Practical Lock-Free and Wait-Free LL/SC/VL
Implementations Using 64-Bit CAS

Maged M. Michael

IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA

Abstract. The ideal semantics of the instructions LL/SC/VL (Load-
Linked, Store-Conditional, Validate) are inherently immune to the ABA
problem which is a fundamental problem that affects most lock-free algo-
rithms. This paper presents practical lock-free and wait-free implementa-
tions of arbitrary-sized LL/SC/VL variables using 64-bit CAS (Compare-
and-Swap). The implementations improve on Jayanti and Petrovic’s 64-
bit wait-free implementations by reducing the space overhead per vari-
able to a small constant, and not requiring advance knowledge of the
maximum number of participating threads, while maintaining minimal
amortized expected time and work complexities.

1 Introduction

A shared object is lock-free [3] if whenever a thread executes some finite number
of steps toward an operation on the object, some thread must have completed an
operation on the object during the execution of these steps. A lock-free shared
object is also wait-free [2] if progress is also guaranteed per operation. Unlike
conventional lock-based objects, lock-free objects are immune to deadlock and
livelock, regardless of thread speeds, scheduling policies, and arbitrary termina-
tion, in addition to performance advantages such as tolerance to preemption.

A subtle problem that affects the design of most lock-free algorithms is the
ABA problem. If not prevented, it can cause the corruption of lock-free objects
as well as unrelated objects that happen to reuse dynamic memory removed from
these objects, and it can cause the program to crash or return incorrect results.
The ABA problem was first reported in the documentation of the Compare-
and-Swap (CAS) instruction and its use for implementing lock-free freelists on
the IBM System 370 [5]. CAS takes three arguments: the address of a memory
location, an expected value, and a new value. If the memory location is found
to hold the expected value, the new value is written to it, atomically. A Boolean
return value indicates whether the write occurred. If CAS returns true, it is said
to succeed, otherwise, it is said to fail.

The ABA problem occurs when a thread reads some value A from a shared
variable, and then other threads write to the variable some value B, and then A
again. Later, when the original thread checks if the variable holds the value A,
using read or CAS, the comparison succeeds, while the intention of the algorithm
designer is for such a comparison to fail in this case, and to succeed only if the

variable has not been written after the initial read. However, the semantics of
read and CAS prevent them from distinguishing the two cases.

The theoretical semantics of the instructions LL/SC/VL (Load-Linked, Store-
Conditional, Validate) make them inherently immune to the ABA problem. LL
takes one argument: the address of a memory location, and returns its contents.
SC takes two arguments: the address of a memory location and a new value.
If the location was not written since the current thread last read it using LL,
the new value is written to the memory location, atomically. A Boolean return
value indicates whether the write occurred. VL takes one argument: the address
of a memory location, and returns a Boolean value that indicates whether the
memory location was not written since the current thread last read it using LL.
If SC or VL returns true, it is said to succeed, otherwise, it is said to fail.

For practical architectural reasons, none of the architectures that support
LL/SC (PowerPC, MIPS, Alpha) support the ideal semantics, and hence of-
fer little or no help with preventing the ABA problem, and for most lock-free
algorithms LL/SC with restricted semantics are used just to simulate CAS.

Until recently, implementations of LL/SC/VL variables [5,1,11] required
atomic operations on both the implemented variable and an additional tag field.
As most 32-bit architectures support 64-bit—as well as 32-bit—atomic instruc-
tions, these mechanisms are feasible to varying degrees in 32-bit applications
running on 32-bit as well as 64-bit architectures. However, most current 64-bit
architectures do not support atomic instructions on more than 64-bit blocks,
thus it is no longer possible to pack a large tag with pointer-sized values in
64-bit applications.

Jayanti and Petrovic [7] address this problem by presenting wait-free imple-
mentations of 64-bit LL/SC/VL using 64-bit CAS. However, these implementa-
tions require space overhead per LL/SC/VL variable that is proportional to N,
where N is the maximum number of threads that may operate on the LL/SC/VL
variable. The implementations also require the use of N-sized arrays, which are
problematic to implement without advance knowledge of the value of N or a
conservative estimate of it. These requirements limit the practicality of these
implementations to special cases where the maximum number of LL/SC/VL
variables and the maximum number of threads in the program that may operate
on these variables are known in advance to be small.

In this paper, we present lock-free and wait-free implementations of arbitrary-
sized LL/SC/VL variables using 64-bit CAS (preliminary version in [8]). The
implementations require only constant space overhead per LL/SC/VL variable
(one word for the lock-free implementation and four words for the wait-free im-
plementation), and in the worst case linear space in the number of participating
threads per participating thread. The implementations do not require advance
knowledge of the maximum number of participating threads.

In the wait-free implementation, LL and VL take constant time, and SC
takes constant amortized expected time. In the lock-free implementation, VL
takes constant time and SC takes constant amortized expected time, and in the
absence of interfering successful SC operations, LL takes constant time. In both

implementations—regardless of contention—concurrent LL, VL, and unsuccess-
ful SC operations do not interfere with each other. Using the work performance
measure, the amortized expected complexity of any set of LL/SC/VL operations
using either of our implementations is the same (except for the amortized and
expected qualifiers) as those assuming hypothetical hardware support for ideal
LL/SC/VL.

The rest of this paper is organized as follows. In Section 2, we discuss the
memory reclamation technique used to support the LL/SC/VL implementations
and other related issues. In Section 3, we present the lock-free implementation,
and in Section 4, we present the wait-free implementation. We discuss the com-
plexity of the implementations in Section 5, and conclude with Section 6.

2 Preliminaries

Memory Reclamation The memory reclamation problem is the problem of
allowing dynamic blocks removed from lock-free objects to be freed, while guar-
anteeing that threads operating on these objects never access the memory of
free blocks. The term free here is used in a broad sense, including reusing the
block, dividing, coalescing, or unmapping its memory. Solutions for the mem-
ory reclamation problem have the side effect of partially—but not completely—
preventing the ABA problem. In this paper, we make use of this feature of the
hazard pointer memory reclamation method [9].

Briefly, the hazard pointer method uses single-writer shared pointers called
hazard pointers. When a thread sets one of its hazard pointer to the address of
a block, it in effect announces to other threads that if they happen to remove
that block after the setting of the hazard pointer, then they must not free it as
long as the hazard pointer continues to point to it. So, after a thread removes a
block—and before it can free the block—it scans the list of hazard pointers and
checks if any of them points to the block. Only if no match is found then the
block is determined to be safe to free.

In a preferred implementation [9] using amortization, only constant amor-
tized expected time is needed for processing each removed block until it is deter-
mined to be safe to free. A thread scans the hazard pointers after accumulating
H+O(H) removed blocks, where H is the number of hazard pointers in the
program. Then, the thread reads the H hazard pointers and organizes the non-
NULL values read from them in an efficient private search structure such as a
hash table with constant expected lookup time. Then, for each of the blocks that
it has accumulated it searches the hash table for matching values. As described
in [9], the procedure takes O(H) expected time, and is guaranteed to identify
O(H) blocks as safe to free. We use the hazard pointer method because it is
portable across operating systems and architectures, it is wait-free, and it uses
only pointer-sized instructions. Also, threads can join the method and retire
dynamically, and acquire and release hazard pointers dynamically. Neither the
number of participating threads N nor the number of hazard pointers H needs
to be known in advance. See [9] for more details.

Definitions A thread p is said to hold an active reservation for LL/SC/VL
variable O at time ¢, if p has performed LL(O) at time ¢y < ¢ and it is possible
for p to perform SC(O,v) or VL(O) at some time t; > ¢ without performing
LL(O) during the interval [t,t;]. We define K as the highest number of active
reservations that p needs to hold concurrently. Typically, K is a small constant.

3 Lock-Free LL/SC/VL Implementation

In the lock-free implementation (Figure 1) the LL/SC/VL variable O is repre-
sented by a pointer X. The current value of O is always held in the dynamic
block currently pointed to by X. Whenever O is written, a new block holding
the new value replaces the old block pointed to by X.

The subscript ¢ in some function and variable names is used to distinguish
among the reservations that may be held concurrently by the same thread.

The basic idea of the implementation is for LL, ;(O) to read the value in
the current block pointed to by X and use a hazard pointer to protect the block
from being reused prematurely, i.e., while p is holding the reservation for O.
Subsequently, if SC,, ;(O,v) or VL, ;(O) find X pointing to the same block, then
it must be the case that O was not written since LL, ;(O) was performed.

LL, ;(O): The implementation of LL, ;(O) proceeds as follows. In line 2,
thread p reads a pointer value from X into a persistent private variable exp, ;,
with the intention of reading O’s value from *exp,; (as in line 5). However, p
cannot just proceed to read *exp,;, as it is possible that after line 2, another
thread has replaced exp, ; (by performing a successful SC on O) and then freed
it before p manages to read its contents.

So, in line 3, p sets the hazard pointer hp,; to exp,; in order to prevent
the block exp,; from being freed before line 5 if it happens to be replaced by
another thread. However, it is possible that exp,; has already bean removed
before p set the hazard pointer in line 3. Therefore, p checks X again in line 4.
If X # expy;, then it is possible that exp,; was removed before p set hp,; in
line 3, and hence exp, ; might have been—or will be—freed before line 5. It is
not safe to proceed to line 5 in this case, so p starts over from line 2.

If in line 4, p finds X = exp, ;, then it is safe for p to read *exp,; in line
5. This is true whether or not X has changed between line 2 and line 4. What
matters is that at line 4, X = exp,; (and hence exp, ; is not removed or free at
that point) and hp,; = exp,; already from line 3. Therefore, according to the
hazard pointer method, from that point (line 4), if exp, ; is removed by another
thread, it will not be freed as long as hp,, ; continues to point to it, which is true
as long as the current reservation is alive (i.e., beyond line 5).

LL, ;(O) is linearized [4] at line 4. At that point X = exp,; and accordingly
O = *exp,;. By the hazard pointer method, the value of *exp, ; remains un-
changed between lines 4 and 5. Therefore, LL,, ;(O) returns the value of O at
the time of the execution of line 4. Also, as described later, subsequent SC and
VL operations—for the same reservation initiated by LL, ;(O)—will succeed if
and only if O has not been written since line 4 of LL, ;(O).

Types
blocktype = valuetype = arbitrary-sized value
Shared variables representing each LL/SC/VL variable O
X: pointer to blocktype initially (X = b # NULL) A (*b = O’s initial value)
Per-thread shared variables (for thread p)
for i € {0,..., K-1} hpp;: hazard pointer
Per-thread persistent private variables (for thread p)
for i € {0,...,K-1} expp :: pointer to blocktype

LL,.:(O) : valuetype SCyp,:(O,v) : boolean
1: repeat 1: b := GetSafeBlock()
2: expp,; = X 2: *h:=w
3: hpp,i = expp,; 3: ret := CAS(X,expp,i,b)
4: until (X = expp,;) 4: if (ret)
5. return *expp; 5: RetireNode(expy,;)

6: else

VL,,:(O) : boolean T KeepSafeBlock(b)

1: return (X = expp,;) 8: return ret

Fig. 1. Lock-free implementation of LL/SC/VL using pointer-sized CAS.

As long as the reservation initiated by LL, ;(O) is alive, p must keep hp,;
and exp,; unchanged. Once p reaches a point where it will not be possible to
issue SC,, ;(O) or VL, ;(O) corresponding to the current reservation, then p can
simply reuse hp, ; and exp, ;.

SC,,i(O,v): The implementation of SC,, ;(O,v) proceeds as follows. In lines 1
and 2, p allocates a safe block and sets it to the new value v. A block b is safe
if there is no thread g with any reservation j with hp, ; = b. That is, if this SC
succeeds, then the new pointer value of X—i.e., b—will be different from all the
expq,; pointer values associated with all live reservations at the time.

In line 3, the CAS succeeds if and only if X = exp, ;. When SC is issued
it is guaranteed that hp,; = exp,; and that they were unchanged since the
linearization of LL, ;(O) that initiated the reservation. By the hazard pointer
method, if the block exp,,; was replaced after LL, ;(O), then no other thread
could have subsequently allocated exp,; as a safe block during the lifetime of
the reservation. Therefore, the CAS succeeds if and only if, O was not written
since LL, ;(O). So, SC,;(O,v) is linearized at line 3.

If SC,;(O,v) succeeds (i.e., the CAS in line 3 succeeds), the old block removed
from X (i.e., exp, ;) cannot be reused immediately and its value should not be
changed until it is determined to be safe to free by going through the hazard
pointer method by calling RetireNode (defined in [9]). If SC, ;(O,v) fails, then
the block b can be reused immediately safely, as it was already safe in line 1 and
it has not been observed by other threads since then.

The functions GetSafeBlock and KeepSafeBlock can be replaced with malloc
and free, respectively, which can be implemented in user-level in an efficient
completely lock-free manner [10]. Furthermore, our LL/SC/VL implementations
have the feature that as long as N (the number of participating threads) is stable
(which is an implicit requirement in Jayanti and Petrovic’s implementations [7]),
the number of blocks needed per thread remains stable, and so these functions
can be completely private and without calling malloc and free. Each participating
thread maintains two persistent private lists of safe and not-safe-yet blocks with
combined maximum size equal to the batch size of the hazard pointer method.
GetSafeBlock pops a block from the safe list. KeepSafeBlock pushes a block
into that list. When the thread calls RetireNode and processes the blocks in the
not-safe-yet list, it moves the blocks identified to be safe to the safe list.

VL, ;(O): The implementation of VL, ;(O,v) simply checks if X is equal to
expp ;- As argued regarding SC,, ;(O,v), this is true if and only if O has not been
written since the linearization of LL, ;(O). VL, ;(O) is linearized at line 1.

4 Wait-Free LL/SC/VL Implementation

In the LL/SC/VL implementation in Section 3, LL, ;(O) is not wait-free because
thread p is always trying to capture the value of O from a specific block exp, ;.
However, by the time p reads the pointer value to exp,; from X and is about
to protect it using the hazard pointer hp,, ;, the block exp, ; might have already
been removed and possibly freed, and p is forced to start over.

Unlike hazard pointers which prevent specific blocks from being freed, we
introduce the notion of a trap which can capture some block (not a specific one)
that satisfies certain criteria. In LL,, ;(O), we use a trap to guarantee that in a
constant number of steps, some block holding some value of O will be guaranteed
not to be freed until p reads a value of O from it.

To be linearizable, LL needs to return a value that was held by O between
LL’s invocation and its response [4]. Therefore, a trap must avoid capturing a
block that holds an old value of O that was overwritten before LL’s invocation.
For that purpose, we maintain a sequence number for each LL/SC/VL variable.
The sequence number is incremented after every successful SC. When a thread
sets a trap for a variable, it specifies the minimum acceptable sequence number.

4.1 Trap Functionality

Our wait-free LL/SC/VL implementation uses the following interface with the
trap mechanism: SetTrap,(O,seq), ReleaseTrap,(), GetCapturedBlock,(), and
ScanTraps,(b). Between every two calls to SetTrap, there must be a call to
ReleaseTrap,. Thread p’s trap is said to be active after a call to SetTrap, and
before the corresponding call to ReleaseTrap,,. GetCapturedBlock, is called only
when p’s trap is active. A block b is passed as argument of ScanTraps only after
b has been removed from a LL/SC/VL variable. Blocks passed to ScanTraps are
only freed (i.e., determined to be safe) by ScanTraps. The trap mechanism offers
the following guarantees:

1. If thread p’s call to GetCapturedBlock, (), between calls to SetTrap,(O,seq)
and the corresponding ReleaseTrap,(), returns b then either b = NULL or b
holds the n'* value of @, where n > seq.

2. If thread p calls SetTrap,(O,seq) at time ¢, and block b is removed from
O (before or after t), and b holds the n'" value of @, and n > seq, and b
is passed to ScanTraps, by some thread ¢ after ¢, then b will not be freed
before p calls ReleaseTrap,(), and/or p’s trap captures a block b different
from b.

First we present the wait-free LL/SC/VL functions assuming this trap func-
tionality, then we describe the trap implementation in detail.

4.2 LL/SC/VL Functions

Figure 2 shows the structures and functions of the wait-free LL/SC/VL imple-
mentation. We start with the sequence number. An additional variable Seq is
used per LL/SC/VL variable O. Between every two consecutive successful SC
operations on O, Seq must be incremented exactly once. Therefore, if Seq = n,
then there must have been either n or n+1 successful SC operations performed
on O so far.

Two additional fields are added to the block structure. The field Var points
to the LL/SC/VL variable, and the field Seq holds a sequence number. If the
nt" successful SC on O sets X to b, then it must be the case that at that point
b—Seq = n and b—Var = O. The purpose of these two fields is to enable a trap
to capture only a block that holds a value for a specific LL/SC/VL variable with
a sequence number higher than some value.

LL, ;(O): Lines 1-4 of LL,, ;(O) are similar to the lock-free implementation in
Figure 1. In the absence of intervening successful SC operations by other threads
between p’s execution of line 1 and line 3, LL, ;(O) returns at line 4. In such
a case LLj, ;(O) is linearized at line 3. If intervening successful SC operations
are detected in line 3, p sets a trap before it tries to read X again, to ensure
completion in constant time even if more successful SC operations occur.

In line 5, p reads Seq into a local variable seq. At that point, there must
have been so far either seq or seq+1 successful SC operations performed on O.
In line 6, p sets a trap for O with a sequence number seq. The trap guarantees
that from that point until the release of the trap, either the trap has captured a
block that contains a value of O with a sequence number greater than or equal
to seq, or no block that contains a value of @ with a sequence number greater
than or equal to seq has been freed. Then, p proceeds to read X again into exp, ;
in line 7, and in line 8 it sets hp, ; to exp, ;. At this point, it must be the case
that exp, ;—Seq > seq.

If the trap set in line 6 does not capture a block before the setting of the
hazard pointer in line 8, then exp, ; could not have been freed after line 7 and
will not be freed as long as hp, ; continues to point to it. Therefore, if p finds in
line 9 that no block has been captured yet by the trap, then it must be safe to
read exp, ;— Value in line 11. In such a case, LL, ;(O) is linearized at line 7.

Types

valuetype = arbitrary-sized value

seqnumtype = 64-bit unsigned integer

blocktype = record Value: valuetype; Seq: seqnumtype;

Var: pointer to LL/SC/VL variable end

Shared variables representing each LL/SC/VL variable O

X: pointer to blocktype

Seq: seqnumtype

initially (X = b # NULL) A (b—Value = O’s initial value) A
(b—Seq = Seq = 0) A (b—Var = O)

Per-thread shared variables (for thread p)

for i € {0,..., K-1} hpp;: hazard pointer
Per-thread persistent private variables (for thread p)

for i € {0,...,K-1} expp:: pointer to blocktype

LL,,:(O) : valuetype SCy,i(O,v) : boolean
1 expp; =X 1: if (expp,; = NULL) return FALSE
2: hpp = expp; 2: b := GetSafeBlock()
3 if (X = expp,i) 3: b—Value := v
4: return exp,,;— Value 4: b—Var:= 0O
5: seq := Seq 5. seq := exppi—Seq
6: SetTrap,(O,seq) 6: b—Seq := seq+1
T expp =X 7: CAS(Seq,seq-1,seq)
8: hpp = expp 8: ret = CAS(X,expp,:,b)
9: b := GetCapturedBlock,() 9: if (ret)
10: if (b = NULL) 10: ScanTraps, (expp,;)
11: v 1= expp,;— Value 11: else
12: else 12: KeepSafeBlock(b)
13: v := b—Value 13: return ret
14: expp,; ‘= NULL
15: ReleaseTrap,() VL,,:(O) : boolean
16: return v 1: return (X = expp,:)

Fig. 2. Wait-free implementation of LL/SC/VL using 64-bit CAS.

This is correct for the following reasons: First, at line 7, X = exp,; and
expp;— Value remains unchanged after line 7 (throughout the life of the reser-
vation). Therefore, LL, ;(O) returns the value of O at the time of p’s execution
of line 7. Second, by the guarantee of the memory reclamation method, exp, ;
will not be freed after line 7 until the end of the reservation. Therefore, subse-
quent calls to SC and VL for the same reservation are guaranteed to succeed (by
finding X = exp, ;) iff O has not been written since p’s execution of line 7.

If p finds in line 9 that the trap set in line 6 has indeed captured some block
b (may or may not be the same as exp, ;), then it might be possible that exp, ;
has already been removed before setting the hazard pointer in line 8. Therefore,

it may not be safe to access exp, ;. However, as long as the trap is not released,
it is safe to access b. So, p proceeds to read b—Value in line 13.

In this case (i.e., a block b was captured before line 9), LL, ;(O) is linearized
just before the SC that removed b from X, which is guaranteed to have occurred
between p’s execution of line 1 and line 9. If b—Seq > seq then b must have been
removed from X after p’s execution of line 5. If b—Seq = seq then b must have
been removed from X after p’s execution of line 1.

In line 14 exp, ; is set to NULL in order to guarantee the failure of subsequent
SC,.,i(Ow) and VL, ;(O) operations for the same reservation, as they should. At
this point we are already certain that O has been written after the linearization
point of LL, ;(O), as only removed blocks get trapped.

After reading a valid value either in line 11 or line 13, it is safe to release the
trap in line 15. Therefore, each participating thread needs only one trap, even if
it may hold multiple reservations concurrently.

SCp,i(O,v): In line 1, p checks if LL, ;(O) has already determined that this
SC will certainly fail (by setting exp, ; to NULL). If so, SC,, ;(O,v) returns FALSE
and is linearized immediately after its invocation.

Otherwise, LL,, ;(O) must have read its return value from exp, ;— Value and
expp ; has been continuously protected by hp, ;. Therefore, the same arguments
for the lock-free implementation apply here too, and SC, ;(O,v) is linearized at
the time of applying CAS to X (line 8). However, care must be taken to maintain
the invariant that when the n + 1** successful SC on O is linearized, Seq = n.

In lines 2 and 3, as in the SC implementation in Section 3, p allocates a safe
block b and sets its Value field to the new value v. Also, p sets b—Var to O in
line 4 to allow the trap implementation to associate b with O.

In lines 5 and 6, p reads the value seq from exp, ;—Seq and then sets b—Seq
to seq+1 for the following reason. The current SC can succeed only if it replaces
expp; in X with b in line 8. Since exp, ; holds the seq'" value of O, then if the
current SC succeeds, b will be holding the (seq+1)*" value of O. So, p sets b—Seq
to seq+1 to allow the trap implementation to associate b with the (seq+1)*"
value of O.

We now discuss the update of Seq. Seq is monotonically increasing and always
by increments of 1. Correctness requires that between every two successful SC
operations, Seq must be incremented exactly once. That is, if this SC succeeds in
line 8, then Seq must be equal to seq at that point. By an induction argument, if
this SC is to succeed then at line 7 either Seq = seq-1 or Seq = seq. So, whether
the CAS in line 7 succeeds or fails, immediately after line 7 Seq = segq, if this SC
is to succeed. An optional optimization is to test for Seq = seq-1 before issuing
CAS in line 7.

We then argue that if Seq is incremented by another thread between lines
7 and 8, then this SC must fail. If Seq = n > seq at line 8, then some other
thread ¢ must have performed CAS on Seq with a new value n, then ¢ must
have observed X = expq ; with exp, ;—Seq = n, which implies that at least n
SC operations on O have already succeeded before line 8, then this SC cannot
be the (seq+1)*" successful SC on O, and so this SC must fail.

We now move to line 8. As in the lock-free LL/SC/VL implementation, SC
succeeds if and only if the CAS on X succeeds. Line 8 is the linearization point
of SC if exp,; # NULL. If SC succeeds, p passes the removed block exp,; to
ScanTraps so that it will be freed but not prematurely. If SC fails, then block b
remains safe and can be freed or kept for future use without going through traps
or hazard pointers.

VL, ;(O): As in the lock-free implementation in Section 3, X = exp,; if and
only if O has not been written since the linearization of LL, ;(O).

Wrap-around: Implementing sequence numbers as 64-bit variables makes
wrap-around impossible for all practical purposes. Even if 1,000,000 success-
ful SC operations are performed on O every second, the 64-bit sequence number
would still not wrap around after 584,000 years!

4.3 Trap Implementation

The trap implementation is shown in Figure 3. Each participating thread p owns
a trap record trap, and an additional hazard pointer traphp,.

SetTrap,(O,seq): This function starts by setting trap,—Var to O and setting
trap,—Seq to seq in lines 1 and 2, in order to indicate that the trap is set for
blocks that contain a value of O with a sequence number not less than segq.

The purpose of the field trap,—Captured is to provide other threads with a
location to offer a block that matches the criteria of this trap. When p sets a
trap, it cannot just set trap,—Captured to NULL, otherwise a slow thread trying
to set trap,—Captured in relation to an earlier trap might offer the wrong block
for the current trap. We need to guarantee that only a thread that intends to
offer a block that satisfies the criteria of the current trap succeeds in setting
trap,—Captured.

For that purpose, p uses a unique tag every time it sets a trap. Since arbitrary
64-bit numbers might match pointer values captured by the trap, we use only
non-pointer values for the tag. By convention and as required by most current
processor architectures, the addresses of dynamic blocks must be 8-byte aligned.
So, tag numbers not divisible by 8 are guaranteed not to match any block ad-
dresses. By convention, NULL = 0. Thus, a 64-bit word can hold 7 x 26! different
tag values. The variable tag, keeps track of the tag values already used by trap,,.
Similar to the sequence number, even if trap, is used 1,000,000 times per sec-
ond to perform LL operations where each LL is interfered with by a successful
SC, and this continues for 511,000 years, tag, would still not wrap around. So,
wrap-around is not a practical concern in this case either.

In line 3, p sets trap,—Captured to tagy,, and in line 4 it sets traphp, to the
same tag value. We discuss traphp,, in detail when discussing ScanTraps.

Setting the trap takes effect only when p sets trap,—Active to TRUE in line
5. Finally, in line 6, p prepares a new tag value in tag, for the next trap.

ReleaseTrap,(): In this function, p simply sets trap,—Active to FALSE and
is ready to reuse the trap if needed. It is essential that trap,—Active = FALSE
whenever p updates the other fields of trap, or traphp,. Lines 2 and 3 are
optional optimizations.

10

Types
tagtype = 64-bit unsigned integer
traptype = record Active: boolean; Var: pointer to LL/SC/VL variable;
Seq: seqnumtype; Captured: tagtype or pointer to blocktype end
Per-thread shared variables (for thread p)
trapy: traptype initially trap,—Active = FALSE
traphp,: hazard pointer
Per-thread persistent private variables (for thread p)
tagy: tagtype initially tag, = non-pointer value (e.g. 1)
listy: list of block addresses

SetTrap,(O,seq) ScanTraps,, (list,)
1: trapp,—Var := O 1: forallgq
2: trapp—Seq = seq 2 if —trapy— Active skip
3: trap,—Captured := tag, 3 tag := trapy—Captured
4: traphp, := tag, 4 if (tag is a pointer value) skip
5: trapp—Active := TRUE 5. var := trapy—Var
6: tagp := next non-pointer value 6: seq := trap,—Seq
7 b := listp.lookup(var,seq)
ReleaseTrapy() 8 if (b = NULL) skip
1: trapp,—Active := FALSE 9: if CAS(trapy—Captured,tag,b)
2: trap,—Captured := NULL 10: CAS(traphpg,tag,b)
3: traphp, := NULL 11: RetireNode(listp)

GetCapturedBlock, () : pointer to blocktype
1: b := trap,—Captured
2: if (b is a pointer value) return b else return NULL

Fig. 3. Trap structures and functions.

GetCapturedBlock,(): In this function, p simply checks if any other thread
has replaced the tag value it has put in trap,—Captured in SetTrap, with a
pointer value (block address). If so, GetCapturedBlock returns the address of
the captured block, otherwise it returns NULL to indicate that no block has been
captured yet by this trap.

ScanTraps,(list,): Every successful SCy, ; requires scanning the traps of the
other thread for criteria matching the removed block exp, ; that held the value
of O just before the success of SC. The ScanTraps function can be implemented
in several ways. A simple implementation would be to scan the traps upon every
successful SC, but this would take linear time per successful SC.

We show an amortized implementation that takes constant amortized ex-
pected time per successful SC. In this implementation, instead of calling ScanT-
raps for every successful SC, p accumulates replaced blocks in a persistent pri-
vate list list,. When list, contains enough removed blocks for amortization

11

(O(N) blocks or less if the trap structures are integrated with the hazard pointer
method), p proceeds to scan the trap structures of others participating threads.
First, p organizes the addresses of the blocks in list, in an efficient private search
structure (hash table) that allows constant expected lookup time. If list, con-
tains multiple blocks that hold values for the same LL/SC/VL variable, the
lookup can just return the block with the highest sequence number.

Now we describe the scanning process. For each participating thread ¢, p
starts by checking trap,—Active in line 2. If it is FALSE, then it is certain that ¢
does not have an active trap that was set before any of the blocks in list, were
removed. Therefore, p can skip this trap and move on to the next one if any.

If trap,—Active is TRUE, p proceeds to line 3 and reads trap,—Captured
into the local variable tag. If tag is a pointer value, then it is either NULL or
actually a block’s address and not a tag. If it is NULL, then the trap must have
already been released. If it is an actual block, then it must be the case that
trap, has already captured a block. Therefore p need not be concerned about
providing a block to trap, whether or not list, contains blocks that match the
criteria of trapy. So, whether trap, has been released or has captured a block, p
can skip this trap and move on to the next one if any.

If tag is a non-pointer value, then trap, has not captured a block and so p
needs to proceed to lines 5 and 6, to read trap,— Var and trap,—Seq. In line 7, p
performs a lookup in list, (in constant expected time) for a block that matches
the criteria of trap,. If none are found, then p moves on to the next trap if any.

If p finds a block b in list, that matches the criteria of trap,, then p tries
to install b in trap,—Captured using CAS in line 9. If the CAS fails then it
must be the case that either the trap has been released or some other thread
has installed a block in trap,—Captured, and so p can move on to the next trap
if any. If the CAS (in line 9) succeeds, then trap, has captured b. In this case p
needs to ensure that b is not freed before the release of trap,. Therefore it tries
to set traphp, to b in line 10 using CAS.

If the CAS in line 10 fails, then ¢ must have already released the trap. There-
fore, neither b nor possibly the other blocks in list, that matched the criteria in
trap, need to be prevented from being free (at least as far as trap, is concerned).
So, p moves on to the next trap if any.

If the CAS in line 10 succeeds, then the hazard pointer method guarantees
that b will not be freed as long as traphp, remains unchanged, i.e., not before
trapg is released.

After scanning the trap records of all participating threads, p is guaranteed
that all the blocks in list, can be passed safely to the hazard pointer method
(through RetireNode) for ultimate determination of when they are safe to be
freed. If a block b has been captured by one or more traps then it will not be
freed as long as any of these traps has not been released. If a block b has not
been captured by any traps, then either it did not match the criteria of any of
the traps set before its removal, or it did match the criteria of one or more traps
but in each case either the trap has been released or some other block has been
captures by the trap. In any case, it is safe to pass b to RetireNode.

12

The trap structures can be maintained dynamically and in a wait-free manner
similar to the hazard pointer structures in [9, Figure 4]. Threads can participate
(i.e., acquire and release trap structures) dynamically and in a wait-free manner,
and do not require advance knowledge of the maximum value of N. Furthermore,
the trap structures can be integrated in the hazard pointer structures, and the
blocks accumulated in list, can be counted together with the blocks accumulated
for the sake of amortization in the hazard pointer method. For example, The
blocks in list, can be counted with other removed blocks awaiting processing
by the hazard pointer method (i.e., those in the not-safe-yet list mentioned in
Section 3). When the combined count of these two lists reaches the (dynamically
determined) batch size for the hazard pointer method, blocks in list, scan the
trap structures, and then blocks in both lists scan the hazard pointers, all in a
wait-free manner and with constant amortized expected time per freed block.

5 Complexity and Implementation Issues

Time and Work Complexities In the wait-free LL/SC/VL implementation
LL, VL, and unsuccessful SC operations take constant time, and successful SC
operations take constant amortized expected time. In the lock-free LL/SC/VL
implementation, SC and VL are wait-free. Successful SC operations take con-
stant amortized expected time, and VL and unsuccessful SC operations take
constant time. LL takes constant time in the absence of intervening successful
SC operations.

The conventional performance measure for lock-free algorithms is work, the
total number of steps executed by N threads to perform some number r of oper-
ations. In our implementations LL, VL, and unsuccessful SC operations do not
interfere with each other and all operations take at most constant amortized
expected time in the absence of contention. So, the amortized expected work
complexity of our implementations is the same (except for the amortized and
expected qualifiers) as that of a hypothetical hardware implementation of ideal
LL/SC/VL. For example, consider r LL operations, r LL/SC pairs, and as many
LL/SC operations as needed to result in r successful SC operations. Assuming
hardware support for ideal LL/SC/VL, the work is O(r), O(r), and O(r.N),
respectively. Using either of our LL/SC/VL implementations, the amortized ex-
pected work is O(r), O(r), and O(r.N), respectively.

Space Complexity The worst-case space complexity of our LL/SC/VL im-
plementations consists of two components: (1) space overhead per LL/SC/VL
variable, and (2) space per participating thread.

Component (1): For both implementations the space overhead per variable
is a small constant, one word (variable X) for the lock-free implementation and
four words (variables X and Seq, and the Var and Seq fields of the current block)
for the wait-free implementation. Component (2): For both implementations, the
space per participating thread is O(N.K).

13

Component (1) is obviously reasonable and constitutes a clear and significant
improvement over the space complexity of Jayanti and Petrovic’s implementa-
tions [7]. Whether the number of LL/SC/VL variables in a program is large or
not is no longer a concern.

We now argue that in the vast majority of cases, component (2) is—or can
be made—within acceptable practical limits. If the maximum number of threads
(active at the same time) in the program is in the order of hundreds or less, then
the space overhead is within acceptable limits for 64-bit applications. Otherwise,
we argue that optimizations can be applied to the hazard pointer method and to
the trap structures and functions in order to reduce the expected space overhead
to acceptable levels.

If a program may have a large number of threads active concurrently, a two-
track (or more) organization can be used for hazard pointer and trap structures,
in order to keep the number of participating threads N acceptable. High priority
threads that operate frequently on LL/SC/VL variables use the first track, while
threads that operate infrequently on LL/SC/VL variable use the other tracks.
Threads in the first track keep their hazard pointer and trap structures between
operations on lock-free objects. The other threads participate in the LL/SC/VL
mechanism and hazard pointer method dynamically (still in a wait-free manner
as in [9, Figure 4]) and use the other track(s). These threads acquire hazard
pointer and trap structures dynamically before operating on lock-free objects
and then release them after they are done with the operation.

Let N7 be the maximum number of threads using the first track concur-
rently. Let ny be the number of threads that are participating concurrently in
the LL/SC/VL mechanism using the second track at some time ¢. Let N be the
maximum value of ny. Then, N is at most N1 + Ns. As threads that use the
second track are expected to operate infrequently on LL/SC/VL variables, the
value of N is expected to be much less than the actual total number of threads.
The amortized expected time for the operations of the first track threads re-
mains constant, while for threads using the second track it is O(ns) (to acquire
hazard pointer and trap structures dynamically as in [9]). Again, as second track
threads are not expected to operate frequently on LL/SC/VL variables, then nq
is expected to be small.

Supporting Reads and Writes: By supporting arbitrary-sized LL/SC/VL vari-
ables, it is straightforward to extend our implementations to support LL/SC/VL
variables that also support reads and writes, by using Jayanti’s constructions of
LL/SC/VL/Read/Write from LL/SC/VL [6].

Using Restricted LL/SC: On architectures which support restricted LL/SC
rather than CAS, CAS(a,e,v) can be implemented as follows [12]:

do { if (LL(a) # e) return FALSE } until SC(a,v); return TRUE

Supporting Persistent Reservations: Our implementations can be easily ex-
tended to support what we call persistent reservations, which may be needed for
lock-free traversal. With persistent reservations, a successful SC does not end a
reservation, but rather a thread can perform multiple successful SC operations

14

during the lifetime of the same reservation. This can be achieved without in-
crease in the time, work, or space complexity of the implementations, by using a
total of K + 1 hazard pointers per thread and by swapping hazard pointer labels
after successful SC operations, if reservation persistence is desired.

6 Conclusion

Ideal LL/SC/VL offer a complete solution for the ABA problem. In this paper,
we presented practical lock-free and wait-free implementations of LL/SC/VL
that improve on Jayanti and Petrovic’s implementations [7] by limiting the space
requirements to practically acceptable levels, and eliminating the need for ad-
vance knowledge of the number of threads that may operate on these variables,
while still using only 64-bit CAS, and maintaining low time and work complex-
ities and low latency.

References

1. J. H. Anderson and M. Moir. Universal constructions for multi-object operations.
In Proceedings of the Fourteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 184-193, 1995.

2. M. P. Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):124-149, Jan. 1991.

3. M. P. Herlihy. A methodology for implementing highly concurrent objects. ACM
Transactions on Programming Languages and Systems, 15(5):745-770, Nov. 1993.

4. M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems,
12(3):463-492, July 1990.

5. IBM System/370 Extended Architecture, Principles of Operation, 1983. Publication
No. SA22-7085.

6. P. Jayanti. A complete and constant time wait-free implementation of CAS from
LL/SC and vice versa. In Proceedings of the Twelfth International Symposium on
Distributed Computing, pages 216-230, Sept. 1998.

7. P. Jayanti and S. Petrovic. Efficient and practical constructions of LL/SC variables.
In Proceedings of the Twenty-Second Annual ACM Symposium on Principles of
Distributed Computing, pages 285-294, July 2003.

8. M. M. Michael. ABA prevention using single-word instructions. Technical Report
RC 23089, IBM T. J. Watson Research Center, Jan. 2004.

9. M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Transactions on Parallel and Distributed Systems, 15(6):491-504, June 2004.
Earlier version in 21st PODC, pages 21-30, July 2002.

10. M. M. Michael. Scalable lock-free dynamic memory allocation. In Proceedings
of the 2004 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 35-46, June 2004.

11. M. Moir. Practical implementations of non-blocking synchronization primitives.
In Proceedings of the 16th Annual ACM Symposium on Principles of Distributed
Computing, pages 219-228, Aug. 1997.

12. PowerPC Microprocessor Family: The Programming Environment, 1991.

15

