Lecture 11 Digital Circuits (I) THE INVERTER

Outline

- Introduction to digital circuits
 The inverter
- NMOS inverter with resistor pull-up

Reading Assignment: Howe and Sodini; Chapter 5, Sections 5.1-5.3

1. Introduction to digital circuits: the inverter

In digital circuits, digitally-encoded information is represented by means of two distinct voltage ranges:

The Static Definition

- Logic 0: $V_{MIN} \le V \le V_{OL}$
- Logic 1: $V_{OH} \le V \le V_{MAX}$
- Undefined logic value: $V_{OL} \le V \le V_{OH}$

Logic operations are performed using *logic gates*.

Simplest logic operation of all: *inversion* \Rightarrow inverter

Define *switching point* or *logic threshold* :

• $V_M \equiv \text{input voltage for which } V_{OUT} = V_{IN}$ - For $0 \le V_{IN} < V_M \implies V_{OUT} = V^+$ - For $V_M < V_{IN} \le V^+ \implies V_{OUT} = 0$

Ideal inverter returns well defined logical outputs (0 or V^+) even in the presence of considerable noise in V_{IN} (from voltage spikes, crosstalk, etc.) \Rightarrow signal is *regenerated*!

In a real inverter, valid logic levels defined as follows:

- Logic 0:
 - $V_{MIN} \equiv$ output voltage for which $V_{IN} = V^+$
 - $V_{OL} \equiv$ smallest output voltage where slope = -1
- Logic 1:
 - $V_{OH} \equiv$ largest output voltage where slope = -1
 - $V_{MAX} \equiv$ output voltage for which $V_{IN} = 0$

Define:

 $V_{IL} \equiv$ smallest input voltage where slope = -1 $V_{IH} \equiv$ highest input voltage where slope = -1

If range of output values V_{OL} to V_{OH} is *wider* than the range of input values V_{IL} to V_{IH} , then the inverter exhibits some noise immunity. (|Voltage gain| > 1)

Quantify this through *noise margins*.

Simplifications for hand calculations: Logic levels and noise margins

It is hard to compute points in transfer function with slope = -1.

Approximate in the following way:

- Assume $V_{OL} \approx V_{MIN}$ and $V_{OH} \approx V_{MAX}$
- Trace tangent of transfer function at V_M
 - Slope = small signal voltage gain (A_v) at V_M
- $V_{IL} \approx$ intersection of tangent with $V_{OUT} = V_{MAX}$
- $V_{IH} \approx$ intersection of tangent with $V_{OUT} = V_{MIN}$

Transient Characteristics

Inverter switching in the time domain:

- $t_R \equiv rise time$ between 10% and 90% of total swing
- $t_F \equiv fall time$ between 90% and 10% of total swing
- $t_{PHL} \equiv propagation delay from high-to-low between 50% points$
- $t_{PLH} \equiv propagation delay from low-to-high between 50% points$

Propagation delay :

$$\mathbf{t}_{\mathbf{P}} = \frac{1}{2} \left(\mathbf{t}_{\mathbf{PHL}} + \mathbf{t}_{\mathbf{PLH}} \right)$$

Simplifications for hand calculations: Propagation delay

- Consider input waveform is an ideal square wave
- Propagation delay times = delay times to 50% point

• SPICE essential for accurate delay analysis

2. NMOS inverter with "pull-up" resistor

Essential features:

- $V_{BS} = 0$ (typically not shown)
- C_L summarizes capacitive loading of the following stages (other logic gates, interconnect lines, etc.)

Basic Operation:

• If $V_{IN} < V_T$, MOSFET is **OFF**

 $- \Rightarrow V_{OUT} = V_{DD}$

- If $V_{IN} > V_T$, MOSFET is **ON**
 - $\Rightarrow V_{OUT}$ small
 - Value set by resistor / nMOS divider

Transfer function obtained by solving:

 $I_R = I_D$

Can solve graphically: I–V characteristics of load:

Overlap I–V characteristics of resistor pull-up on I–V characteristics of transistor:

Transfer function:

Logic levels: $V_{OUT}=V_{DS}$ $V_{MAX}=V_{DD}$ V_{M} V_{V

For V_{MAX} , transistor is cut-off, $I_D = 0$:

$$V_{MAX} = V_{DD}$$

For V_{MIN} , transistor is in linear regime; solve:

$$\mathbf{I}_{\mathbf{D}} = \frac{\mathbf{W}}{\mathbf{L}} \mu_{\mathbf{n}} \mathbf{C}_{\mathbf{ox}} \left(\mathbf{V}_{\mathbf{D}\mathbf{D}} - \frac{\mathbf{V}_{\mathbf{M}\mathbf{I}\mathbf{N}}}{2} - \mathbf{V}_{\mathbf{T}} \right) \mathbf{V}_{\mathbf{M}\mathbf{I}\mathbf{N}} = \mathbf{I}_{\mathbf{R}} = \frac{\mathbf{V}_{\mathbf{D}\mathbf{D}} - \mathbf{V}_{\mathbf{M}\mathbf{I}\mathbf{N}}}{\mathbf{R}}$$

For V_M, transistor is in saturation; solve:

$$\mathbf{I}_{\mathbf{D}} = \frac{\mathbf{W}}{2\mathbf{L}} \,\mu_{\mathbf{n}} \mathbf{C}_{\mathbf{ox}} \left(\mathbf{V}_{\mathbf{M}} - \mathbf{V}_{\mathbf{T}} \right)^2 = \mathbf{I}_{\mathbf{R}} = \frac{\mathbf{V}_{\mathbf{DD}} - \mathbf{V}_{\mathbf{M}}}{\mathbf{R}}$$

Small signal equivalent circuit model at V_M (transistor in saturation):

What did we learn today?

Summary of Key Concepts

• Logic circuits must exhibit immunity to noise in the input signal

- Noise margins

- Logic circuits must be *regenerative*
 - Able to restore clean logic values even if input is noisy.
- *Propagation delay*: time for logic gate to perform its function.
- Concept of *load line*: graphical technique to visualize transfer characteristics of inverter.
- First-order solution (by hand) of inverter figures-ofmerit easy if *regions of operation* of transistor are correctly identified.
- For more accurate solutions, use SPICE (or other CAD tool).