
Resetting Asynchronous QDI Systems

Thesis by

Xiaofei Chang

In Partial Fulfillment of the Requirements
for the Degree of
Master of Science

California Institute of Technology
Pasadena, California

Submitted September, 2013

c© 2013
Xiaofei Chang

All Rights Reserved

Acknowledgements

I wish to thank my advisor Dr. Alain Martin for his patience and guidance.
Thanks also to my seniors Chris Moore and Sean Keller for their discussion
and encouragement. At last, I would like to thank my wife for her support
and love.

i

Abstract

Quasi Delay-Insensitive (QDI) systems must be reset into a valid initial state
before normal operation can start. Otherwise, deadlock may occur due to
wrong handshake communication between processes. This thesis first reviews
the traditional Global Reset Schemes (GRS). It then proposes a new Wave
Reset Schemes (WRS). By utilizing the third possible value of QDI data
codes - reset value, WRS propagates the data with reset value and triggers
Local Reset (LR) sequentially. The global reset network for GRS can be
removed and all reset signals are generated locally for each process. Circuits
templates as well as some special blocks are modified to accommodate the
reset value in WRS. An algorithm is proposed to choose the proper Local
Reset Input (LRI) in order to shorten reset time. WRS is then applied
to an iterative multiplier. The multiplier is proved working under different
operating conditions.

ii

Contents

1 Introduction 1

2 GRS 3
2.1 Operation Protocol . 3
2.2 Pipelines . 5

2.2.1 Pipelines with Split Control and Datapath for GRS . . 5
2.2.1.1 Control Logic 6
2.2.1.2 Register . 8
2.2.1.3 Function Block 9
2.2.1.4 Complete Pipeline Stage 10

2.2.2 Fine-Grain Integrated Pipelines for GRS 10
2.2.2.1 WCHB Dual-Rail Buffer for GRS 10
2.2.2.2 PCHB Dual-Rail Buffer for GRS 11
2.2.2.3 PCFB Dual-Rail Buffer for GRS 13

3 WRS 15
3.1 Operation Protocol . 15
3.2 Pipelines . 16

3.2.1 Pipelines with Split Control and Datapath for WRS . . 16
3.2.1.1 Control Logic 17
3.2.1.2 Register . 18
3.2.1.3 Function Block 19
3.2.1.4 Complete Pipeline Stage 20

3.2.2 Fine-Grain Integrated Pipelines for WRS 21
3.2.2.1 WCHB Dual-Rail Buffer for WRS 21
3.2.2.2 WCHB 1-of-4 Buffer for WRS 23
3.2.2.3 PCHB Dual-Rail Buffers 25
3.2.2.4 PCFB Dual-Rail Buffers 25
3.2.2.5 Buffers with Logic 26

3.3 Special Blocks . 31
3.3.1 Source/Sink . 31
3.3.2 Initial Buffer . 32
3.3.3 Channel Arbiter . 33
3.3.4 Slack Zero Process . 35

4 Global Reset Insertion 38
4.1 Breadth First Search (BFS) 39
4.2 Breadth First Search with Multiple Roots (BFSMR) 39

iii

4.2.1 Pseudocode . 40
4.2.2 Proof of Correctness 40

4.2.2.1 Initialization 40
4.2.2.2 Maintenance 40
4.2.2.3 Termination 41

5 Iterative Multiplier 43
5.1 Iterative Multiplier . 43
5.2 Simulation . 44

6 Conclusion 48

Appendices 49

iv

List of Figures

1 Pipeline Stage with Split Control and Datapath for GRS . . . 6
2 Control Logic for GRS . 7
3 Completion Tree . 8
4 Register for GRS . 8
5 Input Enable Generator for GRS 9
6 Function Block for GRS . 9
7 WCHB Dual-Rail Buffer for GRS 11
8 PCHB Dual-Rail Buffer for GRS 12
9 Reset Gate for C-element . 12
10 PCFB Dual-Rail Buffer for GRS 13
11 Process with LRG for WRS 16
12 Pipeline Stage with Split Control and Datapath for WRS . . . 17
13 Control Logic for WRS . 18
14 Register for WRS . 19
15 Input Enable Generator for WRS 19
16 Function Block for WRS . 20
17 WCHB Dual-Rail Buffer for WRS 1 22
18 WCHB Dual-Rail Buffer for WRS 2 23
19 WCHB 1-of-4 Buffer for WRS 24
20 PCHB Dual-Rail Buffer for WRS 25
21 PCFB Dual-Rail Buffer for WRS 26
22 Source for WRS . 31
23 Sink for WRS . 31
24 Initial Buffer for WRS . 32
25 Channel Arbiter . 33
26 Basic Arbiter . 34
27 Channel Arbiter for WRS . 35
28 Pseudocode of Breadth First Search (BFS) 40
29 Pseudocode of BFS with Multiple Roots 41
30 Iterative Multiplier . 43
31 Reset Time for Different Process Corners 45
32 Cycle Time for Different Process Corners 46
33 Reset Time with Additional Global Reset 47

v

List of Tables

1 Dual-Rail Data Codes . 4
2 1-of-4 Data Codes . 4
3 Dual-Rail Data Codes for WRS 15
4 1-of-4 Data Codes for WRS 16

vi

1 Introduction

Asynchronous systems with the only delay assumption of isochronic forks
are called Quasi Delay-Insensitive (QDI) systems [1]. QDI systems are com-
posed of concurrent modules called processes. Processes communicate with
each other by sending and receiving actions on channels. Each channel is
comprised of one or several directed data wires and one directed enable wire.
Data wires from a sender process to a receiver process encode the message
being sent while the enable wire from a receiver process to a sender process
is used to notify the sender process that the message has been received.

During normal operation, communication between processes occurs con-
currently with computation inside each process. However, in order for a QDI
system to transit into normal operation after power-on, it needs to be driven
into the valid initial state that is determined by Martin’s synthesis. The
procedure that brings a system into its valid initial state after power-on is
called reset. The valid initial state of a QDI system is determined by the
valid initial state of each process in the system. The valid initial state of a
process is determined by valid initial values of all wires inside the process.
Therefore each wire in the system needs to be driven to the valid initial value
before normal operation of the system starts.

This thesis discusses two methods to reset a QDI system, namely Global
Reset Scheme (GRS) and Wave Reset Scheme (WRS). They are different in
terms how they distribute the reset signal to each process. GRS distributes
Global Reset (GR) to each process and resets them at the same time by
asserting GR. For WRS, GR is connected to only a small number of pro-
cesses. When GR is asserted, reset data is generated at the outputs of these
processes and propagates to other processes. Once reset data arrives at a
process, it triggers Local Reset Generator (LRG) of that process. LRG as-
serts Local Reset (LR) and forces the process to output reset data. The input
or inputs that drive LRG are Local Reset Input (LRI). This generation and
propagation of reset data continues until all processes have output reset data.

During reset phase, if no timing assumption other than isochronic fork [2]
is made, the value of each wire needs to be checked to make sure the system
is in the valid initial state. However, checking each wire requires a large
number of logic gates which introduce an unacceptable overhead in terms of
area, delay and power consumption. Instead, a reset timing assumption is
made that guarantees the system will reach the valid initial state within reset
time. Reset time is determined by the longest path that contains reset gates
at the head and tail and logic gates in between. GR needs to be asserted at
least as long as reset time in order for all wires to be driven to valid initial

1

values.
The rest of the thesis is organized as follows. Section 2 and Section 3

respectively discuss GRS and WRS including operation protocol, pipeline
templates and special blocks. Section 4 discusses the choice of LRI in order
to reduce reset time for WRS. The WRS is applied to a multiplier in Section
5. Section 6 concludes the thesis.

2

2 GRS

For a given process P , the initial value of any input wire I is determined
by the gate inside the neighboring process that drives I. Initial values of
internal wires and output wires are determined by gates inside P that drive
them. If initial values of input wires and corresponding gates can drive all
internal wires and output wires to the valid initial values, P will be reset
to the valid initial state once neighboring processes have been reset to the
valid initial states. Otherwise, reset logic needs to be added in order to force
internal wires and output wires to assume valid initial values.

Added reset logic converts logic gates into reset gates. Each reset gate
has an extra input that is connected to GR. When GR is asserted, the output
of a reset gate is driven to the valid initial value independent of the other
inputs. If all logic gates in a QDI system are converted into reset gates, the
system is guaranteed to be in the valid initial state because GR forces each
wire to assume the valid initial value. However, converting all logic gates into
reset gates slow down normal operation of the system because reset gates are
slower than corresponding logic gates. Therefore, only necessary logic gates
should be converted into reset gates. To be more specific, only logic gates
that can’t drive their outputs to valid initial values based on valid initial
values of inputs should be converted into reset gates. Once there are enough
reset gates, each wire will be driven to the valid initial value when GR is
asserted and the system will be driven to the valid initial state. After reset
phase, GR is deasserted and normal operation starts. Reset gates function
in the same way as the original logic gates during normal operation.

2.1 Operation Protocol

Delay-Insensitive (DI) codes are used in QDI systems for data communica-
tion. DI codes encode validity and neutrality of data within the data itself.
There are many DI codes, among which dual-rail codes and 1-of-n codes are
normally used. Each wire in dual-rail codes or 1-of-n codes is used for one
value of the data. When all wires are 0s, the data is neutral. When one of the
wires is 1, the data is valid. For example, dual-rail codes are shown in Table 1.
When (wire1, wire0) = (0, 0), data is neutral. When (wire0, wire1) = (0, 1)
or (wire0, wire1) = (1, 0), data is valid 1 or valid 0. The rest combination
of values ((wire1, wire0) = (1, 1)) is invalid.

Similarly, 1-of-4 codes are shown in Table 2. When all four wires are 0s,
the data is neutral. When one of the wires is 1, the data is respectively valid
0, 1, 2, 3. All the other combinations of values are invalid.

3

Value wire1 wire0
neutral 0 0
valid 1 1 0
valid 0 0 1

Table 1: Dual-Rail Data Codes

Value wire3 wire2 wire1 wire0
neutral 0 0 0 0
valid 3 1 0 0 0
valid 2 0 1 0 0
valid 1 0 0 1 0
valid 0 0 0 0 1

Table 2: 1-of-4 Data Codes

Besides data wires encoded as 1-of-n, each channel contains another
enable wire. Data wires from a sender process to a receiver process en-
code the message being sent while the enable wire is used by the receiver
process to notify the sender process that the message has been received. The
communication protocol between a sender process and a receiver process is
shown in (1), where v() and n() are validity and neutrality tests.

sender: data ↑; [¬enable]; data ↓; [enable]

receiver: [v(data)]; enable ↓; [n(data)]; enable ↑
(1)

Processes in QDI systems can be divided into two groups, Initial Processes
(IP) and Non-Initial Processes (NIP). During normal operation, IP start by
sending valid data while NIP start by waiting for valid data. For QDI systems
with GRS, the defined operation protocol is valid for a chosen Handshake
Expansion (HSE) implementation of the Communication Hardware Processes
(CHP) description. During reset phase when active-low GR is asserted, data
wires between processes are reset to neutral while enable wires are driven
to 0s. Once GR is deasserted, neutral data wires drive enable wires to 1s
and NIP are ready to receive valid data while IP start sending valid data.
Therefore during normal operation, IP send and receive alternating valid and
neutral data while NIP receive and send alternating valid and neutral data.
Alternating valid and neutral data propagates inside the system forever.

4

2.2 Pipelines

In order to increase throughput, computation is pipelined. Each process
forms a pipeline stage. Most pipeline stages repeat actions of receiving data
from inputs, computing functions of data and sending results through out-
puts as described by CHP in (2), where I0, I1, ...In−1, O0, O1, ..., Om−1 and
f0(X), f1(X), ..., fm(X) are respectively inputs, outputs and functions while
X refers to the set of variables {x0, x1, ..., xn−1}. Because they share similar
communication sequences, they can be implemented with templates. There
are two types of templates to implement pipeline stages: pipelines with split
control and data and fine-grain integrated pipelines.

∗[I0?x0, I1?x1, ..., In−1?xn−1;O0!f0(X), O1!f1(X), ..., Om−1!fm−1(X)] (2)

2.2.1 Pipelines with Split Control and Datapath for GRS

In the first approach, control and datapath of each pipeline stage are sepa-
rated and implemented independently. As shown in Figure 1, each pipeline
stage contains three major components. CTRL is control logic that sequences
communication actions. REG is a register used to store data received from
inputs. FUNC applies function on stored data and sends results through out-
puts. REG and FUNC form datapath that is separated from control logic.
GR reset is connected to all three blocks.

5

Figure 1: Pipeline Stage with Split Control and Datapath for GRS

2.2.1.1 Control Logic The expected state transition of CTRL is de-
scribed by HSE as shown in (3). CTRL first enables REG to receive data from
inputs (goi ↑). Once data has been latched by REG ([(x0 ∧ y0) ∨ (x1 ∧ y1)]),
CTRL acknowledges the input (I.e ↓). It then enables FUNC to compute
functions on received data and output computed results (goo ↑). Other state-
ments in (3) are used to complete four-phase handshake protocol.

∗ [[vi]; goi ↑; [¬vi]; goi ↓; goo ↑; [¬O.e]; goo ↓; [O.e]] (3)

The circuit implementation of CTRL is shown in Figure 2. The state
transition of the circuit is described by HSE in (4).

6

Figure 2: Control Logic for GRS

[¬reset]; [¬vi], [¬O.e], reset ↑; (y ↓); goi ↑; goi ↓;x ↓; goo ↓;
[reset]; [O.e];

∗ [[vi], y ↑; goi ↓; goi ↑; (x ↑; y ↓);
[¬vi]; goi ↑; goi ↓; goo ↑; [¬O.e];x ↓; goo ↓; [O.e]]

(4)

If the internal variables are removed, (4) is simplified to (5).

[¬reset]; [¬vi], [¬O.e], reset ↑; goi ↓; goo ↓;
[reset]; [O.e];

∗ [[vi]; goi ↑; [¬vi]; goi ↓; goo ↑; [¬O.e]; goo ↓; [O.e]]

(5)

The nonterminating repetition part inside ∗[] of (5) implements the ex-
pected transition in (3). Therefore, the circuit implementation is correct.

The input vi of CTRL is the output of the CT block that represents the
Completion Tree. It’s implemented as shown in Figure 3. The validity of
each bit is combined with the C-element tree to generate vi.

7

Figure 3: Completion Tree

2.2.1.2 Register REG is comprised of n 1-bit registers. The 1-bit regis-
ter is implemented as shown in Figure 4. During reset phase, (x0.d0, x0.d1) =
(0, 0). M0 and M1 are cut off. The cross-coupled inverters may enter the
metastable state. However, the probability that the metastable state re-
tains through the whole reset phase is negligible. Therefore, before normal
operation starts, (y0.d0.y0.d1) = (0, 1) or (y0.d0.y0.d1) = (1, 0).

Figure 4: Register for GRS

During normal operation, if (x0, x1) is neutral, (y0, y1) retains the previous
data. If (x0, x1) is valid, it is latched into (y0, y1).

The IE block in Figure 1 is used to generate enable signals for all inputs.
It contains n copies of circuits shown in Figure 5. During reset phase, enable
signals are driven to 0s. During normal operation, if the input is neutral, the
enable signal is driven to 1. If the input is valid and latched by the register,
the enable signal is driven to 0.

8

Figure 5: Input Enable Generator for GRS

2.2.1.3 Function Block FUNC contains m copies of circuit blocks shown
in Figure 6 to generate m different outputs. f0 can be any combinational
logic function with inputs of goo and (y0.d0, y0.d1) to (yn−1.d0, yn−1.d1). The
state transition of the circuit block is described in (6).

Figure 6: Function Block for GRS

([¬reset];O0.d0 ↓, O0.d1 ↓),
([¬goo];O00 ↓, O01 ↓), ([(y0.d0 xor y0.d1) ∧ ... ∧ (yn−1.d0 xor yn−1.d1)]);

[reset];

∗ [[goo ∧ f01(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ O00 ↓, O01 ↑;O0.d0 ↓, O0.d1 ↑
[]goo ∧ f00(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ O01 ↓, O00 ↑;O0.d1 ↓, O0.d0 ↑
[¬r];O00 ↓, O01 ↓;O0.d0 ↓, O0.d1 ↓]

(6)
During reset phase, (O0.d0, O0.d1) = (0, 0). During normal operation, the

logic function is applied at the registered data and the results are sent out
through outputs.

9

2.2.1.4 Complete Pipeline Stage The state transition of the whole
pipeline stage shown in Figure 1 is described by HSE in (7). During reset
phase, all inputs and outputs are neutral and all enable signals are driven
to 0s. During normal operation, alternating valid and neutral data comes
from the inputs and corresponding alternating valid and neutral data is gen-
erated at the outputs. Therefore the implementation is consistent with GRS
operation protocol.

[¬reset]; [n(I0) ∧ ... ∧ n(In−1)],

(O0.d0 ↓, O0.d1 ↓, ..., Om−1.d0 ↓, Om−1.d1 ↓),
I0.e ↓, ..., In−1.e ↓, [¬O0.e ∧ ... ∧ ¬Om−1.e];

vi ↓; goi ↓; goo ↓, x0.d0 ↓, x0.d1 ↓, ..., xn−1.d0 ↓, xn−1.d1 ↓;
[reset]; I0.e ↑, ..., In−1.e ↑, [O0.e ∧ ... ∧Om−1.e];

∗ [[v(I0) ∧ ... ∧ v(In−1)]; vi ↑; goi ↑;
[I0.d0 → x0.d0 ↑; y0.d0 ↑ []I0.d1 → x0.d1 ↑; y0.d1 ↑],
...,

[In−1.d0 → xn−1.d0 ↑; yn−1.d0 ↑ []In−1.d1 → xn−1.d1 ↑; yn−1.d1 ↑];
I0.e ↓, ..., In−1.e ↓; [n(I0) ∧ ... ∧ n(In−1)]; vi ↓; goi ↓;
x0.d0 ↓, x0.d1 ↓, ..., xn−1.d0 ↓, xn−1.d1 ↓; I0.e ↑, ..., In−1.e ↑; goo ↑;
[f00(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ O0.d0 ↑
[]f01(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ O0.d1 ↑],
...,

[f(m−1)0(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ Om−1.d0 ↑
[]f(m−1)1(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ Om−1.d1 ↑];
[¬O0.e ∧ ... ∧ ¬Om−1.e]; goo ↓;
O0.d0 ↓, O0.d1 ↓, ..., Om−1.d0 ↓, Om−1.d1 ↓; [O0.e ∧ ... ∧Om−1.e]]

(7)

2.2.2 Fine-Grain Integrated Pipelines for GRS

In the second approach, control logic and datapath are integrated into a single
component. Three commonly used templates, namely Weak-Conditioned
Half Buffers (WCHB), Precharged Half Buffers (PCHB) and Precharged Full
Buffers (PCFB) [3], are modified to adapt to GRS.

2.2.2.1 WCHB Dual-Rail Buffer for GRS WCHB dual-rail buffer is
described in (8) and implemented in Figure 7.

10

[¬reset]; I.e ↓, [¬O.e ∧ ¬I.d0 ∧ ¬I.d1];O.d0 ↓, O.d1 ↓;
[reset]; I.e ↑;
∗ [[I.d0 ∧O.e→ O.d0 ↑ []I.d1 ∧O.e→ O.d1 ↑]; I.e− ↓

[¬I.d0 ∧ ¬I.d1 ∧ ¬O.e];O.d0−, O.d1−; I.e+]

(8)

Figure 7: WCHB Dual-Rail Buffer for GRS

reset(0) indicates that once the active-low reset is asserted, I.e is driven
to 0 independent of O.d0 and O.d1. The neighboring processes should fol-
low the same operation protocol. O.e is driven to 0 during reset phase. In
addition, (I.d0, I.d1) = (0, 0) because the outputs of IP are reset to neu-
tral value during reset phase. Both inputs to the C-elements are 0s and
(O.d0, O.d1) = (0, 0). The neutral data from IP propagates to NIP and gen-
erates neutral data at outputs of NIP. The neutral data further propagates
to other NIP until all processes have output neutral data.

Once reset is deasserted, I.e is driven to 1 since (O.d0, O.d1) = (0, 0).
O.e from the neighboring process is driven to 1 as well. Once valid data
arrives at (I.d0, I.d1), it will be propagated to (O.d0, O.d1). The behavior of
the implementation is consistent with the operation protocol of GRS.

2.2.2.2 PCHB Dual-Rail Buffer for GRS PCHB dual-rail buffer for
GRS is described in (9) and implemented as shown in Figure 8.

[¬reset]; I.e ↓, en ↓, [¬O.e];O.d0 ↓, O.d1 ↓, [¬I.d0 ∧ ¬I.d1];
[reset]; I.e ↑;
∗ [[I.d0 ∧O.e→ O.d0 ↑ []I.d1 ∧O.e→ O.d1 ↑]; I.e ↓;

[¬O.e];O.d0 ↓, O.d1 ↓; [¬I.d0 ∧ ¬I.d1]; I.e ↑]

(9)

11

Figure 8: PCHB Dual-Rail Buffer for GRS

CR is the reset gate for a normal C-element. Depending on whether the
initial value is 0 or 1, it is implemented as shown in Figure 9.

Figure 9: Reset Gate for C-element

When reset is asserted, I.e is driven to 0 as well as en. The neighboring

12

processes should follow the same operation protocol. O.e is driven to 0 during
reset phase. Therefore O.d0 and O.d1 are driven to 0s. Similarly, the output
of the previous stage should be driven to (0, 0), i.e., (I.d0, I.d1) = (0, 0).

Once reset is deasserted, I.e is driven to 1 as well as en since (I.d0, I.d1) =
(0, 0) and (O.d0, O.d1) = (0, 0). Similarly, O.e from the neighboring process
is driven to 1. Once valid data arrives at (I.d0, I.d1), it will be propagated
to (O.d0, O.d1). The behavior of the implementation is consistent with the
operation protocol of GRS.

2.2.2.3 PCFB Dual-Rail Buffer for GRS PCFB dual-rail buffer for
GRS is described in (10) and implemented as shown in Figure 10.

[¬reset]; I.e ↓, x ↓, [¬O.e];O.d0 ↓, O.d1 ↓, [¬I.d0 ∧ ¬I.d1];
[reset]; I.e ↑, x ↑;
∗ [[I.d0 ∧O.e→ O.d0 ↑ []I.d1 ∧O.e→ O.d1 ↑]; I.e ↓;x ↓

[¬O.e];O.d0−, O.d1−; [¬I.d0 ∧ ¬I.d1]; I.e ↑;x ↑]

(10)

Figure 10: PCFB Dual-Rail Buffer for GRS

C0 is an asymmetrical C-element. It is implemented as described by
Production Rule Set (PRS) in (11).

¬reset ∨ (vi ∧ x ∧ vo)→ I.e ↓
reset ∧ ¬vi ∧ ¬x→ I.e ↑

(11)

13

When reset is asserted, I.e is driven to 0 as well as the internal variable
x. The neighboring processes should follow the same operation protocol.
O.e is driven to 0 during reset phase. Therefore, (O.d0 , O.d1) = (1, 1) and
(O.d0, O.d1) = (0, 0). Similarly, the output of the previous stage should be
driven to (0, 0), i.e., (I.d0, I.d1) = (0, 0).

Once reset is deasserted, I.e is driven to 1 as well as the internal variable
x. Similarly, O.e from the neighboring process is driven to 1. Once valid data
arrives at (I.d0, I.d1), it will be propagated to (O.d0, O.d1). The behavior of
the implementation is consistent with the operation protocol of GRS.

14

3 WRS

For WRS, the Global Reset (GR) is connected to Initial Processes (IP). Once
GR is asserted, IP will output reset data that is data with reset value. Reset
value is the third possible value besides neutral and valid values for given
data codes. Reset data propagates and triggers the Local Reset Generator
(LRG) of each process. LRG asserts the Local Reset (LR) and forces the
process to output reset data. This propagation of reset data continues until
all processes have been reset. After that, GR is deasserted and neutral data
will be generated from IP. Neutral data propagates and overwrites all reset
data. In addition, LRG can’t be triggered by neutral or valid data and no
reset data will be generated. The system will operate normally with only
neutral and valid data.

3.1 Operation Protocol

In order to include the third possible value - reset value, both dual-rail codes
and 1-of-n codes need to be modified. For the modified dual-rail codes, the
rest value (wire1, wire0) = (1, 1) is used to be the reset value. For the
modified 1-of-n (n ≥ 3) codes, reset value is defined as two wires being 1s
while the rest wires being 0s. Reset value is chosen in this way to make
implementation of LRG simple. For example, modified dual-rail codes and
1-of-4 codes for WRS are respectively shown in Table 3 and Table 4.

Value wire1 wire0
neutral 0 0
valid 1 1 0
valid 0 0 1
reset 1 1

Table 3: Dual-Rail Data Codes for WRS

For QDI systems with WRS, GR is only connected to IP. During reset
phase when GR is asserted, IP will output reset data. Reset data propagates
to other processes and triggers LRG as shown in Figure 11. LRG drives
active-low LR to 0 and the process will output reset data independent of
other inputs. This propagation of reset data continues until all processes
have output reset data. The time it takes between that GR is asserted and
all processes have output reset data is called reset time.

15

Value wire3 wire2 wire1 wire0
neutral 0 0 0 0
valid 3 1 0 0 0
valid 2 0 1 0 0
valid 1 0 0 1 0
valid 0 0 0 0 1
reset 0 0 1 1

Table 4: 1-of-4 Data Codes for WRS

Figure 11: Process with LRG for WRS

After that, GR is deasserted and IP will output alternating neutral and
valid data. Neutral data propagates and overwrites all reset data. Besides, no
new reset data will be generated since LRG will not be triggered by neutral
or valid data. From then on, the system has only neutral and valid data
propagating inside. Therefore, processes in the system with WRS follow
the operation protocol of receiving and generating reset data followed by
receiving and generating alternating neutral and valid data.

3.2 Pipelines

As in QDI systems with GRS, there are two approaches to implement pipelines
in QDI systems with WRS. However, templates need to be modified in order
to accommodate the extra reset value in dual-rail or 1-of-n codes for WRS.

3.2.1 Pipelines with Split Control and Datapath for WRS

In the first approach, control and datapath of each pipeline stage are sepa-
rated and implemented independently. As shown in Figure 12, each pipeline

16

stage still contains three major components: CTRL, REG and FUNC as in
Figure 1. The difference is instead of resetting all three blocks with GR, two
LR reset0 and reset1 are generated by NAND0 and NAND1. reset0 resets
CTRL while reset1 resets REG and FUNC.

Figure 12: Pipeline Stage with Split Control and Datapath for WRS

3.2.1.1 Control Logic The circuit implementation of CTRL is shown
in Figure 13. The state transition of the circuit is described by HSE in (12).

[¬reset0]; [vi], [¬O.e], x ↓, y ↑; goi ↓; goi ↑; goo ↓;
[reset0]; y ↓; [¬vi]; goi ↑; goi ↓; [O.e];

∗ [[vi], y ↑; goi ↓; goi ↑;x ↑; y ↓;
[¬vi]; goi ↑; goi ↓; goo ↑; [¬O.e];x ↓; goo ↓; [O.e]]

(12)

17

Figure 13: Control Logic for WRS

If the internal variables are removed, (12) is simplified to (13).

[¬reset0]; [vi ∧ ¬O.e]; goi ↑; goo ↓;
[reset0]; [¬vi ∧O.e]; goi ↓;
∗ [[vi]; goi ↑; [¬vi]; goi ↓; goo ↑; [¬O.e]; goo ↓; [O.e]]

(13)

For the nonterminating repetition part inside ∗[], channels L and R
respectively implement the expected transition in (3). Therefore, the circuit
implementation is correct.

3.2.1.2 Register The implementation of REG shown in Figure 4 is not
suitable for WRS. During reset phase of WRS, both x0.d0 and x0.d1 are driven
to 1s and M1 and M0 are closed. Direct conducting path between VDD and
GND forms through INV0 and M1 or through INV1 and M0. Therefore
REG is modified as shown in Figure 14. During reset phase, reset1 is 0 and
both M2 and M3 are cut off. Therefore, no direct conducting path between
VDD and GND is formed. During normal operation, reset1 is always 1 and
M2 and M3 are always conducting. If neutral data arrives, REG retains the
previous data. If valid data arrives, it overwrites the data stored in REG.

18

Figure 14: Register for WRS

The IE block in Figure 12 is used to generate enable signals for all inputs.
It contains n copies of circuits shown in Figure 15. During reset phase, x0.d0
and x0.d1 are driven to 1s. y0.d0 and y0.d1 are complementary. I0.e is driven
to 0 as well as all other enable signals for inputs. No reset signal needs to be
inserted. During normal operation, if the input is neutral, the enable signal
is driven to 1. If the input is valid and latched by the register, the enable
signal is driven to 0.

Figure 15: Input Enable Generator for WRS

3.2.1.3 Function Block FUNC contains m copies of circuit blocks shown
in Figure 16 to generate m different outputs. f0 can be any combinational
logic function with inputs of goo and (y0.d0, y0.d1) to (yn−1.d0, yn−1.d1). The
state transition of the circuit block is described in (14).

19

Figure 16: Function Block for WRS

([¬reset1];O0.d0 ↑, O0.d1 ↑),
([¬goo];O00 ↓, O01 ↓), ([(y0.d0 xor y0.d1) ∧ ... ∧ (yn−1.d0 xor yn−1.d1)]);

[reset1];O.d0 ↓, O.d1 ↓;
∗ [[goo ∧ f01(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ O00 ↓, O01 ↑;O0.d0 ↓, O0.d1 ↑

[]goo ∧ f00(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ O01 ↓, O00 ↑;O0.d1 ↓, O0.d0 ↑
[¬r];O00 ↓, O01 ↓;O0.d0 ↓, O0.d1 ↓]

(14)
When LR reset1 is asserted, reset data is generated at the output

(O.d0 ↑, O.d1 ↑). When reset1 is deasserted and neutral data is generated
at the output. After that, r assumes alternating 1 and 0 and corresponding
valid and neutral data is generated at the output.

3.2.1.4 Complete Pipeline Stage The state transition of the whole
pipeline stage is described in (15). When reset data arrives at the Local
Reset Input input (LRI) ([I0.d0∧I0.d1]), reset data is generated at all outputs
(O0.d0 ↑, O0.d1 ↑, ..., Om−1.d0 ↑, Om−1.d1 ↑). All enable signals are driven to
0s.

During normal operation, alternating valid and neutral data comes from
the inputs and corresponding alternating valid and neutral data is gener-
ated at the outputs. Therefore the implementation is consistent with WRS
operation protocol.

20

[I0.d0 ∧ I0.d1 ∧ ... ∧ In−1.d0 ∧ In−1.d1]; reset0 ↓; vi ↑; goi ↑;
goo ↓, x0.d0 ↑, x0.d1 ↑, ..., xn−1.d0 ↑, xn−1.d1 ↑;
reset1 ↓; [y0.d1 ↑, y0.d0 ↓ []y0.d0 ↑, y0.d1 ↓], ...,
[yn−1.d1 ↑, yn−1.d0 ↓ []yn−1.d0 ↑, yn−1.d1 ↓],
O0.d0 ↑, O0.d1 ↑, ..., Om−1.d0 ↑, Om−1.d1 ↑;
I0.e ↓, ..., In−1.e ↓, [¬O0.e ∧ ... ∧ ¬Om−1.e];

[¬I.d0 ∧ ¬I.d1 ∧ ... ∧ ¬In−1.d0 ∧ ¬In−1.d1];
reset0 ↑, vi ↓; goi ↓;x0.d0 ↓, x0.d1 ↓, ..., xn−1.d0 ↓, xn−1.d1 ↓;
I0.e ↑, ..., In−1.e ↑; reset1 ↑;
O0.d0 ↓, O0.d1 ↓, ..., Om−1.d0 ↓, Om−1.d1 ↓; [O0.e ∧ ... ∧Om−1.e]

∗ [[v(I0) ∧ ... ∧ v(In−1)]; vi ↑; goi ↑;
[I0.d0 → x0.d0 ↑; y0.d0 ↑ []I0.d1 → x0.d1 ↑; y0.d1 ↑],
...,

[In−1.d0 → xn−1.d0 ↑; yn−1.d0 ↑ []In−1.d1 → xn−1.d1 ↑; yn−1.d1 ↑];
I0.e ↓, ..., In−1.e ↓; [n(I0) ∧ ... ∧ n(In−1)]; vi ↓; goi ↓;
x0.d0 ↓, x0.d1 ↓, ..., xn−1.d0 ↓, xn−1.d1 ↓; I0.e ↑, ..., In−1.e ↑; goo ↑;
[f00(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ O0.d0 ↑
[]f01(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ O0.d1 ↑],
...,

[f(m−1)0(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ Om−1.d0 ↑
[]f(m−1)1(y0.d0, y0.d1, ..., yn−1.d0, yn−1.d1)→ Om−1.d1 ↑];
[¬O0.e ∧ ... ∧ ¬Om−1.e]; goo ↓;
O0.d0 ↓, O0.d1 ↓, ..., Om−1.d0 ↓, Om−1.d1 ↓; [O0.e ∧ ... ∧Om−1.e]]

(15)

3.2.2 Fine-Grain Integrated Pipelines for WRS

3.2.2.1 WCHB Dual-Rail Buffer for WRS The state transition of
WCHB dual-rail buffer for WRS is described by HSE in (16) and The circuit
is shown in Figure 17. C-element is implemented by Majority gate shown in
Figure 18.

21

[I.d0 ∧ I.d1]; reset ↓;O.d0 ↑, O.d1 ↑; I.e ↓; [¬O.e];

[¬I.d0 ∧ ¬I.d1]; reset ↑;O.d0 ↓, O.d1 ↓; I.e ↑;
∗ [[I.d0 ∧O.e→ O.d0 ↑ []I.d1 ∧O.e→ O.d1 ↑]; I.e ↓;

[¬I.d0 ∧ ¬I.d1 ∧ ¬O.e];O.d0 ↓, O.d1 ↓; I.e ↑]

(16)

Figure 17: WCHB Dual-Rail Buffer for WRS 1

22

Figure 18: WCHB Dual-Rail Buffer for WRS 2

When reset data arrives ([I.d0 ∧ I.d1]), LR reset is driven to 0 and reset
data is generated at the output (O.d0 ↑, O.d1 ↑). During normal operation,
reset is kept at 1 and the WCHB dual-rail buffer for WRS is reduced to the
standard WCHB dual-rail buffer. When alternating neutral and valid data
arrives at the input, it is propagated to the output. The implementation is
consistent the operation protocol of WRS.

3.2.2.2 WCHB 1-of-4 Buffer for WRS The state transition of WCHB
1-of-4 buffer for WRS is described by HSE in (17) and The circuit is shown in
Figure 19. PCHB and PCFB 1-of-4 buffers with WRS can be implemented
similarly.

23

[I.d0 ∧ I.d1]; reset ↓;O.d0 ↑, O.d1 ↑, O.d2 ↓, O.d3 ↓;
I.e ↓; [¬O.e];

[¬I.d0 ∧ ¬I.d1 ∧ ¬I.d2 ∧ ¬I.d3]; reset ↑;
O.d0 ↓, O.d1 ↓, O.d2 ↓, O.d3 ↓; I.e ↑;
∗ [[I.d0 ∧O.e→ O.d0 ↑ []I.d1 ∧O.e→ O.d1 ↑

[]I.d2 ∧O.e→ O.d2 ↑ []I.d3 ∧O.e→ O.d3 ↑]; I.e ↓;
[¬I.d0 ∧ ¬I.d1 ∧ ¬I.d2 ∧ ¬I.d3 ∧ ¬O.e];

O.d0 ↓, O.d1 ↓, O.d2 ↓, O.d3 ↓; I.e ↑]

(17)

Figure 19: WCHB 1-of-4 Buffer for WRS

As mentioned, reset value of 1-of-4 data codes is (I.d0, I.d1, I.d2, I.d3)
= (1,1,0,0). Therefore, only I.d0 and I.d1 need to be checked in order to
determine whether the input data is reset data. As n in the 1-of-n codes

24

increases, the overhead of LRG remains the same. This is why reset value is
chosen as 2 wires being 1s while the rest wires being 0s.

3.2.2.3 PCHB Dual-Rail Buffers The state transition of PCHB dual-
rail buffer for WRS is described by HSE in (18) and The circuit is shown in
Figure 20.

[I.d0 ∧ I.d1]; reset ↓;O.d0 ↑, O.d1 ↑; I.e ↓; [¬O.e];

[¬I.d0 ∧ ¬I.d1]; reset ↑;O.d0 ↓, O.d1 ↓; I.e ↑;
∗ [[I.d0 ∧O.e→ O.d0 ↑ []I.d1 ∧O.e→ O.d1 ↑]; I.e ↓;

[¬O.e];O.d0 ↓, O.d1 ↓; [¬I.d0 ∧ ¬I.d1]; I.e ↑]

(18)

Figure 20: PCHB Dual-Rail Buffer for WRS

When reset data arrives ([I.d0∧ I.d1]), reset is driven to 0 and reset data
is generated at the output (O.d0 ↑, O.d1 ↑). During normal operation, reset
is kept at 1 and the PCHB dual-rail buffer with WRS can be reduced to the
standard PCHB dual-rail buffer. When alternating neutral and valid data
arrives at the input, it is propagated to the output. The implementation
follows the operation protocol of WRS.

3.2.2.4 PCFB Dual-Rail Buffers The state transition of PCFB dual-
rail buffer with WRS is described by HSE in (19) and The circuit is shown
in Figure 21.

25

[I.d0 ∧ I.d1]; reset ↓;x ↑, O.d0 ↑, O.d1 ↑; I.e ↓; [¬O.e];

[¬I.d0 ∧ ¬I.d1]; reset ↑;x ↓; I.e ↑, O.d0 ↓, O.d1 ↓;x ↑;
∗ [[I.d0 ∧O.e→ O.d0 ↑ []I.d1 ∧O.e→ O.d1 ↑]; I.e ↓;x ↓;

([¬O.e];O.d0 ↓, O.d1 ↓), ([¬I.d0 ∧ ¬I.d1]; I.e ↑)]

(19)

Figure 21: PCFB Dual-Rail Buffer for WRS

When reset data arrives ([I.d0 ∧ I.d1]), reset is driven to 0. Reset data
is generated at the output (O.d0 ↑, O.d1 ↑) and the internal variable x is
driven to 1. During normal operation, reset is kept at 1 and the PCFB dual-
rail buffer with WRS can be reduced to the standard PCFB dual-rail buffer.
When alternating neutral and valid data arrives at the input, it is propagated
to the output. The implementation follows the operation protocol of WRS.

3.2.2.5 Buffers with Logic Logic function can be embedded into buffer
templates. In this section, PCHB templates with logic are used for demon-
stration. WCHB and PCFB templates with logic can be implemented sim-
ilarly. The templates with logic are comprised of two cases: processes with
unconditional inputs/outputs and processes with conditional inputs/outputs.
Processes with unconditional inputs/outputs receive inputs and generate out-
puts in each iteration. However, for processes with conditional inputs/out-

26

puts, depending on values of some inputs, they may or may not receive other
inputs or generate outputs.

Processes with unconditional inputs/outputs can be described by CHP
in (20), where I0, I1, ..., In−1 are n inputs, O0, O1, ..., Om−1 are m outputs,
X is the set of all variables {x0, x1, ...xn−1}, f0, f1, ..., fm−1 are functions to
generate O0, O1, ..., Om−1. In each iteration, processes with unconditional
inputs/outputs always receive data from all inputs, apply functions to the
data and send results through outputs.

∗[I0?x0, I1?x1, ..., In−1?xn−1;O0!f0(X), O1!f1(X), ..., Om−1!fm−1(X)] (20)

It is assumed I0 is LRI. The choice of LRI will be discussed in Chapter
4. All inputs/outputs are assumed to be dual-rail encoded. (Processes with
other 1-of-n data encoding can be similarly implemented). The process with
unconditional inputs/outputs is implemented with PCHB templates in (21).

i ∈ [0..n− 1]

j ∈ [0..m− 1]

I0.d0 ∧ I0.d1 → reset ↓
¬I0.d0 ∨ ¬I0.d1 → reset ↑

reset ∧ ¬Oj.e ∧ ¬enj → Oj.d0 ↓
reset ∧ ¬Oj.e ∧ ¬enj → Oj.d1 ↓

¬reset ∨ (Oj.e ∧ enj ∧ fj0({Ii.d0, Ii.d1})→ Oj.d0 ↑
¬reset ∨ (Oj.e ∧ enj ∧ fj1({Ii.d0, Ii.d1)} → Oj.d1 ↑

¬Ii.d0 ∧ ¬Ii.d1 → vIi ↓
Ii.d0 ∨ Ii.d1 → vIi ↑

¬Oj.d0 ∧ ¬Oj.d1 → vOj ↓
Oj.d0 ∨Oj.d1 → vOj ↑

vIi ∧ ({∧
h∈[0,m−1]|Ohdepends on Ii

vOh})→ Ii.e ↓

¬vIi ∧ ({∧
h∈[0,m−1]|Ohdepends on Ii

¬vOh})→ Ii.e ↑

vOj ∧ ({∧
k∈[0,n−1]|Ojdepends on Ik

vIk})→ enj ↓

¬vOj ∧ ({∧
k∈[0,n−1]|Ojdepends on Ik

¬vIk})→ enj ↑

(21)

The variables vIi and vOj refer to the validity of input Ii and output
Oj. For example, when input I0 has reset or valid data (I0.d0 ∨ I0.d1 = 1),
vI0 = 1. When input I0 has neutral data (I0.d0 = I0.d1 = 0), vI0 = 0.

27

fj0({Ii.d0, Ii.d1}) and fj1({Ii.d0, Ii.d1}) respectively generate valid output
Oj.d0 and Oj.d1 based on subset of inputs. In order to acknowledge Ii
(Ii.e ↓/Ii.e ↑), the validity of the input itself as well as all the outputs that
depend on the input must be 1/0. For example, if O0, O2 and O3 are three
outputs that depend on I0, I0.e is generated as shown in (22).

vI0 ∧ vO0 ∧ vO2 ∧ vO3 → I0.e ↓
¬vI0 ∧ ¬vO0 ∧ ¬vO2 ∧ ¬vO3 → I0.e ↑

(22)

Similarly, in order to generate enable signal enj (enj−/enj ↑), the validity
of the output as well as all the inputs that the output is dependent on must
be 1/0.

Processes with conditional inputs/outputs can be described in (23). There
are n condition inputs Ci, k conditions that are function of Ci, m data inputs
Ij and p outputs Oh. The process receives condition inputs in each iteration.
Based on values of condition inputs, it determines which condition among
cond0, cond1, ..., condk−1 is true. Based on the true condition, it selectively
receives data from some inputs, computes functions on the received data and
sends results through some outputs.

∗ [{Ci?ci|i∈[0,n−1], };
[cond0 → {Ij0?dj0|j0∈[0,m−1], }; {Oh0 !fh0|h0∈[0,p−1], };
[]cond1 → {Ij1?dj1|j1∈[0,m−1], }; {Oh1 !fh1|h1∈[0,p−1], };
.

.

.

[]condk−1 → {Ijk−1
?djk−1

|jk−1∈[0,m−1], }; {Ohk−1
!fhk−1

|hk−1∈[0,p−1], };
]]

(23)

Processes with conditional inputs/outputs can be implemented as shown
in (24). It is assumed I0 is LRI. condu is a function gu() of condition in-
puts. For example, if there are two condition inputs and gu() is logic AND,
gu({c0, c1}) = c0∧c1. The variables vIj and vOh refer to the validity of input
Ij and output Oh. fhf

({cdu, Ij.d0, Ij.d1}) and fht({cdu, Ij.d0, Ij.d1}) respec-
tively generate outputs Oh.d0 and Oh.d1 based on conditions and subset of
inputs. In order to acknowledge Ij (Ij.e ↓/Ij.e ↑), the conditions inside which
Ij exists are first determined. If in any condition, the condition, validity of Ij
and validity of all outputs that depend on Ij are 1s, Ij.e is driven to 0. When
all conditions, validity of Ij and validity of outputs that depend on Ij are 0s,

28

Ij.e is driven to 1. Similarly for enh, if in any condition where Oh exists, the
condition, validity of Oh and validity of all inputs that Oh depends on are
1s, enh is driven to 0. If for all conditions where Oh exists, the conditions,
validity of Oh and validity of inputs that Oh depends on are 0s, enh is driven
to 1.

For both processes with conditional/unconditional inputs/outputs, dur-
ing reset phase, reset data arrives at different inputs at different time. When
reset data arrives at inputs other than LRI I0, garbage data may be gener-
ated at outputs. However, once reset data arrives at I0, LR reset is driven
to 0 and reset data is generated at all outputs. The transition from garbage
data to reset data is monotonic during reset phase; that is, the garbage data
at the outputs will be overwritten by reset data and reset data will remain
through the whole reset phase. Therefore, given enough time, reset data can
traverse the whole system and every process in the system will generate reset
data at its output. All validity signals are driven to 1s and all I.e and en are
driven to 0s.

GR is then deasserted and IP starts to generate neutral data. Like reset
data, neutral data arrives at different inputs at different time. If neutral data
hasn’t arrived at I0, reset data remains at the outputs no matter whether
neutral data has arrived at other inputs. When neutral data arrives at I0,
reset is driven to 1. At this moment, O.e and en are still 0s because outputs
haven’t changed from reset data yet. Therefore all the outputs will generate
neutral data. If some inputs still have reset data, they will not accidentally
generate wrong data at the output. It is because when an input I has reset
data, vI is 1. I.e and all en that depends on vI are still 0s. Neutral data
remains at the relevant outputs. Given enough time, all reset data will be
overwritten by neutral data. LRG keeps LR at 0 and no reset data will be
generated any more. Processes operate normally with alternating neutral
and valid data.

29

i ∈ [0, n− 1]

j ∈ [0,m− 1]

h ∈ [0, p− 1]

u ∈ [0, k − 1]

I0.d0 ∧ I0.d1 → reset ↓
¬I0.d0 ∨ ¬I0.d1 → reset ↑

gu({ci})→ condu ↑
¬condu → condu ↓

¬Ij.d0 ∧ ¬Ij.d1 → vIj ↓
Ij.d0 ∨ Ij.d1 → vIj ↑

¬Oh.d0 ∧ ¬Oh.d1 → vOh ↓
Oh.d0 ∨Oh.d1 → vOh ↑

{∨u|Ij in condu(condu ∧ vIj ∧ ({∧h∈[0,m−1]|Ohu depends on IjvOhu}))} → Ij.e ↓
{∧u|Ij in condu(¬condu ∧ ¬vIj ∧ ({∧h∈[0,m−1]|Ohu depends on Ij¬vOhu}))} → Ij.e ↑
{∨u|Oh in condu(condu ∧ vOh ∧ ({∧k∈[0,n−1]|Oh depends on Iju

vIju}))} → enh ↓
{∧u|Oh in condu(¬condu ∧ ¬vOh ∧ ({∧k∈[0,n−1]|Oh depends on Iju

¬vIju}))} → enh ↑
reset ∧ ¬Oh.e ∧ ¬enh → Oh.d0 ↓
reset ∧ ¬Oh.e ∧ ¬enh → Oh.d1 ↓

¬reset ∨ (Oh.e ∧ enh ∧ fhf
({cdu, Ij.d0, Ij.d1})→ Oh.d0 ↑

¬reset ∨ (Oh.e ∧ enh ∧ fht({cdu, Ij.d0, Ij.d1})→ Oh.d1 ↑
(24)

30

3.3 Special Blocks

Besides processes described in (2), there are other special processes with
different CHP description and must be implemented separately.

3.3.1 Source/Sink

Source is described in (22). It constantly sends true or false data through
outputs. Since there is no input, LR can’t be generated by LRG. Source
needs a GR input directly.

∗[O!true/false] (25)

The circuit of Source ∗[O!true] is shown in Figure 22. (∗[O!false] can be
implemented similarly) During reset phase, reset is 0. Reset data is generated
at the output. During normal operation, reset is driven to 1. Alternating
neutral and valid true data is generated at the output.

Figure 22: Source for WRS

Sink is described in (23). It keeps receiving data from inputs. For the
acknowledgement signal I.e, when reset or valid data arrives at the input, it
should be driven to 0. When neutral data arrives at the input, it should be
driven to 1. Therefore it can be simply implemented as a NOR gate shown
in Figure 23. No LR needs to be generated.

∗[I] (26)

Figure 23: Sink for WRS

31

3.3.2 Initial Buffer

Instead of waiting for data to arrive at the input first, Initial Buffer (IB)
starts operation by sending stored data as shown in (27). x can be 1 or 0
initially.

∗[O!x; I?x] (27)

The implementation of IB is shown in Figure 24. Each C-element has GR
(reset) as input. Once reset is asserted, outputs of C-elements are driven to
appropriate values. As mentioned processes that are not controlled by GR
will receive reset data followed by alternating neutral and valid data. This
pattern is implemented by IB. During reset phase, (I3.d0, I3.d1) = (0, 0) while
(O.d0, O.d1) = (1, 1). Initial data is stored in (I1.d0, I1.d1) and (I2.d0, I2.d1).
If the stored data is 1, (I1.d0, I1.d1) = (I2.d0, I2.d1) = (0, 1). Otherwise
(I1.d0, I1.d1) = (I2.d0, I2.d1) = (1, 0). Therefore, the first three data coming
out of IB is reset data, neutral data and valid data. After that, IB operates
like a normal buffer: receiving alternating neutral and valid data from input
and generating alternating neutral and valid data at the output.

Figure 24: Initial Buffer for WRS

The duplicate copy of stored data is necessary to prevent reset data
(I0.d0, I0.d1) = (1, 1) from overwriting the stored data in IB. During reset
phase, reset data propagates through the whole system and will arrive at
(I0.d0, I0.d1). If there is no (I2.d0, I2.d1) but just (I1.d0, I1.d1) to store the
data, I2.e would be directly connected to C0 and C1. Since (I3.d0, I3.d1) =
(0, 0) during reset phase, I2.e = 1. When reset is deasserted, C0 and C1 may
fire first and the stored data is overwritten. However, with the duplicate copy
of token, I1.e is 0 and it prevents reset data from propagating through C0
and C1. Only after (I0.d0, I0.d1) is overwritten with neutral data, it can

32

overwrite (I1.d0, I1.d1). At that time, the data is kept at (I2.d0, I2.d1). The
neutral data at (I1.d0, I1.d1) will not overwrite (I2.d0, I2.d1) until valid data
at (I2.d0, I2.d1) propagates to (I3.d0, I3.d1). Therefore, reset data starting
from IB will stop at the input of IB and be overwritten by neutral data.
When all reset data has been overwritten, the system correctly transits into
normal operation with only neutral and valid data propagating inside.

3.3.3 Channel Arbiter

Channel arbiter described in (28) is used to arbitrate between two nonmu-
tually exclusive input channels. Inputs I0 and I1 are nonmutually exclusive
while outputs O0 and O1 are mutually exclusive. It is assumed both channels
are encoded in dual rail. The thin bar “|” on the third row indicates that I0
and I1 are nonmutually exclusive.

∗ [[I0.d0 → O0.d0 ↑ []I0.d1 → O0.d1 ↑]; [¬O0.e]; I0.e ↓;
[¬I0.d0 ∧ ¬I0.d1];O0.d0 ↓, O0.d1 ↓; [O0.e]; I0.e ↑
| [I1.d0 → O1.d0 ↑ []I1.d1 → O1.d1 ↑]; [¬O1.e]; I1.e ↓;

[¬I1.d0 ∧ ¬I1.d1];O1.d0 ↓, O1.d1 ↓; [O1.e]; I1.e ↑]

(28)

The channel arbiter is implemented in Figure 25 [1]. “arb” in the figure
is a basic arbiter implemented in Figure 26. It guarantees that its outputs
are not driven to 1s at the same time.

Figure 25: Channel Arbiter

33

Figure 26: Basic Arbiter

As shown in Figure 25, when I0 or I1 but not both has valid data or both
I0 and I1 have neutral data, the valid or neutral data will propagate to the
corresponding output. when both I0 and I1 have valid data, a and b are
driven to 1s. The basic arbiter will nondeterministically drive (u, v) to (1, 0)
or (0, 1) which enables the valid data from I0 to propagate to O0 or valid
data from I1 to propagate to O1.

In order to apply WRS to the channel arbiter, LRG NAND0 is added as
shown in Figure 27. It is assumed I0 is LRI. Once reset data arrives at I0,
reset is driven to 0 and reset data is generated at outputs. When neutral
data arrives at I0 and I1 after GR is deasserted, reset is driven to 1 and
neutral data will propagate to O0 and O1. After that, the channel arbiter
starts its normal operation.

34

Figure 27: Channel Arbiter for WRS

3.3.4 Slack Zero Process

The static slack of a pipeline is maximum number of messages that can be
inserted into the pipeline, with none being removed [5]. PCFB are full buffers
and have slack 1. WCHB and PCHB are half buffers and have slack 1/2.
WCHB and PCHB are called half buffers because two of them connected
together can form a full buffer that has slack 1. There are also slack-zero
processes that has slack 0. Therefore they can’t hold any message in them.
For example, a merge process is described in (29). If control input c is
true, the merge process receives data from I1 and sends data through O.
Otherwise, the merge process receives data from I0 and sends data through
O.

∗[C?c; [c→ I1?x;O!x[]¬c→ I0?x;O!x]] (29)

If the merge process is implemented with PCHB templates, it is shown
in (30).

35

I0.d0 ∨ I0.d1 → vI0 ↑
¬I0.d0 ∧ ¬I0.d1 → vI0 ↓

I1.d0 ∨ I1.d1 → vI1 ↑
¬I1.d0 ∧ ¬I1.d1 → vI1 ↓

O.d0 ∨O.d1 → O ↑
¬O.d0 ∧ ¬O.d1 → O ↓
vO ∧ C.d0 ∧ vI0 → I0.e ↓

¬vO ∧ ¬C.d0 ∧ ¬vI0 → I0.e ↑
vO ∧ C.d1 ∧ vI1 → I1.e ↓

¬vO ∧ ¬C.d1 ∧ ¬vI1 → I1.e ↑
I0.e ∧ I1.e→ C.e ↑

¬I0.e ∨ ¬I1.e→ C.e ↓
C.e ∧O.e→ en ↑

¬C.e ∧ ¬O.e→ en ↓
en ∧ ((C.d0 ∧ I0.d0) ∨ (C.d1 ∧ I1.d0))→ O.d0 ↑

¬en→ O.d0 ↓
en ∧ ((C.d0 ∧ I0.d1) ∨ (C.d1 ∧ I1.d1))→ O.d1 ↑

¬en→ O.d1 ↓

(30)

36

If it is implemented with slack-zero processes, it is shown in (31).

I0.d0 ∧ C.d0 → i00c0 ↑
¬I0.d0 ∧ ¬C.d0 → i00c0 ↓

I1.d0 ∧ C.d1 → i10c1 ↑
¬I1.d0 ∧ ¬C.d1 → i10c1 ↓

I0.d1 ∧ C.d0 → i01c0 ↑
¬I0.d1 ∧ ¬C.d0 → i01c0 ↓

I1.d1 ∧ C.d1 → i11c1 ↑
¬I1.d1 ∧ ¬C.d1 → i11c1 ↓
i00c0 ∨ i10c1→ O.d0 ↑

¬i00c0 ∧ ¬i10c1→ O.d0 ↓
i01c0 ∨ i11c1→ O.d1 ↑

¬i01c0 ∧ ¬i11c1→ O.d1 ↓
O.e ∧ ¬C.d0 → I0.e ↑
¬O.e ∧ C.d0 → I0.e ↓
O.e ∧ ¬C.d1 → I1.e ↑
¬O.e ∧ C.d1 → I1.e ↓
I0.e ∧ I1.e→ C.e ↑

¬I0.e ∨ ¬I1.e→ C.e ↓

(31)

Slack-zero processes don’t introduce any sequence. Whatever arrives at
the input will go through some logic function and the result of which will
be output. True rail and false rail are separately driven to 1 when subset of
input rails are 1s. Therefore, when all inputs have reset data, i.e. all input
rails are 1s, all output rails are driven to 1s. No LR needs to be generated
for slack-zero processes.

37

4 Global Reset Insertion

As mentioned, the Global Reset (GR) is connected to Initial Processes (IP).
IP will output reset data once GR is asserted. There must be enough IP so
that reset data can reach all processes in the system.

For a system with GRS, once GR is asserted, all channel wires between
different processes are driven to 0s. When GR is deasserted, Non-Initial
Processes (NIP) wait for valid data. Only IP such as initial buffers and
sources start by sending valid data. Since QDI systems are working with
GRS, the generated valid data from initial buffers and sources must be able
to reach all processes in the system. Otherwise, part of the system stays idle
and doesn’t function at all.

When the system is modified from GRS to WRS, the number of processes
don’t change, neither do the connections among different processes. There-
fore, reset data generated from initial buffers and sources must be able to
reach all processes in the system with WRS. It is sufficient to have initial
buffers and sources as IP.

Although reset data can always reach all processes in the system with
WRS, reset time can vary depending on the choice of Local Reset Input
(LRI). If reset data arrives at LRI of a process late, reset data will be gen-
erated late at the output of the process which will affect the resetting of the
next process. In the end reset time is large. Therefore, LRI should be chosen
as the first input of a process that gets reset data during reset phase.

A systematic approach of finding LRI is demonstrated in this chapter.
First, the system is modelled as a directed graph G ≡ (V,E). V is a set of
vertices while E is a set of edges. Each vertex v ∈ V represents a process
while each edge as an ordered pair e ≡ (vi, vj) ∈ E represents a channel
connecting process vi to process vj. If there is an edge (vi, vj) ∈ E, vertex vj
is adjacent to vertex vi.

Each edge connects exactly two vertices. Fork is implemented inside
vertices. For example, if one output Ou from process u needs to connect to
inputs Iv and Iw of two different processes v and w, instead of connecting
the same output Ou to both Iv and Iw, two identical copies of outputs Ou0

and Ou1 will be generated from u and respectively connect to Iv and Iw. In
addition, there is no edge starting from and ending with the same vertex.

A path from vertex u to vertex v is a sequence of edges starting from u
and ending with v. If there is a path from u to v, v is reachable from u. A
graph is connected if it contains a path from u to v or a path from v to u for
any pair of vertices u and v. A graph is strongly connected if it contains a
path from u to v and a path from v to u for any pair of vertices u and v. G

38

in the QDI systems is connected but not necessarily strongly connected.

4.1 Breadth First Search (BFS)

As introduced in [4], Breadth First Search (BFS) systematically explores
edges of G to discover every vertex that is reachable from the root vertex
v. It also generates a Breadth-First Tree (BFT) whose root is v. The tree
contains all reachable vertices from v.

The pseudocode of BFS is shown in Figure 28. The algorithm has G and
v as inputs. Each vertex in G has two attributes, color and parent. Color is
used to distinguish different states of a vertex. Initially all vertices are white.
When a vertex is traversed the first time, it becomes gray. If all adjacent
vertices of a gray vertex have been traversed, it becomes black. When a
vertex v is traversed the first time in the course of scanning the adjacent
vertices of an already traversed vertex u, u is the parent of v and v is the
child of u.

BFS(G, v) works as follows. Line 2 creates an empty queue Q which is
used to store the first-time traversed vertices. Q.enqueue(v) inserts vertex
v into Q while Q.dequeue() removes the first element in Q and returns it.
Line 3 creates an empty tree T . T.add(u, v) inserts v into T as the child of
u. After the execution of the algorithm, T is BFT. Line 4-6 mark all vertices
white and set their parent NIL. The root vertex v is first marked gray and
added into T and Q as in Line 7-9. The while loop in Line 10-18 iterates as
long as Q is not empty. During each iteration, the first element n is removed
from Q. If any of its adjacent vertices s is white which indicates s hasn’t
been traversed, s will be marked gray and s’s parent is set to n. s is then
inserted into T and Q. When all its adjacent vertices have been traversed, n
is marked black.

4.2 Breadth First Search with Multiple Roots (BF-
SMR)

In order to find LRI in a QDI system with WRS, BFS is run to generate a
BFT. The edges in the BFT are LRI of child vertices. Normally, there are
more than one IP in the QDI system with WRS, BFS is modified to BFSMR
that starts the search with multiple roots. Correspondingly, instead of BFT,
Breadth-First Forest (BFF) is generated. Edges in BFF are LRI of child
vertices. All processes represented by the roots are directly controlled by
GR.

39

1 procedure BFS(G, v)
2 c r e a t e an empty queue Q
3 c r e a t e an empty t r e e T
4 f o r each ver tex u ∈ V (G)
5 u . c o l o r = white
6 u . parent = NIL
7 v . c o l o r = gray
8 T. add (nu l l , v)
9 Q . enqueue (v)

10 whi l e Q i s not empty
11 n = Q . dequeue ()
12 f o r each s ∈ n . a d j a c e n t v e r t i c e s
13 i f s . c o l o r = white
14 s . c o l o r = gray
15 s . parent = n
16 T. add (n , v)
17 Q . enqueue (s)
18 n . c o l o r = black

Figure 28: Pseudocode of Breadth First Search (BFS)

4.2.1 Pseudocode

The pseudocode of BFSMR is shown in Figure 29. Only Line 7-10 are dif-
ferent from Figure 28. Instead of inserting single root into T and Q initially,
all vertices that represent IP are inserted.

4.2.2 Proof of Correctness

The correctness of the pseudocode is proved with loop invariant: Q contains
nothing or all gray vertices.

4.2.2.1 Initialization Before the iteration of the while loop, Q contains
all gray vertices that represent IP in the system as shown in Line 7-10.
Processes other than IP in the system are marked white in Line 4-6. The
loop invariant is true.

4.2.2.2 Maintenance Line 12 removes vertex n from Q. During the
same iteration of the while loop, Line 19 marks n black. If Q originally

40

1 procedure BFSMR(G, V)
2 c r e a t e an empty queue Q
3 c r e a t e an empty t r e e T
4 f o r each ver tex u ∈ V (G)
5 u . c o l o r = white
6 u . parent = NIL
7 f o r each ver tex that r e p r e s e n t s IP
8 v . c o l o r = gray
9 T. add (NIL , v)

10 Q . enqueue (v)
11 whi l e Q i s not empty
12 n = Q . dequeue ()
13 f o r each s ∈ n . a d j a c e n t v e r t i c e s
14 i f s . c o l o r = white
15 s . c o l o r = gray
16 s . parent = n
17 T. add (n , v)
18 Q . enqueue (s)
19 n . c o l o r = black

Figure 29: Pseudocode of BFS with Multiple Roots

contains all gray vertices, after this removal of n which is marked black, Q
contains nothing or all gray vertices.

Another operation related to Q is the insertion inside the for loop in Line
13-18. For each adjacent vertex of n, if it is white, it is marked gray and
inserted into Q. Since the vertex inserted into Q has always been marked
gray beforehand, if Q contains nothing or all gray vertices before the for loop,
Q contains nothing or all gray vertices after the for loop. Therefore, the loop
invariant is maintained.

4.2.2.3 Termination There are two for loops and one while loop in the
pseudocode. The two for loops will terminate because the number of total
vertices and IP are finite.

The color of reachable vertices from roots can only change from white to
gray and then to black. Inside the while loop, only white vertices can be
marked gray and inserted into Q as shown in Line 13-19. The total num-
ber of reachable vertices from roots is finite. Therefore, the total number of
white vertices that can be inserted into Q is finite. During each iteration, one

41

vertex is removed from Q and marked black. Therefore, after finite number
of iterations, Q will become empty, all vertices will be marked black and
BFSMR(G, V) will terminate.

42

5 Iterative Multiplier

In this chapter, an 8-bit iterative multiplier is implemented to evaluate
whether a QDI system can be reset properly with WRS and start normal
operation without deadlock. The behavior of the iterative multiplier is de-
scribed by CHP in the Appendix.

5.1 Iterative Multiplier

The iterative multiplier shown in Figure 30 stores two multiplicants I0 and
I1 in register m0 and m1. m0 is a parallel-in serial-out register. It receives
8-bit data and outputs it bit by bit starting with the Least Significant Bit
(LSB). m1 receives 8-bit data and outputs the same data for eight times. If
the bit from m0 is 1, the multiplexer mux accepts data from m1 and outputs
it to the adder add8; otherwise it outputs 0 to add8.

Figure 30: Iterative Multiplier

The LSB of the sum from add8 goes to r0 while the carry-out bit cascading
with the other seven Most Significant Bits (MSB) of the sum goes to the
demultiplexer demux. demux sends out 0 to add8 initially in order to sum
with the first data from mux. After that, it accepts data from add8 and
sends data back for seven times before it sends data to r1. r0 is a serial-in
parallel-out register while r1 is a normal register. In the end, r1 and r0 store
the higher and lower byte of the result respectively. r combines the two bytes
and outputs O.

43

Most of processes in the multiplier are implemented with PCHB tem-
plates. The rest are special blocks: Demux is an AP that starts by sending
0 to add8. A Source process continues sending 0 to one of the inputs of mux.
Some functions such as copy, merge and split are implemented by slack-zero
processes.

5.2 Simulation

The multiplier is simulated with an environment that accepts data from O,
applies some function to the received data and sends higher and lower bytes
of the results to I0 and I1 respectively. Therefore the system is closed and
operates forever.

The multiplier resets and operates correctly under different process tech-
nologies, process corners and operating voltages. Reset time is shown in
Figure 31. The X-axis specifies different simulation conditions. “LP” refers
to TSMC 40nm Low-Power technology while “GS” refers to TSMC 40nm
General-Purpose technology. The number following “LP” or “GS” is the op-
erating voltage. For example, “06” is 0.6V while “10” is 1V. Three series
of data represent three different process corners, i.e. TT (Typical NMOS,
Typical PMOS), SF (Slow NMOS, Fast PMOS) and FS (Fast NMOS, Slow
PMOS).

When the operating voltage increases, the reset time reduces. In addition,
at the same voltage, LP process resets slower than GS process as expected.

44

Figure 31: Reset Time for Different Process Corners

Similar results can be observed for cycle time in Figure 32. Cycle time is
the time spent in computing one multiplication.

45

Figure 32: Cycle Time for Different Process Corners

LR can be replaced by GR in order to shorten reset time. However,
distribution of GR may require a large network of rails once GR needs to be
distributed to more processes. If every LR is replaced by GR, WRS changes
to GRS. For the multiplier, reset signals for processes are gradually changed
from LR to GR. The corresponding reset time for the multiplier is shown in
Figure 33.

46

Figure 33: Reset Time with Additional Global Reset

As expected, the trend of reset time is decreasing as more LR are changed
to GR. However, for some modification of reset signals from LR to GR, the
reset time keeps constant. This is because the changed processes don’t stay
in the critical path of propagation of reset data.

47

6 Conclusion

In this thesis, reset schemes for QDI systems have been examined. Circuit
implementation and operation protocol for both GRS and WRS have been
discussed. Reset time of systems with WRS is dependent on the choice
of LRI. An algorithm has been proposed to systematically choose the LRI
in order to shorten the reset time. The proposed WRS has been applied
to an iterative multiplier that operates correctly under different operating
conditions.

In some sense WRS is a more general reset scheme for QDI systems than
GRS. LR in WRS can be changed to GR in order to shorten reset time. This
has been illustrated by the multiplier application. Once all LR for WRS are
changed to GR, WRS changes to GRS. Therefore, GRS is a special case of
WRS. If there are more LR in the system, the large network of rails and
buffers distributing GR can be removed. All reset signals become local. On
the other hand, having more GR will reduce the reset time of the QDI system.
The choice of the number of GR is application dependent.

Both GRS and WRS rely on reset timing assumption because the state
of the system before reset is “demonic” - all values are possible. We be-
lieve it is impossible to implement an asynchronous reset without any timing
assumption.

48

Appendices
CHP Description of The Iterative Multiplier

process mult()(I0?, I1?: byte; O!: word)

chp{

var x0, x1: byte;

var y: word;

*[I0?x0, I1?x1; y:=x0 * x1; O!y]

}

meta{

instance m0: mult0; instance m1: mult1;

instance mx: mux; instance ad: add8;

instance dx: demux; instance r1: rmsb;

instance r0: rlsb; instance r: result;

connect I0, m0.I;

connect I1, m1.I;

connect m0.O, mx.C;

connect m1.O, mx.I;

connect ad.I0, mx.O;

connect ad.I1,dx.O0;

connect ad.O, dx.I;

connect ad.LSB, r0.I;

connect dx.O1, r1.I;

connect all j:0..7: r.I0[j], r0.O[j];

connect r.I1, r1.O;

connect O, r.O;

}

process mult0()(I?: byte; O!: bit)

chp{

var x: byte;

*[I?x; O!x[0]; O!x[1]; O!x[2]; O!x[3]; O!x[4]; O!x[5]; O!x[6]; O!x[7]]

}

process mult1()(I?, O!: byte)

chp{

var x: byte;

*[I?x; <<; i:0..7: O!x>>]

}

process mux()(I?, O!: byte; C?: bit)

chp{

var c: bit; var x: byte;

*[C?c, I?x; [c -> O!x

[]~c -> O!0]]

}

process demux()(I?, O0!, O1!: byte)

chp{

var x: byte;

*[O0!0; <<;i:0..6:I?x; O0!x>>; I?x; O1!x, O0!0]

}

process add8()(I0?, I1?: byte; O!: byte; LSB!:bit)

chp{

var x0, x1, yp: byte;

var y: word;

*[I0?x0, I1?x1; y:=x0+x1; <<,i:0..7: yp[i]:=y[i+1]>>; O!yp, LSB!y[0]]

}

process rmsb()(I?, O!: byte)

chp{

var x: byte;

*[I?x; O!x]

}

process rlsb()(I?: bit; O[0..7]!: bit)

chp{

var y: byte;

*[<<; i:0..7: I?y[i]>>; <<, i:0..7:O[i]!y[i]>>]

}

process result()(I0[0..7]?: bit; I1?: byte; O!: word)

chp{

var y: word; var x0, x1: byte;

*[<<,i:0..7:I0[i]?x0[i]>>, I1?x1; <<, i:0..7: y[i]:=x0[i], y[i+8]:=x1[i]>>; O!y]

}

References

[1] A. J. Martin and M. Nystrom, “Asynchronous techniques for system-
on-chip design” Proc. IEEE Volume 94, Issue 6, pp. 1089-1120, Oct.
2006.

[2] A. J. Martin, “The limitation to delay-insensitivity in asynchronous cir-
cuits” Sixth MIT Conference on Advanced Research in VLSI, pp. 263-
278, 1990.

[3] A. M. Lines “Pipelined Asynchronous Circuits” M.S. thesis, CS, Caltech,
Pasadena, CA, 1995

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction
to Algorithms”, 3rd ed. MIT Press and McGraw-Hill 2009, Ch. 22.4, pp.
449-451.

[5] P. Prakash, A. J. Martin “Slack Matching Quasi Delay-Insensitive Cir-
cuits”, ASYNC 2006, pp. 195-204, 2006.

