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Fig. 5. The terminal circuit corresponding to the circuit of Fig. 4.
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and the rows of P! are generated successively by multiplications
of (a2) by itself. ((ar2)” is a fixed vector associated with y, and can
be stored in a ROM.) The operation 3+ P~! is performed by adding
the successively generated rows of P~ according to the bits of §.

The circuit of Fig. 4 calculates (o2)” in n squaring operations,
each one taking 3n clock cycles (including loading RG3). The
“square” operations then take altogether 3n? clock cycles. The
“multiply” operations take altogether a negligible n/2 extra cycles,
on the average. The circuit of Fig. 5 calculates [(«1)?]” in n squaring
operations and n/2 multiplications, each operation taking 2n clock
cycles (including the loading of RG3). The rows of P! are generated
by extra n — 2 multiplications and up to n — 1 additions. The entire
operation takes 5n” clock cycles. Had the circuit of Fig. 5 been based
on that of Fig. 3, it would have yielded its final results within 6n?
clock cycles.

¢) Threats and Limitations: The public key used by a terminal
is the minimum polynomial f; of (a;)¥, where it is required that
gcd(2™ — 1,y) = 1 (in order for f to be primitive.). As security
considerations require that 2" — 1 should be a Mersenne prime, or at
least have a large prime factor, there is in practice no limitation on
the number of possible different keys used by a terminal. Also, there
are n private keys y; associated with the public key f2, which also
does not pose a threat, as (2" /n) ~ 2" for a large n.

Since the card cannot validate the authenticity of the public key f2
sent by the terminal, it cannot be sure whether f> is primitive. (If the
card has to verify the primitivity of f2, it would be better to return
to the original schemes.) This poses a possibility that a dishonest
terminal gains knowledge (complete or partial) of the secret key = of
the card. The terminal can send the card a polynomial f2 having a low
periodicity. (That is, successive powers of its root oz form a short
cycle.) If the card sends back (a2)”, the terminal can reconstruct
z from various polynomials f, having different periodicities, based
on the Chinese Remainder Theorem. The proposed scheme is then
applicable in those cases where the key (a2)” calculated at the card
is not sent back to the terminal.
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Comparisons of Seven Neural Network Models on Traffic
Contro! Problems in Multistage Interconnection Networks

Nobuo Funabiki, Yoshiyasu Takefuji, and Kuo Chun Lee

Abstract— This paper presents performance comparisons of seven
neural network models on traffic control problems in multistage inter-
connection networks. The decay term, three neuron models, and two
heuristics were evaluated. The goal of the traffic control problems is to
find conflict-free switching configurations with the maximum throughput.
Our simulation results show that the hysteresis McCulloch—Pitts neuron
model without the decay term and with two heuristics has the best
performance.

Index Terms—Decay term, hysteresis McCulloch—Pitts neuron mbdel,
McCulloch-Pitts neuron model, multistage interconnection network, neu-
ral network, optimization, parallel algorithm, sigmoid neuron model.

I. INTRODUCTION

Neural networks for solving optimization problems have been
extensively studied since Hopfield and Tank introduced them [1]-[9].
A neural network has a large number of neurons or processing
elements where neuron #i has an input U; and an output V;.
The goal of the neural network is to minimize the energy function
E(V1,Va,---,V,) by using the motion equation. The energy function
represents the objective function and the constraints of the problem.
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Hopﬁéld proposed that the motion equation is composed of the partial
derivative term of the energy function as the gradient descent method,
and the decay term with a time constant 7 [1]:

dUs _ _8E(Vi,V3,--,Va) _ Ui

= o 1
dt ov: T @)
Takefuji et al. showed that the decay term increases the energy
function under some conditions [4]. They modified the motion
equation in order to guarantee the local minimum convergence:

dU; _ 9BV, Va--,Va) ®
at aV; ‘
The following three neuron models have been used for optimization
problems:
1) the sigmoid neuron model [1):

Vi= % [1 + tanh (%)J (Uo isa constant parameter)  (3)
0

2) the McCulloch—Pitts neuron model [10]:
Vi=1if U; >0,andV; = 0if U; < 0. @)
3) the hysteresis McCulloch—Pitts neuron model [5]):
Vi=1ifU; > UTP,V; = 0if U; < LTP,
and V; = unchangedif LTP < U; < UTP

(UTP and LTP are constant parameters satisfying UTP > LTP.)

(5)
However, under certain conditions, for example, when a small value
such as 0.02 is used for Uy in the sigmoid neuron model [1], it be-
haves like the McCulloch—Pitts neuron model. The McCulloch-Pitts
neuron model sometimes introduces undesirable oscillatory behavior.
Therefore, the hysteresis McCulloch—Pitts neuron model was pro-
posed, and it has been empirically shown to suppress the oscillation
and to shorten the convergence time [5].

Because only the local minimum convergence is guaranteed in
neural networks [4], the hill-climbing heuristic and the omega func-
tion heuristic have been introduced to improve the global minimum
convergence [6]. The two heuristics make it easier for the state of
neural networks to escape local minima, and increase the frequency
of the global minimum convergence.

In this paper, we have compared the performance of the following
seven neural network models on traffic control problems in multistage
interconnection networks, in order to reevaluate the variations of
neural networks mentioned above:

1) case #1: the McCulloch—Pitts neuron model with the decay
term (7 = 2) .

2) case #2: the McCulloch—Pitts neuron model with the decay
term (7 = 5)

3) case #3: the McCulloch—Pitts neuron model with the decay
term (7 = 10)

4) case #4: the McCulloch—Pitts neuron model without the decay
term

5) case #5: the sigmoid neuron model without the decay term

6) case #6: the hysteresis McCulloch—Pitts neuron model without
the decay term

7) case #7: the hysteresis McCulloch—Pitts neuron model without
the decay term and with the two heuristics mentioned above

Since Goke et al. defined the class of Banyan networks [11},
multistage interconnection networks have been widely used in tele-
phone networks, parallel processing computers, and integrated service
digital networks (ISDN) [11]-[18]. The n x n network consists of
(log, n) switching stages. Each stage consists of n/22 X 2 crossbar
switching elements. Several topologically equivalent variations have
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Fig. 1. A traffic control problem in a 4 x 4 reverse baseline network. (@) A

4 x 4 reverse baseline network. (b) A 4 x 4 traffic matrix.

been proposed such as data manipulator [12], omega network [13],
flip network [14], indirect binary n-cube network [15], regular
Banyan network, baseline network, and reverse baseline network [17].
For this simulation, we selected the reverse baseline network,
shown in Fig. 4, with three constraints: 1) any input can be simultane-
ously connected with at most one output (input blocking constraint),
2) any output can be simultaneously connected with at most one
input (output blocking constraint), and 3) any internal wire can be
simultaneously used by at most one input-output connection (internal
blocking constraint) [3]. The network is assumed to have buffers
for switching configurations, and to be operated synchronously [18].
Transmission demands through the n x n network are represented by
an n X n traffic matrix. Each element ¢,; represents whether input #i
and output #; need to be connected (t;; = 1) or not (£;; = 0). The
traffic control problem is to select the maximum number of demands
satisfying the constraints from the given traffic matrix. Fig. 1 shows
the 4 x 4 reverse baseline network, and the traffic matrix where black
squares indicate one elements and white squares zero elements.

II. NEURAL NETWORK REPRESENTATION

We use the two-dimensional neural network composed of n?
neurons for the n X n reverse baseline network problem. The output
Vi; of neuron #:ij in binary neuron models represents whether the
demand t;; is selected (V;; = 1: nonzero output) or not Vi; =0:
zero output). In the sigmoid neuron model, we consider V;; > 0.9 as
the nonzero output and V;; < 0.9 as the zero output. Fig. 2(a) shows
the neural network composed of 16 neurons for the problem in Fig.
1. Fig. 2(a) also shows the global minimum solution where black
squares indicate nonzero outputs and white squares zero outputs. The
corresponding switching configuration is shown in Fig. 2(b).

The nonnegative energy function representing the three constraints
in Section I is given by

2 2
A n n A_ n n
P35 (5 25 (S

i=

+B Z Z Z Z 8ijpaVii Vg ©)

i=1 ;=1 p=1 g=1
p#i q#)
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Fig. 2. Neural network representation for the problem in Fig. 1. (a) A 4 x 4
neural network for the problem in Fig. 1. (b) The corresponding states of
switching elements.

where A and B are constant coefficients, s;;pq is 1 if the connection
between input #i and output #j shares an internal wire with
that between input #p and output #g, and s;jp, is 0 if not. The
first term represents the input blocking constraint. It is zero if and
only if one demand is selected for every input. The second term
represents the output blocking constraint. It is zero if and only if one
demand is selected for every output. The third term represents the
internal blocking constraint. It is zero if and only if any two selected
connections share no internal wire. Note that s;;,, is calculated by
the following two-step procedure: 1) the internal wire number Wh;;
of the connection between input #: and output #j on stage #k is
given by

Wiij = 2'“([51;1 - 1) + Z£—> )

ok
where the function [z] gives the minimum integer more than or

equal to z, and 2) s;jp, is given by

Sijpg = 1if there exists ke {1,+ -, (logn — 1)}
such that Wi,;; = Wipgfori # pandj # ¢
=0 otherwise. ®8)

Therefore the motion equation with the decay term for neuron
#ij is given by

dg;j = —A(ivik - 1) —A(Zn:ij - 1>
k=1 k=1
-B Z Z SijpgVpa = % ®

p=1 g¢=1
p#i g#j

In 1990, Brown et al. proposed the Hopfield neural network
application for Banyan networks, with the sigmoid neuron model
and the decay term [3]. Unfortunately, they did not discuss the time
complexity and the convergence frequency of the neural network,
which are always controversial.

III. Two HEURISTICS FOR THE GLOBAL MINIMUM CONVERGENCE

We have examined the following two heuristics in this paper.
1) The hill-climbing heuristic:
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Fig. 3. A 32 x 32 traffic matrix with 50% density and two global minimum
solutions. (a) A 32 x 32 traffic matrix with 50% density. (b) The global
minimum solution #1. (c) The global minimum solution #2.

The following two functions are added to the motion equation:

ren(3 i) ron(3 )

k=1 k=1

0

where h(z) is 1if z = 0,h(z) is 0 if z # 0, and C is a constant
coefficient. The hill-climbing heuristic helps the neural network to
escape the local minimum, by encouraging neuron #1ij to have
nonzero output when no neuron for input #¢ and/or for output #j
has nonzero output.

2) The omega function heuristic:

The following two forms of B-term in the motion equation are
periodically used:

if (¢ mod To) < w, then (B — term)

n n

-B Z Z 8ijpqVpeVij, €lse (B — term)
p=1 g=1
pEi a#i

n n
=-B E E 8ijpqVpq
p=1 g=1

pEi a#i

1

where ¢ is the number of iteration steps, and Ty and w are constant
parameters. The omega function heuristic makes the local minimum
shallower, so the state of the neural network can easily escape it.

IV. SIMULATION RESULTS AND DISCUSSION

We have developed a simulator based on parallel procedures
proposed in [4]-[9]. The seven neural network models in Section
1 were simulated in this simulator for the performance comparison.
In this simulator, the following set of parameters was adopted:

A=B=1,C=2UTP=5,LTP=-5"U, =0.02,

To =10,w = 5, T-max1 = 500, andT_max2 = 1000  (12)

where T_max1 is the maximum number of iteration steps for the
global minimum convergence, and T.max2 is that for the local
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TABLE I
SUMMARY OF SIMULATION RESULTS FOR THE 50% DENSITY TRAFFIC MATRIX ' PROBLEM
Convergence to Global Minimum Convergence to Local Minimum
Averagt:el;seration Frequency Averag;l;seration Frequency Solution Quality
case #1 — 0% 715.4 34% 1.8
case #2 41.2 25% 363.8 82% 244
case #3 774 41% 309.0 90% 27.1
case #4 286.5 40% 423.0 99% 29.7
case #5 284.0 42% 4183 99% 29.9
case #6 307.2 45% 417.9 100% 309
case #7 224.0 87% 261.1 100% 31.8
TABLE II
SUMMARY OF SIMULATION RESULTS FOR THE 80% DENSITY TRAFFIC MATRIX PROBLEM
Convergence to Global Minimum Convergence to Local Minimum
Averagicg:ration Frequency Averageg:ration Frequency Solution Quality
case #1 — 0% 728.6 52% 1.3
case #2 345 4% 461.7 48% 139
case #3 41.9 31% 3158 7% 235
case #4 181.6 86% 226.3 100% 317
case #5 184.3 89% 219.1 100% 31.8
case #6 198.6 96% 204.9 98% 313
case #7 138.3 100% 138.3 100% 32.0
input svithing element output
— ! —1
I = N SN S
e e N AN AN A
—] < = 1]
o 'I\ 5=
— - SN >
| N n(fmEnm\\ =
I g S I N ‘I',' !
S ey SV /E=A\ /IS
P> ><§’>< \h!l\ ':""' -
— %
= AR sl\,..c;,:o‘ ><
e N .;p;.',. =
I T ¥
><] [ ><] ““".“‘th
= ¢=~|=lf'¢»‘w =
" <q’n\' t‘g:‘Q‘ -
- — ﬁ_ N A
<] 1><] 1 ><]
> AP ER ,r- \‘:“ =
= =i M
A= W=
SNy ESVitS
e e N S S g
- S\ ]
g 7 5 g o i g e S
— — — [ —
P 1 | ] |
—  —  ow—  —

Fig. 4. States of switching elements corresponding to the solution in Fig. 3(b).

minimum convergence. The same set of parameters have been used  were randomly generated. Fig. 3(a) shows the traffic matrix with 50%
in several other papers. density. From different initial values of U,;, our simulator found
Two 32 x 32 traffic matrices with 50% density and 80% density  several global minimum solutions, shown in Fig. 3(b) and (c). Fig. 4
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shows the switching configuration corresponding to Fig. 3(b). Tables I
and II summarize the simulation results, where the average number of
iteration steps required for the convergence and the convergence fre-
quency, and the average number of demands in the local minimum so-
lutions are compared in seven models. Note that for each model, 100
simulation runs were performed from different initial values of U;;.

We conclude the simulation results as follows:

1) The comparisons of cases #1-#4 show that the decay term
disturbs the convergence of the neural network to solutions. Although
cases #2 and #3 are superior in the average number of iteration steps
for the convergence to case #4, they are inferior in the frequency of
the local minimum convergence and the solution quality to case #4.
The decay term seems to make the local minimum deeper, so some
initial states of U;; can be quickly converged to the global minima.

2) The comparisons of cases #4 and #5 show that the McCul-
loch—Pitts neuron model and the sigmoid neuron model have similar
performance in terms of the average number of iteration steps for the
convergence and the convergence frequency. However, because of the
exponential calculation in the sigmoid neuron model, it requires much
longer computation time than the McCulloch—Pitts neuron model on
a digital computer. The simple McCulloch—Pitts neuron model is
superior to the sigmoid neuron model for practical uses.

3) The comparisons of cases #4—6 show that the hysteresis
McCulloch~Pitts neuron model is superior to the McCulloch—Pitts
neuron model and the sigmoid neuron model in terms of the frequency
of the global minimum convergence.

4) The comparisons of cases #6—7 show that the two heuristics
increase the frequency of the global minimum convergence, reduce
the number of iteration steps for the convergence, and improve
the solution quality. The hysteresis McCulloch—Pitts neuron model
without the decay term and with the two heuristics provides the best
performance among the seven models. We have observed similar
behavior in other instances.

V. CONCLUSION

This paper presents performance comparisons of seven neural net-
work models on traffic control problems in multistage interconnection
networks. The simulation results show that 1) the decay term in the
motion equation disturbs the convergence, 2) with less computation
time on a digital computer, the McCulloch—Pitts neuron model
achieves the same performance as the sigmoid neuron model, and 3)
the hysteresis McCulloch—Pitts neuron model and the two heuristics
greatly improve the performance of the neural network computation.
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A Neural Network Implementation of the Moment-
Preserving Technique and Its Application to Thresholding

Shyi-Chyi Cheng and Wen-Hsiang Tsai

Abstract—A neural-network implementation of the moment-preserving
technique which is widely used for image processing is proposed. The
t-preserving technique can be thought of as an information trans-
formation method which groups the pixels of an image into classes. The
variables in the so-called moment-preserving equations are determined
iteratively by a recurrent neural network and a comnectionist neural
network which work cooperatively. Both of the networks are designed
in such a way that the sum of square errors between the moments of the
input image and those of the output version is minimized. The proposed
neural network sy is applied to tic threshold selection. The ex-
perimental results show that the system can threshold images successfully.
The performance of the proposed method is also compared with those of
four other histogram-based multilevel threshold selection methods. The
simulation results show that the proposed technique is at least as good
as the other methods.

Index Terms—Connectionist neural networks, gradient descent, image
thresholding, moment-preserving principle, recurrent neural networks.

I. INTRODUCTION

Recently, a new image processing technique called moment preser-
vation has been successfully applied to many image processing
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