
Sparse Subspace Clustering

Ehsan Elhamifar René Vidal

Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218, USA

Abstract

We propose a method based on sparse representation

(SR) to cluster data drawn from multiple low-dimensional

linear or affine subspaces embedded in a high-dimensional

space. Our method is based on the fact that each point in

a union of subspaces has a SR with respect to a dictionary

formed by all other data points. In general, finding such a

SR is NP hard. Our key contribution is to show that, under

mild assumptions, the SR can be obtained ’exactly’ by using

!1 optimization. The segmentation of the data is obtained by
applying spectral clustering to a similarity matrix built from

this SR. Our method can handle noise, outliers as well as

missing data. We apply our subspace clustering algorithm

to the problem of segmenting multiple motions in video. Ex-

periments on 167 video sequences show that our approach

significantly outperforms state-of-the-art methods.

1. Introduction

Subspace clustering is an important problem with nu-

merous applications in image processing, e.g. image rep-

resentation and compression [15, 29], and computer vision,

e.g. image/motion/video segmentation [6, 16, 30, 28, 26].

Given a set of points drawn from a union of subspaces, the

task is to find the number of subspaces, their dimensions, a

basis for each subspace, and the segmentation of the data.

Prior work on subspace clustering. Existing works on

subspace clustering can be divided into six main categories:

iterative, statistical, factorization-based, spectral clustering,

algebraic and information-theoretic approaches. Iterative

approaches, such as K-subspaces [14], alternate between as-

signing points to subspaces, and fitting a subspace to each

cluster. Statistical approaches, such as Mixtures of Proba-

bilistic PCA (MPPCA) [24], Multi-Stage Learning (MSL)

[22], or [13], assume that the distribution of the data in-

side each subspace is Gaussian and alternate between data

clustering and subspace estimation by applying Expecta-

tion Maximization (EM) to a mixture of probabilistic PCAs.

The main drawbacks of both approaches are that they gen-

erally require the number and dimensions of the subspaces

to be known, and that they are sensitive to correct initializa-

tion. Robust methods, such as Random Sample Consensus

(RANSAC) [11], fit a subspace of dimension d to randomly
chosen subsets of d points until the number of inliers is large
enough. The inliers are then removed, and the process is

repeated to find a second subspace, and so on. RANSAC

can deal with noise and outliers, and does need to know the

number of subspaces. However, the dimensions of the sub-

spaces must be known and equal, and the number of trials

needed to find d points in the same subspace grows expo-
nentially with the number and dimension of the subspaces.

Factorization-based methods [6, 12, 16] find an initial

segmentation by thresholding the entries of a similarity

matrix built from the factorization of the matrix of data

points. Such methods are provably correct when the sub-

spaces are independent, but fail when this assumption is vi-

olated. Also, these methods are sensitive to noise. Spectral-

clustering methods [30, 10, 28] deal with these issues by

using local information around each point to build a simi-

larity between pairs of points. The segmentation of the data

is then obtained by applying spectral clustering to this sim-

ilarity matrix. These methods have difficulties dealing with

points near the intersection of two subspaces, because the

neighborhood of a point can contain points from different

subspaces. This issue can be resolved by looking at multi-

way similarities that capture the curvature of a collection of

points within an affine subspace [5]. However, the complex-

ity of building a multi-way similarity grows exponentially

with the number of subspaces and their dimensions.

Algebraic methods, such as Generalized Principal Com-

ponent Analysis (GPCA) [25, 18], fit the data with a polyno-

mial whose gradient at a point gives a vector normal to the

subspace containing that point. Subspace clustering is then

equivalent to fitting and differentiating polynomials. GPCA

can deal with subspaces of different dimensions, and does

not impose any restriction on the relative orientation of the

subspaces. However, GPCA is sensitive to noise and out-

liers, and its complexity increases exponentially with the

number of subspaces and their dimensions. Information-

theoretic approaches, such as Agglomerative Lossy Com-

pression (ALC) [17], model each subspace with a degen-

erate Gaussian, and look for the segmentation of the data

that minimizes the coding length needed to fit these points

with a mixture of Gaussians. As this minimization problem

1

is NP hard, a suboptimal solution is found by first assuming

that each point forms its own group, and then iterative merg-

ing pairs of groups to reduce the coding length. ALC can

handle noise and outliers in the data, and can estimate the

number of subspaces and their dimensions. However, there

is no theoretical proof for the optimality of the algorithm.

Paper contributions. In this paper, we propose a com-

pletely different approach to subspace clustering based on

sparse representation. Sparse representation of signals has

attracted a lot of attention during the last decade, especially

in the signal and image processing communities (see §2 for
a brief review). However, its application to computer vi-

sion problems is fairly recent. [21] uses !1 optimization to
deal with missing or corrupted data in motion segmenta-

tion. [20] uses sparse representation for restoration of color

images. [27] uses !1 minimization for recognizing human
faces from frontal views with varying expression and illu-

mination as well as occlusion. [19] uses a sparse represen-

tation to learn a dictionary for object recognition.

Our work is the first one to directly use the sparse repre-

sentation of vectors lying on a union of subspaces to cluster

the data into separate subspaces. We exploit the fact that

each data point in a union of subspaces can always be writ-

ten as a linear or affine combination of all other points. By

searching for the sparsest combination, we automatically

obtain other points lying in the same subspace. This allows

us to build a similarity matrix, from which the segmentation

of the data can be easily obtained using spectral clustering.

Our work has numerous advantages over the state of the art.

– Our sparse representation approach resolves the exponen-

tial complexity issue of methods such as RANSAC, spec-

tral clustering, and GPCA. While in principle finding the

sparsest representation is also an NP hard problem, we show

that under mild assumptions on the distribution of data on

the subspaces, the sparsest representation can be found effi-

ciently by solving a (convex) !1 optimization problem.

– Our work extends sparse representation work from one to

multiple subspaces. As we will see in §2, most of the sparse
representation literature assumes that the data lies in a single

linear subspace [1, 4, 7]. The work of [9] is the first one to

address the case of multiple subspaces, under the assump-

tion that a sparsifying basis for each subspace is known.

Our case is more challenging, because we do not have any

basis for any of the subspaces nor do we know which data

belong to which subspace. We only have the sparsifying

basis for the union of subspaces given by the data matrix.

– Our work requires no initialization, can deal with both

linear and affine subspaces, can handle data points near the

intersections, noise, outliers, and missing data.

– Last, but not least, our method significantly outperforms

existing motion segmentation algorithms on 167 sequences.

2. Sparse representation and compressed sensing

Compressed sensing (CS) is based on the idea that many

signals or vectors can have a concise representation when

expressed in a proper basis. So, the information rate of

a sparse signal is usually much smaller than the rate sug-

gested by its maximum frequency. In this section, we re-

view recently developed techniques from CS for sparsely

representing signals lying in one or more subspaces.

2.1. Sparse representation in a single subspace

Consider a vector x in RD, which can be represented in

a basis of D vectors {ψi ∈ RD}D
i=1. If we form the basis

matrix Ψ = [ψ1, ψ2, · · · , ψD], we can write x as:

x =
D∑

i=1

siψi = Ψs (1)

where s = [s1, s2, . . . , sD]!. Both x and s represent the
same signal, one in the space domain and the other in the

Ψ domain. However, in many cases x can have a sparse

representation in a properly chosen basis Ψ. We say that
x is K-sparse if it is a linear combination of at most K
basis vectors in Ψ, i.e. if at most K of the coefficients are

nonzero. In practice, the signal is K-sparse when it has at
most K large nonzero coefficients and the remaining coef-

ficients are very small. We are in general interested in the

case whereK " D.
Assume now that we do not measure x directly. Instead,

we measure m linear combinations of entries of x of the

form yi = φ!i x for i ∈ {1, 2, · · · ,m}. We thus have

y = [y1, y2, · · · , ym]! = Φx = ΦΨ s = A s , (2)

where Φ = [φ1, φ2, · · · ,φm]! ∈ Rm×D is called the

measurement matrix. The works of [1, 4, 7] show that, given

mmeasurements, one can recoverK-sparse signals/vectors
ifK ! m/ log(D/m). In principle, such a sparse represen-
tation can be obtained by solving the optimization problem:

min ‖s‖0 subject to y = As, (3)

where ‖s‖0 is the !0 norm of s, i.e. the number of nonzero
elements. However, such an optimization problem is in gen-

eral non-convex and NP-hard. This has motivated the devel-

opment of several methods for efficiently extracting a sparse

representation of signals/vectors. One of the well-known

methods is the Basis Pursuit (BP) algorithm, which replaces

the non-convex optimization in (3) by the following convex

!1 optimization problem [7]:

min ‖s‖1 subject to y = As. (4)

The works of [3, 2] show that we can recover perfectly aK-
sparse signal/vector by using the Basis Pursuit algorithm in

(4) under certain conditions on the so-called isometry con-

stant of the A matrix.

2.2. Sparse representation in a union of subspaces

Most of the work on CS deals with sparse representation

of signals/vectors lying in a single low-dimensional linear

subspace. The more general case where the signals/vectors

lie in a union of low-dimensional linear subspaces was only

recently considered. The work of Eldar [9] shows that when

the subspaces are disjoint (intersect only at the origin), a ba-

sis for each subspace is known, and certain condition on

a modified isometry constant holds, one can recover the

block-sparse vector s exactly by solving an !1/!2 optimiza-
tion problem.

More precisely, let {Ai ∈ RD×di}n
i=1 be a set of bases

for n disjoint linear subspaces embedded in RD with di-

mensions {di}n
i=1. If y belongs to the i-th subspace, we

can represent it as the sparse solution of

y = As = [A1, A2, · · · , An] [s!1 , s!2 , · · · , s!n]!, (5)

where si ∈ Rdi is a nonzero vector and all other vectors

{sj ∈ Rdj}j #=i are zero. Therefore, s is the solution to the
following non-convex optimization problem:

min

n∑

i=1

1(‖si‖2 > 0) subject to y = As, (6)

where 1(‖si‖2 > 0) is an indicator function that takes the
value 1 when ‖si‖2 > 0 and zero otherwise. [9] shows that
if a modified isometry constant satisfies a certain condition,

then the solution to the (convex) !2/!1 program

min

n∑

i=1

‖si‖2 subject to y = As (7)

coincides with that of (6).

In this paper, we address the problem of clustering data

lying in multiple linear or affine subspaces. This subspace

clustering problem is more challenging, because the sub-

space bases {Ai}n
i=1 and the subspace dimensions {di}n

i=1

are unknown, and hence we do not know a priori which data

points belong to which subspace. To the best of our knowl-

edge, our work is the first one to use sparse representation

techniques to address the subspace clustering problem.

3. Subspace clustering via sparse representation

In this section, we consider the problem of clustering a

collection of data points drawn from a union of subspaces

using sparse representation. First we consider the case

where all subspaces are linear and then we extend our re-

sult to the more general case of affine subspaces.

3.1. Clustering linear subspaces

Let {yj ∈ RD}N
j=1 be a collection of data points drawn

from a union of n independent1 linear subspaces {Si}n
i=1.

Let {di " D}n
i=1 and {Ai ∈ RD×di}n

i=1 be, respec-

tively, the unknown dimensions and bases for the n sub-
spaces. Let Yi ∈ RD×Ni be the collection ofNi data points

drawn from subspace i. Since we do not know which points
belong to which subspace, our data matrix is of the form

Y = [y1, y2, · · · , yN] = [Y1, Y2, · · · , Yn]Γ ∈ RD×N ,

where N =
∑n

i=1 Ni and Γ ∈ RN×N is an unknown per-

mutation matrix that specifies the segmentation of data.

Although we do not know the subspace bases, we know

that such bases can be chosen from the columns of the data

matrix Y . In fact, if we assume that there are enough data
points from each linear subspace, Ni ≥ di, and that these

data points are in general positions, meaning that no di

points from subspace i live in a (di − 1)-dimensional sub-
space, then the collection of data points is self-expressive.

This means that if y is a new data point in Si, then it can be

represented as a linear combination of di points in the same

subspace. Thus if we let s = Γ−1[s!1 , s!2 , · · · , s!n]! ∈
RN , where si ∈ RNi , then y has a di-sparse representation,

which can be recovered as a sparse solution of y = Y s,
with si &= 0 and sj = 0 for all j &= i. That is, s is a solution
of the following non-convex optimization problem

min ‖s‖0 subject to y = Y s (8)

which is an NP-hard problem to solve.2

The following theorem shows that when the subspaces

are independent1, the !1 optimization problem

min ‖s‖1 subject to y = Y s (9)

gives block sparse solutions with the nonzero block corre-

sponding to points in the same subspace as y.

Theorem 1 Let Y ∈ RD×N be a matrix whose columns

are drawn from a union of n independent linear subspaces.

Assume that the points within each subspace are in general

position. Let y be a new point in subspace i. The solution
to the !1 problem in (9) s = Γ−1[s!1 , s!2 , · · · , s!n]!∈ RN

is block sparse, i.e. si &= 0 and sj = 0 for all j &= i.

Proof. Let s be any sparse representation of the data point
y ∈ Si, i.e. y = Y s with si &= 0 and sj = 0 for all j &= i.
Since the points in each subspace are in general positions,

such a sparse representation exists. Now, if s∗ is a solution
of the !1 program in (9), then s∗ is a vector of minimum

1A collection of n linear subspaces {Si ⊂ RD}n
i=1 are independent if

dim(n
i=1 Si) = n

i=1 dim(Si), where ⊕ is the direct sum.
2Notice that our optimization problem in (8) is different from the one in

(6), because we do not know the subspace basis or the permutation matrix

Γ, and hence we cannot enforce that sj = 0 for j #= i whenever si #= 0.

!1 norm satisfying y = Y s∗. Let h = s∗ − s denote the
error between the optimal solution and our sparse solution.

Then, we can write h as the sum of two vectors hi and

hic supported on disjoint subsets of indices: hi represents

the error for the corresponding points in subspace i and hic

the error for the corresponding points in other subspaces.

We now show that hic = 0. For the sake of contradiction,
assume that hic &= 0. Since s∗ = s + hi + hic , we have

that y = Y s∗ = Y (s + hi) + Y hic . Also, since y ∈ Si,

Y (s + hi) ∈ Si, and from the independence assumption

Y hic /∈ Si, we have that Y hic = 0. This implies that

y = Y s∗ = Y (s + hi).

Now, from the fact that hi and hic are supported on disjoint

subset of indices, we have ‖s + hi‖1 < ‖s + hi + hic‖1 =
‖s∗‖1. In other words, s + hi is a feasible solution for

the !1 program in (9) whose !1 norm is smaller than that

of the optimal solution. This contradicts the optimality of

the solution s∗. Thus we must always have s∗ic = sic = 0,
meaning that only the block corresponding to the points in

the true subspace can have nonzero entries.

Theorem 1 gives sufficient conditions on subspaces and

the data matrix in order to be able to recover a block sparse

representation of a new data point as a linear combination of

the points in the data matrix that are in the same subspace.

We now show how to use such a sparse representation for

clustering the data according to the multiple subspaces.

Let Yî ∈ RD×N−1 be the matrix obtained from Y by re-

moving its i-th column, yi. The circumflex notation î thus
means “not i”. According to Theorem 1, if yi belongs to

the j-th subspace, then it has a sparse representation with
respect to the basis matrix Yî. Moreover, such a representa-

tion can be recovered by solving the following !1 program

min ‖ci‖1 subject to yi = Yîci. (10)

The optimal solution ci ∈ RN−1 is a vector whose nonzero

entries correspond to points (columns) in Yî that lie in the

same subspace as yi. Thus, by inserting a zero entry at the i-
th row of ci, we make it anN -dimensional vector, ĉi ∈ RN ,

whose nonzero entries correspond to points in Y that lie in

the same subspace as yi.

After solving (10) at each point i = 1, . . . , N , we obtain
a matrix of coefficients C = [ĉ1, ĉ2, · · · , ĉN] ∈ RN×N .

We use this matrix to define a directed graph G = (V,E).
The vertices of the graph V are the N data points, and there

is an edge (vi, vj) ∈ E when the data point yj is one of the

vectors in the sparse representation of yi, i.e. whenCji &= 0.
One can easily see that the adjacency matrix of the G is C.
In general G is an unbalanced digraph. To make it bal-

anced, we build a new graph G̃ with the adjacency matrix C̃
where C̃ij = |Cij | + |Cji|. C̃ is still a valid representation

of the similarity, because if yi can write itself as a linear

combination of some points including yj (all in the same

subspace), then yj can also write itself as a linear combina-

tion of some points in the same subspace including yi.

Having formed the similarity graph G̃, it follows from

Theorem 1 that all vertices representing the data points

in the same subspace form a connected component in the

graph, while the vertices representing points in different

subspaces have no edges between them. Therefore, in the

case of n subspaces, C̃ has the following block diagonal

form

C̃ =





C̃1 0 · · · 0
0 C̃2 · · · 0

...

0 0 · · · C̃n




Γ (11)

where Γ is a permutation matrix. The Laplacian matrix of
G̃ is then formed by L = D − C̃ where D ∈ RN×N is a

diagonal matrix with Dii =
∑

j C̃ij .

We use the following result from spectral graph theory

to infer the segmentation of the data by applying K-means

to a subset of eigenvectors of the Laplacian.

Proposition 1 The multiplicity of the zero eigenvalue of

the Laplacian matrix L corresponding to the graph G̃

is equal to the number of connected components of the

graph. Also, the components of the graph can be deter-

mined from the eigenspace of the zero eigenvalue. More

precisely, if the graph has n connected components, then

ui = [0, 0, . . . ,1!Ni
, 0, . . . , 0]Γ for i ∈ {1, 2, . . . , n} is the

i-th eigenvector of L corresponding to the zero eigenvalue

which means that the Ni nonzero elements of ui belong to

the same group.

For data points drawn in general position from n inde-
pendent linear subspaces, the similarity graph G̃ will have

n connected components. Therefore, when the number of
subspaces is unknown, we can estimate it as the number of

zero eigenvalues ofL. In the case of real data with noise, we
have to consider a robust measure to determine the number

of eigenvalues of L close to zero.

3.2. Clustering affine subspaces

In many cases we need to cluster data lying in multiple

affine rather than linear subspaces. For instance, the motion

segmentation problem we will discuss in the next section in-

volves clustering data lying in multiple 3-dimensional affine

subspaces. However, most existing motion segmentation al-

gorithms deal with this problem by clustering the data as if

they belonged to multiple 4-dimensional linear subspaces.

In this section, we show that our method can easily han-

dle the case of affine subspaces by a simple modification

to the BP algorithm. The modified !1 minimization is still a
convex optimization, which can be efficiently implemented.

More specifically, notice that in the case of affine subspace,

a point can no longer write itself as a linear combination of

points in the same subspace. However, we can still write a

point y as an affine combination of other points, i.e.

y = c1y1 + c2y2 + · · · + cNyN ,
N∑

i=1

ci = 1. (12)

Theorem 2 shows that one can recover the sparse represen-

tation of data points on an affine subspace by using the fol-

lowing modified Basis Pursuit algorithm

min ‖c‖1 subject to y = Y c and c!1 = 1. (13)

Theorem 2 Let Y ∈ RD×N be a matrix whose columns

are drawn from a union of n independent3 affine subspaces.
Assume that the points within each subspace are in general

position. Let y be a new point in subspace i. The solution to
the !1 problem in (13), s = Γ−1[s!1 , s!2 , · · · , s!n]! ∈ RN

is block sparse, i.e. si &= 0 and sj = 0 for all j &= i.

Proof. Analogous to that of Theorem 1.

Similar to what we did for linear subspaces, we can use

this result for clustering a collection of data points drawn

from n affine subspaces. Essentially, we solve the following
!1 minimization problem for each data point yi

min ‖ci‖1 subject to yi = Yî ci and c!i 1 = 1, (14)

and form the graph G̃ from the sparse coefficients. We

then apply spectral clustering to the corresponding Lapla-

cian matrix in order to get the segmentation of data.

3.3. Subspace clustering with noisy data

Consider now the case where the data points drawn from

a collection of linear or affine subspaces are contaminated

with noise. More specifically, let ȳi = yi + ζi be the i-th
data point corrupted with noise ζi bounded by ‖ζi‖2 ≤ ε.
In order to recover the sparse representation of ȳi, we can

look for the sparsest solution of ȳi = Yîci with an error of

at most ε, i.e. ‖Yîci − ȳi‖2 ≤ ε. We can find such a sparse
representation by solving the following problem

min ‖ci‖1 subject to ‖Yîci − ȳi‖2 ≤ ε. (15)

However, in many situations we do not know the noise level

ε beforehand. In such cases we can use the Lasso optimiza-
tion algorithm [23] to recover the sparse solution from

min ‖ci‖1 + γ ‖Yîci − ȳi‖2 (16)

where γ > 0 is a constant. In the case data drawn from mul-
tiple affine subspaces and corrupted with noise, the sparse

representation can be obtained by solving the problem

min‖ci‖1 subject to ‖Yîci − ȳi‖2 ≤ ε and c!i 1 = 1 (17)

3A collection of affine subspaces is said to be independent if they are

independent as linear subspaces in homogeneous coordinates.

or the modified Lasso counterpart

min ‖ci‖1 + γ ‖Yîci− ȳi‖2 subject to c!i 1 = 1. (18)

Segmentation of the data into different subspaces then fol-

lows by applying spectral clustering to the Laplacian of G̃.

3.4. Clustering with missing or corrupted data

In practice, some of the entries of the data points may be

missing (incomplete data), or corrupted (outliers). In mo-

tion segmentation, for example, due to occlusions or lim-

itations of the tracker, we may loose some feature points

in some of the frames (missing entries), or the tracker may

loose track of some features, leading to gross errors. As

suggested in [21], we can fill in missing entries or correct

gross errors using sparse techniques. In this section, we

show that one can also cluster data points with missing or

corrupted entries using a sparse representation.

Let Ii ⊂ {1, . . . , D} denote the indices of missing en-
tries in yi ∈ RD. Let Yî ∈ RD×N−1 be obtained by elimi-

nating the vector yi from the i-th column of the data matrix
Y . We then form ỹi ∈ RD−|Ii| and Ỹî ∈ RD−|Ii|×N−1 by

eliminating rows of yi and Yî indexed by Ii, respectively.

Assuming that Ỹî is complete, we can find a sparse repre-

sentation, c∗i , for ỹi by solving the following problem

min ‖ci‖1 + γ ‖Ỹîci− ỹi‖2 subject to c!i 1 = 1. (19)

The missing entries of yi are then given by y∗i = Yîc
∗
i .

Notice that this method for completion of missing data is

essentially the same as our method for computing the sparse

representation from complete data with noise in (18). Hence

we can use the sparse coefficient vectors {c∗i }N
i=1 to build

the similarity graph and find the segmentation of data.

Assume now that a few entries of each data point are cor-

rupted. We can also use the sparse representation to correct

such entries. More precisely, let ỹi ∈ RD be a corrupted

vector obtained from ȳi = yi + ζi by adding a sparse error

vector ei ∈ RD as ỹi = yi + ζi + ei. We can then write

ỹi = Yîci + ei = [Yî ID]
[
ci

ei

]
+ ζi, (20)

where the coefficient vector [c!i , e!i]! is still sparse, and
hence can be recovered from

min ‖
[
ci

ei

]
‖1 +γ ‖ỹi− [Yî ID]

[
ci

ei

]
‖2 subject to c!i 1 = 1.

We can then recover the original vector without outliers as

y∗i = Yîc
∗
i . As before, we can obtain the segmentation from

the sparse coefficients {c∗i }N
i=1 using spectral clustering.

In summary, we have the following Sparse Subspace

Clustering (SSC) algorithm for clustering data drawn from

a collection of linear/affine subspaces, and corrupted by

noise, missing entries, and outliers.

1. For every data point yi ∈ Y ∈ RD×N

(a) Form ỹi ∈ RD−|Ii| and Ỹî ∈ RD−|Ii|×N−1 by

eliminating rows of Y indexed by Ii. If needed,

also eliminate columns of Y that have missing

entries in Ic
i . If yi is complete, then Ii = ∅.

(b) Find sparse vectors c∗i and e∗i from

min ‖
[
ci

ei

]
‖1 + γ ‖ỹi − [Ỹî ID−|Ii|]

[
ci

ei

]
‖2

for linear subspaces, with the additional con-

straint c!i 1 = 1 for affine subspaces.
(c) Compute y∗i = Ỹîc

∗
i , which gives the complete

trajectories without outlying entries.

2. Form the graph G̃ from sparse coefficients {c∗i }N
i=1 and

compute the Laplacian matrix L of the graph.

3. Apply K-means to the n eigenvectors of the L corre-

sponding to the smallest n eigenvalues in order to find
segmentation of the data.

4. Application to motion segmentation

Motion segmentation refers to the problem of separat-

ing a video sequence into multiple spatiotemporal regions

corresponding to different rigid-body motions in the scene.

Under the affine projection model, all the trajectories as-

sociated with a single rigid motion live in a 3-dimensional

affine subspace, as we show below. Therefore, the motion

segmentation problem reduces to clustering a collection of

point trajectories according to multiple affine subspaces.

More specifically, let {xfp ∈ R2}f=1,...,F
p=1,...,P denote the

tracked feature points trajectories in F 2-D image frames

of P points {Xp ∈ R3}p=1,...,P on a rigidly moving ob-

ject. The relation between the tracked feature points and

the corresponding 3-D coordinates of the points on the ob-

ject under the affine camera model is given by

xfp = Af

[
Xp

1

]
(21)

where Af ∈ R2×4 is the affine motion matrix at frame f . If
we form a matrix containing all the F tracked feature points

corresponding to a point on the object in a column, we get




x11 · · ·x1P

...

xF1 · · ·xFP





2F×P

=




A1
...

AF





2F×4

[
X1 · · ·XP

1 · · · 1

]

4×N

(22)

We can briefly write this asW = MS! whereM ∈ R2F×4

is called the motion matrix and S ∈ RN×4 is called the

structure matrix. Since rank(M), rank(S) ≤ 4 we get

rank(W)= rank(MS!)≤min(rank(M), rank(S))≤4. (23)

Since the last row of S! is 1, under the affine camera model
the trajectories of feature points of a single rigid motion lie

in an affine subspace of R2F of dimension at most three.

Now, assume we are given P trajectories of n rigidly

moving objects. Then, these trajectories will lie in a union

of n affine subspaces inR2F . The 3-D motion segmentation

problem is the task of clustering these P trajectories into n
different groups such that the trajectories in the same group

represent a single rigid motion. Thus, one can see that the

problem of motion segmentation reduces to the clustering

of data points drawn from a union of affine subspaces.

4.1. Experiments on the Hopkins 155 database

In this subsection, we apply SSC for affine subspaces to

the motion segmentation problem. We evaluate SSC on the

Hopkins155 motion database, which is available online at

http://www.vision.jhu.edu/data/hopkins155. The database con-

sists of 155 sequences of two and three motions which can

be divided into three main categories: checkerboard, traf-

fic, and articulated sequences. The trajectories are extracted

automatically with a tracker, and outliers are manually re-

moved. Therefore, the trajectories are corrupted by noise,

but do not have missing entries or outliers.

A customary preprocessing step used by other motion

segmentation algorithms is to reduce the dimension of the

dataD = 2F tom = 4n, where n is the number of motions.
This is because the rank of the data matrix W is bounded

above by 4n. As we want a projection that preserves the
sparsity of the data, we use a random projection matrix Φ.
[8, 1] show that if we form Φ by sampling i.i.d entries from
a Normal distribution with zero mean and variance 1/m
or from i.i.d. entries of a symmetric Bernoulli distribu-

tion (P(Φij = ±1/
√

m) = 1/2), then !1 minimization can
successfully solve the !0 minimization problem with over-
whelming probability provided that m > 2d log (D/m).
Herem is the projection dimension,D is the ambient space

dimension, and d is the sparsity level. We use both Normal
and Bernoulli distributions to project the data points.

After projection, we apply SSC to obtain the sparse co-

efficient vectors. From (23) we know that the dimension of

each affine subspace is at most three, hence we expect to

have at most four nonzero elements for every sparse solu-

tion ci. Thus we take the four largest nonzero coefficients

of ci to form the similarity graph G̃ and the corresponding

Laplacian matrix L. Segmentation of the trajectories fol-

lows by applying K-means to the n ∈ {2, 3} eigenvectors
of L corresponding to the smallest n eigenvalues.
Figure 1 shows the adjacency matrices for three se-

quences in the database. Notice that SSC has successfully

recovered the sparse representation of the data points, since

almost all nonzero coefficients belong to the true subspace.

Figure 2 shows the corresponding graphs on which we ap-

ply spectral clustering. The results show that the data points

Figure 1. Sparse coefficients used to define the graph similarity

matrix for three sequences: 1R2TRCT-g12, cars9, and articulated.

Figure 2. Similarity graphs for three sequences: 1R2TRCT-g12,

cars9, and articulated.

in the same subspace form a connected component. A few

number of edges exist between different groups, which are

ignored by the spectral clustering.

The average and median misclassification errors are

listed in Tables 1-3. In order to compare SSC with the

state of the art, we also list the results of GPCA [26], LSA

[28], RANSAC [11], MSL [22], and ALC [21]. The results

of SSC are listed as SSC-B and SSC-N, which correspond

to Bernoulli and Normal random projections, respectively.

Notice that SSC outperforms all existing methods, in all cat-

egories (checkerboard, traffic, and articulated), and for both

two and three motions. Table 1 shows that we get a misclas-

sification error of 0.75% for sequences with two motions,

which is about 1/3 of the best previously reported result by

ALC. Also, Table 2 shows that we get a misclassification

error of 2.45% for sequences with three motions, while the

best previously reported result is 6.69% by ALC.

Notice also that our algorithm performs well not only

for checkerboard sequences, which have independent mo-

tion subspaces, but also for traffic and articulated sequences,

which are the bottleneck of almost all existing methods, be-

cause they contain dependent motions. In fact, we get errors

of 0.02% and 0.58% for traffic sequences with two and three

motions, respectively which is much better than the results

of the existing algorithms. Likewise, for articulated motions

where almost all existing methods do not perform well, we

get misclassification error of 0.62% and 1.42% for two and

three motions, respectively. Overall, SSC achieves a mis-

classification error of 1.24% in the whole database, which

is about 1/3 of the best reported result.

4.2. Experiments with missing data and outliers

We now examine the robustness of SSC to missing data

and outliers. We use twelve sequences from [26], with nine

sequences of two motions and three sequences of three mo-

Table 1. Classification errors (%) for sequences with 2 motions

Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N

Checkerboard: 78 sequences
Mean 6.09 2.57 6.52 4.46 1.55 0.83 1.12
Median 1.03 0.27 1.75 0.00 0.29 0.00 0.00
Traffic: 31 sequences
Mean 1.41 5.43 2.55 2.23 1.59 0.23 0.02

Median 0.00 1.48 0.21 0.00 1.17 0.00 0.00
Articulated: 11 sequences
Mean 2.88 4.10 7.25 7.23 10.70 1.63 0.62

Median 0.00 1.22 2.64 0.00 0.95 0.00 0.00
All: 120 sequences
Mean 4.59 3.45 5.56 4.14 2.40 0.75 0.82
Median 0.38 0.59 1.18 0.00 0.43 0.00 0.00

Table 2. Classification errors (%) for sequences with 3 motions

Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N

Checkerboard: 26 sequences
Mean 31.95 5.80 25.78 10.38 5.20 4.49 2.97

Median 32.93 1.77 26.00 4.61 0.67 0.54 0.27
Traffic: 7 sequences

Mean 19.83 25.07 12.83 1.80 7.75 0.61 0.58

Median 19.55 23.79 11.45 0.00 0.49 0.00 0.00
Articulated: 2 sequences

Mean 16.85 7.25 21.38 2.71 21.08 1.60 1.42

Median 16.85 7.25 21.38 2.71 21.08 1.60 0.00
All: 35 sequences

Mean 28.66 9.73 22.94 8.23 6.69 3.55 2.45

Median 28.26 2.33 22.03 1.76 0.67 0.25 0.20

Table 3. Classification errors (%) for all sequences

Method GPCA LSA RANSAC MSL ALC SSC-B SSC-N

155 sequences
Mean 10.34 4.94 9.76 5.03 3.56 1.45 1.24

Median 2.54 0.90 3.21 0.00 0.50 0.00 0.00

tions, as shown in Figure 3. We use the data points in the

original ambient space without projecting them into lower

dimensions. For incomplete trajectories, we apply SSC to

video sequences between 4% and 35% of whose entries

are missing. We compare SSC with Power Factorization-

based ALC and !1-based ALC [21] in Table 4. Our method
achieves a misclassification error of 0.13%, which is a sig-

nificant improvement to the state of the art. For corrupted

trajectories, we apply SSC to the sequences between 4%

and 35% of whose entries are corrupted. Our results in Ta-

ble 5 compared with the results of !1-based ALC indicate
the robustness of SSC to outliers. In contrast to ALC, we

do not need to use l1 as an initialization step to complete
the trajectories and then apply the segmentation algorithm.

The resulting sparse coefficients are used directly to build

the similarity graph and do the spectral clustering.

Table 4. Misclassifications rates for Power Factorization and our

!1-based approach on 12 real motion sequences with missing data.
Method PF+ ALC5 PF+ALCsp !1+ALC5 !1+ALCsp SSC-N

Average 1.89% 10.81% 3.81% 1.28% 0.13%

Median 0.39% 7.85% 0.17% 1.07% 0.00%

Table 5. Misclassifications rates for our !1-based approach on 12
real motion sequences with corrupted trajectories.

Method !1 + ALC5 !1 + ALCsp SSC-N

Average 4.15% 3.02% 1.05%

Median 0.21% 0.89% 0.43%

Figure 3. Example frames from three video sequences with incom-

plete or corrupted trajectories. Sequences taken from [26].

5. Conclusions

We have presented a novel approach to subspace cluster-

ing based on sparse representation. We showed that, under

mild conditions, the NP hard problem of writing a point as a

sparse combination of other points can be solved efficiently

using !1 minimization. We also showed how the segmen-
tation of the data can be easily obtained from this sparse

representation. We then extended our approach to cluster-

ing data contaminated by noise, missing entries, or outliers.

We showed excellent performance of our approach for clus-

tering motion trajectories on a database of 167 sequences.

References

[1] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple

proof of the restricted isometry property for random matrices. Con-

structive Approximation, 2008.

[2] E. Candés. The restricted isometry property and its implications for

compressed sensing. C. R. Acad. Sci., Paris, Series I, 346:589–592,

2008.

[3] E. Candés, J. Romberg, and T. Tao. Stable signal recovery from

incomplete and inaccurate measurements. Communications on Pure

and Applied Mathematics, 59(8):1207–1223, 2006.

[4] E. Candés and T. Tao. Decoding by linear programming. IEEE Trans.

on Information Theory, 51(12):4203–4215, 2005.

[5] G. Chen and G. Randall. Spectral curvature clustering. International

Journal of Computer Vision, 2008.

[6] J. Costeira and T. Kanade. A multibody factorization method for

independently moving objects. Int. Journal of Computer Vision,

29(3):159179, 1998.

[7] D. L. Donoho. For most large underdetermined systems of linear

equations the minimal !1-norm solution is also the sparsest solution.
Communications on Pure and Applied Mathematics, 59(6):797–829,

Jun 2006.

[8] D. L. Donoho and J. Tanner. Counting faces of randomly projected

polytopes when the projection radically lowers dimension. J. Amer.

Math. Soc., 22(1):1–53, 2009.

[9] Y. C. Eldar and M. Mishali. Robust recovery of signals from a union

of subspaces. preprint,, 2008.

[10] Z. Fan, J. Zhou, and Y. Wu. Multibody grouping by inference

of multiple subspaces from high-dimensional data using oriented-

frames. IEEE Trans. on Pattern Analysis and Machine Intelligence,

28(1):91–105, 2006.

[11] M. A. Fischler and R. C. Bolles. RANSAC random sample consen-

sus: A paradigm for model fitting with applications to image analysis

and automated cartography. Communications of the ACM, 26:381–

395, 1981.

[12] C. W. Gear. Multibody grouping from motion images. Int. Journal

of Computer Vision, 29(2):133–150, 1998.

[13] A. Gruber and Y. Weiss. Multibody factorization with uncertainty

and missing data using the EM algorithm. In IEEE Conf. on Com-

puter Vision and Pattern Recognition, volume I, pages 707–714,

2004.

[14] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman. Clustering

apperances of objects under varying illumination conditions. In IEEE

Conf. on Computer Vision and Pattern Recognition, volume 1, pages

11–18, 2003.

[15] W. Hong, J. Wright, K. Huang, and Y. Ma. Multi-scale hybrid lin-

ear models for lossy image representation. IEEE Trans. on Image

Processing, 15(12):3655–3671, 2006.

[16] K. Kanatani. Motion segmentation by subspace separation and model

selection. In IEEE Int. Conf. on Computer Vision, volume 2, pages

586–591, 2001.

[17] Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation of mul-

tivariate mixed data via lossy coding and compression. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 29(9):1546–

1562, 2007.

[18] Y. Ma, A. Yang, H. Derksen, and R. Fossum. Estimation of subspace

arrangements with applications in modeling and segmenting mixed

data. SIAM Review, 2008.

[19] J. Marial, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discrimi-

native learned dictionaries for local image analysis. CVPR, 2008.

[20] J. Marial, M. Elad, and G. Sapiro. Sparse representation for color

image restoration. TIP, 17(1):53–69, 2008.

[21] S. Rao, R. Tron, Y. Ma, and R. Vidal. Motion segmentation via

robust subspace separation in the presence of outlying, incomplete,

or corrupted trajectories. In IEEE Conference on Computer Vision

and Pattern Recognition, 2008.

[22] Y. Sugaya and K. Kanatani. Geometric structure of degeneracy for

multi-body motion segmentation. In Workshop on Statistical Meth-

ods in Video Processing, 2004.

[23] R. Tibshirani. Regression shrinkage and selection via the lasso. Jour-

nal of the Royal Statistical Society B, 58(1):267–288, 1996.

[24] M. Tipping and C. Bishop. Mixtures of probabilistic principal com-

ponent analyzers. Neural Computation, 11(2):443–482, 1999.

[25] R. Vidal, Y. Ma, and S. Sastry. Generalized Principal Component

Analysis (GPCA). IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 27(12):1–15, 2005.

[26] R. Vidal, R. Tron, and R. Hartley. Multiframe motion segmentation

with missing data using PowerFactorization and GPCA. Interna-

tional Journal of Computer Vision, 79(1):85–105, 2008.

[27] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face

recognition via sparse representation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 31(2), 2009.

[28] J. Yan and M. Pollefeys. A general framework for motion segmenta-

tion: Independent, articulated, rigid, non-rigid, degenerate and non-

degenerate. In European Conf. on Computer Vision, pages 94–106,

2006.

[29] A. Y. Yang, J. Wright, Y. Ma, and S. S. Sastry. Unsupervised Seg-

mentation of Natural Images Via Lossy Data Compression. Com-

puter Vision and Image Understanding, 110(2):212–225, 2008.

[30] L. Zelnik-Manor and M. Irani. Degeneracies, dependencies and

their implications in multi-body and multi-sequence factorization. In

IEEE Conf. on Computer Vision and Pattern Recognition, volume 2,

pages 287–293, 2003.

