
. .
CSC 448 Bioinformatics Algorithms Alexander Dekhtyar
. .

Local Sequence Alignment
FASTA

Local Sequence Alignment Against a Database

Problem

Local Sequence Algignment. The local sequence alignment problem is de-
fined as follows:

Given two strings S = s1 . . . sn and T = t1 . . . tm, a substitution
matrix Score and an insertion/deletion penalty δ, find a pair of
substrings si . . . si+k of S and tj . . . tj+l of T that have the best
overall alignment score, and return the best alignment for them.

Local Sequence Algignment against a database. The local sequence

alignment against a database problem extends the local sequence alignment prob-
lem by introducing multiple strings against which a single query string is a
aligned:

Given a query string S = s1 . . . sn, and a collection of strings D =
{D1, . . .DM} (usually referred to as a sequence database), a substi-
tution matrix Score and an insertion/deletion penalty δ, find the
best local alignments of S with any/all strings from D.

Note. Smith-Waterman algorithm for local sequence alignment has runtime
complexity O(nm). When extended to a database D of M strings of average
length m, the runtime complexity of applying Smith-Waterman to each pair of
strings S, Dj becomes O(nmM). This is unacceptable for practical applications.

Idea. Smith-Waterman algorithm guarantees the correct solution - i.e., always
finds the best local alignment between a pair of strings. We can sacrifice the

accuracy in lieu of efficiency by requiring our algorithm to find pretty good local
alignments against a database fast.

Approximation algorithms. We consider two approximation algorithms:
FASTA and BLAST. Both algorithms are faster than Smith-Waterman. Both do
not guarantee that they return the best possible alignments. However, for both

1

algorithms, the probability of an error is computable, and can be kept to be
very small.

FASTA

FASTA [1] compares a query sequence with each sequence from a database in
search of local alignments using a five-step process described below.

• Step 1.Dot-plot construction. Determine occurrences of all subse-
quences of length k (k-tuples) (for some given k) in the query string S

and in each string D1 through DM . (Construct implicit k-tuple dot-plots
of S with all Dis).

• Step 2. Diagonal scoring. For each pair of strings S and Di ∈ D,
score the diagonals of the dot-plot matrix for total number of matching
positions. Select the best diagonals.

• Step 3. Rescoring of the diagonals. For each diagonal selected in
Step 2, use the substitution matrix Score to rescore them. Identify sub-
regions of S and Dis with the highest scores.

• Step 4. Region Join. Using a given gap penalty scoring process, join
selected diagonals using gaps.

• Step 5. Local algignment. For each region produced in Step 4, per-
form a full local alignment search using Smith-Waterman algorithm.

Step 1. Dot-plot Construction

k-tuple dot plot. Given two strings S = s1 . . . sn and T = t1 . . . tm, and a
number k < min(n, m), a k-tuple dot plot of S and T , denoted Pk(S, T) is a
function

Pk : [1..n − k + 1] × [1..m − k + 1] −→ {0, 1},

such that
Pk(i, j) = 1, iffsi . . . si+k−1 = tj . . . tj+k−1,

i.e., Pk(S, T) marks all locations in S and T , where the two strings have an
exact match of length k.

Näıve k-tuple dot plot construction. Given two strings, S = s1 . . . sn and
T = t1 . . . tm, a näıve straightforward way of constructing their k-tuple dot
plot is to compare every k-tuple from S to every k-tuple from T . Assuming
k << min(n, m), this procedure requires O(nm) time.

Efficient, implicit k-tuple dot plot construction. We observe two things:

• k-tuple dot plots of two strings is not expected to have too many en-
tries, i.e., it is a sparse matrix. We do not need to instantiate the matrix
explicitly.

• What we really need is to know which k-tuples are found in each string

and where they are found.

2

• A string of length n contains n − k + 1 k-tuples, starting at positions
1, 2, . . . n − k + 1.

• Given an alphabet Σ = {a1 . . . aK}, there are |Sigma|k = Kk different

possible k-tuples. If Σ is fixed, and k is kept constant, then Kk is a
constant.

Combining these three observations, we obtain the following efficient proce-
dure for implicitly constructing the dot plot of two strings:

1. Construct a k-tuple lookup table LS[] for string S and another one, LT []
for string T . Enumerate all possible k-tuples in alphabet Σ. LS [], LT []
will have indexes 1 . . .Kk - each index representing a specific k-tuple in
alphabet Σ.

Given a k-tuple V = v1 . . . vk, LS[V], a.k.a. LS[index(V)] will contain
the list of positions in string S, where V is found. Similarly, LT [V], a.k.a.
LT [index(V)] will contain the list of positions in T , where V is found.

2. Fill the lookup table LS [] by scanning S and adding i to LS [si . . . si+k−1]
on each step.

3. Fill the lookup table LT [] in a similar way.

Example. Let S = ATCGTATCG and let k = 3, and Σ = {A, T, C, G}.
There are 43 possible 3-tuples in Σ: AAA, AAC,. . . ,TTT. S contains the following
seven 3-tuples in it:

ATCGTATCG

1 ATC

2 TCG

3 CGT

4 GTA

5 TAT

6 ATC

7 TCG

The lookup table LS [] looks as follows (we show only non-empty entries):

L[ATC] = {1,6}

L[CGT] = {3}

L[GTA] = {4}

L[TAT] = {5}

L[TCG] = {2,7}

k-tuples in FASTA. FASTA uses k = 6 for the alphabet of nucleotides and
k = 2 for the alphabet of amino acids. As such, the lookup tables have the
following sizes:

Alphabet Number of characters Typical k Size of lookup table
Nucleotide 4 6 46 = 4096
Amino Acid 21 (stop codon) 2 212 = 441

3

Step 2. Diagonal scoring

Idea. An alignment between two substrings si . . . si+l−1 and tj . . . tj+l−1 (of
the same length l), is represented by a diagonal on the dot plot Pk(S, T), that
passes through the cells [i, j], [i + 1, j + 1], . . . [i + l − 1].

The more matches are found on the diagonal, the closer the alignment will
be.

Example. Let S = ATCGTATCG and T = CAGATCGTCTCGAT and
k = 3. The (explicit) dot plot P [S, T] can be represented as follows:

CAGATCGTCTCGAT

A| *

T| * *

C| *

G|

T|

A| *

T| * *

C|

G|

The diagonal originating at [1, 4] contains four total matches on it: [1, 4], [2, 5], [3, 6], [7, 10].
This corresponds to the following alignment between the substrings in S and T :

ATCGTATCG

||||| |||

cagATCGTCTCGat

Step 2 of FASTA is computing the total number of matches on each diagonal.

Number of diagonals. The dot plot Pk[S, T] for strings S of length n and
T of length m contains n + m − 1 diagonals.

Computing diagonal scors. Näıve way: go through the Pk[S, T] matrix.
Runtime: O(nm).

A better way uses the lists LS[] and LT [] constructed on Step 1 of FASTA.

Idea. Initialize all diagonal scores to 0. Traverse through non-empty entries
in LS[]. For each k-tuple V occurring in S, check if it occurs in T by accessing
LT [V]. For each pair of positions i, j, where there is a match, determine which

diagonal it is on and update the diagonal score.

Pseudocode. The pseudocode for this algorithm is shown below.

4

Algorithm DiagonalScores(S, T , LS [], LT [], k)
begin

declare Diag[−n..m]; // array of diagonal scores

for i = −n to m do

Diag[i] := 0; // initialize all diagonal scores to 0

end for

for each k such that LS[k] 6= ∅ and LT [k] 6= ∅ do

// find all matches in the dot plot

for each i ∈ LS[k] do

for each j ∈ LS [k] do

d := i − j; // determine the diagonal for the match

Diag[d] := Diag[d] + 1; // update the diagonal score

end for

end for

end for

return Diag[];
end

Example. Consider the pair of strings S = ATCGTATCG and T = CAGATCGTCTCGAT .
The dot plot matrix Pk[S, T] contains 9 + 14 − 1 = 22 diagonals, from −14 to
+9, although diagonals −13, −14, +8 and +9 can be excluded for k = 3.

The intersection of LS[] and LT [] lookup tables looks as follows:

3-tuple LS LT Diagonals

ATC {1, 6} {4} 1 − 4 = −3; 6 − 4 = +2
TCG {2, 7} {5, 10} 2 − 5 = −3; 2 − 10 = −8; 7 − 5 = +2; 7 − 10 = −3
CGT {3}, {6} 3 − 6 = −3

The Diagonals column in the table above shows to which diagonal scores each
dot plot match contributes. Using this table we can construct the diagonal
scores table for this example (the table below shows only non-zero scores):

d Diag[d]
−8 1
−3 3
+2 2

Filtering. Step 2 of FASTA returns only significant diagonals, which are
defined as diagonals on which the score exceeds the expected score by at

least two standard deviations. If there are many significant diagonals in
Pk[S, T], FASTA further filters them by taking only the top 10 significant

diagonals with the best diagonal scores.

Running time. The worst-case scenario for this step is O(nm) (consider
matching AAAA...AAAA vs. AAA...AAAA). However, since most DNA sequences
show large divergence of occurrences of k-tuples, in practice, this step runs in
almost linear time.

Step 3. Rescoring Diagonals

Step 3. On Step 3 of FASTA, the significant diagonals selected on Step 2

are rescored using the given substitution matrix.

5

This is a straightforward procedure:

• Each diagonal is responsible for a specific gapless alignment of subse-
quences in S and T .

• This alignment is scored using the substitution matrix provided as input
to FASTA.

Example. Consider a substitution matrix Score[] on the alphabet of nu-
cleotides, such that Score[α, α] = 5 and Score[α, β] = −4 for α 6= β.

From the example above, consider two significant diagonals from the dot plot
of strings S = ATCGTATCG and T = CAGATCGTCTCGAT : diagonals −3
(with Step 2 score of 3) and +2 (with Step 2 score of 2).

Diagonal −3 yields the following alignment of S and T :

ATCGTATCG

||||| |||

cagATCGTCTCGat

Scoring this alignment starting with the first algined character (A) and ending
on the last aligned character (G), yields the score: 5+5+5+5+5+5−4+5+5+5 =
36.

Diagonal +2 yields the following alignment of S and T :

atcgtATCG

||||

cagATCGtctcgat

The score of this alignment is 5 + 5 + 5 + 5 = 20.

Thresholding. FASTA retains the diagonals (regions) with the best scores.

Step 4. Region Join

Adding Gaps. On Step 3 of FASTA good ungapped local alignments are
found. However, sometimes, the best local alignments must include a gap.

Gapped alignments correspond to joins of two or more diagonal frag-
ments from the dot plot. On Step 4, the gapped alignments between different
diagonals are considered.

Gap penalties. There are two ways to approach gap penalties in local align-
ments:

• Global alignment-style gap penalty. A penalty of δ is assessed on
every single insertion/deletion. A gap of length h has a gap penalty of
h · δ.

• Dampened gap penalties. In practice, it may make sense to penalize
longer gap a bit less stringently. A traditional gap penalty scheme used in
local alignment methods is to have two values: δ and ǫ. Any time a gap is
introduced, a penalty of δ + ǫ is assessed. Extending the gap by a single

6

character, yields a penalty of ǫ. Thus a gap of length h has a gap penalty

of δ + h · ǫ.

In practice, ǫ < δ, i.e., the add-ons for extending the gap are smaller than
the penalty for having it in first place.

Dampened gap penalties explained. Essentially, dampened gap penalties

favor alignments that have fewer, but possibly longer, gaps over alignments that
have more smaller gaps. Thus, this alignment:

ATAAAGAGAGA

|| ||||

AT___GAGA

is preferred to

AT_A_AAGAGAGA

|| | |

ATGAGA

despite the latter alignment having fewer misalinged characters.

The idea is that the top sequence is considered to originate from the bottom
one with a single insertion of a codon AAA after the first two characters (AT).

Step 4. Given a theshold g on the size of the gap, for each diagonal l remaining
from Step 3:

• for each diagonal l − g, l − g + 1, . . . , l − 1, l + 1, . . . l + g, join l with it.

• score the resulting local alignment using the substitution matrix and the
gap penalty.

• if any joined region improves the alignment score of l, replace l with it for
Step 5.

Step 5. Smith-Waterman

Step 5. For each region (a single diagonal, or possibly a merger of two di-
agonals constructed on Step 4) find the best local alignment using the Smith-

Waterman algorithm.

Efficiency

For a pair of strings S = s1 . . . sn and T = t1 . . . tn:

Step 1. Step 1 runs in O(n+m+ |Σ|k steps. Assuming a constant alphabet,
and a constant predefined k, this step is linear.

Step 2. Step 2, as observed above, has O(nm) worst case complexity. How-
ever, under normal circumstances, it will run in linear or almost linear time.

7

Step 3. Assuming that only a constant number of diagonals is selected on
Step 2, Step 3 can run in O(n + m) time.

Step 4. Assuming that only a constant number of diagonals is carried over
from Step 3, Step 4 can run in O(m + n) time.

Step 5. This step takes, in worst case, O(nm) time. Given a constant number
l of regions to align, with average region lengths of x and y for strings S and T ,
the overall running time will be O(lxy). If l is a constant, then this is O(xy).
If both x and y are significantly smaller than n and m, Step 5 will run faster
than the Smith-Waterman algorithm applied to the entirety of S and T .

Weaknesses of FASTA

Insensitivity to local alignments with short matches. FASTA will not
find the best local alignment between two strings if that alignment does not
contain at least one k-tuple match.

Insensitivity to large gaps. If the best local alignment has a gap that is
bigger than the gap threshold g used on Step 4, then FASTA will not find the
best local alignment.

Example 1. Consider the following two strings:

CCCCCAATAATAATAATAAT

|| || || || ||

AAGAAGAAGAAGAACCC

If k = 3, then this alignment won’t be discovered. Instead, FASTA will find:

CCCCCAATAATAATAATAAT

|||

AAGAAGAAGAAGAACCC

Example 2. Consider the following two strings:

ATGTCCCCCTGAT

|||| |||

ATGT_____TGA

The best local alignment has a gap of 5. If g = 4, then FASTA will only find
the alignment of the ATGT fragments of the two strings.

References

[1] Wilbur, W. J.; Lipman, D. J. (1983). Rapid similarity searches of nucleic
acid and protein data banks, in Proceedings of the National Academy of

Sciences of the United States of America, Vol. 80 (3), pages 726 — 730.

8

