CS224n: Natural Language Processing with Deep

Lem’ning ! * Course Instructors: Christopher
) Manning, Richard Socher

Lecture Notes: Part VIII

Convolutional Neural Networks? 2 Authors: Francois Chaubard, Richard
Socher

Winter 2019

1 CNNs (Convolutional Neural Networks)

1.1 Why CNNs?

Convolutional Neural Networks take in a sentence of word vectors
and first create a phrase vector for all subphrases, not just grammat-
ically correct phrases (as with Recursive Neural Network, addressed
in the next set of notes). CNNs then group them together for the task
at hand.

1.2 What is Convolution?

Let’s start with the 1D case. Consider two 1D vectors, f and g with
f being our primary vector and g corresponding to the filter. The
convolution between f and g, evaluated at entry # is represented as
M
(f*xg)[n] andisequalto Y, f[n—m]g[m].
m=—M

Figure 1 shows the 2D convolution case. The 9 x 9 green matrix

represents the primary matrix of concern, f. The 3 x 3 matrix of red

L [
B
E

numbers represents the filter ¢ and the convolution currently being

evaluated is at position [2,2]. Figure 1 shows the value of the convo-

lution at position [2,2] as 4 in the second table. Can you complete the

(@)
O|lr|k|k| o
oO|lOo|r|(O|O

o|lo|o
o
=

second table?

Convolved

Image Feature

1.3 A Single-Layer CNN
Stanford UFLDL wiki

Consider WOI‘d-VECtOI‘S X; € Rk and the concatenated WOI'd-VECtOI'S . . .
i
Figure 1: Convolution in the 2D case

of a n-word sentence, x1.,, = x1 @ x... ® x,,. Finally, consider a
Convolutional filter w € R"™ i.e. over h words. For k = 2, n = 5 and
h = 3, Figure 2 shows the Single-Layer Convolutional layer for NLP.
We will get a single value for each possible combination of three
consecutive words in the sentence, "the country of my birth". Note,
the filter w is itself a vector and we will have ¢; = f (wai:i|h—1 +b)
to give ¢ = [c1,C2.-Cy_py1] € R, For the last two time-steps, i.e.
starting with the words "my" or "birth", we don’t have enough word-
vectors to multiply with the filter (since & = 3). If we necessarily
need the convolutions associated with the last two word-vectors, a
common trick is to pad the sentence with h — 1 zero-vectors at its

CS224N: NATURAL LANGUAGE PROCESSING WITH DEEP LEARNING LECTURE NOTES: PART VIII
CONVOLUTIONAL NEURAL NETWORKS 2

right-hand-side as in Figure 3.

1.4 Pooling

the country of my birth
Assuming that we don’t use zero-padding, we will get a final convo- Figure 2: Single-Layer Convolution:
lutional output, ¢ which has n — k 4 1 numbers. Typically, we want to one-step
take the outputs of the CNN and feed it as input to further layers like o [;J\
a Feedforward Neural Network or a RecNN. But, all of those need Aﬁ%‘,
a fixed length input while our CNN output has a length dependent SO b

the country of my birth

on the length of the sentence, n. One clever way to fix this problem)))
. . Che1: Figure 3: Single-Layer Convolution:
is to use max-pooling. The output of the CNN, ¢ € R” is the all-steps
input to the max-pooling layer. The output of the max-pooling layer
is ¢ = max{c}, thus ¢ € R.

We could also have used min-pooling because typically we use
ReLU as our non-linear activation function and ReL.U is bounded on
the low side to 0. Hence a min-pool layer might get smothered by

ReLU, so we nearly always use max-pooling over min-pooling.

1.5 Multiple-Filters

In the example above related to Figure 2, we had I = 2, meaning we
looked only at bi-gram with a single specific combination method
i.e. filter. We can use multiple bi-gram filters because each filter will
learn to recognize a different kind of bi-gram. Even more generally,
we are not restricted to using just bi-grams, we can also have filters
using tri-grams, quad-grams and even higher lengths. Each filter has
an associated max-pool layer. Thus, our final output from the CNN
layers will be a vector having length equal to the number of filters.

1.6 Multiple-Channels

If we allow gradients to flow into the word-vectors being used here,
then the word-vectors might change significantly over training. This
is desirable, as it specializes the word-vectors to the specific task at
hand (away from say GloVe initialization). But, what about words
that appear only in the test set but not in the train set? While other
semantically related word vectors which appear in the train set will
have moved significantly from their starting point, such words will
still be at their initialization point. The neural network will be spe-
cialized for inputs which have been updated. Hence, we will get low
performance on sentences with such words (words that are in test but
not in train).

One work-around is to maintain two sets of word-vectors, one
‘static’ (no gradient flow into them) and one ‘dynamic’, which are
updated via SGD. Both are initially the same (GloVe or other initial-

CS224N: NATURAL LANGUAGE PROCESSING WITH DEEP LEARNING LECTURE NOTES: PART VIII
CONVOLUTIONAL NEURAL NETWORKS 3

ization). Both sets are simultaneously used as input to the neural
network. Thus, the initialized word-vectors will always play a role in
the training of the neural network. Giving unseen words present in
the test set a better chance of being interpreted correctly.

There are several ways of handling these two channels, most com-
mon is to simply average them before using in a CNN. The other
method is to double the length of the CNN filters.

1.7 CNN Options

1. Narrow vs Wide
Refer to Figure 4. Another way to ask this is should we not (nar-
row) or should we (wide) zero-pad? If we use Narrow Convolu-
tion, we compute a convolution only in those positions where all
the components of a filter have a matching input component. This
will clearly not be the case at the start and end boundaries of the
input, as in the left side network in Figure 4. If we use Wide Con-
volution, we have an output component corresponding to each
alignment of the convolution filter. For this, we will have to pad
the input at the start and the end with /1 — 1 zeros. . o o

In the Narrow Convolution case, the output length will be n — h + /MXI\ | \bﬂ\ 2 W]

1 and in the Wide Convolution case, the length will be n + h — 1.
Figure 4: Narrow and Wide Convolu-
2. k-max pooling tion (from Kalchbrenner et al. (2014))

This is a generalization of the max pooling layer. Instead of pick-
ing out only the biggest (max) value from its input, the k-max
pooling layer picks out the k biggest values. Setting k = 1 gives the
max pooling layer we saw earlier.

	CNNs (Convolutional Neural Networks)

