. Results are computed over all the training sequences,

except for sequence 01 which records a car driving in a highway at high speed,

together with a low feature scene, rendering the system ill-conditioned for visual

odometry.

The quality of each feature extractor is measured directly as the error 6.1

committed when running the S-PTAM system over the sequences with that par-

ticular configuration, with respect to the provided ground truth. In Table A.6,

the parameters used for each feature extractor are detailed. To make the drift

produced by each feature extractor observable, the loop closure module was

disabled for this set of experiments.

An important requirement for every feature extractor is to track the camera

pose in real time. First of all the extraction cost should be low. In Figure 2 it

can be seen how the different detectors and descriptor extractors perform in the

context of the KITTI dataset. Note that the extraction time required by each

method depends heavily on the processing power and resolution of the images.

On the other hand, the number of extracted features also has a direct impact on

the performance, since the map, and thus the amount of tracked points, scale

with it. In Figure 2a, GFTT is the most unstable detector, presenting time

demanding outliers. In real-time operation, each outlier may cause the lost of

a stereo frame. However, losing a few scattered frames does not compromise

S-PTAM’s localization as we shall see in the on-line experiments presented in

Section 6.3.

Analyzing the accuracy obtained by S-PTAM running in off-line mode (hav-

ing enough time to process each stereo frame), it is possible to see which feature

extractor achieves the best accuracy. Table 1 and Table 2 show the RMSE trans-
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(a) Feature detection time for each image (b) Descriptor extraction time for each feature

Figure 2: Feature extraction times. Data was measured over all KITTI training sequences

(except 01). Boxes represent interquartile range (IQR), whiskers reach to −1.5 × IQR and

1.5 × IQR, and the points represent data beyond those ranges, considered outliers. The line

inside the box represents the median.

lation and rotation errors achieved upper bounding the number of features to

be extracted per frame. Upper bounds start at 500 features, given that almost

all extractors fails to localize with lesser number of features. STAR/BRISK

combination was the only one that was able to operate over all sequences with

a 250 features upper bound. The ORB/ORB and GFTT/BRISK combinations

outperform the others under the evaluated error metric. It is important to

clarify that the number of features detected by GFTT remains around ∼500

features despite the selected upper bounds. This is determined by the detec-

tor’s characteristics and its implementation. The tables show that in general at

greater number of features extracted, a greater number of features are tracked,

and therefore a better accuracy is obtained. In particular, ORB/ORB clearly

presents the aforementioned tendency. Nevertheless, the performance of the sys-

tem gets compromised if too many features are tracked. For real-time operation

the number of features to be extracted should be carefully selected. Figure 3

shows the translation and rotation RMSE errors obtained by S-PTAM running

in on-line mode with ORB/ORB features. Errors decrease until ∼1500 features,

and increases rapidly thereafter.

26



Features extracted per frame

Extractor 500 1000 1500 2000 2500

AGAST / BRIEF 0.0601 0.0448 0.0441 0.0491 0.0452

AGAST / BRISK 0.0425 0.0361 0.0357 0.0357 0.0356

AGAST / LATCH 0.0887 0.0677 0.0796 0.1089 0.0793

FAST / BRIEF 0.0563 0.0511 0.0538 0.0473 0.0601

FAST / BRISK 0.0423 0.0342 0.034 0.0337 0.0345

FAST / LATCH 0.0906 0.0661 0.0891 0.1213 0.0727

GFTT / BRIEF 0.0333 0.0322 0.0322 0.0319 0.0317

GFTT / BRISK 0.0301 0.0299 0.0299 0.0293 0.0294

GFTT / LATCH 0.0443 0.0419 0.0419 0.0423 0.042

ORB / ORB 0.0462 0.0363 0.0321 0.0305 0.0293

STAR / BRIEF 0.0393 0.0368 0.037 0.0375 0.0371

STAR / BRISK 0.0449 0.0436 0.0415 0.0521 0.0529

STAR / LATCH 0.0589 0.0525 0.0496 0.0496 0.0495

Table 1: Translation RMSE errors obtained for each feature extractor over all KITTI training

sequences (except 01) limiting the number of features to be extracted. Good (small) relative

error implies local consistency, sufficient for navigation.

Features extracted per frame

Extractor 500 1000 1500 2000 2500

AGAST / BRIEF 0.095 0.0833 0.0795 0.0835 0.0825

AGAST / BRISK 0.0881 0.0742 0.0768 0.0784 0.0767

AGAST / LATCH 0.119 0.0984 0.0976 0.0973 0.0955

FAST / BRIEF 0.0939 0.0851 0.0814 0.0813 0.0853

FAST / BRISK 0.0838 0.0764 0.0755 0.0737 0.0746

FAST / LATCH 0.1142 0.1001 0.0965 0.1002 0.0966

GFTT / BRIEF 0.0771 0.0745 0.0746 0.0744 0.0741

GFTT / BRISK 0.0756 0.0741 0.0741 0.0746 0.0738

GFTT / LATCH 0.0897 0.0863 0.0898 0.0866 0.0892

ORB / ORB 0.087 0.0762 0.0724 0.0699 0.068

STAR / BRIEF 0.0798 0.076 0.0747 0.0745 0.0759

STAR / BRISK 0.0848 0.08 0.0765 0.0768 0.0766

STAR / LATCH 0.102 0.0914 0.0895 0.0913 0.0915

Table 2: Rotation RMSE errors obtained for each feature extractor over all KITTI training

sequences (except 01) limiting the number of features to be extracted. Good (small) relative

error implies local consistency, sufficient for navigation.

The experiments presented in the next section were carried out using the

GFTT algorithm for the detection of features and BRISK was selected as the

feature descriptor. At first this decision appears to be in conflict with previous

works [62, 63] on binary feature evaluation. In [63] the FAST/BRIEF extractor

is recommended in the same context as the experiments conducted in the present

work. However, it does not consider the complexity of further processing the

huge amount of points extracted, and bases the detector choice solely on its

speed. In [62], the BRIEF descriptor is preferred over BRISK, but BRISK is
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(b) Rotation RMSE errors.

Figure 3: RMSE translation and rotation errors obtained by S-PTAM running in on-line

fashion on sequence 04, with ORB/ORB as feature extractor. Six experiments were carried

out changing the number of features to be extracted.

only paired with the AGAST detector. In [63] BRISK is not even considered.

6.3. Loop closure experiments

To assess the accuracy, robustness and computational cost of the S-PTAM

system with the loop closure extension, the KITTI dataset and the Indoor Level

7 S-Block dataset [64] were used. They cover both outdoor large driving sce-

narios as well as indoor robotics respectively. The KITTI dataset, although not

strictly robot localization, provides a standard benchmarking framework which

helps to compare the performance of our method to other state-of-the-art stereo

vision-based SLAM systems. This dataset presents dynamic objects, changing

light conditions and fast camera motions. The Level 7 S-Block dataset corre-

sponds to a wheeled robot moving around an office environment under artificial

illumination conditions. The stereo camera mounted on the robot has a ∼30 cm

baseline and a resolution of 1280×1960 pixels at a frame rate of 12 Hz. During

the trajectory several loop closures are made over an extended period of time

(more than 30 minutes). For all these experiments, a standard laptop with an

Intel Core i7 @ 2.8 GHz processor and 16 GB RAM was used.
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6.3.1. The KITTI benchmark suite

Figures 4, 5 and 6 show the performed trajectories estimated by S-PTAM

with the loop closure extension compared with the ground truth. For those

sequences where loops were detected (00, 02, 05, 06 and 07), a comparison with

S-PTAM without loop closure is presented. Implemented methods for the loop

detection and validation have shown to be robust as no false positives have

occurred in any of the evaluated sequences. Figure 7 shows the loops that were

detected over the sequence 00, the Z-axis represents time and red lines link pairs

of keyframes that were matched as positive loops. The loop correction proved to

be able to operate without disrupting the tracking continuity. Figures 8 and 9

show the absolute translation and rotation error respectively at each moment of

the sequence 00. In such figures, absolute errors of the system with and without

loop closure extension are presented. It can be seen that the first loop correction

occurred after a significant period of time without any loops (where accumulated

drift error increases substantially), significantly improves the global localization

of the system. When a loop correction occurs, the translation error get adjusted

to the values registered at the time that the place was first visited. In Figure 8,

between seconds 350 to 400, the car revisits a section previously mapped. It

is interesting to note that the absolute error is not further reduced with higher

numbers of detected loops. This is due to the accumulated error being already

eliminated by the first loop closed in that segment. Error peaks in the figure

correspond to areas with low texture or high-speed turns. During the ∼4 km

trajectory followed by the car, the maximum absolute localization error was less

than 15 meters.

Table 3 shows the performance of the loop detection and geometric valida-

tion methods on sequences that presents loops in trajectory (00, 02, 05, 06, 07

and 09). Loop associations proposed in [65] were used as ground truth. The

appearance-based loop detection is permissive, generating a high number of de-

tections with a large percentage of false positives. In contrast, the geometric

validation implemented rejects false positives with 100% precision at expense

29



of a lower recall. The number of loops finally validated is proportionally low

compared to the amount of loops defined in the ground truth. As we mention

before, several loop corrections in close succession do not significantly improve

the global localization, the method focuses on fewer loops with higher number

of inlier correspondences. S-PTAM fails to detect a loop that occurs in the last

17 frames of sequence 09.

Table 4 shows the average temporal performance, measured for the costliest

subroutines of the tracking process. Despite of the time consumed by the loop

closure procedures, the tracking thread runs at ∼18 Hz.

Table 3: Precision and recall results on KITTI sequences.

Sequence #Loops
Appearance Appearance + Geometric Validation

#Detections %Precision %Recall #Validations %Precision %Recall

KITTI00 732 2747 13,14% 49,32% 45 100% 6,14%

KITTI02 234 3010 3,12% 40,17% 5 100% 2,14%

KITTI05 320 1596 12,4% 61,88% 28 100% 8,75%

KITTI06 269 412 24,03% 36,8% 16 100% 5,95%

KITTI07 13 434 2,07% 69,23% 1 100% 7,69%

KITTI09 17 836 0,60% 29,41% 0 / 0%

Table 4: Tracking phase average processing time.

Tracking phase time (ms)

Feature Extraction and description 31.53

Get Points (inside Frustum) 4.37

Matching 4.71

Pose Update 0.99

AddKeyFrame 13.62

Total 55.22
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Figure 4: Trajectories of the 00, 01, 02, 03 sequences.
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Figure 5: Trajectories of the 04, 05, 06, 07 sequences.
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Figure 6: Trajectories of the 08, 09, 10 sequences.
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Figure 7: Loop detections on sequence 00. Red lines link pairs of matched keyframes.
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Figure 8: Absolute translation error on sequence 00. Red markers show when a loop was
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Figure 9: Absolute rotation error on sequence 00. Red markers show when a loop was vali-

dated.
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6.3.2. Level 7 S-Block dataset

Unlike the KITTI dataset, which presents a low number of widely separated

loops, the Level 7 dataset features a high number of them. Besides testing S-

PTAM in a different environment, it also allows to make a proper evaluation

of the loop closure extension in terms of time requirements. In Figure 10 the

trajectory estimated by S-PTAM with and without the loop closure extension

is presented along with the loops that have been validated. The loop validation

process implemented shows to be robust and accurate, given that, even when

the scene is highly repetitive no false positive loops are detected.

Figures 11 and 12 show that the map update (outside the usage mapping

window) and loop correction processes scale linearly with the number of key-

frames. Note that the gaps between measurements indicate that there was no

loop detected in that timespan. During the loop correction process, tracking

and mapping threads are paused up to 4 ms. This allows the continuous growth

of the map along with an uninterrupted tracking, even during the loop closing

process.
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Figure 10: Estimated trajectory and loops detected over time. Note that ground-truth infor-

mation presents segments with little noise.
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Figure 11: Map update times (for keyframes outside the usage mapping window).

Figure 12: Loop correction (initial loop correction and pose graph optimization) time over

the number of keyframes in the map.

6.4. Comparison with other SLAM systems

This section aims to compare S-PTAM with other state-of-the-art SLAM

systems.
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6.4.1. The KITTI benchmark comparison

The KITTI benchmark presents an exhaustive comparison of several state-

of-the-art SLAM systems in the context of outdoor driving scenarios. In the

benchmark, the errors measured are a form of relative mean square errors

(MSE), normalized over distances and velocities. See [42] for further details

on how this errors are computed.

In Table 5, which is an excerpt of the ranking on the benchmark website [66],

S-PTAM is compared to the stereo version of ORB-SLAM2 [37] and the S-LSD-

SLAM [48] system. Both are state-of-the-art reference systems in the visual

SLAM community. ORB-SLAM2 presents the best translation error whilst S-

PTAM presents the best rotation error. The direct stereo SLAM system S-LSD-

SLAM, performs worse than the feature-based ones in this dataset.

Table 5: Comparison of S-PTAM, ORB-SLAM2 and S-LSD-SLAM in KITTI Benchmark.

Method Translation Error Rotation Error

ORB-SLAM2 1.15 % 0.0027 [deg/m]

S-PTAM 1.19 % 0.0025 [deg/m]

S-LSD-SLAM 1.20 % 0.0033 [deg/m]

6.4.2. Level 7 S-Block dataset

In this section, we compare ORB-SLAM2 and S-PTAM systems over the

Level7 dataset. Figure 13 shows the trajectory estimated by both systems; and

Figures 14 and 15 present the absolute translation and rotation errors obtained.

The figures show that S-PTAM and ORB-SLAM2 have comparable accuracy

and both present similar error peaks around the same areas.

7. Conclusions

In this paper, we present a mature stereo SLAM system for robot localiza-

tion called S-PTAM. S-PTAM incrementally builds a point-based sparse map

representation of the workspace, using a stereo camera, and tracks the camera
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Figure 13: Comparison between trajectories estimated by ORB-SLAM2 and S-PTAM. Note

that ground-truth information presents segments with little noise.
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Figure 14: Absolute translation error estimated by ORB-SLAM2 and S-PTAM. Note that

ground-truth information presents segments with little noise.
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Figure 15: Absolute rotation error estimated by ORB-SLAM2 and S-PTAM. Note that

ground-truth information presents segments with little noise.

pose within it. To allow S-PTAM to run in large scale environments and respond

in real-time, the SLAM problem is heavily parallelized, separating tracking and

map refinement routines, while minimizing inter-thread dependency. Moreover,

to make the system scale better in large scale maps, a loop closure module was

developed. This extension was designed in order to does not disrupt tracking

and local mapping threads, allowing to the system operates in real-time.

This work also assesses the impact of image feature extractors on the per-

formance of S-PTAM in terms of pose accuracy and computational require-

ments. From this evaluation, we conclude that the GFTT key-point detector

and BRISK descriptor combination gives a good trade-off between computation

demanding and accuracy for real-time applications. Although the evaluation

was performed using the S-PTAM system, the obtained results can be extrap-

olated to other stereo feature-based SLAM systems.

The accuracy of the method was tested in public outdoor and indoor datasets,

comparing results against the provided ground truth. The presented datasets

presents different conditions, such as dynamic objects, changing light condi-
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tions and fast camera motions combined with low camera frame-rate. Further-

more, experiments were performed with simulated time to test the real-time

performance of the system. Results indicate that the accuracy of S-PTAM is

comparable to state-of-the-art approaches for mobile robot localization.

Although S-PTAM can deal with arbitrary camera motions, abrupt motion

changes may produce localization failures. An approach to deal with this limi-

tation is to feed the motion model with angular velocity and linear acceleration

measurements provided by an inertial measurement unit (IMU). IMU integra-

tion into S-PTAM was explored in [67].
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Detector /
Parameter Value

Descriptor

STAR responseThreshold 20

FAST threshold 60

AGAST threshold 60

GFTT minDistance 15.0

BRIEF hammingThreshold 25

ORB
nLevels 1

hammingThreshold 50

BRISK hammingThreshold 100

LATCH
hammingThreshold 45

rotationInvariance false

Table A.6: Parameters used for the feature detectors and descriptors in the evaluation of

section 6.2. The parameters not appearing in the list use the default value in the OpenCV 3

implementation. We used the Hamming distance as the metric for the descriptor similarity,

as all of them are binary.
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