
The C - K Interface

nts

 and

 pro-

Introduction

This document defines the API for calling C functions from K and K functions from C.
The C functions that make up the API are listed in the table below, together with thesec-
tions in which they are described. C functions called from K must manage K argume
and produce K results. C programs that call K functions must create K arguments and
manage K results. The API functions for managing K data are listed in the first 5 rows of
the table. The next-to-last row lists API functions for calling K functions and accessing K
data from C. The mechanism for calling C functions from K is part of the K language
therefore does not appear in this table; see Linking to C Functions in K”.

Compilation

If the main program is a K program, then the C functions that will be called from a K
gram must be defined as entry points in an NT DLL (file extension .dll) or a Unix SO
(file extension .so). Otherwise, C functions to be called from K can also be defined inthe
C main program. If there is a C main program then the K environment must always be ini-

K <-> C Interface Functions

C Function Section Reference

gi , gf , gc , gs , gn , sp Creating K Atoms, Data Types

gtn , gnk , gp , gpn , gsk Creating K Lists

Ki , Kf , Kc, Ks Accessing and Modifying K Atoms

KI , KF, KC, KS, KK, kap Accessing and Modifying K Lists

dj , jd Date Conversion

kerr Signalling a K Error

sdf , scd Registering K Event Loop Callbacks

ksk , sfn Calling K From C

cd , ci Managing Reference Counts
Property of Kx Systems, August 2001 1

The C Structure of the K Data Object

en

ot
tialized before any K objects are created or K statements executed; see “Calling K from
C”.

Header and Lib files

These files can be found at www.kx.com/a/k/connect. They are K20.lib , K20.h and
K20x.h . Include K20x.h in your C files and use K20.lib for linking. There are brie
comments in K20.h and K20x.h summarizing the contents of this document.

The C Structure of the K Data Object
The internal format of K data objects is defined in K20.h by the recursive C-structure
named K. The relevant members of the K structure, which are all of type int , are

c – reference count of the object

t – the data type of the object

n – the number of data items when the object is a list or dictionary

The structure members are primarily for reference. However, there are occasions wh
you must manage the reference count (see “Managing Reference Counts”).

Data Types
The data types of K objects are represented by integer values, as follows.

 6 – null atom

 5 – dictionary

 4 – symbol atom, i.e. sp(null-terminated character string) 1

 3 – character atom (unsigned)

 2 – double atom

 1 – integer atom

 0 – general list whose items are other K objects

-1 – integer list

1. The API function sp internalizes its character string argument in K for optimized searches, but does n
create a K object.
2 The C - K Interface

http://www.kx.com/a/k/connect/

Creating K Atoms
-2 – double list

-3 – character list

-4 – symbol list, i.e. each item is sp(null-terminated character string) 1

Creating K Atoms

There are atomic constructors for each type of K atom. They are

gi – generate an integer atom, as in gi(3) or gi(i) for int i ;

gf – generate a floating-point atom, as in gf(3.5) or gf(a) for double a;

gc – generate a character atom, as in gc('c') or gc(a) for unsigned char a;

gs – generate a symbol atom, as in gs(sp("price")) or gs(sp(s)) for
char*s ;

gn – generate the null atom, as in gn() .

Creating K Lists

There are several list constructors. The most general is gtn(type,count) . For exam-
ple, gtn(-1,5) creates an integer list of length 5. Valid data types are 0, -1, -2, -3, -4.
Valid counts are non-negative integers.

The constructor gnk creates a list from its arguments. It is useful for small lists, particu-
larly for building argument lists to K functions called from C. The first argument to gnk is
the number of arguments that follow, which can be from zero to eight. It is also the length
of the result list. The remaining arguments become the items of the result, in order. For
example,

gnk(5,gi(2),gf(3.4),gc('a'),gs(sp("abc")),gn());

is a list of 5 items; the first item is 2, the second is 3.4, and so on. An argument other than
first can be any K object.

Creating Character Lists

A K character list can be created from a null-terminated string using the constructor gp , as
in

gp("abcd");
Property of Kx Systems, August 2001 3

Accessing and Modifying K Atoms

n

 a
The constructor gpn is used to select a specific number of characters from the front of a C
character array or string, as in

gpn(cv,10);

The result is a K character list of length 10.

Creating Dictionaries

A K dictionary is a list of type 5 consisting of symbol-value-attributes triples. A dictionary
can be created with the API function gtn ; for example, gtn(5,10) is a dictionary with
10 entries.

The API function gsk is a useful tool for creating symbol-value-(empty attributes) triples.
For example,

gsk("abc",gf(2.71));

creates an item with symbol ‘abc and value 2.71.

A dictionary can be treated as a general list (type 0) in C. Its type only matters in K. Ipar-
ticular, the access function for general lists, KK, can be used to access and replace dictio-
nary items (see “The Access Function for a General List”) and the API function kap can
be used to append a symbol-value-attributes triple to a dictionary (se Appending to
List”).

Accessing and Modifying K Atoms
If x is an integer atom then Ki(x) is a C int .

If x is a floating-point atom then Kf(x) is a C double .

If x is a character atom then Kc(x) is a C unsigned char .

If x is a string atom (symbol) the Ks(x) is a C char* .

The value of an atom can also be modified, as in

Ki(x)=2;

and

Ks(x)=sp("abc");
4 The C - K Interface

Accessing and Modifying K Lists

t
Accessing and Modifying K Lists

If x is a K integer list then thi th item KI(x)[i] is a C int .

If x is a K floating-point list then the i th item KF(x)[i] is a C double .

If x is a K character list then the i th item KC(x)[i] is a C unsigned cha .

If x is a K string (symbol) list the i th item KS(x)[i] is a C char* .

A list item can also be modified, as in

KF(x)[2]=3.5;

The Access Function for a General List

The access function for a general list is denoted by KK. It applies to K objects of type 0.
The i th item of a K object x of type 0, KK(x)[i] , is also a K object. If, for example, tha
item is an integer list, then the items of that item can be accessed by
KI(KK(x)[i])[j] .

Appending to a K List

The API function for appending to a K list is kap . Use this function if the length of th
result is not known when the list is created. Start with an empty list, as in

x=gtn(-1,0);

which is an empty integer list. Whenever a new item to be appended is available, append it
to x with kap . For example, append the value of C int a to x as follows.

kap(&x,&a);

If y is a general list (type 0) then the second argument of kap can be a pointer to any other
K object; that K object becomes a new item of y.

Note that kap is item-to-list append, not list-to-list.

Calling K from C
K can be started from a C program, K scripts can be then be loaded and K expressions can
be executed with results returned to C. The API function that does all this is ksk .
Property of Kx Systems, August 2001 5

Calling K from C

mple,

, in
First of all, K must be initialized with ksk("",0) . Note that this function always returns
a result. If the result is meaningless, as it is in the K initialization statement, it can be
immediately freed using the API function cd ; see “Managing Reference Counts”. You
will often see C statements, like the following, that call ksk and immediately free the
result with cd .

cd(ksk("",0));

The character string argument can hold any valid K expression or command. For exa

r=ksk("2+3",0);

or

cd(ksk("\\l script.k",0));

The character string can contain a K function definition or the name of an existing K func-
tion, in which case the second argument must be K list of the function arguments. For
example,

ksk("{x+y}",gnk(2,gi(2),gi(3)));

produces the K integer atom 5.

K Errors in ksk Evaluations

If an error occurs in an evaluation by ksk , a variant of the null value is returned with the
error message in the structure member named n. (If the null value is returned and this
member is 0, then the K expression executed correctly and returned the null). For exam-
ple,

r=ksk(e,a);

if(6==r->t&&NULL!=r->n)printf("err: %s\n",r->n);

C calling K calling C

It is conceivable that an application has a C main program that calls K functions that
turn, call C functions. In this case it is not necessary to compile a separate library that is
linked into K. The functions to be called from K can be compiled with the main program
and registered as callbacks with K from the main program.

For example, suppose the C function is
6 The C - K Interface

Linking to C Functions in K
K f(K x,K y){gi(Ki(x)+Ki(y));}

f can be registered in K using the API function sfn , as follows.

sfn("g",f,2);

where g is the name by which f is called from K and 2 is the number of arguments of f .
The K function can now be called with ksk .

ksk("g[2;3]",0);

or

ksk("g",gnk(2,gi(2),gi(3)));

Linking to C Functions in K

The primitive dyadic K function 2: defines links to C functions. A result of 2: is a K
function that, when called, calls the C function to which it is linked. The left argument to
2: names the DLL or SO file (with path) in which the C function is found. The right argu-
ment is a pair whose first item is a string holding the name of the C function and whose
second argument is the number of arguments to the C function.

For example, the C function

K f(K x,K y){....}

is linked into K with

g:obj 2: ("f"; 2)

The K program that calls f is named g.

It is up to the programmer to make sure that the arguments to the K function correctly
match the arguments of the C function.

Signalling a K Error in a C function
A K error can be signalled by a C function called from K with the API function kerr . For
example,

if(0>=x->t)return kerr("x must be an atom");
Property of Kx Systems, August 2001 7

Managing Reference Counts

clean

t
p-

s to

 As

rd to
The effect, which is to signal an error in K with the message “x must be an atom”, is the
same as if the error was signalled by a K function. Note that it may be necessary to
up work-in-progress just before an error is signalled; see “Managing Reference Counts”.

When kerr is called, K internally copies the text string to a K object for reporting the
error. The function kerr returns 0. Consequently, if the C function that reports the error
(say, f) is called by another C function, the calling function can test whether an error was
reported in f or a K object was returned with 0==f(...) .

Managing Reference Counts
Reference counting is a standard technique in data management to avoid unnecessary cop-
ies of data. A K object has reference count 1 when it is created. Each independent use o
an object after the first use causes the reference count to be incremented. When thecurrent
use of the object is no longer needed its reference count is decremented. When therefer-
ence count becomes 0 the space occupied by the object can be reused.

An independent use of a K object is one that potentially leads to a reference count decre-
ment in the future. For example, suppose the object a is created and inserted in the objec
b. This is the first use of a and its reference count, which is 1, accounts for this use. Su
pose a is now inserted in the object c . This is an independent use of a because a future use
of c can cause the reference count of a to be decremented, independent of what happen
b. Consequently, the reference count o a must be incremented. The reference count of a
must be incremented even if a is inserted a second time into b, because a future use of b
can now cause either instance of a to be replaced (and thereby have its reference count
decremented), independent of the other instance.

K manages objects created in K, including arguments passed to C functions from K.
long as there are no independent uses of the arguments within the C program, nothing
must be done with regard to their reference counts. However, when K objects are created
in C programs, there are circumstances when you must manage the reference counts of
those objects.

A K object created in C function called from K and returned as that function’s result will
be managed by K from the point of return onwards. Nothing must be done with rega
the reference count of htis object as long as there are no other independent uses of the
object. However, if temporary K objects that are not part of the result are constructed in
the function, or if a K result is under construction when an error is signalled, then the ref
8 The C - K Interface

Managing Reference Counts

 objects

 pro-

pose

-

erence counts of those objects must be decremented before the function returns. Their ref-
erence counts then decrease by 1 to 0, indicating that the storage allocated to these
can be reused.

Similarly, when a K function is called from a C program, its result is returned to the C
gram. The reference count of this result must be decremented when the result is no longer
in use.

Reference counts are decremented by the API function cd ; for example, cd(x) decre-
ments the reference count of the K object x .

Knowing when to decrement reference counts is analogous to knowing when to free tem-
porary storage allocated with malloc() , but trickier because cd is recursive. For exam-
ple, every item in a general K list (type 0) is also a K object with its own reference count.
If a K object x is created and then inserted in the general K list y, and if the reference
count of y is subsequently decremented, the reference count of x will be decremented
automatically (and therefore should not also be decremented explicitly).

Note that examples in the text do not necessarily account for reference counts. For
instance, the expression f(gnk(3,x,y,z)) shows a C function f with a K argument.
While this expression may serve the purpose of an example, the following must be done in
practice.

t=gnk(3,x,y,z);

f(t);

cd(t);

Reference counts are incremented by the API function ci . For convenience, the function
ci returns its reference-count-incremented argument as its result. For example, sup
that the K object r is the result of a C function called from K, but r is not created in that
function. This is an independent use of r and therefore the reference count of r must be
incremented. Incrementing r can be conveniently done in the return statement, as fol-
lows.

return ci(r);

It is best to avoid complicated reference count situations and leave memory management
to K by moving global K objects that are created in C to the K side of the interface and ref-
erencing them there. For example, the K object bonddata can be moved to a global vari
able with the same name in the .u directory of K by

t=gnk(1,bonddata); r=ksk("{.u.bonddata::x}",t); cd(t)
Property of Kx Systems, August 2001 9

Date Conversion

es

e
The K object .u.bonddata can now be used in any K function and, in particular, on
called from C. K now manages this object, so that there is not need to explicitly decrement
and increment reference counts in C.

Date Conversion
Both jd and dj take a C int argument and return a C int result. The argument to jd is
an integer of the form yyyymmdd and the result is a Julian day count. The argument todj
is a day count and the result is a yyyymmdd integer. These functions are useful for dat
arithmetic. For example, to add 5 days to a date, first convert to Julian days with jd , add 5
to the result and convert back with dj , as in

d=dj(jd(d)+5);

Registering K Event Loop Callbacks

It is possible to send and receive non-K IPC messages in a K application by managing the
non-K connection in C functions and registering the socket callbacks in the K event loop
with the API function sdf . This function takes two arguments, the socket id (for an accept
callback) and the callback function, as in

sdf(sockid,fn);

Use the negative of the socket id to establish a read callback, as in

sdf(-sockid,gn);

The callback functions fn and gn both take one argument, which is the socket id. Clos
the socket with the API function scd , e.g. scd(sockid) .
10 The C - K Interface

Examples

tening
Examples

Summing Two K objects

The following C function illustrates straightforward manipulation of K objects by sum
ming two K integer objects, both of which are either an atom or list. The function header is
for a DLL. The best way to sum two K objects is, of course, using K, as in

a = gtn(2,x,y); s = ksk("+",a); cd(a);

but the following function is instructive.

__declspec(dllexport) K my_sum(K x,K y)

{ K z;

int i;

// case: both x and y are atoms

if(1==x->t&&1==y->t) return gi(Ki(x)+Ki(y));

// case: x is an atom and y is a list

if(1==x->t&&-1==y->t){

K z=gtn(-1,y->n); // z is the same length as y

for(i=0;i<y->n;i++)KI(z)[i]=Ki(x)+KI(y)[i];

return z;

}

// other cases: list x, atom y and lists x, y

}

It is left to the reader to complete this example.

Accessing a Kdb Server with KDBC

The following example can be found in www.kx.com/a/kdb/connect/kdbc.txt. It illustrates
communication between a C program and a Kdb database server. The Kdb server, lis
on port 2001, is started with the following command, which also creates the database from
the SQL script sp.s (in the Kdb download from the kx website).

k db sp.s -p 2001
Property of Kx Systems, August 2001 11

http://www.kx.com/a/kdb/connect/kdbc.txt

Examples
The C program connects to the database server, sends it an SQL query and processes the
result. Note that the K result returned by the Kdb server is a 3-item general list holding the
column names of the result table, the data in column order and the data types.

#include "k20x.h"

extern printf(S s,...),gets(S);

main()

{ K q,r,n,d,t; // q=query, r=query result,

// n=column names, d=data, t=data types

cd(ksk("h:3:(`;2001)",0)); // connect to the server

cd(ksk("k:{h 4:x}",0));// remote execution function

q=gnk(1,gp("select sum qty by p from sp")); // KSQL query

r=ksk("k",q),cd(q); // query result, free query

n=KK(r)[0],d=KK(r)[1]; // names, inverted data

t=KK(r)[2]; // data types

printf("columns: %d\n",n->n);// number of columns

{I i=0;for(;i<n->n;++i)// column names and types
printf("%s %s\n",KS(n)[i],KS(t)[i]);}

printf("rows: %d\n",KK(d)[0]->n); // number of rows

printf("%s %d\n",KS(KK(d)[0])[0],

KI(KK(d)[1])[0]); // first row(varchar,int)

cd(r); // free the result

cd(ksk("3:h",0)); // close the connection

{C b[1];printf("\ndone ... ");gets(b);} // prompt

return 0;}

Evaluating KSQL Statements

KSQL stored procedures written in C use the Kdb entry point .d.r to evaluate KSQL state-
ments. For example, the following C character string holds a KSQL update statement.

char s[]="update qty:2*qty from 'OrderItems' \

where orderid=6099"
12 The C - K Interface

Examples
This constant is placed in a K character string as follows.

K v=gp(s);

The function .d.r is then called as follows.

K a=gnk(0,v);

cd(ksk(".d.r",a)); cd(a);

The result of ksk is immediately freed with cd because this update statement does not
produce a useful result. Freeing the K argument list a also frees the character list v.

A Remote Procedure Call

The KDBC message format for a bulk update is

(`insert;(`tablename;bulk_data))

(see Bulk Updates in the Kdb Programming Guid). In this case the remote procedure is
insert. The corresponding K message has a slightly different arrangement. First, the argu-
ments to the remote procedure, which in this example is insert, must be grouped. Also,
insert requires that its table name be a symbol, and therefore "table" must be replaced
with a symbol. Assuming the bulk data has already been constructed as the K object bd ,
the inser message can be constructed as follows.

msg = gnk(1,gnk(2,gs(sp("insert")),

gnk(2,gs(sp("tablename")),bd)));

The message can be sent to the Kdb server using the K function k defined in the previous
example.

cd(ksk("k",msg));

The reference count of the ksk result is decremented immediately because it will not be
used. The reference count of the message should also be decremented.

cd(msg);
Property of Kx Systems, August 2001 13

	The C - K Interface
	Introduction
	K <-> C Interface Functions

	Compilation
	Header and Lib files

	The C Structure of the K Data Object
	Data Types
	Creating K Atoms
	Creating K Lists
	Creating Character Lists
	Creating Dictionaries

	Accessing and Modifying K Atoms
	Accessing and Modifying K Lists
	The Access Function for a General List
	Appending to a K List

	Calling K from C
	K Errors in ksk Evaluations
	C calling K calling C

	Linking to C Functions in K
	Signalling a K Error in a C function
	Managing Reference Counts
	Date Conversion
	Registering K Event Loop Callbacks
	Examples
	Summing Two K objects
	Accessing a Kdb Server with KDBC
	Evaluating KSQL Statements
	A Remote Procedure Call

