
CS 224n Assignment #2: Word2Vec and Dependency

Parsing

Due Date: April 18th, Thursday, 4:30 PM PST.

In this assignment, you will review the mathematics behind Word2Vec and build a neural dependency

parser using PyTorch. For a review of the fundamentals of PyTorch, please check out the PyTorch review

session on Canvas. In Part 1, you will explore the partial derivatives involved in training a Word2vec

model using the naive softmax loss. In Part 2, you will learn about two general neural network techniques

(Adam Optimization and Dropout). In Part 3, you will implement and train a dependency parser using the

techniques from Part 2, before analyzing a few erroneous dependency parses.

If you are using LaTeX, you can use \ifans{} to type your solutions.

Please tag the questions correctly on Gradescope, otherwise the TAs will take points off if you

don’t tag questions.

1. Understanding word2vec (15 points)
Recall that the key insight behind word2vec is that ‘a word is known by the company it keeps’. Con-

cretely, consider a ‘center’ word c surrounded before and after by a context of a certain length. We term

words in this contextual window ‘outside words’ (O). For example, in Figure 1, the context window

length is 2, the center word c is ‘banking’, and the outside words are ‘turning’, ‘into’, ‘crises’, and ‘as’:

Figure 1: The word2vec skip-gram prediction model with window size 2

Skip-gram word2vec aims to learn the probability distribution P (O|C). Specifically, given a specific

word o and a specific word c, we want to predict P (O = o|C = c): the probability that word o is an

‘outside’ word for c (i.e., that it falls within the contextual window of c). We model this probability by

taking the softmax function over a series of vector dot-products:

P (O = o | C = c) =
exp(u⊤

o vc)∑
w∈Vocab exp(u

⊤
wvc)

(1)

For each word, we learn vectors u and v, where uo is the ‘outside’ vector representing outside word o,

and vc is the ‘center’ vector representing center word c. We store these parameters in two matrices,

U and V. The columns of U are all the ‘outside’ vectors uw; the columns of V are all of the ‘center’

vectors vw. Both U and V contain a vector for every w ∈ Vocabulary.1

Recall from lectures that, for a single pair of words c and o, the loss is given by:

Jnaive-softmax(vc, o,U) = − logP (O = o|C = c). (2)

1Assume that every word in our vocabulary is matched to an integer number k. Bolded lowercase letters represent vectors.

uk is both the kth column of U and the ‘outside’ word vector for the word indexed by k. vk is both the kth column of V and

the ‘center’ word vector for the word indexed by k. In order to simplify notation we shall interchangeably use k to

refer to word k and the index of word k.

1

CS 224n Assignment 2 Page 2 of 10

We can view this loss as the cross-entropy2 between the true distribution y and the predicted distribu-

tion ŷ, for a particular center word c and a particular outside word o. Here, both y and ŷ are vectors

with length equal to the number of words in the vocabulary. Furthermore, the kth entry in these vectors

indicates the conditional probability of the kth word being an ‘outside word’ for the given c. The true

empirical distribution y is a one-hot vector with a 1 for the true outside word o, and 0 everywhere else,

for this particular example of center word c and outside word o.3 The predicted distribution ŷ is the

probability distribution P (O|C = c) given by our model in equation (1).

Note: Throughout this homework, when computing derivatives, please use the method reviewed during

the lecture (i.e. no Taylor Series Approximations).

2The cross-entropy loss between the true (discrete) probability distribution p and another distribution q is −
∑

i pi log(qi).
3Note that the true conditional probability distribution of context words for the entire training dataset would not be one-hot.

CS 224n Assignment 2 Page 3 of 10

(a) (2 points) Prove that the naive-softmax loss (Equation 2) is the same as the cross-entropy loss

between y and ŷ, i.e. (note that y (true distribution), ŷ (predicted distribution) are vectors and

ŷo is a scalar):

−
∑

w∈Vocab

yw log(ŷw) = − log(ŷo). (3)

Your answer should be one line. You may describe your answer in words.

(b) (6 points) i. Compute the partial derivative of Jnaive-softmax(vc, o,U) with respect to vc. Please

write your answer in terms of y, ŷ, U, and show your work to receive full credit.

• Note: Your final answers for the partial derivative should follow the shape convention: the

partial derivative of any function f(x) with respect to x should have the same shape as

x.4

• Please provide your answers for the partial derivative in vectorized form. For example,

when we ask you to write your answers in terms of y, ŷ, and U, you may not refer to

specific elements of these terms in your final answer (such as y1, y2, . . .).

ii. When is the gradient you computed equal to zero?

Hint: You may wish to review and use some introductory linear algebra concepts.

iii. The gradient you found is the difference between the two terms. Provide an interpretation of

how each of these terms improves the word vector when this gradient is subtracted from the

word vector vc.

(c) (1 point) In many downstream applications using word embeddings, L2 normalized vectors (e.g.

u/||u||2 where ||u||2 =
√∑

i u
2
i) are used instead of their raw forms (e.g. u). Let’s consider

a hypothetical downstream task of binary classification of phrases as being positive or negative,

where you decide the sign based on the sum of individual embeddings of the words. When would

L2 normalization take away useful information for the downstream task? When would it not?

Hint: Consider the case where ux = αuy for some words x ̸= y and some scalar α. When α is

positive, what will be the value of normalized ux and normalized uy? How might ux and uy be

related for such a normalization to affect or not affect the resulting classification?

(d) (5 points) Compute the partial derivatives of Jnaive-softmax(vc, o,U) with respect to each of the

‘outside’ word vectors, uw’s. There will be two cases: when w = o, the true ‘outside’ word vector,

and w ̸= o, for all other words. Please write your answer in terms of y, ŷ, and vc. In this subpart,

you may use specific elements within these terms as well (such as y1, y2, . . .). Note that uw is a

vector while y1,y2, . . . are scalars. Show your work to receive full credit.

(e) (1 point) Write down the partial derivative of Jnaive-softmax(vc, o,U) with respect to U. Please

break down your answer in terms of the column vectors ∂J(vc,o,U)
∂u1

, ∂J(vc,o,U)
∂u2

, · · · , ∂J(vc,o,U)
∂u|Vocab|

. No

derivations are necessary, just an answer in the form of a matrix.

4This allows us to efficiently minimize a function using gradient descent without worrying about reshaping or dimension

mismatching. While following the shape convention, we’re guaranteed that θ := θ − α
∂J(θ)
∂θ

is a well-defined update rule.

CS 224n Assignment 2 Page 4 of 10

2. Machine Learning & Neural Networks (8 points)
(a) (4 points) Adam Optimizer

Recall the standard Stochastic Gradient Descent update rule:

θt+1 ← θt − α∇θt
Jminibatch(θt)

where t + 1 is the current timestep, θ is a vector containing all of the model parameters, (θt is

the model parameter at time step t, and θt+1 is the model parameter at time step t+ 1), J is the

loss function, ∇θJminibatch(θ) is the gradient of the loss function with respect to the parameters

on a minibatch of data, and α is the learning rate. Adam Optimization5 uses a more sophisticated

update rule with two additional steps.6

i. (2 points) First, Adam uses a trick called momentum by keeping track of m, a rolling average

of the gradients:

mt+1 ← β1mt + (1− β1)∇θt
Jminibatch(θt)

θt+1 ← θt − αmt+1

where β1 is a hyperparameter between 0 and 1 (often set to 0.9). Briefly explain in 2–4

sentences (you don’t need to prove mathematically, just give an intuition) how using m stops

the updates from varying as much and why this low variance may be helpful to learning, overall.

ii. (2 points) Adam extends the idea of momentum with the trick of adaptive learning rates by

keeping track of v, a rolling average of the magnitudes of the gradients:

mt+1 ← β1mt + (1− β1)∇θt
Jminibatch(θt)

vt+1 ← β2vt + (1− β2)(∇θt
Jminibatch(θt)⊙∇θt

Jminibatch(θt))

θt+1 ← θt − αmt+1/
√
vt+1

where ⊙ and / denote elementwise multiplication and division (so z⊙z is elementwise squaring)

and β2 is a hyperparameter between 0 and 1 (often set to 0.99). Since Adam divides the update

by
√
v, which of the model parameters will get larger updates? Why might this help with

learning?

(b) (4 points) Dropout7 is a regularization technique. During training, dropout randomly sets units

in the hidden layer h to zero with probability pdrop (dropping different units each minibatch), and

then multiplies h by a constant γ. We can write this as:

hdrop = γd⊙ h

where d ∈ {0, 1}Dh (Dh is the size of h) is a mask vector where each entry is 0 with probability

pdrop and 1 with probability (1− pdrop). γ is chosen such that the expected value of hdrop is h:

Epdrop
[hdrop]i = hi

for all i ∈ {1, . . . , Dh}.
i. (2 points) What must γ equal in terms of pdrop? Briefly justify your answer or show your math

derivation using the equations given above.

ii. (2 points) Why should dropout be applied during training? Why should dropout NOT be

applied during evaluation? Hint: it may help to look at the dropout paper linked.

5Kingma and Ba, 2015, https://arxiv.org/pdf/1412.6980.pdf
6The actual Adam update uses a few additional tricks that are less important, but we won’t worry about them here. If you

want to learn more about it, you can take a look at: http://cs231n.github.io/neural-networks-3/#sgd
7Srivastava et al., 2014, https://www.cs.toronto.edu/˜hinton/absps/JMLRdropout.pdf

https://arxiv.org/pdf/1412.6980.pdf
http://cs231n.github.io/neural-networks-3/#sgd
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

CS 224n Assignment 2 Page 5 of 10

3. Neural Transition-Based Dependency Parsing (54 points)
In this section, you’ll be implementing a neural-network based dependency parser with the goal of max-

imizing performance on the UAS (Unlabeled Attachment Score) metric.

Before you begin, please follow the README to install all the needed dependencies for the assignment.

We will be using PyTorch 2.1.2 from https://pytorch.org/get-started/locally/ with the

CUDA option set to None, and the tqdm package – which produces progress bar visualizations through-

out your training process. The official PyTorch website is a great resource that includes tutorials for

understanding PyTorch’s Tensor library and neural networks.

A dependency parser analyzes the grammatical structure of a sentence, establishing relationships between

head words, and words which modify those heads. There are multiple types of dependency parsers,

including transition-based parsers, graph-based parsers, and feature-based parsers. Your implementation

will be a transition-based parser, which incrementally builds up a parse one step at a time. At every step

it maintains a partial parse, which is represented as follows:

• A stack of words that are currently being processed.

• A buffer of words yet to be processed.

• A list of dependencies predicted by the parser.

Initially, the stack only contains ROOT, the dependencies list is empty, and the buffer contains all words

of the sentence in order. At each step, the parser applies a transition to the partial parse until its buffer

is empty and the stack size is 1. The following transitions can be applied:

• SHIFT: removes the first word from the buffer and pushes it onto the stack.

• LEFT-ARC: marks the second (second most recently added) item on the stack as a dependent of

the first item and removes the second item from the stack, adding a first word → second word

dependency to the dependency list.

• RIGHT-ARC: marks the first (most recently added) item on the stack as a dependent of the second

item and removes the first item from the stack, adding a second word → first word dependency to

the dependency list.

On each step, your parser will decide among the three transitions using a neural network classifier.

(a) (4 points) Go through the sequence of transitions needed for parsing the sentence “I presented my

findings at the NLP conference”. The dependency tree for the sentence is shown below. At each

step, give the configuration of the stack and buffer, as well as what transition was applied this

step and what new dependency was added (if any). The first three steps are provided below as an

example.

Stack Buffer New dependency Transition

[ROOT] [I, presented, my, findings, at, the, NLP, conference] Initial Configuration

[ROOT, I] [presented, my, findings, at, the, NLP, conference] SHIFT

[ROOT, I, presented] [my, findings, at, the, NLP, conference] SHIFT

[ROOT, presented] [my, findings, at, the, NLP, conference] presented→I LEFT-ARC

https://pytorch.org/get-started/locally/

CS 224n Assignment 2 Page 6 of 10

(b) (2 points) A sentence containing n words will be parsed in how many steps (in terms of n)? Briefly

explain in 1–2 sentences why.

(c) (6 points) Implement the init and parse step functions in the PartialParse class in

parser transitions.py. This implements the transition mechanics your parser will use. You

can run basic (non-exhaustive) tests by running python parser transitions.py part c.

(d) (8 points) Our network will predict which transition should be applied next to a partial parse. We

could use it to parse a single sentence by applying predicted transitions until the parse is complete.

However, neural networks run much more efficiently when making predictions about batches of data

at a time (i.e., predicting the next transition for any different partial parses simultaneously). We

can parse sentences in minibatches with the following algorithm.

Algorithm 1 Minibatch Dependency Parsing

Input: sentences, a list of sentences to be parsed and model, our model that makes parse decisions

Initialize partial parses as a list of PartialParses, one for each sentence in sentences

Initialize unfinished parses as a shallow copy of partial parses

while unfinished parses is not empty do

Take the first batch size parses in unfinished parses as a minibatch

Use the model to predict the next transition for each partial parse in the minibatch

Perform a parse step on each partial parse in the minibatch with its predicted transition

Remove the completed (empty buffer and stack of size 1) parses from unfinished parses

end while

Return: The dependencies for each (now completed) parse in partial parses.

Implement this algorithm in the minibatch parse function in parser transitions.py. You

can run basic (non-exhaustive) tests by running python parser transitions.py part d.

Note: You will need minibatch parse to be correctly implemented to evaluate the model you will

build in part (e). However, you do not need it to train the model, so you should be able to complete

most of part (e) even if minibatch parse is not implemented yet.

(e) (20 points) We are now going to train a neural network to predict, given the state of the stack,

buffer, and dependencies, which transition should be applied next.

First, the model extracts a feature vector representing the current state. We will be using the feature

set presented in the original neural dependency parsing paper: A Fast and Accurate Dependency

Parser using Neural Networks.8 The function extracting these features has been implemented for

you in utils/parser utils.py. This feature vector consists of a list of tokens (e.g., the last

word in the stack, first word in the buffer, dependent of the second-to-last word in the stack if there

is one, etc.). They can be represented as a list of integers w = [w1, w2, . . . , wm] where m is the

number of features and each 0 ≤ wi < |V | is the index of a token in the vocabulary (|V | is the

vocabulary size). Then our network looks up an embedding for each word and concatenates them

into a single input vector:

x = [Ew1
, ...,Ewm

] ∈ Rdm

where E ∈ R|V |×d is an embedding matrix with each row Ew as the vector for a particular word w

8Chen and Manning, 2014, https://nlp.stanford.edu/pubs/emnlp2014-depparser.pdf

https://nlp.stanford.edu/pubs/emnlp2014-depparser.pdf

CS 224n Assignment 2 Page 7 of 10

with dimension d. We then compute our prediction as:

h = ReLU(xW + b1)

l = hU+ b2

ŷ = softmax(l)

where h is referred to as the hidden layer, l is referred to as the logits, ŷ is referred to as the

predictions, and ReLU(z) = max(z, 0)). We will train the model to minimize cross-entropy loss:

J(θ) = CE(y, ŷ) = −
3∑

j=1

yj log ŷj

where yj denotes the jth element of y. To compute the loss for the training set, we average this

J(θ) across all training examples.

i. Compute the derivative of h = ReLU(xW + b1) with respect to x. For simplicity, you only

need to show the derivative ∂hi

∂xj
for some index i and j. You may ignore the case where the

derivative is not defined at 0.

ii. Recall in part 1b, we computed the partial derivative of Jnaive-softmax(vc, o,U). Likewise, please

compute the partial derivative of J(θ) with respect to the ith entry of l, which is denoted as li.

Specifically, compute ∂CE(y,ŷ)
∂li

, assuming that l ∈ R3, ŷ ∈ R3, y ∈ R3, and the true label is c.

Hints: You may recall from part 1a, ∂CE(y,ŷ)
∂li

=
∑

j
∂CE(y,ŷ)

∂ŷj

∂ŷj

∂li
, and ∂CE(y,ŷ)

∂ŷj
= 0 if j ̸= c.

iii. We will use UAS score as our evaluation metric. UAS refers to Unlabeled Attachment Score,

which is computed as the ratio between number of correctly predicted dependencies and the

number of total dependencies despite of the relations (our model doesn’t predict this).

In parser model.py you will find skeleton code to implement this simple neural network using

PyTorch. Complete the init , embedding lookup and forward functions to implement

the model. Then complete the train for epoch and train functions within the run.py

file.

Finally execute python run.py to train your model and compute predictions on test data

from Penn Treebank (annotated with Universal Dependencies).

Note:

• For this assignment, you are asked to implement Linear layer and Embedding layer. Please

DO NOT use torch.nn.Linear or torch.nn.Embedding module in your code, otherwise

you will receive deductions for this problem.

• Please follow the naming requirements in our TODO if there are any, e.g. if there are

explicit requirements about variable names you have to follow them in order to receive full

credits. You are free to declare other variable names if not explicitly required.

Hints:

• Each of the variables you are asked to declare (self.embed to hidden weight,

self.embed to hidden bias, self.hidden to logits weight,

self.hidden to logits bias) corresponds to one of the variables above (W, b1, U,

b2).

• It may help to work backwards in the algorithm (start from ŷ) and keep track of the

matrix/vector sizes.

• Once you have implemented embedding lookup (e) or forward (f) you can call

python parser model.py with flag -e or -f or both to run sanity checks with each

CS 224n Assignment 2 Page 8 of 10

function. These sanity checks are fairly basic and passing them doesn’t mean your code is

bug free.

• When debugging, you can add a debug flag: python run.py -d. This will cause the

code to run over a small subset of the data, so that training the model won’t take as long.

Make sure to remove the -d flag to run the full model once you are done debugging.

• When running with debug mode, you should be able to get a loss smaller than 0.2 and a

UAS larger than 65 on the dev set (although in rare cases your results may be lower, there

is some randomness when training).

• It should take up to 15 minutes to train the model on the entire training dataset, i.e.,

when debug mode is disabled.

• When debug mode is disabled, you should be able to get a loss smaller than 0.08 on the train

set and an Unlabeled Attachment Score larger than 87 on the dev set. For comparison, the

model in the original neural dependency parsing paper gets 92.5 UAS. If you want, you can

tweak the hyperparameters for your model (hidden layer size, hyperparameters for Adam,

number of epochs, etc.) to improve the performance (but you are not required to do so).

Deliverables:

• Working implementation of the transition mechanics that the neural dependency parser

uses in parser transitions.py.

• Working implementation of minibatch dependency parsing in parser transitions.py.

• Working implementation of the neural dependency parser in parser model.py. (We’ll

look at and run this code for grading).

• Working implementation of the functions for training in run.py. (We’ll look at and run

this code for grading).

• Report the best UAS your model achieves on the dev set and the UAS it

achieves on the test set in your written submission.

(f) (12 points) We’d like to look at example dependency parses and understand where parsers like ours

might be wrong. For example, in this sentence:

Moscow sent troops into Afghanistan .
PROPN VERB NOUN ADP PROPN PUNCT

nsubj dobj

root

nmod

case

punct

the dependency of the phrase into Afghanistan is wrong, because the phrase should modify sent (as

in sent into Afghanistan) not troops (because troops into Afghanistan doesn’t make sense, unless

there are somehow weirdly some troops that stan Afghanistan). Here is the correct parse:

Moscow sent troops into Afghanistan .
PROPN VERB NOUN ADP PROPN PUNCT

nsubj dobj

root

nmod

case

punct

More generally, here are four types of parsing error:

• Prepositional Phrase Attachment Error: In the example above, the phrase into Afghanistan

is a prepositional phrase9. A Prepositional Phrase Attachment Error is when a prepositional

9For examples of prepositional phrases, see: https://www.grammarly.com/blog/prepositional-phrase/

CS 224n Assignment 2 Page 9 of 10

phrase is attached to the wrong head word (in this example, troops is the wrong head word and

sent is the correct head word). More examples of prepositional phrases include with a rock,

before midnight and under the carpet.

• Verb Phrase Attachment Error: In the sentence Leaving the store unattended, I went

outside to watch the parade, the phrase leaving the store unattended is a verb phrase10. A Verb

Phrase Attachment Error is when a verb phrase is attached to the wrong head word (in this

example, the correct head word is went).

• Modifier Attachment Error: In the sentence I am extremely short, the adverb extremely is

a modifier of the adjective short. A Modifier Attachment Error is when a modifier is attached

to the wrong head word (in this example, the correct head word is short).

• Coordination Attachment Error: In the sentenceWould you like brown rice or garlic naan?,

the phrases brown rice and garlic naan are both conjuncts and the word or is the coordinating

conjunction. The second conjunct (here garlic naan) should be attached to the first conjunct

(here brown rice). A Coordination Attachment Error is when the second conjunct is attached

to the wrong head word (in this example, the correct head word is rice). Other coordinating

conjunctions include and, but and so.

In this question are four sentences with dependency parses obtained from a parser. Each sentence

has one error type, and there is one example of each of the four types above. For each sentence,

state the type of error, the incorrect dependency, and the correct dependency. While each sentence

should have a unique error type, there may be multiple possible correct dependencies for some of

the sentences. To demonstrate: for the example above, you would write:

• Error type: Prepositional Phrase Attachment Error

• Incorrect dependency: troops → Afghanistan

• Correct dependency: sent → Afghanistan

Note: There are lots of details and conventions for dependency annotation. If you want to

learn more about them, you can look at the UD website: http://universaldependencies.

org11 or the short introductory slides at: http://people.cs.georgetown.edu/nschneid/

p/UD-for-English.pdf. Note that you do not need to know all these details in order to do

this question. In each of these cases, we are asking about the attachment of phrases and it should

be sufficient to see if they are modifying the correct head. In particular, you do not need to look at

the labels on the the dependency edges – it suffices to just look at the edges themselves.

i.

The university blocked the acquisition , citing concerns about the risks involved .
DET NOUN VERB DET NOUN PUNCT VERB NOUN ADP DET NOUN VERB PUNCT

det nsubj

root

det

obj

punct

advcl

obj

case

det

nmod

acl

punct

ii.

10For examples of verb phrases, see: https://examples.yourdictionary.com/verb-phrase-examples.html
11But note that in the assignment we are actually using UDv1, see: http://universaldependencies.org/docsv1/

http://universaldependencies.org
http://universaldependencies.org
http://people.cs.georgetown.edu/nschneid/p/UD-for-English.pdf
http://people.cs.georgetown.edu/nschneid/p/UD-for-English.pdf
http://universaldependencies.org/docsv1/

CS 224n Assignment 2 Page 10 of 10

Brian has been one of the most crucial elements to the success of Mozilla software .
PROPN AUX AUX NUM ADP DET ADV ADJ NOUN ADP DET NOUN ADP PROPN NOUN PUNCT

nsubj

aux

aux

root

case

det

advmod

amod

nmod

case

det

nmod

case

compound

nmod

punct

iii.

Investment Canada declined to comment on the reasons for the goverment decision .
NOUN PROPN VERB PART VERB ADP DET NOUN ADP DET NOUN NOUN PUNCT

compound nsubj

root

mark

xcomp case

det

obl case

det

compound

nmod

punct

iv.

People benefit from a separate move that affects three US car plants and one in Quebec
NOUN VERB ADP DET ADJ NOUN PRON VERB NUM PROPN NOUN NOUN CCONJ NUM ADP PROPN

nsubj

root case

det

amod

obl

nsubj

acl:relcl

nummod

compound

compound

obj

cc

conj

case

nmod

(g) (2 points) Recall in part (e), the parser uses features which includes words and their part-of-speech

(POS) tags. Explain the benefit of using part-of-speech tags as features in the parser?

Submission Instructions
You shall submit this assignment on GradeScope as two submissions – one for “Assignment 2 [coding]” and

another for ‘Assignment 2 [written]”:

1. Run the collect submission.sh script to produce your assignment2.zip file.

2. Upload your assignment2.zip file to GradeScope to “Assignment 2 [coding]”.

3. Upload your written solutions to GradeScope to “Assignment 2 [written]”.

