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Ranked lists are encountered in research and daily life, and it is often of interest to compare these
lists, even when they are incomplete or have only some members in common. An example is
document rankings returned for the same query by different search engines. A measure of the
similarity between incomplete rankings should handle non-conjointness, weight high ranks more
heavily than low, and be monotonic with increasing depth of evaluation; but no measure satisfying
all these criteria currently exists. In this article, we propose a new measure having these qualities,
namely rank-biased overlap (RBO). The RBO measure is based on a simple probabilistic user
model. It provides monotonicity by calculating, at a given depth of evaluation, a base score that
is non-decreasing with additional evaluation, and a maximum score that is non-increasing. An
extrapolated score can be calculated between these bounds if a point estimate is required. RBO
has a parameter which determines the strength of the weighting to top ranks. We extend RBO
to handle tied ranks and rankings of different lengths. Finally, we give examples of the use of the
measure in comparing the results produced by public search engines, and in assessing retrieval
systems in the laboratory.

Categories and Subject Descriptors: QvBathematics of Computing]: Probability and Statistics-eerrelation
and regression analysi<z.3 [Mathematics of Computing]: Probability and Statistics-experimental design
H.3.4 Information Storage and Retrieval]: Systems and Softwareperformance evaluation (efficiency and
effectiveness)

General Terms: Experimentation, Measurement, Human factors

Additional Key Words and Phrases: Rank correlation, probabilistic models, ranking

1. INTRODUCTION

Ranked, incomplete lists of items are encountered evemgvhidagazines list the most
eligible bachelors; newspapers rank bestsellers; thetrggeports the most popular boys’
names for a year; and search engines rank documents bbkeliof relevance to a query.
Such rankings share important characteristics. Firsy, éheincompletethat is, they do

not cover all elements in the domain. The magazine listsehertost eligible bachelors,
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not the entire population of marriageable men. Second, #neyop-weighted the top
of the list is more important than the tail. The contentiotwsen best and second-best
seller is more intense than between three-hundredth ard-tlundredth and first. And
third, they areindefinite the decision to truncate the ranking at any particular iépt
essentially arbitrary. The provider or user of the list cbobntinue to enumerate items
until the domain was exhausted, at least conceptuallyheutost involved is decreasingly
justified by the utility obtained. A search engine might adlthe user to scroll through
two million results for the query “holiday ideas”, but theenss unlikely to look beyond
the first few dozen entries. These three characteristica wfdefinite rankingare related:
because the ranking is top-weighted, value decays withh¢gldptaying value motivates a
truncation of the list at some arbitrary rank; and truncateaves the ranking incomplete.

Rankings are often compared. How closely do the bestsédlsrdf a newspaper and
an online bookseller agree? Have tastes in boys’ names etlangch over the past ten
years? And the goal of the comparison is frequently to irfferdimilarity of the processes
which have generated the rankings. How alike are the regtitt8o search engines over
a series of queries? And how similar, therefore, are thectiins and the retrieval algo-
rithms of those engines? The objective and repeatable atsopaof rankings requires a
rank similarity measureSuch a measure needs to treat the peculiar features ofriitdefi
rankings in a reasonable way. It must handle the appeardritants in one list but not
the other. Differences at the top of the list ought to be giveme weight than differences
further down. The measure should not arbitrarily assigntaftdepth, but be consistent
for whatever depth is available from the list provider orateed by the user. And the mea-
sure should do all of the above while imposing a minimum ofiegstions on the data, and
none that violate the nature of indefinite rankings. A measvith these features qualifies
as anindefinite rank similarity measure

Given the ubiquity of indefinite rankings, it is surprisitngt there appear to be no indef-
inite rank similarity measures. There are many similarigasures on conjoint rankings
(that is, where both lists consist of the same items). Tarsif2002] reviews thirty, and
more have been proposed since then. Some metrics on corgokings are top-weighted,
and more can be made so. A few unweighted measures on nooisdaankings have been
analysed, and a couple of top-weighted, non-conjoint nreashave been described. But
even amongst this last set, none of the existing measurgegycandle the indefinite-
ness of indefinite rankings, instead assigning arbitratgf€depths and not maintaining
monotonicity as these are varied.

In this article, we propose not merely a new, but (we arguefitist similarity measure
that is appropriate for indefinite rankinggsnk-biased overlagRBO). This measure is
based on (but is not tied to) a simple user model in which tlee acempares the overlap
of the two rankings at incrementally increasing depths. Uber has a certain level of
patience, parameterized in the model, and after examirdoh depth has a fixed proba-
bility of stopping, modelled as a Bernoulli random variali®0O is then calculated as the
expected average overlap that the user observes in corgphérnwo lists. The measure
takes a parameter that specifies the uggisistencethat is, the probability that the user,
having examined the overlap at one rank, continues on taadenthe overlap at the next.
The product of these probabilities gives the probabilitgtttihe user will reach a certain
rank, defining theveightof the overlap to that rank. The weights are geometrically de
creasing, but never reach zero, reflecting the indefinitaraatf the ranking; moreover,
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they are naturally convergent, so no normalization is nesglii

Under RBO, the overlap to each rank has a fixed weight. Thigigees an elegant
mechanism for handling the incomplete rankings in a coasisivay, without having to
embed the depth of the evaluation in the metric. The (comrgjgsum of the weights
of the (potentially infinite) tail determines the gapresidualbetween the minimum and
maximum similarity scores that could be attained on exliistaluation. The minimum,
maximum, and residual scores on partial RBO evaluation lhraanotonic in depth. A
point score can also be extrapolated.

Being based on simple set overlap, RBO handles non-congsstin a natural way;
indeed, it does not even assume that the two rankings arexdram conjoint domains. Set
similarity is a more natural basis for comparing indefinitel &runcated lists than the more
widely used one of correlation. In fact, RBO is a member ofraifiaof weighted overlap
measures, defined by taking the convergently weighted geesbthe overlap at different
depths. Other weighting functions are possible within raes framework, including ones
not based on a simple mathematical progression but derivectlg from observed user or
system behaviour.

There are many domains to which RBO could be usefully appliedur experimental
section, we concentrate on that of information retrievatofnmon instance of indefinite
rankings found in IR is the results lists returned, in desiregorder of estimated likelihood
of relevance or utility, by retrieval systems. The lists atwpages returned by web search
engines in response to user queries are the most familiaxgra\We give demonstrations
of the uses of RBO in this environment, and of the problemsaha encountered when
instead applying measures that are not appropriate fofimtderankings.

One reason for comparing the rankings of different rettisyatems is to explore how
similar the two systems are, in the documents they index aadlgorithms they use to
determine which are relevant to a query. The comparis@ylismetric one system is
not being measured against the other. In different circantss, there may be abjec-
tive ranking (sometimes called the “gold standard”) againsicivliine or morebserved
rankings are being assessed. The objective ranking caddhgtance, be returned by a
precise-but-expensive retrieval algorithm, and the olexbranking by an algorithm that
takes an efficiency-motivated short-cut. In this case, #searcher wishes to measure
how far the observed ranking deviates from the objectiveqg&ently the assumption in
an objective—observed comparison is that differencesestggdecrease in quality in the
observed ranking, and the similarity measure is employedpmexy for a full (and poten-
tially expensive) retrieval effectiveness assessmentgiMéeexamples of both symmetric
and objective—observed comparisons.

2. COMPARING RANKED LISTS

Internet users daily process ranked lists in the form ofdeangine results. A natural
guestion to ask is how alike the rankings returned by diffeemgines are. Figure 1 shows
the results given by three popular web search engines toudy dpoarding school effect
on children’ How similar are these results? Are two of the lists closexaoh other than
to the third? A subjective judgment could be made for theltesa a single query, but to
generalize about the similarities of the engines themsemany more queries would have
to be considered. Some repeatable, easily computableaityubwmparable measure of
result similarity is needed. What measure should be used?
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Fig. 2. Runs returned by an experimental retrieval system test topic, under (a) full evaluation of index
information; and (b, c) two different abbreviated evaloasi. Each row is a document that the system has returned
for the particular query. The second column gives the docdentifier, by which the document is represented
internally. The third column gives the similarity scoreadhted between each document and the query. The first
column gives the document’s rank in the result; the rank isrd@ned by the similarity score.

Users encounter search engines on the public internetanasss must wrestle with
them in the lab. Figure 2 gives part of the output of a typicgdeziment. A shortcut to
speed up query processing called query pruning is being iexeanin query pruning, only
the documents which, on an initial evaluation, seem mostyliko be relevant are fully
evaluated for relevance. Pruning speeds up processingf ypossible cost in accuracy.
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Two query pruning levels, one more severe than the otherbeirg tested against full
evaluation. The document rankings produced by each methddth10 for a particular
guery are shown. Full evaluation serves here as an objemti\gold-standard” ranking,
against which the two query pruning methods are comparede ré&kearcher wants to
qguantify the impact on ranking fidelity that different leself query pruning have, not just
for this but for perhaps thousands of others of queries. Hooulsl the similarity of the
pruned to the full-evaluation runs be measured?

Quantifying the similarities in each of the previous scésrequires a measure of sim-
ilarity between ranked lists of items. This might seem a welllerstood problem in met-
rics, amenable to familiar rank correlation coefficientstsas Kendall's- [Kendall 1948].
There are, however, characteristics of these rankingsthed to be carefully considered
before choosing a measure to apply. Nor are these featusesria way peculiar to search
results; some or all of these features are observed in méey dbmains.

The first characteristic to be noted in the above lists is thattop of each ranking is
more important than the bottom. The web pages returned bgratsengine at the head of
the ranking are more likely to be considered by users thasetheturned lower down. The
documents ranked at the top of an experimental system’s diave the most impact
on the retrieval effectiveness score the system achievesre Bubtly, the gap between
the estimated similarity of different documents to the gusrcomes narrower the deeper
the ranking is examined; some of this effect can be seen isithidarity scores reported
in Figure 2. A corollary of theop-weightednessf these rankings is that exchanges or
perturbations in ordering at the top of the ranking are mageificant than those at the
bottom. It therefore follows that a desirable feature of aaguge of similarity between
top-weighted rankings is that it imposes a stronger permaltglifferences at the top of the
ranking than on differences further down.

The second characteristic of web page and document ranidrigat they aréncom-
plete not providing a full ranking of their domains. As a resultchk rankings are mutually
non-conjoint with some elements turning up in one ranking but not theroth®st rank
similarity measures require the two rankings to be conja@intl cannot be applied unmodi-
fied to non-conjoint rankings. Even amongst similarity rieston incomplete rankings, the
majority assume that the underlying full rankings exhaedyi order a common domain,
and hence are conjoint. For instance, a common approacttiiihg non-conjointness is
to assume that items returned in one ranking by cut-off deéptut not in a second rank-
ing by that depth, are ranked at depth- 1 in the latter ranking. But the assumption that
the full rankings exhaustively order a common domain is heags valid. For example, a
search engine may not have in its index at all a web page edumpanother engine, due to
differences in crawling policies and processes. In suchs;assuming that an unreturned
item is placed at some unobserved rank is unsatisfactattye iformer search engine were
aware of the web page in question, it might well rank it in thistfposition. In general,
therefore, it is preferable for a metric on incomplete ragkito handle non-conjointness
directly, rather than making assumptions about an undeglgonjointness.

The characteristics dbp-weightednesandincompletenessbserved in these rankings
are related to a third important characteristic, thatnofefiniteness The distinguishing
features of an indefinite ranking are that only a prefix of istdd being considered; that the
prefix covers only a small fraction of the list; and, most intpatly, that the length of the
prefix is essentially arbitrary. Longer or shorter prefixagld be considered. The choice of
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Prefix length =k SIM(S,Tk)
0 5 10 20 (9 0 0.5 1
s | | 0 1
1 I
I 1
T | ]
S [abcd{ | 0.30 0.80
L I
I 1
T |bcahi |
S [abcdefghi] ] 0.40 0.75
| —
T |pbcahkxAdej] |
S [abcdefghijklmnopqrs| | 0.48 0.62
| —
T [pcahkxAdejiioBnlwvg ftf |
S [abcdefghijkimnopgrstuvwxyz ...] 0.56
| 1

T |pbcahkxAdejioBnlwvq fturpsyC... |

0 5 10 20 00 0 0.5 1

Fig. 3. Convergence of scores with more information. Befatamining either of the rankings, their similarity
score could range anywhere frabnto 1. As the length of the examined prefixincreases, the range of the
possible full similarity score decreases monotonicalljxede ranges bound the similarity score achievable on
infinite evaluation.

prefix length could even depend upon the degree of similakigserved: greater fidelity of
measurement might be required where rankings are simitegreas less is needed where
they are markedly different. And because multiple compaganight be made in parallel,
as when two search engines are compared on a number of diffgueries, and each
comparison might have a different depth, scores should bgpacable independent of
depth. For these reasons, it is desirable that the measosermot have the depth of
assessment embedded in it.

A ranking that has the qualities of top-weightedness, indeteness, and indefiniteness
described above, is referred to here asratefinite ranking and a measure of similarity
between such rankings that meets all of the requiremenlisedtn the preceding para-
graphs is referred to assamilarity measure on indefinite rankings anindefinite rank
similarity measureOur aim in this paper is to show that existing rank simijanteasures
are not adequatedefiniterank similarity measures, and then to propose a new measure,
rank-biased overlap, that is.

The central idea of our approach is to define a measure on ity of the full
rankings, and then bound or estimate the full similarityueabased on the list prefixes.
After all, it is typically the similarity of the full ranking that is of interest, not just of their
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Unweighted Weighted

Conjoint | Kendall'sT Yilmaz's 74 p
Spearman’'y Iman-Conover's
Spearman’s footrule Shieh’sty,
Kolmogorov-Smirnov'sD Melucci’s 7.
Carterette’sd 4k Blest'sw

Non-conjoint | Fagin'stg, fx, Pk, Vi Fagin’s intersection metric
Bar-llan’s p, footrule Bar-llan's M
Buckley’s AnchorMAP

Table I. Classification of rank similarity measures.

prefixes. The key to measuring full rankings from their prediis to choose a measure for
which a partial, prefix evaluation bounds the value that hdwhluation would produce.
The deeper the prefix that is examined, the narrower the tsoomdhe full score become.
The idea is illustrated in Figure 3. With no elements exaihjtige similarity score between
the rankings could take any value in the measure’s legalesasay, anywhere betweén
and 1. After seeing the firsb elements in each ranking, the possible scores of a full
evaluation is narrowed to between, sy and0.8. And after extending the prefixes to
depth20, the range is narrowed @48 and0.62, as illustrated in the fourth segment of
Figure 3. Technical details follow, but the principle is tooose a sequence of decreasing
weights over the depths of the comparison, such that the §time aveights is convergent;
that is, so that the weight of the unseen, conceptually tefitgiil of the lists is limited,
and does not dominate the weight of the seen, finite prefix.h Suaeighting scheme,
besides being attractive mathematically, is justified espntationally by the assumptions
underlying indefinite rankings; that is, that the interefstn@ consumer of the ranking is
sufficiently top-weighted for a truncated ranking to besfatitory.

3. RANK SIMILARITY MEASURES

There are many rank similarity measures described in temtiire. We categorize them
according to the characteristics of indefinite rankingscdbed in the previous section.
Measures may be unweighted or top-weighted, and may reqaiintness or support
non-conjoint rankings. Non-conjoint rankings are somesmeferred to in the literature as
top-k rankings; that is, prefix rankings evaluated to a fixed dépthhe existing measures
are summarized in Table | and described in this section.

3.1 Conjoint, unweighted measures

The most widely used rank similarity measures are thoseatigatinweighted and assume
conjointness between the rankings. These predominatitipta the class otcorrelation
measures or coefficients. Correlation quantifies the typsi{jpe or negative) and degree
of relation between the two variates in bivariate, paired&or instance, is height posi-
tively or negatively related to dancing ability, and howosigly so? If the observed variate
pairs (in this example, people) are randomly sampled froargel population, then the
correlation in the sample can be used to infer the correlatidghe population, and to test
for the significance of the latter correlation. Since catieh can be either positive or
negative, correlation coefficients typically range frer to 1, with —1 meaning perfect
negative correlation (for rankings, in reverse orderjneaning perfect positive correla-
tion (in identical order), and meaning uncorrelated or “randomly” related [Gibbons and
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S=< a b c d e >
T=< a c e d b >
Cst = {(a,b),(a,0),(a,d),(a,e),(c,d),(c,e)}

Dst = {(cv b)v (d7 b)v (ev b)7 (ev d)}

C = |CsT|=6
D = |Dgr| =4
M =C-D=2

3

= M/P(n) =2/(C+ D) =2/10=0.2

Fig. 4. Example working of Kendall's.

Qc

Chakraborti 2003, Chapter 11].

One widely-used rank correlation coefficient is Kendal'§Kendall 1948]. To cal-
culater, consider every pair of items from the set of items listed iy two (conjoint)
rankings. Assume that there are no ties, that is, no two iteame the same rank in either
ranking (a variant of Kendall's handles ties, but will not be discussed here). Céte the
number of concordant pairs, where each ranking places thétéms in the same order,
and letD be the number of discordant pairs. Th&h = C' — D is our basic statistic.
The maximum valué\/ can take for rankings of length is the number of distinct pairs
amongsts items, P(n) = () = 3n(n — 1), and the minimum is- P(n). Then, is de-
rived asM/P(n), and ranges from-1, indicating reverse order, t indicating identical
order. The valué’(n) — M can be understood as the number of adjacent pairwise swaps
needed to arrange one ranking in the same order as the athiera &éubble sort.

A working of Kendall'sT on two example rankingS and7 is given in Figure 4. The set
of concordant pairs is enumerated’isr, while Dgr lists the discordant pairs. Discordant
pairs can be found graphically by drawing a straight linerMeein each item it and the
corresponding item ifl", as is done in the figure; whenever two of these lines cross, th
ordering of the respective items is discordant. The totahlper of pairs is the sum of
C, the number of concordant pairs, ahy the number of discordant pairs, sas the
proportion of these pairs that are concordant, linearlystef to the range-1, 1].

Kendall's T has a direct probabilistic interpretation. Pick a pair ehisi;j at random
from the set ofP(n) pairs. The probability. thatij are ranked in the same order in both
rankings (that is, are concordant)i§ P(n), and the probabilitp, thatij are discordant
is D/P(n). A little algebra shows that = p. — ps. Therefore, ar of 0 indicates that
a randomly chosen pair is as likely to be concordant as disedr The rankings are then
said to be uncorrelated. Furthermore, if the ranked iterasagsumed to be randomly
sampled from a larger population of itemspn the sample, which is sometimes denoted
t, is an estimate of on the population. Inferential methods beyond point edimngrom
(sample)t to (population)r are also possible, such as calculation of confidence irlterva
and testing of the null hypothesis of non-correlation, thathat (population} = 0.

Kendall's 7 is widely used in the IR domain, and other fields, as a measurand
correlation. Melucci [2007] and Yilmaz et al. [2008] lisiuistrative cases. But has none
of the specific characteristics that we have set out for a umeasf similarity on indefinite
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rankings. First, it requires that the two rankings be caomtjoiSecond, it is unweighted,
placing as much emphasis on disorder at the bottom of thénguals it does on disorder
at the top. Third,r values are intrinsically linked to the depth of the ranking The
contribution of the concordance of discordance of a singie{g to the overall score is
normalized byP(k); ask increases, the significance of each disorder decreases.

Moreover, the concept of correlation itself is not helpfulneeaningful when applied
to indefinite rankings; that is, to rankings of which only thead is seen, and where the
head is a small fraction of the entire (conceptual) list. wéd through such prefixes,
random and negatively correlated rankings will look essintthe same, having few or
no common items in the observed head of the rankings. Indeedn indefinite rank
similarity measure to be even considered, there must be derlying presumption that
the two rankings are strongly correlated, at least at thefdpe ranking. What is being
tested must be the departure, not from randomness, but fyjoement. Thus, an indefinite
rank similarity measure might be applied to the results efsame query on two search
systems, to determine how different they are, since we wexgbct different engines to
give similar results to the one query; but it would not be infative to apply it to the results
of two distinct queries on the same search engine, to testélated the queries are, since
we would expect the results of different queries to havielitt common with each other
in most cases. A basic implication is that an indefinite rainkilarity measure should
range not from-1, meaning negatively correlated, but fréymeaning entirely dissimilar
as far as can be seen, which is to say, disjoint. These objectdo using the concept of
correlation with indefinite rankings apply not only to Ketidar, but also to other rank
correlation methods, and to the weighted and kapeasures derived from them, which is
to say to the majority of the measures proposed in the lilezat

Because indefinite rank similarity measures presume agtelationship between the
(full) rankings, testing for statistical significance bawes problematic. The standard null
hypothesis in statistical tests on rankings is that theiraysk(or rather the variates on the
underlying population they are sampled from) are uncotedlar randomly related, and
significance is found for them having a (positive or negatieéation. The null hypothesis
that the two rankings are, in contrast, identical is not hudl@as any finding of difference
disproves this null hypothesis. It is true that confidenderirals on a rank correlation
measure can be derived. Similarly, in the case where twoimgakare being compared
against a third, objective ranking, it is possible to testtthne of the two rankings is
significantly closer to the objective ranking than the ottseie Cliff [1996, Chapter 3] for
more details), although this method is not widely appliedhie IR literature. But such
confidence intervals tend to be very wide, meaning that @kesesample correlation places
weak bounds on inferred population correlation. In any cse items in an indefinite
ranking are not typically a random sample from a larger patpan; rather, the ranking
itself is over the full population, but only the prefix is obged. Additionally, at least
when considering the ordered lists of documents returnecktrsieval systems, what is
of interest is generally not the degree of relation on a gjain of rankings, that is, on
the results to a particular query, but the similarity foralieries. Here, the (conceptual)
random selection is not of documents, but of queries, artidtital inference can proceed
along the standard lines for estimating population pararsétom samples.

Other unweighted measures on conjoint rankings are alaildthe most widely used
alternative is Spearmarys which is the standard product-moment correlation, catea
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on ranks rather than magnitudes. Disorders in Spearmears penalized by the square
of the distance of the disorder. In contrast, Spearmangdtopenalizes disorders by the
unsquared distance. However, Spearman’s footrule haggongtin scaling, sensitivity, and
analysis; see Kendall [1948] for more details. As noted abthe previous rank correlation
measures are most naturally (though not only) suited tintgggite null hypothesis of no
correlation, whereas in many applications, the interesitiser in degree of departure from
agreement. To address this, Melucci [2007] proposes thefu&@mogorov-Smirnov'sD,
which is based on Kolmogorov’s goodness-of-fit test. Thas tough, only takes account
of the single largest pairwise disordering; other disardgs in the list are ignored. All
these unweighted measures on conjoint rankings share ddeduacies of Kendall's
when applied to indefinite rankings. A more specialized rsinkilarity measured, 4.,

is proposed by Carterette [2009]. The measure requiredhtbatnked items are scored,
and that these scores are aggregates of sub-scores ovemeoatomain (such as systems
ranked by scores over the one topic set). The measure takegrdof score differences
and correlations involved in discordant orderings. It istop-weighted, and requires that
the rankings be conjoint.

3.2 Weighted measures on conjoint rankings

It frequently happens with conjoint rankings that the tophaf ranking is more significant
than the bottom. A common way of comparing effectivenessiogein IR, for instance,
is by measuring the similarity between the rankings eachrigtduces over a set of
retrieval systems. For these comparisons, the researdhigequently care more about the
ordering of good systems than that of bad. In such circuneegra measure of similarity
that gives greater weight to higher rankings may be desi®dch measures are often
derived by adapting unweighted rank correlations.

Yilmaz et al. [2008] propose a top-weighted variant on Kéfgla calledr4p, based
on the average precision retrieval effectiveness methe.r}, p measure has the following
probabilistic interpretation. Denote the rankings to bmpared asS and7. Randomly
select an item other than the top-ranked item $i Next, randomly select another item
j from those ranked higher thanin S. Then, see ifi andj have the same order in
rankingT'. Let the probability of observing concordance in this ramdexperiment be.,
and the probability of observing discordancefqe Thentap = p. — pg. The similarity
betweenr,p andr is obvious, the only difference being in the method of sébecthe
items. Yilmaz et al. also demonstrate that if discordan@venly spread throughout the
rankings (not greater at the top than at the bottom), thgnh = 7. The top-weighting
in 74p comes from the higher probability that itejris selected from the upper ranks of
rankings.

TheT4p measure is not symmetric. The top-weightedness is definetysm S, the
ranking on which iteny is selected above iteth WhereS is the objective ranking, this
lack of symmetry is acceptable, but if the rankings are ofvdent status, the lack of sym-
metry is problematic. Yilmaz et al. propose a symmetricraliive, which is the average
of Tap(S,T) and7ap(T,S). To extend the probabilistic interpretation, the random ex
periment is modified to add the first step of randomly selgaimanking to samplg > 4
from. Unlike some other proposals, p has no parameter to set the degree or type of
top-weightedness.

Regarding indefinite rankings, p satisfies the requirement of top-weightedness. It
does not, however, handle incomplete, mutually disjoinkiags. Nor does it deal with
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indefinite lists as laid out in Section 2: the depth of evabrats implicitly embedded in
the measure, and scores are not monotonic or bounded asalbhatén depth increases

Other weighted correlation measures on conjoint rankingslascribed in the literature.
Iman and Conover [1987] apply Pearson’s correlation caefftmot to raw ranks, as with
Spearman’y, but to the Savage scores of the ranks. The Savage S¢areranki in a
list of lengthn is >7_; 1/j = H(n) — H(i) = In(n/i), whereH (n) is thenth Harmonic
number. Assuming no ties, their coefficient is calculated as

T = <Z SRiSQi - n) /(n - Sl)
=1

Becauses; > 5,11, the coefficient is top-weighted.

Shieh [1998] analyses,, a class of weighted variants on Kendatt'swhere each pair
of ranks can be assigned its own weighting. A suitable chofcereights makes this
measure top-weighted. A subfamily of such measurgsis described and analysed by
Melucci [2009]. Ther, family itself generalizes,p by allowing arbitrary weights to be
assigned to the lower rank of rank pairs in the objective iragtkMelucci provides the
probability distribution for the measures in the family. €rh. family is non-symmetric,
since one of the rankings is designated as the objectivamgnkBlest [2000] defines
a rank correlationv based on the difference in area between a polygon definedeby th
cumulative ranks of the observed ranking and a polygon defiyethe cumulative ranks
of the reversed objective order; this measure, too, is tegted. Quade and Salama
[1992] survey earlier work on weighted rank correlationsond of these top-weighted
measures directly handles incompleteness or indefinisenes

3.3 Unweighted non-conjoint measures

The measures considered so far all assume that the two ggn&ie conjoint, that is, that
every element occurring in one list also occurs in the othed, vice versa. They do not,
unmodified, handle non-conjoint rankings. One way in which-eonjoint rankings occur
is when longer, conjoint rankings are truncated to a fixedtdepThese truncated rankings
are known asop- lists.

Similarity measures on top-and other non-conjoint rankings are frequently derived
through the modification of a conjoint rank similarity megsu One such modification
is simply to ignore non-conjoint elements. This approacimigeneral unsatisfactory,
however, since it throws away information. For instancekeéhdall’s - were modified
in this way, then the rankingsab???> and<a??7b>, where? denotes a non-conjoint
element, would be regarded as completely similar, whenlglézey are not.

Rather than ignoring elemeintvhich appears in ranking and not in ranking”, a more
satisfactory approach is to treias appearing in rankif§ at rankk + 1 or beyond, where
the depth off" is k. This agrees with the concept of téprankings, which assumes that
the full domains are conjoint (that is, each element is rdrd@mewhere in the full list),
but that only the tog: positions are visible.

Placing unranked items below rakks the approach taken by Fagin et al. [2003]. They
adapt both Kendall's and Spearman'’s footrule in this way to handle fofists. Forrg,
the top# version ofr, if elementi appears in ranking but not rankindT’, it is assumed
to be ranked beneath every item that does appear in rafikii@pe only ambiguity occurs
if elements; andj both appear in ranking, but neither appear in rankirig. In this case,

ACM Transactions on Information Systems — AUTHOR’S VERSIOAI. 28, No. 4, Nov 2010.



12 . W. Webber and A. Moffat and J. Zobel

Fagin et al. provide for a parameterizable penalty of betwie@ssumed concordant) and
1 (assumed discordant). They propose that the default valuihis penalty should be,
as this fixes the score for conjoint but reversed as close ssitpge to half way between
identical and disjoint. A tope version of Spearman’s footrulgy, is similarly defined.

The measures, and f; are not top-weighted, but similar assumptions could beiegpl
to top-weighted conjoint rank measures to derive weightpektmeasures. Weightedness
makes the assumption of unlisted elements being rankedhdawmkk more complex,
though. For instance, iny p, when randomly selecting an iteirand a higher-ranked item
4, the question arises of whether the items beyond depihe to be regarded as above
or below each other. In particulary p does not (as currently defined) handle tied items,
so the non-conjoint elements cannot simply be placed at kamkl. Instead, Yilmaz
et al. [2008] propose that any such elements be excludedhisubses information about
implied misorderings, as described above.

The desideratum stated by Fagin et al. that conjoint butrsexktopk rankings should
score roughly half way between identical and disjoint isaobmpelling one. How close
a relatedness reverse conjointness indicates dependsiolatye & is in relation to the
full list size n. Moreover, conjoint but reversed to degithis more a peculiarity than a
meaningful characteristic for topAists, since by definition it cannot continue to be true
if the evaluation is then extended to depth- 1. Partly at fault is a desire to produce a
measure that is similar in form to correlation measures anjotet lists; having a negative
score for a topk measure is hardly meaningful. More fundamentally, thougielation-
based measures do not properly reflect the fact that thesedm#inite rankings, and that
the choice of as the cutoff point is essentially an arbitrary one.

In addition to Kendall'sr and Spearman'’s footrule, Fagin et al. describe aktopriant
of Spearman’y. The treatment of non-conjoint elements is similar to tlwatthe other
methods; however, the resulting measure does not fall ire@ame equivalence class.

Goodman and Kruskal's is a correlation coefficient related to Kendal’'sin which
tied items are effectively ignored [Goodman and Kruskal4]96agin et al. also extend
to the topk case by regarding the paij both appearing in list' but neither appearing in
list T as tied, and therefore ignoring it.

Bar-llan [2005] and Bar-llan et al. [2006] adapt Spearmaresd Spearman’s footrule
respectively to the top- case by excluding non-conjoint elements (rather thanimgat
them as occurring beyond depthand calculating the coefficients on the condensed lists.
Bar-llan et al. point out the loss of information that consiag lists in this way entails.

3.4 Weighted non-conjoint measures

Most of the measures discussed so far have been founded apetation. When dealing
with non-conjoint lists, it is also possible, and arguablyrennatural, to start instead from
setintersection. A simple similarity measure on folists would be the size of intersection
or overlap between the two rankings, calculated as the ptiopoof the ranking length;
that is,|S N T'|/k. Of course, such a measure, while directly handling norjedoimess,
takes no notice of ranking, and therefore is not top-weighte

The idea of overlap can be extended by considering, not gittygl overlap at depth
k, but the cumulative overlap at increasing depths. For eaeh {1...k}, calculate
the overlap atl, and then average those overlaps to derive the similarigsme. This
measure is described by Fagin et al. [2003] and called tlgsiettion metric, and was
simultaneously discovered by Wu and Crestani [2003] andedbhaverage accuracy. We
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d_Sg4 T Asra  AO(S,T,d)
1 <a> <z> 0.000 0.000

2 <ab> <zc> 0.000 0.000

3  <abc> <zca> 0.667 0.222

4  <abcd> <zcav> 0.500 0.292

5 <abcde> <zcavw> 0.400 0.313

6 <abcdef> <zcavwx> 0.333 0.317

7 <abcdefg> <zcavwxy> 0.286 0.312

n  <abcdefg...>  <zcavwxy...> ? ?

Fig. 5. Average overlaplO of two lists to increasing depths, along with their propmrél overlap or agreement
A at each depth. Average overlap continues to increase evagresment decreases, and the value at depth
does not bound the value at arbitrary deptb- k. The notation used is described in more detail in Section 4.1

refer to it as average overlap (AO). Because of its cumwdatiature, AO is top-weighted:
rank 1 is included in every subset, rank 2 in every subsetaufitst, and rank in subsets

r throughk but notl throughr — 1. Thus, AQ is the first of the measures we have examined
that both handles non-conjoint lists and is top-weighted,iadeed is one of the very few
described in the literature. Figure 5 gives a sample cdiounla

Although average overlap is weighted and non-conjoint, iarafoser to a satisfactory
indefinite rank similarity measure than any of the previdteraatives, it fails our criteria
for an indefinite measure because it is a measure not on @fisiis, but on their prefixes.
One might be tempted to attempt the conversion of AO to anfinitke measure by con-
ceiving of a score on the full lists, and then using the prefad@ation to set bounds on
it; that is, calculate AO@k (or a derivative) and use it toitilO@oo. But such an at-
tempt fails, due to the measure’s non-convergence. Thehivefghe infinite tail always
dominates that of the finite prefix, no matter how long the grisfi A proof is given in
Appendix A; intuitively, we see that each overlap to deptias weightl /k under AO@K,
but weightl /oo under AO@x. Thus, prefix evaluation sets no bounds on the full score:
after comparing: elements, the AO@ score could still be anywhere in the rangel],
not matter how largé is.

Average overlap has another peculiarity related to monoityrin depth, which is that
finding greater agreement with deeper evaluation does nzgssarily lead to a higher
score, nor finding decreased agreement to a lower one. Fanoe in Figure 5, the
elements newly revealed at depthshrough6 are all disjoint, yet the AO score keeps
increasing. This counter-intuitive behaviour occurs lnsean calculating AO, the contri-
bution of each overlap at depthis only considered up té, whereas in fact it continues
to contribute up tow asn goes to infinity; increasing the evaluation deptthus captures
more of this residual contribution.

Bar-llan et al. [2006] describe and employ a measurevhich is the normalized sum
of the difference in the reciprocal of the ranks of each itarthe two lists, with items not
ranked in one list assumed to occur at depth 1 in that ranking. Like AO, this measure
is top-weighted and handles non-conjointness, but is dig@ron the cutoff depth.

Buckley [2004] proposes the AnchorMAP measure, which igagpon the retrieval ef-
fectiveness evaluation metric, (mean) average precidithP). Retrieval evaluation met-
rics score a document ranking according to the relevandeeoibcuments it contains. In
AnchorMAP, one of the rankings under comparison is choseimeagbjective ranking, and
its first s documents are treated as relevant; Buckley suggest80 as a reasonable value.
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The MAP score of the other ranking is then calculated to déptiased on these atrtificial
relevance judgments. AnchorMAP is asymmetric. It is topglreed, but weights are not
fixed for ranks. The metric is non-monotonic bothsiandk.

A referee of this work suggests an alternative mechanissedan a rank-weighted
evaluation metric such as discounted cumulative gain (D{J@jvelin and Kekalainen
2002]. In a rank-weighted metric, each raink assigned a fixed weight;, and the docu-
ment at that rank makes a contributiop- r; to the ranking’s effectiveness score, wheye
is the document’s assessed degree of relevance. A sipifagasure between two rank-
ings S andT can then be derived by assigning fractional relevancie®tuhents based
on their rank weight inS, and then using these relevancies to calculate the eféerias
metric onT". Such a measure would be symmetric, and seems likely to gossene of the
properties sought in an indefinite rank similarity measpreyided that rank weights are
chosen so as to create a convergent measure (DCG's weights-ofl /log(i + 1) do not).
The need for properties such as convergence, and the neasieeensible behaviour in
limiting cases, means that developing an approach of thig i not straightforward, and
is an area for future investigation. How such an approachdwaitimately compare with
RBO as it is defined here is not clear.

4. RANK-BIASED OVERLAP

The previous section has shown that the rank similarity omegsdescribed in the literature
do not meet all the criteria we have identified for similartgasures on indefinite rank-
ings. We now propose a hew measure which does meet thesécnismk-biased overlap
(RBO). This is an overlap-based metric, superficially simtb average overlap. The key
insight behind RBO is to bias the proportional overlap aha#epth by a convergent series
of weights (that is, a series whose sum is bounded). As atrélsealinfinite tail does not
dominate the finite head. Therefore, similarity assessmsing RBO consists of using
prefix evaluation to set upper and lower bounds (Sectionagh2he score which full eval-
uation (that is, comparison to infinite depth) could achi¢vection 4.1). In Section 4.3
we derive the weight of each rank under RBO, and thereforevttight of the prefix. The
precise full RBO score is, of course, not knowable withowdleation to infinite depth;
however, in situations where a single value is needed, @anaate point estimate can be
extrapolated (Section 4.4). Because RBO is a similarityandistance, measure, it is not
a metric; however] — RBO is a metric, as we prove in Section 4.5. Finally, Sectigh 4
considers the handling of ties and of rankings of differengths.

4.1 RBO on infinite lists

We begin by laying out some notation. L&tand7 be two infinite rankings, and I&t; be
the element at rankin list S. Denote the set of the elements from positicio position
dinlist S, thatis{S; : ¢ < i < d}, asS..q. Let S.; be equivalent te6;.4, andS,. be
equivalent taS..... At each depthl, theintersectionof lists S andT to depthd is:

Isma=84NTyq. 1)
The size of this intersection is tlowerlapof lists S andT' to depthd,
Xsra=|Isr4dl , (2)
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and the proportion of and7" that are overlapped at deptlis theiragreement
Xs,1.d
y 3)

For brevity, we will refer tol;, X4, andAg when it is unambiguous which lists are being
compared. Using this notation, average overlap can be didisie

Asta=

O(S, T, k) ZAd (4)

wherek is the evaluation depth. An example calculation has alrdsyn shown in Fig-
ure 5.
Consider the family of overlap-based rank similarity measwf the form:

SIM(S, T, w) de Ay (5)

wherew is a vector of weights, and, is the weight at positiond. Then0 < SIM <

> 4wa, and ifw is convergent, eacH, has a fixed contributiong/ >~ , wq (if w is not
convergent, then the denominator of this expression goesinity). One such convergent
series is the geometric progression, wheredtieterm has the valug?—!, for0 < p < 1,
and the infinite sum is:

= 4 1
Yopth=— 6)
d=1

p

Settingw, to (1 — p) - p?~1, so thaty_, wy = 1, derives rank-biased overlap:
RBO(S,T,p) = (1 —p Zpd L. Ag. (7)

Rank-biased overlap falls in the ranfe1], where0 means disjoint, andl means iden-
tical. The parametes determines how steep the decline in weights is: the smajldre
more top-weighted the metric is. In the limit, when= 0, only the top-ranked item is
considered, and the RBO score is either zero or one. On tlee b#md, ap approaches
arbitrarily close tol, the weights become arbitrarily flat, and the evaluatiorobses arbi-
trarily deep.

Rank-biased overlap has an attractive interpretation aslzapilistic user model. Con-
sider a user comparing the two lists. Assume they alwaysbdke first item in each list.
At each depth down the two lists, they have probabjityf continuing to the next rank,
and conversely probability — p of deciding to stop. Thus, the parametemodels the
user’spersistenceA similar user model was introduced for the retrieval efifesmess met-
ric rank-biased precisiofMoffat and Zobel 2008]. Once the user has run out of patience
at depthd, they then calculate the agreement between the two liskaatepth, and take
this as their measure of similarity between the lists. Ddbe the random variable giving
the depth that the user stops at, @ = d) be the probability that the user stops at any
given depthi. The expected value of this random experiment is then:

Ap] =) P(D=d)-Aq,. (8)
d=1
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SinceP(D = d) = (1 —p) - p¢~1, it follows thatE[Ap] = RBO(S, T, p). Indeed, this

probabilistic model can be extended further by observirag #y, itself gives the proba-
bility that an element randomly selected from one prefix wpbear in the other. Such
probabilistic models help to interpret the meaning of timeilsirity scores achieved.

4.2 Bounding RBO from prefix evaluation

Rank-biased overlap is defined on infinite lists. Becausedbnvergent, the evaluation of
a prefix sets a minimum and a maximum on the full score, withréimge between them
being the residual uncertainty attendant upon prefix, rathemn full, evaluation. In this
section, formulae for the minimum score, RB®, and the residual, RB&gs, are derived.

Simply calculating Equation 7 to prefix depth(let us call this RBO@K) sets a lower
bound on the full evaluation, but not a tight one. Indeed BQR@k > 0, it is certain that
RBO > RBO@k. This is because the overlap in the prefix also cortaibto all overlaps
at greater depths. (The same problem was observed withgevereerlap in Figure 5.)
More formally, for alld > k, I; 2 I, meaningX, > X and A, is at leastX} /d. Thus,
even if all items beyond the prefix turned out on full evaloatio be disjoint, the sum of
the agreements at depths beydndgould be:

oo

(1-p)
d=k+1

Xk a1

(9)

To set a true minimum on full evaluation, Equation 9 is adaethe RBO@k score. The
infinite sum can be resolved to finite form by the useful eqyali

Y l=m L0<p<l (10)
i I=p

which is derived by integrating both sides of Equation 6.eAffome rearrangement, we

arrive at:

k
1— d
RBOwi (S, T, p, k) = Tp (Z(Xd — X)- & = XiIn(1 —p)) (11)
d=1
wherek is the length of the prefix. ThBRBOwm~(S, T, p, k) value gives a tight lower
bound on the fulRBO(S, T, p) score. It follows from this thaRBOyun (S, T, p, k) is
monotonically non-decreasing on deeper evaluation; that i

vj > 0; RBOI\HN(S; Tvpaj + 1) > RBOMIN(S; Tvpaj) . (12)

Prefix evaluation can also be used to derive a tight maximurtherfull RBO score;
the residual uncertainty of the evaluation is then the distebetween the minimum and
maximum scores. The maximum score occurs when every elgmashprefix deptit in
each list matches an element in the other list, beginnink thibse elements in the prefix
that were previously unmatched. Figure 6 illustrates thith \&n example. The prefix
length isk = 3, and the overlafX, at this depth id. At each successive depth, two more
elements are added, one to each ranking. Therefore, thexmaaxoverlap increases by
two until agreement is complete, which occurs at depth 2k — X .. Beyond that depth,
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d S.g T.q min(Ay;) max(Ag) weight
1 <a> <c> 0/1 0/1 p°

2 <ab> <cb> 1/2 1/2 pt

3 <abd> <cbe> 1/3 1/3 p?

4 <abarld> <cbe?ll > 1/4 3/4 P>

5  <abdre?leel > <cbe?7ladl > 1/5 5/5 p*

6 <abdr?rleefl > <cperrrladfl s 1/6 6/6 p?

d <abd...> <cbe...> 1/d d/d pd—1

Fig. 6. Minimum and maximum agreements between two indefilists at different depths, with evaluation
finishing at deptt3. Unseen items for rank$ throughd are marked ag. Example hypothetical maximally
agreeing elements for these ranks are shown in square sacke

agreement is fixed dt The residual RBO value is therefore:

f )
2(d —k X
RBORES(Sv Tapv k) = (1 7p) § ( d )pd71 + E (1 - dk) pd71
d=k+1 d=f+1

(13)
Some rearranging, and again using Equation 10 to reducefihée sum, gives:

f d L
1— d—k 1
RBORES(S,Tvp,k)PfJF_pp{Q > ( d)p B llnlpz%l}'
d=1

d=k+1
(14)
One might prefer the residual uncertainty of prefix evalrato be dependent only on
the prefix length, not on prefix content. This is not the cagk RBO, as prefix agreement
determines how long it takes before the difference betwhenmrtaximum and minimum
agreements at subsequent depthsaches the stationary valuelof X /d, as well as this
stationary value itself. It is possible, though, to set agean the values that RBs can
take for a given prefix length, irrespective of prefix congefthe residual will be smallest
whenX;, = k, that is, when the prefix is conjoint. In this case, Equatidié&comes:

oo

min _ k d—1
RBOR (x5 p. k) = (1-p) 3 <1 d)p (15)
d=k+1
1—p 1 k pd
i _
= k- (m NP 16
p > ( T ; d) (16)

The residual will be largest whel;, = 0, that is, when the prefix is disjoint. Then, we
have:

2k 0o
RBORES (x, *,p, k) = (1—1?)( > @'Pd_l+ > pd_l) (17)

d=k+1 d=2k+1

k 2k 1—p 2t pd
2p" —p¥ -2k —— - —. (18)

It also follows that RB(QE‘SWHI occur when RBQuax = 1, and RBGRES will occur when
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RBOwin = 0. These formulae are useful in experimental planning. Fstammce, if two
search engines are to be compared on multiple queries, thet-page or ten-result eval-
uation withp = 0.9 will give a maximum residual d.254, for a range 0f).000 to 0.254,
and a minimum residual df.144, for a range 0f).856 to 1.000. These residuals can be
decreased either by examining more results or by using & leabee ofp.

Prefix evaluation, then, can be used to set tight bounds Uyediull RBO score, meeting
our main criteria for a similarity measure on indefinite raxgls. The upper and lower limits
are monotonically non-increasing and non-decreasingrsgely as evaluation continues
further down the two lists, in the manner illustrated in Fig8. Also, RBGesis monoton-
ically decreasing with evaluation depth: the greater tiieriation about the two lists, the
smaller the degree of uncertainty about their full simflarThese monotonic properties are
what qualifies RBO to be a satisfactory similarity measuradefinite rankings. Because
of them, the RBO measure provides consistent values foravaeévaluation depth hap-
pens to be chosen, and maintains consistency as this éealdapth increases. Moreover,
the score at any depth of partial evaluation gives stricitéiran the score that would be
achieved by full evaluation. In contrast, tépmeasures are measures only on the lists to
depthk, and provide no bounds on the value of full evaluation. Evéh partial evalua-
tion, RBO is a measure on the full lists.

4.3 Rank weights under RBO

The agreement at each depthinder RBO is assigned a weight. This weight, however, is
not the same as the weight that the elements at dahkemselves take, as these elements
contribute to multiple agreements. In this section, wewdesa formula for the weight of
each rank under RBO. From this, the weight of a prefix can beutated, which in turn
helps guide the choice of theparameter in the RBO evaluation

The pair of elements at depthmakes no contribution to partial agreements priod to
takes upl/dth of A4, 1/(d+ 1) th of A441, and so forth. Their precise contribution to the
overall score depends on which depth, if any, they are mdtaheConsider the difference
in the final score between, on the one hand, both elementp#t dbeing matched at or
prior to depthd (maximum agreement), and, on the other, neither elemenglmatched
at infinite depth (minimum agreement). We will refer to thifetence as theveightof
rank d, denoted adVrpo(d). Accounting for the weighting of the agreemenig =
(1 —p) - p4=1 (Equation 7), the weight of rankunder RBO is therefore:

1—p=p
Wrgo(d) = e ! > p7 (19)
i=d

The weight of the prefix of length, Wrpo(1 : d), is then the sum of the weights of the
ranks to that depth:

d d oo
Wipo(L:d) = 3 Wino(d) = %ZZ% (20)
j=1 j=11i1=j
which after some rearrangement, and using Equation 10 adveethe infinite sum, gives:
a-1, 1-p Y
=1
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Of course, the weight of the tailf/rpo(d + 1 : ), is1 — Wgrpo(1 : d). And since
Wrpo(1 : d) is invariant on the length of the list, it follows that the @bt of the infinite
tail does not dominate that of the finite head.

Equation 21 helps inform the choice of the paramgjevhich determines the degree of
top-weightedness of the RBO metric. For instance; 0.9 means that the firstO ranks
have86% of the weight of the evaluation; to give the tdpranks the same weight involves
takingp = 0.98 as the setting. Thus, the experimenter can tune the metdchieve a
given weight for a certain length of prefix.

4.4 Extrapolation

Definitions of RBQyn and RBQyes have been formulated in Section 4.2. The RBO score
can then be quoted either as base+residual or as a min—nge @or many practical and
statistical applications, though, it is desirable or neagsto have a single score or point
estimate, rather than a range of values.

The simplest method is to use the base RBO value as the sicgle for the partial
evaluation. The base score gives the known similarity beihate two lists, the most
that can be said with certainty given the information addda However, the base score
is dependent on the evaluation depth,The highest base score that can be achieved for
depthk evaluation using persistenpas:

1—pk— (Z——Hnl— )) (22)

which, for largep and smallk, is well short ofl. There are practical situations in which a
list is conceptually indefinite but where only the first feents are available. For instance,
if two search engines each only supflyesults to a query, and theparameter employed
is 0.9, then even if both results lists are identical (to the swggptiepth), the base RBO
score will only be0.767. In such situations, base RBO can easily become a measure of
result list length, not difference.

An alternative formulation for a single RBO score is to egtiate from the visible lists,
assuming that the degree of agreement seen up to éépttontinued indefinitely. Denote
as RBQxxr the result of such an extrapolation. To derive a direct fdanfior RBOgzxT, we
start from Equation 9, which gives the adjustment to the RB{De, calculated on the
seen items, to make it a true minimum value. The assumptigdhédower bound is that the
remaining items are all non-conjoint, so that the agreemeainks: > k is X}, /r. Instead,
extrapolation assumes that the degree of agreement séeis axpected to continue to
higher ranks, that is, that fer> k, A, = X\ /k. (The resulting agreement values may not
in reality be possible, because they would require fraetiomerlap. Consider, though, the
analogy of the expected value of a random experiment nohdwibe a possible outcome
of that experiment; for instance, the expected value ofngla fair six-sided die i8.5.)
Constant agreement considerably simplifies things, riegjh]:

Xk 1-—
RBOpxr(S,T,p. k) = =5 - p* + - F Z - (23)

It should be noted that this is not equivalent to simply epmlatmg a score between the
numeric values of RBn and RBQuax - Since those scores are weighted to higher ranks,
such an extrapolation would also be weighted to the agreeotserved in higher ranks.
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Instead, RB@xt extrapolates out froml,, that is, the agreement observed at evaluation
depthk.

Extrapolated RBO is not monotonic; it could either increaselecrease as the prefix
lengthens. However, RBQ will always increase with increasing agreement and deereas
with decreasing agreement. That isdif;; > A4 thenRBOgxT(d+ 1) > RBOgxT(d),
and conversely ifi;11 < A4 thenRBOgx1(d+ 1) < RBOgxT(d), foralld > 0. It was
noted in Section 3.4 that this property is not observed byamesoverlap. And of course,
RBOgxr is bounded, by RB@in and RBGyax -

Where a point score is needed, there is the choice of 2BOor RBO:zxr. In many
cases, evaluation will be performed deeply enough, @wdll be small enough (say,

p < 0.9 and depth 060), that the residual disappears at normal reporting fidéégving
RBOext and RBQiase as indistinguishable and almost-exact estimates of the RBO
score. Where the residual is noticeable, RRPshould in general be the preferred point
estimate, in part because it is less sensitive than gRB&to the actual evaluation depth,
which may vary between different ranking pairs in the oneegxpent. For noticeable
residuals, the full reporting format is RBQr[RBOwin — RBOyax |-

4.5 Metricity

Since RBO measures similarity, not distance, it is not a imetdowever, RBO can be
trivially turned into a distance measure, rank-biaseddist (RBD), by RBD= 1 — RBO.
We now prove that RBD is a metric.

ProPOSITION 4.1. RBD is a metric.

Proof. Since RBO is clearly symmetric, it is sufficient to show tha triangle inequality
holds, that is,

VR, S, T, RBD(R,T,p) < RBD(R, S,p) + RBD(S,T,p) - (24)
Now
RBD(S,T,p) = 1—RBO(S,T,p)

1 |S.a N Ty _
=1—(1—p)27| y [ et
d=1

o~ [Sa ATl 4o
= (-p Y BBl e (25)
d=1

whereA is symmetric difference, that is, the elements that are ans®t or the other but
not both. The last simplification is derived from the factttha

2d =|S.a| + |Ta|l = |S:a ATl +2-|S.aN T4l
_18anTal _ [Sa AT
d 2d
SoRBD(S, T') is the weighted sum of thes&.; A T. 4|, where the weighting is invariant
on the contents of the list. Therefore, we need only dematesthat
Vd,|R;dAT;d| < |R;dAS;d| +|S:dAT;d| (27)

The remainder of the proof follows Fagin et al. [2003]. Cdesian element € R A T.
Assume, without loss of generality, thate R; thereforex ¢ T. There are two cases:

=1 (26)
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z € S,inwhich casec € S AT butex ¢ RA S;orz ¢ S, inwhich casec € R A S but

x ¢ SAT. Either way, if an element occurs on (contributes to) thiesiefe of Equation 27,

it must occur on (contribute to) the right side. Equationtiattholds, and therefore so does

Equation 24. O
Similar proofs hold for the metricity of — RBOyy and1 — RBOgxr.

4.6 Ties and uneven rankings

Ties may be handled by assuming that,ittms are tied for rankéto d + (¢t — 1), they all
occur at rankd. To support this, we modify the definition of agreement giveBquation 3:

2-Xsrd
S.al + |T.dl

Equations 3 and 28 are equivalent in the absence of tiesdirtgover rankd, but in the
presence of such ties, the former formulation can lead teeagents greater than

It occasionally happens that indefinite rankings are coetgpaith different evaluation
depths on each ranking. One cause of such irregularity istiegroviders of the rankings
are returning lists shorter than the evaluation depth ahfisghe assessment and different
from each other. We will call such listsmeven rankingsFor instance, for an obscure but
not entirely nonsensical query, one public search engimhimeturn five results, another
might return seven. These can still be treated as indefiaitkings; there are many more
web pages beyond these depths, but they have not met theesrtireshold of estimated
relevance. For the following discussion, lebe the longer of the two lists, with lengih
andS be the shorter, with length

The formula for RBGyn given in Equation 11 handles uneven rankings without modi-
fication, since itis implicitly assumed thetl € {s+1,...,1}, Sq & L; thatis, we assume
maximal disjointness and are done with it. Conversely, RBOis found by assuming
that every item in the extension Sfmatches one item iy, increasing the overlap by one.
Thereforevd € {s +1,...,1}, XPax — Xmin = J — 5, regardless of the contents of the
preceding lists. The definition of RBson uneven lists then becomes:

RBOREs(L, S, l, S) =

Asta= (28)

f

l oo
1—p d—s 4 2d—-1—-5s 4 X1\ 4
S e S e 3 (1= )6 e

p d=s+1 d=l+1 d=f+1

wheref = [ 4+ s — X is the rank at which maximum agreement becoind2emoving the
infinite sum using Equation 10 once again, and simplifyieguits in:

RBORggs(L, S,1, s) =

! 1—p — L p
ps—i—p —pf—— S Z EJFZZ E-f—Xl
p d=st1 d=i+1

1 f pd
1n1_p_;ED(3O)

Modifying RBOgexT to handle uneven rankings is less straightforward. Theprtation
for even rankings is achieved by assuming the agreemeneiartkeen part of the lists is
the same as in the prefixes. However, agreement betivel S is not known to deptth.
And while agreement to depthis known, truncation at this depth loses information on the
degree of overlap betwedly, )., and.S. Therefore, extrapolation for uneven rankings
must separately extrapolate agreementQr, ).
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Consider the method of extrapolation for even lists. Theeagrent4, at common
evaluation depttk is assumed to continue unchanged at further evaluatiomslejot other
words,Vd > k, Ay = Ag, and specificallyd,,; = Ax. Referring to the definition of
agreement in Equation 3, this means that

ef
|Sesr N Topr| & Xpar = X + Ay, - (31)

If 0 < A < 1, which is generally the case, then working backwards thindbg formula
implicitly requires X 4~ to take on fractional values. This suggests the conceptgrege
of set membership. An element occurring in the seen prefbhaile a membership degree
of 1 or 0, depending on whether it is matched in the other list at theeeot evaluation
depth. An unseen element, however, is assigned under eldteym a (usually fractional)
membership degree; one could think of it as a “probabilityneimbership”. The elements
Sk+1 andTy4 1 in Equation 31, for even lists, each have membershijp In the case of
uneven lists, the conjointness bf, 1), is known to be eithed or 1. Nevertheless, the
membership of the unseen elemefis, 1), can still be set tad;. This will provide an
assumedi;, which can be extrapolated for elements beyond dgpthseen in both lists.
The formula then is:
! !
RBOgxr(L, S, 1, 5) = % ( %pd - $pd>+<¥ + X?) )
d=1 d=s+1

(32)
Note thatX; here means the overlap on the seen lists at deggven thoughS| < [; the
maximum value ofX; is therefores.

Calculating RBQ@xt on uneven lists in this way maintains two important critariat
by extrapolation on even lists. First, RBR < RBOgxt < RBOwax. And second,
RBOkxT is non-increasing with deeper evaluatiorbif, ; or L;+; is found to be disjoint,
and non-decreasing if the element is found to be conjoint.

5. EXPERIMENTAL DEMONSTRATIONS

Section 4 has defined the RBO metric, and described how itstieecriteria for an indef-

inite rank similarity measure, which the measures disaiss&ection 3 failed to do. We
now illustrate the use of RBO, first in comparing documenkiags produced by public
search engines, and secondly as an experimental tool iregeanch laboratory of the IR
system developer. These domains involve non-conjointingisk so rank similarity mea-
sures such as that require conjointness cannot be applied. The only gialiernatives to

RBO are other non-conjoint rank similarity measures. Wevigi®comparisons with two
of these: Kendall's distance (KD) and average overlap (AO).

5.1 Comparing search engines

We begin by using RBO to compare the results returned by pabhrch engines. Twenty
search engine users, drawn from the authors’ colleaguesi@quhintances, were asked
to provide search queries taken either from their recenthdzistory or as examples of
gueries the might currently be searching for. Each usermetubetween three and eight
queries, making a total df13 queries (available from the authors on request), collected
from mid-August to early September 2008. The queries wexe submitted once a day to

a number of public search engines, beginning on October, 2008, and running up until
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Name URL Notes

Google WWW.google.com Global Google. Google maps, news, blog
results excluded; Google books results
retained.

Yahoo search.yahoo.com Global Yahoo!.

Live search.live.com Global Live.

Ask www.ask.com Ask.

Dogpile www.dogpile.com Dogpile. Maximum 80 results.

Sensis www.sensis.com.au Sensis. Maximum 10 results. Not restricted
to Australian-only results.

Alexa www.alexa.com Alexa.

A9 a9.com A9. Maximum 20 results. Ceased offering

general web search in January 2009. Prior
to that, results based on Alexa.

Google (AU) www.google.com.au Google Australia search portal. Not
restricted to Australian-only results.

Yahoo (AU)  au.search.yahoo.com  Yahoo! Australia search portal. Not
restricted to Australian-only results.

Live (AU) www.live.com Specified\ ?mkt=en-au. Not restricted to
Australian-only results.

Table Il. Public search engines searched.

February 26th, 2009. Eleven different search engines waaeeked, as listed in Table 1.
Three of these are the Australian portals of internatiorarch engines. In every case,
queries were submitted directly to the web site via URL malaifion and the HTML re-
sults list was scraped; the search APIs of these enginesneéused. Except where noted,
the top100 results were retrieved from each search engine. In a givaiitsdist, only the
first result from any given host was retained; most searclnesgnly provided a maxi-
mum of two results from the one host, with the second beirdgiddirectly under the first.
Result URLs were captured as returned by the search engindsirther normalization
was performed.

Public search engines commonly return ten search resultpgee, including on the
first results page. Therefore a reasonable choice of tharameter is one that sets the
expected number of results compared by ghersistent user td0. This is achieved by
settingp t0 0.9. As described in Section 4.3, this is equivalent to givirgfirst ten results
86% of the weight in the similarity comparison. It is also eenient to concentrate on
the top ten results because, for interface reasons, it wigsractical to retrieve more than
the first ten results from some search engines. This agastridites the importance of a
rank similarity measure being monotonic in depth: we willdmenparing rankings with a
variety of depths, some going to degtho, others to depth0, and yet others somewhere
in between, and we want the similarity scores produced tmbgarable across all cases.

Table Il gives the mean RB&r, p = 0.9, between the different global search engines
across alll 13 queries on December 5th, 2008. The key to interpreting tiheemnical value
of these scores is to remember that RBO is a measurement eftexioverlap, or equiv-
alently of a weighted mean of overlap at different depthsusltthe RBO score di.25
between Google and Live can very roughly be understood asgé#yat the two systems
have 25% of their results in common (as a decaying averagermreasing depths). Con-
trary perhaps to expectations, different search engiregdact returning quite different
results, or at least result orderings, to queries; only ahahave an RBO abov&25. By
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Fig. 7. Mean RBO between Google and other search enginesffienedt values of the parameter. Raising
increases the depth of comparison.

the date of this run of queries, Alexa had started to draweissilts from Live, which is
why their RBO score is so high. Previously, Alexa had beemédapendent search engine,
which A9 drew its general search results from, and these hgines had a very high RBO
(around0.9). Not long after December 5th, 2008, A9 stopped offeringegahpurpose
web search and became solely a product search aggregat®Dddpile engine aggre-
gates results from Google, Yahoo, Live, and Ask. The RBO &gwuggest that Google
results are given the strongest weighting by Dogpile; tetfeat Ask is higher than Yahoo
and Live may be because Ask is itself closer to Google. ThaiSeearch engine is quite
unlike all the others, as to a lesser extent is A9. Table IMaghthe RBO between the
global and Australian-localized search results for thecdeangines that provide localized
variants. Apparently, Google performs much lighter |azatiion than either Yahoo or Live.
Other values thaf.9 could reasonably be chosen for th@arameter in search engine
comparisons. The researcher might wish to concentrate hearely on the user experi-
ence of the first few results, in which cgsealues of0.8 or even0.5 might be appropriate,

yahoo live ask dogpile sensis alexa a9
google 0.20 0.25 0.35 0.38 0.03 0.23 0.11
yahoo 0.21 0.17 0.24 0.03 0.21 0.08
live 0.18 0.24 0.03 0.76 0.10
ask 0.27 0.04 0.17 0.09
dogpile 0.03 0.23 0.08
sensis 0.03 0.02
alexa 0.09

Table 1ll. Mean RBOp = 0.9, between non-localized search engines across 113 useegjissued on 2008-
12-05.
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Fig. 8. Mean RBOp = 0.9, acrossl13 queries between Sensis and Google, and between Alexa aad Liv
calculated daily over the experimental period.

leading to expected comparison depthssadnd 2, respectively. Conversely, a deeper,
more system-centric comparison might be preferred, sdigges values 0f0.95 or 0.97
(expected depths @0 and33.3). Or the researcher might be interested to contrast a range
of comparison depths. Because RBO'’s top-weightednesaé&ahle via the parameter,
such investigations are possible. A question that can beeaded in this way is whether
search engines are more similar to each other at the topioféimkings than further down.
Raising thep value deepens the comparison, allowing us to explore thpethesis. Fig-
ure 7 shows that Yahoo and Live are indeed more similar to @aaighigher ranks than
lower, but only mildly so. The difference is much strongarAsk, suggesting that it is (by
design or coincidence) strongly tuned towards deliverirginailar first-page experience
to Google. The rise, with increasing depth, of Dogpile’siknity to Google in Figure 7
might on a naive reading lead to the (surprising) interpi@tathat Dogpile draws more
results from Google further down the ranking than higherBipt this interpretation fails
to appreciate that aggregated results are supplementagrgine drawing in another’s
answers; Dogpile’s similarity to Live and Yahoo (not showiegs even more strongly with
depth. The function of RBO here is to alert us to an anomalyodBais relationship to
Dogpile is quite different from its relationship to the otlemgines.

During the period of the study, Sensis ceased being an imdiep¢ search engine, and
switched to deriving its results from Google. Similarly,eXh changed to deriving its
results from Live. These events can be traced by lookingeaththan RBO scores of the

google  yahoo live
RBO 0.77 0.35 0.44

Table IV. Mean RBOp = 0.9, between localized and non-localized search enginessatf&queries issued on
2008-12-05.
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Day-to-day Start-to-end
mean sd  median mean
google 0.91 0.08 0.94 0.50
yahoo 0.94 0.09 0.98 0.45
live 0.94 0.12 1.00 0.43
ask 0.94 0.13 1.00 0.41

Table V. Rate of change of search engine results over timmeasured by RBO between sequential daily runs
(left) and between start and end of experiment (right).

respective system pairs over time, as displayed in FigurEdently, Sensis switched
to using Google on Day 57 (December 15th, 2008), while Alexaved to using Live
on Day 47 (December 5th, 2008), initially with some modificas, and almost verbatim
from Day 62 (December 20th). The dip in similarity betweerexd and Live on Day
122 (February 18th, 2009) is due to Alexa giving idiosynicregsults on this day; why it
does so is not clear. (Due to a problem with the query processmplete results are not
available for Sensis prior to Day 47.) Kendall's distancd average overlap detect similar
overall trends to those shown in Figure 8, but show relatigeéater similarity between
Sensis and Google after the switch. We hypothesize thaiSeray be seeding (possibly
localized) results into the top of the ranking provided byoGle. The top-weightedness
of RBO would detect such top-heavy seeding more effectitredy Kendall’s distance or
average overlap.

Another question of interest is how much the results of dfft search engines change
over time. This gives a sense of how dynamic a search sewjiedher by way of crawl-
ing policy, or through changes in its ranking computatioor €ach of thel 13 queries,
the RBO between one day’s results and the following daysltesvas calculated, for all
129 days in the experimental set. For each search engine, the amhmedian across
all day-to-day RBO scores were calculated, as was the metire gtandard deviation of
RBO scores for each query over time. The results are showatite V. Results tend to be
relatively stable from one day to the next; indeed, for Lind &sk, the “typical” (median)
result does not change at all. The results from Google shevhidhest rate of change.
Additionally, changes to Google results, and to a lessendthose of Yahoo, tend to be
constant and even (median closer to mean, low standardtdeyiavhereas changes to
Live and Ask results are more sporadic (median further froeam high standard devia-
tion). Also shown is the mean RBO between result lists takemftowards the beginning
of the experiment (Days 16 through 19) and then towards td€[@ays 111 through 114),
16 pairs in total for each query and each system. Query sealte shifted significantly
over the three months, but systems are still more similah¢otime-shifted versions of
themselves than (referring back to Table IIl) they are tcheaber. Interestingly, while
Google shows more day-to-day change, it shows the least @nedlong-term change.
This latter result is significant in a two-sample, two-tdiletest at0.05 level between
Google and each of the other search engines, but differéretesen the other engines are
not significant.

It is informative to compare the RBO results with those atedi by using Kendall's
distance at depth = 100, reported in Table VI. The large degree of disjointness betw
results causes Kendall’s distance to return negative sdioieall except the derivative
Live—Alexa pair. Negative values make little sense in thgplecation: there is no sense
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in which any of these search engines are giving rankingstive@iacorrelated with any
other. Kendall’s distance gives different relative restiftan RBO in a humber of cases.
For instance, RBO reports Dogpile to be closest to GoogleKbundall’s distance places
it closer to Yahoo; this is because on average Dogpile appgegpull more results from
Yahoo than from Google (mean agreemenitGitis 0.49 for Yahoo, and).30 for Google),
but seems to give a higher ranking to the results from Go@&ijtailarly, of the independent
systems, RBO places Ask as being closest to Google, wherradal's distance places
it as being farthest away; again, in this case, Kendall'tadise is following agreement at
one hundred. Thus, although Kendall's distance is by desigorrelation metric, its lack
of top-weightedness and the highly non-conjoint naturdnesé indefinite rankings has it
tending towards an unweighted measure of set agreement.

Too much significance should not be attached to these remuttsey stand. A rigorous
examination of search engine similarities would start fithese high-level RBO figures,
not finish with them. Nevertheless, these comparisons de giflavour of the analysis
that a suitable rank similarity measure allows us to makengearch engine results, and
indicate that RBO is uniquely suitable for these purposes.

5.2 Experimenting with information retrieval

In this section, we examine the use of RBO in a typical reseaituiation, where an IR
system is being modified, and the researcher wishes to neelaswrmuch the modification
is changing the results. The researcher may be using thesiaiikrity measure as a proxy
for a retrieval effectiveness metric. For instance, an ieficy change might have been
made, and the rank similarity comparison is being used asdicator of the degradation
in effectiveness that the change could have caused, as witfirgt example below. Using
RBO is attractive in this situation because performing glevance assessments needed for
effectiveness evaluation is expensive. If an initial exaation with RBO determines that
only slight changes have occurred in (top-weighted) ragkirder for some or all topics,
then the expense of relevance assessment on those topios aavided. Or the researcher
may simply be measuring ranking fidelity as such, as in ourrsgéexample.

Query pruning was mentioned in Section 2. It is a techniquetith the amount of
memory that is used in query processing is limited, and theuarhof processing time
reduced, but at a possible cost in retrieval accuracy arettféness. Therefore, if the
results of a pruned system differ from those of an unpruneg] tris suggests (though
does not by itself prove) a degradation in effectivenesguife 9 gives the results of using
RBO and Kendall’s distance in a query pruning experimene dhery-pruned results are
compared to the unpruned results, with evaluation carrigdta varying depths. Here

yahoo live ask dogpile  sensis alexa a9

google —-0.60 —-056 -066 —0.20 -093 -058 —-0.80
yahoo -055 -0.75 —-0.04 -094 -056 -0.85
live -0.73 -0.31 -0.93 0.62 -0.81
ask -041 -091 -0.73 -0.83
dogpile —-093 -035 -0.82
sensis —0.93 —-0.95
alexa —0.83

Table VI. Mean Kendall's distance at depth 100 between oealized search engines across 113 user queries
issued on 2008-12-05.
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Fig. 9. Similarity of query-pruned and unpruned runs. Kédifeldistance and RBO with different parameters
are calculated at increasing depths, averaged acrosspastoThe upper and lower bounds and extrapolated
values are shown for RBO. The corpus is wtl8g, and the quaereeSREC querie$51-600, title only. The
retrieval engine is Zettaif.9.3, using the Dirichlet similarity metric. Pruning is as deBed in Lester et al.
[2005], with a limit of 1,000 accumulators, compared to no accumulator limit.

the unpruned results are the objective or “gold-standadking, from which the pruned
results deviate. All extrapolated RBO values and also Ki¥adhstance decrease as the
depth of evaluation increases. This is because query pyteirds to have a greater effect
on late-ranking than top-ranking documents. The extrapdl®BO value asymptotes to
its final value relatively quickly, even for the very deep- 0.998 evaluation. On the other
hand, the Kendall's distance score is still falling at depf00, and it is not clear what
value it is asymptoting to, if any. We see clearly here thaid&d!’s distance is a measure,
not on the full list, but on the prefix. In contrast, base pkesidual RBO is a measure on
the full list, and even the extrapolated value shows gresisdnility. It should be noted that
all thep values chosen here are quite high. If one were using RBO ax for a retrieval
effectiveness metrigy = 0.98 would be at the upper end of the values one would be likely
to choose, in which case the value has already convergeddily 21&.

Figure 10 shows a different kind of alteration to an inforimatretrieval system. In
this case, a language model smoothed with Dirichlet prisrbding used to score the
similarity between query and documents. This query—docusienilarity measure takes

ACM Transactions on Information Systems — AUTHOR'S VERSIOAI. 28, No. 4, Nov 2010.



Similarity for indefinite rankings . 29

10 1 r 1.0
0.8
F 05
0.6
8 F 0.0 KD
[
0.4
I -05
02 1 —— RBO p=0.98
- - RBO p=0.995
-=-- RBO p=0.998
-+ RBO extrapolated
004 - —t— Kendall's distance I -1.0
0 200 400 600 800 1000

Depth

Fig. 10. Similarity of runs with different similarity metrituning parameters. Kendall's distance and RBO with
differentp parameters are calculated at increasing depths, averagess all topics. The upper and lower bounds
and extrapolated values are shown for RBO. The corpus isgyei®d the queries are TREC querfgsl—600,
title only. The retrieval engine is Zettair.9.3, using the Dirichlet similarity metric. Thg parameter of the
Dirichlet metric was set t600 for one run, and,000 for the other.

a parametef;, which balances the influence of the relative weighting oftewithin a
document: with lowen: values, relative weighting is emphasized, meaning sonmaster
have significantly higher impact than others, whereas witfindr . values, each term
tends to have similar weighting and what matters is simpdypttesence or absence of the
term [Zhai and Lafferty 2004]. Two different values pfare being tried in Figure 10 as
part of a parameter tuning experiment, with the mean RBOsacaoset of topics being
displayed. Here, neither parameter value is the baselinbjective value, from which the
other parameter is deviating and presumably degradingheRathe interest is in seeing
how much of a difference is caused by altering the parambteontrast to Figure 9, the
RBOext and Kendall's distance scores trend up as depth of evahiatioeases, not down.
The reason is that parameter tuning tends to cause localedrbations in ordering; as
the depth increases, the degree of overlap increases tdqoil measures give rising
similarity values with depth, but Kendall's distance risesisiderably more than even the
highestp RBO, and it appears not to have asymptoted by degtb0, even though the
extrapolated RBO values stabilize well before that. Evesutih Kendall's distance is
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derived from a metric that is based upon counting pertushatiit seems to be even more
strongly affected by overlap than RBO itself is.

Of course, the preceding two cases are only examples. Biffeanking perturbations
will result in different effects on rank similarity meassreNevertheless, these examples
serve to illustrate two important points. The first is that tralues of non-convergent
measures evaluated to shallow depths can be very differemt those at deeper depths,
and so such measures cannot be regarded as adequate imiksasures on indefinite
rankings. In contrast, a convergent metric gives hard bsumdinfinite evaluation. The
second, related point is that Kendall's distance and othygktmetrics cannot be regarded
as single measures, but rather as families of measuresgewafht value instantiating a
different member of the family. That is, Kendall's distarisat least as dependent on its
cutoff depthk as RBO is on its parametgr

5.3 Correlation with effectiveness measures

We conclude by examining the relationship between rankaiity measures and changes
in retrieval effectiveness. The metric used to calculatdenal effectiveness is average
precision (AP), which is defined as follows. Let the preaisdd a ranking to depttk be
the proportion of documents to depththat are relevant. The sum of precisions for that
ranking is the sum of the precision at each ranking that asaetedocument is returned.
Average precision for the ranking is then the sum of prenisidivided by the total num-
ber of (known) relevant documents for that query. To cakeuthe correlation between
effectiveness and rank similarity measures, one could &akeal retrieval runs, perturb
their rankings, and calculate the similarity between thgioal and perturbed rankings
on the one hand, and the change in effectiveness on the dtbieral rankings, however,
are typically far from ideal ones, so randomly perturbingnth while decreasing the rank-
ing similarity, has a rather noisy influence on effectivendastead, we take a simulated
approach. An ideal ranking df0 relevant and0 irrelevant documents is progressively
degraded. The degradation consists of a sequen2g sifvaps between a relevant and a
non-relevant document, chosen at random. After each suap,dive AP of the degraded
ranking, and similarity of the degraded to the ideal rankiagalculated and plotted. For
calculating AP, the total number of relevant documents idsé0 (that is, the retrieval
system has retrieved all relevant documents).

The results of this simulated experiment are given in Fidure A total of 100 degra-
dations were performed; each of the above figures thereforsists of2,500 points. The
Kendall's T between the AP score and the similarity value of the datatpasnalso dis-
played. Kendall's distance shows a weaker correlation WiEhthan either of the top-
weighted metrics. Moreover, it is more sensitive to the ffygoint. Cutoff at10 gives the
best correlation with AP across the whole sequence, but powelation at the top, and
insensitivity to relationships beyond depif. Evaluation to depth00 shows quite poor
correlation. Average overlap shares some of this sengitiwievaluation depth, whereas
RBO has high fidelity at high similarity, regardless of thealue chosen. A comparison
between the average overlap and RBO figures illustrates htimadtely average overlap
is linked with the choice of cutoff depth. Cutoff depth hadestst as strong an effect on
average overlap as changes in thgarameter has on RBO, even though as argued before
cutoff depth is essentially arbitrary in an indefinite rarki
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Fig. 11. Correlation between the average precision (AP)dsggaaded ranking on the one hand, and rank similar-
ity between the degraded and the ideal ranking on the othrethé experiment in which we start with a ranking
of 10 relevant followed byd0 non-relevant documents, then randomly swap relevant andeievant elements
25 times, recording similarity and AP at each iteration, witi) independent repetitions. The similarity metrics
used are Kendall's distance (KD) at different depths; rhigdsed overlap (RBO) with different values; and
average overlap (AO) at different depths.

6. CONCLUSIONS

Non-conjoint, top-weighted, and incomplete ranked listghat we have callethdefinite
rankings — are ubiquitous. Appropriate measures of theiilaiity, however, are lacking.
Such a measure must take into account all the peculiar desistics of indefinite rankings.
It must be top-weighted, giving more emphasis to the degfesindlarity at the top of
the ranking than further down. It must handle non-conjastin the rankings, neither
requiring every item to appear in both rankings, nor makirgteary assumptions about
where items uniquely seen in one ranking are located beyengdrefix in the other. And
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finally, it must recognize that the observed rankings arermalete prefixes of much longer
full rankings, and that the cutoff depth of the prefix is esisdiy arbitrary. A corollary of
this incompleteness is that what is desired is a measure afitfilarity of the full rankings,
not merely of the observed prefixes. No existing similarigasure on ranked lists meets
all of the above requirements.

In this paper, we have introduced a new similarity measureamked lists, namely
rank-biased overlap, or RBO. It is tuneably top-weightethdies non-conjointness in the
rankings, and is not tied to a particular prefix length. Maosportantly, it is a similarity
measure on the full rankings, even when only a prefix of eaekid#able for comparison.
It achieves this by using a convergent set of weights acrossessive prefixes, preventing
the weight of the unseen tail from dominating that of the obsghead. As a result, partial
evaluation allows us to set strict upper and lower bound&ersimilarity of the full rank-
ings — a similarity whose exact value could only be calculdiy evaluating the rankings
in full. The RBO measure is parameterized to tune the dedrepaveightedness, and we
have provided guidelines on the parameter choice. An eslaterd RBO value has been
derived to give a reasonable point estimate on this sirylarhis extrapolated value is it-
self monotonic on agreement. If the degree of agreemerdases with deeper evaluation,
the extrapolated value will go up; if agreement decreasesextrapolated value will go
down. Naturally, the extrapolated value is itself boundgdhe upper and lower bounds
of the RBO range. We have also proved that the distance neasuiRBO is a metric,
and extended RBO in a consistent way to handle tied ranks&fidt pankings of different
lengths. Finally, we have illustrated the use of RBO in conmggpublic search engines
and in the IR researcher’s laboratory, demonstrating thymes stabler and more intuitive
results than alternative measures.

Rank-biased overlap can properly be considered as a brémactamily of measures on
indefinite rankings, which are overlap-based measureg @sitonvergent set of weights
over prefixes. We have argued that an overlap-based measiesmore sense for in-
definite rankings than do measures derived from the notiotoakelation. Indeed, our
illustrative examples suggest that, in the presence of highvariable degrees of non-
conjointness, correlation-based metrics tend in pradticdegenerate into unweighted
measures of set overlap.

While we have developed and deployed RBO in the IR field, itppliaable to any
environment in which indefinite rankings occur — and thesgérenments are numerous.
Correct measurement is fundamental to informative obsiervand experimental manip-
ulation, and when dealing with the volume of data producedhieymodern information
economy, measures that inform rather than confound aretiElseWe hope that rank-
biased overlap will prove to be such a measure, for an impbdamain in which such
measures have, until now, been lacking.
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A. TAIL DOMINATES PREFIX IN AO

In this Appendix, we prove that the tails of infinite rankindgminates the heads in the
calculation of AO.

Consider the weight given to each rank by the AO measure tsndfdepthn. Rank1
is contained in each of thesubsets. In the first subset, it determines the entire qudria
the second subset, it determines half the overlap; in thd,taithird of the overlap; and so
forth. Therefore the weight of rankis:

1 11 1 = H,
WAO(l,n)ZE(1+§+§+ +j+ ) Zd:T (33)

whereH,, ~ v + Inn + 1/(2n) is thenth Harmonic number, ang = 0.52771 ... is the

Euler-Mascheroni constant (see Knuth [1997, Section ]).at7ollows thatWao (2, n) =
(H, — Hy)/n, thatWao(3,n) = (H, — Hz)/n, and in general:

H, — H(i—l)

Wao(i.n) = —"— (34)
If only the prefixk < n elements are available for each list, then{he. . ., £} heads of
each list have contributed to the similarity measure, bef{th+ 1,...,n} tails have not.
The cumulative weight of the head is:
1< 1 nk
head __ ~ IE—
Whe __ijmzn gZ;H' Hzl)NnhWk—n! (35)
1
= = [Inn* —In(k —1)!
- [Inn n( )!]
~ l[k:lnn—(k:—1)1n(l<:—1)+k—1] (36)
n
k
~ —[lnn—1Ink+1]
n
_k n2 k (37)
n k

where the simplification at Equation 36 uses Stirling’s agpnation,Inz! ~ zlnx — .
Equation 37 goes td asn — oo andk is fixed.
The cumulative weight of the tail, following a similar liné gimplification, is:

= 1. n= R (k1)
ail ~
Wt = Z WAO 'L n Z (Hn — H(zfl)) ~ E In W (38)
i=k+1 z:k-i—l
~1oFpnk (39)
n k n

which goes tal asn — oo andk is fixed. Therefore, for an infinite list, the weight of the
tail is 1, and of the head i8, proving that the tail dominates the head.
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