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The problem of choosing the appropriate Hranularit~ (size) 
of lockable objects is introduced and the tradeoff between 
concurrency and overhead is discusseS. A locking protocol 
which allows simultaneous locking at various granularities 
by different transactions is presented. It is based on 
the introduction of additional lock modes besides the 
conventional share mode an5 exclusive mode. A proof is 
given of the equivalence of this protocol to a 
conventional one. 

Next the issue of consistency in a shared environment is 
analyze~. This discussion is motivated by the realization 
that some existing data base systems use automatic lock 
protocols which insure protection only from certain types 
of inconsistencies (for instance those arising from 
transaction backup), thereby automatically providing a 
limited degree of consistency. Four ~ S ~  ~ 
consistency are introduced. They can be roughly 
characterized as follows: degree 0 protects others from 
your updates, degree I additionally provides protection 
from losing updates, degree 2 additionally provides 
protection from reading incorrect data iteas, and degree 3 
additionally provides protection from reading incorrect 
relationships among data items (i.e. total protection). A 
discussion follows on the relationships of the four 
degrees to locking protocols, concurrency, overhead, 
recovery and transaction structure. 

Lastly, these ideas are compared with existingdata 
management systems. 

I. GRANULARITY OF LOCKS: 

An important issue which arises in the design of a data Dase 
management system is the choice of lockable unitE, i.e. the data 
aggregates which are atomically locked to insure consistency. 
Examples of lockable units are areas, files, individual records, 
field values, and intervals of field values. 

The choice of lockable units presents a tradeoff between concurrency 
and overhead, which is related to the size or Kranularit Z of the 
units themselves. On.the one hand, concurrency is increased if a 
fine lockable unit (for example a record or field) is chosen. Such 
unit is appropriate for a "simple" transaction which accesses few 
records. On the other hand a fine unit of locking would be costly 
for a "complex" transaction which accesses a large number of 
records. Such a transaction would have to set and reset a large 
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number of locks, incurring the computational overhead of many 
invocations of the lock subsystem, and the storage overhead of 
representing many locks. A coarse lockable unit (for example a 
file) is probably convenient for a transaction which accesses many 
records. However, such a coarse unit discriminates against 
transactions which only want to lock one member of the file. From 
this ~iscussion it follows that it would be desirable to have 
lockable units of different granularities coexisting in the same 
system. 

This paper presents a lock protocol satisfying these requirements 
and discusses the related implementation issues of scheduling, 
granting and converting lock requests. 

Hierarchical locks: 

We will first assume that the set of resources to be locked is 
organized in a hierarchy. Note that this hierarchy is used in the 
context of a collection of resources and has nothing to do with the 
data model used in a data base system. The hierarchy of Figure I 
may be suggestive. We adopt the notatios that each level of the 
hierarchy is given a node type which is a generic name for all the 
node instances of that type. For example, the data base has nodes 
of type area as its immediate descendants, each area in turn has 
nodes of type file as its immediate descendants and each file has 
no~es of type record as its immediate descendants in the hierarchy. 
Since it is a hierarchy, each node has a unique parent. 

DATA BASE 

i 
l 

AREAS 

i 
I 

FILES 

l 
i 

RECORDS 

Figure 1. A sample lock hierarchy. 

Each node of the hierarchy can be locked. If one requests exclusive 
access (X) to a particular node, then when the request is granted, 
the requestor has exclusive access to that node and implicitly to 
each of its descendants. If one requests shared access (S) to a 
particular node, then when the request is granted, the reguestor has 
shared access to that node and i_mp_l_icitly to each descendant of that 
node. These two access modes lock an entire subtree rooted at the 
requested node. 

3ur goal is to find some technique for i_m~_l_icitl~ locking an entire 
subtree. In order to lock a subtree rooted at node R in share or 
exclusive mode it is important to prevent share or exclusive locks 
on the ancestors of R which would implicitly lock R and its 
descendants. Hence a new access mode, intention mode (I), is 
introduced. Intention mode is used to "tag" (lock) all ancestors of 
a node to be locked in share or exclusive mode. These tags signal 
the fact that locking is being done at a "finer" level and thereby 
prevents implicit or explicit exclusive or share locks on the 
ancestors. 
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The protocol to lock a subtree rooted at node R in exclusive or 
share mode is to first lock all ancestors of R in intention mode and 
%hen to lock node R in exclusive or share mode. For example, using 
Figure I, to lock a particular file one should obtain intention 
~czess to the data base, to the area containing the file and then 
request exclusive (or share) access to the file itself. This 
implicitly locks all records of the file in exclusive (or share) 
mode. 

Access modes and compatibility: 

we say that two lock requests for the same node by two different 
transactions are compatible if they can be granted concurrently. 
The mode of the request determines its compatibility with requests 
made by other transactions. The three modes X, S and I are 
incompatible with one another but distinct S requests may be granted 
together and distinct I requests may be granted together. 

The compatibilities among modes derive from their semantics. Share 
mode allows reading but not modification of the corresponding 
resource by the requestor and by other transactions. The semantics 
of exclusive mode is that the grantee may read and modify %he 
resource but no other trans~ction may read or modify the resource 
while the exclusive lock is set. The reason for dichotomizing share 
and exclusive access is that several share requests can be granted 
concurrently (are compatible) whereas an exclusive request is not 
compatible with any other request. Intention mode was introduced to 
be incompatible with share and exclusive mode (to prevent share and ~ 
exclusive locks). However, intention mode is compatible with itself 
since two transactions having intention access to a node will 
explicitly lock descendants of the node in X, S or I mode and 
thereby will either be compatible with one another or will be 
scheduled on the basis of their requests at the finer level. For 
example, two transactions can simultaneously be granted the data 
base and some area and some file in intention mode. In this case 
their explicit locks on particular records in the file will resolve 
any conflicts among them. 

The notion of intention mode is refined to intention share mode (IS) 
and intention exclusive mode (IX) for two reasons: the intention 
share mode only requests share or intention share locks at the lower 
nodes of the tree (i.e. never requests an exclusive lock below the 
intention share node), hence IS is compatible with S mode. Since 
read only is a common form of access it will be profitable to 
distinguish this for greater concurrency. Secondly, if a 
transaction has an intention share lock on a node it can convert 
%his to a share lock at a later time, but one cannot convert an 
intention exclusive lock to a share lock on a node. Rather to get 
the combined rights of share mode and intention exclusive mode one 
must obtain an X or SIX mode lock. (This issue is discussed in the 
section on rerequests below). 

We recognize one further refinement of modes, namely share and 
intention exclusive mode (SIX). Suppose one transaction wants to 
read an entire subtree and to update particular nodes of that 
subtree. Using the modes provided so far it would have the options 
of: (a) requesting exclusive access to the root of %he subtree and 
doing no further locking or (b) requesting intention exclusive 
access to the root of the subtree and explicitly locking the lower 
nodes in intention, share or exclusive mode. Alternative (a) has 
low concurrency. If only a small fraction of the read nodes are 
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updated then alternative (b) has high locking overhead. The correct 
access mode would be share access to the subtree thereby allowing 
the transaction to read all nodes of the subtree without further 
locking _and intention exclusive access to the subtree thereby 
allowing the transaction to set exclusive locks on those nodes in 
the subtree which are to be updated and IX or SiX locks on the 
intervening Nodes. Since this is such a common case, SIX mode is 
introduced for this purpose. It is compatible with IS mode since 
other transactions requesting IS mode will explicitly lock lower 
nodes in IS or S mode thereby avoiding any updates (IX or X mode) 
produced by the SIX mode transaction. However SIX mode is not 
compatible with IX, S, SIX or X mode requests. 

Table 1 gives the compatibility of the request modes, where for 
completeness we have also introduced the null mode (NL) which 
represents the absence of requests of a resource by a transaction. 

I_ NL 
I NL Y ES 
I IS YES 
1 IX Y ES 
I S YES 
I S IX Y ES 
I_X___I_YES 

IS IX S SIX X 
YES YES YES YES YES 
YES YES YES YES NO 
YES YES NO NO NO 
YES NO YES NO NO 
[ES NO NO NO NO 
NO NO NO NO NO 

Table 1. Compatibilities among access modes. 

To summarize, we recognize six modes of access to a resource: 

NL: Gives no access to a node, i.e. represents the absence of a 
request of a resource. 

IS: Gives •intention share access to the requested node and allows 
the requestor to lock descendant nodes in S or IS mode. (It 
does no implicit locking.) 

IX: Gives intention exclusive access to the requested node and 
allows the reguestor to exRli____qcit_~l x lock descendants in X, S, 
SiX, IX or IS mode. (It does no implicit locking.) 

S: Gives share access to the requested node and to all descendants 
of the requested node without setting further locks. (It 
implicitly sets S locks on all descendants of the requested 
node. ) 

SIX: Gives share and intention exclusive access to the requested 
node. (In particular it implicitly locks all descendants of the 
node in share mode ~nd allows the requestor to explicitly lock 
descendant nodes in X, SIX or IX mode.) 

X: Gives exclusive access to the requested node and to all 
descendants of the requested node without setting further locks. 
(It implicitly sets X locks on all descendants. Locking lower 
nodes in S or IS mode would give no increased access.) 

IS mode is the weakest non-null form of access to a resource. It 
carries fewer privileges than IX or S modes. IX mode allows IS, IX, 
S, SIX and X mode lecks to be set on descendant nodes while S mode 
allows read only access to all descendants of the node without 
further locking. SIX mode carries the privileges of S and of IX 
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mode (hence the name SIX). X mode is th. = most privileged form of 
azcess and allows reading and writing of all descendants of a node 
without further locking. Hence the mod~s can be ranked in the 
partial order (lattice) of privileges shown in Figure 2. Note that 
it is not a total order since IX and S are incomparable. 

X 

I 
I 

SIX 

I 

I 
I 
IX 

I 
I 

I 
I 
IS 

I 
I 
NL 

Figure 2. The partial ordering of modes by their privileges. 

Rules for request_in S nodes: 

Th- = implicit locking of nodes will not work if transactions are 
allowed to leap into the middle of the tree and begin locking nodes 
at random. The implicit locking implied by the S and X modes 
depends on all transactions obeying the following protocol: 

(a) Before requesting an S or IS lock on a node, all ancestor nodes 
of the requested node must be held in IX or IS mode by the 
reguestor. 

(b) Before requesting an X, SIX or IX lock on a node, all ancestor 
nodes of the requested node must be held in SIX or IX mode by 
the requestor. 

(c) Locks should be released either at the end of the transaction 
(in any order) or in leaf to root order. In particular, if locks 
are not held to end of transaction, one should not hold a lock 
after releasing its ancestors. 

To paraphrase this, locks are requested, root to le_aaf, a_n__dd _released 
leaf to root. Notice that leaf nodes are never requested in 
intention mode since they have no descendants. 

Several examples: 

To lock record R for read: 
lock data-base with mode = IS 
lock area containing R with mode = IS 
lock file containing R with mode = IS 
lock record R with mode = S 

Don't panic, the transaction probably already 
area and file lock. 

has the data base, 
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To lock record R for write-exclusive access: 
lock data-base with mode = IX 
lock area containing R with mode = IX 
lock file containing R with mode = IX 
lock record R with mode = X 

Note that if the records of this and the previous example are 
distinct, each request can be granted simultaneously to different 
transactions even though both refer to the same file. 

To lock a file F for read and write access: 
lock data-base with mode = IX 
lock area containing F with mode = IX 
lock file F with mode = X 

Sinc~ this reserves exclusive access to the file, if this request 
uses the same file as the previous two examples it or the other 
transactions will have to wait. 

To lock a file F for complete scan and occasional update: 
lock data-base with mode = IX 
lock area containing F with mode = IX 
lock file F with mode = SIX 

Thereafter, particular records in F can be locked for update by 
locking records in X mode. Notice that (unlike the previous 
example) this transaction is compatible with the first example. 
This is the reason for introducing SIX rood_ ~. 

To quiesce the data base: 
lock data base with mode = X. 

Note that this locks everyone else out. 

Directed acycl_~ic qra]~hs of locks: 

The notions so far introduced can be generalized to work for 
~irected acyclic graphs (DAG) of resources rather than simply 
hierarchies of resources. A tree is a simple DAG. The key 
observation is that to implicitly or explicitly lock a node, one 
should lock _all the parents of the nod~ in the DAG and so by 
induction lock all ancestors of the node. In particular, to lock a 
subgraph one must implicitly or explicitly lock all ancestors of the 
subgraph in the appropriate mode (for a tree there is only one 
parent). To give an example of a non-hierarchical structure, 
imagine the locks are organized as in Figure 3. 

DATA BASE 

I 
I 

AREAS 

I 

I I 
FILES INDICES 

I I 
I __I 

I 
I 

R ECOR DS 

Figure 3. A non-hierarchical lock graph. 



Gramdarity of  looks and degrees of  consisteney 371 

We postulate that areas are "physical" nDtions and that files, 
indices and records are logical notions. The data base is a 
collection of areas. Each area is a collection of files and 
indices. Each file has a corresponding index in the same area. 
Each record belongs to some file and to its corresponding index. A 
record is comprised of field values and so~e field is indexed by the 
index associated with the file containing the record. The file 
gives a sequential access path to the records and the index gives an 
associative access path to the records based on field values. Since 
individual fields are never locked, they ~o not appear in the lock 
graph. 

To write a record R in file F with index I: 
lock data base with mode = IX 
lock area containing F with mode = IX 
lock file F with mode = IX 
lock index I with mode = IX 
lock record E with mode = X 

Note that all paths to record R are locked. Alternaltively, one 
could lock F and I in exclusive mode thereby implicitly locking R in 
exclusive mode. 

To give a more complete explanation we observe that a node can be 
locked e_/x~lici_t!~ (by requesting it) or implici_tl I (by appropriate 
explicit locks on the ancestors of the node) in one of ~ive modes: 
IS, IX, S, SIX, X. However, the definition of implicit locks and 
the protocols for setting explicit locks have to be extended for 
DAG's as follows: 

A node is i_m~licit_!l ~ granted in S mode to a transaction if at least 
one of its parents is (implicitly or explicitly) granted to the 
transaztion in S, SIX or X mode. By induction that means that at 
least one of the node's ancestors must be explicitly granted in S, 
SIX or X mode to the transaction. 

A node is imDl~Gitl__[ ~ranted in X mode if ~!! of its parents are 
(implicitly or explicitly) granted to the transaction in X mode. By 
induction, this is equivalent to the condition that all nodes in 
some cut set of the collection of all paths leading from the node to 
the roots of the graph are explicitly granted to the transaction in 
X mode and all ancestors of nodes in the cut set are explicitly 
granted in IX or SIX mode. 

From Figure 2, a node is implicitly granted in IS mode if it is 
implicitly granted in S mode, and a node is implicitly granted in 
IS, IX, S and SIX mode if it is implicitly granted in X mode. 

~h~ protocol for ~ ! ~ ! ~  ~s~t~n~ locks on a DAG: 

(a) Before requesting an S or IS lock on a node, one should request 
at least one parent (and by induction a path to a root) in IS 
(or greater) mode. As a consequence none of the ancestors along 
this path can be granted to another transaction in a mode 
incompatible with IS. 

(b) Before requesting IX, SIX or X mode access to a node, one should 
request all parents of the node in IX (or greater) mode. As a 
consequence all ancestors will be held in IX (or greater mode) 
and cannot be held by other transactions in a mode incompatible 
with IX (i. e. S, SIX, X). 
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(c) Locks should be released either at the end of the transaction 
(in any order) or in leaf to root order. In particular, zt 
locks are not held to the end of transaction, one should not 
hold a lower lock after releasing its ancestors. 

To giv~ an example using Figure 3, a sequential scan of all records 
in file F need not use an index so one can get an implicit share 
lock on each record in the file by: 

lock data base 
lock area containing F 
lock file F 

with mode = IS 
with mode = IS 
with mode = S 

This gives implicit S mode access to all records in F. Conversely, 
to read a record in a file via the index I for file F, one need not 
get an implicit or explicit lock on file F: 

lock data base 
lock area containing R 
lock index I 

with mode = IS 
with mode = IS 
with mode = S 

This again gives 
(in file F). In 
readinq. 

implicit S mode access to all records in index I 
both these cases, ~n__II o n~ 9ath was locked for 

But to insert, delete or update a record R in file F with index I 
one must get an implicit or explicit lock on all ancestors of R. 

The first example of this section showed how an explicit X lock on a 
record is obtained. To get an implicit X lock on all records in a 
file one can simply lock the index and file in X mode, or lock the 
area in X mode. The latter examples allow bulk load or update of a 
file without further locking since all records in the file are 
implicitly granted in X mode. 

Proof of !~uivalence of the lock protocol. 

We will now prove that the described lock protocol is equivalent to 
a conventional one which uses only two modes (S and X), and which 
explicitly locks atomic resources (the leaves of a tree or sinks of 
a DAG). 

Let G = (N,A) be a finite (directed acyclic) ~_raph where N is the 
set of nodes and A is the set of arcs. G is assumed to be without 
circuits (i.e. there is no non-null path leading from a node n to 
itselt~. A node p is a parent of a node a and n is a child of p if 
there is an arc from p to n. A node n is a source (sink) if n has 
no parents (no children). Let SI be th~ set of sinks of G. An 
ancestor of node n is any node (including n) in a path from a source 
to n. A node-slice of a sink n is a collection of nodes such that 
each path from a source to n contains at least one node of the 
slice. 

We also introduce the set of lock modes M = [NL, IS, IK,S,SIX,X} and 
the compatibility matrix C : MxM->{YES,N3} described in Table I. 
Let c : mxm->{YES,NO} be the restriction of C to m = [NL, S,X}. 
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A lock_-qr_a~h is a mapping L : N->M such that: 
(a) if L(n) e {IS,S} then either n is a source or there exists a 

parent p of n such that L(p) e [IS,IX,S,SIX,X}. By induction 
there exists a path from a source to n such that L takes only 
values in {IS,IX,S,SIX, X] on it. Equivalently L is not equal to 
NL on the path. 

(by if L(n) e {IX,SIX,X] then either n is a root or for all parents 
pl...pk of n we have L(pi) e {IX, SIX, X} (i=1...k). By induction 
L takes only values in {IX,SIX, X] on all the ancestors of n. 

The interpretation of a lock-graph is that it gives a map of the 
explicit locks held by a particular transaction observing the six 
state lock protocol described above. The notion of projection of a 
lock-graph is now introduced to model the set of implicit locks on 
atomic resources acquired by a transaction. 

The ~rojection of a lock-graph L is the mapping I: SI->m constructed 
as follows: 
(a) l(n)=X if there exists a node-slice [nl...ns} of n such that 

L(ni) =X for each node in the slice. 
(b) 1 (n)=S if (a) is not satisfied and there exists an ancestor a of 

n such that L(a) q [S,SIX,X]. 
(c) I(n)=NL if (a) and (b) are not satisfied. 

Two lock -graphs LI an d L2 are said to be comma tible if 
C(LI(n) ,L2(n))=YES for all n e N. Similarly two projections 11 and 
12 are compatible if c(11 (n),12 (n))=YES for all n e SI. 

Theorem: 

If two lock-graphs LI and L2 are compatible then their projections 
11 and 12 are compatible. In other words if the explicit locks set 
by two transactions do not conflict then also the three-state locks 
implicitly acquired do not conflict. 

Proof: Assume that 11 and 12 are incompatible. We want to prove 
that LI and L2 are incompatible. By definition of compatibility 
there must exist a sink n such that ll(n)=X and 12(n) e [S,X} (or 
vize versa). By definition of projection there must exist a 
node-slice {nl...ns} of n such that LI(nl)=.,.=LI (ns)=X. Also there 
must exist an ancestor nO of n such that L2 (nO) e [S,SIX,X}. From 
the definition of lock-graph there is a path P1 from a source to nO 
on which L2 does not take the value NL. 

If P 1 intersects the node-slice at ni then LI and L2 are 
incompatible since Ll(ni)=X which is incompatible with the non-null 
value of L2 (hi). Hence the theorem is proved. 

Alternatively there is a path P2 from n0 to the sink n which 
intersects the node-slice at hi. From the definftion of lock-graph 
LI takes a value in {IX,SIX,X] on all ancestors of hi. In 
particular LI (nO) e {IX, SiX, X] . Since L2 (n0) e [S,SIX,X} we have 
C (L1(n0) ,L2 (n0)) =NO. Q.E.D. 

Dynamic lock qr_a~hs: 

Thus far we have pretended that the lock graph is static. However, 
examination of Figure 3 suggests otherwise. Areas, files and 
indices are dynamically created and destroyed, and of course records 
are continually inserted, updated, and deleted. (If the data Dase 
is only read, then there is no need for locking at all.) 
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We introduce the lock protocol for dynamic DAG' s by example. 
Consider the implementation of index i__nterval locks. Rather than 
being forced to lock entire indices or individual records, we would 
like to be able to lock all records with a certain contiguous range 
of index values; for example, lock all records in the bank account 
file with the location field equal to Napa. Therefore, the index is 
partitioned into lockable key value intervals. Each indexed record 
"belongs', to a particular index interval and all records in a file 
with the same field value on an indexed field will belong to the 
same key value interval (i.e. all Napa accounts will belong to the 
same interval). This new structure is depicted in Figure 4. In [ I] 
such locks were called predicate locks and and an alternate (more 
general but less efficient) implementation was proposed. 

I 
I 
I 

UN-INDEXED 
FIELDS 

DATA BASE 

I 
i 

AREAS 

l 
l 

FILE 

l 
l 

I 
INDICES 

l 
l 

INDEX 
INTERVALS 

........ l 

I I 
I I 
I I I 
I I I 
I I I 

~ECORD INDEXED 
IDENTIFIERS FIELDS 

Figure 4. The lock graph with index interval locks. 

The only subtle aspect of Figure 4 is the dichotomy between indexed 
and un-indexed fields. Since the indexed field value and record 
identifier (logical address) appear in the index, one can read the 
indexed field directly (i.e. without "touching" the record). Hence 
an index interval is a parent of the corresponding field values. 
Further, the index "points,, via record i~eatifiers to all records 
with that value and so is a parent of all such record identifiers. 
On the other hand, one can read and update un-indexed fields of the 
re=ord without affecting the index and so the file is the only 
parent of such fields. 

When an indexed field is updated, it and its record identifier move 
from one index interval to another. For example, when a Napa 
account is moved to the St. Helena branch, the account record and 
its location field "leave" the Napa interval of the location index 
and "join" the St. Helena index interval. When a new record is 
inserted it "joins" the interval containing the new field value and 
also it "joins" the file. Deletion rem3ves the record from the 
index interval and from the file. index is not a lock ancestor ot 
such fields. 
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Since Figure 4 defines a DAG, albeit a dynamic DAG, the protocol of 
the previous section can be used to lock the nodes of the DaG. 
However, the protocol should be extended as follows to handle 
dynamic changes to the lock graph: 

(d} Before moving a nods in the lock graph, the node must be 
implicitly or explicitly granted in X mode in both its old and 
its new position in the graph. Further, the n~de must not be 
moved in such a way as to create a cycle in the graph. 

Carrying out the example of this section, to move a Napa Dank 
account to the St. Helena branch: 
lock data base in mode = IX 
lock area containing accounts in mode = IX 
lock accounts file 
lock location index 
lock Napa interval 
lock St. Helena interval 
lock record 
lock field 

Alternatively, one could 

in mode = IX 
in mode = IX 
in mode = IX 
in mode = IX 
in mode = IX 
in mode = X. 

get an implicit lock on the field by 
requesting explicit X mode locks on the record and index intervals. 

i; 

Schedulinq and ~ran~n~ r~ues~s: 

Thus far we have described the semantics of the various request 
modes and have described the protocol which requestors must follow. 
To complete the discussion we discuss how requests are scheduled and 
granted. 

The set of all requests for a particular resource are kept in a 
queue sorted by some fair scheduler. By "fair" we mean that no 
particular transaction will be delayed indefinitely. First-in 
first-out is the simplest fair scheduler and we adopt such a 
scheduler for this discussion modulo deadlock preemption decisions. 

The group of mutually compatible requests for a resource appearing 
at the head of the queue is called the ~ranted ~ro_u~. all these 
requests can be granted concurrently, assuming that each 
transaction has at most one request in the queue then the 
compatibility of two requests by different transactions depends only 
on the modes of the requests and may be computed using Table I. 
Associated with the granted group is a Wro_u~ mode which is the 
supremum mode of the members of the group which is computed using 
Figure 2 or Table 3. Table 2 gives a list of the possible types of 
requests that can coexist in a group and the corresponding mode of 
the group. 

Table 2. Possible request groups and their group mode. 
Set brackets indicate that several such requests may be present. 

[ MODES OF 
L____RE.Q_B_E_S,T S 
I X 
I szx, {zs} 
I s, {s}, [Is} 
I IX, ~{IX], [IS} 
I . . . .  I S - [ I _ S }  . . . .  

MODE OF 
GR 0 UP 

X 
SIX 
S 
IX 
IS 

Figure 5 depicts the queue for a particular resource, showing the 
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requests and their modes. The granted group consists of five 
requests and has group mode IX. The next request in the queue is 
for S mode which is incompatible with the group mode IX and hence 
must wait. 

* GRANTED GROUP: GROUP~ODE = IX * 
t is i--i ix i--i ZSl--i ZSl--i ZSl--,- i s [- i is [- ix i- iZSl- fix i 

Figure 5. The queue of requests for a resource. 

When a new request for a resource arrives, the scheduler appends it 
to the end of the queue. There are two cases to consider: either 
someone is already waiting or all outstanding requests for this 
resource are granted (i.e. no one is waiting). If no one is waiting 
and the new request is compatible with the granted group mode then 
the new request can be granted immediately. Otherwise the new 
request must wait its turn in the queue and in the case of deadlock 
it may preempt some incompatible requests in the queue. 
(Alternatively the new request could be canceled. In Figure 5 all 
the requests decided to wait.) When a particular request leaves the 
granted group the group mode of the group may change. If the mode 
of the first waiting request in the queue is compatible with the new 
mode of the granted group, then the waiting request is granted. In 
Figure 5, if the IX request leaves the group, then the group mode 
becomes IS which is compatible with S and so the S may be granted. 
The new group mode will be S and since this is compatible with IS 
mode the IS request following the S request may also join the 
granted group. This produces the situation depicted in Figure 6: 

GRANTED GROUP GROUPMODE = S * 
• I IS  I - - I I S I - -  I I S l - - I  Z S l - - I  S l - ,  I Z S l - - * -  I X l -  I IS  I -  I I X  I 

Figure 6. The queue after the IX request is released. 

The X request of Figure 6 will not be granted until all the requests 
leave the granted group since it is not compatible with any mode. 

conversions: 

A transaction might re-request the same resource for seve ~-al 
reasons: Perhaps it has forgotten that it already has access to the 
record: after all, if it is setting many locks it may be simpler to 
just always request access to the record rather than first asking 
itself "have I seen this record before". The lock subsystem has all 
the information to answer this question and it seems wasteful to 
duplicate. Alternatively, the transaction may know it has access to 
the record, but want to increase its access mode (for example from S 
to X mod ~- if it is in a read, test, and sometimes update scan of a 
file). So the lock subsystem must be prepared for re-requests by a 
transaction for a lock. We call such re-requests conversions. 

When a request is found to be a conversion, the old (granted) mode 
of the reguestor to the resource and the newly requested mode are 
compared using Table 3 to compute the new mode which is the supremum 
of the old and the requested mode (ref. Figure 2). 
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Table 3. The new mode given the requested and old mode. 

I NEW 8ODE 
I .... I IS IX S SiX X 
I IS I IS IX S SIX X 
I IX I IX IX SIX SIX X 
I S I S SIX S SIX X 
I SIX I SIX SIX SIX SIX X 
l__X___i X X X X X 

So for example, if one has IX mode and requests S mode then the new 
mode is SIX. 

If the new mode is equal to the old mode (note it is never less than 
the old mode) then the request can be granted immediately and the 
granted mode is unchanged. If the new mode is compatible with the 
group mode of the other members of the granted group (a requestor is 
~lways compatible with himself) then again the request can be 
granted immediately. The granted mode is the new mode and the group 
mode is recomputed using Table 2. In all other cases, the 
requested conversion must wait until the group mode of the other 
granted requests is compatible with the new mode. Note that this 
immediate granting of conversions over waiting requests is a minor 
violation of fair scheduling. 

If two conversions are waiting, each of which is incompatible with 
an already granted request of the other transactioa, then a deadlock 
exists and the already granted access of one must be preempted. 
3therwise there is a way of scheduling the waiting conversions: 
namely, grant a conversion when it is compatible with all other 
granted modes in the granted group. (Since there is no deadlock 
cycle this is always possible.) 

The following example may help to clarify these points. Suppose the 
queue for a particular resource is: 

GROUPMODE = is * 
IISI---IIS I 

Figure 7. A simple queue. 

Now suppose the first transaction wants to convert to X mode. It 
must wait for the second (already granted) request to leave the 
queue. If it decides to wait then the sitaation becomes: 

GROUPMODE = IS 
IIS<-XI---IISI- 

Figure 8. ~ conversion to X mode waits. 

NO new request may enter the granted group since there is now a 
conversion request waiting. In general, conversions are scheduled 
before new requests. If the second transaction now converts to IX, 
SIX, or S mode it may be granted immediately since this does not 
conflict with the ~_ranted (IS) mode of the first transaction. When 
the second transaction eventually leaves the queue, the first 
conversion can be made: 
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GROUPMODE = IS 
IIXl ..................................... 

Figure 9. One transaction leaves and the conversion is granted. 

However, if the second transaction tries to convert to exclusive 
mode one obtains the queue: 

GROUPZODE = IS 
IIS<-XI-~-WIS<-XI 

Figure 10. Two conflicting conversions are waiting. 

Since X is incompatible with IS (see Table I), this situation 
implies that each transaction is waiting for the other to leave the 
queue (i.e. deadlock) and so one transaction mu~ be preempted. In 
all other cases (i.e. when no cycle exists) there is a way to 
schedule the conversions so that no already granted access is 
violated. 

Deadlock and lock thrashinq: 

Whenever a transaction waits for a request to be granted, it runs 
the risk of waiting forever in a deadlock cycle. For the purposes 
of deadlock detection it is important to know who is waiting for 
whom. The request queues give this information. Consider any 
waiting request R by transaction T. There are two cases: If R is a 
conversion, r is WAITING_FOR all transactions granted incompatible 
requests to the queue. If R is not a conversion, r is WAITING FOR 
all transactions ahead of it in the queue granted or waiting for 
incompatible requests. Given this WAITING_FOR relation computed for 
all waiting transactions, there is no deadlock if and only if 
WAITING_FOR is acyclic. 

The WAITING FOR relation may change whenever a request or release 
occurs and when a conversion is granted. If a transaction may wait 
for at most one request at a time, then the deadlock state can only 
change when some process decides to wait. In this special case 
(synchronous calls to lock system) , only waits require recomputation 
of the WAITING_FOR relation. If deadlock is improbable, deadlock 
testing can be done periodically rather than on each wait, further 
reducing computational overhead. 

One new request may form many cycles and each such cycle must be 
broken. When a cycle is detected, to break the cycle some granted 
or waiting request must be preempted. The lock scheduler should 
choose a minimal cost set of victims to preempt, so that all cycles 
are broken, undo all the changes to the data base made by the 
victims since the preempted resources were granted, and then preempt 
the resource and signal the victims that they have been backed up. 

The issues discussed so far--lock scheduling, detecting and breaking 
deadlocks--are low level scheduling decisions. They must be 
connected with a high level transaction scheduler which regulates 
the load on the system and regulates the entry and progress of 
transactions to prevent long waits, high probability o~ waiting 



Granularity o flocks and degrees o f  consistency 379 

(lock thrashing), and deadlock. By analogy, a page management 
system with only a low level page frame scheduler, which allocates 
and preempts page frames in a fairly naive way, is likely to produce 
page thrashing unless it is coupled with a working set scheduler 
which regulates the number and character of processes competing for 
page frames. 

II. DEGREES OF CONSISTENCY: 

We now focus on how locks can be used to construct transactions out 
of atomic actions. The data base consists of entities which are 
related in certain ways. These relationships are best thought of as 
assertions about the data. Examples of such assertions are: 
'Names is an index for Telephonenumbers.' 
'The value of Count of x gives the number of employees in 

department x.' 

The data base is said to be consistent if it satisfies all its 
assertions [I]. In some cases, the data base must become 
temporarily inconsistent in order to transform it to a new 
consistent state. For example, adding a new employee involves 
several atomic actions and the updating of several fields. The data 
base may be inconsistent until all these updates have been 
completed. 

To cope with these temporary inconsistencies, sequences of atomic 
actions are grouped to form transactions. Transactions are the 
units of consistency. They are larger atomic actions on the data 
base which transform it from one consistent state to a new 
consistent state. Transactions preserve consistency. If some 
action of a transaction fails then the entire transaction is 
'undone' thereby returning the data base to a consistent state. 
Thus transactions are also the units of recovery. Hardware failure, 
system error, deadlock, protection violations and program error are 
each a source of such failure. 

If transactions are run one a% a time then each transaction will see 
the consistent state left behind by its predecessor. But if several 
transactions are scheduled concurrently then locking is required to 
insure that the inputs to each transaction are consistent. 

Responsibility for requesting and releasing locks can either be 
assumed by the user or be delegated to the system. User controlled 
locking results in potentially fewer locks due to the user's 
knowledge of the semantics of the data. On the other hand, user 
controlled locking requires difficult and potentially unreliable 
application programming. Hence the approach taken by some data base 
systems is to use automatic lock protocols which insure protection 
from general types of inconsistency, while still relying on the user 
to protect himself against other sources of inconsistencies. For 
example, a system may automatically lock updated records but not 
records which are read. Such a system prevents lost updates arising 
from transaction backup. Still, the user should explicitly lock 
records in a read-update Sequence to insure that the read value does 
not change before the actual update. In other words, a user is 
guaranteed a limited automatic desree of consistency. This degree 
of consistency may be system wide or the system may provide options 
to select it (for instance a lock protocol may be associated with a 
transaction or with an entity). 
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we now present several e~uivalent definitions of four consistency 
degrees. The first definition is an operational and intuitive one 
useful in describing the system behavior to users. The second 
definition is a procedural one in terms of lock protocols, it is 
useful in explaining the system implementation. The third 
definition is in terms of a trace of the system actions, it is 
useful in formally stating and proving properties of the various 
consistency degrees. 

Informal definition of consistenci: ~ 

An output (write) of a transaction is committed when the transaction 
abdicates the right to 'undo' the write thereby making the new value 
available to all other transactions. Outputs are said to be 
uncommitted or dirty if they are not yet committed by the writer. 
Concurrent execution raises the problem that reading or writing 
other transactions' dirty data mayyield inconsistent data. 

Using this notion of dirty data, the degrees of consistency may be 
defined as: 

Definition 1: 

Degree 3: Transaction T sees deqree 3 consistency if: 
(a) T does not overwrite dirty data of other transactions. 
(b) T does not commit any writes until it completes all its writes 

(i.e. until the end of transaction (EOT)). 
(z) T does not read dirty data from other transactions. 
(d) Other transactions do not dirty any data read by T before T 

completes. 

Degree 2: Transaction T sees deqree 2 consisten~x if: 
(a) T does not overwrite dirty data of other transactions. 
(b) T does not commit any writes before EOT. 
(c) T does not read dirty data of other transactions. 

Degree I: Transaction T sees deqree I consistency if: 
(a) T does not overwrite dirty data of other transactions. 
(b) T does not commit any writes before EOT. 

Degree 0: Transaction T sees deqree 0 consistency if: 
(a) T does not overwrite dirty data of other transactions. 

Note that if a transaction sees a high degree of consistency then it 
also sees all the lower degrees. 

Degree 0 consistent transactions commit writes before the end of 
transaction. Hence backing up a degree 0 consistent transaction may 
require undoing an update to an entity locked by another 
transaction. In this sense, degree 0 transactions are 
unrecoverable. 

Degree 1 transactions do not committ writes until the end of the 
transaction. Hence one may undo (back up) an in-progress degree I 
transaction without setting additional locks. This means that 
transaction backup does not erase other transactions' updates. This 
is the principal reason one data management system automatically 
provides degree I consistency to all transactions. 

Degree 2 consistency isolates a transaction from the uncommitted 



Granulari~ of locks and degrees of consistency 381 

data of other transactions. With degree I consistency a transaction 
might read uncommitted values which are subsequently updated or are 
undone. In degree 2 no dirty data values are read. 

Degree 3 consistency isolates the transaction from dirty 
relationships among values. Reads are r_~eatable. For example, a 
degree 2 consistent transaction may read two different (committed) 
values if it reads the same entity twice. This is because a 
transaction which updates the entity could begin, update and end in 
the interval of time between the two reads. More elaborate kinds of 
anomalies due to concurrency are possible if one updates an entity 
after reading it or if more than one entity is involved (see example 
below). Degree 3 consistency completely isolates the transaction 
from inconsistencies due to concurrency [ I]. 

Each transaction can elect the degree of consistency appropriate to 
its function. When the third definition is given we will be able to 
state the consistency and recovery properties of such a system more 
formally. 
Briefly: 

If one elects degree i consistency then one sees a degree i 
consistent state (so long as all other transactions run at 
least degree 0 consistent) 

If all transactions run at least degree I consistent, system 
backup (undoing all in-progress transactions) loses no updates 
of completed transactions. 

If all transactions run at least degree 2 consistent, 
transaction backup (undoing any in-progress transaction) 
produces a consistent state. 

To give an example which demonstrates the application of these 
several degrees of consistency, imagine a process control system in 
which some transaction is dedicated to reading a gauge and 
periodically writing batches of values into a list. Each gauge 
reading is an individual entity. For performance reasons, this 
transaction sees degree 0 consistency, committing all gauge readings 
as soon as they enter the data base. This transaction is not 
recoverable (can't be undone). A second transaction is run 
periodically which reads all the recent gauge readings, computes a 
mean and variance and writes these computed values as entities in 
the data base. Since we want these two values to be consistent with 
one another, they must be committed together (i.e. one cannot commit 
the first before the second is written). This allows transaction 
undo in the case that it aborts after writing only one of the two 
values. Hence this statistical summary transaction should see 
degree I. A third transaction which reads the mean and writes it on 
a display sees degree 2 consistency. It will not read a mean which 
might be 'undone' by a backup. ~nother transaction which reads both 
the mean and the variance must see degree 3 consistency to insure 
that the mean and variance derive from the same computation (i.e. 
th~ same run which wrote the mean also wrote the variance). 

Lock protocol definition of consistenc_z: 

Whether an instantiation of a transaction sees degree o, I, 2 or 3 
consistency depends on the actions of other concurrent 
transactions. Lock protocols are used by a transaction to guarantee 
itself a certain degree of consistency independent of the behavior 
of other transactions (so long as all transactions at least observe 
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the degree 0 protocol). 

The degrees of consistency can be procedurally defiaed by the lock 
protocols which produce them. A transaction locks its inputs to 
guarantee their consistency and locks its outputs to mark them as 
dirty (uncommitted). 

For this section, locks are dichotomized as share mode locks which 
allow multiple readers of the same entity and exclusive mode locks 
which reserve exclusive access to an entity. (This is the "two 
mode" lock protocol. Its generalization to the "six mode" protocol 
of the previous section should be obvious.) Locks may also be 
characterized by their duration: locks held for the duration of a 
single action are called short duration locks while locks held to 
the end of the transaction are called lonq duration locks. Short 
duration locks are used to mark or test for dirty data for the 
duration of an action rather than for the duration of the 
transaction. 

The lock protocols are: 

Definition 2: 

Degree 3: transaction T observes de~ree 3 lock protocol if: 
(a) T sets a long exclusive lock on any data it dirties. 
(b) T sets a long share lock on any data it reads. 

Degree 2: transaction T observes de~ree 2 lock ~rotocol if: 
(a) T sets a long exclusive lock on any data it dirties. 
(b) T sets a (possibly short) share lock on any data it reads. 

Degree I: transaction T observes de__gree I lock P[~E~! if: 
(a) T sets a long exclusive lock on any data it dirties. 

Degree 3: transaction T observes degree 0 lock protocol if: 
(a) T sets a (possibly short) exclusive lock on any data 

dirties. 
it 

The lock protocol definitions can be stated more tersely with the 
introduction of the following notation. A transaction is ~! 
formed with respect to writes ([ead____ss) if it always locks an entity 
in exclusive (shared or exclusive) mode before writing (reading) 
it. The transaction is well formed if it is well formed with 
respect to reads and writes. 

A transaction is _two phase (with r_e_spect to reads or _updates) if it 
does not (share or exclusive) lock an entity after unlocking some 
entity. A two phase transaction has a growing phase during which it 
acquires locks and a shrinking phase during which it releases 
locks. 

Definition 2 is too restrictive in the sense that consistency will 
not require that a transaction hold all locks to the EOT (i.e. the 
EOT is the shrinking phase) . Rather, the constraint that the 
transaction be two phase is adequate to insure consistency. On the 
other hand, once a transaction unlocks an updated entity, it has 
committed that entity and so cannot be undone without cascading 
backup to any transactions which may have subsequently read the 
entity. For that reason, the shrinking phase is usually deferred to 
the end of the transaction; thus, the transaction is always 
recoverable and all updates are committed together. The lock 
protocols can be redefined as: 
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Definition 3!: 

Degree 3: T is well formed 
and T is two phase. 

Degree 2: T is well formed 
and T is two phase with respect to writes. 

Degree 1: T is well formed with respect to writes 
and T is two phase with respect to writes. 

Degree 0: T is well formed with respect to writes. 

All transactions are re~ired to observe the degree 
protocol so that they do not update the uncommitted 
others. Degrees I, 2 and 3 provide increasing 
consistency. 

0 locking 
updates of 

syst es-guarant eed 

Consisten~ of schedules: 

The definition of what it means for a transaction to see a degree of 
consistency was given in terms of dirty data. In order to make the 
notion of dirty data explicit it is necessary to consider the 
execution of a transaction in the context of a set of concurrently 
executing transactions. To do this we introduce the notion of a 
schedule for a set of transactions. A schedule can be thought of as 
a history or audit trail of the actions performed by the set of 
transactions. Given a schedule the notion of a particular entity 
being dirtied by a particular transaction is made explicit and hence 
the notion of seeing a certain degree of consistency is formalized. 
These notions may then be Used to connect the various definitions of 
consistency and show their equivalence. 

The system directly supports entities and actions. Actions are 
categorized as beq!n actions, en_dd actions, share lock actions, 
exclusive lock actions, unlock actions, read actions, and write 
actions. An end action is presumed to unlock any locks held by the 
transaction but not explicitly unlocked by the transaction. For the 
purposes of the following definitions, share lock actions and their 
corresponding unlock actions are additionally considered to be read 
actions and exclusive lock actions and their corresponding unlock 
actions are additionally considered to be write actions. 

A transaction is any sequence of actions beginning with a begin 
action and ending with an end action and not containing other begin 
or end actions. 

Any (sequence preserving) merging of the actions of a set of 
transactions into a single sequence is called a schedule for the set 
of transactions. 

A schedule is a history of the order in which actions were executed 
(it does not record actions which were undone due to backup). The 
simplest schedules run all actions of one transaction and then all 
actions of another transaction,... Such one-transaction-at-a-time 
schedules are called serial because they have no concurrency among 
transactions. Clearly, a serial schedule has no concurrency induced 
inconsistency and no transaction sees dirty data. 

Locking constrains the set of allowed schedules. In particular, a 
schedule is le_~a!l only if it does not schedule a lock action on an 
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entity for one transaction when that entity is already locked by 
some other transaction in a conflicting mode. 

An initial state and a schedule completely define the system's 
behavior. At each step of the schedule one can deduce which entity 
values have been committed and which are dirty: it locking is used, 
updated data is dirty until it is unlocked. 

Since a schedule makes the definition of d~rty data explicit, one 
can apply Definition 1 to define consistent schedules: 

Definition 3: 

A transaction runs at ~E~9 ~ (!, 2 or 3) c___onsistency in schedule S 
if T sees degree 0 (I, 2 or 3) consistency in S. (Conversely, 
transaction T sees degree i consistency if all legal schedules run T 
at degree i consistency.) 

If all transactions run at degree 0 (1,2 or 3) consistency in 
schedule S then S is said to be a _de_qree ~ (I, 2 or 3) consistent 
schedule. 

Given these definitions one can show: 

Assertion I: 

(a) If each transaction 

(b) 

observes the degree 0 (1, 2 or 3) lock 
protocol (Definition 2) then any legal schedule is degree 0 (1, 
2 or 3) consistent (Definition 3) (i.e, each t ransactlon sees 
degree 0 (1, 2 or 3) consistency in the sense of Definition 
1). 
Unless transaction T observes the degree I (2 or 3) lock 
protocol then it is possible to define another transaction T' 
which does observe the degree I (2 or 3) lock protocol such 
that T and T' have a legal schedule S but T does not run at 
degree 1 (2 or 3) consistency in S. 

In [ 1] we proved Assertion I for degree 3 consistency. That 
argument generalizes directly to this result. 

Assertion 1 says that if a transaction observes the lock protocol 
definition of consistency (Definition 2) then it is assured of the 
informal d=_finition of consistency based on committed and dirty ,data 
(Definition 1). Unless a transaction actually sets the locks 
prescribed by degree 1 (2 or 3) consistency one can construct 
transaction mixes and schedules which will cause the transaction te 
run at (see) a lower degree of consistency. However, in particular 
cases such transaction mixes may never occur due to the structure or 
use of the system. In these cases an apparently low degree of 
locking may actually provide degree 3 consistency. For example, a 
data base reorganization usually need do no locklng since it is run 
as an off-line utility which is never run concurrently with other 
transactions. 

Assertion 2: 

If each transaction in a set of transactions at least observes the 
degree 0 lock protocol and if transaction T observes the degree I (2 
or 3) lock protocol then T runs at degree 1 (2 or 3) consistency 
(Definitions 1, 3) in any legal schedule for the set of 
transactions. 
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Assertion 2 says that each transaction can choose its degree of 
consistency so long as all transactions observe at least aegree 0 
protocols. Of course the outputs of degree 0, I or 2 consistent 
transactions may be degree 0, I or 2 consistent (i.e. inconsistent) 
because they were computed with potentially inconsistent inputs. 
3ne can imagine that each data entity is tagged with the degree of 
consistency of its writer: Degree 0 entities are purple, degree I 
entities are red, degree 2 entities are yellow and degree 3 entlties 
are green. The color of the outputs of a transaction is the minimum 
of the transaction's color and the colors of the entities it reads 
(because they are potentially inconsistent). Gradually the system 
will turn purple or red unless everyone runs with a high degree of 
consistency. If the transaction 's author knows something about the 
systems structure which allows an apparently degree 1 consistent 
protocol to produce degree 3 consistent results then this color 
coding is pessimistic. But, in general a transaction must beware of 
reading entities tagged with degrees lower than the degree of the 
transaction. 

DeRendencies amonq transactions: 

9ne transaction is said to depeP_~d on another if the first takes some 
of its inputs from the second. Thenotion of dependency is defined 
differently for each degree of consistency. These dependency 
relations are completely defined by a schedule and can be useful in 
~iscussing consistency and recovery. 

Each schedule defines three relations: <, << and <<< on the set of 
transactions as follows. Suppose that transaction T performs action 
a on entity e at some step in the schedule and that transaction T' 
performs action a' on entity e at a later step in the schedule. 
Further suppose that T does not equal T'. Then: 

T <<< T' if a is a write action and a' is a write action 
or a is a write action and a' is a read action 
or a is a read action and a' is a write action 

T << T' if a is a write action and a' is a write action 
or a is a write action and a' is a read action 

T < T' if a is a write action and a' is a write action 

So degree I does not care about read dependencies at all. Degree 2 
cares only about one kind of read dependency. And degree 3 ignores 
only read-read dependencies (reads commute). The following table is 

notationally convenient way of seeing these definitions: 

<<< : W->W I W->R I R->W 

<< : W->W "I W ->R 

< : W ->W 

meaning that (for example)T <<< T' if T writes (W) something later 
read (R) by T' or written (W) by T' or T reads (R) something later 
written (W) by T'. 

Let <~ be the transitive closure of <, then define: 
BEFOBEI (T) = {T'I T' <~ T} 
AFTERI (T} = {T' I T <~ T']. 

The sets BEFORE2, AFTER2, BEFOPF3 and AFTER3 are defined analogously 
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from << and <<<. 

The obvious interpretation for this is that each BEFORE set is the 
set of transactions which contribute inputs to T and each AFTER set 
is the set of transactions which take their inputs from T (where the 
ordering only considers d=_pendencies induced by the corresponding 
consistency degree). 

If some transaction is both before T and after T in some schedule 
then no serial schedule could give such results. In this case 
concurrency has introduced inconsistency. On the other hand, if all 
relevant transactions are either before or after T (but not both) 
then T will see a consistent state (of the corresponding degree). 
If all transactions dichotomize others in this way then the relation 
<e (<<~ or <<<e) will be a partial order and the whole schedule will 
give degree I (2 or 3) consistency. This can be strengthened to: 

Assertion 3: 

A schedule is degree I (2 or 3) consistent if and only if 
the relation <~ (<<e or <<<~) is a partial order. 

The <, << and <<< relations are variants of the dependency sets 
introduced in [1]. In that paper only degree 3 consistency is 
introduced and Assertion 3 was proved for that case. In particular 
such a schedule is equivalent to the serial schedule obtained by 
running the transactions one at a time in <<< order. The proofs of 
[ I ] generalize fairly easily to handle assertion 1 in the case of 
degree I or 2 consistency. 

Consider the following example: 
T1 LOCK A 
TI READ A 
T I UNLOCK A 
T2 LOCK A 
T2 WRITE A 

T2 LOCK B 
T2 WRITE B 
T2 UNLOCK R 
T2 UNLOCK B 
TI LOCK B 
T1 WHITE B 

T1 UNLOCK B 

In this schedule T2 gives B to TI and T2 updates A after TI reads A 
so T2<TI, T2<<T1, T2<<<T1 and TI<<<T2. The schedule is degree 2 
consistent but not degree 3 consistent. It runs TI at degree 2 
consistency and T2 at degree 3 consistency. 

It would be nice to define a transaction to see degree I (2 or 3) 
consistency if and only if the BEFORE and AFTER sets are disjoint in 
some schedule. However, this is not restrictive enough; rather one 
must require that the before and after sets be disjoint in all 
schedules in order to state Definition 1 in terms of dependencies. 
Further, there seems to be no natural way to define the dependencies 
of degree 0 consistency. Hence the principal application of the 
dependency definition is as a proof technique and for discussing 
schedules and recovery issues. 

! 
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RelationshiR t_~o transaction backu E ~nd ~ recover~: 

A transaction T is said to be recoverable if it can be undone before 
'EOT' without undoing other transactions' updates. A transaction T 
is said to be repeatable if it will reproduc~ the original output if 
rerun following recovery, assuming that no locks were released in 
the backup process. Recoverability requires system wide degree 1 
consistency, repeatibility requires that all other transactions be 
~t least degree I and that the repeatable transaction be degree 3. 

The no___rmal (i.e. trouble free) operation of a data base system can 
be described in terms of an initial consistent state $0 and a 
schedule of transactions mapping the data base into a final 
consistent state S3 (see Figure 11). S1 is a checkpoint state, 
since transactions are in progress, $1 may be inconsistent. A 
system crash leaves the data base in state $2. Since transactions 
T3 and T5 were in progress at the time of crash, S2 is potentially 
inconsistent. System recovery amounts to bringing the data base in 
a new consistent state in one of the following ways: 

(a) Starting from state S2, undo all actions of transactions 
in-progress at the time of the crash. 

(by Starting from state S I first undo all actions of transactions in 
progress at the time of the crash (i.e. actions of T3 and T~ 
before SI) and then redo all actions of transactions which 
completed before the crash (i.e. actions of T2 and T3 after 
Sl) . 

(c) starting at S0 redo all transactions which completed before the 
crash. 

observe that (a) and (c) are degenerate cases of (b). 

I TII ............. I I > I 
I T21 ....... :" .... I--- I < I 
I T31 ............ I ........... > .... I I 

I I T~ I--- I < I 
I I T51 ..... > ..... I I 
S0 S I $2 S3 

Figure 11. System states, SO is initial state, S1 is checkpoint 
state, S2 is a crash and S3 is the state that results in the absence 
of a crash. 

Unless all transactions run at least degree 1 consistency, system 
recovery may lose updates. If for example, T3 writes a record, r, 
and then T~ further updates r then undoing T3 will cause the update 
of T~ to r to be lost. This situation can only arise if some 
transaction does not hold its write locks to EOT. 

(a) If all the transactions run in at least degree 1 consistency 
then system recovery loses no updates of complete 
transactions. However there may be no schedule which would 
give the sa~e result because transactions may have read outputs 
of undone transactions. 
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(b) If all the transactions run in at least degree 2 then the 
recovered state is consistent and derives from the schedule 
obtatined from the original system schedule by deleting 
incomplete transactions. Note that degree 2 prevents read 
dependencies on transactions which might be undone by system 
recovery, of all the Completed transactions results in a 
meaningful schedule. 

(c) If a transaction 
reproducible. 

is degree 3 consi stent then it is 

Transaction crash gives rise to transaction backu~ which has 
properties analogous to system recovery. 

Cost of deqrees of consistencL: 

The only advantage of lower degrees of consistency is performance. 
If less is locked then less computation and storage is consumed. 
Further if less is locked, concurrency is increased since fewer 
conflicts appear. (Note that the granularity lock scheme of the 
first section was motivated by minimizing the number of explicit 
locks set.) 

We will make some vet Z crude estimates of the storage and 
computation resources consumed by the locking protocols as a 
function of the consistency degree. For the remainder of this 
section assume that all transactions are identical. Also assume 
that they do R reads and W writes (and hence set approximately R 
share mode locks and W exclusive mode locks}. Further we assume 
that all the transactions run at the same consistency degree. 

Each outstanding lock request consumes a queue element. The maximum 
per-transaction space for these queue elements as a function of 
consistency degrees is: 

Table 4. Consistency degrees vs storage consumption. 

I I 
CONSISTENCY DEGREE I STORAGE (in queue elements) J 

I I 
I I 

0 I 1 I 
I I ~ . I  
2 I W+1 I 
3 I W.,-l~ I 

I I 

Observe that degrees I and 2 consume roughly the same amount of 
storage but that degree 3 consumes substantially more storage. This 
observation is aggravated by the fact that reads are typically ten 
times more common than writes. 

The estimation of computation (CPU) overhead is much more subtle. 
We make only a crude estimate here. First one may consider the 
overhead in requesting and releasing locks. This is shown in TaDle 
5 as a function of consistency degrees. 
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TABLE 5. Computational overhead vs degrees of consistency. 

CONSISTENCY DEGREE CPU (in calls to lock sys) 

W 
W 

W+R 
W+R 

Table 5 indicates that the computational overhead of degrees 2 and 3 
are comparable and are greater than the overhead of degrees 0 or 1. 
These pairs of degrees set the same locks, they just hold them for 
different durations. 

Table 5 ignores the observation that some lock requests are 
trivially satisfied (the request is granted immediately) while 
others require a task switch and hence are quite expensive. The 
probability that a read lock will have to wait is proportional to 
the number of conflicting locks [write) currently granted. The 
probability that a write lock will have to wait is proportional to 
the number of conflicting (read or write) locks that are currently 
granted. Table 4 gives a guess of the maximum number of ic~ks of 
each type held by each transaction. If there are 2~N+I transactions 
one can multiply the entries of Table 4 by N to get an average 
number of locks held by all Others. If a wait lock request is C÷I 
times as expensive as an immediately granted request and if P is the 
probability that two different requests are for the same resource 
then the relative computational costs are roughly computed: 

degree 0 overhead: W 
p~C~N~W 

cost of setting locks 
cost of waits 

degree I overhead: w 
p~C~N*W*W 

cost of writes 
cost of waits 

degree 2 overhead: W+R 
P~C~N~W= (W+I) 
P~C~N*R~W 

cost of setting locks 
cost of write waits 
cost of read waits 

degree 3 overhead: W+R 

p*C~N~R~W 

cost of setting locks 
cost of waiting for writes 
cost of waiting for reads 

TABLE 6. Computational overhead vs degrees of consistency. 

CONSISTENCY DEGREE CPU (in calls to lock sys) 

I 

W+P~C~N*N~ (I) 

W+R÷P~C~N ~W • (W+2~R) 

To consider a specific example, a simple banking transaction does 
five reads (R=5) and six (W=6) writes. A transaction accesses a 
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random account and there are millions of accounts so the probability 
of collision, P, is roughly .000001. Suppose there are one hundred 
transactions per second. A lock takes one hundred instructions and 
a wait requires five thousand instructions; hence, C=50. So the 
term P*C~N~W evaluates to 0.015. This implies that Table 5 gave a 
good estimate of the CPU overhead because the last term in Table 6 
is miniscule compared to the term W+R. Of course this analysis is 
very sensitive to P and one must design the data base so that P 
takes on a very small value. 

The striking thing about these estimates is that degree 2 and degree 
3 seem to have similar computational overhead which seems to be 
substantially larger than the overhead of degree 0 or I 
consistency. We suspect that this conclusion would survive a more 
careful study of the problem. 
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ISSUE l DEGREE 0 ] DEGREE I ] DEGREE 2 I DEGREE 3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

COMMITTED 
DATA 

DIRTY 
DATA 

LOCK 
PROTOCOL 

TRANSACTION 
STRUCTURE 

WRITES ARE 
COMMITTED 
IMMEDIATELY 

YOU DONIT 
UPDATE DIRTY 
DATA 

WRITES ARE 
COM M ITTED 
AT EOT 

0 AND NO ONE 
ELSE UPDATES 
YOUR DIRTY 
DATA 

SAME AS 1 

0, I AND YOU 
DON'T READ 
DIRTY DATA 

SET SHORT 
EXCL. LOCKS 
ON ANY DAT A 
YOU WRITE 

WELL FORMED 
WRT WRITES 

SAME AS 1 

0,1 ,2 AND 
NO ONE ELSE 
DIRTIES DATA 
YOU READ 

SET LONG 
EXCL. LOCKS 
ON ANY DATA 
YOU WRITE 

(WELL FORMED 

AND 2 PHASE) 
WRT WRITES 

I AND SET SHORT 
SHARE LOCKS 
ON ANY DATA 
YOU READ 

WELL FORMED 

(AND 2 PHASE 
WRT WRITES) 

CONCURRENCY GREATEST : GREAT: MEDIUM: 
ONLY WAIT ONLY WAIT ALSO WAIT FOR 
FOR SHORT FOR WRITE READ LOCKS 
WRITE LOCKS LOCKS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OVERHEAD LEAST: SMALL: MEDIUM: 
ONLY SET ONLY SET SET BOTH KINDS 
SHORT WRITE WRITE LOCKS OF LOCKS BUT 
LOCKS NEED NOT STORE 

SHORT LOCKS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

TRANSACT- CAN NOT UNDO 
ION BACKUP WITHOUT 

CASCADING TO 
OT HE RS 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

PROTECTION 
PROVIDED 

LETS OTHERS 
RUN HIGHER 
CONSISTENC Y 

APPLY LOG 
IN ORDER OF 
ARRIVAL 

SYSTEM 
RECOVERY 

TECHNIQUE 

UN-DO ALL 
INCOMPLETE 
TRANSACTIONS 
IN ANY ORDER 

0 AND CAN'T 
LOSE WRITES 

UN-DO ANY 
INCO~PLE~ 
TRANSACTIONS 
IN ANY ORDER 

0,1 AND CAN'T 
READ BAD DATA 
ITEMS 

APPLY LOG SAME AS I: BUT 
IN < ORDER RESULT IS SAME 

AS SOME SCHEDULE 

W- >W W- >W 
W->R 

DEPENDENCIES NONE 

ORDERING NONE < IS AN << IS AN 
ORDERING OF ORDERING OF 
THE TRANS- THE TRANS- 
ACTIONS ACTIONS 

I AND SET LONG 
SHARE LOCKS 
ON ANY DATA 
YOU READ 

WELL FORMED 
AND TWO PHASE 

LOWEST: 
ANY DATA 
TOUCHED IS 
LOCKED TO ROT 

HIGHEST : 
SET AND STORE 
BOTH KINDS OF 
LOC KS 

SAME AS 2 

0, 1,2 AND CAN' T 
READ BAD DATA 
RELATIONSHIPS 

2 AND SCHEDULE 
IS S ER IAL 

W->W 
W->R 
R->W 

<<< IS AN 
ORDERING OF 
THE TRANS- 
ACT IONS 

............................. £ ............................................. 

Table 7. Summary of consistency degrees. 
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II!. LOCK GRANULARITY AND DEGREES OF CONSISTENCY IN EXISTING 
SYSTEMS: 

IMS/VS with the program isolation feature [2 ] has a two level lock 
hierarchy: segment types (sets of records), and segment instances 
(records) within a segment type. Segment types may be locked in 
EXCLUSIVE (E) mode (which corresponds to our exclusive (x) mode) or 
in EXPRESS READ (R) , RETRIEVE (G) , or UPDATE (U) (each of which 
correspond to our notion of intention (I) mode) [ 2, pages 
3.18-3.27 ]. Segment instances can be locked in share or exclusive 
mode. Segment type locks are requested at transaction initiation, 
usually in intention mode. Segment instance locks are dynamically 
set as the transaction proceeds. In addition IMS/~S has user 
controlled share locks on segment instances (the =Q option) which 
allow other read requests but not other ~Q or exclusive requests. 
IMS/VS has no notion of S or SIX locks on segment types (which would 
allow a scan of all members of a segment type concurrent with other 
readers but without the overhead of locking each segment instance). 
Since IMS/VS does not support S mode on segment types one need not 
distinguish the two intention modes IS and IX (see the section 
introducing IS and IX modes). In general, IMS/VS has a notion of 
intention mode and does implicit locking but does not recognize all 
the modes described here. It uses a static two level lock tree. 

IMS/VS with the program isolation feature basically provides degree 
2 consistency. However degree 1 consistency can be obtained on a 
segment type basis in a PCB (view) by specifying the EXPRESS READ 
option for that segment. Similarly degree 3 consistency can be 
obtained by specifying the EXCLUSIVE or UPDATE options. IMS/VS also 
has the user controlled share locks discusseH above which a program 
can request on selected segment instances to obtain additional 
consistency over the degree I or 2 consistency provided by the 
system. 

IMS/VS without the program isolation feature (and also the previous 
version of IMS namely IMS/2) doesn't have a lock hierarchy since 
locking is done only on a segment type basis. It provides degree I 
consistency with degree 3 consistency obtainable for a segment type 
in a view by specifying the EXCLUSIVE option. User controlled 
locking is also provided on a limited basis via the HOLD option. 

DMS 1100 has a two level lock hierarchy [ q]: areas and pages within 
areas. Areas may be locked in one of seven modes when they are 
OPENed: EXCLUSIVE RETRIEVAL (which corresponds to our notion of 
exclusive mode), PROTECTED UPDATE (which corresponds to our notion 
of share and intention exclusive mode), PROTECTED RETRIEVAL (which 
we call share mode), UPDATE (which corresponds to our intention 
exclusive mode), and RETRIEVAL (which is our intention share mode). 
Given this transliteration, the compatibility matrix displayed in 
Table 1 is identical to the compatibility matrix of DMS 1100 [3, 
page 3.59]. However, DMS 1100 sets only exclusive locks on pages 
within areas (short term share locks are invisibly set during 
internal pointer following). Further, even if a transaction locks 
an area in exclusive mode, DMS 1100 continues to set exclusive locks 
(and internal share locks) on the pages in the area, despite the 
fact that an exclusive lock on an area precludes reads or updates of 
the area by other transactions. Similar observations apply to the 
DMS 1100 implementation of S and SIX modes. In general, DMS 1100 
recognizes all the modes described here and uses intention modes to 
detect conflicts but does not utilize implicit locking. It uses a 
static two level lock tree. 
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DMS 1100 provides level 2 consistency by setting exclusive locks on 
the modified pages and and a temporary lock on the page 
corresponding to the page which is "current of run unit". The 
temporary lock is released when the "current of run unit" is moved. 
In addition a run-unit can obtain additional locks via an explicit 
K~P command. 

The ideas presented were developed in the process of designing and 
implementing an experimental data base system at the IBM San Jose 
Research Laboratory. (We wish to emphasize that this system is a 
vehicle for research in data base architecture, and does not 
indicate plans for future IBN products.) R subsystem which provides 
the modes of locks herein described, plus the necessary logic to 
schedule requests and conversions, and to detect and resolve 
deadlocks has been implemented as one component of the data 
manager. The lock subsystem is in turn used by the data manager to 
automatically lock the nodes of its lock graph (see Figure 12). 
Users can be unaware of these lock protocols beyond the verbs "begin 
transaction" and "end transaction". 

The data base is broken into several storage areas. Each area 
contains a set of relations (files), their indices, and their 
tuples(records) along with a catalog of the area. Each tuple has a 
unique tuple identifier (data base key) which can be used to quickly 
(directly) address the tuple. Each tuple identifier maps to a set of 
field values. All tuples are stored together in an area-wide heap 
to allow physical clustering of tuples from different relations. 
The unused slots in this heap are represented by an area-wide pool 
of free tuple identifiers (i.e. identifiers not aliocated to any 
relation). Each tuple "belongs" to a unique \relation, and all 
tuples in a relation have the same number and type of fields. One 
may construct an index on any sub~et of the fields of a relation. 
Tuple identifiers give fast direct access to tuples, while indices 
give fast associative access to field values and to their 
corresponding tuples. Each key value in an index is made a lockable 
object in order to solve the problem of "phantoms" [1] without 
locking the entire index. We do not explicitly lock individual 
fields or whole indices so those nodes appear in Figure 12 only for 
pedagogical reasons. Figure 12 gives only the "logical" lock graph; 
there is also a graph for physical page locks and for other low 
level resources. 

Rs can be seen, Figure 12 is not a tree. Heavy use is made of the 
techniques mentioned in the section on locking DAG's. For example, 
one can read via tuple identifier without setting any index locks 
but to lock a field for update its tuple identifier and the old and 
new index key values cowering the updated field must be locked in X 
mode. Further, the tree is not static, since data base keys are 
dynamically allocated to relations: field values dynamically enter, 
move around in, and leave index value intervals when records are 
inserted, updated and deleted; relations and indices are dynamically 
created and destroyed within areas; and areas are dynamically 
allocated. The implementation of such operations observes the lock 
protocol presented in the section on dynamic graphs: when a node 
changes parents, all old and new parents must be held (explicitly or 
implicitly) in intention exclusive mode and the n~de to be moved 
must be held in exclusive mode. 

The described system supports concurrently consistency degrees 1,2 
and 3 which can be specified on a transaction basis. In addition 
share locks on individual tuples can be acquired by the user. 
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DATA BASE 

I 
I 

AREAS 

I 
I 
I 

RELATIONS 
I 
I 

I 
IN DICE S 

I 
I 

INDEX KEY 
INTERVALS 

FREE 
TUPLE 

IDENTIFIERS 

I 
I 

UN-INDEXED 
FIELDS 

I 
I 
I 

I 
I 

ALLOCATED 
TU PL E 

IDENTIFIERS 
I 

I I 
I I 

INDEXED 
FIELDS 

Figure 12. ~ lock graph. 
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