Lecture 11 Digital Circuits (I) THE INVERTER

Outline

- Introduction to digital circuits –The inverter
- NMOS inverter with resistor pull-up

Reading Assignment: Howe and Sodini; Chapter 5, Sections 5.1-5.3

1. Introduction to digital circuits: the inverter

In digital circuits, digitally-encoded information is represented by means of two distinct voltage ranges:

The Static Definition

- *Logic 0:* $V_{MIN} \le V \le V_{OL}$
- *Logic 1:* $V_{OH} \le V \le V_{MAX}$
- *Undefined logic value:* $V_{OL} \le V \le V_{OH}$

Logic operations are performed using *logic gates*.

Simplest logic operation of all: *inversion* \Rightarrow inverter

Define *switching point* or *logic threshold* :

 V_M = input voltage for which $V_{OUT} = V_{IN}$ $-$ For $0 \leq V_{IN} \leq V_M$ $\Rightarrow V_{OUT} = V^+$ $-$ For $V_M < V_{IN} \leq V^+$ \Rightarrow $V_{OUT} = 0$

Ideal inverter returns well defined logical outputs (0 or V^+) even in the presence of considerable noise in V_{1N} (from voltage spikes, crosstalk, etc.) ⇒ signal is *regenerated*!

In a real inverter, valid logic levels defined as follows:

- Logic 0:
	- V_{MIN} = output voltage for which $V_{IN} = V^+$
	- V_{OL} = smallest output voltage where slope = -1
- Logic 1:
	- V_{OH} = largest output voltage where slope = -1
	- V_{MAX} ≡ output voltage for which V_{IN} = 0

Define:

 V_{II} = smallest input voltage where slope = -1 V_{IH} = highest input voltage where slope = -1

If range of output values V_{OL} to V_{OH} is *wider* than the range of input values V_{II} to V_{IH} , then the inverter exhibits some noise immunity. ($|Voltage gain| > 1$)

Quantify this through *noise margins*.

Simplifications for hand calculations: Logic levels and noise margins

It is hard to compute points in transfer function with slope $= -1$.

Approximate in the following way:

- Assume $V_{OL} \approx V_{MIN}$ and $V_{OH} \approx V_{MAX}$
- Trace tangent of transfer function at V_M
	- Slope = small signal voltage gain (A_v) at V_M
- $V_{\text{IL}} \approx$ intersection of tangent with $V_{\text{OUT}} = V_{\text{MAX}}$
- $V_{\text{H}} \approx$ intersection of tangent with $V_{\text{OUT}} = V_{\text{MIN}}$

Transient Characteristics

Inverter switching in the time domain:

- t_R = *rise time* between 10% and 90% of total swing t_F = *fall time* between 90% and 10% of total swing
- t_{PHL} = *propagation delay from high-to-low* between 50% points
- t_{PLH} = *propagation delay from low-to-high* between 50% points

Propagation delay: tr

$$
P_{\rm P} = \frac{1}{2} \left(t_{\rm PHL} + t_{\rm PLH} \right)
$$

Simplifications for hand calculations: Propagation delay

- Consider input waveform is an ideal square wave
- Propagation delay times $=$ delay times to 50% point

• **SPICE essential for accurate delay analysis**

2. NMOS inverter with "pull-up" resistor

Essential features:

- $V_{BS} = 0$ (typically not shown)
- C_L summarizes capacitive loading of the following stages (other logic gates, interconnect lines, etc.)

Basic Operation:

If $V_{\text{IN}} < V_{\text{T}}$, MOSFET is **OFF**

 $- \Rightarrow V_{\text{OUT}} = V_{\text{DD}}$

- If $V_{IN} > V_T$, MOSFET is **ON**
	- $\Rightarrow V_{\text{OUT}}$ small
	- Value set by resistor / nMOS divider

Transfer function obtained by solving:

 $I_R = I_D$

Can solve graphically: I–V characteristics of load:

Overlap I–V characteristics of resistor pull-up on I–V characteristics of transistor:

Transfer function:

Logic levels: V_{OUT}=V_{DS} V_{OUT}=V_{IN} 0 V_T V_M V_{DD} V_{IN}=V_{GS} 0 V_M V_{MAX}=V_{DD} V_{MIN}

For V_{MAX} , transistor is cut-off, $I_D = 0$:

$$
V_{MAX} = V_{DD}
$$

For V_{MIN} , transistor is in linear regime; solve:

$$
\mathbf{I}_{D} = \frac{\mathbf{W}}{\mathbf{L}} \mu_{n} \mathbf{C}_{ox} \left(\mathbf{V}_{DD} - \frac{\mathbf{V}_{MIN}}{2} - \mathbf{V}_{T} \right) \mathbf{V}_{MIN} = \mathbf{I}_{R} = \frac{\mathbf{V}_{DD} - \mathbf{V}_{MIN}}{R}
$$

For V_M , transistor is in saturation; solve:

$$
\mathbf{I}_{\mathbf{D}} = \frac{\mathbf{W}}{2\mathbf{L}} \mu_{\mathbf{n}} \mathbf{C}_{\mathbf{o}\mathbf{x}} (\mathbf{V}_{\mathbf{M}} - \mathbf{V}_{\mathbf{T}})^2 = \mathbf{I}_{\mathbf{R}} = \frac{\mathbf{V}_{\mathbf{D}\mathbf{D}} - \mathbf{V}_{\mathbf{M}}}{\mathbf{R}}
$$

Small signal equivalent circuit model at V_M (transistor in saturation):

What did we learn today?

Summary of Key Concepts

Logic circuits must exhibit immunity to noise in the input signal

– *Noise margins*

- Logic circuits must be *regenerative*
	- Able to restore clean logic values even if input is noisy.
- *Propagation delay*: time for logic gate to perform its function.
- Concept of *load line*: graphical technique to visualize transfer characteristics of inverter.
- First-order solution (by hand) of inverter figures-ofmerit easy if *regions of operation* of transistor are correctly identified.
- For more accurate solutions, use SPICE (or other CAD tool).