
MoXi: Real-Time Ink Dispersion in Absorbent Paper

Nelson S.-H. Chu Chiew-Lan Tai

The Hong Kong University of Science and Technology*

Abstract
This paper presents a physically-based method for simulating ink
dispersion in absorbent paper for art creation purposes. We devise
a novel fluid flow model based on the lattice Boltzmann equation
suitable for simulating percolation in disordered media, like paper,
in real time. Our model combines the simulations of spontaneous
shape evolution and porous media flow under a unified frame-
work. We also couple our physics simulation with simple implicit
modeling and image-based methods to render high quality output.
We demonstrate the effectiveness of our techniques in a digital
paint system and achieve various realistic effects of ink dispersion,
including complex flow patterns observed in real artwork, and
other special effects.

Keywords: Eastern Ink Painting, Fluid Simulation, Lattice
Boltzmann Equation, Physically-Based Modeling

CR Categories: I.3.3 [Computer Graphics] Picture/Image
Generation; I.3.4 [Computer Utilities]: Paint Systems

1 Introduction
Eastern brushwork is unique among the world’s art traditions. The
economy of brush strokes, the use of expressive lines, and the
fascinating ink dispersion all contribute to its distinctive appeal.
The tools and materials, and how they are manipulated are crucial
in producing these features. Progressive painters are always on the
quest for new effects or techniques to heighten their expression.

In this paper, we describe various effects of ink dispersion and
show how we simulate them computationally. Our goal is to
simulate ink spreading in painting paper so that artists can paint in
the spontaneous style of Eastern ink painting on a computer
interactively (Figure 1). Accomplishing this goal is challenging
because of the complexity of the art medium and the real-time
requirement. Apart from replicating existing artistic effects, we
also hope to further develop the art by creating new digital effects,
in particular those that carry the spirit of ink – its fluidity.

Contributions: We develop an ink flow model that can simulate
more complex effects than possible with previous work. Our ink
flow simulation is based on the method of lattice Boltzmann
equation (LBE), a relatively new computational fluid dynamics
method [Succi 2001]. This method is easy to implement, highly
efficient on parallel processors, and amenable to additional fluid
physics modeling. We modify the basic LBE for the physics of
ink flow in absorbent paper. The modifications include the
incorporation of variable permeability, modulated advection, and
boundary roughening. Various ink effects including complex
branching patterns, spontaneous shape evolution are achievable
under this unified model.

We have implemented our ink flow model and a brush dynam-
ics model [Chu and Tai 2004] in a real-time paint system. Both
the GPU and the CPU are utilized for these computation-intensive
simulations. We also develop simple implicit modeling and
image-based methods to enhance the output quality. These
methods are applied on the fly to give immediate user feedback.
The resulting system allows a very realistic and intuitive painting
experience not attained before in the digital realm.

Organization: After giving some background on Eastern ink
painting, we discuss previous work in Section 3. We then describe
the LBE fluid simulation approach in Section 4 and present the
details of our methods in Sections 5 and 6. Results are presented
in Section 7. Finally, Section 8 gives directions for future work.

2 Physical Properties of Ink Painting
In the spontaneous style of Eastern ink painting (or ink painting
for short), artists utilize flexible brushes to create expressive lines
and shapes, and exploit the interplay of ink and water to produce
shades and patterns. To provide readers with the necessary
background, we next discuss the art materials, the artistic effects
related to ink dispersion, and the physical processes involved.

2.1 Eastern Ink and Paper
Eastern ink in its solid form is a mixture of soot and glue [Swider
et al. 2003]. The solid is grinded together with water to get black
liquid ink. The soot is composed of 10-150 nm carbon particles
and dissolves readily in water. Because of their small sizes, the
carbon particles seep into paper fibers easily, giving the most
prominent dispersion effects in comparison with other (color)

Figure 1: A sample painting created with our system.

*e-mail: {cpegnel, taicl}@ust.hk

© ACM, 2005. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version was published in ACM Transac-
tions on Graphics, Vol. 24, No. 3, August 2005. http://doi.acm.org/

pigments. The glue functions as a dispersing agent to provide a
stable liquid suspension of pigment particles and as a binder to fix
the pigment during its application on paper. More glue in the ink
makes the ink more viscous.

Ink dispersion is closely determined by paper absorbency; it is
mainly the imbibition of water that causes the ink to flow through
the paper fibers. Very thin and highly absorbent Xuan paper is
commonly used to vividly pick up the special charm of ink
dispersion. To reduce absorbency, the paper can be treated with
alum.

2.2 Painting Effects
For a faithful simulation, we need to model the essential effects of
the art medium, which include:

˙ Feathery pattern (Figure 2a): When diluted ink is absorbed
into the paper, delicate ink streaks that follow the direction of
the water flow appear. This feathery quality is caused by the
pigments being hindered or used up while the ink spreads.

˙ Light fringes (Figure 2b): When a stroke is made with diluted
ink, water percolates on paper forming a light fringe around
the stroke. If another stroke is painted over the first, the wet
region of the paper will be less receptive to the new stroke,
making the light fringe stands out.

˙ Branching pattern (Figure 2c): Branching patterns appear
because the water flow is obstructed by irregularities in the
paper or trapped ink ingredients. Artists may apply glue or
other materials unevenly onto the paper to enhance this effect.

˙ Boundary roughening (Figure 2d): As ink percolates through
paper, the wet-dry boundary is pinned at different points by
the irregularities in the paper. This is more prominent with
concentrated ink, forming toes around the boundary.

˙ Boundary darkening (Figure 2e): At the pinned boundary of a
wet ink mark, water is lost to the surrounding dry fibers via
capillary attraction. This water evaporates immediately with-
out expanding the mark, and the attraction induces a migra-
tion of pigments that darkens the boundary.

There are painting techniques that artists can use to produce a
few of these effects at once, giving a dynamic feel of the art
medium. One general technique is ink-breaking, in which the
artist first paints a stroke with a certain ink concentration and,
while it is still wet, paints another stroke over it with a different
ink concentration. The two strokes then interact to break the
monotony in each of them.

2.3 Physics of Ink Dispersion
In the graphics community, the term ‘ink diffusion’ has been
traditionally used to describe ink dispersion in absorbent paper
(e.g. [Guo and Kunii 1991; Lee 2001]). However, in physics,
‘diffusion’ refers to the random walk of particles towards the less
concentrated regions. It is mathematically described by Fick’s law.

In effect, diffusion simply averages out any spatial difference in
the concentration, making the concentration approach a constant
with time.

In reality, the actual process of ink dispersion is a complex
interplay between paper, water and ink constituents – a process
that Fickian diffusion alone cannot describe adequately. Ink
dispersion can be viewed as a two-part process: the percolation of
water and the movement of pigments within the water. Water
flows through the paper fibers in low speed due to water pressure
and capillary attractions. Voids in the paper, alum, and the
accumulation of ink constituents all may impede the flow,
inducing momentum exchange. When faced with obstacles, water
branches into streams
(Figure 3). The flowing
water carries pigments
with it. The dispersion of
pigments in the water is
mainly caused by the
spatial difference in
water velocity and the
hindrance by paper
fibers; pigment diffusion
only plays a minimal role.

To better appreciate the above phenomena, we video record the
ink dispersion process and play it back in fast-forward mode. We
refer the readers to our accompanying video for sample footage.
Realizing the complex nature of ink flow has motivated us to use
a full-fledged fluid simulation to produce realistic ink effects.

3 Previous Work
Eastern Ink Simulation: Guo and Kunii [1991] proposed the
first model specifically for Eastern ink dispersion in paper.
Assuming that ink consists of pigment particles of different sizes,
they modeled ink spreading as a one-dimensional filtering process.
Later, Kunii et al. [2001] used partial differential equations (PDE)
in an attempt to better describe the phenomenon. Their PDE’s for
water spreading in paper and pigment movement within water are
essentially Fick’s law of diffusion. However, these PDE’s could
only produce blurry images without the interesting flow patterns
observed in reality.

Other researchers [Zhang et al. 1999; Yu et al. 2002] used
cellular automation to simulate ink dispersion. They essentially
treat ink flow as a relaxation process without momentum ex-
change. Without considering momentum, these methods are only
suitable for situations where ink mixes to form blurry images. Yet
other research efforts [Lee 2001; Guo and Kunii 2003] processed
only the fronts of the spreading strokes to speedup rendering, but
this also limits the range of producible effects.

Western Watercolor Simulation: Curtis et al. [1997] did some
very successful simulations of Western watercolor paint. Their
model simulates the flow of water in two parts: on the paper

Figure 2: Real ink effects. (a) Feathery pattern. (b) Light fringes. (c) Branching pattern. (d) Boundary roughening. (e) Boundary darkening.

a b c d e

Obstacles

Flow

a b

Figure 3: Impeded flow. (a)
Modeled with momentum. (b) Just
as diffusion or without momentum.

Figure 4: The D2Q9 lattice model.
Left: The lattice. Right: The nine lat-
tice vectors of a lattice site.

ei

surface, and through the paper fibers. They solve the Na-
vier-Stokes (N-S) equations for the on-surface flow and use a
cellular automation for the capillary flow through fibers. The
latter is used only to produce an effect called back-run.

Curtis et al.’s model does not simulate Eastern ink effects well.
First, they use a fixed wet-dry boundary for their N-S equation
solver, making shape evolution of ink marks impossible. Using
their capillary flow for boundary expansion would produce
unrealistic spreading because the two flow processes are only
loosely coupled. In particular, the water supply from the surface
to the capillary layer is not tracked, so a larger puddle of ink on
the surface would not result in a larger blob. Second, their model
omits medium permeability, which is essential for generating
subtle ink patterns.

Laerhoven et al. [2004] recently performed watercolor simula-
tions similar to Curtis et al. [1997] on a grid of processing units.
They employed a semi-Lagrangian method [Stam 1999] for faster
simulation. A frame rate of 25 frames per second for a canvas size
of 2562 with 6 processors is reported.

Fluid Simulation: In the past decade, graphics researchers have
adopted numerical fluid simulation to add realism to computer
generated animations (e.g. [Harris 2003]). They typically fol-
lowed the traditional approach of beginning with a macroscopic
description of the fluid, namely, the Navier-Stokes (N-S) equa-
tions. Because the N-S equations are hard to solve, various
approximate numerical techniques have been proposed [Ferziger
and Peric 1999]. One popular method among the graphics re-
searchers is the scheme presented by Stam [1999]. Real-time
applications favor this scheme for its ability to take large simula-
tion time step stably. Yet, too large steps result in visible artifacts,
hence real-time simulations often have to be done at 2562 or lower
resolutions.

Stam’s scheme has also been implemented on the GPU for
acceleration [Harris 2003]. However, this scheme has to solve two
Poisson equations: one for the pressure (often the performance
bottleneck) and one for the viscous diffusion. Solving the Poisson
equations involves global operations, making the method not
intrinsically suitable for parallel GPU processing.

An increasingly popular alternative approach for fluid simula-
tion is the method of lattice Boltzmann equation (LBE) [Succi
2001; Wei et al. 2004]. Instead of starting with a macroscopic
description of the fluid, the LBE models the physics of fluid
particles at a mesoscopic level. We base our ink flow simulation
on the LBE for its advantages detailed in the next section.

4 Lattice Boltzmann Equation Approach
We surveyed various fluid simulation techniques and chose to
simulate water percolation using the LBE method. Advantages of
the LBE approach over the traditional N-S equation solvers
include [Yu et al. 2003]: (1) it does not involve Poisson equations,
(2) all operations are simple and local, and (3) easy to incorporate
physics that is hard to describe macroscopically. Items (1) and (2)
facilitate very efficient implementation on parallel graphics
hardware, while item (3) eases the incorporation of extra physics
for new paint effects. Fluid compressibility, the main feature of
the LBE that gives it a performance advantage, however, also
creates an issue for simulating incompressible flow: the flow
speed must stay low to keep the compressibility effect negligible.
Fortunately, this is not a problem for us, since ink flows slowly
through fibers.

We adapt the basic LBE method to incorporate various features
needed for the special case of percolation (described in Section

5.3). The main idea of the LBE approach is to model fluid
dynamics using a simplified particle kinetic model. This approach
divides the simulation domain into a regular lattice. At each lattice
site x and time t, the fluid particles moving at arbitrary velocities
are modeled by a small set of particle distribution functions fi(x, t),
each of which is the expected number of particles moving along a
lattice vector ei. We
use a standard square
lattice model for 2D
flow, called D2Q9
(Figure 4). In this
model, there are nine
lattice vectors: e1 , e2 ,
e3, e4 pointing to the
four nearest neighbor
sites, e5, e6, e7, e8
pointing along the
diagonals to the next nearest sites, and the zero vector e0 corre-
sponding to the stationary particles. During each time step ∆t, two
operations are performed at each lattice site: (1) streaming fi’s to
the next lattice site along their directions of motion, and (2)
colliding fi’s that arrive at the same site. The collision redistrib-
utes fi’s toward their equilibrium distribution functions fi

(eq). The
two operations of streaming and collision are mathematically
described by the LBE:

),(),()1(),()(tftftttf eq
iii xxex i ωω +−=∆+∆+ , (1)

where ω is the relaxation parameter. There are numerous variants
of the LBE flow model. We employ the ‘incompressible’ variant
of He and Luo [1997], which can minimize the compressible
effect inherent in the LBE. In this model, the equilibrium distribu-
tions fi

(eq) are

,
2
3)(

2
93

2
2

420
)(













 ⋅−⋅+⋅+= uuueue ii ccc

wf i
eq

i ρρ (2)

where c equals ∆x/∆t, ∆x is the lattice spacing, wi are constants
determined by the lattice geometry, ρ and u are fluid density and
velocity, respectively, and ρ0 is a predefined average fluid density.
For simplicity, we set ∆x = ∆t = c = ρ0 = 1 in our simulation. The
constants wi are set as 4/9 for i = 0, 1/9 for i = 1,2,3,4, and 1/36
for i = 5,6,7,8. Fluid density and velocity at each site are given by

,
8

0
∑
=

=
i

ifρ .1 8

10
∑
=

=
i

ifieu
ρ

 (3), (4)

5 Ink Dispersion Simulation
In this section, we describe our ink simulation techniques. Like
previous graphics research (e.g. [Curtis et al. 1997]), we do not
aim to do strict scientific simulations. We bring in physics only to
improve the digital painting experience.

Physicists have proposed various models for the sub-problems
of imbibition [Davis and Hocking 2000], porous media flow
[Adler 1992], hydrodynamic dispersion [Sun 1996], and boundary
roughening [Alava et al. 2004]. Only some of these models are
practical for our application owing to modeling efficiency, leaving
various holes to be filled in a good solution. Our challenge is
therefore to design a unified model that can capture the essence of
the physical processes involved so as to produce the desired
results, and yet is computationally efficient to work in real time.
An additional requirement is that our ink simulation has to work
well together with an accurate brush dynamics simulation for
intuitive deposition of ink from brush to paper.

5.1 Simulation Overview
Our ink simulation is based on a three-layer paper model. The
layers are surface, flow and fixture. Ink is first deposited onto the
surface layer. For simplicity, we assume that the ink flows only in
the flow layer and not in the surface layer. The ink on the surface
gradually seeps into the flow layer, where water percolates
through paper and ink constituents are advected by the water.
Finally, as the ink dries, ink constituents in the flow layer are
moved slowly into the fixture layer.

We develop an LBE-based fluid flow model to simulate the
water percolation. We also couple this flow model with a simple
method for simulating the movement of ink constituents. For
realistic ink deposition from brush to paper, we employ an
existing physically-based brush dynamics model [Chu and Tai
2004]. Among the three simulation parts – ink deposition, water
percolation, and movement of ink constituents – the simulation of
water percolation is the most important for capturing the dynamic
nature of the art medium.

The quantity fields used in our ink flow simulation (e.g. water
velocity) are discretized spatially on the lattice in the LBE method.
These data fields are updated iteratively using the GPU. The CPU
is dedicated to the brush simulation. In designing our ink simula-
tion algorithms, we assume a stream-processing model in modern
GPU architecture [Mark et al. 2003]. All our discretized data
fields are stored as texture maps. In the description of our meth-
ods below, we omit the spatial indices to data fields (like ρ) when
we refer to the quantity at the current lattice site as in a data
streaming model.

5.2 Ink Deposition
The amount of ink deposited onto the surface layer is determined
by the brush footprint and the saturation of water in the brush and
in the paper. By simulating the variation in paper receptivity
caused by saturation, we can produce the effect of a light stroke
fringe (Figure 5b). Ink is supplied from the surface to the flow
layer according to the capacity of the paper fibers. The surface
layer stores excess ink not yet absorbed, which acts as a reservoir.

To generate the brush footprints, we have chosen the brush
model of Chu and Tai [2004] for its effectiveness. To model
variable paper receptivity, each pixel in the footprint is masked by
the value max(1−ρ/λ, m), where ρ is the water density (amount of
water) at the corresponding lattice site in the flow layer, λ is a
receptivity parameter, and m is a base mask value. The amount of
water supplied from the surface to the flow layer ϕ is taken as
clamp(s, 0, π−ρ), where s denotes the amount of water on the
surface, π is the capacity of the paper fibers, and clamp(x, min,
max) is a function that returns the clamped value of x against the
limits of min and max. In our simulation, we use π = 1, 0.3 ≤ λ ≤ 1,
and m = 0.1. After ϕ is determined, s and ρ are updated accord-
ingly. Ink constituents carried by the water that seeps to the flow
layer are also moved as described in Section 5.4.1.

5.3 Water Percolation
We apply the LBE to model the water movement in the flow layer.
The original LBE describes fluid flows without considering
medium permeability and free boundary evolution. To deal with
the more complex situation of percolation, we made several
modifications to the basic LBE: variable permeability, advection
modulation, boundary evolution, and uneven evaporation.

5.3.1 Permeability and Viscosity
Variable permeability is one key element in our model that makes
the creation of interesting flow patterns possible. Recall that the
water flow is impeded by various irregularities in the paper. This
impediment can be modeled as the permeability of the simulation
domain. Like Dardis and McCloskey [1998], we use fractional
(rather than Boolean) values to represent the permeability of each
lattice site. The permeability is realized by blocking the streaming
process; thus we associate each site with a blocking factor κ.
Varying κ allows us to model a wide range of media, from those
that allow no water movement to those where perturbation in ρ
causes ripples.

Specifically, we use the half-way-bounce-back scheme [Succi
2001] during the streaming process to simulate the variable
permeability. The blocking is performed as if the link to each
neighboring site is partially blocked with a blocking factor κi .
Rather than having κi equal to the blocking factor of the destina-
tion site as in [Dardis and McCloskey 1998], we let κi be the
average of the blocking factors of the two linked sites. This
guarantees the same amount of blocking in both streaming
directions, hence conserving the momentum and density. The
streaming step with bounce-back is mathematically described by

) ,())(1() ,()()1 ,(tftftf iikii iexxxxx −−+=+ κκ , (5)

where fk is the distribution function pointing in the opposite
direction of fi.

Two basic factors that determine the paper permeability are the
voids in the fibers and the alum deposited. We store such infor-
mation in texture maps. Because most types of Eastern painting
paper are very thin and semi-transparent, we can obtain the paper
thickness patterns simply by scanning the paper against a dark
background. We use the normalized thickness images as grain
textures (a sample is shown on the right), which
serve as patterns for the paper grain or voids in the
fibers. Alum textures that record alum deposition
can be generated procedurally (e.g. with some
random dots). Precisely, the blocking factor κ at
each site is defined as

, 54321 hkgkAkGkk ⋅+⋅+⋅+⋅+=κ (6)

where G and A are values of the grain texture and the alum texture,
respectively, ki are weights that define the blocking, g is the glue
concentration in the flow layer, and h is the ink constituent
accumulation in the fixture layer.

Figure 5: Digital ink effects created using our system that are similar to the real effects illustrated in Figure 2.

a b c d e

Another factor that affects the ink flow is the viscosity. Artists
sometimes add extra glue to the ink to limit its spread. For a good
control, we want the flow to vary from being completely station-
ary when glue = 1 to normal when glue = 0. In the LBE model,
viscosity is given by (1/ω − 1/2) / 3, assuming ∆t = c = 1. Lower-
ing the relaxation parameter ω increases the viscosity. However,
we found that modulating ω with glue does not give the desired
behavior: the flow cannot remain still when glue = 1 since fi’s
from the areas with less glue continue to stream in.

Our solution is to modulate κ with glue, which forms part of
our formulation for permeability. The modulation of viscosity
with the relaxation parameter ω is still used for adjusting the
viscosity globally. In our simulation, ω = 0.5 normally, and
reaches 1.5 for simulations of more fluent flow.

5.3.2 Free Boundary and Advection
As water percolates, free boundaries exist between the air (in the
fibers) and the water. In fluid dynamics literature, air and water
are referred to as two phases. Since the effect of air is negligible,
we use only a single-phase model, for water. Devising a sin-
gle-phase free-boundary LBE model is, nevertheless, not
straightforward. The LBE model was originally designed for
situations where the simulated fluid fills the whole domain, with
small local deviation in velocity and density (within 10 to 20
percent) from the mean. If we use the fluid density to represent
how much a site is filled (zero density for empty sites), applying
the original LBE would cause negative density in certain sites.
This is because the advection built into the LBE carries density
away even from sites with near-zero density. Existing sin-
gle-phase models deal with negative densities by simply averag-
ing among neighboring sites [Thuerey 2003] or by extrapolation
[Ginzburg and Steiner 2003].

To avoid the unphysical situation of negative density from
happening altogether, we modify the basic LBE to reduce the
strength of the advection when the density is low. Our rationale is
that the advection of water drops in less saturated areas. Specifi-
cally, we add a weight ψ to the terms responsible for advection:













 ⋅−⋅+⋅+= uuueue ii 2

2
420

)(

2
3)(

2
93

ccc
wf i

eq
i ψρρ (7)

()ραψ ,,0 smoothstep= , (8)

where α is a user parameter for adjusting this effect. It can be
readily checked that the conservation of total water density still
holds. The range 0.2 ≤ α ≤ 0.5 works well in our simulation.

We define a boundary site to be a wet lattice site (i.e. ρ > 0)
with at least one dry site among its eight neighbors. All single-
phase free-boundary LBE models require interfacial boundary
conditions to determine the particle distribution functions fi of the
boundary sites, including those that are streaming inward from
outside the boundary. In our model, this is taken care of by our
full-bounce-back pinning mechanism, which is detailed next.

5.3.3 Boundary Pinning and Roughening
Boundary roughening is caused by the spreading front being
pinned at different points [Alava et al. 2004]. A front is depinned
when there is enough water pressure to overcome the pinning. In
reality, the process involves complex interaction between fiber
web and ink constituents, and other factors (e.g. evaporation).

We use simple local rules to model pining and depinning,
which can be efficiently integrated into the LBE. We say a lattice
site is a pinning site if it is dry and the water density ρ at each of

its eight neighbors is below a threshold. The four nearest
neighbors share the same threshold, denoted by σ. We set the
threshold for the four next nearest neighbors as 2 σ to compen-
sate for geometric difference of the links. To effect the pinning,
we overwrite the blocking factor κ at all the pinning sites by a
large value to fully block all their neighbor links.

For the toe patterns found in real ink marks made with concen-
trated ink (Figure 2d), we introduce one more texture map called
pinning texture to model the effect of paper
disorder. The map is generated by sprinkling light
line segments on a dark background (a sample is
shown on the right). Modulating the threshold σ
with this map gives the effect of easier ink flow at
certain locations and directions. We have found this to work well
in producing the desired patterns (Figure 5d) when we also model
boundary evaporation, which is described in the next subsection.
This evaporation avoids the toes from simply taking the shapes of
the overlapping line segments in the pinning texture.

We also have σ dynamically depend on the glue concentration
in the flow layer, denoted by g, and the ink constituent accumula-
tion in fixture, denoted by h. Precisely, σ is defined as

,)),,0(,,(321 gsmoothstepPGlerpqhqq ϑσ ⋅+⋅+= (9)

where G and P are values of the grain texture and the pinning
texture, respectively, qi are weights that define the roughening
behavior, and ϑ is a parameter controlling the effect of the glue
concentration on the appearance of toes. The function lerp(a, b, f)
returns the linear interpolation (1- f) a + f b. For smooth spreading
fronts (Figure 11b), we can simply set q2 = q3 = 0.

5.3.4 Evaporation
As a stroke dries, a small extra loss of water occurs at the pinned
boundary via capillary attraction. This induces a migration of
pigments towards the boundary resulting in a darkened edge.

We model this by having different evaporation rates for the
pinned boundary sites and the rest of the wet sites. We do this by
reducing the water density ρ at a rate of εs as we update ρ using
Eq. (3), and reducing those fi’s that bounce back due to pinning at
a rate of εb during the streaming step. This process is similar to
the way Curtis et al. [1997] produced their edge-darkening effect,
except that they use a smooth spatial falloff to vary the evapora-
tion rate. Our simulation uses 0 ≤ εs ≤ 0.005 and εb = 5 × 10-5.

5.4 Pigments and Glue Movement
Since pigments and glue are moved likewise, we will only
describe how pigments are moved. Concentrations of different
pigments are stored in different channels of RGBA textures. We
will use a bold symbol (e.g. pf) to denote the array of concentra-
tions at a site. In our simulation, the movement of pigments can
be divided into three parts: supply, advection, and fixture.

5.4.1 Pigment Supply
The ink deposited on the surface layer serves as a reservoir that
provides ink supply to the flow layer. After determining the
amount of water supplied from the surface, ϕ (Section 5.2), the
pigments in the flow layer is updated according to the ratio of ρ to
ϕ as: pf ← (pf ρ + psϕ) / (ρ + ϕ), where pf and ps denote the
pigment concentrations in the flow layer and the surface layer,
respectively.

5.4.2 Pigment Advection
The movement of pigments in the flow layer is governed by

hydrodynamic dispersion, in which advection dominates diffusion.
In our advection scheme, we first differentiate sites that are
already wet from those that are becoming wet in the current time
step. For the latter, we derive pf

*(x), the pigment concentrations
newly advected to site x, as:

)(1)(
8

1
iexfpxfp −=∗ ∑

=i
ifρ

 (10)

For the former, pf
*(x) is obtained by tracing the velocity backward

as in the method of characteristics [Sun 1996]: pf
*(x) = pf(y),

where y = x – u(x). Since our data fields are stored as textures, it
is very efficient to use hardware interpolation to sample pf(y). But
this interpolation would give a wrong pf

*(x) when y is within half
a lattice spacing from the boundary. The reason is that pf(y)
would be the result of a cross-boundary interpolation, but any pf
outside the boundary should never contribute to pf

*(x). Our
solution is simply to use pf

*(x) = pf(x) when this happens.

Finally, we update pf(x) with an interpolation between pf
*(x)

and the old pf(x) to model the hindrance of pigments by the
irregularities in paper according to the pseudo-code:

Proc SIMULATEHINDRANCE(pf, pf
*, γ, ς, u) {

γ* ← lerp(1, γ, smoothstep(0, ς, |u|))
pf ← lerp(pf

, pf, γ)
}

Here γ is the hindrance rate, ς is a parameter for blocking the
advection when the flow speed is low.

5.4.3 Pigment Fixture
Pigments in the flow layer are gradually transferred to the fixture
layer as the ink dries. Given the fact that real dried ink mark
cannot be washed away by water, we assume that the transfer is a
one-way process. For realistic pigment behaviors, we want to
satisfy the following conditions: (1) the transfer rate is higher
when the strokes become drier, (2) the transfer rate is higher when
the glue is more concentrated, and (3) all pigments are settled
when a stroke dries.

We devise a simple pigment fixture algorithm that satisfies the
above conditions. It updates the pigment concentrations in the
flow layer and the fixture layer, denoted by pf and px, respectively,
according to several parameters: ρ and ρ′, the water density in the
flow layer in the current frame and the last frame, respectively; g,
the glue concentration in the flow layer; η, a base fixture rate; µ
and ξ, parameters for modulating the fixture rate by dryness and
glue, respectively. The algorithm expressed in pseudo-code reads:

Proc SIMULATEFIXTURE(pf, px, ρ, ρ′, g, η, µ, ξ) {
wLoss ← max(ρ′ − ρ, 0)
if wLoss > 0 then

 FixFactor ← wLoss / ρ′
else

FixFactor ← 0
µ* ← clamp(µ + ξ × g, 0, 1)
FixFactor ← max(FixFactor × (1 – smoothstep(0, µ*, ρ)), η)
px ← px + FixFactor × pf

 pf ← pf – FixFactor × pf
}

6 High Quality Rendering
It is important that a paint system can render high resolution
output since artworks are often produced at print resolution.
However, doing a physics simulation down to the scale of tiny
paper fibers for fine details would be prohibitive. Besides,

excessive simulation is undesirable if similar results can be
obtained at a much lower cost. Therefore, we enhance the resolu-
tion of our ink simulation output with implicit modeling and
image-based methods. We choose to keep our methods simple and
fast so as to give immediate user feedback; this contributes
towards a better painting experience.

6.1 Boundary Trimming
To generate a higher resolution output, we first take the original
simulation output I and produce a larger version I′ by hardware
interpolation. The interpolation blurs away sharp features and the
boundaries look blocky when enlarged (Figure 7a). To keep the
boundaries sharp and avoid blockiness, we trim away pixels that
are interpolated between stained and unstained sites in I′. Con-
ceptually, the trimming scheme is similar to iso-surface methods
[Whitaker 2002].

To trim the ink marks in I′ on the fly, we must first decide
when and where to trim. Basically, the life of an ink mark has
three stages: (1) expanding as the paper imbibes it, (2) having its
boundary pinned, and (3) having its wet area shrinking as the
water evaporates. Clearly, the trimming should only be done
during the second stage. When this condition is detected (by
keeping track of some site variables), trimming is performed
according to an implicit curve defined by a scalar function φ
derived from the water density field. Each lattice site is associated
with a variable ρτ , which is updated at each time step to max(ρτ ,
ρ) if the site is wet, and to a small negative value if it is dry. The
function φ interpolates the values of ρτ in different sites. We use
max(ρτ , ρ) instead of ρ so that ρτ would not change as the mark
dries (during its second life stage). We first shrink the implicit
shape a bit by overwriting ρτ at the sites just inside the boundary
with zero, and then trim the pixels of I′ where φ < 0 to give a
sharp and natural-looking boundary.

For fine boundary roughening that is not captured by the
coarser resolution of I, we also add a roughening term when
deriving φ :

 ,)(biasscale rrr ++= τρφ (11)

where rscale and rbias are parameters for adjusting the effect, and r
is the value of a rougher texture, which is simply a blurred image
of some random spots. To generate smooth boundaries, we use
rscale = 0 and replace the term ρτ in Eq. (11) by the value sampled
at the same point from a low-pass-filtered [ρτ],with [ρτ] denoting
the texture storing the data field ρτ . Figure 7b shows a trimming
result.

In practice, the texture storing the pigment concentrations in
fixture, denoted [px], is used as the input for generating I′. Ideally,
I′ should be updated at every time step to reflect the changes in
[px]. However, for better performance and to avoid a hardware
precision issue (described in the supplementary material), we only

a b

Figure 7: Boundary trimming. (a) Before trimming. (b) After
trimming.

update I′ every 200-400 frames. For rendering the painting scene,
we also apply boundary trimming on [pf] and [px] (every frame)
so that the user sees nice boundaries while painting.

6.2 Textural Details
When ink percolates paper, tiny hairs of the paper fibers become
apparent in regions not fully soaked by the ink (as in the left part
of Figure 2c, and the lower left corner of Figure 2d). We render
this effect by modulating the pigment concentrations in regions
that are partially soaked with a hair texture, which is prepared
from real images of stained paper. The modulation also depends
on paper thickness to give venetian blind patterns (Figure 2c).
Sample results are shown in Figures 5d and 7.

7 Implementation and Results
We have implemented a paint system, named MoXi (pronounced
Maw See), based on our ink dispersion model using OpenGL and
the Cg shading language [Mark et al. 2003]. The simulation
operations are implemented in fragment programs running on the
GPU. The simulated quantities are stored as textures, which are
updated with the result of the fragment programs. We also
incorporated a brush dynamics simulation [Chu and Tai 2004],
which runs on the CPU, into our system to allow realistic brush
stroke generation. For manipulating the virtual brush, our system
supports graphics tablet (Figure 8), which is popular among
digital artists.

GPU Processing: Currently, we limit our dispersion simulation to
three pigments (colors) at a time so that we can fit pigments and
glue concentrations into one RGBA texture. A large gamut of
colors, however, is still available by mixing the three pigments
(e.g. cyan, magenta, yellow). During each time step, we perform
six texture updates for the LBE flow simulation, and another six
texture updates for moving the pigments and glue. The boundary
trimming requires one more texture update for I′. Thanks to the
simplicity of the method, the six fragment programs for the LBE
operations have an average assembly instruction count of only
29.8. Further details are presented in the supplementary material.

Performance: We conducted performance test on a machine with
an Althlon XP 2600+ CPU and a GeForce 6800Ultra GPU with
256MB video memory. We denote the ratio of the dimensions of I
to those of I′ by d-scale. For real-time generation of output at
15362 with a simulation resolution of 5122 and a d-scale of 3, we
are able to have an overall system frame rate (including the
high-quality rendering techniques described in Section 6) of 44
frames per second. More performance data are shown in Table 1.

Results: Figure 1 was painted by first drawing a circle with glue
in the center to create a ‘wall’. Then, we painted a few strokes
with a brush loaded with an ink gradient inside the wall. Notice
the unevenness of the wall allowed some of the ink to seep
through near the top part of the wall. We then painted the rest of
the painting with different ink concentrations. Figure 9 shows real
branching patterns made with ink catalyst (a relatively new art
material), and some digital ink marks mimicking that effect made
with our system. We model catalyst as a material that blocks the
ink flow. The digital marks were made by first spraying some
catalyst onto the paper, and then adding red and yellow inks and
letting them flow. In Figure 10a, glue was used to hold some parts
of the painting stationary. All the above figures were painted with
a simulation resolution of 5122 and a d-scale of 3.

Special Effects: We have experimented with several special
effects or controls that are hard or impossible to get in real life:

˙ Rewetting and moisture control: We provide the option to

transfer pigments in the fixture layer back to the flow layer, so
that artists can rework dried ink marks. We also add the con-
trols of moisture redoubling (Figure 11a) and quick drying.
Repeated addition and reduction of moisture can also create
certain ring patterns.

˙ Physics tinkering: By switching the paper parameters sud-
denly during painting, we are able to produce some interesting
patterns like Figure 11b. By making certain (unphysical)
modifications to our pigment advection scheme, we are also
able to obtain nice flow patterns like Figure 11c.

˙ Splash and spray: We also incorporated simple physics for ink
drops (Figure 10c) so that artists can splash or spray art mate-
rials as in real life or have the ink drops emitting in some ex-
otic patterns.

Additional controls we implemented that are not possible in
real-world painting include sucking and pushing of ink with a
virtual brush. We refer the reader to our accompanying video for
demonstrations.

8 Future Work
Resolution: Since the printing of large format digital artwork
requires much higher resolution outputs, we are interested in
further increasing the output resolution. Possible directions
include texture synthesis techniques (e.g. [Hertzmann et al. 2001])
for fine details, and the use of Lagrangian particles [Sun 1996] in
the simulation to resolve very fine streaks.

Rendering: Although color glazing is not generally used in ink
paintings, it would be interesting to incorporate the Kubelka-

Figure 9: Severe branch-
ing patterns. Left: Real
ink marks made with ink
catalyst. Top: Marks of
similar effect made with
our system. No manual
pushing or sucking of
ink with brush was used.

Table 1: Performance of our system.
Frame rates are measured when there is
no concurrent brush deformation.

Sim.
Resol. d-scale I′ Update

Interval (fr.)
fr./sec.

2562 1 - 70

5122 1 - 48

5122 3 300 44

5122 3 1 32

5122 4 300 42

Figure 8: System setup.

Munk model for simulating optical blending [Curtis et al. 1997].
The rendering can also benefit from the use of Wang tiles [Wei
2004] to give non-repeating paper textures.

New Effects: Physicists have explored various fluid behaviors,
including viscous fingering and surfactant physics, using the LBE.
We are interested in exploiting LBE’s advantage of easy addition
of new fluid physics for new painting effects. In particular,
simulated ink on water would allow digital development of
floating-ink prints (see e.g. www.suminagashi.com).

Acknowledgements
We thank Xavier Granier for his help in improving the clarity of
this paper and Michael S. Brown for providing the video voice-
over. This work was supported by a grant from the Research
Grant Council of Hong Kong, China.

References
ADLER, P., 1992. Porous Media: geometry and transports. Butter-

worth-Heinemann.
ALAVA, M., DUBÉ, M., AND ROST, M. 2004. Imbibition in disordered

media, Advances in Physics 53, 83-175.
CHU, N. S., AND TAI, C.-L., 2004. Real-Time Painting with an Expressive

Virtual Chinese Brush, IEEE Computer Graphics and Applications 24,
5, 76-85.

CURTIS, C., ANDERSON, S., SEIMS, J., FLEISCHER, K., AND SALESIN, D.,
1997. Computer-Generated Watercolor, In Proceedings of ACM
SIGGRAPH 97, ACM Press, 421-430.

DARDIS, O., AND MCCLOSKEY, J., 1998. Lattice Boltzmann scheme with
real numbered solid density for the simulation of flow in porous media.
Phys. Rev. E: Lett. 57 (14), 4834–4837.

DAVIS, S. H, AND HOCKING, L. M., 2000. Spreading and imbibition of
viscous liquid on a porous base. II. Physics of Fluids 12, 7, 1646-1655.

FERZIGER, J.H., AND PERIC , M., 1999. Computational methods for fluid
dynamics. Springer-Verlag.

GINZBURG, I., AND STEINER K. 2003. Lattice Boltzmann model for free
surface flow and its application to filling process in casting, J. Comput.
Phys. 185, 61–99.

GUO, Q., AND KUNII, T. L., 1991. Modeling the diffuse painting of sumie,
IFIP Modeling in Computer Graphics, 329-338.

GUO, Q., AND KUNII, T. L., 2003. Nijimi rendering algorithm for creating
quality black ink paintings, in Proceedings of Computer Graphics
International 2003, 152-159.

HARRIS, M. J., 2003. Real-Time Cloud Simulation and Rendering.
Technical Report #TR03-040, University of North Carolina.

HE, X, AND LUO, L.-S., 1997. Lattice Boltzmann model for the incom-
pressible Navier-Stokes equation, J. Stat. Phys. 88, 927-944.

HERTZMANN, A. , JACOBS, C. , OLIVER, N. , CURLESS, B., AND SALESIN,
D., 2001. Image Analogies. In Proceedings of SIGGRAPH 2001 Con-
ference, ACM Press, 327-340.

KUNII, T. L., NOSOVSKIJ, G. V., AND VECHERININ, V. L., 2001.
Two-dimensional diffusion model for diffuse ink painting. Int. J. of
Shape Modeling, 7, 1, 45-58.

LAERHOVEN, T., LIESENBORGS, J., AND REETH, F., 2004. Real-Time
Watercolor Painting on a Distributed Paper Model. In Proceedings of
Computer Graphics International 2004, 640-643.

LEE, J., 2001. Diffusion Rendering of Black Ink Paintings Using New
Paper and Ink Models, Computers and Graphics 25, 2, 295-308.

MARK, W. R., GLANVILLE, R. S., AKELEY K., AND KILGARD, M. J., 2003.
Cg: a system for programming graphics hardware in a C-like language.
ACM Transactions on Graphics, 22, 3, 896-907.

STAM, J. 1999. Stable Fluids, In Proceedings of ACM SIGGRAPH 99,
ACM Press, 121-128.

SUCCI, S., 2001. The lattice Boltzmann equation for fluid dynamics and
beyond. Oxford University Press.

SUN, N.-Z., 1996. Mathematical modeling of groundwater pollution.
Springer-Verlag.

SWIDER, J. R, HACKLEY, V. A., AND WINTER, J., 2003. Characterization of
Chinese Ink in size and surface, J. of Cultural Heritage 4, 175-186.

THUEREY, N., 2003. A single-phase free-surface lattice-Boltzmann method.
Master-thesis, Erlangen Germany.

WEI, L.-Y., 2004. Tile-Based Texture Mapping on Graphics Hardware,
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware
2004.

WEI, X., ZHAO, Y., FAN, Z., LI, W., QIU, F., YOAKUM-STOVER, S., AND
KAUFMAN, A., 2004. Lattice-Based Flow Field Modeling. IEEE
Transactions on Visualization and Computer Graphics, 10, 6, 719-729.

WHITAKER, R. T., 2002. Isosurfaces and Level-Set Surface Models.
Technical report, School of Computing, University of Utah.

YU, D., MEI, R., LUO, L.-S., AND SHYY, W., 2003. Viscous flow computa-
tions with the method of lattice Boltzmann equation, Progress in Aero-
space Science 39, 329-367.

Figure 10: Sample paintings created with our system.

a b

c

Figure 11: Sample special ink effects. (a) moisture redoubling.
(b) shaft-like patterns. (c) stream-like patterns.

c a b

