The C - K Interface

Introduction

This document defines the API for calling C functions from K and Ktfans from C.

The C functions that make up the API are listed in the table below, together wétcthe
tions in which they are described. C functions called from K must manage K arguments
and produce K results. C programs that call K functions must creatgufhents and

manage K results. The API functions for managing K data are listed in the fows5of

the table. The next-to-last row lists API functions for calling K functions andssiogeK

data from C. The mechanism for calling C functions from K is part of the K language and
therefore does not appear in this taklee Lhking to C Functions in K",

K <-> C Interface Functions

C Function Section Reference

gi,of ,gc,gs,gn, sp Creating K Atoms, Data Types

gtn , gnk, gp, gpn, gsk Creating K Lists

Ki , Kf, Kc, Ks Accessing and Modifying K Atoms

Kl , KF, KC KS, KK, kap Accessing and Modifying K Lists

dj ,jd Date Conversion

kerr Signalling a K Error

sdf , scd Registering K Event Loop Callbacks

ksk , sfn Calling K From C

cd,ci Managing Reference Counts
Compilation

If the main program is a K program, then the C functions that will be called from a K pro-
gram must be defined as entry points in an NT DLL (fidelsion.dll) or a Unix SO

(file extensionso). Otherwise, C functions to be called from K can also be defirw in

C main program. If there is a C main progrédman the K environment must alwaysibie

Property of Kx Systems, August 2001 1

The C Structure of the K Data Object

tialized before any K objects are created or K statements texe@ee “Cding K from
C".

Header and Lib files

These files can be found at www.kx.c@afk/connect They arek20.lib , K20.h and
K20x.h . IncludeK20x.h in your C files and uskK20.lib for linking. There are brie
comments irkK20.h andK20x.h summarizing the contents of this document.

The C Structure of the K Data Object

The internal format of K data objects is definedR0D.h by the recursive C-structure
namedK. The relevant members of the K structure, which are all ofittpe are

¢ — reference count of the object
t — the data type of the object
n — the number of data items when the object is a listotiodary

The structure members are primarily for reference. However, there are occasions when
you must manage the reference count (see “Managing Reference Counts”).

Data Types

The data types of K objects are represented by integer values, as follows.

6 — null atom
— dictionary

5
4 — symbol atom, i.esp(null-terminated character string
3 — character atom (unsigned)

2 —double atom

1 - integer atom

0 - general list whose items are other K objects

-1 —integer list

1. The API functiorsp internalizes its character string argument in K for optimized searches, but does not
create a K object.

2 The C - K Interface

http://www.kx.com/a/k/connect/

Creating K Atoms

-2 —double list
-3 — character list

-4 — symbol list, i.e. eaclem issp(null-terminated character stripg

Creating K Atoms

There are atomic constructors for each type of K afidmy are
gi — generate an integer atom, agiif8) orgi(i) forint i;
of — generate a floating-point atom, agf(3.5) orgf(a) fordouble a;
gc — generate a character atom, agcifc’) orgc(a) forunsigned char a;

gs — generate a symbol atom, agdtsp("price")) orgs(sp(s)) for
char*s ;

gn — generate the null atom, asgim() .

Creating K Lists

There are several list constructors. The most genegéai(ype,count) . For exam-
ple,gtn(-1,5) creates an integer list of length 5.Valid data types are 0, -1, -2, -3,
Valid counts are non-negative integers.

The construtor gnk creates a list from its arguments. It is useful for small Istgtjcu-
larly for building argument lists to K functions called from C. The firgfument tgnk is
the number of arguments that follow, which can be from zero to eight. It is alsmgfie le
of the result list. The remaining arguments become the items of the resulerinFod
example,

gnk(5,0i(2),0f(3.4),gc('a’),gs(sp("abc")),an());

is a list of 5 items; the first item is 2, the second is 3.4, and so on. Anemgother than
first can be any K ghbct.

Creating Character Lists
A K character list can be created from a null-teratéd string using theoostructayp, as
in

gp("abcd”);

Property of Kx Systems, August 2001

Accessing and Modifying K Atoms

The constructogpn is used to select a specific number of characters froifnadheof a C
character array or string, as in

gpn(cv,10);
The result is a Kharacter list ofength10.

Creating Dictionaries

A K dictionary is a list of type 5 consisting of symbol-value-attributes triples. Aodiaty
can be created with the API fuian gtn ; for examplegtn(5,10) is a dictionary with
10 entries.

The API functiongsk is a useful tool for creating symbol-value-(empty attributephetsi
For example,
gsk("abc",gf(2.71));

creates an item withymbol‘abc and value 2.71.

A dictionary can be treated as a general list (type 0) in C. Its type only matters ipaf: In
ticular, the access function for general lists, KK, can be used to accaspkaug dictio-
nary items (see “The Access Function for a &alList”) and the APIfunctionkap can

be used to append a symbol-value-attributes triple to a dictionary (se Appending to a
List”).

Accessing and Modifying K Atoms

If X is an integer atom thd€i(x) is a Cint .

If X is a floating-point atom thakf(x) is a Cdouble .
If X is a character atom thétt(x) is a Cunsigned char
If X is a string atom (symbol) thés(x) is a Cchar* .

The value of an atom can also be modified, as in
Ki(x)=2;

and
Ks(x)=sp("abc");

4 The C - K Interface

Accessing and Modifying K Lists

Accessing and Modifying K Lists

If X is a K integer list then thi th itemKI(X)]i] is aCint .

If X is a K floating-point list thethei th itemKF(x)[i] is a Cdouble .
If X is a K characteiidt then tha th itemKC(x)[i] is a Cunsigned cha
If X is a K string (symbol) list thith itemKS(x)[i] is a Cchar* .

A list item can also be modified, as in
KF(x)[2]=3.5;

The Access Function for a General List

The access function for a general listiénoted byKK. It applies to K objects of type 0.
Thei th item of a K object of type 0,KK(X)[i]] ,is also a K object. If, for example, that
item is an integer list, then the items of that item caadoessed by

KICKKX)ID]

Appending to a K List

The API function for appending to alist is kap . Use this function if the length of th
result is not known when the list is created. Start with an engtfyal in

x=gtn(-1,0);

which is an empty integer list. Whenever a new item to be appended is avaitgdaad it
to x with kap . For example, append the value dh€C a tox as follows.

kap(&x,&a);

If y is a general list (type 0) then the second amntrofkkap can be a pointer to anyher
K object; that K object becomes a new iteny of

Note that kap is item-to-list append, not list-to-list.

Calling K from C

K can be started from a C program, K scripts can be then be loaded and K ergreasi
be executed with results returned to C. The API function that do#ssal ksk .

Property of Kx Systems, August 2001 5

Calling K from C

First of all, K must be initialized wittsk("",0) . Note that this function always tehs
a result. If the result is meaningless, as itis in the K initialization stateinean be
immediately freed using the API functiod ; see “Managing Reference Counts”. You
will often see C statements, like the following, thall ksk and immediately free the
result withcd.

cd(ksk("™,0));

The character string argument can hold any valid K expression or command. For example,
r=ksk("2+3",0);

or
cd(ksk("\I script.k",0));

The character string can contain a K function definition or the name of an exishimg-K

tion, in which case the second argument must be K list of the function antpiriRer
example,

ksk("{x+y}",gnk(2,9i(2),gi(3)));

produces the K integer atom 5.

K Errors in ksk Evaluations

If an error occurs in an evaluation kgk , a variant of the null value is returned with the
error message in the structure membenadn. (If the null value is returned ankigs
member is 0, then the K expression executed correctly and returned the nudjafer

ple,
r=ksk(e,a);
if(6==r->t&&NULL!=r->n)printf("err: %s\n",r->n);

C calling K calling C

It is conceivable that an application has a C main program that calls K functions that, in
turn, call C functions. In this case it is not necessary to compile a separatethitdsy
linked into K. The functions to be called from K can be compiled with the pragram

and registeed as callbackwith K from the main program.

For example, suppose the C function is

6 The C - K Interface

Linking to C Functions in K

K (K x,K y){gi(Ki(x)+Ki(y));}
f can be regtered in Kusing the API factionsfn , as follows.
sfn("g".f,2);
whereg is the name by which is called from K and 2 is the number of argnts off .
The K function can now be calledth ksk .
ksk("g[2;3]",0);
or
ksk("g",gnk(2,9i(2),9i(3)));

Linking to C Functions in K

The primitive dyadic K functior2: defines links to C functions. A result ®f is a K
function that, when called, calls the C function to which it is linked. The lefinaegt to
2: names the DLL or SO file (with path) in which the C function is found.ritfe argu-
ment is a pair whose first item is a string holding the name of the C functiomhmse
second argument is the number of arguments to the C function.

For example, the C function

K f(Kx,KyX....}
is linked into K with
g:obj 2: ("f*; 2)
The K program that calls is namedy.

Itis up to the programmer to make sure that the arguments to the K functiortlgorrec
match the arguments of the C function.

Signalling a K Error in a C function

A K error can be signalled by a C function called from K withARe functiorkerr . For
example,

if(0>=x->t)return kerr("x must be an atom");

Property of Kx Systems, August 2001

Managing Reference Counts

The effect, which is to signal an error in K with the message “x must be an atdh&’, is
same as if the error was signalled by a K function. Note that it may be necessary to clean
up work-in-progress just before an error is signalses “Manging Reference Qmts”.

Whenkerr is called, K internally copies the text string to a K object for repotkiag
error. The function kerr returns 0. Consequently, if the C function thattssihe error
(say,f) is called by another C function, the calling function test whether an error was
reported if or a K object was returnedtiv 0==f1(...)

Managing Reference Counts

Reference counting is a standard technigue in data management taravedessary cop-
ies of data. A K object has reference count 1 when it is creatediftigendent use o
an object after the first use causes the reference count to be incremented. Veheneie
use of the object is no longer needed its reference count is decremented. Whéar-the
ence count becomes 0 the space occupied by the object oausbd.

An independent usef a K object is one that potentiallyalés to a reference count decre-
ment in the future. For example, suppose thjeaia is created and inserted in the object
b. This is the first use af and its reference count, which is 1, accounts for this use. Sup-
posea is now inserted in the objext This is an independent usexdiecause a future use

of ¢ can cause the reference courd @b be decremented, independent of what happens to
b. Consequently, the referenceunt o a must be incremented. The reference couat of
must be incremented eversifis inserted a second time iripbecause a future use lof

can now cause either iastce ofa to be replaced (and thereby have its referencat
decremented), independent of the other instance.

K manages objects created in K, including arguments passed to C functions from K. As
long as therare no independent uses of the arguments within the @@gmp nothing

must be done with regard to their reference counts. However, when K objectsadesl

in C programs, there are circumstances when you must manage the referernsef

those objets.

A K object created in C function called from K and returned as that functiesust mwill

be managed by K from the point of return onwards. Nothing must be done with regard to
the reference count of htidject as long as there are no other independent usies of
object. However, if temporary K objects that are not part of the result arewsziedtm

the function, or if a K result is under construction when an error is signalledhthesf

8 The C - K Interface

Managing Reference Counts

erence counts of those objects must be decremented before the function Tatirmef-
erence counts then decrease by 1 to 0, indicating that the storage allocated to these object:s
can be reused.

Similarly, when a K function is called from a C program, its result is returned to the C pro-
gram. The reference count of this result must be decrementedtidresult is ndonger
in use.

Reference counts are decremented by the ARdtifumcd ; for examplecd(x) decre-
ments the reference count of the Kexrtx.

Knowing when to decrement reference counts is analogous to knowing wiee tiem-
porary storage allocated withalloc() , but trickier becaused is recursive. For exam-
ple, every item in a general K list (type 0) is also a K object with its own rafereount.
If a K objectx is created and then inserted in the general K lshd if the reference
count ofy is subsquently decremented, theference count of will be decremented
automatically (and therefore should not also be decremented explicitly).

Note that examples in the text do not necessarily account for reference Eounts.
instance, the expssionf(gnk(3,x,y,2)) shows a C furtion f with a K argument.
While this expression may serve the purpose of an example, the following ndosighia
practice.

t=gnk(3,x,y,2);

f(t);
cd(t);

Reference counts are incremented by the ARdtfan ci . For convenience, the function

ci returns its reference-count-incremented argument as its result. For example, suppose
that the K object is the result of a C function called from K, Ibuts not created irhat
function. This is an independent use odind therefore the reference count ahust be
incremented. Incrementingcan be conveniently done in theturn statement, as fol-

lows.

return ci(r);

Itis best to avoid complicated reference count situations and leave memagemeant
to K by moving global K objects that are created in C to the K side of thddo¢ and ref-
erencing them there. For example, the K oljeaddata can be moved to a global vari-
able with the same name in the directory of K by

t=gnk(1,bonddata); r=ksk("{.u.bonddata::x}",t); cd(t)

Property of Kx Systems, August 2001 9

Date Conversion

The K objectu.bonddata can now be used in any K function and, in particular, ones
called from C. K now manages this object, so that there is not need to explicitynéat
and increment reference counts in C.

Date Conversion

Bothjd anddj take a dnt argument and return aift result. The argument {d is
an integer of the formyyymmdd and the result is a Julian day count. The argumelt to
is a day count and the result igyayymmdd integer. These functions are useful for dat
arithmetic. For example, to add 5 days to a date, first convert to dayarwithid , add 5
to the result and convert backtivd]j , as in

d=cii(d(d)+5);

Registering K Event Loop Callbacks

Itis possible to send and receive non-K IPC messages in a K applicatisenlging the
non-K connection in C functions and registering the socket callbatks i event loop

with the APIfunctiorsdf . This function takes two arguments, the sockefadgnaccept
callback) and the callback function, as in

sdf(sockid,fn);

Use the negative of the socket id to establisdad callback, as in
sdf(-sockid,gn);

The callback functionfn andgn both take one argument, which is the socket id. Close
the socket with the API functioscd , e.g.scd(sockid)

10 The C - K Interface

Examples

Examples

Summing Two Kbjects

The following C function illustrates straightforward manipulation of K objects by sum
ming two K integer objects, both of which are either an atom or list. The functidertiea
for a DLL. The best way to sum two K objects is, of course, using K, as in

a = gtn(2,x,y); s = ksk("+",a); cd(a);

but the following function is instictive.
__declspec(dllexport) K my_sum(K x,K y)
{ Kz
int i;
/l case: both x and y are atoms
if(1==x->t&&1==y->t) return gi(Ki(x)+Ki(y));
/[case: xis an atom and y is a list
if(1==x->t&&-1==y->t){
K z=gtn(-1,y->n); // z is the same length as y
for(i=0;i<y->n;i++)KI(2)[i]=Ki(x)+KI(Y)[i];
return z;

}

I/l other cases: list x, atom y and lists X, y
}

Itis left to the reader to complete this example.

Accessing a Kdb Server with KDBC

The following example can be found_in www.kx.com/a/kdb/cotfkdbc.txt It illustrates
communication between a C program and a Kdb database server. The Kdb server, listening
on port 2001, is started with the following command, which also createstilgase from

the SQL scripsp.s (in the Kdb download from the kebsite).

k db sp.s -p 2001

Property of Kx Systems, August 2001 11

http://www.kx.com/a/kdb/connect/kdbc.txt

Examples

The C program connects to thatabase server,rsds it an SQL query and procesHes
result. Note that the K result returned by the Kdb server is a 3-item genehaldisig the
column names of the result table, the data in column order and the data types.

#include "k20x.h"
extern printf(S s,...),gets(S);
main()
{ Kaq,r,n,dt; // g=query, r=query result,
/l n=column names, d=data, t=data types

cd(ksk("h:3:(';2001)",0)); // connect to the server
cd(ksk("k:{h 4:x}",0));// remote execution function
g=gnk(1,gp("select sum qty by p from sp")); // KSQL query

r=ksk("k",q),cd(q); /I query result, free query
n=KK(r)[0],d=KK(n)[1]; /l names, inverted data
t=KK(N[2]; /l data types

printf("columns: %d\n",n->n);// number of columns

{l'i=0;for(;i<n->n;++i)// column names and types
printf("%s %s\n",KS(n)[i], KS®)[i]);}

printf("rows: %d\n",KK(d)[0]->n); // number of rows

printf("%s %d\n",KS(KK(d)[0])[0],

KI(KK(d)[1D[OD); I/ first row(varchar,int)
cd(n); /I free the result
cd(ksk("3:h",0)); /I close the connection
{C b[1];printf("\ndone ... ");gets(b);} // prompt
return 0;}

Evaluating KSQL Statements
KSQL stored procedures written in C use the Kdb gndipt.d.r to evaluate KSQL state-
ments. For example, the following @aracter stng holds aKSQL update statement.
char s[]="update qty:2*qty from 'Orderltems'\
where orderid=6099"

12 The C - K Interface

Examples

This constant is placed in a K character string dsvisl
K v=gp(s);

The function.d.r is then called as follows.
K a=gnk(0,v);
cd(ksk(".d.r",a)); cd(a);

The result oksk is immediately freed withd because thiapdate statement does not
produce a useful result. Freeing the K arguntishf also frees the charactést v.

A Remote Procedure Call
The KDBC message format for a bulk update is
(insert;(‘tablename;bulk_ata))

(seeBulk Updatesn the Kdb Programming Guijl In this case the remote procedure is
insert. The corresponding K message has a slightly different arrangenrshttté argu-
ments to the remote procedure, which in this exampptesést, must be grouped. Also,
insert requires that its table name be a symbol, aneétber"table" must be replaced
with a symbol. Assuming the bulk data has already been construdtesl ®bjectbd,
theinser message can be constructed as follows.

msg = gnk(1,gnk(2,gs(sp("insert")),
gnk(2,gs(sp("tablename™)),bd)));

The message can be sent to the Kdb server using thecKofuk defined in the previous
example.

cd(ksk("k",msq));
The reference count of thesk result is decremented immediately because itvailbe
used. The reference count of the message should also be decremented.

cd(msg);

Property of Kx Systems, August 2001 13

	The C - K Interface
	Introduction
	K <-> C Interface Functions

	Compilation
	Header and Lib files

	The C Structure of the K Data Object
	Data Types
	Creating K Atoms
	Creating K Lists
	Creating Character Lists
	Creating Dictionaries

	Accessing and Modifying K Atoms
	Accessing and Modifying K Lists
	The Access Function for a General List
	Appending to a K List

	Calling K from C
	K Errors in ksk Evaluations
	C calling K calling C

	Linking to C Functions in K
	Signalling a K Error in a C function
	Managing Reference Counts
	Date Conversion
	Registering K Event Loop Callbacks
	Examples
	Summing Two K objects
	Accessing a Kdb Server with KDBC
	Evaluating KSQL Statements
	A Remote Procedure Call

