
Mark Richards

Microservices
AntiPatterns
and Pitfalls

http://www.oreilly.com/programming/newsletter

Mark Richards

Microservices AntiPatterns
and Pitfalls

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96331-9

[LSI]

Microservices Antipatterns and Pitfalls
by Mark Richards

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Foster
Production Editor: Melanie Yarbrough
Copyeditor: Christina Edwards
Proofreader: Amanda Kersey

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

July 2016: First Edition

Revision History for the First Edition
2016-07-06: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Microservices
AntiPatterns and Pitfalls, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Preface. v

1. Data-Driven Migration AntiPattern. 1
Too Many Data Migrations 2
Functionality First, Data Last 4

2. The Timeout AntiPattern. 7
Using Timeout Values 8
Using the Circuit Breaker Pattern 9

3. The “I Was Taught to Share” AntiPattern. 13
Too Many Dependencies 14
Techniques for Sharing Code 15

4. Reach-in Reporting AntiPattern. 19
Issues with Microservices Reporting 19
Asynchronous Event Pushing 22

5. Grains of Sand Pitfall. 25
Analyzing Service Scope and Function 26
Analyzing Database Transactions 28
Analyzing Service Choreography 29

6. Developer Without a Cause Pitfall. 33
Making the Wrong Decisions 33
Understanding Business Drivers 35

iii

7. Jump on the Bandwagon Pitfall. 37
Advantages and Disadvantages 37
Matching Business Needs 40
Other Architecture Patterns 41

8. The Static Contract Pitfall. 43
Changing a Contract 44
Header Versioning 45
Schema Versioning 46

9. Are We There Yet Pitfall. 49
Measuring Latency 49
Comparing Protocols 50

10. Give It a Rest Pitfall. 51
Asynchronous Requests 52
Broadcast Capabilities 53
Transacted Requests 54

iv | Table of Contents

Preface

In late 2006 service-oriented architecture (SOA) was all the craze.
Companies were jumping on the bandwagon and embracing SOA
before fully understanding the advantages and disadvantages of this
very complex architecture style. Those companies that embarked on
SOA projects often found constant struggles with service granular‐
ity, performance, data migrations, and in particular the organiza‐
tional change that comes about with SOA. As a result, many
companies either abandoned their SOA efforts or built hybrid archi‐
tectures that did not fulfill all of the promises of SOA.

Today we are poised to repeat this same experience with a relatively
new architecture style known as microservices. Microservices is a
current trend in the industry right now, and like SOA back in the
mid 2000s, is all the craze. As a result, many companies are looking
toward this architecture style to leverage the benefits provided by
microservices such as ease of testing, fast and easy deployments,
fine-grained scalability, modularity, and overall agility. However, like
SOA, companies developing microservices are finding themselves
struggling with things like service granularity, data migration,
organizational change, and distributed processing challenges.

As with any new technology, architecture style, or practice, antipat‐
terns, and pitfalls usually emerge as you learn more about it and
experience the many “lessons learned” during the process. While
antipatterns and pitfalls may seem like the same thing, there is a
subtle difference between them. Andrew Koenig defines an antipat‐
tern as something that seems like a good idea when you begin, but
leads you into trouble, whereas my friend Neal Ford defines a pitfall
as something that was never a good idea, even from the start. This is

v

an important distinction because you may not experience the nega‐
tive results from an antipattern until you are well into the develop‐
ment lifecycle or even well into production, whereas with a pitfall
you usually find out you are headed down the wrong path relatively
quickly.

This report will introduce several of the more common antipatterns
and pitfalls that emerge when using microservices. My goal with this
report is to help you avoid costly mistakes by not only helping you
understand when an antipattern or pitfall is occurring, but more
importantly helping you understand the techniques and practices
for avoiding these antipatterns and pitfalls.

While I don’t have time in this report to cover the details of all of the
various antipatterns and pitfalls you might encounter with micro‐
services, I do cover some of the more common ones. These include
antipatterns and pitfalls related to service granularity (Chapter 5,
Grains of Sand Pitfall), data migration (Chapter 1, Data-Driven
Migration AntiPattern), remote access latency (Chapter 9, Are We
There Yet Pitfall), reporting (Chapter 4, Reach-in Reporting AntiPat‐
tern), contract versioning (Chapter 8, The Static Contract Pitfall),
service responsiveness (Chapter 2, The Timeout AntiPattern), and
many others.

I recently recorded a video for O’Reilly called Microservices AntiPat‐
terns and Pitfalls: Learning to Avoid Costly Mistakes that contains the
complete set of antipatterns and pitfalls you may encounter when
using microservices, as well as a more in-depth look into each one.
Included in the video is a self-assessment workbook containing
analysis tasks and goals oriented around analyzing your current
application. You can use this assessment workbook to determine
whether you are experiencing any of the antipatterns and pitfalls
introduced in the video and ways to avoid them.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

vi | Preface

http://oreil.ly/29GVuDG
http://oreil.ly/29GVuDG

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

Safari® Books Online
Safari Books Online is an on-demand digital
library that delivers expert content in both
book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Safari Books Online offers a range of plans and pricing for enter‐
prise, government, education, and individuals.

Members have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from
publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress,
Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech‐
nology, and hundreds more. For more information about Safari
Books Online, please visit us online.

Preface | vii

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to acknowledge several people who helped make this
report a success. First, I would like to thank Matt Stine for the tech‐
nical review of the report. His technical knowledge and expertise in
microservices helped to not only validate the various technical
aspects of the report, but also to enhance certain chapters with addi‐
tional insight and material. Next, I would like to thank my friend
and partner-in-crime Neal Ford for helping me understand the dif‐
ferences between pitfalls and antipatterns and for also helping me
properly classify each of the antipatterns and pitfalls I wrote about
in this report. I would also like to thank the editorial staff at O’Reilly
for their help in making the authoring process as easy and painless
as possible. Finally, I would like to thank my wife and kids for
putting up with me on yet another project (albeit small) that takes
me away from what I like doing most—being with my family.

viii | Preface

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Data-Driven Migration AntiPattern

Microservices is about creating lots of small, distributed single-
purpose services, with each service owning its own data. This ser‐
vice and data coupling supports the notion of a bounded context
and a share-nothing architecture, where each service and its corre‐
sponding data are compartmentalized and completely independent
from all other services, exposing only a well-defined interface (the
contract). This bounded context is what allows for quick and easy
development, testing, and deployment with minimal dependencies.

The data-driven migration antipattern occurs mostly when you are
migrating from a monolithic application to a microservices architec‐
ture. The reason this is an antipattern is that it seems like a good
idea at the start to migrate both the service functionality and the
corresponding data together when creating microservices, but as
you will learn in this chapter, this will lead you down a bad path that
can result in high risk, excess cost, and additional migration effort.

There are two primary goals during any microservices conversion
effort. The first goal is to split the functionality of the monolithic
application into small, single-purpose services. The second goal is to
then migrate the monolithic data into small databases (or separate
schemas) owned by each service. Figure 1-1 shows what a typical
migration might look like when both the service code and the corre‐
sponding data are migrated at the same time.

1

Figure 1-1. Service and data migration

Notice there are three services created from the monolithic applica‐
tion along with three separate databases. This is a natural migration
process because you are creating that critical bounded context
between each service and its corresponding data. However, prob‐
lems start to arise with this common practice, thus leading you into
the data-driven migration antipattern.

Too Many Data Migrations
The main problem with this type of migration path is that you will
rarely get the granularity of each service right the first time. Know‐
ing it is always a good idea to start with a more coarse-grained ser‐
vice and split it up further if needed when you learn more about the
service, you may be frequently adjusting the granularity of your
services. Consider the migration illustrated in Figure 1-1, focusing
on the leftmost service. Let’s say after learning more about the ser‐
vice you discover it’s too coarse-grained and needs to be split up into
two smaller services. Alternatively, you may find that the two left‐
most services are too fine-grained and need to be consolidated. In
either case you are faced with two migration efforts—one for the
service functionality and another for the database. This scenario is
illustrated in Figure 1-2.

2 | Chapter 1: Data-Driven Migration AntiPattern

Figure 1-2. Extra data migration after service granularity adjustment

My good friend and fellow O’Reilly author Alan Beaulieu (Learning
SQL) once told me “Data is a corporate asset, not an application
asset.” Given Alan’s statement, you can gain an appreciation for the
risk involved and the concerns raised with continually migrating
data. Data migrations are complex and error-prone—much more so

Too Many Data Migrations | 3

than source code migrations. Optimally you want to migrate the
data for each service only once. Understanding the risks involved
with data migration and the importance of “data over functionality”
is the first step in avoiding this antipattern.

Functionality First, Data Last
The primary avoidance technique for this antipattern is to migrate
the functionality of the service first, and worry about the bounded
context between the service and the data later. Once you learn more
about the service you will likely find the need to adjust the level of
granularity through service consolidation or service splitting. After
you are satisfied that you have the level of granularity correct, then
migrate the data, thereby creating the much-needed bounded con‐
text between the service and the data.

This technique is illustrated in Figure 1-3. Notice how all three serv‐
ices have been migrated, but are still connecting to the monolithic
data. This is perfectly fine for an interim solution, because now you
can learn more about how the service is used and what type of
requests will be handled by each service.

4 | Chapter 1: Data-Driven Migration AntiPattern

Figure 1-3. Migrate service functionality first, then data portion later

Functionality First, Data Last | 5

In Figure 1-3, notice how the service was found to be too coarse-
grained and was consequently split into two smaller services. Now
that the granularity is correct, the data can be migrated to create the
bounded context between the service and the corresponding data.
This technique avoids costly and repeated data migrations and
makes it easier to adjust the service granularity when needed. While
it is impossible to say how long to wait before migrating the data, it
is important to understand the consequences of this avoidance tech‐
nique—a poor bounded context. The time between when the service
is created and the data is finally migrated creates a data coupling
between services. This means that when the database schema is
changed, all services using that schema must be coordinated from a
change control and release standpoint, something you want to avoid
with the microservices architecture. However, this tradeoff is well
worth the reduced risk involved with avoiding multiple costly data‐
base migrations.

6 | Chapter 1: Data-Driven Migration AntiPattern

CHAPTER 2

The Timeout AntiPattern

Microservices is a distributed architecture, meaning all of the com‐
ponents (i.e., services) are deployed as separate applications and are
accessed remotely through some sort of remote access protocol. One
of the challenges of any distributed architecture is managing remote
process availability and responsiveness. Although service availability
and service responsiveness are both related to service communica‐
tion, they are two very different things. Service availability is the
ability of the service consumer to connect with the service and be
able to send it a request, as shown in Figure 2-1. Service responsive‐
ness, on the other hand, is the time it takes for the service to
respond to a given request once you’ve communicated with it.

Figure 2-1. Service availability vs. responsiveness

If the service consumer cannot connect with or talk to the service
(i.e., availability), the service consumer is usually immediately noti‐
fied within milliseconds, as Figure 2-1 shows. The service consumer
may choose to pass this error onto the client or retry the connection
several times before giving up and throwing some sort of connec‐
tion failure. However, assuming the service was reached and a

7

request was made, what happens if the service doesn’t respond? In
this case the service consumer can choose to wait indefinitely or lev‐
erage some sort of timeout value.

Using a timeout value for service responsiveness seems like a good
idea, but can lead you down a bad path known as the timeout anti-
pattern.

Using Timeout Values
You might be a bit confused at this point. After all, isn’t setting a
timeout value a good thing? Maybe, but in most cases it can lead you
down a bad path. Consider the example where you are making a ser‐
vice request to buy 1000 shares of Apple stock (AAPL). The very last
thing you want to do as the service consumer is time out the request
right when the service has successfully placed the trade and is about
to give you a confirmation number. You can try to resubmit the
trade, but you have to add significant complexity into your service
to determine if this is a new trade or a duplicate trade. Furthermore,
since you don’t have a confirmation number from the first trade it is
very difficult to know whether the trade was actually successful or
not.

So, given that you don’t want to time out the request too early, what
should the timeout value be? There are several techniques to address
this problem. The first is to calculate the database timeout within
the service and use that as a base for determining what the service
timeout should be. The second solution, which is by far the most
popular technique, is to calculate the maximum time under load and
double it, thereby giving you that extra buffer in the event it some‐
times takes longer.

Figure 2-2 illustrates this technique. Notice that on average the ser‐
vice responds within 2 seconds to place a trade. However, under
load the maximum time observed is 5 seconds. Therefore, using the
doubling technique, the timeout value for the service consumer
would be 10 seconds. Again, the intention with this technique is to
avoid timing out the request when in fact it was successful and was
in the process of sending you back the confirmation number.

8 | Chapter 2: The Timeout AntiPattern

Figure 2-2. Calculating a timeout value

It should be clear now why this approach is an antipattern. While
this seems like a perfectly logical solution to the timeout problem, it
causes every request from service consumers to have to wait 10 sec‐
onds just to find out the service is not responsive. Ten seconds is a
long time to wait for an error. In most cases users won’t wait more
than 2 to 3 seconds before hitting the submit button again or giving
up and closing the screen. There must be a better way to deal with
server responsiveness.

Using the Circuit Breaker Pattern
Rather than relying on timeout values for your remote service calls,
a better approach is to use something called the circuit breaker pat‐
tern. This software pattern works just like a circuit breaker in your
house. When it is closed, electricity flows through it, but once it is
open, no electricity can pass until the breaker is closed. Similarly, if a
software circuit breaker detects that a service is not responding, it
will open, rejecting requests to that service. Once the service
becomes responsive, the breaker will close, allowing requests
through.

Figure 2-3 illustrates how the circuit breaker pattern works. The cir‐
cuit breaker continually monitors the remote service, ensuring that
it is alive and responsive (more on that part later). While the service
remains responsive the breaker will be closed, allowing requests
through. If the remote service suddenly becomes unresponsive, the
circuit breaker opens, thus preventing requests from going through
until the service once again becomes responsive. However, unlike
the circuit breaker in your house, a software circuit breaker can con‐
tinue monitoring the service and close itself once the remote service
becomes responsive again.

Using the Circuit Breaker Pattern | 9

Figure 2-3. Circuit breaker pattern

Depending on the implementation, the service consumer will always
check with the circuit breaker first to see if it is open or closed. This
can also be done through an interceptor pattern so the service con‐
sumer doesn’t need to know the circuit breaker is in the request
path. In either case, the significant advantage of the circuit breaker
pattern over timeout values is that the service consumer knows right
away that the service has become unresponsive rather than having to
wait for the timeout value. In the prior example, if a circuit breaker
was used instead of the timeout value, the service consumer would
know within milliseconds that the trade-placement service was not
responsive rather than having to wait 10 seconds (10,000 milli‐
seconds) to get the same information.

Circuit breakers can monitor the remote service in several ways. The
simplest way is to do a simple heartbeat check on the remote service
(e.g., ping). While this is relatively easy and inexpensive, all it does is
tell the circuit breaker that the remote service is alive, but says noth‐
ing as to the responsiveness of the actual service request. To get bet‐
ter information about the responsiveness of the request you can use
synthetic transactions. A synthetic transaction is another monitor‐
ing technique circuit breakers can use where a fake transaction is
periodically sent to the service (e.g., once every 10 seconds). The
fake transaction performs all of the functionality required within
that service, allowing the circuit breaker to gain an accurate measure
of responsiveness. Synthetic transactions can be very tricky and dif‐
ficult to implement in that all parts of the application or system need
to know about the synthetic transaction. A third type of monitoring
is real-time user monitoring, where actual production transactions
are monitored for responsiveness. Once a threshold is reached, the
breaker moves into what is called a half-open state, where only a
certain number of transactions are let through (say 1 out of 10).

10 | Chapter 2: The Timeout AntiPattern

Once the service responsiveness goes back to normal, the breaker is
then closed, allowing all transactions through.

There are several open source implementations of the circuit
breaker pattern, including Hystrix from Netflix and a plethora of
GitHub implementations. The Akka framework includes a circuit
breaker implementation as part of the framework implemented
through the Akka CircuitBreaker class.

You can get more information about the circuit breaker pattern
through the following resources:

• Michael Nygard’s excellent book Release It!
• Martin Fowler’s circuit breaker blog post
• Microsoft MSDN library

Using the Circuit Breaker Pattern | 11

http://www.akka.io
http://martinfowler.com/bliki/CircuitBreaker.html
https://msdn.microsoft.com/en-us/library/dn589784.aspx

CHAPTER 3

The “I Was Taught to Share”
AntiPattern

Microservices is known as a “share-nothing” architecture. Pragmati‐
cally, I prefer to think of it as a “share-as-little-as-possible” architec‐
ture because there will always be some level of code that is shared
between microservices. For example, rather than having a security
service that is responsible for authentication and authorization, you
might have the source code and security functionality wrapped in a
JAR file named security.jar that all services use. Assuming security is
handled at the services level, this is generally a good practice because
it eliminates the need to make a remote call to a security service for
every request, thereby increasing both performance and reliability.

However, taken too far, you end up with a dependency nightmare as
illustrated in Figure 3-1, where every service is dependent on multi‐
ple custom shared libraries.

13

Figure 3-1. Sharing multiple custom libraries

This level of sharing not only breaks down the bounded context of
each service, but also introduces several issues, including overall
reliability, change control, testability, and deployment.

Too Many Dependencies
If you consider how most object-oriented software applications are
developed, it’s not hard to see the issues with sharing, particularly
when migrating from a monolithic layered architecture to a micro‐
services one. One of the things to strive for in most monolithic
applications is code reuse and sharing. Figure 3-2 illustrates the two
main artifacts (abstract classes and shared utilities) that end up
being shared in most monolithic layered architectures.

14 | Chapter 3: The “I Was Taught to Share” AntiPattern

Figure 3-2. Sharing inheritance structures and utility classes

While creating abstract classes and interfaces is a common practice
with most object-oriented programming languages, they get in the
way when trying to migrate modules to a microservices architecture.
The same goes with custom shared classes and utilities such as com‐
mon date or string utilities and calculation utilities. What do you do
with the code that needs to be shared by potentially hundreds of
services?

One of the primary goals of the microservices architecture style is to
share as little as possible. This helps preserve the bounded context of
each service, which is what gives you the ability to do quick testing
and deployment. With microservices it all boils down to change
control and dependencies. The more dependencies you have
between services, the harder it is to isolate service changes, making
it difficult to separately test and deploy individual services. Sharing
too much creates too many dependencies between services, resulting
in brittle systems that are very difficult to test and deploy.

Techniques for Sharing Code
It’s easy to say the best way to avoid this antipattern is simply not to
share code between services. But, as I stated at the start of this chap‐
ter, pragmatically there will always be some code that needs to be
shared. Where should that shared code go?

Techniques for Sharing Code | 15

Figure 3-3 illustrates the four basic techniques for addressing the
problem of code sharing: shared projects, shared libraries, replica‐
tion, and service consolidation.

Figure 3-3. Module-sharing techniques

Using a shared project forms a compile-time binding between com‐
mon source code that is located in a shared project and each service
project. While this makes it easy to change and develop software, it
is my least favorite sharing technique because it causes potential
issues and surprises during runtime, making applications less
robust. The main issue with the shared project technique is that of

16 | Chapter 3: The “I Was Taught to Share” AntiPattern

communication and control—it is difficult to know what shared
modules changed and why, and also hard to control whether you
want that particular change or not. Imagine being ready to release
your microservice just to find out someone made a breaking change
to a shared module, requiring you to change and retest your code
prior to deployment.

A better approach if you have to share code is to use a shared library
(e.g., .NET assembly or JAR file). This approach makes development
more difficult because for each change made to a module in a shared
library, the developer must first create the library, then restart the
service, and then retest. However, the advantage of the shared
library technique is that libraries can be versioned, providing better
control over the deployment and runtime behavior of a service. If a
change is made to a shared library and versioned, the service owner
can make decisions about when to incorporate that change.

A third technique that is common in a microservices architecture is
to violate the don’t-repeat-yourself (DRY) principle and replicate the
shared module across all services needing that particular functional‐
ity. While the replication technique may seem risky, it avoids
dependency sharing and preserves the bounded context of a service.
Problems arise with this technique when the replicated module
needs to be changed, particularly for a defect. In this case all services
need to change. Therefore, this technique is only really useful for
very stable shared modules that have little or no change.

A fourth technique that is sometimes possible is to use service con‐
solidation. Let’s say two or three services are all sharing some com‐
mon code, and those common modules frequently change. Since all
of the services must be tested and deployed with the common mod‐
ule change anyway, you might as well just consolidate the function‐
ality into a single service, thereby removing the dependent library.

One word of advice regarding shared libraries—avoid combining all
of your shared code into a single shared library like common.jar.
Using a common library makes it difficult to know whether you
need to incorporate the shared code and when. A better technique is
to separate your shared libraries into ones that have context. For
example, create context-based libraries like security.jar, persis‐
tence.jar, dateutils.jar, and so on. This separates code that doesn’t
change often from code that changes frequently, making it easier to

Techniques for Sharing Code | 17

determine whether or not to incorporate the change right away and
what the context of the change was.

18 | Chapter 3: The “I Was Taught to Share” AntiPattern

CHAPTER 4

Reach-in Reporting AntiPattern

With the microservices architecture style, services and the corre‐
sponding data are contained within a single bounded context,
meaning that the data is typically migrated to separate databases (or
schemas). While this works well for services, it plays havoc with
respect to reporting within a microservices architecture.

There are four main techniques for handling reporting in a micro‐
services architecture: the database pull model, HTTP pull model,
batch pull model, and finally the event-based push model. The first
three techniques pull data from each of the service databases, hence
the antipattern name “reach-in reporting.” Since the first three mod‐
els represent the problem associated with this antipattern, let’s take a
look at those techniques first to see why they lead you into trouble.

Issues with Microservices Reporting
The problem with reporting is two-fold: how do you obtain report‐
ing data in a timely manner and still maintain the bounded context
between the service and its data? Remember, the bounded context
within microservices includes the service and its corresponding
data, and it is critical to maintain it.

One of the ways reporting is typically handled in a microservices
architecture is to use what is known as the database pull model,
where a reporting service (or reporting requests) pulls the data
directly from the service databases. This technique is illustrated in
Figure 4-1.

19

Figure 4-1. Database pull-reporting model

Logically, the fastest and easiest way to get timely data is to access it
directly. While this may seem like a good idea at the time, it leads to
significant interdependencies between services and the reporting
service. This is a typical implementation of the shared database inte‐
gration style, which couples applications together through a shared
database. This means that the services no longer own their data. Any
service database schema change or database refactoring must
include reporting service modifications as well, breaking that
important bounded context between the service and the data.

The way to avoid the issue of data coupling is to use another techni‐
que called the HTTP pull model. With this model, rather than
accessing each service database directly, the reporting service makes
a restful HTTP call to each service, asking for its data. This model is
illustrated in Figure 4-2.

20 | Chapter 4: Reach-in Reporting AntiPattern

Figure 4-2. HTTP pull-reporting model

While this model preserves the bounded context of each service, it is
unfortunately too slow, particularly for complex reporting requests.
Furthermore, depending on the report being requested, the data vol‐
ume might be too large of a payload for a simple HTTP call.

A third option in response to the issues associated with the HTTP
pull model is to use the batch pull model illustrated in Figure 4-3.
Notice that this model uses a separate reporting database or data
warehouse that contains the aggregated and reduced reporting data.
The reporting database is usually populated through a batch job that
runs in the evening to extract all reporting data that has changed,
aggregate and reduce that data, and insert it into the reporting data‐
base or data warehouse.

Issues with Microservices Reporting | 21

Figure 4-3. Batch pull-reporting model

The batch pull model shares the same issue with the HTTP pull
model—they both implement the shared database integration style
—therefore breaking the bounded context of each service. If the ser‐
vice database schema changes, so must the batch data upload pro‐
cess.

Asynchronous Event Pushing
The solution for avoiding the reach-in reporting antipattern is to use
what is called an event-based push model. Sam Newman, in his book
Building Microservices, refers to this technique as a data pump. This
model, which is illustrated in Figure 4-4, relies on asynchronous
event processing to make sure the reporting database has the right
information as soon as possible.

22 | Chapter 4: Reach-in Reporting AntiPattern

Figure 4-4. Event-based push-reporting model

While it is true that the event-based push model is relatively com‐
plex to implement, it does preserve the bounded context of each ser‐
vice while at the same time ensuring a reasonable timeliness of data.
Like the batch pull model, this model also has a separate reporting
database owned by the reporting service. However, rather than a
batch process pulling data, each microservice asynchronously sends
its notable data updates (e.g., the data the reporting service needs) as
a separate event to a data-capture service, which then reduces the
data and updates the reporting database.

The event-based push model requires a contract between each
microservice and the data capture service for the data it is asynchro‐
nously sending, but that contract is separate from the database
schema owned by the service. However, the services are somewhat
coupled in that each service must know when to send what informa‐
tion for reporting purposes.

In the chart in Figure 4-5, you can see that the database pull model
maximizes on timeliness of data, but breaks the bounded context.
The HTTP pull model preserves the bounded context, but has issues
associated with timeouts and data volume. The batch pull model
turns out to be the least-desirable model out of the four options
because optimizes neither the bounded context nor the timeliness of

Asynchronous Event Pushing | 23

data. Only the event-based push model maximizes both the boun‐
ded context of each service and the timeliness of reporting data.

Figure 4-5. Comparing reporting models

24 | Chapter 4: Reach-in Reporting AntiPattern

CHAPTER 5

Grains of Sand Pitfall

Perhaps one of the biggest challenges architects and developers face
when creating applications using a microservices architecture is ser‐
vice granularity. How big should a service be? How small should it
be? Choosing the right level of granularity for your services is criti‐
cal to the success of any microservices effort. Service granularity can
impact performance, robustness, reliability, change control, testabil‐
ity, and even deployment.

The grains of sand pitfall occurs when architects and developers cre‐
ate services that are too fined-grained. Wait—isn’t that why it’s called
microservices in the first place? The word “micro” implies that a ser‐
vice should be very small, but how small is “small”?

One of the primary reasons this pitfall occurs is because developers
often confuse a service with a class. Too many times I’ve seen devel‐
opment teams create services by thinking that the implementation
class they’re writing is actually the service. Nothing could be further
from the truth.

A service should always be thought of as a service component. A ser‐
vice component is a component of the architecture that performs a
specific function in the system. The service component should have
a clear and concise roles and responsibility statement and have a
well-defined set of operations. It is up to the developer to decide
how the service component should be implemented and how many
implementation classes are needed for the service.

25

As Figure 5-1 shows, a service component is implemented through
one or more modules (e.g., Java classes). Implementing a service
component using a one-to-one relationship between a module and a
service component not only lends itself toward components that are
too fine-grained, it also leads to poor programming practices as
well. Services implemented through a single class tend to have
classes that are too big and carry too much responsibility, making
them hard to maintain and test.

Figure 5-1. Relationship between modules and a service

The number of implementation classes should not be a defining
characteristic for determining the granularity of a service. Some
services may only need a single class file to implement all of the
business functionality, whereas others may need six or more classes.

If the number of implementation classes has no impact on the gran‐
ularity of a service, then what does? Fortunately, there are three
basic tests you can use to determine the right level of granularity for
your services: the service scope and functionality, the need for data‐
base transactions, and finally the level of service choreography.

Analyzing Service Scope and Function
The first way to determine whether your services have the right level
of granularity is to analyze the scope and function of the service.
What does the service do? What are its operations? Documenting or
verbally stating the service scope and function is a great way to
determine if the service is doing too much. Using words like “and”
and “in addition” is usually a good indicator that the service is prob‐
ably doing too much.

Cohesion also plays a role with regards to the service scope and
function. Cohesion is defined as the degree and manner to which

26 | Chapter 5: Grains of Sand Pitfall

the operations of the service are interrelated. You want to strive for
strong cohesion within your services. For example, let’s say you have
a customer service with the following operations:

• add_customer
• update_customer
• get_customer
• notify_customer
• record_customer_comments
• get_customer_comments

In this example the first three operations are interrelated as they all
pertain to maintaining and retrieving customer information. How‐
ever, the last three (notify_customer, record_customer_comments,
and get_customer_comments) do not relate to basic CRUD opera‐
tions on basic customer data. In analyzing the level of cohesion of
the operations in this service, it becomes clear that the original ser‐
vice should perhaps be split into three separate services (customer
maintenance, customer notification, and customer comments).

Figure 5-2 illustrates the point that, in general, when analyzing the
service scope and function you will likely find that your services are
too coarse-grained and you will move toward services that are more
fine-grained.

Figure 5-2. Impact of analyzing service functionality and scope

Sam Newman offers some good solid advice in this area—start out
more coarse-grained and move to fine-grained as you learn more
about the service. Following this advice will help you get started in
defining your service components without having to worry so much
about the granularity right away.

Analyzing Service Scope and Function | 27

While analyzing the service scope and functionality is a good start,
you don’t want to stop there. After looking at the service scope, you
need to then analyze your database transaction needs.

Analyzing Database Transactions
Another test for validating the level of service granularity is the need
for database transactions for certain operations. Database transac‐
tions are more formally referred to as ACID transactions (atomicity,
consistency, isolation, and durability). ACID transactions coordi‐
nate multiple database updates into a single unit of work. The data‐
base updates are either committed as a whole unit or rolled back if
an error condition occurs.

Because services in a microservices architecture are distributed and
deployed as separate applications, it is extremely difficult to main‐
tain an ACID transaction between two or more remote services. For
this reason, microservices architectures generally rely on a techni‐
que known as BASE transactions (basic availability, soft state, and
eventual consistency). Regardless, there will usually be times where
you do require an ACID transaction for certain business operations.
If you find you are constantly battling issues surrounding ACID vs.
BASE transactions and you need to coordinate multiple updates,
chances are you have made your services too fine-grained.

When analyzing your transaction needs and find that you can’t live
with eventual consistency you will generally move from fine-grained
services to more coarse-grained ones, thereby keeping multiple
updates coordinated within a single service context, as illustrated in
Figure 5-3.

28 | Chapter 5: Grains of Sand Pitfall

Figure 5-3. Impact of analyzing database transactions

Notice that from an ACID transaction standpoint it doesn’t matter
whether you consolidate the separate databases or keep them as
individual ones. Generally you will want to consolidate the data‐
bases as well, but this is not a requirement to maintain an ACID
transaction (assuming the databases and the transaction manager
you are using support XA—e.g., two-phase commit—transactions).

Once you have analyzed your transaction needs, it’s time to move on
to the third test, service choreography.

Analyzing Service Choreography
A third test you can use to validate the level of service granularity
is service choreography. Service choreography refers to the commu‐
nication between services, also commonly referred to as inter-
service communication. Service choreography is generally
something you want to be careful of within in a microservices archi‐
tecture. First of all, it decreases the overall performance of your
application since each call to another service is a remote call. For
example, assuming it takes 100 milliseconds to make a restful call to
another service, making five remote service calls is a half a second
spent just in remote access time.

The other issue with too much service choreography is that it can
impact the overall reliability and robustness of your system. The
more remote calls you make for a single business request, the better
the chances are that one of those remote calls will fail or time out.

Analyzing Service Choreography | 29

If you find you are having to communicate with too many services
to complete single business requests, then you’ve probably made
your services too fine-grained. When analyzing the level of service
choreography, you will generally move from fine-grained services to
ones that are more coarse-grained, as illustrated in Figure 5-4.

30 | Chapter 5: Grains of Sand Pitfall

Figure 5-4. Impact of analyzing service choreography

By consolidating services and moving to more coarse-grained serv‐
ices you can improve performance and increase the overall reliabil‐
ity and robustness of your applications. You also remove

Analyzing Service Choreography | 31

dependencies between services, allowing for better change control,
testing, and deployment.

The other approach when dealing with service choreography to help
overcome the performance and reliability issues is to leverage asyn‐
chronous parallel processing combined with reactive architecture
techniques for error handling. Executing multiple requests at the
same time increases overall responsiveness, allowing you to coordi‐
nate multiple services in a single business request in a timely fash‐
ion. The key point here is to understand and analyze the trade-offs
associated with service choreography to ensure both sufficient
responsiveness to the user and sufficient overall reliability of your
system.

32 | Chapter 5: Grains of Sand Pitfall

CHAPTER 6

Developer Without a Cause Pitfall

I first saw James Dean in the movie Rebel Without a Cause when I
was just a young lad, but I still remember everything about the
movie. When thinking about a name for this antipattern I immedi‐
ately thought of James Dean—a troubled young man who made
decisions for the wrong reasons. Perfect.

I have observed more times that I can count architects and develop‐
ers making decisions about various aspects of microservices, partic‐
ularly with regards to service granularity and devops tools, for all
the wrong reasons. It all boils down to tradeoffs. Rich Hickey says
“Programmers know the benefits of everything and the tradeoffs of
nothing.” My friend Neal Ford likes to follow up on Rich’s quote by
saying “Architects must understand both.” I maintain that develop‐
ers should know both as well.

Making the Wrong Decisions
Figure 6-1 illustrates one common scenario where services are dis‐
covered to be too fine-grained, therefore impacting performance
and overall reliability due to the amount of interservice communica‐
tion between them. In this scenario, the developer or architect
makes the decision that these services should be consolidated into a
single, more coarse-grained service to address the performance and
reliability issues.

33

Figure 6-1. Moving from fine-grained to coarse-grained

While this seems like a reasonable decision, the tradeoff of doing
this is ignored. Deployment, change control, and testing are all
impacted by moving to a single coarse-grained service. The question
is, what is most important?

Consider the example illustrated in Figure 6-2 where the reverse sit‐
uation occurs. In this scenario services are too coarse-grained,
therefore impacting the overall testing effort and coordination for
deployment. In this case the architect or developer makes the deci‐
sion that the service should be split up into smaller services to
reduce the scope of each service, therefore making them easier to
test and deploy.

Figure 6-2. Moving from coarse-grained to fine-grained

While we might applaud the architect or developer for making this
decision, the tradeoffs are once again forgotten. While services are
certainly easier to test and deploy with this change, the application
suddenly experiences issues with performance and reliability due to
an increase in service choreography. Which is more important?

34 | Chapter 6: Developer Without a Cause Pitfall

Understanding Business Drivers
Understanding the business drivers behind choosing microservices
is the key to avoiding this pitfall. Every architect and developer on
the team should know the answer to each of the following questions:

• Why are you doing microservices?
• What are the primary business drivers?
• What architecture characteristics are most important?

Using deployability, performance, robustness, and scalability as the
primary architecture characteristics, consider the following scenar‐
ios where the business driver is known. Notice how the business
drivers are what drive the decision regarding service consolidation
or service splitting, not the characteristics themselves.

Scenario 1: The reason for moving to microservices is to achieve
better time to market via an effective deployment pipeline.

In this scenario the deployability of each service outweighs perfor‐
mance, reliability, and scalability, so with this business driver you
will tend to create more finer-grained services, trading off a poten‐
tial increase in service choreography (and consequently impacts on
performance and reliability). Referring back to Figure 6-1, given this
driver the developer would have actually made the wrong decision
to consolidate services.

Scenario 2: The reason for moving to microservices is to increase
the overall reliability and robustness of the application.

This scenario is a common reason for companies moving from
monolithic applications to a microservices architecture, primarily
due to issues with monolithic architectures surrounding tight cou‐
pling and hence brittle applications. In this scenario the business
driver clearly states the need for reliability and robustness, meaning
that you would likely trade off ease of testing and deployment for
better reliability and robustness, therefore favoring more coarse-
grained services rather than finer-grained ones.

One technique I frequently use is to write the business drivers in big
red letters on the top of the common team whiteboard as illustrated
in Figure 6-3. Then, anytime there is a decision on service granular‐
ity or tool selection, the team can always look up, refer to the white‐
board, and say “oh, yeah, that’s right. Okay, let’s keep the services

Understanding Business Drivers | 35

fine-grained and figure out another way to address the performance
and reliability issues.”

Figure 6-3. Put business drivers on the whiteboard

36 | Chapter 6: Developer Without a Cause Pitfall

CHAPTER 7

Jump on the Bandwagon Pitfall

You must embrace microservices. It’s undeniably the latest trend in
the industry, everyone else is doing it, and besides, it’s great to have
on your resume.

The jump on the bandwagon pitfall is all about embracing microser‐
vices before analyzing your business needs, business drivers, and
overall organizational structure and technology environment. While
the microservices architecture is a very powerful and popular archi‐
tecture style, it’s not suited for every application or environment.

You can easily avoid this pitfall by first understanding the advan‐
tages and disadvantages of microservices. Then, once you’ve gained
a full understanding of what microservices is all about, you can
match your business needs and goals to the architectural character‐
istics to determine if microservices is a fit for your situation and
organization. You can also avoid this pitfall by learning more about
other architecture patterns that may be a better fit for your situation.

Advantages and Disadvantages
The first step in avoiding this pitfall is to understand the advantages
and disadvantages of the microservices architecture style. The fol‐
lowing are some of the more important advantages you should
know about:

Deployment
Ease of deployment is one of the primary drivers for moving to
a microservices architecture. Microservices are small, single-

37

purpose services deployed as separate applications. It is signifi‐
cantly easier and far less risk to deploy a single service than an
entire monolithic application. As a matter of fact, the whole
notion of continuous delivery is in part what prompted the cre‐
ation of the microservices architecture style.

Testability
Ease of testing is another big advantage of the microservices
architecture. The small scope of a service coupled with the lack
of shared dependencies with other services makes them rela‐
tively easy to test. However, perhaps one of the more significant
aspects of this characteristic is that with microservices you have
the ability to do more complete regression testing than with big‐
ger monolithic applications.

Change control
With microservices it is easier to control what gets changed
when adding new functionality. This is again due to the limited
service scope and the bounded context maintained by each ser‐
vice. Having small, independent services with few inter-
dependencies means less coordination for developing, testing,
and releasing changes.

Modularity
Microservices is a highly modular architecture style, which in
turn leads to highly agile applications. Agility is best defined as
the ability to respond quickly to change. The more modular an
architecture, the faster the ability to develop, test, and release
changes. The microservices architecture style is perhaps the
most modular architecture out of all the architecture patterns
due to the fine level of service granularity.

Scalability
Because microservices are fine-grained single-purpose services
that are separately deployed, this architecture style boasts the
highest level of scalability out of all the architecture patterns. It
is relatively easy to scale out a particular piece of functionality
with the microservices architecture style, in part due to the con‐
tainerized nature of the service topology and sophisticated
monitoring tools that allow you to start and stop services
dynamically through automation.

38 | Chapter 7: Jump on the Bandwagon Pitfall

While these advantages might convince you that microservices is the
best solution for your situation, consider the following list of disad‐
vantages.

Organizational change
Microservices requires organizational change at many levels.
Development teams must be restructured and reorganized into
more cross-functional teams so that small teams can own the
end-to-end technical aspects of the services they are responsible
for, including the user interface, backend processing, rules pro‐
cessing, and database processing and modeling. The traditional
corporate development team model of user interface teams,
backend development teams, and database engineers/adminis‐
trators simply doesn’t work with a microservices architecture. In
addition, the organizational structures involved with releasing
software must also change. With microservices it is not feasible
to use the traditional software development lifecycle procedures
that exist with monolithic, layered architectures. Rather, you
must embrace automation and leverage devops tools and practi‐
ces to develop an effective deployment pipeline for releasing
microservices.

Performance
Because every microservice is a separately deployed application,
communication to and from services, as well as communication
between services, is remote. Performance can be significantly
impacted depending on your environment and the amount of
service choreography you have in your microservices applica‐
tion. It is important to understand your remote access latency
(see “Are We There Yet Pitfall”) and also how much service
communication you will need (see Grains of Sand Pitfall) to
fully understand the performance impacts of using microservi‐
ces.

Reliability
For the same reasons that performance can be impacted by
using microservices, the same is true with overall reliability.
Because every request is a remote access call, you run the risk
that one of the services you need to communicate with to com‐
plete a single business request is not available or fails to
respond.

Advantages and Disadvantages | 39

DevOps
With the microservices architecture you can have anywhere
from hundreds to even thousands of microservices. Due to the
large number of services you might have, it is simply not feasi‐
ble to manually manage hundreds of concurrent release cycles
and deployments. Automation and continuous collaboration
between developers, testers, and release engineers is vital to the
success of any microservices endeavor. For this reason you need
to embrace various operations-related tools and practices,
which can be a very complicated task. There are about 12 differ‐
ent categories of operations-related tools and frameworks used
within a microservices architecture, and each of those categories
contains several dozen tool and product choices. For example,
there are monitoring tools, service registry and discovery tools,
deployment tools, and so on. Which ones are best for your envi‐
ronment and situation? The answer to this question requires
several months of research, proof-of-concept efforts, and trade‐
off analysis to determine the best combination of tools and
frameworks for your application and environment.

Matching Business Needs
After understanding the advantages and disadvantages of the micro‐
services architecture style, you must then analyze your business
needs and goals to determine if microservices is the right approach
for the problem you are trying to solve. When determining whether
microservices is a fit, ask yourself the following questions:

• What are my business and technical goals?
• What am I trying to accomplish with microservices?
• What are my current and foreseeable pain points?
• What are the primary driving architecture characteristics for

this application (e.g., performance, scalability, maintainability,
etc.)?

Answering these questions can help you match up your business
needs and goals with the advantages and disadvantages of microser‐
vices to determine if it is truly the right fit for your situation.

40 | Chapter 7: Jump on the Bandwagon Pitfall

Other Architecture Patterns
The microservices architecture style is a very powerful one that car‐
ries with it many advantages, but it isn’t the only architecture style
out there. Another thing you can do to avoid this pitfall is to under‐
stand and analyze other architecture patterns to determine if one of
those might be a better fit for your situation.

Besides microservices there are seven other common architecture
patterns you might want to consider for your application or system:

• Service-Based Architecture
• Service-Oriented Architecture
• Layered Architecture
• Microkernel Architecture
• Space-Based Architecture
• Event-Driven Architecture
• Pipeline Architecture

Of course, you don’t have to select one single architecture pattern
for your application. You can certainly combine patterns to create an
effective solution. Some examples are event-driven microservices,
event-based microkernel, layered space-based architecture, and
pipeline microkernel.

Use the following resources to learn more about other architecture
patterns:

• Software Architecture Fundamentals: Understanding the Basics
• Software Architecture Fundamentals: Beyond the Basics
• Software Architecture Fundamentals: Service-Based Architecture
• Software Architecture Patterns)
• Microservices vs. Service-Oriented Architecture

Other Architecture Patterns | 41

http://shop.oreilly.com/product/110000195.do
http://shop.oreilly.com/product/110000195.do
http://shop.oreilly.com/product/0636920042655.do
http://www.oreilly.com/programming/free/software-architecture-patterns.csp
http://www.oreilly.com/programming/free/microservices-vs-service-oriented-architecture.csp

CHAPTER 8

The Static Contract Pitfall

All microservices have contracts between the service consumers and
the microservice. A contract usually contains a schema specifying
the expected input and output data, and sometimes the name of the
operation (depending on how you are implementing your service).
Contracts are usually owned by the service, and can be represented
through formats like XML, JSON, or even a Java or C# object. And
of course, those contracts never change, right? Wrong.

The static contract pitfall occurs when you fail to version your ser‐
vice contracts from the very start, or even not at all. Contract ver‐
sioning is absolutely critical for not only avoiding breaking changes
(changing a contract and breaking all consumers using that con‐
tract), but also to maintain agility by supporting backward compati‐
bility.

Here’s an example that illustrates how you can get into trouble by
not versioning your contracts. Assume you have a microservice that
is accessed by three different clients (client 1, client 2, and client 3).
Client 1 would like to make a change to the service contract right
away. You check with client 2 and client 3 to see if they can accom‐
modate the change, and both clients inform you that it will take
weeks to implement that change due to other things going on with
those clients. Now you must inform client 1 that it will take weeks to
make that change because you need to coordinate the update with
clients 2 and 3. However, client 1 cannot wait weeks.

By providing versioning in your contracts, and hence providing
backward compatibility, you can now be more agile in terms of cli‐

43

ent 1’s request. Agility is defined as how fast you can respond to
change. If you properly versioned your contracts from the very start,
you could immediately respond to client 1’s request for the contract
change by simply creating a new version of the contract, say version
1.1. Clients 2 and 3 are both using version 1.0 of the contract, so
now you can implement the change right away without having to
wait for client 2 or client 3 to respond. In addition, you can make
the change without making what is called a “breaking change.”

There are two basic techniques for contract versioning: versioning at
the header level and versioning in the contract schema itself. In this
chapter I will cover each of these techniques in detail, but first let’s
look at an example.

Changing a Contract
To illustrate the problem with not versioning a contract I will use an
example of buying a certain number of shares of Apple common
stock (AAPL). The schema for this request might look something
like this:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "properties": {
 "acct": {"type": "number"},
 "cusip": {"type": "string"},
 "shares": {"type": "number", "minimum": 100}
 },
 "required": ["acct", "cusip", "shares"]
}

In this case to buy stock you must specify the brokerage account
(acct), the stock you wish to purchase in CUSIP (Committee on
Uniform Security Identification Procedures) format (cusip), and
finally the number of shares (shares), which must be greater than
100. All three fields are required.

The code to make a request to purchase 1000 shares of Apple stock
(CUSIP 037833100) for brokerage account 12345 using REST would
look like this:

POST /trade/buy
Accept: application/json
{ "acct": "12345",
 "cusip": "037833100",
 "shares": "1000" }

44 | Chapter 8: The Static Contract Pitfall

Now let’s say that the service changes its contract to accept a SEDOL
(Stock Exchange Daily Official List) rather than a CUSIP, which is
another industry standard way of identifying a particular instru‐
ment to be traded. Now the contract looks like this:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "properties": {
 "acct": {"type": "number"},
 "sedol": {"type": "string"},
 "shares": {"type": "number", "minimum": 100}
 },
 "required": ["acct", "sedol", "shares"]
}

This would be considered a breaking change in that the prior client
code will now fail because it is still using a CUSIP. What you need to
do is use versioning so that version 1 uses a CUSIP and version 2
uses a SEDOL to identify the stock being traded.

Header Versioning
The first technique for contract versioning is to put the contract ver‐
sion number in the header of the remote access protocol as illustra‐
ted in Figure 8-1. I like to refer to this as protocol-aware contract
versioning because the information about the version of the contract
you are using is contained within the header of the remote access
protocol (e.g., REST, SOAP, AMQP, JMS, MSMQ, etc.).

Figure 8-1. Header contract versioning

When using REST you can use what is called a vendor mime type to
specify the version of the contract you wish to use in the accept
header of the request:

POST /trade/buy
Accept: application/vnd.svc.trade.v2+json

Header Versioning | 45

By using the vendor mime type (vnd) in the accept header of the
URI you can specify the version number of the contract, thereby
directing the service to perform processing based on that contract
version number. Correspondingly, the service will need to parse the
accept header to determine the version number. One example of this
would be to use a regular expression to find the version as illustrated
below:

def version
 request.headers
 ["Accept"][/^application/vnd.svc.trade.v(d)/, 1].to_i
end

Unfortunately that is the easy part; the hard part is coding all of the
cyclomatic complexity into the service to provide conditional pro‐
cessing based on the contract version (e.g., if version 1 then... else if
version 2 then...). For this reason, we need some sort of version-
deprecation policy to control the level of cyclomatic complexity you
introduce into each service.

Using messaging you will need to supply the version number in the
property section of the message header. For JMS 2.0 that would look
something like this:

String msg = createJSON(
 "acct","12345",
 "sedol","2046251",
 "shares","1000")};

jmsContext.createProducer()
.setProperty("version", 2)
.send(queue, msg);

Each messaging standard will have its own way of setting this
header. The important thing to remember here is that regardless of
the messaging standard, the version property is a string value that
needs to match exactly with what the service is expecting, including
being case-sensitive. For this reason it’s generally not a good idea to
supply a default version if the version number cannot be found in
the header.

Schema Versioning
Another contract-versioning technique is adding the version num‐
ber to the actual schema itself. This technique is illustrated in
Figure 8-2. I usually refer to this technique as protocol-agnostic con‐

46 | Chapter 8: The Static Contract Pitfall

tract versioning because the version identification is completely inde‐
pendent of the remote access protocol. Nothing needs to be
specified in the headers of the remote access protocol in order to use
versioning.

Figure 8-2. Schema-based contract versioning

By using schema-based versioning, the schema used in the previous
example would look like this:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "properties": {
 "version": {"type": "integer"},
 "acct": {"type": "number"},
 "cusip": {"type": "string"},
 "sedol": {"type": "string"},
 "shares": {"type": "number", "minimum": 100}
 },
 "required": ["version", "acct", "shares"]
}

Notice that the the schema actually contains the version number
field (version) as an integer value. Because you only have one
schema now, you will need to add all of the combinations of possi‐
bilities to the schema. In the example above both the CUSIP and
SEDOL are added to the schema because that is what varies between
the versions.

The big advantage of this technique is that the schema (including
the version) is independent of the remote access protocol. This
means that the same exact schema can be used by multiple proto‐
cols. For example, the same schema can be used by REST and JMS
2.0 without any modifications to the remote access protocol headers:

POST /trade/buy
Accept: application/json
{ "version": "2",
 "acct": "12345",

Schema Versioning | 47

 "sedol": "2046251",
 "shares": "1000" }

String msg = createJSON(
 "version","2",
 "acct","12345",
 "sedol","2046251",
 "shares","1000")};
jmsContext.createProducer().send(queue, msg);

Unfortunately this technique has a lot of disadvantages associated
with it. First, you must parse the actual payload of the message to
extract the version number. This precludes using things like XML
appliances (e.g., DataPower) to do routing, and also might present
issues when trying to parse the schema (particularly with XML).
Secondly, the schemas can get quite complex, making it difficult to
do automated conversions of the schema (e.g., JSON to Java object).
Finally, custom validations may be required in the service to validate
the schema. In the example above, the service would have to validate
that either the CUSIP or SEDOL is filled in based on the version
number.

48 | Chapter 8: The Static Contract Pitfall

CHAPTER 9

Are We There Yet Pitfall

With the microservices architecture every service is deployed as a
separate application, meaning all of the communication to a micro‐
service from the client or API layer, as well as communication
between services, requires a remote call.

This pitfall occurs when you don’t know how long the remote access
call takes. You might assume the latency it around 50 milliseconds,
but have you ever measured it? Do you know what the average
latency is for your particular environment? Do you know what the
“long tail” latency is (e.g., 95, 99, 99.5 percentiles) for your environ‐
ment? Measuring both of these metrics is important, because even
with good average latency, bad long-tail latency can destroy you.

Measuring Latency
Measuring the remote access latency under load in your production
environment (or production-like environment) is critical for under‐
standing the performance profile of your application. For example,
let’s say a particular business request requires the coordination of
four microservices. Assuming that your remote access latency is 100
milliseconds, that particular business request would consume 500
milliseconds just in remote access latency alone (the initial request
plus four remote calls between services). That is a half a second of
request time without one single line of source code being executed
for the actual business request processing. Most applications simply
cannot absorb that sort of latency.

49

You might think the way to avoid this pitfall is to simply measure
and determine your average latency for your chosen remote access
protocol (e.g., REST). However, that only provides you with one
piece of information—the average latency of the particular remote
access protocol you are using. The other task is to investigate the
comparative latency using other remote access protocols such as
Java Message Service (JMS), Advanced Message Queuing Protocol
(AMQP), and Microsoft Message Queue (MSMQ).

Comparing Protocols
The comparative latency will vary greatly based on both your envi‐
ronment and the nature of the business request, so it is important to
establish these benchmarks on a variety of business requests with
different load profiles.

Figure 9-1. Comparing remote access latency

In looking at the hypothetical example in Figure 9-1 you notice that
AMQP is in fact almost twice as fast as REST. You can now leverage
this information to make intelligent choices as to which requests
should use which remote access protocol. For example, you may
choose to use REST for all communications from client requests to
your microservices and AMQP for all interservice communication
in order to increase performance within your application.

Performance is not the only consideration when selecting your
remote access protocol. As you will see in Chapter 10, you may want
to leverage messaging to provide additional capabilities to your
application as well.

50 | Chapter 9: Are We There Yet Pitfall

CHAPTER 10

Give It a Rest Pitfall

Using REST is by far the most popular choice for accessing micro‐
services and communicating between services. It’s so common a
choice that most of the popular template frameworks (e.g., DropWi‐
zard, Spring Boot, etc.) have REST access already built into the ser‐
vice templates. If REST is such a popular choice, then why is it a
pitfall? The give it a rest pitfall is about using REST as the only com‐
munication protocol and ignoring the power of messaging to
enhance your microservices architecture. For example, in a RESTful
microservices architecture, how would you handle asynchronous
communications? What about the need for broadcast capabilities?
What do you do if you need to manage multiple remote RESTful
calls within a transactional unit of work?

There are two types of messaging standards you should be aware of
when considering using messaging for your microservices architec‐
ture—platform-specific standards and platform-independent stand‐
ards. Platform-specific standards include the JMS for the Java
platform and MSMQ for the .NET platform. Both describe a stan‐
dard API used within the platform, independent of the messaging
provider (vendor) you are using. For example, in the Java platform
you can swap out brokers (e.g., ActiveMQ, HornetQ, etc.) with no
API changes. While the API is standard and remains the same, it’s
the underlying proprietary protocol between these brokers that is
different (which is why you need to have the same client JAR and
server JAR for the same vendor). With platform-standard messaging
protocols you are more concerned about portability via a common

51

API rather than the actual vendor product you are using or the wire-
level protocols used.

The current platform-independent standard is AMQP. AMQP,
which standardizes on the wire-level protocol, not the API. This
allows heterogeneous platforms to communicate with one another,
regardless of the vendor product you are using. A client using Rab‐
bitMQ, for example, can easily communicate with a StormMQ
server (assuming they are using the same protocol version). AMQP
using RabbitMQ is currently the most popular choice for messaging
within a microservices architecture, mostly because of its platform-
independent nature.

Asynchronous Requests
The first consideration for using messaging within your microservi‐
ces architecture is asynchronous communication. With asynchro‐
nous requests the service caller does not need to wait for a response
from the service when making a request, as illustrated in
Figure 10-1. This is sometimes referred to as “fire-and-forget” pro‐
cessing.

Figure 10-1. Asynchronous communications using messaging

Not only does asynchronous processing increase overall perfor‐
mance, but it also adds an element of reliability to your system. Per‐
formance is increased because callers don’t have to wait for a
response if none is needed. Through guaranteed delivery, the mes‐
sage broker ensures that the service will eventually receive the mes‐
sage. Reliability is increased because the caller doesn’t need to worry
about setting timeout values or using the circuit breaker pattern
when communicating with a service (see Chapter 2).

52 | Chapter 10: Give It a Rest Pitfall

Broadcast Capabilities
Another very powerful feature of messaging that is not available
within REST is the capability to broadcast a message to multiple
services. This is known in messaging as “publish-and-subscribe”
messaging, and usually involves topics and subscribers (depending
on the messaging standard you are using). Figure 10-2 illustrates the
basic behavior of broadcast messaging.

Figure 10-2. Broadcast capabilities using messaging

Broadcast messaging involves a message producer sending out the
same message to multiple message receivers (i.e., services). The mes‐
sage producer generally doesn’t know who is accepting the message
or what they are going to do with it. For example, a message pro‐
ducer may broadcast a message informing consumers about a stock
split for Apple stock (AAPL). The message producer only has the
responsibility of publishing a message to a topic (JMS), a fanout or
topic exchange (AMQP), or a multicast queue (MSMQ). The stock
split message may be picked up by any number of consumers, or no
consumers at all.

Broadcast Capabilities | 53

Transacted Requests
Messaging systems support the notion of transacted messages,
meaning that if messages are sent to multiple queues or topics
within the context of a transaction, the messages are not actually
received by the services until the sender does a commit on that
transaction. The service consumer sends a message to the first ser‐
vice and then sends another message to the second service, as illus‐
trated in Figure 10-3. Until the service consumer performs a
commit, those messages are held in the queues. Once the service
consumer performs a commit, both messages are then released.

Figure 10-3. Transaction capabilities of messaging

If the service consumer in Figure 10-3 sends a message to the first
queue, but then experiences some sort of error, the service con‐
sumer can perform a rollback on the messaging transaction, which
would effectively remove the message from the first queue.

Implementing this sort of transaction capability using REST would
be very difficult, essentially requiring the service consumer to issue
compensating requests to reverse the updates made by each request.
Therefore, it is a good idea to consider using transacted messaging
any time a service consumer needs to orchestrate multiple remote
requests.

54 | Chapter 10: Give It a Rest Pitfall

About the Author
Mark Richards is an experienced, hands-on software architect
involved in the architecture, design, and implementation of micro‐
services architectures, service-oriented architectures, and dis‐
tributed systems in J2EE and other technologies. He has been in the
software industry since 1983 and has significant experience and
expertise in application, integration, and enterprise architecture.
Mark served as the president of the New England Java Users Group
from 1999 through 2003. He is the author of numerous technical
books and videos, including the Software Architecture Fundamentals
Video Series (O’Reilly video), Enterprise Messaging (O’Reilly video),
Java Message Service, 2nd Edition (O’Reilly), and a contributing
author to 97 Things Every Software Architect Should Know (O’Reilly).
Mark has a master’s degree in computer science and numerous
architect and developer certifications from IBM, Sun, The Open
Group, and BEA. He is a regular conference speaker at the No Fluff
Just Stuff (NFJS) Symposium Series and has spoken at more than
100 conferences and user groups around the world on a variety of
enterprise-related technical topics. When he is not working, Mark
can usually be found teaching architecture fundamentals classes and
hiking in the White Mountains of New Hampshire and along the
Appalachian Trail.

http://www.wmrichards.com

	Additional Resources
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Data-Driven Migration AntiPattern
	Too Many Data Migrations
	Functionality First, Data Last

	Chapter 2. The Timeout AntiPattern
	Using Timeout Values
	Using the Circuit Breaker Pattern

	Chapter 3. The “I Was Taught to Share” AntiPattern
	Too Many Dependencies
	Techniques for Sharing Code

	Chapter 4. Reach-in Reporting AntiPattern
	Issues with Microservices Reporting
	Asynchronous Event Pushing

	Chapter 5. Grains of Sand Pitfall
	Analyzing Service Scope and Function
	Analyzing Database Transactions
	Analyzing Service Choreography

	Chapter 6. Developer Without a Cause Pitfall
	Making the Wrong Decisions
	Understanding Business Drivers

	Chapter 7. Jump on the Bandwagon Pitfall
	Advantages and Disadvantages
	Matching Business Needs
	Other Architecture Patterns

	Chapter 8. The Static Contract Pitfall
	Changing a Contract
	Header Versioning
	Schema Versioning

	Chapter 9. Are We There Yet Pitfall
	Measuring Latency
	Comparing Protocols

	Chapter 10. Give It a Rest Pitfall
	Asynchronous Requests
	Broadcast Capabilities
	Transacted Requests

	About the Author

