Combinatorial Games

Jaehyun Park

CS 97sI
Stanford University

June 29, 2015



v

v

v

v

Combinatorial Games

Turn-based competitive multi-player games
Can be a simple win-or-lose game, or can involve points
Everyone has perfect information

Each turn, the player changes the current “state” using a
valid “move”
At some states, there are no valid moves

— The current player immediately loses at these states
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Combinatorial Game Example

» Settings: There are n stones in a pile. Two players take turns
and remove 1 or 3 stones at a time. The one who takes the
last stone wins. Find out the winner if both players play
perfectly

» State space: Each state can be represented by the number of
remaining stones in the pile

» Valid moves from state z: © — (x — 1) or x — (z — 3), as
long as the resulting number is nonnegative

» State 0 is the losing state
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Example (continued)

» No cycles in the state transitions
— Can solve the problem bottom-up (DP)
» A player wins if there is a way to force the opponent to lose
— Conversely, we lose if there is no such a way
» State x is a winning state (W) if
— (z — 1) is a losing state,
— OR (z — 3) is a losing state
» Otherwise, state x is a losing state (L)
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Example (continued)

» DP table for small values of n:

n

0o 1 2 3

W)L

L W L W

> See a pattern?

> Let's prove our conjecture
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Example (continued)

» Conjecture: If n is odd, the first player wins. If n is even, the
second player wins.

» Holds true for the base case n =0

> In general,
— If n is odd, we can remove one stone and give the opponent an
even number of stones
— If n is even, no matter what we choose, we have to give an
odd number of stones to the opponent
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More Complex Games

v

Settings: a competitive zero-sum two-player game

v

Zero-sum: if the first player's score is x, then the other player
gets —x

v

Each player tries to maximize his/her own score

v

Both players play perfectly

v

Can be solved using a minimax algorithm

Minimax Algorithm



Minimax Algorithm

> Recursive algorithm that decides the best move for the
current player at a given state

» Define f(S) as the optimal score of the current player who
starts at state .S

> Let 11,75, ...,T,, be states can be reached from S using a
single move

> Let T be the state that minimizes f(7;)

> Then, £(S) = —f(T)

— Intuition: minimizing the opponent’s score maximizes my score

Minimax Algorithm 10



Memoization
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(Not memorization but memoization)

v

A technique used to avoid repeated calculations in recursive
functions

v

High-level idea: take a note (memo) of the return value of a
function call. When the function is called with the same
argument again, return the stored result

v

Each subproblem is solved at most once
— Some may not be solved at all!

Minimax Algorithm
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Recursive Function without Memoization

int fib(int n)
{
if(n <= 1) return n;
return fib(n - 1) + fib(n - 2);

» How many times is fib(1) called?

Minimax Algorithm

12



Memoization using std: :map

map<int, int> memo;
int fib(int n)

{

if (memo.count(n)) return memo[n];

if(n <= 1) return n;

return memo[n] = fib(n - 1) + fib(n - 2);
}

» How many times is fib(1) called?

Minimax Algorithm

13



Minimax Algorithm Pseudocode

v

Given state S, want to compute f(S)

v

If we know f(S) already, return it

Set return value z + —o0

v

For each valid next state 7"
— Update return value = < max{z, —f(T)}

v

v

Write a memo f(S) = « and return z

Minimax Algorithm
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Possible Extensions

» The game is not zero-sum

— Each player wants to maximize his own score
— Each player wants to maximize the difference between his score
and the opponent'’s

> There are more than two players

> All of above can be solved using a similar idea

Minimax Algorithm
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Nim Game

Nim Game
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Nim Game

> Settings: There are n piles of stones. Two players take turns.
Each player chooses a pile, and removes any number of stones
from the pile. The one who takes the last stone wins. Find
out the winner if both players play perfectly

» Can't really use DP if there are many piles, because the state
space is huge
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Nim Game Example

v

Starts with heaps of 3, 4, 5 stones
— We will call them heap A, heap B, and heap C

v

Alice takes 2 stones from A: (1,4,5)
Bob takes 4 from C: (1,4,1)

Alice takes 4 from B: (1,0,1)

Bob takes 1 from A: (0,0, 1)

Alice takes 1 from C and wins: (0,0,0)

v

v

v

v

Nim Game
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Solution to Nim

» Given heaps of size ni,ns,...,Nm

> The first player wins if and only if the nim-sum
ny O ng @ - O nyy, is nonzero (@ is bitwise XOR operator)

> Why?
— If the nim-sum is zero, then whatever the current player does,
the nim-sum of the next state is nonzero
— If the nim-sum is nonzero, it is possible to force it to become
zero (not obvious, but true)

Nim Game 19



Grundy Numbers (Nimbers)

Grundy Numbers (Nimbers)
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Playing Multiple Games at Once

» Suppose that multiple games are played at the same time. At
each turn, the player chooses a game and make a move. You
lose if there is no possible move. We want to determine the
winner

Player B

Player A

Figure from http://sps.nus.edu.sg/~limchuwe/cgt/
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Grundy Numbers (Nimbers)

» For each game, we compute its Grundy number
» The first player wins if and only if the XOR of all the Grundy
numbers is nonzero

— For example, the Grundy number of a one-pile version of the
nim game is equal to the number of stones in the pile (we will
see this again later)

> Let's see how to compute the Grundy numbers for general
games
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Grundy Numbers

» Let S be a state, and 11,75, ..., T}, be states can be reached
from S using a single move

» The Grundy number g(S) of S is the smallest nonnegative
integer that doesn't appear in {g(71),g(12),...,9(Tm)}

— Note: the Grundy number of a losing state is 0
— Note: | made up the notation g(-). Don't use it in other places
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Grundy Numbers Example

» Consider a one-pile nim game
» ¢(0) = 0, because it is a losing state

» State 0 is the only state reachable from state 1, so g(1) is the
smallest nonnegative integer not appearing in {g(0)} = {0}.
Thus, g(1) =1

» Similarly, g(2) = 2, g(3) = 3, and so on

» Grundy numbers for this game is then g(n) =n

— That's how we got the nim-sum solution
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Another Example

> Let's consider a variant of the game we considered before;
only 1 or 2 stones can be removed at each turn

» Now we're going to play many copies of this game at the
same time

» Grundy number table:

=&
N Ol
[N o))
=~

g(n) |0 1

Grundy Numbers (Nimbers)
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Another Example (continued)

» Grundy number table:
n |0 1 2 3 4 5 6 7
gn)|]0O 1 2 0 1 2 0 1

v

Who wins if there are three piles of stones (2,4,5)?
What if we start with (5,11,13,16)7
What if we start with (10109, 10290)?

v

v

Grundy Numbers (Nimbers)
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Tips for Solving Game Problems

v

If the state space is small, use memoization

v

If not, print out the result of the game for small test data and
look for a pattern

— This actually works really well!

v

Try to convert the game into some nim-variant

v

If multiple games are played at once, use Grundy numbers

Grundy Numbers (Nimbers)
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