
.

÷

.L

Modelling in Data Base Management Systems. G.M. Ni]ssen, (ed.)
North Holland Publishing Company, 1976

Granularity of Locks and Degrees of Consistency
in a Shared Data Base

J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger

IBM ~esearch Laboratory
San 3ose, California

The problem of choosing the appropriate Hranularit~ (size)
of lockable objects is introduced and the tradeoff between
concurrency and overhead is discusseS. A locking protocol
which allows simultaneous locking at various granularities
by different transactions is presented. It is based on
the introduction of additional lock modes besides the
conventional share mode an5 exclusive mode. A proof is
given of the equivalence of this protocol to a
conventional one.

Next the issue of consistency in a shared environment is
analyze~. This discussion is motivated by the realization
that some existing data base systems use automatic lock
protocols which insure protection only from certain types
of inconsistencies (for instance those arising from
transaction backup), thereby automatically providing a
limited degree of consistency. Four ~ S ~ ~
consistency are introduced. They can be roughly
characterized as follows: degree 0 protects others from
your updates, degree I additionally provides protection
from losing updates, degree 2 additionally provides
protection from reading incorrect data iteas, and degree 3
additionally provides protection from reading incorrect
relationships among data items (i.e. total protection). A
discussion follows on the relationships of the four
degrees to locking protocols, concurrency, overhead,
recovery and transaction structure.

Lastly, these ideas are compared with existingdata
management systems.

I. GRANULARITY OF LOCKS:

An important issue which arises in the design of a data Dase
management system is the choice of lockable unitE, i.e. the data
aggregates which are atomically locked to insure consistency.
Examples of lockable units are areas, files, individual records,
field values, and intervals of field values.

The choice of lockable units presents a tradeoff between concurrency
and overhead, which is related to the size or Kranularit Z of the
units themselves. On.the one hand, concurrency is increased if a
fine lockable unit (for example a record or field) is chosen. Such
unit is appropriate for a "simple" transaction which accesses few
records. On the other hand a fine unit of locking would be costly
for a "complex" transaction which accesses a large number of
records. Such a transaction would have to set and reset a large

365

366 J.N. Gray, R.A. Lorie, G.R. Putzolu and.LL. Traiger

number of locks, incurring the computational overhead of many
invocations of the lock subsystem, and the storage overhead of
representing many locks. A coarse lockable unit (for example a
file) is probably convenient for a transaction which accesses many
records. However, such a coarse unit discriminates against
transactions which only want to lock one member of the file. From
this ~iscussion it follows that it would be desirable to have
lockable units of different granularities coexisting in the same
system.

This paper presents a lock protocol satisfying these requirements
and discusses the related implementation issues of scheduling,
granting and converting lock requests.

Hierarchical locks:

We will first assume that the set of resources to be locked is
organized in a hierarchy. Note that this hierarchy is used in the
context of a collection of resources and has nothing to do with the
data model used in a data base system. The hierarchy of Figure I
may be suggestive. We adopt the notatios that each level of the
hierarchy is given a node type which is a generic name for all the
node instances of that type. For example, the data base has nodes
of type area as its immediate descendants, each area in turn has
nodes of type file as its immediate descendants and each file has
no~es of type record as its immediate descendants in the hierarchy.
Since it is a hierarchy, each node has a unique parent.

DATA BASE

i
l

AREAS

i
I

FILES

l
i

RECORDS

Figure 1. A sample lock hierarchy.

Each node of the hierarchy can be locked. If one requests exclusive
access (X) to a particular node, then when the request is granted,
the requestor has exclusive access to that node and implicitly to
each of its descendants. If one requests shared access (S) to a
particular node, then when the request is granted, the reguestor has
shared access to that node and i_mp_l_icitly to each descendant of that
node. These two access modes lock an entire subtree rooted at the
requested node.

3ur goal is to find some technique for i_m~_l_icitl~ locking an entire
subtree. In order to lock a subtree rooted at node R in share or
exclusive mode it is important to prevent share or exclusive locks
on the ancestors of R which would implicitly lock R and its
descendants. Hence a new access mode, intention mode (I), is
introduced. Intention mode is used to "tag" (lock) all ancestors of
a node to be locked in share or exclusive mode. These tags signal
the fact that locking is being done at a "finer" level and thereby
prevents implicit or explicit exclusive or share locks on the
ancestors.

Gra.ularity o f locks and degrees o f eonsistemy 367

The protocol to lock a subtree rooted at node R in exclusive or
share mode is to first lock all ancestors of R in intention mode and
%hen to lock node R in exclusive or share mode. For example, using
Figure I, to lock a particular file one should obtain intention
~czess to the data base, to the area containing the file and then
request exclusive (or share) access to the file itself. This
implicitly locks all records of the file in exclusive (or share)
mode.

Access modes and compatibility:

we say that two lock requests for the same node by two different
transactions are compatible if they can be granted concurrently.
The mode of the request determines its compatibility with requests
made by other transactions. The three modes X, S and I are
incompatible with one another but distinct S requests may be granted
together and distinct I requests may be granted together.

The compatibilities among modes derive from their semantics. Share
mode allows reading but not modification of the corresponding
resource by the requestor and by other transactions. The semantics
of exclusive mode is that the grantee may read and modify %he
resource but no other trans~ction may read or modify the resource
while the exclusive lock is set. The reason for dichotomizing share
and exclusive access is that several share requests can be granted
concurrently (are compatible) whereas an exclusive request is not
compatible with any other request. Intention mode was introduced to
be incompatible with share and exclusive mode (to prevent share and ~
exclusive locks). However, intention mode is compatible with itself
since two transactions having intention access to a node will
explicitly lock descendants of the node in X, S or I mode and
thereby will either be compatible with one another or will be
scheduled on the basis of their requests at the finer level. For
example, two transactions can simultaneously be granted the data
base and some area and some file in intention mode. In this case
their explicit locks on particular records in the file will resolve
any conflicts among them.

The notion of intention mode is refined to intention share mode (IS)
and intention exclusive mode (IX) for two reasons: the intention
share mode only requests share or intention share locks at the lower
nodes of the tree (i.e. never requests an exclusive lock below the
intention share node), hence IS is compatible with S mode. Since
read only is a common form of access it will be profitable to
distinguish this for greater concurrency. Secondly, if a
transaction has an intention share lock on a node it can convert
%his to a share lock at a later time, but one cannot convert an
intention exclusive lock to a share lock on a node. Rather to get
the combined rights of share mode and intention exclusive mode one
must obtain an X or SIX mode lock. (This issue is discussed in the
section on rerequests below).

We recognize one further refinement of modes, namely share and
intention exclusive mode (SIX). Suppose one transaction wants to
read an entire subtree and to update particular nodes of that
subtree. Using the modes provided so far it would have the options
of: (a) requesting exclusive access to the root of %he subtree and
doing no further locking or (b) requesting intention exclusive
access to the root of the subtree and explicitly locking the lower
nodes in intention, share or exclusive mode. Alternative (a) has
low concurrency. If only a small fraction of the read nodes are

368 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

updated then alternative (b) has high locking overhead. The correct
access mode would be share access to the subtree thereby allowing
the transaction to read all nodes of the subtree without further
locking _and intention exclusive access to the subtree thereby
allowing the transaction to set exclusive locks on those nodes in
the subtree which are to be updated and IX or SiX locks on the
intervening Nodes. Since this is such a common case, SIX mode is
introduced for this purpose. It is compatible with IS mode since
other transactions requesting IS mode will explicitly lock lower
nodes in IS or S mode thereby avoiding any updates (IX or X mode)
produced by the SIX mode transaction. However SIX mode is not
compatible with IX, S, SIX or X mode requests.

Table 1 gives the compatibility of the request modes, where for
completeness we have also introduced the null mode (NL) which
represents the absence of requests of a resource by a transaction.

I_ NL
I NL Y ES
I IS YES
1 IX Y ES
I S YES
I S IX Y ES
I_X___I_YES

IS IX S SIX X
YES YES YES YES YES
YES YES YES YES NO
YES YES NO NO NO
YES NO YES NO NO
[ES NO NO NO NO
NO NO NO NO NO

Table 1. Compatibilities among access modes.

To summarize, we recognize six modes of access to a resource:

NL: Gives no access to a node, i.e. represents the absence of a
request of a resource.

IS: Gives •intention share access to the requested node and allows
the requestor to lock descendant nodes in S or IS mode. (It
does no implicit locking.)

IX: Gives intention exclusive access to the requested node and
allows the reguestor to exRli____qcit_~l x lock descendants in X, S,
SiX, IX or IS mode. (It does no implicit locking.)

S: Gives share access to the requested node and to all descendants
of the requested node without setting further locks. (It
implicitly sets S locks on all descendants of the requested
node.)

SIX: Gives share and intention exclusive access to the requested
node. (In particular it implicitly locks all descendants of the
node in share mode ~nd allows the requestor to explicitly lock
descendant nodes in X, SIX or IX mode.)

X: Gives exclusive access to the requested node and to all
descendants of the requested node without setting further locks.
(It implicitly sets X locks on all descendants. Locking lower
nodes in S or IS mode would give no increased access.)

IS mode is the weakest non-null form of access to a resource. It
carries fewer privileges than IX or S modes. IX mode allows IS, IX,
S, SIX and X mode lecks to be set on descendant nodes while S mode
allows read only access to all descendants of the node without
further locking. SIX mode carries the privileges of S and of IX

Granularity o flocks and degrees of consistency 369

mode (hence the name SIX). X mode is th. = most privileged form of
azcess and allows reading and writing of all descendants of a node
without further locking. Hence the mod~s can be ranked in the
partial order (lattice) of privileges shown in Figure 2. Note that
it is not a total order since IX and S are incomparable.

X

I
I

SIX

I

I
I
IX

I
I

I
I
IS

I
I
NL

Figure 2. The partial ordering of modes by their privileges.

Rules for request_in S nodes:

Th- = implicit locking of nodes will not work if transactions are
allowed to leap into the middle of the tree and begin locking nodes
at random. The implicit locking implied by the S and X modes
depends on all transactions obeying the following protocol:

(a) Before requesting an S or IS lock on a node, all ancestor nodes
of the requested node must be held in IX or IS mode by the
reguestor.

(b) Before requesting an X, SIX or IX lock on a node, all ancestor
nodes of the requested node must be held in SIX or IX mode by
the requestor.

(c) Locks should be released either at the end of the transaction
(in any order) or in leaf to root order. In particular, if locks
are not held to end of transaction, one should not hold a lock
after releasing its ancestors.

To paraphrase this, locks are requested, root to le_aaf, a_n__dd _released
leaf to root. Notice that leaf nodes are never requested in
intention mode since they have no descendants.

Several examples:

To lock record R for read:
lock data-base with mode = IS
lock area containing R with mode = IS
lock file containing R with mode = IS
lock record R with mode = S

Don't panic, the transaction probably already
area and file lock.

has the data base,

370 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

To lock record R for write-exclusive access:
lock data-base with mode = IX
lock area containing R with mode = IX
lock file containing R with mode = IX
lock record R with mode = X

Note that if the records of this and the previous example are
distinct, each request can be granted simultaneously to different
transactions even though both refer to the same file.

To lock a file F for read and write access:
lock data-base with mode = IX
lock area containing F with mode = IX
lock file F with mode = X

Sinc~ this reserves exclusive access to the file, if this request
uses the same file as the previous two examples it or the other
transactions will have to wait.

To lock a file F for complete scan and occasional update:
lock data-base with mode = IX
lock area containing F with mode = IX
lock file F with mode = SIX

Thereafter, particular records in F can be locked for update by
locking records in X mode. Notice that (unlike the previous
example) this transaction is compatible with the first example.
This is the reason for introducing SIX rood_ ~.

To quiesce the data base:
lock data base with mode = X.

Note that this locks everyone else out.

Directed acycl_~ic qra]~hs of locks:

The notions so far introduced can be generalized to work for
~irected acyclic graphs (DAG) of resources rather than simply
hierarchies of resources. A tree is a simple DAG. The key
observation is that to implicitly or explicitly lock a node, one
should lock _all the parents of the nod~ in the DAG and so by
induction lock all ancestors of the node. In particular, to lock a
subgraph one must implicitly or explicitly lock all ancestors of the
subgraph in the appropriate mode (for a tree there is only one
parent). To give an example of a non-hierarchical structure,
imagine the locks are organized as in Figure 3.

DATA BASE

I
I

AREAS

I

I I
FILES INDICES

I I
I __I

I
I

R ECOR DS

Figure 3. A non-hierarchical lock graph.

Gramdarity of looks and degrees of consisteney 371

We postulate that areas are "physical" nDtions and that files,
indices and records are logical notions. The data base is a
collection of areas. Each area is a collection of files and
indices. Each file has a corresponding index in the same area.
Each record belongs to some file and to its corresponding index. A
record is comprised of field values and so~e field is indexed by the
index associated with the file containing the record. The file
gives a sequential access path to the records and the index gives an
associative access path to the records based on field values. Since
individual fields are never locked, they ~o not appear in the lock
graph.

To write a record R in file F with index I:
lock data base with mode = IX
lock area containing F with mode = IX
lock file F with mode = IX
lock index I with mode = IX
lock record E with mode = X

Note that all paths to record R are locked. Alternaltively, one
could lock F and I in exclusive mode thereby implicitly locking R in
exclusive mode.

To give a more complete explanation we observe that a node can be
locked e_/x~lici_t!~ (by requesting it) or implici_tl I (by appropriate
explicit locks on the ancestors of the node) in one of ~ive modes:
IS, IX, S, SIX, X. However, the definition of implicit locks and
the protocols for setting explicit locks have to be extended for
DAG's as follows:

A node is i_m~licit_!l ~ granted in S mode to a transaction if at least
one of its parents is (implicitly or explicitly) granted to the
transaztion in S, SIX or X mode. By induction that means that at
least one of the node's ancestors must be explicitly granted in S,
SIX or X mode to the transaction.

A node is imDl~Gitl__[~ranted in X mode if ~!! of its parents are
(implicitly or explicitly) granted to the transaction in X mode. By
induction, this is equivalent to the condition that all nodes in
some cut set of the collection of all paths leading from the node to
the roots of the graph are explicitly granted to the transaction in
X mode and all ancestors of nodes in the cut set are explicitly
granted in IX or SIX mode.

From Figure 2, a node is implicitly granted in IS mode if it is
implicitly granted in S mode, and a node is implicitly granted in
IS, IX, S and SIX mode if it is implicitly granted in X mode.

~h~ protocol for ~ ! ~ ! ~ ~s~t~n~ locks on a DAG:

(a) Before requesting an S or IS lock on a node, one should request
at least one parent (and by induction a path to a root) in IS
(or greater) mode. As a consequence none of the ancestors along
this path can be granted to another transaction in a mode
incompatible with IS.

(b) Before requesting IX, SIX or X mode access to a node, one should
request all parents of the node in IX (or greater) mode. As a
consequence all ancestors will be held in IX (or greater mode)
and cannot be held by other transactions in a mode incompatible
with IX (i. e. S, SIX, X).

372 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

(c) Locks should be released either at the end of the transaction
(in any order) or in leaf to root order. In particular, zt
locks are not held to the end of transaction, one should not
hold a lower lock after releasing its ancestors.

To giv~ an example using Figure 3, a sequential scan of all records
in file F need not use an index so one can get an implicit share
lock on each record in the file by:

lock data base
lock area containing F
lock file F

with mode = IS
with mode = IS
with mode = S

This gives implicit S mode access to all records in F. Conversely,
to read a record in a file via the index I for file F, one need not
get an implicit or explicit lock on file F:

lock data base
lock area containing R
lock index I

with mode = IS
with mode = IS
with mode = S

This again gives
(in file F). In
readinq.

implicit S mode access to all records in index I
both these cases, ~n__II o n~ 9ath was locked for

But to insert, delete or update a record R in file F with index I
one must get an implicit or explicit lock on all ancestors of R.

The first example of this section showed how an explicit X lock on a
record is obtained. To get an implicit X lock on all records in a
file one can simply lock the index and file in X mode, or lock the
area in X mode. The latter examples allow bulk load or update of a
file without further locking since all records in the file are
implicitly granted in X mode.

Proof of !~uivalence of the lock protocol.

We will now prove that the described lock protocol is equivalent to
a conventional one which uses only two modes (S and X), and which
explicitly locks atomic resources (the leaves of a tree or sinks of
a DAG).

Let G = (N,A) be a finite (directed acyclic) ~_raph where N is the
set of nodes and A is the set of arcs. G is assumed to be without
circuits (i.e. there is no non-null path leading from a node n to
itselt~. A node p is a parent of a node a and n is a child of p if
there is an arc from p to n. A node n is a source (sink) if n has
no parents (no children). Let SI be th~ set of sinks of G. An
ancestor of node n is any node (including n) in a path from a source
to n. A node-slice of a sink n is a collection of nodes such that
each path from a source to n contains at least one node of the
slice.

We also introduce the set of lock modes M = [NL, IS, IK,S,SIX,X} and
the compatibility matrix C : MxM->{YES,N3} described in Table I.
Let c : mxm->{YES,NO} be the restriction of C to m = [NL, S,X}.

Granularity of locks and degrees of consistency 373

A lock_-qr_a~h is a mapping L : N->M such that:
(a) if L(n) e {IS,S} then either n is a source or there exists a

parent p of n such that L(p) e [IS,IX,S,SIX,X}. By induction
there exists a path from a source to n such that L takes only
values in {IS,IX,S,SIX, X] on it. Equivalently L is not equal to
NL on the path.

(by if L(n) e {IX,SIX,X] then either n is a root or for all parents
pl...pk of n we have L(pi) e {IX, SIX, X} (i=1...k). By induction
L takes only values in {IX,SIX, X] on all the ancestors of n.

The interpretation of a lock-graph is that it gives a map of the
explicit locks held by a particular transaction observing the six
state lock protocol described above. The notion of projection of a
lock-graph is now introduced to model the set of implicit locks on
atomic resources acquired by a transaction.

The ~rojection of a lock-graph L is the mapping I: SI->m constructed
as follows:
(a) l(n)=X if there exists a node-slice [nl...ns} of n such that

L(ni) =X for each node in the slice.
(b) 1 (n)=S if (a) is not satisfied and there exists an ancestor a of

n such that L(a) q [S,SIX,X].
(c) I(n)=NL if (a) and (b) are not satisfied.

Two lock -graphs LI an d L2 are said to be comma tible if
C(LI(n) ,L2(n))=YES for all n e N. Similarly two projections 11 and
12 are compatible if c(11 (n),12 (n))=YES for all n e SI.

Theorem:

If two lock-graphs LI and L2 are compatible then their projections
11 and 12 are compatible. In other words if the explicit locks set
by two transactions do not conflict then also the three-state locks
implicitly acquired do not conflict.

Proof: Assume that 11 and 12 are incompatible. We want to prove
that LI and L2 are incompatible. By definition of compatibility
there must exist a sink n such that ll(n)=X and 12(n) e [S,X} (or
vize versa). By definition of projection there must exist a
node-slice {nl...ns} of n such that LI(nl)=.,.=LI (ns)=X. Also there
must exist an ancestor nO of n such that L2 (nO) e [S,SIX,X}. From
the definition of lock-graph there is a path P1 from a source to nO
on which L2 does not take the value NL.

If P 1 intersects the node-slice at ni then LI and L2 are
incompatible since Ll(ni)=X which is incompatible with the non-null
value of L2 (hi). Hence the theorem is proved.

Alternatively there is a path P2 from n0 to the sink n which
intersects the node-slice at hi. From the definftion of lock-graph
LI takes a value in {IX,SIX,X] on all ancestors of hi. In
particular LI (nO) e {IX, SiX, X] . Since L2 (n0) e [S,SIX,X} we have
C (L1(n0) ,L2 (n0)) =NO. Q.E.D.

Dynamic lock qr_a~hs:

Thus far we have pretended that the lock graph is static. However,
examination of Figure 3 suggests otherwise. Areas, files and
indices are dynamically created and destroyed, and of course records
are continually inserted, updated, and deleted. (If the data Dase
is only read, then there is no need for locking at all.)

374 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

We introduce the lock protocol for dynamic DAG' s by example.
Consider the implementation of index i__nterval locks. Rather than
being forced to lock entire indices or individual records, we would
like to be able to lock all records with a certain contiguous range
of index values; for example, lock all records in the bank account
file with the location field equal to Napa. Therefore, the index is
partitioned into lockable key value intervals. Each indexed record
"belongs', to a particular index interval and all records in a file
with the same field value on an indexed field will belong to the
same key value interval (i.e. all Napa accounts will belong to the
same interval). This new structure is depicted in Figure 4. In [I]
such locks were called predicate locks and and an alternate (more
general but less efficient) implementation was proposed.

I
I
I

UN-INDEXED
FIELDS

DATA BASE

I
i

AREAS

l
l

FILE

l
l

I
INDICES

l
l

INDEX
INTERVALS

........ l

I I
I I
I I I
I I I
I I I

~ECORD INDEXED
IDENTIFIERS FIELDS

Figure 4. The lock graph with index interval locks.

The only subtle aspect of Figure 4 is the dichotomy between indexed
and un-indexed fields. Since the indexed field value and record
identifier (logical address) appear in the index, one can read the
indexed field directly (i.e. without "touching" the record). Hence
an index interval is a parent of the corresponding field values.
Further, the index "points,, via record i~eatifiers to all records
with that value and so is a parent of all such record identifiers.
On the other hand, one can read and update un-indexed fields of the
re=ord without affecting the index and so the file is the only
parent of such fields.

When an indexed field is updated, it and its record identifier move
from one index interval to another. For example, when a Napa
account is moved to the St. Helena branch, the account record and
its location field "leave" the Napa interval of the location index
and "join" the St. Helena index interval. When a new record is
inserted it "joins" the interval containing the new field value and
also it "joins" the file. Deletion rem3ves the record from the
index interval and from the file. index is not a lock ancestor ot
such fields.

Granularity o f locks and degrees o f consistency 375

Since Figure 4 defines a DAG, albeit a dynamic DAG, the protocol of
the previous section can be used to lock the nodes of the DaG.
However, the protocol should be extended as follows to handle
dynamic changes to the lock graph:

(d} Before moving a nods in the lock graph, the node must be
implicitly or explicitly granted in X mode in both its old and
its new position in the graph. Further, the n~de must not be
moved in such a way as to create a cycle in the graph.

Carrying out the example of this section, to move a Napa Dank
account to the St. Helena branch:
lock data base in mode = IX
lock area containing accounts in mode = IX
lock accounts file
lock location index
lock Napa interval
lock St. Helena interval
lock record
lock field

Alternatively, one could

in mode = IX
in mode = IX
in mode = IX
in mode = IX
in mode = IX
in mode = X.

get an implicit lock on the field by
requesting explicit X mode locks on the record and index intervals.

i;

Schedulinq and ~ran~n~ r~ues~s:

Thus far we have described the semantics of the various request
modes and have described the protocol which requestors must follow.
To complete the discussion we discuss how requests are scheduled and
granted.

The set of all requests for a particular resource are kept in a
queue sorted by some fair scheduler. By "fair" we mean that no
particular transaction will be delayed indefinitely. First-in
first-out is the simplest fair scheduler and we adopt such a
scheduler for this discussion modulo deadlock preemption decisions.

The group of mutually compatible requests for a resource appearing
at the head of the queue is called the ~ranted ~ro_u~. all these
requests can be granted concurrently, assuming that each
transaction has at most one request in the queue then the
compatibility of two requests by different transactions depends only
on the modes of the requests and may be computed using Table I.
Associated with the granted group is a Wro_u~ mode which is the
supremum mode of the members of the group which is computed using
Figure 2 or Table 3. Table 2 gives a list of the possible types of
requests that can coexist in a group and the corresponding mode of
the group.

Table 2. Possible request groups and their group mode.
Set brackets indicate that several such requests may be present.

[MODES OF
L____RE.Q_B_E_S,T S
I X
I szx, {zs}
I s, {s}, [Is}
I IX, ~{IX], [IS}
I I S - [I _ S }

MODE OF
GR 0 UP

X
SIX
S
IX
IS

Figure 5 depicts the queue for a particular resource, showing the

376 AN. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

requests and their modes. The granted group consists of five
requests and has group mode IX. The next request in the queue is
for S mode which is incompatible with the group mode IX and hence
must wait.

* GRANTED GROUP: GROUP~ODE = IX *
t is i--i ix i--i ZSl--i ZSl--i ZSl--,- i s [- i is [- ix i- iZSl- fix i

Figure 5. The queue of requests for a resource.

When a new request for a resource arrives, the scheduler appends it
to the end of the queue. There are two cases to consider: either
someone is already waiting or all outstanding requests for this
resource are granted (i.e. no one is waiting). If no one is waiting
and the new request is compatible with the granted group mode then
the new request can be granted immediately. Otherwise the new
request must wait its turn in the queue and in the case of deadlock
it may preempt some incompatible requests in the queue.
(Alternatively the new request could be canceled. In Figure 5 all
the requests decided to wait.) When a particular request leaves the
granted group the group mode of the group may change. If the mode
of the first waiting request in the queue is compatible with the new
mode of the granted group, then the waiting request is granted. In
Figure 5, if the IX request leaves the group, then the group mode
becomes IS which is compatible with S and so the S may be granted.
The new group mode will be S and since this is compatible with IS
mode the IS request following the S request may also join the
granted group. This produces the situation depicted in Figure 6:

GRANTED GROUP GROUPMODE = S *
• I IS I - - I I S I - - I I S l - - I Z S l - - I S l - , I Z S l - - * - I X l - I IS I - I I X I

Figure 6. The queue after the IX request is released.

The X request of Figure 6 will not be granted until all the requests
leave the granted group since it is not compatible with any mode.

conversions:

A transaction might re-request the same resource for seve ~-al
reasons: Perhaps it has forgotten that it already has access to the
record: after all, if it is setting many locks it may be simpler to
just always request access to the record rather than first asking
itself "have I seen this record before". The lock subsystem has all
the information to answer this question and it seems wasteful to
duplicate. Alternatively, the transaction may know it has access to
the record, but want to increase its access mode (for example from S
to X mod ~- if it is in a read, test, and sometimes update scan of a
file). So the lock subsystem must be prepared for re-requests by a
transaction for a lock. We call such re-requests conversions.

When a request is found to be a conversion, the old (granted) mode
of the reguestor to the resource and the newly requested mode are
compared using Table 3 to compute the new mode which is the supremum
of the old and the requested mode (ref. Figure 2).

Granu[arity of looks and degrees o f consistency 377

Table 3. The new mode given the requested and old mode.

I NEW 8ODE
I I IS IX S SiX X
I IS I IS IX S SIX X
I IX I IX IX SIX SIX X
I S I S SIX S SIX X
I SIX I SIX SIX SIX SIX X
l__X___i X X X X X

So for example, if one has IX mode and requests S mode then the new
mode is SIX.

If the new mode is equal to the old mode (note it is never less than
the old mode) then the request can be granted immediately and the
granted mode is unchanged. If the new mode is compatible with the
group mode of the other members of the granted group (a requestor is
~lways compatible with himself) then again the request can be
granted immediately. The granted mode is the new mode and the group
mode is recomputed using Table 2. In all other cases, the
requested conversion must wait until the group mode of the other
granted requests is compatible with the new mode. Note that this
immediate granting of conversions over waiting requests is a minor
violation of fair scheduling.

If two conversions are waiting, each of which is incompatible with
an already granted request of the other transactioa, then a deadlock
exists and the already granted access of one must be preempted.
3therwise there is a way of scheduling the waiting conversions:
namely, grant a conversion when it is compatible with all other
granted modes in the granted group. (Since there is no deadlock
cycle this is always possible.)

The following example may help to clarify these points. Suppose the
queue for a particular resource is:

GROUPMODE = is *
IISI---IIS I

Figure 7. A simple queue.

Now suppose the first transaction wants to convert to X mode. It
must wait for the second (already granted) request to leave the
queue. If it decides to wait then the sitaation becomes:

GROUPMODE = IS
IIS<-XI---IISI-

Figure 8. ~ conversion to X mode waits.

NO new request may enter the granted group since there is now a
conversion request waiting. In general, conversions are scheduled
before new requests. If the second transaction now converts to IX,
SIX, or S mode it may be granted immediately since this does not
conflict with the ~_ranted (IS) mode of the first transaction. When
the second transaction eventually leaves the queue, the first
conversion can be made:

378 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

GROUPMODE = IS
IIXl

Figure 9. One transaction leaves and the conversion is granted.

However, if the second transaction tries to convert to exclusive
mode one obtains the queue:

GROUPZODE = IS
IIS<-XI-~-WIS<-XI

Figure 10. Two conflicting conversions are waiting.

Since X is incompatible with IS (see Table I), this situation
implies that each transaction is waiting for the other to leave the
queue (i.e. deadlock) and so one transaction mu~ be preempted. In
all other cases (i.e. when no cycle exists) there is a way to
schedule the conversions so that no already granted access is
violated.

Deadlock and lock thrashinq:

Whenever a transaction waits for a request to be granted, it runs
the risk of waiting forever in a deadlock cycle. For the purposes
of deadlock detection it is important to know who is waiting for
whom. The request queues give this information. Consider any
waiting request R by transaction T. There are two cases: If R is a
conversion, r is WAITING_FOR all transactions granted incompatible
requests to the queue. If R is not a conversion, r is WAITING FOR
all transactions ahead of it in the queue granted or waiting for
incompatible requests. Given this WAITING_FOR relation computed for
all waiting transactions, there is no deadlock if and only if
WAITING_FOR is acyclic.

The WAITING FOR relation may change whenever a request or release
occurs and when a conversion is granted. If a transaction may wait
for at most one request at a time, then the deadlock state can only
change when some process decides to wait. In this special case
(synchronous calls to lock system) , only waits require recomputation
of the WAITING_FOR relation. If deadlock is improbable, deadlock
testing can be done periodically rather than on each wait, further
reducing computational overhead.

One new request may form many cycles and each such cycle must be
broken. When a cycle is detected, to break the cycle some granted
or waiting request must be preempted. The lock scheduler should
choose a minimal cost set of victims to preempt, so that all cycles
are broken, undo all the changes to the data base made by the
victims since the preempted resources were granted, and then preempt
the resource and signal the victims that they have been backed up.

The issues discussed so far--lock scheduling, detecting and breaking
deadlocks--are low level scheduling decisions. They must be
connected with a high level transaction scheduler which regulates
the load on the system and regulates the entry and progress of
transactions to prevent long waits, high probability o~ waiting

Granularity o flocks and degrees o f consistency 379

(lock thrashing), and deadlock. By analogy, a page management
system with only a low level page frame scheduler, which allocates
and preempts page frames in a fairly naive way, is likely to produce
page thrashing unless it is coupled with a working set scheduler
which regulates the number and character of processes competing for
page frames.

II. DEGREES OF CONSISTENCY:

We now focus on how locks can be used to construct transactions out
of atomic actions. The data base consists of entities which are
related in certain ways. These relationships are best thought of as
assertions about the data. Examples of such assertions are:
'Names is an index for Telephonenumbers.'
'The value of Count of x gives the number of employees in

department x.'

The data base is said to be consistent if it satisfies all its
assertions [I]. In some cases, the data base must become
temporarily inconsistent in order to transform it to a new
consistent state. For example, adding a new employee involves
several atomic actions and the updating of several fields. The data
base may be inconsistent until all these updates have been
completed.

To cope with these temporary inconsistencies, sequences of atomic
actions are grouped to form transactions. Transactions are the
units of consistency. They are larger atomic actions on the data
base which transform it from one consistent state to a new
consistent state. Transactions preserve consistency. If some
action of a transaction fails then the entire transaction is
'undone' thereby returning the data base to a consistent state.
Thus transactions are also the units of recovery. Hardware failure,
system error, deadlock, protection violations and program error are
each a source of such failure.

If transactions are run one a% a time then each transaction will see
the consistent state left behind by its predecessor. But if several
transactions are scheduled concurrently then locking is required to
insure that the inputs to each transaction are consistent.

Responsibility for requesting and releasing locks can either be
assumed by the user or be delegated to the system. User controlled
locking results in potentially fewer locks due to the user's
knowledge of the semantics of the data. On the other hand, user
controlled locking requires difficult and potentially unreliable
application programming. Hence the approach taken by some data base
systems is to use automatic lock protocols which insure protection
from general types of inconsistency, while still relying on the user
to protect himself against other sources of inconsistencies. For
example, a system may automatically lock updated records but not
records which are read. Such a system prevents lost updates arising
from transaction backup. Still, the user should explicitly lock
records in a read-update Sequence to insure that the read value does
not change before the actual update. In other words, a user is
guaranteed a limited automatic desree of consistency. This degree
of consistency may be system wide or the system may provide options
to select it (for instance a lock protocol may be associated with a
transaction or with an entity).

380 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

we now present several e~uivalent definitions of four consistency
degrees. The first definition is an operational and intuitive one
useful in describing the system behavior to users. The second
definition is a procedural one in terms of lock protocols, it is
useful in explaining the system implementation. The third
definition is in terms of a trace of the system actions, it is
useful in formally stating and proving properties of the various
consistency degrees.

Informal definition of consistenci: ~

An output (write) of a transaction is committed when the transaction
abdicates the right to 'undo' the write thereby making the new value
available to all other transactions. Outputs are said to be
uncommitted or dirty if they are not yet committed by the writer.
Concurrent execution raises the problem that reading or writing
other transactions' dirty data mayyield inconsistent data.

Using this notion of dirty data, the degrees of consistency may be
defined as:

Definition 1:

Degree 3: Transaction T sees deqree 3 consistency if:
(a) T does not overwrite dirty data of other transactions.
(b) T does not commit any writes until it completes all its writes

(i.e. until the end of transaction (EOT)).
(z) T does not read dirty data from other transactions.
(d) Other transactions do not dirty any data read by T before T

completes.

Degree 2: Transaction T sees deqree 2 consisten~x if:
(a) T does not overwrite dirty data of other transactions.
(b) T does not commit any writes before EOT.
(c) T does not read dirty data of other transactions.

Degree I: Transaction T sees deqree I consistency if:
(a) T does not overwrite dirty data of other transactions.
(b) T does not commit any writes before EOT.

Degree 0: Transaction T sees deqree 0 consistency if:
(a) T does not overwrite dirty data of other transactions.

Note that if a transaction sees a high degree of consistency then it
also sees all the lower degrees.

Degree 0 consistent transactions commit writes before the end of
transaction. Hence backing up a degree 0 consistent transaction may
require undoing an update to an entity locked by another
transaction. In this sense, degree 0 transactions are
unrecoverable.

Degree 1 transactions do not committ writes until the end of the
transaction. Hence one may undo (back up) an in-progress degree I
transaction without setting additional locks. This means that
transaction backup does not erase other transactions' updates. This
is the principal reason one data management system automatically
provides degree I consistency to all transactions.

Degree 2 consistency isolates a transaction from the uncommitted

Granulari~ of locks and degrees of consistency 381

data of other transactions. With degree I consistency a transaction
might read uncommitted values which are subsequently updated or are
undone. In degree 2 no dirty data values are read.

Degree 3 consistency isolates the transaction from dirty
relationships among values. Reads are r_~eatable. For example, a
degree 2 consistent transaction may read two different (committed)
values if it reads the same entity twice. This is because a
transaction which updates the entity could begin, update and end in
the interval of time between the two reads. More elaborate kinds of
anomalies due to concurrency are possible if one updates an entity
after reading it or if more than one entity is involved (see example
below). Degree 3 consistency completely isolates the transaction
from inconsistencies due to concurrency [I].

Each transaction can elect the degree of consistency appropriate to
its function. When the third definition is given we will be able to
state the consistency and recovery properties of such a system more
formally.
Briefly:

If one elects degree i consistency then one sees a degree i
consistent state (so long as all other transactions run at
least degree 0 consistent)

If all transactions run at least degree I consistent, system
backup (undoing all in-progress transactions) loses no updates
of completed transactions.

If all transactions run at least degree 2 consistent,
transaction backup (undoing any in-progress transaction)
produces a consistent state.

To give an example which demonstrates the application of these
several degrees of consistency, imagine a process control system in
which some transaction is dedicated to reading a gauge and
periodically writing batches of values into a list. Each gauge
reading is an individual entity. For performance reasons, this
transaction sees degree 0 consistency, committing all gauge readings
as soon as they enter the data base. This transaction is not
recoverable (can't be undone). A second transaction is run
periodically which reads all the recent gauge readings, computes a
mean and variance and writes these computed values as entities in
the data base. Since we want these two values to be consistent with
one another, they must be committed together (i.e. one cannot commit
the first before the second is written). This allows transaction
undo in the case that it aborts after writing only one of the two
values. Hence this statistical summary transaction should see
degree I. A third transaction which reads the mean and writes it on
a display sees degree 2 consistency. It will not read a mean which
might be 'undone' by a backup. ~nother transaction which reads both
the mean and the variance must see degree 3 consistency to insure
that the mean and variance derive from the same computation (i.e.
th~ same run which wrote the mean also wrote the variance).

Lock protocol definition of consistenc_z:

Whether an instantiation of a transaction sees degree o, I, 2 or 3
consistency depends on the actions of other concurrent
transactions. Lock protocols are used by a transaction to guarantee
itself a certain degree of consistency independent of the behavior
of other transactions (so long as all transactions at least observe

382 11%'. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

the degree 0 protocol).

The degrees of consistency can be procedurally defiaed by the lock
protocols which produce them. A transaction locks its inputs to
guarantee their consistency and locks its outputs to mark them as
dirty (uncommitted).

For this section, locks are dichotomized as share mode locks which
allow multiple readers of the same entity and exclusive mode locks
which reserve exclusive access to an entity. (This is the "two
mode" lock protocol. Its generalization to the "six mode" protocol
of the previous section should be obvious.) Locks may also be
characterized by their duration: locks held for the duration of a
single action are called short duration locks while locks held to
the end of the transaction are called lonq duration locks. Short
duration locks are used to mark or test for dirty data for the
duration of an action rather than for the duration of the
transaction.

The lock protocols are:

Definition 2:

Degree 3: transaction T observes de~ree 3 lock protocol if:
(a) T sets a long exclusive lock on any data it dirties.
(b) T sets a long share lock on any data it reads.

Degree 2: transaction T observes de~ree 2 lock ~rotocol if:
(a) T sets a long exclusive lock on any data it dirties.
(b) T sets a (possibly short) share lock on any data it reads.

Degree I: transaction T observes de__gree I lock P[~E~! if:
(a) T sets a long exclusive lock on any data it dirties.

Degree 3: transaction T observes degree 0 lock protocol if:
(a) T sets a (possibly short) exclusive lock on any data

dirties.
it

The lock protocol definitions can be stated more tersely with the
introduction of the following notation. A transaction is ~!
formed with respect to writes ([ead____ss) if it always locks an entity
in exclusive (shared or exclusive) mode before writing (reading)
it. The transaction is well formed if it is well formed with
respect to reads and writes.

A transaction is _two phase (with r_e_spect to reads or _updates) if it
does not (share or exclusive) lock an entity after unlocking some
entity. A two phase transaction has a growing phase during which it
acquires locks and a shrinking phase during which it releases
locks.

Definition 2 is too restrictive in the sense that consistency will
not require that a transaction hold all locks to the EOT (i.e. the
EOT is the shrinking phase) . Rather, the constraint that the
transaction be two phase is adequate to insure consistency. On the
other hand, once a transaction unlocks an updated entity, it has
committed that entity and so cannot be undone without cascading
backup to any transactions which may have subsequently read the
entity. For that reason, the shrinking phase is usually deferred to
the end of the transaction; thus, the transaction is always
recoverable and all updates are committed together. The lock
protocols can be redefined as:

Gramtlarity of looks and degrees of consistency 383

Definition 3!:

Degree 3: T is well formed
and T is two phase.

Degree 2: T is well formed
and T is two phase with respect to writes.

Degree 1: T is well formed with respect to writes
and T is two phase with respect to writes.

Degree 0: T is well formed with respect to writes.

All transactions are re~ired to observe the degree
protocol so that they do not update the uncommitted
others. Degrees I, 2 and 3 provide increasing
consistency.

0 locking
updates of

syst es-guarant eed

Consisten~ of schedules:

The definition of what it means for a transaction to see a degree of
consistency was given in terms of dirty data. In order to make the
notion of dirty data explicit it is necessary to consider the
execution of a transaction in the context of a set of concurrently
executing transactions. To do this we introduce the notion of a
schedule for a set of transactions. A schedule can be thought of as
a history or audit trail of the actions performed by the set of
transactions. Given a schedule the notion of a particular entity
being dirtied by a particular transaction is made explicit and hence
the notion of seeing a certain degree of consistency is formalized.
These notions may then be Used to connect the various definitions of
consistency and show their equivalence.

The system directly supports entities and actions. Actions are
categorized as beq!n actions, en_dd actions, share lock actions,
exclusive lock actions, unlock actions, read actions, and write
actions. An end action is presumed to unlock any locks held by the
transaction but not explicitly unlocked by the transaction. For the
purposes of the following definitions, share lock actions and their
corresponding unlock actions are additionally considered to be read
actions and exclusive lock actions and their corresponding unlock
actions are additionally considered to be write actions.

A transaction is any sequence of actions beginning with a begin
action and ending with an end action and not containing other begin
or end actions.

Any (sequence preserving) merging of the actions of a set of
transactions into a single sequence is called a schedule for the set
of transactions.

A schedule is a history of the order in which actions were executed
(it does not record actions which were undone due to backup). The
simplest schedules run all actions of one transaction and then all
actions of another transaction,... Such one-transaction-at-a-time
schedules are called serial because they have no concurrency among
transactions. Clearly, a serial schedule has no concurrency induced
inconsistency and no transaction sees dirty data.

Locking constrains the set of allowed schedules. In particular, a
schedule is le_~a!l only if it does not schedule a lock action on an

384 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

entity for one transaction when that entity is already locked by
some other transaction in a conflicting mode.

An initial state and a schedule completely define the system's
behavior. At each step of the schedule one can deduce which entity
values have been committed and which are dirty: it locking is used,
updated data is dirty until it is unlocked.

Since a schedule makes the definition of d~rty data explicit, one
can apply Definition 1 to define consistent schedules:

Definition 3:

A transaction runs at ~E~9 ~ (!, 2 or 3) c___onsistency in schedule S
if T sees degree 0 (I, 2 or 3) consistency in S. (Conversely,
transaction T sees degree i consistency if all legal schedules run T
at degree i consistency.)

If all transactions run at degree 0 (1,2 or 3) consistency in
schedule S then S is said to be a _de_qree ~ (I, 2 or 3) consistent
schedule.

Given these definitions one can show:

Assertion I:

(a) If each transaction

(b)

observes the degree 0 (1, 2 or 3) lock
protocol (Definition 2) then any legal schedule is degree 0 (1,
2 or 3) consistent (Definition 3) (i.e, each t ransactlon sees
degree 0 (1, 2 or 3) consistency in the sense of Definition
1).
Unless transaction T observes the degree I (2 or 3) lock
protocol then it is possible to define another transaction T'
which does observe the degree I (2 or 3) lock protocol such
that T and T' have a legal schedule S but T does not run at
degree 1 (2 or 3) consistency in S.

In [1] we proved Assertion I for degree 3 consistency. That
argument generalizes directly to this result.

Assertion 1 says that if a transaction observes the lock protocol
definition of consistency (Definition 2) then it is assured of the
informal d=_finition of consistency based on committed and dirty ,data
(Definition 1). Unless a transaction actually sets the locks
prescribed by degree 1 (2 or 3) consistency one can construct
transaction mixes and schedules which will cause the transaction te
run at (see) a lower degree of consistency. However, in particular
cases such transaction mixes may never occur due to the structure or
use of the system. In these cases an apparently low degree of
locking may actually provide degree 3 consistency. For example, a
data base reorganization usually need do no locklng since it is run
as an off-line utility which is never run concurrently with other
transactions.

Assertion 2:

If each transaction in a set of transactions at least observes the
degree 0 lock protocol and if transaction T observes the degree I (2
or 3) lock protocol then T runs at degree 1 (2 or 3) consistency
(Definitions 1, 3) in any legal schedule for the set of
transactions.

Granularity of locks and degrees of consistency 385

Assertion 2 says that each transaction can choose its degree of
consistency so long as all transactions observe at least aegree 0
protocols. Of course the outputs of degree 0, I or 2 consistent
transactions may be degree 0, I or 2 consistent (i.e. inconsistent)
because they were computed with potentially inconsistent inputs.
3ne can imagine that each data entity is tagged with the degree of
consistency of its writer: Degree 0 entities are purple, degree I
entities are red, degree 2 entities are yellow and degree 3 entlties
are green. The color of the outputs of a transaction is the minimum
of the transaction's color and the colors of the entities it reads
(because they are potentially inconsistent). Gradually the system
will turn purple or red unless everyone runs with a high degree of
consistency. If the transaction 's author knows something about the
systems structure which allows an apparently degree 1 consistent
protocol to produce degree 3 consistent results then this color
coding is pessimistic. But, in general a transaction must beware of
reading entities tagged with degrees lower than the degree of the
transaction.

DeRendencies amonq transactions:

9ne transaction is said to depeP_~d on another if the first takes some
of its inputs from the second. Thenotion of dependency is defined
differently for each degree of consistency. These dependency
relations are completely defined by a schedule and can be useful in
~iscussing consistency and recovery.

Each schedule defines three relations: <, << and <<< on the set of
transactions as follows. Suppose that transaction T performs action
a on entity e at some step in the schedule and that transaction T'
performs action a' on entity e at a later step in the schedule.
Further suppose that T does not equal T'. Then:

T <<< T' if a is a write action and a' is a write action
or a is a write action and a' is a read action
or a is a read action and a' is a write action

T << T' if a is a write action and a' is a write action
or a is a write action and a' is a read action

T < T' if a is a write action and a' is a write action

So degree I does not care about read dependencies at all. Degree 2
cares only about one kind of read dependency. And degree 3 ignores
only read-read dependencies (reads commute). The following table is

notationally convenient way of seeing these definitions:

<<< : W->W I W->R I R->W

<< : W->W "I W ->R

< : W ->W

meaning that (for example)T <<< T' if T writes (W) something later
read (R) by T' or written (W) by T' or T reads (R) something later
written (W) by T'.

Let <~ be the transitive closure of <, then define:
BEFOBEI (T) = {T'I T' <~ T}
AFTERI (T} = {T' I T <~ T'].

The sets BEFORE2, AFTER2, BEFOPF3 and AFTER3 are defined analogously

386 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

from << and <<<.

The obvious interpretation for this is that each BEFORE set is the
set of transactions which contribute inputs to T and each AFTER set
is the set of transactions which take their inputs from T (where the
ordering only considers d=_pendencies induced by the corresponding
consistency degree).

If some transaction is both before T and after T in some schedule
then no serial schedule could give such results. In this case
concurrency has introduced inconsistency. On the other hand, if all
relevant transactions are either before or after T (but not both)
then T will see a consistent state (of the corresponding degree).
If all transactions dichotomize others in this way then the relation
<e (<<~ or <<<e) will be a partial order and the whole schedule will
give degree I (2 or 3) consistency. This can be strengthened to:

Assertion 3:

A schedule is degree I (2 or 3) consistent if and only if
the relation <~ (<<e or <<<~) is a partial order.

The <, << and <<< relations are variants of the dependency sets
introduced in [1]. In that paper only degree 3 consistency is
introduced and Assertion 3 was proved for that case. In particular
such a schedule is equivalent to the serial schedule obtained by
running the transactions one at a time in <<< order. The proofs of
[I] generalize fairly easily to handle assertion 1 in the case of
degree I or 2 consistency.

Consider the following example:
T1 LOCK A
TI READ A
T I UNLOCK A
T2 LOCK A
T2 WRITE A

T2 LOCK B
T2 WRITE B
T2 UNLOCK R
T2 UNLOCK B
TI LOCK B
T1 WHITE B

T1 UNLOCK B

In this schedule T2 gives B to TI and T2 updates A after TI reads A
so T2<TI, T2<<T1, T2<<<T1 and TI<<<T2. The schedule is degree 2
consistent but not degree 3 consistent. It runs TI at degree 2
consistency and T2 at degree 3 consistency.

It would be nice to define a transaction to see degree I (2 or 3)
consistency if and only if the BEFORE and AFTER sets are disjoint in
some schedule. However, this is not restrictive enough; rather one
must require that the before and after sets be disjoint in all
schedules in order to state Definition 1 in terms of dependencies.
Further, there seems to be no natural way to define the dependencies
of degree 0 consistency. Hence the principal application of the
dependency definition is as a proof technique and for discussing
schedules and recovery issues.

!

Granularity of locks and degrees of consistency 387

RelationshiR t_~o transaction backu E ~nd ~ recover~:

A transaction T is said to be recoverable if it can be undone before
'EOT' without undoing other transactions' updates. A transaction T
is said to be repeatable if it will reproduc~ the original output if
rerun following recovery, assuming that no locks were released in
the backup process. Recoverability requires system wide degree 1
consistency, repeatibility requires that all other transactions be
~t least degree I and that the repeatable transaction be degree 3.

The no___rmal (i.e. trouble free) operation of a data base system can
be described in terms of an initial consistent state $0 and a
schedule of transactions mapping the data base into a final
consistent state S3 (see Figure 11). S1 is a checkpoint state,
since transactions are in progress, $1 may be inconsistent. A
system crash leaves the data base in state $2. Since transactions
T3 and T5 were in progress at the time of crash, S2 is potentially
inconsistent. System recovery amounts to bringing the data base in
a new consistent state in one of the following ways:

(a) Starting from state S2, undo all actions of transactions
in-progress at the time of the crash.

(by Starting from state S I first undo all actions of transactions in
progress at the time of the crash (i.e. actions of T3 and T~
before SI) and then redo all actions of transactions which
completed before the crash (i.e. actions of T2 and T3 after
Sl) .

(c) starting at S0 redo all transactions which completed before the
crash.

observe that (a) and (c) are degenerate cases of (b).

I TII I I > I
I T21 :" I--- I < I
I T31 I > I I

I I T~ I--- I < I
I I T51 > I I
S0 S I $2 S3

Figure 11. System states, SO is initial state, S1 is checkpoint
state, S2 is a crash and S3 is the state that results in the absence
of a crash.

Unless all transactions run at least degree 1 consistency, system
recovery may lose updates. If for example, T3 writes a record, r,
and then T~ further updates r then undoing T3 will cause the update
of T~ to r to be lost. This situation can only arise if some
transaction does not hold its write locks to EOT.

(a) If all the transactions run in at least degree 1 consistency
then system recovery loses no updates of complete
transactions. However there may be no schedule which would
give the sa~e result because transactions may have read outputs
of undone transactions.

388 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

(b) If all the transactions run in at least degree 2 then the
recovered state is consistent and derives from the schedule
obtatined from the original system schedule by deleting
incomplete transactions. Note that degree 2 prevents read
dependencies on transactions which might be undone by system
recovery, of all the Completed transactions results in a
meaningful schedule.

(c) If a transaction
reproducible.

is degree 3 consi stent then it is

Transaction crash gives rise to transaction backu~ which has
properties analogous to system recovery.

Cost of deqrees of consistencL:

The only advantage of lower degrees of consistency is performance.
If less is locked then less computation and storage is consumed.
Further if less is locked, concurrency is increased since fewer
conflicts appear. (Note that the granularity lock scheme of the
first section was motivated by minimizing the number of explicit
locks set.)

We will make some vet Z crude estimates of the storage and
computation resources consumed by the locking protocols as a
function of the consistency degree. For the remainder of this
section assume that all transactions are identical. Also assume
that they do R reads and W writes (and hence set approximately R
share mode locks and W exclusive mode locks}. Further we assume
that all the transactions run at the same consistency degree.

Each outstanding lock request consumes a queue element. The maximum
per-transaction space for these queue elements as a function of
consistency degrees is:

Table 4. Consistency degrees vs storage consumption.

I I
CONSISTENCY DEGREE I STORAGE (in queue elements) J

I I
I I

0 I 1 I
I I ~ . I
2 I W+1 I
3 I W.,-l~ I

I I

Observe that degrees I and 2 consume roughly the same amount of
storage but that degree 3 consumes substantially more storage. This
observation is aggravated by the fact that reads are typically ten
times more common than writes.

The estimation of computation (CPU) overhead is much more subtle.
We make only a crude estimate here. First one may consider the
overhead in requesting and releasing locks. This is shown in TaDle
5 as a function of consistency degrees.

Granularity o flocks and degrees o f consistency 389

TABLE 5. Computational overhead vs degrees of consistency.

CONSISTENCY DEGREE CPU (in calls to lock sys)

W
W

W+R
W+R

Table 5 indicates that the computational overhead of degrees 2 and 3
are comparable and are greater than the overhead of degrees 0 or 1.
These pairs of degrees set the same locks, they just hold them for
different durations.

Table 5 ignores the observation that some lock requests are
trivially satisfied (the request is granted immediately) while
others require a task switch and hence are quite expensive. The
probability that a read lock will have to wait is proportional to
the number of conflicting locks [write) currently granted. The
probability that a write lock will have to wait is proportional to
the number of conflicting (read or write) locks that are currently
granted. Table 4 gives a guess of the maximum number of ic~ks of
each type held by each transaction. If there are 2~N+I transactions
one can multiply the entries of Table 4 by N to get an average
number of locks held by all Others. If a wait lock request is C÷I
times as expensive as an immediately granted request and if P is the
probability that two different requests are for the same resource
then the relative computational costs are roughly computed:

degree 0 overhead: W
p~C~N~W

cost of setting locks
cost of waits

degree I overhead: w
p~C~N*W*W

cost of writes
cost of waits

degree 2 overhead: W+R
P~C~N~W= (W+I)
P~C~N*R~W

cost of setting locks
cost of write waits
cost of read waits

degree 3 overhead: W+R

p*C~N~R~W

cost of setting locks
cost of waiting for writes
cost of waiting for reads

TABLE 6. Computational overhead vs degrees of consistency.

CONSISTENCY DEGREE CPU (in calls to lock sys)

I

W+P~C~N*N~ (I)

W+R÷P~C~N ~W • (W+2~R)

To consider a specific example, a simple banking transaction does
five reads (R=5) and six (W=6) writes. A transaction accesses a

390 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

random account and there are millions of accounts so the probability
of collision, P, is roughly .000001. Suppose there are one hundred
transactions per second. A lock takes one hundred instructions and
a wait requires five thousand instructions; hence, C=50. So the
term P*C~N~W evaluates to 0.015. This implies that Table 5 gave a
good estimate of the CPU overhead because the last term in Table 6
is miniscule compared to the term W+R. Of course this analysis is
very sensitive to P and one must design the data base so that P
takes on a very small value.

The striking thing about these estimates is that degree 2 and degree
3 seem to have similar computational overhead which seems to be
substantially larger than the overhead of degree 0 or I
consistency. We suspect that this conclusion would survive a more
careful study of the problem.

Gmmdarity of locks and degrees of consistency 391

ISSUE l DEGREE 0] DEGREE I] DEGREE 2 I DEGREE 3
.

COMMITTED
DATA

DIRTY
DATA

LOCK
PROTOCOL

TRANSACTION
STRUCTURE

WRITES ARE
COMMITTED
IMMEDIATELY

YOU DONIT
UPDATE DIRTY
DATA

WRITES ARE
COM M ITTED
AT EOT

0 AND NO ONE
ELSE UPDATES
YOUR DIRTY
DATA

SAME AS 1

0, I AND YOU
DON'T READ
DIRTY DATA

SET SHORT
EXCL. LOCKS
ON ANY DAT A
YOU WRITE

WELL FORMED
WRT WRITES

SAME AS 1

0,1 ,2 AND
NO ONE ELSE
DIRTIES DATA
YOU READ

SET LONG
EXCL. LOCKS
ON ANY DATA
YOU WRITE

(WELL FORMED

AND 2 PHASE)
WRT WRITES

I AND SET SHORT
SHARE LOCKS
ON ANY DATA
YOU READ

WELL FORMED

(AND 2 PHASE
WRT WRITES)

CONCURRENCY GREATEST : GREAT: MEDIUM:
ONLY WAIT ONLY WAIT ALSO WAIT FOR
FOR SHORT FOR WRITE READ LOCKS
WRITE LOCKS LOCKS

.

OVERHEAD LEAST: SMALL: MEDIUM:
ONLY SET ONLY SET SET BOTH KINDS
SHORT WRITE WRITE LOCKS OF LOCKS BUT
LOCKS NEED NOT STORE

SHORT LOCKS
. J

TRANSACT- CAN NOT UNDO
ION BACKUP WITHOUT

CASCADING TO
OT HE RS

.

PROTECTION
PROVIDED

LETS OTHERS
RUN HIGHER
CONSISTENC Y

APPLY LOG
IN ORDER OF
ARRIVAL

SYSTEM
RECOVERY

TECHNIQUE

UN-DO ALL
INCOMPLETE
TRANSACTIONS
IN ANY ORDER

0 AND CAN'T
LOSE WRITES

UN-DO ANY
INCO~PLE~
TRANSACTIONS
IN ANY ORDER

0,1 AND CAN'T
READ BAD DATA
ITEMS

APPLY LOG SAME AS I: BUT
IN < ORDER RESULT IS SAME

AS SOME SCHEDULE

W- >W W- >W
W->R

DEPENDENCIES NONE

ORDERING NONE < IS AN << IS AN
ORDERING OF ORDERING OF
THE TRANS- THE TRANS-
ACTIONS ACTIONS

I AND SET LONG
SHARE LOCKS
ON ANY DATA
YOU READ

WELL FORMED
AND TWO PHASE

LOWEST:
ANY DATA
TOUCHED IS
LOCKED TO ROT

HIGHEST :
SET AND STORE
BOTH KINDS OF
LOC KS

SAME AS 2

0, 1,2 AND CAN' T
READ BAD DATA
RELATIONSHIPS

2 AND SCHEDULE
IS S ER IAL

W->W
W->R
R->W

<<< IS AN
ORDERING OF
THE TRANS-
ACT IONS

............................. £ ...

Table 7. Summary of consistency degrees.

392 J.N. Gray, R.A. Lorie, G.R. Putzolu and J.L. Traiger

II!. LOCK GRANULARITY AND DEGREES OF CONSISTENCY IN EXISTING
SYSTEMS:

IMS/VS with the program isolation feature [2] has a two level lock
hierarchy: segment types (sets of records), and segment instances
(records) within a segment type. Segment types may be locked in
EXCLUSIVE (E) mode (which corresponds to our exclusive (x) mode) or
in EXPRESS READ (R) , RETRIEVE (G) , or UPDATE (U) (each of which
correspond to our notion of intention (I) mode) [2, pages
3.18-3.27]. Segment instances can be locked in share or exclusive
mode. Segment type locks are requested at transaction initiation,
usually in intention mode. Segment instance locks are dynamically
set as the transaction proceeds. In addition IMS/~S has user
controlled share locks on segment instances (the =Q option) which
allow other read requests but not other ~Q or exclusive requests.
IMS/VS has no notion of S or SIX locks on segment types (which would
allow a scan of all members of a segment type concurrent with other
readers but without the overhead of locking each segment instance).
Since IMS/VS does not support S mode on segment types one need not
distinguish the two intention modes IS and IX (see the section
introducing IS and IX modes). In general, IMS/VS has a notion of
intention mode and does implicit locking but does not recognize all
the modes described here. It uses a static two level lock tree.

IMS/VS with the program isolation feature basically provides degree
2 consistency. However degree 1 consistency can be obtained on a
segment type basis in a PCB (view) by specifying the EXPRESS READ
option for that segment. Similarly degree 3 consistency can be
obtained by specifying the EXCLUSIVE or UPDATE options. IMS/VS also
has the user controlled share locks discusseH above which a program
can request on selected segment instances to obtain additional
consistency over the degree I or 2 consistency provided by the
system.

IMS/VS without the program isolation feature (and also the previous
version of IMS namely IMS/2) doesn't have a lock hierarchy since
locking is done only on a segment type basis. It provides degree I
consistency with degree 3 consistency obtainable for a segment type
in a view by specifying the EXCLUSIVE option. User controlled
locking is also provided on a limited basis via the HOLD option.

DMS 1100 has a two level lock hierarchy [q]: areas and pages within
areas. Areas may be locked in one of seven modes when they are
OPENed: EXCLUSIVE RETRIEVAL (which corresponds to our notion of
exclusive mode), PROTECTED UPDATE (which corresponds to our notion
of share and intention exclusive mode), PROTECTED RETRIEVAL (which
we call share mode), UPDATE (which corresponds to our intention
exclusive mode), and RETRIEVAL (which is our intention share mode).
Given this transliteration, the compatibility matrix displayed in
Table 1 is identical to the compatibility matrix of DMS 1100 [3,
page 3.59]. However, DMS 1100 sets only exclusive locks on pages
within areas (short term share locks are invisibly set during
internal pointer following). Further, even if a transaction locks
an area in exclusive mode, DMS 1100 continues to set exclusive locks
(and internal share locks) on the pages in the area, despite the
fact that an exclusive lock on an area precludes reads or updates of
the area by other transactions. Similar observations apply to the
DMS 1100 implementation of S and SIX modes. In general, DMS 1100
recognizes all the modes described here and uses intention modes to
detect conflicts but does not utilize implicit locking. It uses a
static two level lock tree.

Granularity o flocks and degrees o f consistency 393

DMS 1100 provides level 2 consistency by setting exclusive locks on
the modified pages and and a temporary lock on the page
corresponding to the page which is "current of run unit". The
temporary lock is released when the "current of run unit" is moved.
In addition a run-unit can obtain additional locks via an explicit
K~P command.

The ideas presented were developed in the process of designing and
implementing an experimental data base system at the IBM San Jose
Research Laboratory. (We wish to emphasize that this system is a
vehicle for research in data base architecture, and does not
indicate plans for future IBN products.) R subsystem which provides
the modes of locks herein described, plus the necessary logic to
schedule requests and conversions, and to detect and resolve
deadlocks has been implemented as one component of the data
manager. The lock subsystem is in turn used by the data manager to
automatically lock the nodes of its lock graph (see Figure 12).
Users can be unaware of these lock protocols beyond the verbs "begin
transaction" and "end transaction".

The data base is broken into several storage areas. Each area
contains a set of relations (files), their indices, and their
tuples(records) along with a catalog of the area. Each tuple has a
unique tuple identifier (data base key) which can be used to quickly
(directly) address the tuple. Each tuple identifier maps to a set of
field values. All tuples are stored together in an area-wide heap
to allow physical clustering of tuples from different relations.
The unused slots in this heap are represented by an area-wide pool
of free tuple identifiers (i.e. identifiers not aliocated to any
relation). Each tuple "belongs" to a unique \relation, and all
tuples in a relation have the same number and type of fields. One
may construct an index on any sub~et of the fields of a relation.
Tuple identifiers give fast direct access to tuples, while indices
give fast associative access to field values and to their
corresponding tuples. Each key value in an index is made a lockable
object in order to solve the problem of "phantoms" [1] without
locking the entire index. We do not explicitly lock individual
fields or whole indices so those nodes appear in Figure 12 only for
pedagogical reasons. Figure 12 gives only the "logical" lock graph;
there is also a graph for physical page locks and for other low
level resources.

Rs can be seen, Figure 12 is not a tree. Heavy use is made of the
techniques mentioned in the section on locking DAG's. For example,
one can read via tuple identifier without setting any index locks
but to lock a field for update its tuple identifier and the old and
new index key values cowering the updated field must be locked in X
mode. Further, the tree is not static, since data base keys are
dynamically allocated to relations: field values dynamically enter,
move around in, and leave index value intervals when records are
inserted, updated and deleted; relations and indices are dynamically
created and destroyed within areas; and areas are dynamically
allocated. The implementation of such operations observes the lock
protocol presented in the section on dynamic graphs: when a node
changes parents, all old and new parents must be held (explicitly or
implicitly) in intention exclusive mode and the n~de to be moved
must be held in exclusive mode.

The described system supports concurrently consistency degrees 1,2
and 3 which can be specified on a transaction basis. In addition
share locks on individual tuples can be acquired by the user.

I!

394 J.N. Gray R.A. Lorie, G.R. Putzolu and J.L. Traiger

DATA BASE

I
I

AREAS

I
I
I

RELATIONS
I
I

I
IN DICE S

I
I

INDEX KEY
INTERVALS

FREE
TUPLE

IDENTIFIERS

I
I

UN-INDEXED
FIELDS

I
I
I

I
I

ALLOCATED
TU PL E

IDENTIFIERS
I

I I
I I

INDEXED
FIELDS

Figure 12. ~ lock graph.

ACKNOWLEDGMENT

We gratefully acknowledge many helpful discussions with Phil Macri,
Jim Mehl and Brad Wade on how locking works in existing systems and
how these results might be better presented. We are especially
indebted to Paul McJones in this regard.

[i]

[2]

[3]

REFERENCES

K.P. Eswaran, J.N. Gray, R.A. Lorie, I.L. Traiger, On the
Notions of Consistency and Predicate Locks, technical Report
RJ.I~87, IBM Research Laboratory, San Jose, Ca., Nov. 1974. (to
appear CACM).

Information Management System Virtual Storage (I~S/VS).
Application Design Guide, Form No. SH20-9025-2, IBM
1975.

System
corp. ,

UNIVAC 1100 Series Data Management System (DMS 1100). ANSI
COBOL Field Data Manipulation Language. Order No. UP7908-2,
Sperry Rand Corp., May 1973.

