Uniform Referents: An Essential Property
for a Software Engineering Language

Douglas T. Ross

SOFTECH, INC,
WALTHAM. MASSACHUSETTS

I. Introduction

The term software engineering is new and has yet to achieve a well-defined
meaning. Most present-day softwarc has not been engineered at all, but
instead is a product of the individual experience of its creators and primarily
ad hoc choices among various alternatives. The effects of this unstructured
approach to software are quite obvious in terms of poor performance, missed
schedules, and uncontrolled costs. The need for a real and viable software
engineering discipline is obvious, but we can expect no rapid resolution of these
difficulties in spite of significant advances being made on many fronts. The
problems of software enginecring are among the most challenging facing
mankind, due to the diversity of problem areas and the variety of machine
and language techniques available for use. There is, however, evidence of an
increased use of systematized approaches, and dawning recognition of many
of the fundamental issues which clearly are central to a software engineering
discipline.

This paper does not attempt to lay out a grand plan for a complete software
engineering discipline. Instead, this paper presents a single, sharply-focused
brief on what appears to be the most fundamental aspect for a software
engineering discipline—one basic criterion which a general-purpose program-
ming language must meet if it is to be used as the expressive vehicle for soft-
ware engineering activities regardless of the style of practice of those activities:
There must be a single, uniform method of referencing operands regardless
of their detailed implementation.

II. Programming Language: The Math of Software

Any engineering discipline depends upon an underlying scientific founda-
tion, for only with knowledge of how real-world phenomena behave can an

o1

Arpeared T _
G’e'T'TdW/ SOHWW Zz/{#h MW}

A cadeomire Press Ciygh)

P

92 DOUGLAS T. ROSS

engineer design with any basis in fact. The scientific underpinnings of an
engineering discipline invariably are understood and manipulated by an
engineer in terms of mathematical formulations which capture the essential
concepts in workable form. Formulas or geometric constructions expressed
in this mathematics may be manipulated and computations may be per-
formed as a part of the design process with confidence that the real world
will match the interpreted results “to within engineering accuracy.” Such
mathematical manipulations and computations form the primary overt
activity of the cngineer as he designs a solution to a particular problem.

For mechanical, electrical, aerodynamic, and other engineering disciplines,
the appropriate language for design is mathematics proper. of both algebraic
and geometric forms. For software engineering. however, such ordinary
mathematics must be augmented by such concepts as assignment of values
1o variables, iteration or computation steps, recursion, and other mixtures
of logic, computation, and time sequence such as are found in programming
languages. In fact, for software engineering, programming language is the
“math” needed 10 capture the requisite real-world phenomena in the form
needed for effective design.

Programming language features for software engincering must be carcfully
selected ; not any old programming language features will do. An unstructured
blur of assembly language depending in turn upon an ad hoc collection of
machine hardware features which just happen to have been brought together
for some particular computer design has a low probability of matching the
real world in any profound way. Similasly, most “high-level” languages
invariably will be either not complete or not concise enough to serve as a
basis for software engincering, for they have a similar ad hoc ancestry with
roots in scientific computation or business data processing areas, which omit
many important aspects of general software construction.

Careful inspection and cxperimentation with various software engincering
activities discloses a few fundamental features that somechow must be present
in a software cnginecring language. These features can be informally derived
directly from high-level considerations of the software cngineering design
process itsell, The purposc of this paper is 1o indicate such a derivation of one
basic principle without attempting an exhaustive enumeration of the consc-
quences. It will be clear that there are many potential ways to realize this
principle by specific features of specific programming languages. The thesis
of the paper is, however, that any successful language for software engincering
must in some manner speak directly to the points raised here.

H1. Outside-In Problem Statement

Our primary thesis is that there can and must exist a single language for
software engineering which is usable at all stages of design from the initial

UNIFORM REFERENTS 93

conception through to the final stages in which the last bit is solidly in place
on some hardware computing system. That this thesis is itself not ad hoc
and after the fact can be seen from the following quotes taken from the
author’s report written in September 1960 at the beginning of the Massachusetts
Institute of Technology Computer-Aided Design Project. The ideas presented
at that time have motivated directly many of the features of the AED
(Automated Engineering Design) languages and systems developed by the
author and his colleagues since that time f1].

We begin with a paradoxical twisi. We have just finished pointing out the essential
equivalence of design and problem-solving, which would seem to indicate that we
Wwere going to turn our altention 10 the solution of problems. Instead, however., we
now declaim that our main objective is not to solve problems, but to srare problems.

The manner of stating problems is also of primary imporiance. You must be able to
stale problems from outside in, not inside out. The-normal practice of being explicit
about a problem is to build a description of the solution procedure in small steps.
i.c. to cede the problem Stating a problem siep by step from the inside out in this
manner is satisfactory if the problem is well understood 10 begin with. But there is an
alternate procedure which is frequently used among people, but is virtually non-existent
as regards computers. In this alternate procedure, which we call stating the problem
from the outside in, we state the problem originally in general terms and then explain
further and in more and more detail what we mean ., , . IL is quite apparent that this
procedure of stating a problem from the outside in by means of further and further
refinements is the only feasible way to attack grand problems. The inside-out method
of stating problems, which is normal practice with compulers, cannot possibly be
carried oui until a problem is siated in sufficiently detailed form, and that statement
itself can come only from an outside-in consideration of the problem, Normally
this preliminary outside-in study of the problem must be carried out entirely by
people. The principal aim of compuiter-aided design as we mean it is (o permit the
computer to play a part in the scheming portion of problem-solving by providing
a mechanism for performing outside-in problem statement.

As far as the outside-in problem statement sequence is concerned. an abstract or
idealized problem is treated in the same way as a detailed practical problem, and
in fact is more pertinent to the study. We only arrive at explicit problems after a
long serics of hazy. incomplete, ambiguous refinements of the original goal state-
ment, which taken together acquire precision, so that our main emphasis must be
on the consideration of problems which are in a sense abstractions or idealizations
of practical problems. ... In the sense that these things do not accurately mirror the
real world of our problem, they are abstract or ideal, but it must ctearly be recognized
that these trails are not arrived at by chotce. but are forced upon us by circum-
stances. The very reality of our problems forces them 10 be idealized

QOur goal at this point in this discussion is 10 devise a scheme for representing the
elements oul of which problems are composed. All substantive problems are internally
structured. We recognize that they are made up of subproblems which in wurn have
internal structures of their own. The sequence of substructures is terminated finally in
some clemental quantities which are intimately related 1o the particular aspect of
“realily” with which the overall problem is concerned. We wish to devise a scheme
(a mathematical model. if you will} which we will consider in terms of a computer
structure, for manipulating problem elements. Problem ¢lements may be of arbitrary

94 POUGLAS T. ROSS

form and our primary objective is to have a computer structure capable of expressing
relationships between general objects in a natural non-artificial way

Under 1he new philosophy, successive Stages of problem stalemenis are greater
and greaicr refinements of the original statement of the problem. Each stage is repre-
sented in and materialized by the language and computer structure. The end resultis a
sufficiently refined solution to the original goal achieved by a sequence of elabor-
ations. modifications, tests, and evaluations all of which 1aken together conslilute the
evolution of an ever-clearer idea of just what the problem is that is to be solved ...
Since the compuier is able to work in partpership with the human at all levels of
consideration on the prablem. the process is truly computer-aided problem selving.
or if some other term (such as software cngincering) is used. the successful completion
of even a rudimentary system based upon this philosophy will represent 2 significant
advance in the utilization of the combined 1alents of men and machines.

1V. An Example

To illustrate the idea of the above ten-year-old ideas about outside-in
software design, we take a simple, casily recognized example: a generalized
model of an information processing system. The first step in outside-in design
is to describe the primary modules of the system to provide the first layer of
substructuring. In our case we will consider the information processing system
in terms of three primary modules: the memory module, the selection module,
and an action module. The next step is to give those terms meaning by pro-
viding more detail. This is done by defining the entities from which those
modules are composed, by describing the propertics of those entities and how
values of those properties change according 1o the rules of behavior for each
module and between the several modules. Figure 1 indicates such a break-
down for the modules of the information processing system model. We may
give the rules of behavior for the modules by describing basic actions involving
the properties of the entities. The natural mode of expression is the use of
functional notation and assignment statements to indicate the type of value

X Intermodule
System Madule Entity Properties communicalion
Memory " Cell Address Current
module ¢
u Contents oddress —<
. Program
Information Selection s!gep Address -Current
rocessin module 5 value
psystan: 9 Operation Curreni
Commond name command
Arguments —
Action Current :ch:nm::::e =d
module commond "].
Action rule

FiGguse |. Information processing system modcl.

UNIFORM REFERENTS 95

TABLE |I. RuULES rOrR MODULES

Memory modulc:
contents:: read(address)
store(address, contents)

Action madule:
result:. perform{action, arguments)
action: - gel nction(aclicp. namc)

Selection modulc:
argument.address: get.argument(value)
new.address:. next{address)

System cycle:
repeat begin perform(get.aclion(get.action.name(read(address)):
read(get.argument(read(address)))));
address:: - next(address)
end;

yielded by various functions. This is shown in Table I. Thus for example,
the notation “contents: = read (address)" specifies that a basic action of the
memory module is given by a ““read” function which yields the contents at a
specified address. Notice that the intermodule behavior is given by the basic
system cycle algorithm which calls on the various action functions of the
several modules.

Clearly, a simple stored-program computer is an instance of such an
information processing system. The memory module is the storage, the action
module is the arithmetic element, and the selection module is the control
element of the computer. Clearly, also. we can continue the process by
giving more details. For example, the memory module can be modeled in
more detail by introducing further entities describing how the memory is
organized, either as a serial memory or parallel, with fixed or variable word
length, etc. Similarly the control element can have indexed or nonindexed
instructions, etc. When such elaborations have been made, still further
divisions can also be constructed in the same manner to an arbitrary level
of detail.

The information processing system model also is applicable to a form of
batch processing operating system as well. In this case, the memory module
can be disk or tape units, the action module is the loader, and the selection
module is the executive for the operating system. Again such an operating
system instance can further be subdivided to make variousexplicit elaborations
in many ways. The design elaborations can be stopped at any stage, and
functions simulating finer detail may be supplied to test the operating charac-
teristics under various statistical assumptions before proceeding further with

96 DOUGLAS T. ROSS

the design. (Such a scheme for operating system design has been described
by Randell [2].) The outside-in method is a viable and useful technique for
organizing in an orderly way any activity of software design.

* V. A Graph Model Representation

The structuring which results from outside-in design may be visualized in
one of two dual ways. The submodule idea corresponds to a combination
of the nested layers of an onion and the overlapping regions of a Venn
diagram as shown in Figure 2. Such a method of diagramming the structure

INFORMATION PROCESSING SYSTEM

CURRENT ADDRESS

MEMORY SELECTION

-PROGRAM STEP
COMMAND
CURRENT VALUE

CURRENT COMMAND

CELLS
ACTION RULES

ACTION

FiGuRE 2. Nested-module view,

becomes cumbersome, however. and it is easier to visualize the equivalent
information by taking the dual of such a diagram according to the following
rules: Convert each region into a node, and cach boundary between regions
into an arc joining the corresponding nodes; see Figure 3.

The manner in which two modules are related is a property of the arc
connecting the respective nodes. Figure 4 indicates various ways of visualizing
the process of giving more and more detail in outside-in design. If the modules
actually interchange information of some sort, this is indicated by the fact
that the corresponding regions overlap. in which case the common inter-
section becomes an additional node, splitting the original arc into two separate
arcs. As Figure 4 also shows, if more detail about the intersection is appro-
priate, the left end, middle, and right end of the connection between the
regions can be claborated further.

In this graph model of outside-in design, action or meaning resides ulti-
mately in the arcs. Whenever an arc represents a concept that is insufficiently

UNIFORM REFERENTS

BASIC STEP OF FORMING DUAL GRAPH

REGION A : NODE A
| ARC

BOUNDARY I
1
\

REGION B } NODE B
1

INFORMATION PROCESSING SYSTEM INFORMATION PROCESSING SYSTEM
MEMORY

>

Ficure 3. Graph model dual of modular siructure,

@ A {E\—Node for intersection region
4 o e
AMB Consider the interseciion lo
¢ o be an interfoce
.‘.g.:‘ ALMRB Detail the interfoce
e o & 9

ALMR 8 Give finer detoil in terms of
#:-o-8-a-» infersections

Nole thot now Ao L, LioM, ., are similor to the originol A B,

FiGugE 4. Evolution of detail of an interface.

97

98 DOUGLAS T. ROSS

defined. that arc is further subdivided. New nodes arising in the middie of
arcs may be connected to other nodes by new arcs. so the graph becomes rich
with relationships. This subdivision process continues until the designer
senses that a natural level of detail has been reached, providing a natural
stopping point for the process. At this level, the concepts represented by the
arcs may still be very complex and in general it will be clear that much further
refinement by subdivision into further detail cowld be made, but still the
design level is frozen at that point. By stopping the refinement, the designer
has selected a certain set of arcs (or more precisely the concepls they represent)
as primitives for that level of design. For a properly balanced level, all primi-
tives are of essentially the same level of desail.

With a level thus defined, the designer next will invariably proceed to finer
levels. This takes the form of expanding a single node of the current level into
a new module, in which further subdivision 1akes place within the boundary
of the module, as is indicated in Figure 5. (If an arc is 1o be elaborated, a new

NODE MODULE
M
B X B
A M e
C Y
o
OUTER INNER

Ficurk 5. Interlevel communication through arguments.

node is interjected on the arc to be expanded into a module.) Thus, level-to-
level considerations involve the identifications of modules at one (inner)
level with nodes at the other (outer} level, as in Figure 5. Thus the module of
the inner ievel shows detail of the corresponding node of the outer level.

VI. Interlevel Connection by Interfaces

As Figure 5 indicates. to apply the graph model method to the description
of interlevel communication. it is necessary that certain arcs cross the boun-
dary between successive levels, connecting a node of the finer level to a node
of the higher level. Because an arc can connect only one node of the inner
level to the outer level, only certain particular features of the inner level are
known to the outer level. The process is analogous to subroutines with argu-
ments. In Figure 5 the connections to nodes A, B, and C correspond to the

UNIFORM REFERENTS 99

arguments for the subroutine analogous to node M. The nodes X, ¥, and w,
within M correspond to internal variables within the subroutine. The detailed
structuring of the inner level is completely immaterial as long as the relevant
argument connections can be made.

Each arc that crosses a module boundary corresponds to an interface
between the two levels separated by the boundary. At the outer level, the
node which terminates an interface arc has properties determined by the
primitives of the outer level. Inside the module, the node which terminates
the other end of the interface arc has properties determined by the primitives
of the inner level. The interface arc itself mediates between the two. If the
primitive properties of either end are changed, the interface must change
correspondingly.

The crucial feature about outside-in design as the underlying methodology
for software engineering is that because the interface properties musr change
when either end conditions change, the converse is also true. Namely, proper
treatment of interface mechanisms will allow the higher level to remain
wnchanged regardless of changes in the details of the inner level. In other words
all of the variations can be accommodated in the interface changes, so that
the outer level is completely unaffected.

In order to give workable substance to this observation, it is necessary next
to talk about the implementation of the outside-in scheme of software design.

VIL. The Requirement for Uniform Referents

The graph model upon which the discussion has been based is an abstrac-
tion of the actual practice of software engineering. Actually every step is
carried out by manipulations in the chosen programming language. We now
are in a position to specify a powerful basic criterion which that language
must satisfy if it is to serve throughout as the expressive vehicle for outside-in
design.

The criterion is this: A single uniform referent mechanism must be used
Jor all references 1o operands. We have already noted that in the graph model
the primitives for a given level are represented by arcs. These arcs in turn are
expressed (implemented) as programs in the language, which are combinations
of the operators of the language with operands drawn from the nodes ter-
minating the arcs. In order for the programs of an outer level to remain
completely unchanged as interface programs change to accommodate various
forms of inter-level detail, the manner of referencing these operands must be
the same for all possible forms.

Once a programming language is provided with a uniform referent structure,
the corollary property of separable declarations follows naturally. Any
specific realization of a program must specify some choice of mechanism for

100 DOUGLAS T. ROSS

each operand needed in the program. This choice is specified by declarations
in the program. Given the uniform referent form, any consistent set of
declarations will yield a working program and the statements of the program
proper remain unchanged as desired.

An example of uniform referent notation and separable declarations is
given by the reference mechanism of the AED-0 language. Table 11 shows the

TABLE 11. AED-0 LANGUAGE DECLARATION CHOICES

The notation 4(B) in any syntaclic context always means
Property 4 of thing 8

AED-0 declarations allow choices:

A: ARRAY B: INDEX
COMPONENT POINTER
FUNCTION ARGUMENT
MACRO ITEM-STRING

With the .INSERT stalement:

Program file Declaration files

BEGIN 7094 version

AINSERT DECL 3§ 360 version

BODY STATEMENTS § 1108 version

END FINI

The program file never changes when any declaration is used

various choices of declaration for the symbols 4 and B used in an atomic
referent A(B) referring to “"property A of thing B.”" The table also indicates
the trivial but nonetheless important statement type, [INSERT which is used
to supply various declaration choices without any change whatsoever in the
source program. The statement JINSERT DECL §, in a program being com-
piled causes the compiler to search the active file system for a file named
DECL which then is considered to have been physically inserted at that
peoint in the source program. Thus, control of which of several DECL files
is active during a compilation can result in drastically different results from
a single source program. Because all of the various forms share the same
referencing mechanism, the body of the source program need not be changed.

In the light of the preceding discussion regarding graph models of modular
programs, it is instructive to point out that declarations such as are exhibited
by the example of the AED-0 language correspond to specifying the nature
of the interface arc penetrating the boundary between inner and outer levels.
The act of declaration does not, however, supply the detail of the low-level

UNIFORM REFERENTS 101

module which in general is supplied in a separate operation as part of some
kind of “'loading™ operation. At the time of loading, the desired low-level
module is **bound”’ to the high-level program through the declared mechanism.
In the case of the AED-0 language, for array and component references, the
compiler itself supplies the definition and performs the binding; for pro-
cedures and macros, in general the loading and binding take place ina
separate operation performed by the operating system.

VIil. Conclusion

The requirements of outside-in problem statements have shown that one
feature of programming language design is central to the practice of an or-
ganized software engineering discipline: the use of a uniform referencing
notation which is applicable to an arbitrary variety of detailed implementa-
tions. In a language having this feature the software engineer can iterate any
aspects of the design while still maintaining the successively refined goals
which the system being designed is intended to meet.

Software engineering involves a rich variety of pros and cons of how to use
such manipulations to achieve given ends and how to cstablish the most
general and useful high-level constructs (such as the information processing
system example above) as well as the most useful low-level or primitive
atomic levels which can be used as software component building blocks in
many designs. We can expect rapid evolution of both high- and low-level
software components as the field of software engineering matures. At every
stage, the uniform referent feature of the underlying programming language
being used as expressive vehicle for the design process will play a crucial and
determining role.

REFERENCES

I. Ross, D. T., “Compulter-Aided Design: A Statement of Objectives.™ Tech. Mem.
8436-TM-4, Defense Documentation Center No. AD252060. M.L.T. Electron. Systems
Lab., Cambridge, Massachuscuis, 1960,

2. Randeil, B., “Toward a Methodology of Computer System Design.” Software Eng.
Conf. (sponsored by the NATO Sci. Comm.), October 1968, pp. 204-208. (Available
from Sci. Affairs Div., NATO, Brussels.)

