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Narayanan R, Johnston D. The h current is a candidate mechanism
for regulating the sliding modification threshold in a BCM-like
synaptic learning rule. J Neurophysiol 104: 1020–1033, 2010. First
published June 16, 2010; doi:10.1152/jn.01129.2009. Hebbian synap-
tic plasticity acts as a positive feedback mechanism and can destabi-
lize a neuronal network unless concomitant homeostatic processes
that counterbalance this instability are activated. Within a Bienen-
stock-Cooper-Munro (BCM)-like plasticity framework, such compen-
sation is achieved through a modification threshold that slides in an
activity-dependent fashion. Although the BCM-like plasticity frame-
work has been a useful formulation to understand synaptic plasticity
and metaplasticity, a mechanism for the activity-dependent regulation
of this modification threshold has remained an open question. In this
simulation study based on CA1 pyramidal cells, we use a modification
of the calcium-dependent hypothesis proposed elsewhere and show
that a change in the hyperpolarization-activated, nonspecific-cation h
current is capable of shifting the modification threshold. Based on the
direction of such a shift in relation to changes in the h current, and
supported by previous experimental results, we argue that the h
current fits the requirements for an activity-dependent regulator of this
modification threshold. Additionally, using the same framework, we
show that multiple voltage- and ligand-gated ion channels present in
a neuronal compartment can regulate the modification threshold
through complex interactions among themselves. Our results under-
score the heavy mutual interdependence of synaptic and intrinsic
properties/plasticity in regulating learning and homeostasis in single
neurons and their networks under both physiological and pathological
brain states.

I N T R O D U C T I O N

Activity-dependent modifications to the rules of synaptic
plasticity, defined as metaplasticity, are now an established
form of plasticity in the nervous system (Abraham 2008;
Abraham and Bear 1996; Abraham and Tate 1997; Bear 2003).
Theoretical origins of this form of plasticity can be traced back
to the Bienenstock-Cooper-Munro (BCM) rule (Bienenstock et
al. 1982). The BCM rule was originally proposed for the
development of orientation selective cells in the visual cortex,
but later has been linked to metaplasticity mechanisms associ-
ated with long-term potentiation (LTP) and depression (LTD)
(Abraham 2008; Bear 2003). According to the BCM rule, a
neuron possesses a synaptic modification threshold (denoted as
!m), which dictates whether its activity at any given instant
leads to potentiation or depression of its synapses. Whereas the
neuron’s active synapses grow stronger when postsynaptic
activity exceeds !m, it gets weaker when activity falls below !m
(but remains above an LTD threshold).

More importantly, to incorporate competition and provide
stability, the BCM rule sets !m as a sliding threshold, a
threshold that is dynamic and is dependent on average postsyn-
aptic activity. This sliding threshold acts as a homeostatic
mechanism that retains the modifiable synapses within a useful
dynamic range (Abraham 2008; Abraham and Bear 1996;
Abraham and Tate 1997; Abraham et al. 2001). Specifically, it
acts against the Hebbian positive feedback mechanism, a
process, which, if uncontrolled, leads to synapses either grow-
ing infinitely, or being set to zero by repetitive LTP or LTD,
respectively. The sliding threshold neutralizes this by acting as
a negative feedback mechanism: !m increases if the postsyn-
aptic activity is high, thus making LTP more difficult, and LTD
easier, to induce. Hence, if postsynaptic activity is high, al-
though the synapses may undergo LTP as a result of correlated
activity, their ability to undergo additional LTP is comparatively
reduced. An inverse process occurs when postsynaptic activity is
reduced: !m decreases, thus making LTD more difficult, and LTP
easier, to induce. Thus in the presence of such activity-dependent
modification of the plasticity rule, synapses avoid unstable con-
figurations of infinite growth or infinite reduction.

There have been various proposals on the mechanisms
underlying this sliding threshold (Abraham 2008; Abraham
and Bear 1996; Abraham and Tate 1997; Bear 1995). Promi-
nent among them are changes in N-methyl-D-aspartate receptor
(NMDAR) subunit composition (Philpot et al. 2001), in
NMDAR signaling (Philpot et al. 2003), in calcium buffering
(Gold and Bear 1994), and in CaMKII levels (Bear 2003;
Mayford et al. 1995). Here, we show that the hyperpolariza-
tion-activated, nonspecific-cation h current (Ih) is capable of
shifting !m by regulating intracellular calcium influx during
plasticity induction. Then, based on recent experimental results
from our laboratory and others (Brager and Johnston 2007;
Campanac et al. 2008; Fan et al. 2005; Narayanan and Johnston
2007), we propose the h current as a candidate mechanism for
controlling the sliding modification threshold in a BCM-like
plasticity rule. Finally, we show that the sliding modification
threshold is not just a function of the h current, but can be
modified by multiple voltage- and ligand-gated ion channels. In
addition to providing a broad framework toward understanding
the role of intrinsic properties in modulating synaptic metaplas-
ticity, our study also underscores the heavy mutual interdepen-
dence of synaptic and intrinsic properties/plasticity in regulating
learning and homeostasis in single neurons and their networks.

M E T H O D S

To simplify computational cost and avoid the dependence of
plasticity mechanisms on the location of synapses (Froemke et al.
2005; Saudargiene et al. 2005), we used a single compartment model
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to study the impact of changes in the h current on plasticity mecha-
nisms. The NEURON simulation environment (Carnevale and Hines
2006) was used to perform all the simulations with an integration time
constant of 25 "s.

A single compartment of length 50 "m and diameter 1 "m (Fig. 1A)
was used to approximate a dendrite 200 "m away from the soma. The
passive parameters were set as those for a dendrite (Gasparini et al.
2004): Rm ! 28 k".cm2 and Cm ! 1.5 "F/cm2. Na, KDR, KA, and
h channels were introduced, with kinetics the same as those used in
Gasparini et al. 2004. Default values of parameters were set as
follows: reversal potentials (in mV), Eh ! –30, EK ! –90, ENa ! 55;
maximum conductance densities (in mS/cm2), g!Na ! 30, g!KDR ! 5,
g!KA ! 44, g!h ! 42. The default values of the maximum conductance
densities were obtained from (Gasparini et al. 2004) for a dendrite
located at 200 "m away from the soma. The kinetics for the h and
Na# channels were shifted according to the specifications of Gaspa-
rini et al. (2004) for a dendrite located at 200 "m away from the soma.
All simulations were performed at –65 mV.

Synapse model

A synapse was modeled as a co-localized combination of NMDA
and AMPA receptor currents, with parameters as given below. A
spike generator was used to feed inputs to this synapse at the requisite
frequency. The default value of NMDA:AMPA ratio was set at 1.5.

The current through the NMDA receptor, as a function of voltage and
time, is dependent on three ions: sodium, potassium, and calcium.
Consequently, as per the Goldman-Hodgkin-Katz convention, we write

INMDA(v, t) # INMDA
Na (v, t) $ INMDA

K (v, t) $ INMDA
Ca (v, t) (1)

where

INMDA
Na (v, t)

# PNMDAPNa s(t)MgB(v)
vF2

RT! [Na]i % [Na]oexp"%
vF

RT#
1 % exp"%

vF

RT# $ (2)

INMDA
K (v, t)

# PNMDAPK s(t)MgB(v)
vF2

RT! [K]i % [K]oexp"%
vF

RT#
1 % exp"%

vF

RT# $ (3)

INMDA
Ca (v, t)

# PNMDAPCa s(t)MgB(v)
4vF2

RT ! [Ca]i % [Ca]oexp"%
2vF

RT #
1 % exp"%

2vF

RT # $ (4)
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FIG. 1. Illustration of the basics of our model. A: schematic of the single compartment model used in this study. The various ligand- and voltage-gated
channels used in the model are depicted as arrows. B: properties of N-methyl-D-aspartate receptor (NMDAR) current used in the model. The current through the
receptor as a function of membrane voltage shows the magnesium dependent voltage block at hyperpolarized voltages. Inset: time course of a typical NMDAR
excitatory postsynatic potential (EPSP). C: functional form of the plasticity-regulating "-function plotted for various concentrations of intracellular calcium.
D: evolution of weight w, when the model was stimulated with 900 pulses of multiple frequencies, plotted as a function of time. It may be noted that the evolution
approximates an exponential. The color codes for various frequencies translate to E as well. Because 900 pulses of a low-frequency stimulus ended later than
900 pulses of a high-frequency stimulus, the endpoints are variable. It may be noted that at the end of the stimulus protocol, the weight parameter increased
(potentiation) for frequencies that are approximately $15 Hz while decreasing (depression) for frequencies lesser than that value. E: plot obtained by tracking percentage
change in weight w after 900 pulses of stimulus at various frequencies. The colored dots represent the values obtained from D for corresponding frequencies.

1021REGULATION OF SYNAPTIC PLASTICITY BY Ih

J Neurophysiol • VOL 104 • AUGUST 2010 • www.jn.org

 on Septem
ber 24, 2010 

jn.physiology.org
Downloaded from

 

http://jn.physiology.org


where P
!

NMDA is the maximum permeability of the NMDA receptor.
PCa ! 10.6, PNa ! 1, and PK ! 1, owing to the permeability of the
NMDA receptor to different ions being PCa:PNa:PK ! 10.6:1:1
(Canavier 1999; Mayer and Westbrook 1987). Default values of
concentrations were (in mM) [Na]i ! 18, [Na]o ! 140, [K]i ! 140,
[K]o ! 5, [Ca]i ! 100 % 10&6, [Ca]o ! 2. The concentrations for
sodium set its equilibrium potential at #55 mV and that for potassium
at &90 mV. Evolution of intracellular calcium with NMDA-depen-
dent calcium current &NMDA

Ca and its buffering was modeled as in
(Poirazi et al. 2003)

d%Ca&i

dt
# %

10, 000 INMDA
Ca

3.6 · dpt · F
$

%Ca&' % %Ca&i

(Ca
(5)

where F is Faraday’s constant, (Ca ! 30 ms is the calcium decay
constant, dpt ! 0.1 "m is the depth of the shell, and [Ca]' ! 10&4

mM is the steady-state value of [Ca]i. MgB(v) governs the magnesium
dependence of the NMDA current (Fig. 1B), given as (Jahr and
Stevens 1990)

MgB'v( # )1 $
%Mg&oexp(%0.062v)

3.57 *%1

(6)

with the default value of [Mg]o set at 2 mM. s(t) governs the kinetics
of the NMDA current and is given as (Fig. 1B)

s't( # a+exp"%
t

(d
# % exp"%

t

(r
#, (7)

where a is a normalization constant, making sure that 0 ) s(t) ) 1, (d
is the decay time constant, (r is rise time with (r ! 5 ms, and (d ! 50
ms. Figure 1B provides the voltage dependence and time course of the
NMDA current obtained with this model.

In general, in pyramidal cells, current through the AMPA receptor,
as a function of voltage and time, is dependent on two ions: sodium
and potassium. Consequently, we modeled the current through the
AMPA receptor as a sum of currents carried by these two ions

IAMPA'v, t( # IAMPA
Na 'v, t( $ IAMPA

K 'v, t( (8)

where

IAMPA
Na (v, t)

# PAMPA wPNa s(t)
vF2

RT! [Na]i % [Na]oexp"%
vF

RT#
1 % exp"%

vF

RT# $(9)

IAMPA
K (v, t)

# PAMPA wPK s(t)
vF2

RT! [K]i % [K]oexp"%
vF

RT#
1 % exp"%

vF

RT# $(10)

where P
!

AMPA is the maximum permeability of the AMPA receptor,
whose default value was set at 10 nm/s. PNa was taken to be equal to PK,
given experimental observations (Dingledine et al. 1999). w is the weight
parameter that undergoes activity-dependent update. s(t) was the same as
that for the NMDA receptor, but with (r ! 2 ms and (d ! 10 ms.

Weight update mechanism

Synaptic weight parameter w (see Eqs. 9 and 10) was updated as a
function of intracellular calcium, following the calcium control hy-
pothesis (Shouval et al. 2002). Specifically

dw

dt
# *'%Ca&i(%+'%Ca&i(%w& (11)

where, *([Ca]i) is the calcium-dependent learning rate, inversely
related to the learning time constant (([Ca]i)

*'%Ca&i( #
1

('%Ca&i(
(12)

('%Ca&i( # P1 $
P2

P3 $ [Ca]i
P4

(13)

with P1 ! 1 s, P2 ! 0.1 s, P3 ! P2 % 10&4, and P4 ! 3. This takes
into account that when [Ca] ( 0, (([Ca]i) ( 3 h (Shouval et al. 2002).
"([Ca]i) has the following form (Fig. 1C)

+'%Ca&i( # 0.25 $
1

1 $ exp-%,2'%Ca&i % -2(.
% 0.25

1

1 $ exp-%,1'%Ca&i % -1(.
(14)

with -1 ! 0.35, -2 ! 0.55, ,1 ! 80, and ,2 ! 80. In all of the above
weight update equations, for compatibility, [Ca]i is set as [Ca]i – 100
nM. Unless otherwise stated, the default initial value of w, winit, was
set at 0.5.

R E S U L T S

Synaptic plasticity is bidirectional in nature, and the
associated mechanisms and signaling pathways are complex
(Derkach et al. 2007; Flavell and Greenberg 2008; Johnston
et al. 2003; Kennedy et al. 2005; Kerchner and Nicoll 2008;
Lisman 1989, 2009; Lisman and Raghavachari 2006;
Malenka and Bear 2004; Massey and Bashir 2007; Newpher
and Ehlers 2008; Sacktor 2008; Shepherd and Huganir
2007). Computational models that are built toward under-
standing various aspects of synaptic plasticity thus use
simplifying assumptions or enlist abstractions so that the
problem becomes tractable, while still providing insights
into brain function (Abbott and Nelson 2000; Ajay and
Bhalla 2006; Bienenstock et al. 1982; Kalantzis and Shouval
2009; Lisman and Raghavachari 2006; Shouval et al. 2002;
Song et al. 2000; Willshaw and Dayan 1990). Our study
extends the model presented in (Shouval et al. 2002), but
significantly differs in terms of the use of conductance-
based models for voltage-gated channels and in terms of the
models for the glutamate receptors (see METHODS). Conse-
quent to this extension, the assumptions that are inherent to
the model presented in Shouval et al. (2002) also extend to
our model. Specifically, our model inherits the calcium
control hypothesis that states that different calcium levels
trigger different forms of synaptic plasticity (Lisman 1989)
and also considers NMDA receptors as the sole source of
calcium (Shouval et al. 2002). While the latter assumption is
still permissive to generalization within the modeling frame-
work, the former is more restrictive because it is known that
multiple parameters including intracellular locations of sig-
naling molecules, rates associated with multiple reaction-
diffusion systems, kinetics of calcium entry, and the expres-
sion of various kinases and phosphatases contribute to the
direction and strength of synaptic plasticity (Ajay and
Bhalla 2006; Derkach et al. 2007; Flavell and Greenberg
2008; Johnston et al. 2003; Kennedy et al. 2005; Kerchner
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and Nicoll 2008; Lisman 2009; Lisman and Raghavachari
2006; Liu et al. 2004; Malenka and Bear 2004; Massey and
Bashir 2007; Newpher and Ehlers 2008; Sacktor 2008;
Shepherd and Huganir 2007). The amount of NMDAR-
dependent calcium influx plays a crucial role in synaptic
plasticity (Bear 2003; Bear et al. 1987; Lisman 1989, 2001;
Lisman and Raghavachari 2006; Zucker 1999), and the
calcium control hypothesis has proven as an useful abstrac-
tion to understand multiple plasticity-related phenomena
(Kalantzis and Shouval 2009; Shah et al. 2006; Shouval et
al. 2002; Yeung et al. 2004; Yu et al. 2008). Thus in this
study, we used the calcium control hypothesis, together with
its underlying assumptions, to establish a broad framework
to understand the role of voltage-gated ion channels in
modulating synaptic plasticity.

Generating the synaptic plasticity profile using the model

We induce plasticity in the model synapse by presenting 900
stimuli (through a spike generator associated with the synapse)
at a given frequency. Using this framework, the direction and
strength of plasticity were analyzed by presenting stimuli made
of 900 pulses at various frequencies (0.5–25 Hz) to the model
(Dudek and Bear 1992; Johnston et al. 2003; Shouval et al.
2002). Such stimulation of co-localized NMDAR–AMPAR
synapse would lead to changes in intracellular calcium con-
centration depending on the stimulus frequency and various
other parameters associated with the model. This, is turn,
would affect the calcium-dependent weight update process as
in Eq. 11. The evolution of weights as given by Eq. 11 is
monitored (Fig. 1D), and the final weight at the end of the
induction protocol is noted down for each frequency. The
percentage difference between this final weight and the initial

weight (0.5) is plotted against the frequency of the stimulus
pulses to obtain the synaptic plasticity profile as a function of
stimulus frequency (Shouval et al. 2002). Figure 1E provides
an example of such a plasticity profile generated with our
model.

The h current induces a saturating rightward shift to the
plasticity profile

As a first step of our analysis, we increased the maximum
value of the h conductance, g!h, progressively and generated the
plasticity profile for each of its values. We observed a right-
ward shift in the plasticity profile with an increase in g!h (Fig. 2A). We
used the sliding modification threshold (!m) as a measure to
quantify the relationship between this shift and g!h. A plot of !m
versus g!h (Fig. 2B) fits an exponential function (( ! 0.71
"S/cm2), indicating that the rightward shift (increase in !m)
induced by an increase in g!h saturates beyond a certain point.
Together these indicate that an increase in h current can pro-
duce a saturating rightward shift to the BCM-like synaptic
learning rule.

Reasoning that any change in the plasticity profile should,
under this framework, be dependent on the intracellular con-
centration of calcium, we looked at the total levels (area under
the curve) of intracellular calcium influx through the induction
protocol (900 pulses of a given frequency of stimulation) for
various values of g!h. As expected, increases in g!h reduced the
levels of intracellular calcium across the range of frequencies
of stimulation, with the effects being more pronounced in the
higher frequencies of stimulation (Fig. 2C). This is to be
expected because increases in g!h reduce temporal summa-
tion (Magee 1998, 1999) and the amount of calcium entering
through the NMDA receptor. To quantify further this de-
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FIG. 2. Increase in the h current produced
a saturating rightward shift to the Bienen-
stock-Cooper-Munro (BCM)-like synaptic
plasticity profile through reduction in intracel-
lular calcium influx. A: percentage weight
change induced by 900 stimulus pulses at
various frequencies plotted as a function of the
stimulus frequency for different values of max-
imal h-channel conductance, g!h. A progressive
rightward shift in the curve may be noted with
increases in g!h. winit ! 0.25 for these simulations
(see Supplementary Fig. S2). B: quantifying the
modification threshold, !m (indicated by black
arrows in A), as a function of g!h shows a satu-
rating rightward shift in the BCM-like plasticity
profile with increase in g!h. winit ! 0.25 for these
simulations (see Supplementary Fig. S2). C: to-
tal calcium influx (area under the curve) ob-
tained after 900 pulses of synaptic stimulation at
a given frequency plotted as a function of the
frequency of stimulation. The plots for various
values of g!h indicate the reduction of calcium
influx with increase in g!h. D: total calcium influx
at the end of 900 pulses of 25 Hz synaptic
stimulation plotted as a function of g!h. Inset: an
illustration with typical traces of intracellular
calcium obtained with 10 pulses of 25 Hz syn-
aptic stimulation with 3 different values of g!h. It
may be noted that a higher value of g!h leads to a
reduction in intracellular calcium levels. All red
arrows indicate the point at which compartment
switched from generating a spike to generating a
subthreshold EPSP.
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pendence of intracellular calcium on g!h, we plotted the
average intracellular calcium at the end of 900 pulses of the
25 Hz stimuli as a function of g!h and found an exponential
reduction in the levels of calcium influx with increasing g!h
(Fig. 2D). Thus the shift in modification threshold induced
by an increase in g!h is mediated through a reduction in
excitability and a consequent reduction in the amount of
calcium influx through NMDA receptors.

Modulation in h channel properties need not be only
associated with the maximal conductance (the number of
channels). Modulation could also occur through changes in
the half-maximal activation voltage and/or through changes
in activation time constant, for instance, through changes in
subunit composition and/or channel phosphorylation state
(Biel et al. 2009; Pape 1996; Robinson and Siegelbaum
2003). Thus it is essential to ask if the modification thresh-
old is dependent only on the maximal h channel conduc-
tance, or is it also sensitive to other parameters associated
with the h channel. To answer this question, we systemati-
cally varied various parameters associated with the h chan-
nel and assessed their role in altering the modification
threshold. We found that, whereas the modification thresh-
old was sensitive to the half-maximal activation voltage
(V1/2) of the h channel (Fig. 3, A and B), it was not as

sensitive to the (de)activation time constant of the h channel
for the protocols that we used for inducing plasticity. The
dependence of the modification threshold on the V1/2 of the
h channel can be explained by the amount of h current at
– 65 mV (the voltage at which simulations are performed)
with various values of V1/2. Given the activation properties
of h channels (Magee 1999), a lower value of V1/2 (say, –150
mV; see Fig. 3B) would mean almost zero h current at – 65
mV, whereas a higher value (say, 0 mV) would mean almost
maximal conductance of h channels at – 65 mV. Conse-
quently, given Fig. 2 and our observations there about
excitability and calcium, it would be expected that the
modification threshold would be lower at hyperpolarized
values of V1/2 and increases with depolarization in V1/2 (Fig.
3B). Thus depolarization in V1/2 would shift the plasticity
profile toward the right, making the induction of LTP more
difficult. However, the (de)activation time constant was not
as effective in shifting the plasticity profile (Fig. 3, C and
D). This is to be expected because given the protocol we
used for inducing plasticity (900 pulses of various frequen-
cies), and given the frequency range where the modification
threshold is (around 5–15 Hz), there is no significant tem-
poral summation on the postsynaptic side, thus making the
role of the h channel time constant very minimal.
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We have shown that the shift in modification threshold
induced by an increase in g!h is mediated through a reduction in
excitability and consequent reduction in the amount of calcium
influx through NMDA receptors (Fig. 1). Using our model, we
next asked if the h channel was unique in its ability to shift the
modification threshold through such a mechanism. To do this,
we changed the leak conductance in the model to modulate
excitability and asked whether this would change the modifi-
cation threshold. Quite expectedly, an increase in leak conduc-
tance was able to shift the modification threshold toward the
right (Fig. 3, E and F), owing to its ability to reduce excitabil-
ity. Together, the ability of these conductances to bidirection-
ally modulate the modification threshold suggest that, in gen-
eral, changes that lead to increased excitability would shift the
modification threshold to the left, whereas those that reduce
excitability shift the modification threshold to the right (also
see dependence on A-type potassium channels, below).

If excitability were reduced by an increase in leak conduc-
tance, would the model still be amenable to changes in the h
conductance? To test this, we reduced the leak conductance to
80–320 ".cm2, bringing the input resistance of the compart-
ment to 50–200 M", respectively. When we did this, we were
still able to increase the modification threshold through in-
creases in h conductance, thus confirming the results with
higher leak conductances as well (Supplementary Fig. S1).1

Finally, we also tested if our results were dependent on the
initial value of the weight parameter w, winit. We found that,
although the exact values of modification threshold and the
amount of potentiation were different (consistent with Shouval
et al. 2002) with different values of winit, the shift in modifi-
cation threshold as a function of changes in maximal h con-
ductance was in the same direction and had the same depen-
dencies across various values of winit (Supplementary Fig. S2).

Dependence of modification threshold on multiple
voltage-gated ion channels

Because changes in the A-type potassium current can also
accompany various forms of synaptic plasticity (Frick et al.
2004; Kim et al. 2007; Losonczy et al. 2008), we assessed the
role of the A-current on the plasticity profile. As a potassium
conductance whose increase would reduce excitability, the
expectation was that there would be a leftward shift in the
plasticity profile with increases in the A-current. Obtaining
plasticity profiles for various values of maximal A-type potas-
sium channel conductance, g!KA, however, showed a complex
dependence of !m on g!KA, with multiple ion channels contrib-
uting to the exact nature of such dependence (Fig. 4). Specif-
ically, for lower values of g!h, increases in g!KA initially led to
a reduction in !m, implying a leftward shift in the plasticity
profile (until the threshold transition point, indicated by arrows
in Fig. 4A); however, with further increase in g!KA, after a
threshold, !m increased (Fig. 4A; e.g., curve corresponding to
g!h ! 0.75 mS/cm2). For higher values of g!h, the effect of g!KA
on the plasticity profile progressively reduced to finally be-
come negligible (Fig. 4A; e.g., curve corresponding to g!h ! 3
mS/cm2).

While the increase in !m with increases in g!KA during the
latter part of the graph (beyond the transition point; indicated

by red arrows) could be explained by the fact that g!KA is a
potassium conductance, we were puzzled by the reduction in
!m with increases in g!KA during the initial portion of the curve.
We thus analyzed the reason behind this switch in the direction
by closely examining the anatomy of a single (g!h ! 0.75
mS/cm2) biphasic curve. Consider the case before the transi-
tion point (Fig. 4B, left), and take the case of the lower value
of g!KA (!3 "S/cm2). The plots of the model response to three
pulses at 33 Hz shows a spike in response to each of the three
stimuli. The activation of the delayed rectifier potassium chan-
nel should be noted, along with the calcium response through
the NMDA receptors (Fig. 4B). When the value of g!KA is
increased to 20 "S/cm2, but still staying to the left of the
transition point, this relatively higher value of g!KA produced a
reduction in spike amplitude (Hoffman et al. 1997; Migliore et
al. 1999). This reduction in spike amplitude led to a lower
activation of the delayed rectifier, as observed from the con-
ductance plot in Fig. 4B. Thus because of the smaller potas-
sium influx (through the delayer rectifier potassium channel),
the calcium response was not “shunted,” and thus there was an
increase in the amount of calcium influx, eventually leading to
a reduction in the modification threshold. An increase in g!KA in
this regimen increased calcium influx through reduction of
spike amplitude with the consequent reduction of the delayed
rectifier potassium conductance. These results also suggest a
novel role for the A-current in that it could regulate spike-
induced reset of excitatory postsynaptic potentials (EPSPs)
(Hausser et al. 2001) through its ability to regulate spike
amplitude. Such regulation of spike-induced reset can act as a
variable reset of synaptic integration in hippocampal neurons.
Given the location dependence of A-type K# current in hip-
pocampal neurons (Hoffman et al. 1997), such reset of synaptic
integration would also be location-dependent, making different
regions of the neuron contribute differently to synaptic inte-
gration during dendritic spikes or backpropagating action po-
tentials (Hausser et al. 2001).

Now, consider the regimen beyond the transition point (Fig.
4B, right). During this regimen, there were no spikes, and the
EPSPs summated to let calcium influx into the cell. Because there
were no spikes in this case, there was no activation of the delayed
rectifier potassium conductance, thus making only the subthresh-
old conductances play a role in determining the modification
threshold. Now, with an increase in g!KA (from 80 to 150
"S/cm2), there was a reduction in temporal summation leading
to reduction in calcium influx (Fig. 4B). Thus during this
regimen, an increase in g!KA decreased calcium influx through
reduction of temporal summation of EPSPs. Thus our simula-
tion results indicate that the switch occurs when the compart-
ment ceases to elicit a spike. In other words, increases in g!KA
led to a reduction in !m if spikes were elicited and an increase
in !m if spikes were not elicited.

The progressive leftward shift observed in the threshold for
the switch (indicated by arrows in Fig. 4A and plotted in Fig.
4C) with increased g!h can also be explained as follows: with
increases in g!h,the excitability of the compartment was re-
duced. This reduction suppressed spiking in the compartment
with even a smaller value of g!KA, thus leading to the observed
decrease in this threshold as a function of g!h (Fig. 4C). Finally,
when g!h was high enough, there was no value of g!h where
spikes could be elicited, thus leading to the absence of any such
switch in the direction of change (Fig. 4A; g!h ! 3 mS/cm2).1 The online version of this article contains supplemental data.
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Together, it may be noted that the modification threshold was
dependent on the multiple conductances depending on their
relative conductance values. These dependencies are summa-
rized in Fig. 4C, where the threshold transition point is plotted
as a function of g!h. To the left of the linear plot, there were
dendritic spikes, thus making the delayed rectifier conductance
dominate (Fig. 4B, left). In this regimen, an increase in the
A-type conductance led to a reduction of the modification
threshold. Toward the right of this linear plot, there were no
spikes. Here, until a certain transition value of g!h (represented
by dotted lines), the A-type potassium current dominated where
increases in the A-type current led to an increase in the
modification threshold (Fig. 4A). Beyond this transition value
of g!h, changes in g!KA had very little effect on the modification
threshold, thus making g!h the dominant force.

Our analysis of the A-current thus far has considered only
changes in g!KA. However, there are reports of changes in the
A-current effectuated through a shift in its inactivation curve
(Frick et al. 2004). Specifically, that study reported a localized
shift in the inactivation curve of the A-type potassium channel
(from –63.5 to –69.2 mV, on an average) accompanying LTP.

We asked if a shift in the inactivation curve of the A-type
potassium channel could alter the modification threshold and
induce metaplasticity in hippocampal synapses. To do this, we
calculated the modification threshold for various values of the
V1/2 of the inactivation curve of the A-type potassium channel
and plotted this as a function V1/2 (Fig. 5). We found that a shift
in the inactivation curve of the A-type potassium channels
behaved in a fashion similar to the increase in g!KA (Fig. 5).
Specifically, we observed a biphasic curve where the modifi-
cation threshold decreased until a certain transition value of the
inactivation V1/2 and increased beyond that value. This transi-
tion point was a function of the value of g!h, with a progressive
decrease in the transition value of the inactivation V1/2 with
increase in g!h. Finally, beyond a certain value of g!h, the
inactivation V1/2 had very little effect on the modification
threshold. Thus the modification threshold as a function of the
inactivation V1/2 behaved in a similar fashion to its dependence
on g!KA. Together, these results suggest the modification thresh-
old is regulated through complex interactions between multiple
voltage-gated ion channels. The exact nature of these depen-
dencies and interactions are contingent on individual channel
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properties and conductance values and their relationships to
those of the other ion channels in the same compartment.

Increase in glutamate receptor permeability shifts the
plasticity profile to the left

A large body of evidence suggests an increase in AMPA
receptor density follows induction of LTP (Andrasfalvy and
Magee 2004; Derkach et al. 2007; Kerchner and Nicoll 2008;
Malenka and Bear 2004; Shepherd and Huganir 2007). Fur-
thermore, the density of AMPA receptors are known to in-
crease with distance of the dendritic location from the soma,
and this has been suggested as a mechanism for the normal-
ization of location dependence of EPSPs in Schaffer collateral
synapses (Andrasfalvy and Magee 2001; Smith et al. 2003). To
assess any potential influence of AMPA receptor density on the
plasticity profile, we generated the profile for various values of
the AMPA receptor permeability. It is expected that the depo-
larization offered by higher AMPA receptor could relieve the
magnesium block in NMDA receptor, thus leading to an
increased calcium influx through the NMDA receptors. Con-
forming to this expectation (Shouval et al. 2002), we observed
that increase in AMPA receptor permeability led to a leftward
shift in the plasticity profile (Fig. 6A). To quantify further this
relationship, we plotted !m as a function of AMPA receptor

permeability. We observed that there was an approximately
linear reduction in the sliding threshold of the plasticity profile
as a function of AMPA receptor permeability (Fig. 6B). Next,
given that NMDARs are important for the induction of plas-
ticity, and given that there could be changes in NMDARs as a
result of certain activity pattern, we asked whether changes in
NMDAR density could alter the plasticity profile. Again,
conforming to results by Shouval et al. (2002), our results
suggested that increases in NMDAR density would shift the
plasticity profile to the left (Fig. 6C).

Together our results suggest that the plasticity profile of a
synapse located in a dendritic segment is dependent on the
properties of voltage-gated channels present in that dendritic
segment and the ligand-gated channels at a particular synapse.

D I S C U S S I O N

A primary conclusion of this study is that a change in the
hyperpolarization-activated h current is capable of shifting the
plasticity profile within a BCM-like learning framework. Spe-
cifically, our results suggest that an increase in the h current
would shift the plasticity profile toward the right, increasing
the sliding modification threshold, whereas a decrease would
accomplish the opposite (Fig. 2). With this background, we
analyzed recent results from our laboratory on plasticity in the
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h current that accompanies synaptic plasticity in hippocampal
pyramidal neurons. It has been shown that LTP is accompanied
by an increase in the h current (Fan et al. 2005), and that a
decrease in the h current accompanies LTD (Brager and
Johnston 2007). We argue that these results in conjunction with
results from this study make the h current a candidate for
mediating the sliding modification threshold within a BCM-
like framework (Fig. 7). To elaborate, consider first the LTP
case. Within a BCM framework, an increase in postsynaptic
activity (consequent to LTP of certain synapses) should shift
the plasticity profile to the right, thus reducing the possibility
of further potentiation and retaining the dynamic range of
synapses within a useful range (Bienenstock et al. 1982).
Experimental results have demonstrated that LTP is accompa-
nied by an increase in the h current (Fan et al. 2005; Narayanan
and Johnston 2007), and our results show that increases in the
h current shift the plasticity profile to the right. Together, this
fits the BCM-like framework, where LTP would be accompa-
nied by an increase in the sliding modification threshold. The
LTD case would just be the antipode for this with experiments
showing a reduction in the h current with LTD (Brager and
Johnston 2007) and that this reduction would lead to a leftward
shift in the plasticity profile (Fig. 2). Hence, the h current can
mediate a rightward shift in the plasticity profile accompanying
LTP-inducing stimuli and a leftward shift accompanying LTD-

inducing stimuli, exactly in the manner required by a BCM-
like plasticity framework to maintain modifiable synapses of
the network within a useful dynamic range.

An important requirement of the sliding modification thresh-
old in a BCM-like plasticity framework is that the changes
need to be global in nature, affecting all synapses even if the
associated plasticity is local (Bienenstock et al. 1982; Turri-
giano and Nelson 2000). Matching this, the increase in the h
current accompanying LTP has been experimentally shown to
be spatially widespread even if the associated LTP was path-
way specific (Narayanan and Johnston 2007). Specifically,
using recordings from the apical dendritic shaft (up to )300
"m), we directly assessed measurements sensitive to the h
current and showed that the changes in h channels accompa-
nying LTP are spatially widespread. Furthermore, we also
showed that synaptic potentiation in one pathway reduces
temporal summation in an unpotentiated pathway onto the
same neuron, thus directly showing the heterosynaptic nature
of the effects of changes in h channels. With LTD, direct
dendritic measurements of the h current-dependent measure-
ments have not been performed. However, experiments involv-
ing two-pathway LTD showing heterosynaptic changes in a
nondepressed pathway (Brager and Johnston 2007) and mod-
eling results suggesting that only somatic changes in the h
current are insufficient to induce large changes in excitability
(Narayanan and Johnston 2007) support the conclusion that h
current changes accompanying LTD are also spatially wide-
spread. Thus because changes in h current that accompany
synaptic plasticity span huge dendritic distances and act het-
erosynaptically (Brager and Johnston 2007; Narayanan and
Johnston 2007), and because the h current can bidirectionally
shift the plasticity profile in a manner required by a BCM-like
framework (Figs. 2 and 3), we suggest that the h current is a
candidate mechanism for regulating the sliding modification
threshold within a BCM-like synaptic learning framework
(Fig. 7).

Although frameworks based on the BCM model (Bienen-
stock et al. 1982) have been very useful in understanding
synaptic plasticity rules and metaplasticity (Gold and Bear
1994; Kalantzis and Shouval 2009; Shah et al. 2006; Shouval
et al. 2002; Yeung et al. 2004; Yu et al. 2008), it should be
noted that the experimental evidence for the presence and
regulation of a sliding modification threshold (within the
realms of the synaptic plasticity framework) is inferential and
indirect (Abraham 2008; Abraham and Bear 1996; Abraham
and Tate 1997; Abraham et al. 2001; Bear 2003; Cooper et al.
2004; Holland and Wagner 1998; Kirkwood et al. 1996;
Philpot et al. 2001, 2003; Wang and Wagner 1999). Further-
more, although the calcium-dependent plasticity framework
used in this study and others (Kalantzis and Shouval 2009;
Shah et al. 2006; Shouval et al. 2002; Yeung et al. 2004; Yu et
al. 2008) derives inspiration from the BCM framework, the
BCM framework and the Hebbian synaptic plasticity frame-
work in Schaffer collateral synapses are not completely anal-
ogous to each other (Cooper et al. 2004). There are numerous
differences between them including those on what they model,
on how they effectuate changes in the sliding modification
threshold, and on how they link the sliding modification
threshold to plasticity and metaplasticity (see Cooper et al.
2004 for a detailed analysis on the differences). We used the
term “BCM-like” throughout the manuscript to take into con-
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a reduction in the h current (Brager and Johnston 2007), which would lead to
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arrowhead) and reducing the possibility of synaptic retraction/death. Within a
BCM-like framework, LTP would be accompanied by a rightward shift in the
plasticity profile, whereas LTD would be accompanied by a leftward shift.
Here, an increase in the h current shifts the plasticity profile toward the right,
whereas a decrease in the h current shifts it to the left. Previous experimental
results have shown an increase in the h current accompanying LTP and a
decrease in the same accompanying LTD. Taken together, these results imply
that LTP is accompanied by a rightward shift in the plasticity profile, whereas
LTD is accompanied by a leftward shift. This matches with the requirements
for the sliding modification threshold within a BCM-like synaptic learning
framework, thus establishing the h current as a candidate mediator of the
sliding modification threshold.
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sideration the fact that our synaptic plasticity framework,
whereas it draws inspiration from the BCM framework, is not
the same as the BCM framework. In what follows, we present
some implications of our results, along with some experimen-
tally testable predictions that follow from our study.

The h current as the mediator of the sliding modification
threshold: Implications

As inferred from our results, the regulation of the plasticity
profile by the h current is not achieved by directly controlling
the synaptic currents or by signaling pathways associated with
plasticity as proposed earlier (Abraham and Tate 1997; Bear
1995), but through its ability to modulate dendritic excitability
(Magee 1998; Narayanan and Johnston 2007). In other words,
the modulation of the h current alters the local response
properties around the synapse, thus leading to the regulation of
the plasticity profile through modulation of the amount of
calcium entering into the cell during a plasticity-inducing
stimulus. This offers a prediction, which could be tested
through the measurement of calcium influx into a cell during a
plasticity-inducing stimulus with and without h-channel block-
ers.

The h current as a candidate for controlling the modification
threshold offers multiple advantages over other possible mech-
anisms in terms of homeostasis. For instance, it has been earlier
shown that increases in the h current can lead to a reduction in
the postsynaptic firing (Poolos et al. 2002). Thus increases/
decreases in the h current could also act to neutralize the
increase/decrease in synaptic weights with LTP/LTD and bring
about firing rate homeostasis in the postsynaptic cell (Turri-
giano and Nelson 2000). Furthermore, with its known ability to
control temporal integration (Magee 1998, 1999), changes in h
current could also effectively modulate temporal integration of
a response across temporally spaced episodes of synaptic
activity (Abraham and Bear 1996). Finally, the h current also
acts as a phenomenological inductance (Narayanan and John-
ston 2008) and renders band-pass characteristics to the local
and transfer impedances in multiple neurons (Hu et al. 2002,
2009; Hutcheon and Yarom 2000; Narayanan and Johnston
2007; Ulrich 2002). Changes in h current, accompanying syn-
aptic plasticity would thus alter the frequency-dependent re-
sponse properties of the neuron, which has been postulated to
endow a neuron with the ability to match its response proper-
ties to stimulus statistics (Narayanan and Johnston 2007) and
providing independent control to a single neuron over temporal
coding of incoming information (Narayanan and Johnston
2008). Thus the h current acting as a controller of the sliding
threshold not only keeps the synapses in the dynamic func-
tional range (through regulation of the plasticity profile), but
also could help in maintaining firing rate homeostasis, alter
frequency-dependent response properties, change calcium-
response properties, and modulate temporal integration de-
pending on the network activity profile (Biel et al. 2009).

Plasticity in voltage-gated ion channels and metaplasticity

Our results showed that the sliding modification threshold is
also a function of the properties of multiple voltage- and
ligand-gated ion channels. This shows the complex interactions
between synaptic and intrinsic properties in determining infor-

mation processing within single neurons and their networks.
For instance, synaptic plasticity is accompanied by changes in
voltage-gated ion channels (Brager and Johnston 2007; Cam-
panac et al. 2008; Fan et al. 2005; Frick et al. 2004; Losonczy
et al. 2008; Narayanan and Johnston 2007; Sjostrom et al.
2008), and these changes in voltage-gated ion channels can
alter the rules behind the induction of synaptic plasticity, thus
closing a feedback loop of interactions between synaptic and
intrinsic properties. Such feedback loops have important im-
plications toward maintaining homeostasis and retaining the
dynamic range of synapses and neuronal firing rates (Abraham
2008; Turrigiano 1999; Turrigiano and Nelson 2000; Yeung et
al. 2004).

The role of metaplasticity triggered by changes in voltage-
gated ion channel properties should be taken into account while
interpreting experiments involving the use of multiple proto-
cols for inducing synaptic plasticity (Abraham 2008; Abraham
and Bear 1996; Abraham and Tate 1997; Chung et al. 2009).
To elaborate, experiments that study the saturation of synaptic
plasticity (Bliss and Lomo 1973; Huang and Malenka 1993;
McNaughton et al. 1978; Schulz et al. 1994), depotentiation
(Barrionuevo et al. 1980; Fujii et al. 1991), and synaptic
capture (Barco et al. 2002; Sajikumar et al. 2005) require the
use of multiple protocols that induce synaptic plasticity. Con-
sider the case where the first such induction is accompanied by
changes—in either a spatially localized (Frick et al. 2004;
Losonczy et al. 2008; Wang et al. 2003) or widespread (Nara-
yanan and Johnston 2007) manner—in a voltage-gated ion
channel that is capable of modifying the plasticity profile of
synapses. Now, synapses in these regions would have under-
gone metaplasticity and thus would adhere to a different
plasticity rule that they would have in the absence of such
changes in voltage-gated ion channel properties. Thus in inter-
pretation of experiments that involve multiple induction pro-
tocols, it is important to assess for changes in voltage-gated ion
channels as well, and ask if there was a metaplastic shift
associated with any of such induction protocols. This is ex-
tremely important because the same protocols that lead to
synaptic plasticity also lead to changes in multiple ion channels
and follow similar signaling pathways (Campanac et al. 2008;
Chung et al. 2009; Fan et al. 2005; Frick et al. 2004; Kim et al.
2007; Losonczy et al. 2008; Lujan et al. 2009; Rosenkranz et
al. 2009; Wang et al. 2003), thus establishing an extremely
tight, strongly interlinked feedback system involving both
synaptic and intrinsic properties in the regulation of neuronal
plasticity and homeostasis (Turrigiano and Nelson 2000; Zhang and
Linden 2003). Finally, spine structure, another variable regu-
lated by synaptic plasticity (Alvarez and Sabatini 2007), has
recently been put forward as a putative mediator of metaplas-
ticity (Kalantzis and Shouval 2009). Thus given that structural,
intrinsic, and synaptic properties could change with synaptic
plasticity (Alvarez and Sabatini 2007; Brager and Johnston
2007; Campanac et al. 2008; Fan et al. 2005; Frick et al. 2004;
Lisman 2009; Malenka and Bear 2004; Shepherd and Huganir
2007; Sjostrom et al. 2008) and could also play a role in
inducing metaplasticity (Figs. 2–6) (Kalantzis and Shouval
2009; Shouval et al. 2002), extreme care should be taken in
interpreting experiments involving multiple plasticity proto-
cols that follow one another.

Apart from changes in voltage-gated ion channels accompa-
nying synaptic plasticity, changes in the voltage-gated ion chan-
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nels have also been reported through development (Moody and
Bosma 2005) and during pathological conditions such as epi-
lepsy and ischemia (Beck and Yaari 2008; Bernard et al. 2007).
Given that multiple ion channels can modulate the sliding
modification threshold, are there changes in the rules of syn-
aptic plasticity that accompany any of these conditions (Crepel
et al. 2003; Errington et al. 1995; Kemp et al. 2000; Leite et al.
2005; Reid and Stewart 1997; Turrigiano and Nelson 2004)?
How are these changes related to voltage-gated ion channels
modulation? The answers to these questions are important,
especially given the important roles that the interactions be-
tween synaptic balance and intrinsic properties play in main-
taining or impeding homeostasis during development or patho-
logical conditions (Beck and Yaari 2008; Scharfman 2007;
Turrigiano and Nelson 2004). Future experiments could thus
focus on understanding the roles of voltage-gated ion channels
and intrinsic properties in inducing metaplasticity during de-
velopment and pathological conditions.

Somato-dendritic gradients in voltage-gated ion channels
and metaplasticity

Whereas plasticity in ion channels associated with physio-
logical or pathological conditions represents one layer of com-
plexity, another layer of complexity arises from the gradients
in properties and densities of various voltage-gated ion chan-
nels along the somato-dendritic axis of a single hippocampal
pyramidal neuron. Various ion channels, including the h chan-
nel (Lorincz et al. 2002; Magee 1998), the A-type potassium
channel (Hoffman et al. 1997), the M-type potassium channel
(Hu et al. 2007), the G protein–coupled inward rectifying
potassium (GIRK) channels (Chen and Johnston 2005), and the
AMPA receptor (Andrasfalvy and Magee 2001; Smith et al.
2003), have gradients in their densities changing as the func-
tion of distance from the soma (Johnston and Narayanan 2008;
Migliore and Shepherd 2002). With more than one ion channel
capable of controlling the modification threshold (Figs. 2–6),
how does this differential distribution of ion channels affect the
modification threshold as a function of distance from the soma?
There are at least two possible answers to this question.

The first possibility is that there are various computational
subunits along the dendritic tree (Losonczy et al. 2008; Poirazi
et al. 2003; Polsky et al. 2004; Williams 2004), with each of
them endowed with their own independent modification thresh-
old depending on the local distribution and properties of
various ion channels. This would be a departure from the
classical BCM rule, where there is only one modification rule
governing the entire neuron. Such location dependence of the
modification threshold would raise the possibility that a stim-
ulus that evokes LTP in a dendritic region near the soma could
elicit LTD in a dendritic region away from the soma. Such a
possibility would be consistent with various experimental re-
ports: 1) the presence of various computational subunits within
a neuron (Losonczy et al. 2008; Poirazi et al. 2003; Polsky et
al. 2004; Williams 2004); 2) the distance dependence of
various forms of synaptic plasticity, owing, in some cases, to
changes in channel distribution (Froemke et al. 2005; Sjostrom
and Hausser 2006; Sjostrom et al. 2008); 3) the localized
nature of some forms of activity-dependent plasticity in volt-
age-gated ion channels (Frick et al. 2004; Losonczy et al. 2008;
Wang et al. 2003), which implies that the effects of such

plasticity on modification threshold also will remain localized;
and 4) localized nature of most forms of synaptic plasticity
(Bliss and Collingridge 1993; Malenka and Bear 2004; Watt et
al. 2004) would imply localized changes in modification
threshold owing to the ability of AMPAR and NMDAR to
change the modification threshold (Fig. 6).

A second possibility is that, despite variations of densities of
these channels (both voltage- and ligand-gated) capable of
controlling the modification threshold, there could be normal-
ization of plasticity rules across the neuron or at least across the
stratum radiatum, where the Schaffer collaterals form syn-
apses. Such a possibility could arise because the gradient in
one of the components could actively neutralize the gradient in
another, thus enforcing the same plasticity rule across the
region of concern. For instance, the gradient in AMPA receptor
density has been proposed to neutralize location dependence of
synapses (Andrasfalvy and Magee 2001; Smith et al. 2003),
whereas the gradient in h channels has been proposed to
normalize synaptic integration (Magee 1999). However, it may
be noted from our results that increases in AMPAR and h
current induce opposite changes to the modification threshold.
One possibility is that they neutralize each other by propor-
tional increases across the dendritic regions so that plasticity in
the concerned region is uniform. Such a scheme may be
implemented because of the confluence of multiple ion channel
gradients within the dendrite, which are mutually coupled to
enforce it. Future experiments could focus on analyzing the
role of various ion channels in inducing metaplasticity and
answering the question about which of the two aforementioned
possibilities is implemented by a hippocampal neuron.

The primary focus of this study was on the h channels and their
role in regulating the sliding modification threshold (Figs. 2–3 and
7), although the cross-dependencies on the leak channels (Figs. 3
and S1), the A-type potassium current (Figs. 4 and 5), and
glutamate receptors (Fig. 6) were also analyzed. Dependencies on
a large number of other channels have not been analyzed in this
study, including calcium channels and other potassium channels
including the GIRK and calcium-activated potassium channels,
despite their known roles in mediating or regulating synaptic
plasticity (Johnston et al. 1992; Lujan et al. 2009). Furthermore,
we only considered one form of plasticity induction with 900
pulses of various frequencies (Dudek and Bear 1992; Johnston et
al. 2003; Shouval et al. 2002) throughout our study, without
considering other forms of plasticity like spike timing– or pairing-
dependent forms of synaptic plasticity. Thus the basic quantitative
framework developed in this study for understanding the role of
voltage-gated ion channels in modulating synaptic plasticity forms
a foundation for the analysis of the role of various ion channels in
different forms of inducing plasticity. Finally, it should also be
noted that this framework is designed specifically for plasticity in
the Schaffer collateral synapses in hippocampal CA1 pyramidal
neurons and would not necessarily extend to other synapses or to
other brain regions. For instance, in the parallel fibers synapses of
the cerebellar Purkinje neurons, the plasticity rule is inverse of a
BCM-like synaptic learning rule, where lower levels of calcium
influx induce LTP, with higher levels inducing LTD (Jorntell and
Hansel 2006). Thus while our basic framework could be extended
toward quantitatively understanding plasticity in other synapses,
extreme caution should be exercised in extending the results to
other synapses because the constitutive components and the dy-
namical rules can be different across different neurons.
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To summarize, we proposed the h current as a candidate
mediator for the sliding modification threshold within a BCM-like
plasticity framework, based on computational simulations, with
experimental support on bidirectional activity-dependent changes
in the h current accompanying bidirectional synaptic plasticity
(Brager and Johnston 2007; Campanac et al. 2008; Fan et al.
2005; Narayanan and Johnston 2007). Our results and analyses
also establish that multiple voltage-gated ion channels can alter
plasticity rules at a given synapse, not by directly affecting
synaptic currents, but through their ability to modulate local
dendritic excitability. These results underline the heavy mutual
interdependence of synaptic and intrinsic properties/plasticity in
regulating homeostasis and learning in single neurons and their
networks under both physiological and pathological brain states.
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